Science.gov

Sample records for nuclear collective phenomena

  1. Collective phenomena in non-central nuclear collisions

    SciTech Connect

    Voloshin, Sergei A.; Poskanzer, Arthur M.; Snellings, Raimond

    2008-10-20

    Recent developments in the field of anisotropic flow in nuclear collision are reviewed. The results from the top AGS energy to the top RHIC energy are discussed with emphasis on techniques, interpretation, and uncertainties in the measurements.

  2. Collective Phenomena in Macroscopic Systems

    NASA Astrophysics Data System (ADS)

    Bertin, G.; Pozzoli, R.; Romé, M.; Sreenivasan, K. R.

    2007-08-01

    A hypothesis of the magnetostatic turbulence and its implications of astrophysics / D.D. Ryutov and B.A. Remingtonn-- Coherent structures and turbulence in electron plasmas / M. Rome ... [et al.] -- Self-organization of non-linear vortices in plasma lens for ion-beam-focusing in crossed radial electrical and longitudinal magnetic fields / V. Maslov, I. Onishchenko and A. Goncharov -- Collective processes at kinetic levels in dusty plasmas / P.K. Shukla and B. Eliasson -- Magnetic field generation in anisotropic relativistic plasma regimes / F. Pegoraro, F. Califano and D. del Sarto -- Generation and observation of coherent, long-lived structures in a laser-plasma channel / T. V. Liseykina ... [et al.] -- Theoretical resolution of magnetic reconnection in high energy plasmas / B. Coppi -- The power of being flat: conformal invariance in two-dimensional turbulence / A. Celani -- Stochastic resonance: from climate to biology / R. Benzi -- Energy-enstrophy theory for coupled fluid/rotating sphere system-exact solutions for super-rotations / C. C. Lim -- Thermophoretic convection of silica nanoparticles / A. Vailati ... [et al.] -- Fluctuations and pattern formation in fluids with competing interactions / A. Imperio, D. Pini and L. Reatto -- Alternatives and paradoxes in rotational and gravitational instabilities / J.P. Goedbloed -- Poynting jets and MHD winds from rapidly rotating magnetized stars / R.V.E. Lovelace, M.M. Romanova, G.V. Ustyugova and A.V. Koldoba -- Turbulence and transport in astrophysical accretion disks / J.M. Stone -- Gravitational instabilities in gaseous discs and the formation of supermassive Black Hole seeds at high redshifts / G. Lodato -- Fine Structure and Dynamics of Sunspot Penumbra / M. Ryutova, T. Berger and A. Title -- Phase Mixing in Mond / L. Ciotti, C. Nipoti and P. Londrillo -- MHD simulations of jet acceleration: the role of disk resistivity / G. Bodo ... [et al.] -- Hamiltonian structure of a collisionless reconnection model valid

  3. Search for collective phenomena in hadron interactions

    SciTech Connect

    Kokoulina, E. S. Nikitin, V. A. Petukhov, Y. P.; Karpov, A. V. Kutov, A. Ya.

    2010-12-15

    New results of the search for collective phenomena have been obtained and analyzed in the present report. The experimental studies are carried out on U-70 accelerator of IHEP in Protvino. It is suggested that these phenomena can be discovered at the energy range of 50-70 GeV in the extreme multiplicity region since the high-density matter can form in this very region. The collective behavior of secondary particles is considered to manifest itself in the Bose-Einstein condensation of pions, Vavilov-Cherenkov gluon radiation, excess of soft-photon yield, and other unique phenomena. The perceptible peak in the angular distribution has been revealed. It was interpreted as the gluon radiation and so the parton matter refraction index was determined. The new software was designed for the track reconstruction based on Kalman Filter technique. This algorithm allows one to estimate more precisely the track parameters (especially momentum). The search for Bose-Einstein condensation can be continued by using the selected events with the multiplicity of more than eight charged particles. The gluon dominance model predictions have shown good agreement with the multiplicity distribution at high multiplicity and confirmed the guark-gluon medium formation under these conditions.

  4. Critical Phenomena and Collective Observables - Cris '96

    NASA Astrophysics Data System (ADS)

    Insolia, Antonio; Costa, S.; Albergo, A.

    1996-11-01

    The Table of Contents for the full book PDF is as follows: * International Advisory Committee and Local Organizing Committee * Preface * The Nuclear Liquid-Gas Phase Transition: Present Status and Future Perspectives * The Multifragmentation Phase Transition -- Percolation Approach * Excitation Energy, Temperature, and Density in the Multifragmentation of Gold Nuclei * Do Phase Transitions Survive Binomial Reducibility and Thermal Scaling? * Universal Features in the Nuclear Multifragmentation Phase Transition * Studies on the Dynamics of Multifragmentation * Critical Behaviour in Peripheral Au + Au Collisions at 35 MeV /u * Probing Low Density Nuclear Matter * Critical Exponents and the Scaling Function in Nuclear Multifragmentation of 1 AGeV Au + C * Determination of Critical Exponents in Nuclear Systems * Dissipative Dynamics of Nuclear Fragmentation at Fermi Energies * Phase Transition in Nuclear Matter? * Last Minute from ALADIN: Temperature Measurements in Au+Au Reactions at Relativistic Energies * Instabilities in Finite Systems * Temperature and Thermodynamic Instabilities in Heavy Ion Collisions * Nuclear Multifragmentation: Comparison between EOS Data of Au+C at 1 GeV /Nucleon and a Statistical Fragmentation Model * First Order Liquid-to-Gas Phase Transitions in Nuclear Multifragmentation at the Fermi Energy? * Realistic Forces, Medium Dependence, Equation of State, Heavy Ion Collisions in QMD and Relativistic QMD * Caloric Curve in Molecular Dynamics * Colour Deconfinement in Hot and Dense Matter * Quark-Gluon Plasma Signatures and Probes * Matter Under Extreme Conditions at the LHC -- The ALICE Experiment * Collective Observables in Heavy-Ion Collisions * Collective Flow Studies with the FOPI Detector * Deuterons and Flow: At Intermediate AGS Energies * First and Second Order Phase Transitions: A Comparison between Canonical and Microcanonical Treatment * Microcanonical Thermodynamics, Fragmentation "Phase-Transition", and the Topology of the N

  5. Analysis of nuclear reactor instability phenomena

    SciTech Connect

    Lahey, R.T. Jr.

    1993-01-01

    The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

  6. Novel nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs.

  7. Hadronic and nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-06-01

    Many of the key issues in understanding quantum chromodynamics involves processes at intermediate energies. We discuss a range of hadronic and nuclear phenomena - exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction - as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Many of these processes can be studied in electroproduction, utilizing internal targets in storage rings. We also review several areas where there has been significant theoretical progress in determining the form of hadron and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. 98 refs., 40 figs., 2 tabs.

  8. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat. PMID:23949247

  9. Analysis of nuclear reactor instability phenomena. Progress report

    SciTech Connect

    Lahey, R.T. Jr.

    1993-03-01

    The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

  10. Free-energy calculation methods for collective phenomena in membranes

    NASA Astrophysics Data System (ADS)

    Smirnova, Yuliya G.; Fuhrmans, Marc; Barragan Vidal, Israel A.; Müller, Marcus

    2015-09-01

    Collective phenomena in membranes are those which involve the co-operative reorganization of many molecules. Examples of these are membrane fusion, pore formation, bending, adhesion or fission. The time and length scales, on which these processes occur, pose a challenge for atomistic simulations. Therefore, in order to solve the length scale problem it is popular to introduce a coarse-grained representation. To facilitate sampling of the relevant states additional computational techniques, which encourage the system to explore the free-energy landscape far from equilibrium and visit transition states, are needed. These computational techniques provide insights about the free-energy changes involved in collective transformations of membranes, yielding information about the rate limiting states, the transformation mechanism and the influence of architectural, compositional and interaction parameters. A common approach is to identify an order parameter (or reaction coordinate), which characterizes the pathway of membrane reorganization. However, no general strategy exists to define such an order parameter that can properly describe cooperative reorganizations in membranes. Recently developed methods can overcome this problem of the order-parameter choice and allow us to study collective phenomena in membranes. We will discuss such methods as thermodynamic integration, umbrella sampling, and the string method and results provided by their applications to particle-based simulations, particularly focusing on membrane fusion and pore formation.

  11. Modeling local chemistry in the presence of collective phenomena.

    SciTech Connect

    Chandross, Michael Evan; Modine, Normand Arthur

    2005-01-01

    Confinement within the nanoscale pores of a zeolite strongly modifies the behavior of small molecules. Typical of many such interesting and important problems, realistic modeling of this phenomena requires simultaneously capturing the detailed behavior of chemical bonds and the possibility of collective dynamics occurring in a complex unit cell (672 atoms in the case of Zeolite-4A). Classical simulations alone cannot reliably model the breaking and formation of chemical bonds, while quantum methods alone are incapable of treating the extended length and time scales characteristic of complex dynamics. We have developed a robust and efficient model in which a small region treated with the Kohn-Sham density functional theory is embedded within a larger system represented with classical potentials. This model has been applied in concert with first-principles electronic structure calculations and classical molecular dynamics and Monte Carlo simulations to study the behavior of water, ammonia, the hydroxide ion, and the ammonium ion in Zeolite-4a. Understanding this behavior is important to the predictive modeling of the aging of Zeolite-based desiccants. In particular, we have studied the absorption of these molecules, interactions between water and the ammonium ion, and reactions between the hydroxide ion and the zeolite cage. We have shown that interactions with the extended Zeolite cage strongly modifies these local chemical phenomena, and thereby we have proven out hypothesis that capturing both local chemistry and collective phenomena is essential to realistic modeling of this system. Based on our results, we have been able to identify two possible mechanisms for the aging of Zeolite-based desiccants.

  12. Collective phenomena in volume and surface barrier discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  13. Collective Phenomena In Volume And Surface Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  14. Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Dusling, Kevin; Li, Wei; Schenke, Björn

    2016-01-01

    The observation of long-range rapidity correlations among particles in high-multiplicity p-p and p-Pb collisions has created new opportunities for investigating novel high-density QCD phenomena in small colliding systems. We review experimental results related to the study of collective phenomena in small systems at RHIC and the LHC along with the related developments in theory and phenomenology. Perspectives on possible future directions for research are discussed with the aim of exploring emergent QCD phenomena.

  15. Collective Space-Charge Phenomena in the Source Region

    SciTech Connect

    Haber, I.; Bernal, S.; Celata, C.M.; Friedman, A.; Grote, D.P.; Kishek,R.A.; Quinn, B.; O'Shea, P.G.; Reiser, M.; Vay, J.-L.

    2004-09-18

    For many devices space-charge-dominated behavior, including the excitation of space-charge collective modes, can occur in the source region, even when the downstream characteristics are not space-charge-dominated. Furthermore, these modes can remain undamped for many focusing periods. Traditional studies of the source region in particle beam systems have emphasized the behavior of averaged beam characteristics, such as total current, rms beam size, or emittance, rather than the details of the full beam distribution function that are necessary to predict the excitation of collective modes. A primary tool for understanding the detailed evolution of a space-charge dominated beam in the source region has been the use of simulation in concert with detailed experimental measurement. However, ''first-principle'' simulations beginning from the emitter surface have often displayed substantial differences from what is measured. This is believed to result from sensitivities in the beam dynamics to small changes in the mechanical characteristics of the gun structure, as well as to similar sensitivities in the numerical methods. Simulations of the beam in the source region using the particle-in-cell WARP code and comparisons to experimental measurements at the University of Maryland are presented to illustrate the complexity in beam characteristics that can occur in the source region. In addition, direct measurement of the beam characteristics can be limited by lack of access to the source region or by difficulties in obtaining enough data to completely characterize the distribution function. Methods are therefore discussed for using simulation to infer characteristics of the beam distribution from the data that can be obtained.

  16. Vortex arrays as emergent collective phenomena for circle swimmers

    NASA Astrophysics Data System (ADS)

    Kaiser, A.; Löwen, H.

    2013-03-01

    Collective properties of many rodlike circle swimmers are explored by computer simulations in two spatial dimensions. In the model considered, the center of mass of a single swimmer moves on a circle with radius R. Therefore, the model provides an interpolation between an interacting self-propelled-rod model for linear swimmers (R→∞) and that of interacting passive rotors (R=0). We map out the state diagram for various swimmer densities and radii R. For increasing density, the dilute state is followed by vortices consisting of single particles (singlet-vortex state), where neighboring particles are perpendicularly oriented, and vortices of swimmer pairs (doublet-vortex state). The vortices exhibit strong structural ordering on an array. At higher densities, a slowed rotor fluid with a significant degree of mutual rotation hindrance occurs. The single-particle vortex structure becomes unstable above a threshold in the circling radius R, while pair vortices are stable only for intermediate radii R. A simple theory is proposed to predict the topology of the state diagram. Our results are verifiable for bacterial and artificial rodlike circle swimmers.

  17. Time-lag cross-correlations in collective phenomena

    NASA Astrophysics Data System (ADS)

    Podobnik, B.; Wang, D.; Horvatic, D.; Grosse, I.; Stanley, H. E.

    2010-06-01

    We study long-range magnitude cross-correlations in collective modes of real-world data from finance, physiology, and genomics using time-lag random matrix theory. We find long-range magnitude cross-correlations i) in time series of price fluctuations, ii) in physiological time series, both healthy and pathological, indicating scale-invariant interactions between different physiological time series, and iii) in ChIP-seq data of the mouse genome, where we uncover a complex interplay of different DNA-binding proteins, resulting in power-law cross-correlations in xij, the probability that protein i binds to gene j, ranging up to 10 million base pairs. In finance, we find that the changes in singular vectors and singular values are largest in times of crisis. We find that the largest 500 singular values of the NYSE Composite members follow a Zipf distribution with exponent ≈2. In physiology, we find statistically significant differences between alcoholic and control subjects.

  18. Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions

    DOE PAGESBeta

    Dusling, Kevin; Li, Wei; Schenke, Björn

    2016-01-22

    The observation of long-range rapidity correlations among particles in high-multiplicity p–p and p–Pb collisions created new opportunities for investigating novel high-density QCD phenomena in small colliding systems. We also review experimental results related to the study of collective phenomena in small systems at RHIC and the LHC along with the related developments in theory and phenomenology. Finally, perspectives on possible future directions for research are discussed with the aim of exploring emergent QCD phenomena.

  19. Short-distance phenomena in nuclear physics. Vol. 104

    SciTech Connect

    Boal, D.H.; Woloshyn, R.M.

    1983-01-01

    This book focuses on the role of the substructure of hadrons (quarks and gluons) in nuclear physics. Considers not only the effects which may be observed in specific nuclear states, such as form factors at large momentum transfer, or the presence of hidden color components in the ground states of few nucleon systems, but also effects which may be observed in the nuclear matter continuum: the phase transition from normal nuclear matter to a plasma of quarks and gluons. Discusses quantum chromodynamics; the constituent quark model; a valon model for hadrons and their interactions; multi-quark states and potential models; nuclear chromodynamics; the thermodynamics of strongly interacting matter; anomalons, honey and glue in nuclear collisions; pions from and about heavy ions; nuclear and particle physics in the early universe; the interacting boson model; the role of pions and isobars in nuclei; nuclear structure, double beta decay and giant resonances; and unity in diversity. Constitutes the Proceedings of the Pacific Summer Institute (''Progress in Nuclear Dynamics: Short-Distance Behavior in the Nucleus'') held in Canada in 1982.

  20. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    SciTech Connect

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.

  1. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    DOE PAGESBeta

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less

  2. Signatures of new phenomena in ultrarelativistic nuclear collisions

    SciTech Connect

    Gyulassy, M.

    1983-11-01

    Three classes of observables are discussed which may shed light on the properties of the quark-gluon plasma formed in ultrarelativistic nuclear collisions. They are: (1) thermometers: the penetrating probes ..mu../sup +/..mu../sup -/, ..gamma.., c, (2) barometers: transverse flow via

    , and (3) seismometers: fluctuations of dN/dy and dE perpendicular/dy. The need for reliable estimates of the background due to the non-equilibrium processes is emphasized. 49 references.

  3. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  4. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  5. Novel High Transverse Momentum Phenomena in Hadronic and Nuclear Collisions

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2009-04-10

    I discuss a number of novel phenomenological features of QCD in high transverse momentum reactions. The presence of direct higher-twist processes, where a proton is produced directly in the hard subprocess, can explain the 'baryon anomaly' - the large proton-to-pion ratio seen at RHIC in high centrality heavy ion collisions. Direct hadronic processes can also account for the deviation from leading-twist PQCD scaling at fixed x{sub T} = 2 p{sub T}/{radical}s. I suggest that the 'ridge' --the same-side long-range rapidity correlation observed at RHIC in high centrality heavy ion collisions is due to the imprint of semihard DGLAP gluon radiation from initial-state partons which have transverse momenta biased toward the trigger. A model for early thermalization of the quark-gluon medium is also outlined. Rescattering interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing--all leading-twist dynamics not incorporated in the light-front wavefunctions of the target computed in isolation. Anti shadowing is shown to be quark flavor specific and thus different in charged and neutral deep inelastic lepton-nucleus scattering. I also discuss other aspects of quantum effects in heavy ion collisions, such as tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and the important consequences of color-octet intrinsic heavy quark distributions in the proton for particle and Higgs production at high x{sub F}. I also discuss how the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories allows one to compute the analytic form of frame-independent light-front wavefunctions of

  6. TDHF Periodic Orbits and Nuclear Collective States

    NASA Astrophysics Data System (ADS)

    Wu, Jianshi; Baranger, Michel; Strayer, Michael

    2000-04-01

    We developed a numerical algorithm to calculate the time-dependent Hartree-Fock (TDHF) periodic orbits for nuclear collective motion, and a requantization procedure to recover the many-body wave functions of the collective excitations from these orbits. TDHF periodic orbits provide us a family of Slater determinants which are highly related to the type of collective motion in study. They form a natural basis for the requantization procedure using the generator coordinate method (GCM). We applied the requantization procedure to the monopole collective motion of Oxygen nucleus, and consistently recovered the stationary wave functions for the collective excitations. The properties of these collective excitations can be calculated through these wave functions.

  7. Experimental nuclear reaction data collection EXFOR

    SciTech Connect

    Semkova, V.; Otuka, N.; Simakov, S. P.; Zerkin, V.

    2011-07-01

    The International Network of Nuclear Reaction Data Centres (NRDC) constitutes a worldwide cooperation of 14 nuclear data centres. The main activity of the NRDC Network is collection and compilation of experimental nuclear reaction cross section data and the related bibliographic information in the EXFOR and CINDA databases as well as dissemination of nuclear reaction data and associated documentation to users. The database contains information and numerical data from more than about 19000 experiments consisting of more than 140000 datasets. EXFOR is kept up to date by constantly adding newly published experimental information. Tools developed for data dissemination utilise modern database technologies with fast online capabilities over the Internet. Users are provided with sophisticated search options, a user-friendly retrieval interface for downloading data in different formats, and additional output options such as improved data plotting capabilities. The present status of the EXFOR database will be presented together with the latest development for data access and retrieval. (authors)

  8. PREFACE: New nuclear structure phenomena in the vicinity of closed shells

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Wyss, R.

    1995-01-01

    The proceedings of the international symposium on "New Nuclear Structure Phenomena in the Vicinity of Closed Shells - SELMA 94", held in Stockholm, Uppsala and on the Baltic Sea from Aug. 30 - Sep. 3 are collected in this volume. Since almost 40% of the session time was kept open for discussions, it is difficult to give full justice to the character of the meeting in a written report. However, since also many posters are presented in this volume, we hope that some of the flavour of this lively symposium will pass onto the reader. We have chosen to group related contributions in order to facilitate the reading. Several articles, though, may fit into several categories. With the event of large detector arrays there has been a tremendous development in the field of nuclear spectroscopy. The discovery of super-deformation has been followed by detailed spectroscopy in the second well. Hence, the concept of shell closure is reinterpreted in general terms, involving shapes different from spherical. Close to the drip lines, we expect new shells and new structure effects to emerge. Loosely bound neutrons may form a new state of nuclear matter. The regions of the nuclear chart far from the line of stability can be explored in the future by means of radioactive ion beams. New structure effects, that one might encounter far from the line of stability was one of the themes of this conference. The strong impact of the nuclear shell model is also evident in other branches of physics, like the structure of metal-clusters. Special attention was paid to the Sn-isotopes. In the Sn-isotopic chain, spectroscopic measurements are extending beyond the doubly-magic nucleus 132Sn. Large efforts have recently been made to study nuclei in the vicinity of the doubly-magic nucleus 100Sn, the other extreme end of the chain. Spectroscopic data on 100Sn would open the entire shell for nuclear structure studies, ranging over a number of 32 neutrons. During the organization of this meeting, the

  9. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    SciTech Connect

    Burchell, Timothy D; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will

    2008-03-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  10. Crises and Collective Socio-Economic Phenomena: Simple Models and Challenges

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jean-Philippe

    2013-05-01

    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the so-called Random Field Ising model ( rfim) provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilizing self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and that account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of rfim-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can fail badly at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria from being reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.

  11. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    SciTech Connect

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M.; Nichols, R.T.

    1994-06-01

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories are used to perform scaled experiments that simulate High Pressure Melt Ejection accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt (thermite) is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic air/steam/hydrogen atmospheres, and hydrogen generation and combustion, can be studied. Four Integral Effects Tests (IETs) have been performed with scale models of the Surry NPP to investigate DCH phenomena. The 1/61{sup th} scale Integral Effects Tests (IET-9, IET-10, and IET-11) were conducted in CTRF, which is a 1/6{sup th} scale model of the Surry reactor containment building (RCB). The 1/10{sup th} scale IET test (IET-12) was performed in the Surtsey vessel, which had been configured as a 1/10{sup th} scale Surry RCB. Scale models were constructed in each of the facilities of the Surry structures, including the reactor pressure vessel, reactor support skirt, control rod drive missile shield, biological shield wall, cavity, instrument tunnel, residual heat removal platform and heat exchangers, seal table room and seal table, operating deck, and crane wall. This report describes these experiments and gives the results.

  12. A framework for the systematic realisation of phenomena for enhanced sensing of radiological and nuclear materials, and radiation.

    PubMed

    Healy, M J F

    2015-09-01

    The quest for new sensing phenomena continues because detecting, discriminating, identifying, measuring and monitoring nuclear materials and their radiation from greater range, at lower concentrations, and in a more timely fashion brings greater safety, security and efficiency. The potential phenomena are diverse, and those that have been realised can be found in disparate fields of science, engineering and medicine, which makes the full range difficult to realise and record. The framework presented here offers a means to systematically and comprehensively explore nuclear sensing phenomena. The approach is based on the fundamental concepts of matter and energy, where the sequence starts with the original nuclear material and its emissions, and progressively considers signatures arising from secondary effects and the emissions from associated materials and the environment. Concepts of operations such as active and passive interrogation, and networked sensing are considered. In this operational light, unpacking nuclear signatures forces a fresh look at the sensing concept. It also exposes how some phenomena that exist in established technology may be considered novel based on how they could be exploited rather than what they fundamentally are. This article selects phenomena purely to illustrate the framework and how it can be best used to foster creativity in the quest for novel phenomena rather than exhaustively listing, categorising or comparing any practical aspects of candidate phenomena. PMID:26270745

  13. Best Estimate Code System to Calculate Thermal & Hydraulic Phenomena in a Nuclear Reactor or Related System.

    Energy Science and Technology Software Center (ESTSC)

    1999-05-19

    Version 00 RELAP4/MOD7/101 performs best estimate analyses of nuclear reactors or related systems undergoing a transient. Transient thermal-hydraulic, two-phase phenomena are calculated from formulations of one-dimensional, homogeneous, equilibrium conservation equations for water mass, momentum, and energy. Heat structures are modeled using a transient one-dimensional heat conduction solution that is coupled to the fluid through heat transfer relations. Various explicit models are used to calculate nonhomogeneous, nonequilibrium behavior including a phase separation model, a vertical slipmore » model, and a nonequilibrium model. Other models are used to represent critical flow, reactor kinetics, pressurized water reactor reflood behavior, nuclear fuel rod swelling and blockage, and components such as pumps, valves, and accumulators.« less

  14. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    SciTech Connect

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

  15. Environmental consequences of postulated plutonium releases from Exxon Nuclear MOFP, Richland, Washington, as a result of severe natural phenomena

    SciTech Connect

    Jamison, J.D.; Watson, E.C.

    1980-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Exxon Nuclear Company Mixed Oxide Fabrication Plant (MOFP), Richland, Washington. The severe natural phenomena considered are earthquakes, tornadoes, high straight-line winds, and floods. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values most likely to occur offsite are also given.

  16. Collective Phenomena and Non-Finite State Computation in a Human Social System

    PubMed Central

    DeDeo, Simon

    2013-01-01

    We investigate the computational structure of a paradigmatic example of distributed social interaction: that of the open-source Wikipedia community. We examine the statistical properties of its cooperative behavior, and perform model selection to determine whether this aspect of the system can be described by a finite-state process, or whether reference to an effectively unbounded resource allows for a more parsimonious description. We find strong evidence, in a majority of the most-edited pages, in favor of a collective-state model, where the probability of a “revert” action declines as the square root of the number of non-revert actions seen since the last revert. We provide evidence that the emergence of this social counter is driven by collective interaction effects, rather than properties of individual users. PMID:24130745

  17. Pulsar electrodynamics: Relativistic kinetic theory of radiative plasmas—collective phenomena and their radiation

    NASA Astrophysics Data System (ADS)

    da Costa, A. A.; Diver, D. A.; Laing, E. W.; Stark, C. R.; Teodoro, L. F. A.

    2011-01-01

    The classical modeling of radiation by accelerated charged particles in pulsars predicts a cutoff in photon energy at around 25 GeV. While this is broadly consistent with observations, the classical treatment is not self-consistent, and cannot be extended to explain the rare high-energy detections of photons in the 100s of GeV range. In this paper we revisit the theoretical modeling of high-energy radiation processes in very strong electromagnetic fields, in the context of both single particles and collective plasmas. There are no classical constraints on this description. We find that there is indeed a critical energy of around 50 GeV that arises naturally in this self-consistent treatment, but rather than being a cutoff, this critical energy signals a transition from radiation that is classical to a quasiquantum description, in which the particle is able to radiate almost its total energy in a single event. This new modeling therefore places pulsar radiation processes on a more secure physical basis, and admits the possibility of the production of TeV photons in a self-consistent way.

  18. Nuclear collective excitations: A relativistic density functional approach

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2015-08-01

    Density functional theory provides the most promising, and likely unique, microscopic framework to describe nuclear systems ranging from finite nuclei to neutron stars. Properly optimized energy density functionals define a new paradigm in nuclear theory where predictive capability is possible and uncertainty quantification is demanded. Moreover, density functional theory offers a consistent approach to the linear response of the nuclear ground state. In this paper, we review the fundamental role played by nuclear collective modes in uncovering novel excitations and in guiding the optimization of the density functional. Indeed, without collective excitations the determination of the density functional remains incomplete. Without collective excitations, the equation of state of neutron-rich matter continues to be poorly constrained. We conclude with a discussion of some of the remaining challenges in this field and propose a path forward to address these challenges.

  19. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    SciTech Connect

    Corwin, William R; Ballinger, R.; Majumdar, S.; Weaver, K. D.

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  20. Environmental consequences of postulate plutonium releases from Atomics International's Nuclear Materials Development Facility (NMDF), Santa Susana, California, as a result of severe natural phenomena

    SciTech Connect

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline.

  1. Environmental consequences of postulated plutonium releases from General Electric Company Vallecitos Nuclear Center, Vallecitos, California, as a result of severe natural phenomena

    SciTech Connect

    Jamison, J.D.; Watson, E.C.

    1980-11-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the General Electric Company Vallecitos Nuclear Center, Vallecitos, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquakes, and the 180-mph and 230-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 135-mph tornado are below the EPA proposed guidelines.

  2. ALP-RISK, a smartphone app for collecting data on geomorphic phenomena at high altitude in the Mont Blanc region

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Deline, Philip

    2014-05-01

    A network of observers (mountain guides, hut keepers and mountaineers) has been created from 2005 for the Mont Blanc massif in order to acquire data on rockfall in permafrost-affected rock walls. This network, fully operational since 2007, is based on observation sheets or oral communications and has documented nearly 350 events with volume between 100 and 45,000 m3. Their analysis confirmed and helped to better understand the role of the permafrost degradation as main triggering factor. To i) reinforce this network, ii) facilitate its observation work and iii) develop it as well in space (the whole Mont Blanc region, or eventually the whole western Alps) as in a thematic point of view (all glacial and periglacial brutal phenomena), the Alp-Risk app has been created in the framework of the Alcotra PrévRisk Mont-Blanc project. The latter (2011-13) has been developed to improve the prevention of individual and collective natural hazards around the Mont Blanc massif. The app was created for I-Phones and Androids in three languages (French, English and Italian) and allows, as intuitively and quickly as possible, transmitting data on natural hazards in high mountain (snow and ice avalanche, landslides and rockfalls, landslides, moraine destabilization, water pocket outburst flood, torrential flood, and others) to both practitioners (observations available directly on the app via an interface web), scientists, and possibly local managers. Alp-Risk thus constitutes a new step for participatory science in the Mont Blanc region.

  3. Modeling the influence of string collective phenomena on the long range rapidity correlations between the transverse momentum and the multiplicities

    NASA Astrophysics Data System (ADS)

    Andronov, E.; Vechernin, V.

    2016-01-01

    The long-range rapidity correlations between the multiplicities (n-n) and the transverse momentum and the multiplicity (pT-n) of charge particles are analyzed in the framework of the simple string inspired model with two types of sources. The sources of the first type correspond to the initial strings formed in a hadronic collision. The sources of the second type imitate the appearance of the emitters of a new kind resulting from interaction (fusion) of the initial strings. The model enabled to describe effectively the influence of the string fusion effects on the strength both the n-n and the pT-n correlations. It was found that in the region, where the process of string fusion comes into play, the calculation results predict the non-monotonic behaviour of the n-n and pT-n correlation coefficients with the growth of the mean number of initial strings, i.e. with the increase of the collision centrality. It was shown also that the increase of the event-by-event fluctuation in the number of primary strings leads to the change of the pT-n correlation sign from negative to positive. One can try to search these signatures of string collective phenomena in interactions of various nuclei at different energies varying the class of collision centrality and its width.

  4. The proton-neutron symplectic model of nuclear collective motions

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2016-06-01

    The proton-neutron symplectic model of nuclear collective motion is presented. It is shown that it appears as a natural multi-major-shell extension of the generalized proton- neutron SU(3) scheme which includes rotations with intrinsic vortex as well as monopole, quadrupole and dipole giant resonance vibrational degrees of freedom.

  5. The Collective Vector method in nuclear and atomic physics

    SciTech Connect

    Bloom, S.D.

    1989-12-01

    We present a brief review of the method of the Collective Vector (CV) and its use in conjunction with the Lanczos algorithm (LA). The combination of these two ideas produces a method for contracting super-large hamiltonians (up to 10{sup 6} {times} 10{sup 6}) by factors of 1000 or more. The contracted hamiltonians, which we call quasi-hamiltonians, typically have dimensions of the order of 10{sup 2} {times} 10{sup 2} and produce corresponding quasi-spectra with associated quasi-eigenfunctions which reproduce the features of the full microscopic spectrum thru the conservation of the spectral moments. Examples of applications to both nuclear and atomic physics are given demonstrating the convergence properties of the method. The application of the LA/CV approach to the problem of modelling nuclear level densities is described and finally we discuss the possibility of conjoining new collective models of nuclear structure with the LA/CV method. 13 refs., 4 figs.

  6. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect

    Forsberg, Charles W; Gorensek, M. B.; Herring, S.; Pickard, P.

    2008-03-01

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a

  7. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  8. Nuclear collective excitations in a two-phase coexistence region

    SciTech Connect

    Aguirre, R. M.; De Paoli, A. L.

    2011-04-15

    The relation between collective modes and phase transitions in nuclear matter is examined. The dispersion relations for the low-lying excitations in a linear approach are evaluated within a Landau-Fermi liquid scheme by assuming coexisting phases in thermodynamical equilibrium. Temperature and isospin composition are used as relevant parameters. The in-medium nuclear interaction is provided by a recently proposed density functional model. The low density liquid-gas phase transition is taken as a typical situation for examination. We found significative modifications in the energy spectrum, within a certain range of temperatures and isospin asymmetry, due to the separation of matter into independent phases. The influence of the electromagnetic interaction over the dispersion relation of these collective excitations is also examined.

  9. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    SciTech Connect

    Ball, Sydney J; Corradini, M.; Fisher, Stephen Eugene; Gauntt, R.; Geffraye, G.; Gehin, Jess C; Hassan, Y.; Moses, David Lewis; Renier, John-Paul; Schultz, R.; Wei, T.

    2008-03-01

    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  10. Some Phenomena Theoretically Predicted and Explained by the Time Analysis of the Experimental Data on Nuclear Processes

    NASA Astrophysics Data System (ADS)

    Olkhovsky, V. S.; Davydovsky, V. V.; Dolinska, M. E.; Doroshko, N. L.

    The self-consistent methods in time analysis of nuclear collisions and decays are based on the properties of time as a quantum observable, canonically conjugate to energy, and the appropriate definition of mean durations of quantum collisions, the variances in their distributions, the decay functions, and the surviving functions of the meta-stable states, including radioactive and compound nuclei. Even a simplified application of these methods for the elementary study of the α-decay in the exponential-law-decay approximation resulted in the simple phenomenological method of the determination of the α-particle one-step virtual and real sojourn time inside the parent α-radioactive nucleus between the α-particle successive incoherent multiple internal reflections during the α-decay. And also the direct temporal study of the quasi-monochromatic proton scattering by 12C and 14N nuclei at the range of isolated resonances distorted by the nonresonant background, accompanied by the bremsstrahlung, brings to the simple revealing of the possible existence of the delay-advance phenomenon in the proton emission during scattering (in the center-of-mass system). The utilization of the self-consistent methods of time analysis to the study of high-energy nuclear reactions (near and above 0.1 GeV per nucleon in the final compound-fragment formations) resulted in the discovery of the phenomenon of time resonances (or explosions) for such formations. Some perspectives of the further study of the evident temporal phenomena in nuclear processes are also indicated.

  11. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  12. A Microscopic Quantal Model for Nuclear Collective Rotation

    SciTech Connect

    Gulshani, P.

    2007-10-26

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored.

  13. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  14. Large-amplitude quadrupole collective dynamics of shape coexistence phenomena in proton-rich Se and Kr isotopes

    SciTech Connect

    Hinohara, Nobuo; Nakatsukasa, Takashi; Sato, Koichi; Matsuo, Masayuki

    2010-06-01

    The five-dimensional quadrupole collective Hamiltonian for large-amplitude collective dynamics is microscopically constructed by the constrained Hartree-Fock-Bogoliubov (CHFB) method and local quasiparticle random phase approximation (LQRPA). The excitation spectra and the electric quadrupole transitions between the low-lying states in {sup 68}Se are calculated by solving the collective Schroedinger equation.

  15. Numerical simulations of cloud rise phenomena associated with nuclear bursts: compressible and low Mach approaches

    NASA Astrophysics Data System (ADS)

    Kanarska, Y.; Lomov, I.; Antoun, T.

    2008-12-01

    The nuclear cloud rise is a two stage phenomenon. The initial phase (fireball expansion) of the cloud formation is dominated by compressible flow effects and propagation of shock waves. At the later stage, shock waves become weak, the Mach number decreases and the time steps required by an explicit code to model the acoustic waves make simulation of the late time cloud dynamics with a compressible code very expensive. The buoyant cloud rise at this stage can be efficiently simulated by low Mach-number approximation. In this approach acoustic waves are removed analytically, compressible effects are included as a non-zero divergence constraint due to background stratification and the system of equations is solved implicitly using pressure projection methods. Our numerical approach includes fluid mechanical models that are able to simulate both compressible, incompressible and low Mach regimes. Compressible dynamics is simulated with the explicit high order Eulerian code GEODYN (Lomov et al., 2001). It is based on the second-order Godunov method of Colella and Woodward (1984) that is extended for multiple dimensions using operator-splitting. The code includes the material interface tracking based on a volume-of-fluid (VOF) approach of Miller and Puckett (1996). The code we use for the low Mach approximation (LMC) is based on the incompressible solver of Bell et al., (2003). An unsplit second-order Godunov method and the MAC projection method (Bell et al., 2003) are used. An algebraic slip multiphase model is implemented to describe fallout of dust particles. Both codes incorporate adaptive mesh refinement (AMR). Additionally, the codes are explicitly coupled via input/output files. First, we compared solutions for an idealized buoyant bubble rise problem, that is characterized by low Mach numbers, in GEODYN and LMC codes. While the cloud evolution process is reproduced in both codes, some differences are found in the cloud rise speed and the cloud interface structure

  16. Nuclear power and the public: an update of collected survey research on nuclear power

    SciTech Connect

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  17. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  18. Kinetic energy for the nuclear Yang-Mills collective model

    NASA Astrophysics Data System (ADS)

    Rosensteel, George; Sparks, Nick

    2015-10-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM, has two hidden mathematical structures, one Lie group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new unexplored feature that shares the same mathematical origin as Yang-Mills, viz., a vector bundle with a non-abelian structure group and a connection. Using the de Rham Laplacian ▵ = * d * d from differential geometry for the kinetic energy extends significantly the physical scope of the GCM model. This Laplacian contains a ``magnetic'' term due to the coupling between base manifold rotational and fiber vorticity degrees of freedom. When the connection specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator. More generally, the connection yields a moment of inertia that is intermediate between the extremes of irrotational flow and rigid body motion.

  19. Is it possible to enhance the nuclear Schiff moment by nuclear collective modes?

    SciTech Connect

    Auerbach, N. Dmitriev, V. F. Flambaum, V. V. Lisetskiy, A. Sen'kov, R. A. Zelevinsky, V. G.

    2007-09-15

    The nuclear Schiff moment is predicted to be enhanced in nuclei with static quadrupole and octupole deformation. The analogous suggestion of the enhanced contribution to the Schiff moment from the soft collective quadrupole and octupole vibrations in spherical nuclei is tested in the framework of the quasiparticle random phase approximation with separable quadrupole and octupole forces applied to the odd {sup 217-221}Ra and {sup 217-221}Rn isotopes. In this framework, we confirm the existence of the enhancement effect due to the soft modes, but only in the limit when the frequencies of quadrupole and octupole vibrations are close to zero.

  20. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 3: Fission-Product Transport and Dose PIRTs

    SciTech Connect

    Morris, Robert Noel

    2008-03-01

    release path. This exercise has identified a host of material properties, thermofluid states, and physics models that must be collected, defined, and understood to evaluate this attenuation factor. The assembled PIRT table underwent two iterations with extensive reorganization between meetings. Generally, convergence was obtained on most issues, but different approaches to the specific physics and transport paths shade the answers accordingly. The reader should be cautioned that merely selecting phenomena based on high importance and low knowledge may not capture the true uncertainty of the situation. This is because a transport path is composed of several serial linkages, each with its own uncertainty. The propagation of a chain of modest uncertainties can lead to a very large uncertainty at the end of a long path, resulting in a situation that is of little regulatory guidance.

  1. Search for new phenomena in events with at least three photons collected in pp collisions at √{s} = 8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.

    2016-04-01

    Results of a search for new phenomena in events with at least three photons are reported. Data from proton-proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb^{-1}, were collected with the ATLAS detector at the LHC. The observed data are well described by the Standard Model. Limits at the 95 % confidence level on new phenomena are presented based on the rate of events in an inclusive signal region and a restricted signal region targeting the rare decay Z→ 3γ , as well as di-photon and tri-photon resonance searches. For a Standard Model Higgs boson decaying to four photons via a pair of intermediate pseudoscalar particles ( a), limits are found to be σ × {{ BR }}(h → aa) × {{ BR }}(a → γ γ )2 < 10^{-3} σ _{ {SM}} for 10 GeV < ma < 62 GeV. Limits are also presented for Higgs boson-like scalars ( H) for mH > 125 GeV, and for a Z' decaying to three photons via Z' → a+γ → 3γ . Additionally, the observed limit on the branching ratio of the Z boson decay to three photons is found to be BR(Z → 3γ ) < 2.2 × 10^{-6}, a result five times stronger than the previous result from LEP.

  2. Search for new phenomena in events with at least three photons collected in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-04-01

    Results of a search for new phenomena in events with at least three photons are reported. Data from proton–proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1, were collected with the ATLAS detector at the LHC. The observed data are well described by the Standard Model. Limits at the 95 % confidence level on new phenomena are presented based on the rate of events in an inclusive signal region and a restricted signal region targeting the rare decay Z→3γ, as well as di-photon and tri-photon resonance searches. For a Standard Model Higgsmore » boson decaying to four photons via a pair of intermediate pseudoscalar particles (a), limits are found to be σ× BR (h→aa)× BR (a→γγ)2<10-3σSM for 10 GeV a< 62 GeV. Finally, limits are also presented for Higgs boson-like scalars (H) for mH> 125 GeV, and for a Z' decaying to three photons via Z'→a+γ→3γ. Additionally, the observed limit on the branching ratio of the Z boson decay to three photons is found to be BR(Z→3γ)<2.2×10-6, a result five times stronger than the previous result from LEP.« less

  3. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  4. Internationalizing nuclear safety: The pursuit of collective responsibility

    SciTech Connect

    Barkenbus, J.N.; Forsberg, C.

    1995-11-01

    The future of nuclear energy could depend upon the international infrastructure established to ensure the creation of a strong and uniform safety culture. Deliberations during the 1990s, leading to the recently promulgated International Nuclear Safety Convention, held out the prospect of both bolstering nuclear safety and gaining public recognition of the need to address transboundary safety concerns head-on. Unfortunately, the Convention that emerged from the deliberations constitutes little more than another form of technical assistance. The basis for an alternative, and more substantial, Convention is presented--one that would be based on the establishment and evaluation of performance standards, the creation of a series of political firebreaks, and the encouragement of nuclear power plant designs that minimize the catastrophic offsite consequences of accidents.

  5. The many-nucleon theory of nuclear collective structure and its macroscopic limits: an algebraic perspective

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.; McCoy, A. E.; Caprio, M. A.

    2016-03-01

    The nuclear collective models introduced by Bohr, Mottelson and Rainwater, together with the Mayer-Jensen shell model, have provided the central framework for the development of nuclear physics. This paper reviews the microscopic evolution of the collective models and their underlying foundations. In particular, it is shown that the Bohr-Mottelson models have expressions as macroscopic limits of microscopic models that have precisely defined expressions in many-nucleon quantum mechanics. Understanding collective models in this way is especially useful because it enables the analysis of nuclear properties in terms of them to be revisited and reassessed in the light of their microscopic foundations.

  6. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  7. The collective Lamb shift in nuclear γ-ray superradiance

    NASA Astrophysics Data System (ADS)

    Röhlsberger, Ralf

    2012-03-01

    The electromagnetic transitions of Mössbauer nuclei provide almost ideal two-level systems to transfer quantum optical concepts into the regime of hard x-rays. If many identical atoms collectively interact with a resonant radiation field, one observes (quantum) optical properties that are strongly different from those of a single atom. The most prominent effect is the broadening of the resonance line known as collective enhancement, resulting from multiple scattering of real photons within the atomic ensemble. On the other hand, the exchange of virtual photons within the ensemble leads to a tiny energy shift of the resonance line, the collective Lamb shift, that remained experimentally elusive for a long time after its prediction. Here we illustrate how highly brilliant synchrotron radiation allows one to prepare superradiant states of excited Mössbauer nuclei, an important condition for observation of the collective Lamb shift.

  8. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  9. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, Darryl D.; Scharold, Paul G.; Thornton, Michael W.; Marquez, Diana L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen.

  10. Peaceful Uses of Nuclear Energy: A Collection of Speeches

    DOE R&D Accomplishments Database

    Seaborg, Glenn T.

    1970-07-01

    It is now a quarter of a century since nuclear energy was introduced to the public. Its introduction was made in the most dramatic, but unfortunately in the most destructive way - through the use of a nuclear weapon. Since that introduction enormous strides have been made in developing the peaceful applications of this great and versatile force. Because these strides have always been overshadowed by the focusing of public attention on the military side of the atom, the public has never fully understood or appreciated the gains and status of the peaceful atom. This booklet is an attempt to correct, in some measure, this imbalance in public information and attitude. It is a compilation of remarks, and excerpts of remarks, that I [Seaborg] have made in recent years in an effort to bring to the public the story of the remarkable benefits the peaceful atom has to offer man. This is a story that grows with the development and progress of the peaceful atom. It must be told so that we can learn to use the power of nuclear energy wisely and through this use help to build a world in which the military applications of the atom will never again be a threat to mankind.

  11. Persistence of Vibrational Collectivity in Nuclear Level Densities

    NASA Astrophysics Data System (ADS)

    Nakada, H.; Matsuyama, E.; Özen, C.

    2016-06-01

    By applying the particle-number projection to the finite-temperature BCS theory to the state densities in the rare-earth nuclei and comparing its results to the SMMC ones, we investigate effects of the particle-number conservation on the collective enhancement factor for the state densities. Once we restore the particle-number conservation, the rapid decay of vibrational enhancement disappears. This suggests that the vibrational collectivity may survive up to higher energy and the relevant enhancement factor is insensitive to the excitation energy.

  12. Nuclear interlevel transfer driven by collective outer shell electron oscillations

    SciTech Connect

    Rinker, G.A.; Solem, J.G.; Biedenharn, L.C.

    1986-10-20

    The general problem of dynamic electron-nucleus coupling is discussed, and the possibility of using this mechanism to initiate gamma-ray lasing. Single-particle and collective mechanisms are considered. The problems associated with accurate calculation of these processes are discussed, and some numerical results are given. Work in process in described. 10 refs., 7 figs.

  13. Data Collection in the Arabian Peninsula for Nuclear Explosion Monitoring

    SciTech Connect

    Rodgers, A; Tkalcic, H; Al-Amri, A M S

    2003-07-11

    We report results from the second year of our project (ROA0101-35) to collect seismic event and waveform data recorded in and around the Arabian Peninsula. This effort involves several elements. We have a temporary broadband seismic station operating near the IMS primary array site (PS38) in central Saudi Arabia. We recently installed two temporary broadband stations in the United Arab Emirates (funded by NNSA NA-24 Office of Non-Proliferation & International Security). We are working with King Abdulaziz city for Science and Technology to collect and analyze data from the Saudi National Seismic Network, that consist of 37 digital three-component stations (26 broadband and 11 short-period). We are collaborating with Kuwait Institute for Scientific Research (KISR) to analyze data from their 8 station national seismic network. We participated in the Workshop on Reference Events odnear the Dead Sea Rift held in Paris, France in October 2002. In this paper we present results of these efforts including integration of the raw data into LLNL's Seismic Research Database and preliminary analysis of event locations and source parameters and inference of earth structure.

  14. Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

    SciTech Connect

    Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

    1997-02-01

    The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.

  15. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    SciTech Connect

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O.; Nichols, R.T.

    1994-05-01

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

  16. Collective effective dose in Europe from X-ray and nuclear medicine procedures.

    PubMed

    Bly, R; Jahnen, A; Järvinen, H; Olerud, H; Vassileva, J; Vogiatzi, S

    2015-07-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547,500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605,000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30,700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31,100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput. PMID:25848115

  17. Nuclear power plant containment metallic pressure boundary materials and plans for collecting and presenting their properties

    SciTech Connect

    Oland, C.B.

    1995-04-01

    A program is being conducted at the Oak Ridge National Laboratory (ORNL to assist the Nuclear Regulatory Commission (NRC)) in their assessment of the effects of degradation (primarily corrosion) on the structural capacity and leaktight integrity of metal containments and steel liners of reinforced concrete structures in nuclear power plants. One of the program objectives is to characterize and quantify manifestations of corrosion on the properties of steels used to construct containment pressure boundary components. This report describes a plan for use in collecting and presenting data and information on ferrous alloys permitted for use in construction of pressure retaining components in concrete and metal containments. Discussions about various degradation mechanisms that could potentially affect the mechanical properties of these materials are also included. Conclusions and recommendations presented in this report will be used to guide the collection of data and information that will be used to prepare a material properties data base for containment steels.

  18. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    NASA Astrophysics Data System (ADS)

    Gulshani, P.

    2016-07-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  19. [Nationwide survey of nuclear medicine practice and estimation of collective effective dose in Japan.].

    PubMed

    Matsumoto, Masaki; Nishizawa, Kanae; Iwai, Kazuo; Akahane, Keiichi; Maruyama, Takashi

    2006-01-01

    For the estimation of collective effective dose from radiopharmaceuticals used in nuclear medicine diagnosis, a national survey was carried out in Japan. The survey contents covered radiopharmaceutical use, sex, age, activity, and so on of each patient in October 1997 and the monthly number of examinations in 1997. The annual number of diagnostic examinations using radiopharmaceuticals was 0.82 million for males and 0.74 million for females. The frequency of examination was about 3% for patients less than 17 years old and about 60% for those more than 60 years old. Effective dose was calculated on the basis of such literature as ICRP publications. The dose used most frequently was 5-6mSv per examination. The collective effective doses from diagnostic nuclear medicine examinations were estimated to be 13100 man .Sv for males and 20200 man .Sv for females. PMID:17164536

  20. Conditions for observation of fade out of collective enhancement of the nuclear level density

    SciTech Connect

    Grimes, S. M.

    2008-11-15

    The results of two recent papers searching for the disappearance of collective enhancements with energy in nuclear level densities are examined. It is found that the effects of such enhancements are less than has been assumed. The reduction in the size of the effect only partially resolves the disagreement between theory and experiment. This effect also plays a role in explaining the results of an earlier experiment.

  1. Search for new phenomena in photon + jet events collected in proton-proton collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Brown, G.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Buehrer, F.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Damiani, D. S.; Daniells, A. C.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Engelmann, R.; Engl, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmgren, S. O.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. K.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perepelitsa, D. V.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues, L.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2014-01-01

    This Letter describes a model-independent search for the production of new resonances in photon + jet (γ+jet) events using 20 fb-1 of proton-proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of √{s}=8 TeV. The γ+jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.

  2. Light flash phenomena induced by HzE particles

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Pease, V. P.

    1980-01-01

    Astronauts and Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes are closed and adapted to darkness. These phenomena have been collectively labelled as light flashes. Visual phenomena which are similar in appearance to those observed in space have been demonstrated at the number of accelerator facilities by expressing the eyes of human subjects to beams of various types of radiation. In some laboratory experiments Cerenkov radiation was found to be the basis for the flashes observed while in other experiments Cerenkov radiation could apparently be ruled out. Experiments that differentiate between Cerenkov radiation and other possible mechanisms for inducing visual phenomena was then compared. The phenomena obtained in the presence and absence of Cerenkov radiation were designed and conducted. A new mechanism proposed to explain the visual phenomena observed by Skylab astronauts as they passed through the South Atlantic Anomaly, namely nuclear interactions in and near the sensitive layer of the retina, is covered. Also some studies to search for similar transient effects of space radiation on sensors and microcomputer memories are described.

  3. Superconductivity and other collective phenomena in a hybrid Bose-Fermi mixture formed by a polariton condensate and an electron system in two dimensions

    NASA Astrophysics Data System (ADS)

    CotleÅ£, Ovidiu; Zeytinoǧlu, Sina; Sigrist, Manfred; Demler, Eugene; Imamoǧlu, Ataç

    2016-02-01

    Interacting Bose-Fermi systems play a central role in condensed matter physics. Here, we analyze a novel Bose-Fermi mixture formed by a cavity exciton-polariton condensate interacting with a two-dimensional electron system. We show that that previous predictions of superconductivity [F. P. Laussy, Phys. Rev. Lett. 104, 106402 (2010), 10.1103/PhysRevLett.104.106402] and excitonic supersolid formation [I. A. Shelykh, Phys. Rev. Lett. 105, 140402 (2010), 10.1103/PhysRevLett.105.140402] in this system are closely intertwined, resembling the predictions for strongly correlated electron systems such as high-temperature superconductors. In stark contrast to a large majority of Bose-Fermi systems analyzed in solids and ultracold atomic gases, the renormalized interaction between the polaritons and electrons in our system is long-ranged and strongly peaked at a tunable wave vector, which can be rendered incommensurate with the Fermi momentum. We analyze the prospects for experimental observation of superconductivity and find that critical temperatures on the order of a few kelvins can be achieved in heterostructures consisting of transition metal dichalcogenide monolayers that are embedded in an open cavity structure. All-optical control of superconductivity in semiconductor heterostructures could enable the realization of new device concepts compatible with semiconductor nanotechnology. In addition the possibility to interface quantum Hall physics, superconductivity, and nonequilibrium polariton condensates is likely to provide fertile ground for investigation of completely new physical phenomena.

  4. Authentication and Interpretation of Weight Data Collected from Accountability Scales at Global Nuclear Fuels

    SciTech Connect

    Fitzgerald, Peter; Laughter, Mark D; Martyn, Rose; Richardson, Dave; Rowe, Nathan C; Pickett, Chris A; Younkin, James R; Shephard, Adam M

    2010-01-01

    Accountability scale data from the Global Nuclear Fuels (GNF) fuel fabrication facility in Wilmington, NC has been collected and analyzed as a part of the Cylinder Accountability and Tracking System (CATS) field trial in 2009. The purpose of the data collection was to demonstrate an authentication method for safeguards applications, and the use of load cell data in cylinder accountability. The scale data was acquired using a commercial off-the-shelf communication server with authentication and encryption capabilities. The authenticated weight data was then analyzed to determine facility operating activities. The data allowed for the determination of the number of full and empty cylinders weighed and the respective weights along with other operational activities. Data authentication concepts, practices and methods, the details of the GNF weight data authentication implementation and scale data interpretation results will be presented.

  5. The applicability of sample collection and analysis in support of nuclear arms control agreements

    SciTech Connect

    McGuire, R.R.

    1995-08-01

    Agreements are being negotiated to halt the spread of nuclear arms both within the declared nuclear weapons states and to states not heretofore declaring their possession. With the verification regime of the recently negotiated Chemical Weapons Convention (CWC) as a model, negotiators are considering variations of on-site inspection as formulas to enhance the assurance of compliance with future agreements. These on-site inspections may be part of a treaty dictated verification regime or one of a set of voluntary {open_quotes}confidence building{close_quotes} measures. In either case, the collection of material samples for analysis could be an integral component of the inspection as it is in the CWC. The following is an assessment of the applicability of sampling and analysis for compliance monitoring nuclear arms control agreements currently envisioned. There are two essentially orthogonal ways of approaching this question of applicability: the consideration of the analytical questions and the consideration of the specifics of the individual agreements. This study is meant to utilize both approaches in examining the possible impact of sampling and analysis on compliance assessment. First attention must be given to technical questions relating to the efficacy of sampling and analysis.

  6. Critical velocity phenomena and the LTP. [Lunar Transient Phenomena

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1977-01-01

    When the relative velocity between magnetized plasma and neutral gas exceeds a critical value, the gas-plasma interaction is dominated by collective phenomena which rapidly excite and ionize the neutrals. The interaction of the solar wind with a large cloud (between 10 to the 24th and 10 to the 28th power neutrals) vented from the moon should be of this type. Line radiation from such an interaction can yield an apparent lunar surface brightness rivaling reflected sunlight levels over small areas, if the kinetic-energy flow density of the gas is sufficiently high. The aberrated solar-wind flow past the moon would enhance the visibility of such interactions near the lunar sunrise terminator, supporting the statistical studies which indicate that the 'Lunar Transient Phenomena' (anomalous optical phenomena on the moon) are significantly correlated with the position of the terminator on the lunar surface.

  7. Analyses of the population structure in a global collection of Phytophthora nicotianae isolates inferred from mitochondrial and nuclear DNA sequences.

    PubMed

    Mammella, Marco A; Martin, Frank N; Cacciola, Santa O; Coffey, Michael D; Faedda, Roberto; Schena, Leonardo

    2013-06-01

    Genetic variation within the heterothallic cosmopolitan plant pathogen Phytophthora nicotianae was determined in 96 isolates from a wide range of hosts and geographic locations by characterizing four mitochondrial (10% of the genome) and three nuclear loci. In all, 52 single-nucleotide polymorphisms (SNPs) (an average of 1 every 58 bp) and 313 sites with gaps representing 5,450 bases enabled the identification of 50 different multilocus mitochondrial haplotypes. Similarly, 24 SNPs (an average of 1 every 69 bp), with heterozygosity observed at each locus, were observed in three nuclear regions (hyp, scp, and β-tub) differentiating 40 multilocus nuclear genotypes. Both mitochondrial and nuclear markers revealed a high level of dispersal of isolates and an inconsistent geographic structuring of populations. However, a specific association was observed for host of origin and genetic grouping with both nuclear and mitochondrial sequences. In particular, the majority of citrus isolates from Italy, California, Florida, Syria, Albania, and the Philippines clustered in the same mitochondrial group and shared at least one nuclear allele. A similar association was also observed for isolates recovered from Nicotiana and Solanum spp. The present study suggests an important role of nursery populations in increasing genetic recombination within the species and the existence of extensive phenomena of migration of isolates that have been likely spread worldwide with infected plant material. PMID:23384862

  8. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex.

    PubMed

    Vovk, Andrei; Gu, Chad; Opferman, Michael G; Kapinos, Larisa E; Lim, Roderick Yh; Coalson, Rob D; Jasnow, David; Zilman, Anton

    2016-01-01

    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function. PMID:27198189

  9. Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2014-06-01

    Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 μm, 0.94 μm, and 7.8 μm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 μm and the composition in the 1.1-2.1 μm range (including the AMAD of 1.5-1.6 μm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes. PMID:24508948

  10. Collective Phenomena in the Inner Ear

    SciTech Connect

    Zweig, George

    2002-10-16

    Two contrasting views of cochlear mechanics are compared with each other, and with experiment. The first posits that all qualitative features of the nonlinear cochlear response are those of a simple dynamical system poised at a Hopf bifurcation, the second argues that the cochlear response must be found with 3-D simulations. Hopf bifurcations are explained, and their consequences explored.

  11. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  12. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  13. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  14. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex

    PubMed Central

    Vovk, Andrei; Gu, Chad; Opferman, Michael G; Kapinos, Larisa E; Lim, Roderick YH; Coalson, Rob D; Jasnow, David; Zilman, Anton

    2016-01-01

    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function. DOI: http://dx.doi.org/10.7554/eLife.10785.001 PMID:27198189

  15. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  16. COMPARISON OF RESULTS FOR QUARTER 5 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE ERWIN TENNESSEE

    SciTech Connect

    2013-09-23

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 21, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference, are tabulated. All DER values were less than 3 and results are consistent with low (e.g., background) concentrations.

  17. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  18. Some remarks about simulation of cosmic ray phenomena with use of nuclear interaction models based on the current SPS proton-antiproton data

    NASA Technical Reports Server (NTRS)

    Wrotniak, J. A.; Yodh, G. B.

    1985-01-01

    The x-y controversy is studied by introducing models with as many features (except for x and y distributions) in common, as possible, to avoid an extrapolation problem, only primary energies of 500 TeV are considered. To prove the point, Monte Carlo simulations are performed of EAS generated by 500 TeV vertical primary protons. Four different nuclear interaction models were used. Two of them are described elsewhere. Two are: (1) Model M-Y00 - with inclusive x and y distributions behaving in a scaling way; and (2) Model M-F00 - at and below ISR energies (1 TeV in Lab) exactly equivalent to the above, then gradually changing to provide the distributions in rapidity at 155 TeV as given by SPS proton-antiproton. This was achieved by gradual decrease in the scale unit in x distributions of produced secondaries, as interaction energy increases. Other modifications to the M-Y00 model were made.

  19. Study of the characteristics of seismic signals generated by natural and cultural phenomena. [such as earthquakes, sonic booms, and nuclear explosions

    NASA Technical Reports Server (NTRS)

    Goforth, T. T.; Rasmussen, R. K.

    1974-01-01

    Seismic data recorded at the Tonto Forest Seismological Observatory in Arizona and the Uinta Basin Seismological Observatory in Utah were used to compare the frequency of occurrence, severity, and spectral content of ground motions resulting from earthquakes, and other natural and man-made sources with the motions generated by sonic booms. A search of data recorded at the two observatories yielded a classification of over 180,000 earthquake phase arrivals on the basis of frequency of occurrence versus maximum ground velocity. The majority of the large ground velocities were produced by seismic surface waves from moderate to large earthquakes in the western United States, and particularly along the Pacific Coast of the United States and northern Mexico. A visual analysis of raw film seismogram data over a 3-year period indicates that local and regional seismic events, including quarry blasts, are frequent in occurrence, but do not produce ground motions at the observatories comparable to either the large western United States earthquakes or to sonic booms. Seismic data from the Nevada Test Site nuclear blasts were used to derive magnitude-distance-sonic boom overpressure relations.

  20. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  1. Imaging of snapping phenomena

    PubMed Central

    Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

    2012-01-01

    Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

  2. Quantum phenomena in superconductors

    SciTech Connect

    Clarke, J.

    1987-08-01

    This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)

  3. Nuclear Data for Astrophysics: Collections at NucAstroData.org

    DOE Data Explorer

    In May of 2003, Dr. Michael Smith, Physics Division, ORNL, published a paper announcing the launch of the new website NucAstroData.org and the rationale behind it. An excerpt from the abstract of that paper, found in volume 718, pages 339-346, of ScienceDirect - Nuclear Physics A, explains: "In order to address important astrophysics problems such as the origin of the chemical elements, the inner workings of our Sun, and the evolution of stars, crucial nuclear datasets are needed. Recent evaluation and dissemination efforts have produced a number of such datasets, many of which are online and readily available to the research community. Current international efforts in this field are, unfortunately, insufficient to keep pace with the latest nuclear physics measurements and model calculations. A dedicated effort is required to update and expand existing datasets. I discuss several strategies and new initiatives that would ensure a more effective utilization of nuclear data in astrophysics. These include launching a new web site, www.nucastrodata.org, to aid in locating available nuclear data sets, and an interactive online plotting program with an easy-to-use graphical user interface to over 8000 reaction rates." This website continues to be resource for the nuclear astrophysics community. NucAstroData provides both links to datasets around the world and a repository where researchers can upload their own data. Tools for generating and manipulating reaction rates, merging libraries of data, plotting data and performing other tasks are provided under the website's Infrastructure section and the menu selection for software leads to useful codes.

  4. Collective Sideward Flow of Nuclear Matter in Violent High-Energy Heavy-Ion Collisions

    SciTech Connect

    Stöcker, Horst; Maruhn, Jouchim A.; Greiner, Walter

    1980-03-01

    The nuclear fluid dynamical model with final thermal breakup is used to study the reactions {sup 20}Ne + {sup 238}U and {sup 40} Ar + {sup 40}Ca at E{sub LAB}=390 MeV/n. Calculated double differential cross sections d{sup 2}{sigma}/d{Omega}dE are in agreement with recent experimental data. It is shown that azimuthally dependent triple differential cross sections d{sup 3}{sigma}/dEd cos{theta}d{phi} yield considerably deeper insight into the collision process and allow for snapshots of the reactions. Strongly correlated jets of nuclear matter are predicted.

  5. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.

    PubMed

    Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M

    2006-01-01

    In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack. PMID:16785243

  6. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  7. Material Sample Collection with Tritium and Gamma Analyses at the University of Illinois's Nuclear Research Laboratory TRIGA Nuclear Research Reactor

    SciTech Connect

    Charters, G.; Aggarwal, S.

    2006-07-01

    The University of Illinois in Champaign-Urbana has an Advanced TRIGA reactor facility which was built in 1960 and operated until August 1998. The facility was shutdown for a variety of reasons, primarily due to a lack of usage by the host institution. In 1998 the reactor went into SAFSTOR and finally shipped its fuel in 2004. At the present time a site characterization and decommissioning plan are in process and hope to be submitted to the NRC in early 2006. The facility had to be fully characterized and part of this characterization involved the collection and analysis of samples. This included various solid media such as, concrete, graphite, metals, and sub-slab surface soils for immediate analysis of Activation and Tritium contamination well below the easily measured surfaces. This detailed facility investigation provided a case to eliminate historical unknowns, increasing the confidence for the segregation and packaging of high specific activity Low Level Radwaste (LLRW), from which a strategy of 'surgical-demolition' and segregation could be derived thus maximizing the volumes of 'clean material'. Performing quantitative volumetric concrete or metal radio-analyses safer and faster (without lab intervention) was a key objective of this dynamic characterization approach. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilises or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the are a around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated that needs to be treated and stabilized before disposal. The goal was to avoid those field activities that could cause this type of release. Therefore

  8. Collective effects between multiple nuclear ensembles in an x-ray cavity-QED setup

    NASA Astrophysics Data System (ADS)

    Heeg, Kilian P.; Evers, Jörg

    2015-06-01

    The setting of Mössbauer nuclei embedded in thin-film cavities has facilitated an aspiring platform for x-ray quantum optics as shown in several recent experiments. Here, we generalize the theoretical model of this platform that we developed earlier [Phys. Rev. A 88, 043828 (2013), 10.1103/PhysRevA.88.043828]. The theory description is extended to cover multiple nuclear ensembles and multiple modes in the cavity. While the extensions separately do not lead to qualitatively new features, their combination gives rise to cooperative effects between the different nuclear ensembles and distinct spectral signatures in the observables. A related experiment by Röhlsberger et al. [Nature (London) 482, 199 (2012), 10.1038/nature10741] is successfully modeled, the scalings derived with semiclassical methods are reproduced, and a microscopic understanding of the setting is obtained with our quantum mechanical description.

  9. Microscopic description of large amplitude collective motion in the nuclear astrophysics context

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis; Tanimura, Yusuke; Scamps, Guillaume; Simenel, Cédric

    2015-08-01

    In the last 10 years, we have observed an important increase of interest in the application of time-dependent energy density functional (TD-EDF) theory. This approach allows to treat nuclear structure and nuclear reaction from small to large amplitude dynamics in a unified framework. The possibility to perform unrestricted three-dimensional simulations using state-of-the-art effective interactions has opened new perspectives. In the present paper, an overview of applications where the predictive power of TD-EDF has been benchmarked is given. A special emphasize is made on processes that are of astrophysical interest. Illustrations discussed here include giant resonances, fission, binary and ternary collisions leading to fusion, transfer and deep inelastic processes.

  10. Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins.

    PubMed

    Lewandowski, Józef R; Sein, Julien; Blackledge, Martin; Emsley, Lyndon

    2010-02-01

    A model for calculating the influence of anisotropic collective motions on NMR relaxation rates in crystalline proteins is presented. We show that small-amplitude (<10 degrees ) fluctuations may lead to substantial contributions to the (15)N spin-lattice relaxation rates and propose that the effect of domain motions should be included in solid-state NMR analyses of protein dynamics. PMID:19916496

  11. Nuclear dissipation as damping of collective motion in the time-dependent RPA and extensions of it

    SciTech Connect

    Yannouleas, C.P.

    1982-07-01

    We have formulated a nonperturbative, microscopic dissipative process in the limit of an infinite mean free path which does not require any statistical assumptions. It attributes the damping of the collective motion to real transitions from the collective state to degenerate, more complicated nucelar states. The dissipation is described through wave packets which solve an approximate Schroedinger equation within extended subspaces, larger than the original subspace of the undamped motion. When the simple RPA is used, this process associates the dissipation with the escape width for direct particle emission. When the Second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy. The classical dissipation, however, is obtained for coherent, multiphonon, initial packets which describe the damping of the mean field oscillations, and allow a theoretical connection with the Vibrating Potential Model, and thereby with models of one-body dissipation. The present model contrasts with linear response theories. Canonical coordinates for the collective degree of freedom are explicitly introduced. This allows the construction of a nonlinear frictional Hamiltonian which provides a connection with quantal friction. The dissipation process developed here is properly reversible rather than irreversible, in the sense that it is described by an approximate Schroedinger equation which honors time reversibility, rather than by a coarse grained master equation which violates it. Thus, the present theory contrasts with transport theories.

  12. COMPARISON OF RESULTS FOR QUARTER 2 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE, ERWIN, TENNESSEE

    SciTech Connect

    2013-01-21

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on November 15, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the results are compared using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2012). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, all DER values were less than 3 and results are consistent with low (e.g., background) concentrations.

  13. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Brown, C.A. ); Durham, M.D. ); Sowa, W.A. . Combustion Lab.); Himes, R.M. ); Mahaffey, W.A. )

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  14. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  15. Radiocesium concentrations in wild mushrooms collected in Kawauchi Village after the accident at the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Nakashima, Kanami; Orita, Makiko; Fukuda, Naoko; Taira, Yasuyuki; Hayashida, Naomi; Matsuda, Naoki; Takamura, Noboru

    2015-01-01

    It is well known from the experience after the 1986 accident at the Chernobyl Nuclear Power Plant that radiocesium tends to concentrate in wild mushrooms. In this study, we collected wild mushrooms from the Kawauchi Village of Fukushima Prefecture, located within 30 km of the Fukushima Daiichi Nuclear Power Plant, and evaluated their radiocesium concentrations to estimate the risk of internal radiation exposure in local residents. We found that radioactive cesium exceeding 100 Bq/kg was detected in 125 of 154 mushrooms (81.2%). We calculated committed effective doses based on 6,278 g per year (age > 20 years, 17.2 g/day), the average intake of Japanese citizens, ranging from doses of 0.11-1.60 mSv, respectively. Although committed effective doses are limited even if residents eat contaminated foods several times, we believe that comprehensive risk-communication based on the results of the radiocesium measurements of food, water, and soil is necessary for the recovery of Fukushima after this nuclear disaster. PMID:26623189

  16. Radiocesium concentrations in wild mushrooms collected in Kawauchi Village after the accident at the Fukushima Daiichi Nuclear Power Plant

    PubMed Central

    Nakashima, Kanami; Orita, Makiko; Fukuda, Naoko; Taira, Yasuyuki; Hayashida, Naomi; Matsuda, Naoki

    2015-01-01

    It is well known from the experience after the 1986 accident at the Chernobyl Nuclear Power Plant that radiocesium tends to concentrate in wild mushrooms. In this study, we collected wild mushrooms from the Kawauchi Village of Fukushima Prefecture, located within 30 km of the Fukushima Daiichi Nuclear Power Plant, and evaluated their radiocesium concentrations to estimate the risk of internal radiation exposure in local residents. We found that radioactive cesium exceeding 100 Bq/kg was detected in 125 of 154 mushrooms (81.2%). We calculated committed effective doses based on 6,278 g per year (age > 20 years, 17.2 g/day), the average intake of Japanese citizens, ranging from doses of 0.11–1.60 mSv, respectively. Although committed effective doses are limited even if residents eat contaminated foods several times, we believe that comprehensive risk-communication based on the results of the radiocesium measurements of food, water, and soil is necessary for the recovery of Fukushima after this nuclear disaster. PMID:26623189

  17. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis

    PubMed Central

    Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F.; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  18. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis.

    PubMed

    Raggi, Lorenzo; Bitocchi, Elena; Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  19. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  20. Phenomena Associated with EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    We discuss phenomena associated with 'EIT Wave' transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to infer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  1. Phenomena Associated With EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  2. Unified description of 0+ states in a large class of nuclear collective models.

    PubMed

    Bonatsos, Dennis; McCutchan, E A; Casten, R F

    2008-07-11

    A remarkably simple regularity in the energies of 0+ states in a broad class of collective models is discussed. A single formula for all 0+ states in flat-bottomed infinite potentials that depends only on the number of dimensions and a simpler expression applicable to all three interacting boson approximation symmetries in the large N(B) limit are presented. Finally, a connection between the energy expression for 0+ states given by the X5 model and the predictions of the interacting boson approximation near the critical point of the first order phase transition is explored. PMID:18764176

  3. Crystallization phenomena in slags

    NASA Astrophysics Data System (ADS)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  4. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  5. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  6. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  7. A Semi-Classical, Microscopic Model for Nuclear Collective Rotation Plus RPA

    SciTech Connect

    Gulshani, P.

    2007-04-28

    Collective rotation and vibration of deformed nuclei are described semiclassically but microscopically by first transforming the time-dependent Schrodinger equation to a rotating frame, while preserving time-reversal invariance, and then applying a variational method. The rotating-frame axes are chosen to coincide with the principal axes of the expectation of an arbitrary, symmetric second-rank tensor operator {gamma}. It is shown that the equations derived for the rotational and vibrational motions decouple completely due to the rotational invariance of the Hamiltonian and diagonality of the expectation of {gamma} in the rotating frame. The equations describing the vibration reduce to those of the RPA. The equation describing the rotation generalizes that of the conventional cranking model (CM). The predicted rotation moment of inertia is shown to reduce to that of the CM for special types of particle interactions.

  8. COMPARISON OF RESULTS FOR QUARTER 4 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUELS SERVICES SITE, ERWIN, TN

    SciTech Connect

    none,

    2013-08-15

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on June 12, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates at a 99% confidence interval that split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report specifies 95% confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0014 was the exception. The ORAU gross beta result of 6.30 ± 0.65 pCi/L from location NRD is well above NFS's non-detected result of 1.56 ± 0.59 pCi/L. NFS's data package includes no detected result for any radionuclide at location NRD. At NRC's request, ORAU performed gamma spectroscopic analysis of sample 5198W0014 to identify analytes contributing to the relatively elevated gross beta results. This analysis identified detected amounts of naturally-occurring constituents, most notably Ac-228 from the thorium decay series, and does not suggest the presence of site-related contamination.

  9. Comparison of Results for Quarter 1 Surface Water Split Samples Collected at the Nuclear Fuel Services Site, Erwin, Tennessee

    SciTech Connect

    David A. King, CHP, PMP

    2012-10-10

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. The comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background

  10. Collection and characterization of aerosols from metal cutting techniques typically used in decommissioning nuclear facilities.

    PubMed

    Newton, G J; Hoover, M D; Barr, E B; Wong, B A; Ritter, P D

    1987-11-01

    This study was designed to collect and characterize aerosols released during metal cutting activities typically used in decommissioning radioactively contaminated facilities. Such information can guide in the selection of appropriate control technologies for these airborne materials. Mechanical cutting tools evaluated included a multi-wheel pipe cutter, reciprocating saw, band saw, chop saw, and large and small grinding wheels. Melting-vaporization cutting techniques included an oxy-acetylene torch, electric arc cut rod and plasma torch. With the exception of the multi-wheel pipe cutter, all devices created aerosols in the respirable size range (less than 10 micron aerodynamic diameter). Time required to cut 2-in. (5-cm) Schedule 40, Type 304L, stainless steel ranged from about 0.6 min for the plasma torch to about 3.0 min for the reciprocating saw. Aerosol production rate ranged from less than 10 mg/min for the reciprocating saw to more than 3000 mg/min for the electric arc cut rod. Particles from mechanical tools were irregular in shape, whereas particles from vaporization tools were spheres and ultrafine branched-chain aggregates. PMID:3425551

  11. Data collection, validation, and description for the Oak Ridge nuclear facilities mortality study

    SciTech Connect

    Watkins, J.P.; Reagan, J.L.; Cragle, D.L.; West, C.M.; Tankersley, W.G.; Frome, E.L.; Crawford-Brown, D.J.

    1995-06-01

    To investigate the long-term health effects of protracted occupational exposure to low levels of ionizing radiation, a mortality study was initiated by pooling data for 118,588 workers hired between 1943 and 1982, at three Department of Energy (DOE) facilities in Oak Ridge, Tennessee, with follow-up through 1984. Topics for this discussion will include issues involving the collection and validation of data for individuals in the study cohort, and characteristics of their demographic and radiation exposure data. Since the data were compiled between the late 1960s and the present under the direction of several principal investigators, it was essential to verify data precision and to understand how exposure data were generated prior to beginning any analysis. A stratified random sample of workers in the cohort was chosen for verification of their computerized data as it appeared in the database. Original source documents were reviewed to verify demographic data, as well as internal and external radiation exposure data. Extensive effort was expended to document the personal radiation monitoring policies and types of dosimeters used at each facility over the 42 years included in the study. Characteristics of internal and external exposure data by facility and year were examined by graphical methods with the intent of combining these monitoring data over time and across facilities.

  12. Collection and characterization of aerosols from metal cutting techniques typically used in decommissioning nuclear facilities

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Barr, E.B.; Wong, B.A.; Ritter, P.D.

    1987-11-01

    This study was designed to collect and characterize aerosols released during metal cutting activities typically used in decommissioning radioactively contaminated facilities. Such information can guide in the selection of appropriate control technologies for these airborne materials. Mechanical cutting tools evaluated included a multi-wheel pipe cutter, reciprocating saw, band saw, chop saw, and large and small grinding wheels. Melting-vaporization cutting techniques included an oxy-acetylene torch, electric arc cut rod and plasma torch. With the exception of the multi-wheel pipe cutter, all devices created aerosols in the respirable size range (less than 10 micron aerodynamic diameter). Time required to cut 2-in. (5-cm) Schedule 40, Type 304L, stainless steel ranged from about 0.6 min for the plasma torch to about 3.0 min for the reciprocating saw. Aerosol production rate ranged from less than 10 mg/min for the reciprocating saw to more than 3000 mg/min for the electric arc cut rod. Particles from mechanical tools were irregular in shape, whereas particles from vaporization tools were spheres and ultrafine branched-chain aggregates.

  13. Activity concentrations of environmental samples collected in Fukushima Prefecture immediately after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Tazoe, Hirofumi; Sorimachi, Atsuyuki; Monzen, Satoru; Osanai, Minoru; Akata, Naofumi; Kakiuchi, Hideki; Omori, Yasutaka; Ishikawa, Tetsuo; Sahoo, Sarata K.; Kovács, Tibor; Yamada, Masatoshi; Nakata, Akifumi; Yoshida, Mitsuaki; Yoshino, Hironori; Mariya, Yasushi; Kashiwakura, Ikuo

    2013-01-01

    Radionuclide concentrations in environmental samples such as surface soils, plants and water were evaluated by high purity germanium detector measurements. The contribution rate of short half-life radionuclides such as 132I to the exposure dose to residents was discussed from the measured values. The highest values of the 131I/137Cs activity ratio ranged from 49 to 70 in the environmental samples collected at Iwaki City which is located to the south of the F1-NPS. On the other hand, the 132I/131I activity ratio in the same environmental samples had the lowest values, ranging from 0.01 to 0.02. By assuming that the 132I/131I activity ratio in the atmosphere was equal to the ratio in the environmental samples, the percent contribution to the thyroid equivalent dose by 132I was estimated to be less than 2%. Moreover, the contribution to the thyroid exposure by 132I might be negligible if 132I contamination was restricted to Iwaki City. PMID:23887080

  14. Collective rotation from ab initio theory

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.; Maris, P.; Vary, J. P.; Smith, R.

    2015-08-01

    Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.

  15. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.

  16. ON DETECTING TRANSIENT PHENOMENA

    SciTech Connect

    Belanger, G.

    2013-08-10

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

  17. Exotic phenomena in nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans; Roth, Robert

    2006-10-01

    In the Fermionic Molecular Dynamics (FMD) model the nuclear many-body system is described using Slater determinants with Gaussian wave-packets as single-particle states. The flexibility of the FMD wave functions allows for a consistent description of shell model like structures, deformed states, cluster structures as well as halos. An effective interaction derived from the realistic Argonne V18 interaction using the Unitary Correlation Operator Method is used for all nuclei. Results for nuclei in the p-shell will be presented. Halo features are present in the Helium isotopes, cluster structures are studied in Beryllium and Carbon isotopes. The interplay between shell structure and cluster structures in the ground and the Hoyle state in ^12C will be discussed.

  18. COMPARISON OF RESULTS FOR QUARTER 3 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE, ERWIN, TENNESSEE

    SciTech Connect

    none,

    2013-05-28

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on March 20, 2013. Representatives from the U.S. Nuclear Regulatory Commission and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0012 was the exception. The ORAU result of 9.23 ± 0.73 pCi/L from location MCD is well above NFS's result of -0.567 ± 0.63 pCi/L (non-detected). NFS's data package included a detected result for U-233/234, but no other uranium or plutonium detection, and nothing that would suggest the presence of beta-emitting radionuclides. The ORAU laboratory reanalyzed sample 5198W0012 using the remaining portion of the sample volume and a result of 11.3 ± 1.1 pCi/L was determined. As directed, the laboratory also counted the filtrate using gamma spectrometry analysis and

  19. Novel QCD Phenomena

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2007-07-06

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable {zeta} which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions.

  20. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  1. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  2. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  3. Advances in modelling of condensation phenomena

    SciTech Connect

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  4. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 – 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along

  5. Realistic collective nuclear Hamiltonian

    SciTech Connect

    Dufour, M.; Zuker, A.P.

    1996-10-01

    The residual part of the realistic forces{emdash}obtained after extracting the monopole terms responsible for bulk properties{emdash}is strongly dominated by pairing and quadrupole interactions, with important {sigma}{tau}{center_dot}{sigma}{tau}, octupole, and hexadecapole contributions. Their forms retain the simplicity of the traditional pairing plus multipole models, while eliminating their flaws through a normalization mechanism dictated by a universal {ital A}{sup {minus}1/3} scaling. Coupling strengths and effective charges are calculated and shown to agree with empirical values. Comparisons between different realistic interactions confirm the claim that they are very similar. {copyright} {ital 1996 The American Physical Society.}

  6. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  7. Cooperative phenomena in swarms

    SciTech Connect

    Millonas, M.M.

    1992-12-01

    A model of the cooperative behavior of a large number of locally acting organisms is proposed. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell has a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding flow of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters.

  8. Cooperative phenomena in swarms

    SciTech Connect

    Millonas, M.M.

    1992-01-01

    A model of the cooperative behavior of a large number of locally acting organisms is proposed. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell has a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding flow of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters.

  9. Collective instabilities

    SciTech Connect

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  10. Kinetically controlled phenomena in dynamic combinatorial libraries.

    PubMed

    Ji, Qing; Lirag, Rio Carlo; Miljanić, Ognjen Š

    2014-03-21

    Dynamic combinatorial libraries (DCLs) are collections of structurally related compounds that can interconvert through reversible chemical reaction(s). Such reversibility endows DCLs with adaptability to external stimuli, as rapid interconversion allows quick expression of those DCL components which best respond to the disturbing stimulus. This Tutorial Review focuses on the kinetically controlled phenomena that occur within DCLs. Specifically, it will describe dynamic chiral resolution of DCLs, their self-sorting under the influence of irreversible chemical and physical stimuli, and the autocatalytic behaviours within DCLs which can result in self-replicating systems. A brief discussion of precipitation-induced phenomena will follow and the review will conclude with the presentation of covalent organic frameworks (COFs)-porous materials whose synthesis critically depends on the fine tuning of the crystal growth and error correction rates within large DCLs. PMID:24445841

  11. Anomalons, honey, and glue in nuclear collisions

    SciTech Connect

    Gyulassy, M.

    1982-12-01

    In these lectures, selected topics in nuclear collisions in the energy range 10/sup -1/ to 10/sup 3/ GeV per nucleon are discussed. The evidence for anomalous projectile fragments with short mean free paths is presented. Theoretical speculations on novel topological nuclear excitation and on quark-nuclear complexes in connection with anomalons are discussed. Recent tests for pion field instabilities are presented. Then evidence for collective nuclear flow phenomena are reviewed. Global event analysis and cascade simulations are presented. We address the question of whether nuclear flow is like viscous honey. Finally, the criteria for the production of a quark-gluon plasma are discussed. Nuclear stopping power and longitudinal growth at high energies are considered. Results from cosmic ray data show that nuclear collision at TeV per nucleon energies are likely to product a plasma.

  12. Misconceptions of Emergent Semiconductor Phenomena

    NASA Astrophysics Data System (ADS)

    Nelson, Katherine G.

    The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students may have for three PV semiconductor phenomena; Diffusion, Drift and Excitation. These phenomena are emergent, a class of phenomena that have certain characteristics. In emergent phenomena, the individual entities in the phenomena interact and aggregate to form a self-organizing pattern that can be observed at a higher level. Learners develop a different type of misconception for these phenomena, an emergent misconception. Participants (N=41) completed a written protocol. The pilot study utilized half of these protocols (n = 20) to determine the presence of both general and emergent misconceptions for the three phenomena. Once the presence of both general and emergent misconceptions was confirmed, all protocols (N=41) were analyzed to determine the presence and prevalence of general and emergent misconceptions, and to note any relationships among these misconceptions (full study). Through written protocol analysis of participants' responses, numerous codes emerged from the data for both general and emergent misconceptions. General and emergent misconceptions were found in 80% and 55% of participants' responses, respectively. General misconceptions indicated limited understandings of chemical bonding, electricity and magnetism, energy, and the nature of science. Participants also described the phenomena using teleological, predictable, and causal traits, indicating participants had misconceptions regarding the emergent aspects of the phenomena. For both general and emergent misconceptions, relationships were observed between similar misconceptions within and across the three phenomena, and differences in misconceptions were

  13. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  14. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    SciTech Connect

    Bryan, Charles R.; Enos, David

    2015-03-01

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensors and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO4 , but also Na - SO4 , K - SO4 , and Na - Al - SO4 . It is likely that these salts were formed by particle - gas conversion reactions, either

  15. Toward Understanding Astrophysical Phenomena

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2015-06-01

    I hope to resume working on fast radio bursts (FRBs) in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints. The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central ms pulsar. The two orbits are highly hierarchical, namely Porb,1 " Porb,2, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, e1/ e2, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, e1 " e2 for the parallel mode, while e 1 " e2 for the anti-parallel one. We show that the former precesses ˜10 times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially e1 oscillate on ˜103yr timescale. Detectable changes would occur within ˜1y. We demonstrate that the anti-parallel mode gets damped ˜10 4 times faster than its parallel brother by any dissipative process diminishing e1. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter (Q) to be ˜106, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers

  16. High-Field Phenomena of Qubits.

    PubMed

    van Tol, Johan; Morley, G W; Takahashi, S; McCamey, D R; Boehme, C; Zvanut, M E

    2009-12-01

    Electron and nuclear spins are very promising candidates to serve as quantum bits (qubits) for proposed quantum computers, as the spin degrees of freedom are relatively isolated from their surroundings and can be coherently manipulated, e.g., through pulsed electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR). For solid-state spin systems, impurities in crystals based on carbon and silicon in various forms have been suggested as qubits, and very long relaxation rates have been observed in such systems. We have investigated a variety of these systems at high magnetic fields in our multifrequency pulsed EPR/ENDOR (electron nuclear double resonance) spectrometer. A high magnetic field leads to large electron spin polarizations at helium temperatures, giving rise to various phenomena that are of interest with respect to quantum computing. For example, it allows the initialization of both the electron spin as well as hyperfine-coupled nuclear spins in a well-defined state by combining millimeter and radio-frequency radiation. It can increase the T(2) relaxation times by eliminating decoherence due to dipolar interaction and lead to new mechanisms for the coherent electrical readout of electron spins. We will show some examples of these and other effects in Si:P, SiC:N and nitrogen-related centers in diamond. PMID:19946596

  17. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  18. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  19. Undergraduates' understanding of cardiovascular phenomena.

    PubMed

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed. PMID:12031940

  20. Collective rotation from ab initio theory

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; Maris, Pieter; Vary, James P.

    2015-10-01

    The challenge of ab initio nuclear theory is to quantitatively predict the complex and highly-correlated behavior of the nuclear many-body system, starting from the underlying internucleon interactions. We may now seek to understand the wealth of nuclear collective phenomena through ab initio approaches. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. In this talk, the intrinsic structure of these bands is discussed, and the predicted rotational bands are compared to experiment. Supported by the US DOE under Award Nos. DE-FG02-95ER-40934, DESC0008485 (SciDAC/NUCLEI), and DE-FG02-87ER40371 and the US NSF under Award No. 0904782. Computational resources provided by NERSC (US DOE Contract No. DE-AC02-05CH11231).

  1. p-p minimum-bias dijets and nonjet quadrupole in relation to conjectured collectivity (flows) in high-energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2016-07-01

    Recent observations of ridge-like structure in p-p and p-A angular correlations at the RHIC and LHC have been interpreted to imply collective motion in smaller collision systems. It is argued that if correlation structures accepted as manifestations of flow in A-A collisions appear in smaller systems collectivity (flow) must extend to the smaller systems. But the argument could be reversed to conclude that such structures appearing in A-A collisions may not imply hydrodynamic flow. I present spectrum, correlation and fluctuation data from RHIC p-p and Au-Au collisions and p-p, p-Pb and Pb-Pb results from the LHC described accurately by a two-component (soft+dijet) model of hadron production. I also present evidence for a significant p-p nonjet (NJ) quadrupole (v2) component with nch systematics directly related to A-A NJ quadrupole systematics. The combination suggests that soft, dijet and NJ quadrupole com- ponents are distinct phenomena in all cases, inconsistent with hadron production from a common bulk medium exhibiting collective motion (flow).

  2. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…

  3. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-08-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238}Pu/^{239}Pu and ^{240}Pu/^{239}Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241}Am/^{239}Pu mass ratio.

  4. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-03-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238} Pu/^{239} Pu and ^{240} Pu/^{239} Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241} Am/^{239} Pu mass ratio.

  5. Statistical phenomena in particle beams

    SciTech Connect

    Bisognano, J.J.

    1984-09-01

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

  6. New phenomena searches at CDF

    SciTech Connect

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  7. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  8. Visualization of solidification front phenomena

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1993-01-01

    Directional solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental platform which minimizes variables in solidification experiments. Because of the wide-spread use of this experimental technique in space-based research, it has become apparent that a better understanding of all the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible.

  9. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  10. Recent LEP2 results on searches for new phenomena

    SciTech Connect

    Pan Yibin

    1998-05-29

    Recent results of searches for supersymmetric particles, Higgs bosons, and other new phenomena at LEP2 are summarized. These results are based on data and analyses from the four LEP experiments: ALEPH, DELPHI, L3, and OPAL. The data were collected during the summer and fall of 1996 with center-of-mass energies of 161 and 172 GeV.

  11. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. )

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  12. Correlated randomness and switching phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  13. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    research. We hope that this collection of papers will provide a good overview for anyone interested in recent developments in the field of integrability and nonlinear phenomena. [1] Integrable models in nonlinear optics and soliton solutions Degasperis A [2] Hamiltonian PDEs: deformations, integrability, solutions Dubrovin B [3] Smooth and peaked solitons of the CH equation Holm D D and Ivanov R I [4] KP solitons in shallow water Kodama Y [5] Two extensions of 1D Toda hierarchy Takasaki K [6] On the Lax representation of the 2-component KP and 2D Toda hierarchies Guido Carlet and Manuel Manas [7] The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons Lin R L, Peng H and Manas M [8] Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation Konopelchenko B, Martinez Alonso L and E Medina [9] Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy Bogdanov L V [10] Squared eigenfunctions and the perturbation theory for the nondegenerate N x N operator: a general outline Kaup D J and Van Gorder R A [11] The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions Schiebold C [12] On the soliton solutions of the two-dimensional Toda lattice Biondini G and Wang D [13] Differential algebra of the Painleve property Benes G N and Previato E [14] Klein's curve Braden H W and Northover T P [15] Quantum monodromy and pattern formation Zhilinskii B [16] A symptotics for a special solution to the second member of the Painleve I hierarchy Claeys T [17] Darboux transformation for a two-component derivative nonlinear Schroedinger equation Ling L and Liu Q P [18] Backlund transformations as exact integrable time discretizations for the trigonometric Gaudin model Ragnisco O and Zullo F [19] Exceptional orthogonal polynomials and the Darboux transformation Gomez-Ullate D, Kamran N and Milson R [20] The hydrodynamic Chaplygin

  14. Fundamental investigation of duct/ESP phenomena. Final report

    SciTech Connect

    Brown, C.A.; Durham, M.D.; Sowa, W.A.; Himes, R.M.; Mahaffey, W.A.

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  15. Phenomena and Diosignes of Aratous

    NASA Astrophysics Data System (ADS)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  16. Face it: collecting mental health and disaster related data using Facebook vs. personal interview: the case of the 2011 Fukushima nuclear disaster.

    PubMed

    Ben-Ezra, Menachem; Palgi, Yuval; Aviel, Or; Dubiner, Yonit; Evelyn Baruch; Soffer, Yechiel; Shrira, Amit

    2013-06-30

    Collecting mental health data during disaster is a difficult task. The aim of this study was to compare reported sensitive information regarding the disaster and general questions on physical or psychological functioning between social network (Facebook) interview and face-to-face interview after the 2011 Fukushima nuclear disaster. Data were collected from a battery of self-reported questionnaires. The questionnaires were administered to 133 face-to-face participants and to 40 Facebook interviewees, during March-April 2011. The face-to-face interview group showed a significantly higher level of posttraumatic stress disorder (PTSD) symptoms and elevated risk for clinical level of PTSD and reported more worries about another disaster, lower life satisfaction, less perceived social support and lower self-rated health than the Facebook group. Our data may suggest that the reliability of internet surveys is jeopardized during extreme conditions such as large-scale disasters as it tends to underestimate the reactions to such events. This indicates the discrepancy from data collected in situ to data collected using social networks. The implications of these results are discussed. PMID:23200780

  17. Nonstationary Phenomena in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Borovikov, S. N.; Ebert, R. W.; Heerikhuisen, J.; Kim, T. K.; Kryukov, I.; Richardson, J. D.; Suess, S. T.; Zank, G. P.

    2012-12-01

    As Voyagers (V1 and V2) are approaching the heliopause (HP), they keep delivering important information about the solar wind (SW) behavior which sometimes appears to be substantially different at V1 and V2 locations. We argue that the observed differences may be attributed to SW variations. In particular, negative values of the radial velocity component derived from V1 observations may be due to the presence of time-dependent magnetic barriers formed due to the slow/fast wind interactions in the vicinity of solar cycle minima. The inner heliosheath is the venue of wave interaction, MHD instabilities, and turbulence. We further investigate these phenomena in the HP vicinity using a new, based on the Ulysses observations, solar cycle model. We show that some puzzling observational data, such as the difference in the heliocentric distances at which V1 and V2 crossed the termination shock, may be attributed to time-dependent effects. We also use other time-dependent sets of observational boundary conditions, e.g., interplanetary scintillation and OMNI data. Phenomena affecting the stability and shape of the HP are also discussed in the context of our time-dependent simulations. The satisfaction of the 2-3 kHz radio emission criteria beyond the HP is analyzed. Numerical results are validated by their comparison with observational data.

  18. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect

    Conrads, T.J.

    1998-09-29

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  19. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    SciTech Connect

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. Interspecies nuclear transfer using fibroblasts from leopard, tiger, and lion ear piece collected postmortem as donor cells and rabbit oocytes as recipients.

    PubMed

    Yelisetti, Uma Mahesh; Komjeti, Suman; Katari, Venu Charan; Sisinthy, Shivaji; Brahmasani, Sambasiva Rao

    2016-06-01

    Skin fibroblast cells were obtained from a small piece of an ear of leopard, lion, and tiger collected postmortem and attempts were made to synchronize the skin fibroblasts at G0/G1 of cell cycle using three different approaches. Efficiency of the approaches was tested following interspecies nuclear transfer with rabbit oocytes as recipient cytoplasm. Fluorescence-activated cell sorting revealed that the proportion of G0/G1 cells increased significantly (P < 0.05) when cells subjected to serum starvation, contact inhibition, and 3 mM sodium butyrate (NaBu) treatment when compared with cycling cells. However, 3 mM NaBu treatment caused alterations in cell morphology and increase in dead cells. Thus, interspecies nuclear transfer was carried out using fibroblast cells subjected to contact inhibition for 72 h, serum starvation for 48 h, and cells treated with 1.0 mM NaBu for 48 h. The fusion rates, the proportion of fused couplets that cleaved to two-cell and developed to blastocyst, were highest in all three species when the donor cells were treated with 1.0 mM NaBu for 48 h. But, the blastocyst percentage of interspecies nuclear embryos (5-6%) was significantly lower when compared with rabbit-rabbit nuclear transfer embryos (22.9%). In conclusion, fibroblast cells of leopard, lion, and tiger were successfully synchronized and used for the development of blastocysts using rabbit oocytes as recipient cytoplasm. PMID:27071624

  1. Effects of Social Psychological Phenomena on School Psychologists' Ethical Decision-Making: A Preliminary Empirical Analysis

    ERIC Educational Resources Information Center

    Klose, Laurie McGarry; Lasser, Jon; Reardon, Robert F.

    2012-01-01

    This preliminary, exploratory study examines the impact of select social psychological phenomena on school-based ethical decision-making of school psychologists. Responses to vignettes and hypothetical statements reflecting several social psychological phenomena were collected from 106 practicing school psychologists. Participants were asked to…

  2. Interpolating function and Stokes phenomena

    NASA Astrophysics Data System (ADS)

    Honda, Masazumi; Jatkar, Dileep P.

    2015-11-01

    When we have two expansions of physical quantity around two different points in parameter space, we can usually construct a family of functions, which interpolates the both expansions. In this paper we study analytic structures of such interpolating functions and discuss their physical implications. We propose that the analytic structures of the interpolating functions provide information on analytic property and Stokes phenomena of the physical quantity, which we approximate by the interpolating functions. We explicitly check our proposal for partition functions of zero-dimensional φ4 theory and Sine-Gordon model. In the zero dimensional Sine-Gordon model, we compare our result with a recent result from resurgence analysis. We also comment on construction of interpolating function in Borel plane.

  3. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  4. Entanglement and boundary critical phenomena

    SciTech Connect

    Zhou Huanqiang; Barthel, Thomas; Schollwoeck, Ulrich; Fjaerestad, John Ove

    2006-11-15

    We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entanglement in the ground state of one-dimensional quantum systems is quantified using the Renyi entropy S{sub {alpha}}, which includes the von Neumann entropy ({alpha}{yields}1) and the single-copy entanglement ({alpha}{yields}{infinity}) as special cases. We identify the contribution of the boundaries to the Renyi entropy, and show that there is an entanglement loss along boundary renormalization group (RG) flows. This property, which is intimately related to the Affleck-Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density matrix along the boundary RG flows. We also point out that the bulk contribution to the single-copy entanglement is half of that to the von Neumann entropy, whereas the boundary contribution is the same.

  5. Unidentified phenomena - Unusual plasma behavior?

    NASA Astrophysics Data System (ADS)

    Avakian, S. V.; Kovalenok, V. V.

    1992-06-01

    The paper describes observations of a phenomenon belonging to the UFO category and the possible causes of these events. Special attention is given to an event which occurred during the night of September 19-20, 1974, when a huge 'star' was observed over Pertrozavodsk (Russia), consisting of a bright-white luminous center, emitting beams of light, and a less bright light-blue shell. The star gradually formed a cometlike object with a tail consisting of beams of light and started to descend. It is suggested that this event was related to cosmic disturbances caused by an occurrence of unusually strong solar flares. Other examples are presented that relate unusual phenomena observed in space to the occurrence of strong magnetic turbulence events.

  6. Wetting phenomena on rough substrates

    NASA Astrophysics Data System (ADS)

    Li, Hao; Kardar, Mehran

    1990-10-01

    We consider wetting phenomena in the vicinity of rough substrates. The quenched random geometry of the substrate is assumed to be a self-affine fractal with a roughness exponent of ζS. Asymptotic critical properties on approaching complete and critical wetting transitions are studied by combining the replica method with scaling and renormalization-group arguments. We find new critical behavior, controlled by a zero-temperature fixed point, when ζS exceeds the thermal roughness exponent of the emerging wetting layer. The possibility of an effective dimensional reduction due to randomness is considered. In two dimensions a number of exact results are obtained by using a many-body transfer-matrix technique.

  7. Critical phenomena in magnetic nanowires.

    PubMed

    Kamalakar, M Venkata; Raychaudhuri, A K

    2009-09-01

    In this paper we report the first experimental study of critical phenomena in case of magnetic nanowires of nickel near the ferromagnetic-paramagnetic transition from the electrical transport properties. Nickel nanowire arrays, prepared by potentiostatic electrodeposition of nickel inside pores of nanoporous anodic alumina template were well characterized by X-ray Diffraction, Transmission electron microscopy and Energy dispersive Spectroscopy. Precise electrical resistance measurement of the nanowire arrays of wire diameter 20 nm have been done in the temperature range between 300 K to 700 K. We see a drop in the Curie temperature as observed from the resistivity anomaly. We analyzed the resistance data near the critical region and extracted the critical exponent alpha directly from the resistance. We observed a decrease in the critical part of the resistivity including a decrease in the magnitude of the critical exponent alpha and severe modification in the correction to scaling. PMID:19928208

  8. In-vessel phenomena -- CORA

    SciTech Connect

    Ott, L.J.; van Rij, W.I.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level whole-core'' codes.

  9. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  10. Removal of Radiocesium from Food by Processing: Data Collected after the Fukushima Daiichi Nuclear Power Plant Accident - 13167

    SciTech Connect

    Uchida, Shigeo; Tagami, Keiko

    2013-07-01

    Removal of radiocesium from food by processing is of great concern following the accident of TEPCO's Fukushima Daiichi Nuclear Power Plant accident. Foods in markets are monitored and recent monitoring results have shown that almost all food materials were under the standard limit concentration levels for radiocesium (Cs-134+137), that is, 100 Bq kg{sup -1} in raw foods, 50 Bq kg{sup -1} in baby foods, and 10 Bq kg{sup -1} in drinking water; those food materials above the limit cannot be sold. However, one of the most frequently asked questions from the public is how much radiocesium in food would be removed by processing. Hence, information about radioactivity removal by processing of food crops native to Japan is actively sought by consumers. In this study, the food processing retention factor, F{sub r}, which is expressed as total activity in processed food divided by total activity in raw food, is reported for various types of corps. For white rice at a typical polishing yield of 90-92% from brown rice, the F{sub r} value range was 0.42-0.47. For leafy vegetable (indirect contamination), the average F{sub r} values were 0.92 (range: 0.27-1.2) after washing and 0.55 (range: 0.22-0.93) after washing and boiling. The data for some fruits are also reported. (authors)

  11. Empirical Investigation of Extreme Single-Particle Behavior of Nuclear Quadrupole Moments in Highly Collective A {approx} 150 Superdeformed Bands

    SciTech Connect

    Clark, S. T.; Hackman, G.; Janssens, R. V. F.; Clark, R. M.; Fallon, P.; Floor, S. N.; Lane, G. J.; Macchiavelli, A. O.; Norris, J.; Sanders, S. J.

    2001-10-22

    The intrinsic quadrupole moment Q{sub 0} of superdeformed rotational bands in A{approx}150 nuclei depends on the associated single-particle configuration. We have derived an empirical formula based on the additivity of effective quadrupole moments of single-particle orbitals that describes existing measurements from {sup 142}Sm to {sup 152}Dy . To further test the formula, the predicted Q{sub 0} moments for two superdeformed bands in {sup 146}Gd of 14.05 eb were confronted with a new measurement yielding 13.9{+-}0.4 eb and 13.9{+-}0.3 eb , respectively. This excellent agreement provides empirical evidence of extreme single-particle behavior in highly deformed, collective systems.

  12. Effects of canine serum collected from dogs at different estrous cycle stages on in vitro nuclear maturation of canine oocytes.

    PubMed

    Oh, Hyun Ju; Fibrianto, Yuda Heru; Kim, Min Kyu; Jang, Goo; Hossein, M Shamim; Kim, Hye Jin; Kang, Sung Keun; Lee, Byeong Chun; Hwang, Woo Suk

    2005-08-01

    Canine oocytes are ovulated at prophase of the first meiotic division and undergo maturation in the distal part of the oviduct for at least 48-72 h. Because of these differences from other domestic mammals, the efficiency of in vitro maturation (IVM) of canine oocyte is very low. The present study was conducted to evaluate the effects of canine serum on IVM of canine oocytes recovered from ovaries in various reproductive states (follicular, luteal or anestrous stages). Oocytes were recovered by mincing ovaries from bitches presented for ovariohysterectomy at various stages of the estrous cycle. Heat-inactivated canine serum was prepared with blood taken from dogs at the anestrous, estrous or diestrous stage of the estrous cycle as determined by progesterone concentration and vaginal cytology. Oocytes were cultured for 72 h in tissue culture medium (TCM)-199 supplemented with 10% canine anestrous, estrous or diestrous serum or fetal bovine serum (FBS) (experiment 1), or supplemented with 0 (control), 5%, 10% or 20% canine estrous serum (experiment 2). In experiment 1, IVM of oocytes collected at the follicular stage of the estrous cycle to metaphase II (MII) stage was higher (p < 0.05) with canine estrous serum (14.2%) than with canine anestrous (5.2%) or diestrous serum (6.3%), FBS (2.2%) or in the control (2.2%). In experiment 2, oocytes collected at the follicular stage of the estrous cycle cultured in TCM-199 with 10% canine estrous serum showed a higher maturation rate to MII stage (13.5%, p < 0.05) compared with those cultured with 5% (1.3% MII) or 20% canine estrous serum (5.1% MII) or the control (2.7% MII). In conclusion, our results demonstrate that supplementing culture medium with 10% canine estrous serum improves IVM of canine follicular stage oocytes. PMID:16261767

  13. The Unique Ability of the Electron-Positron (Epo) Lattice (Epola) Model of Space to Explain the Natural Causes of All Known Physical Features and Phenomena, Extrinsic to Nuclear Particles

    NASA Astrophysics Data System (ADS)

    Simhony, Menahem

    1999-10-01

    The binding energy _bE of an epo pair in the epola is 1.02 MeV. In an epola spot, deformed by a "guest" nucleus, such a quantum can be absorbed; this frees an epo pair off bonds, making it appear to our detection. The epo lattice constant is 4.4 fm, 50 R_e. Thus atomic bodies can move in the epola, sweeping their constituent nuclei and electrons between epola particles, creating EM de Broglie waves in the epola space, but no winds or currents. Starting a motion provides the energy of the bound epola particles that vibrate in the waves. This led us to answer the question WHY there is inertia. Epola deformations by masses of constituent nuclear particles of atomic bodies led us to answer the question WHY there is gravity. Epola deformations by electric charges and magnetism of the particles lead to answer the questions of HOW and WHY does space carry and transfer with the speed c of light the tremendous gravitational and EM interaction forces, energies, and radiations. The lattice structure per se causes all quantizations, and the applicability of the otherwise "divine" principles of uncertainty, exclusion, particle-wave duality, universality of our backyard findings, etc. 1.M.Simhony, The Epola Space, 1990, 160 pp, and The Story of Matter and Space, 1999, 70 pp (available from the author). M.Simhony, Invitation to the Natural Physics or Matter, Space, and Radiation, World Scientific, 1994. See the website: http://come.to/natural_physics

  14. Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

    NASA Astrophysics Data System (ADS)

    Xue, W. X.; Yao, J. M.; Hagino, K.; Li, Z. P.; Mei, H.; Tanimura, Y.

    2015-02-01

    Background: The impurity effect of hyperons on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E 2 transition strength in low-lying states of the hypernucleus Λ7Li . Many more data on low-lying states of Λ hypernuclei will be measured soon for s d -shell nuclei, providing good opportunities to study the Λ impurity effect on nuclear low-energy excitations. Purpose: We carry out a quantitative analysis of the Λ hyperon impurity effect on the low-lying states of s d -shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ hyperon is injected into the lowest positive-parity (Λs) and negative-parity (Λp) states. Method: We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ binding energies of hypernuclei as well as the potential-energy surfaces (PESs) in the (β ,γ ) deformation plane. We also calculate the PESs for the Λ hypernuclei with good quantum numbers by using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking 25,27Mg Λ and Si31Λ as examples, we analyze the impurity effects of Λs and Λp on the low-lying states of the core nuclei. Results: We show that Λs increases the excitation energy of the 21+ state and decreases the E 2 transition strength from this state to the ground state by 12 %to17 % . On the other hand, Λp tends to develop pronounced energy minima with larger deformation, although it modifies the collective parameters in such a way that the collectivity of the core nucleus can be either increased or decreased. Conclusions: The quadrupole deformation significantly affects the

  15. Electromechanical phenomena in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the

  16. Pathways toward understanding Macroscopic Quantum Phenomena

    NASA Astrophysics Data System (ADS)

    Hu, B. L.; Subaşi, Y.

    2013-06-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  17. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  18. Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Barker, Timothy; Farber, Ryan; Ahrendts, Gary

    2014-06-01

    Transient Lunar Phenomena (TLP’s) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP research is characterized by the inability to substantiate, reproduce, and verify findings. Our current research includes the analysis of lunar images taken with two Santa Barbara Instrument Group (SBIG) ST8-E CCD cameras mounted on two 0.36m Celestron telescopes. On one telescope, we are using a sodium filter, and on the other an H-alpha filter, imaging approximately one-third of the lunar surface. We are focusing on two regions: Hyginus and Ina. Ina is of particular interest because it shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006). A total of over 50,000 images have been obtained over approximately 35 nights and visually analyzed to search for changes. As of March, 2014, no evidence of TLPs has been found. We are currently developing a Matlab program to do image analysis to detect TLPs that might not be apparent by visual inspection alone.

  19. Modeling Defect-Induced Phenomena

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija M.; Rashkeev, Sergey N.

    Elucidation of dissociation mechanisms, energy localization, and transfer phenomena in the course of explosive decomposition of energetic materials (EMs) are central for understanding, controlling, and enhancing the performance of these materials as fuels, propellants, and explosives. Quality of energetic materials is often judged using two main parameters: sensitivity to detonation and its performance. Low sensitivity is desired to make the material relatively stable to external stimuli, i.e., controllable and able of triggering rapid dissociation only when needed and not accidentally. Performance, on the other hand, is to be high to provide larger heat of the explosive reaction. These parameters do not necessarily correlate with each other and depend on many variables such as molecular and crystalline structures, history of samples, the particle size, crystal hardness and orientation, external stimuli, aging, storage conditions, and others. Mechanisms governing performance are fairly well understood whereas mechanisms of sensitivity are poorly known and need to be much more extensively studied. It is widely accepted though that the thermal decomposition reactions of the materials play a significant role in their sensitivity to mechanical stimuli and their explosive properties [1].

  20. Precursor films in wetting phenomena.

    PubMed

    Popescu, M N; Oshanin, G; Dietrich, S; Cazabat, A-M

    2012-06-20

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed. PMID:22627067

  1. Bleed Hole Flow Phenomena Studied

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boundary-layer bleed is an invaluable tool for controlling the airflow in supersonic aircraft engine inlets. Incoming air is decelerated to subsonic speeds prior to entering the compressor via a series of oblique shocks. The low momentum flow in the boundary layer interacts with these shocks, growing in thickness and, under some conditions, leading to flow separation. To remedy this, bleed holes are strategically located to remove mass from the boundary layer, reducing its thickness and helping to maintain uniform flow to the compressor. The bleed requirements for any inlet design are unique and must be validated by extensive wind tunnel testing to optimize performance and efficiency. To accelerate this process and reduce cost, researchers at the NASA Lewis Research Center initiated an experimental program to study the flow phenomena associated with bleed holes. Knowledge of these flow properties will be incorporated into computational fluid dynamics (CFD) models that will aid engine inlet designers in optimizing bleed configurations before any hardware is fabricated. This ongoing investigation is currently examining two hole geometries, 90 and 20 (both with 5-mm diameters), and various flow features.

  2. Review - Axial compressor stall phenomena

    NASA Technical Reports Server (NTRS)

    Greitzer, E. M.

    1980-01-01

    Stall in compressors can be associated with the initiation of several types of fluid dynamic instabilities. These instabilities and the different phenomena, surge and rotating stall, which result from them, are discussed in this paper. Assessment is made of the various methods of predicting the onset of compressor and/or compression system instability, such as empirical correlations, linearized stability analyses, and numerical unsteady flow calculation procedures. Factors which affect the compressor stall point, in particular inlet flow distortion, are reviewed, and the techniques which are used to predict the loss in stall margin due to these factors are described. The influence of rotor casing treatment (grooves) on increasing compressor flow range is examined. Compressor and compression system behavior subsequent to the onset of stall is surveyed, with particular reference to the problem of engine recovery from a stalled condition. The distinction between surge and rotating stall is emphasized because of the very different consequences on recoverability. The structure of the compressor flow field during rotating stall is examined, and the prediction of compressor performance in rotating stall, including stall/unstall hysteresis, is described.

  3. WESF natural phenomena hazards survey

    SciTech Connect

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  4. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  5. Intrinsic interfacial phenomena in manganite heterostructures

    NASA Astrophysics Data System (ADS)

    Vaz, C. A. F.; Walker, F. J.; Ahn, C. H.; Ismail-Beigi, S.

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  6. Electromagnetic phenomena and hysteresis losses in superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, T.

    Hysteresis losses in superconductors are caused by irreversible motion of fluxoids. This motion is, in most cases, described by the critical state model. In this article, various electromagnetic phenomena due to flux pinning effects are reviewed and explanations of these phenomena are given using the critical state model. The phenomena which cannot be well described by the present model, such as reversible fluxoid motion and the longitudinal field effect, are also introduced.

  7. The presence of nuclear families in prehistoric collective burials revisited: the bronze age burial of Montanissell Cave (Spain) in the light of aDNA.

    PubMed

    Simón, Marc; Jordana, Xavier; Armentano, Nuria; Santos, Cristina; Díaz, Nancy; Solórzano, Eduvigis; López, Joan B; González-Ruiz, Mercedes; Malgosa, Assumpció

    2011-11-01

    Ancient populations have commonly been thought to have lived in small groups where extreme endogamy was the norm. To contribute to this debate, a genetic analysis has been carried out on a collective burial with eight primary inhumations from Montanissell Cave in the Catalan pre-Pyrenees. Radiocarbon dating clearly placed the burial in the Bronze Age, around 3200 BP. The composition of the group-two adults (one male, one female), one young woman, and five children from both sexes-seemed to represent the structure of a typical nuclear family. The genetic evidence proves this assumption to be wrong. In fact, at least five out of the eight mitochondrial haplotypes were different, denying the possibility of a common maternal ancestor for all of them. Nevertheless, 50% of the inhumations shared haplogroup J, so the possibility of a maternal relationship cannot be ruled out. Actually, combining different analyses performed using ancient and living populations, the probability of having four related J individuals in Montanissell Cave would range from 0.9884 to 0.9999. Owing to the particularities of this singular collective burial (small number of bodies placed altogether in a hidden cave, the evidence of non-simultaneous interments, close dating and unusual grave goods), we suggest that it might represent a small group with a patrilocal mating system. PMID:21959902

  8. Nonepileptic motor phenomena in the neonate

    PubMed Central

    Huntsman, Richard James; Lowry, Noel John; Sankaran, Koravangattu

    2008-01-01

    The newborn infant is prone to clinical motor phenomena that are not epileptic in nature. These include tremors, jitteriness, various forms of myoclonus and brainstem release phenomena. They are frequently misdiagnosed as seizures, resulting in unnecessary investigations and treatment with anticonvulsants, which have potentially harmful side effects. Unfortunately, there is a paucity of literature about many of these phenomena in the newborn, and some of the major textbooks refer to these events as nonepileptic seizures, leading to further confusion for the practitioner. The present paper aims to review these phenomena with special emphasis on differentiating them from epileptic seizures, and offers information on treatment and prognosis wherever possible. PMID:19436521

  9. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  10. Phenomena resulting from hypergolic contact

    NASA Astrophysics Data System (ADS)

    Forness, Jordan M.

    Understanding hypergolic ignition is critical for the safe and successful operation of hypergolic engines. The complex coupling of physical and chemical processes during hypergolic ignition complicates analysis of the event. Presently, hypergolic ignition models cannot simulate liquid contact and mixing or liquid-phase chemical reactions, and rely on experimental results for validation. In some cases, chemical kinetics of hypergolic propellants and fluid dynamics of droplet collisions couple to produce unexpected phenomena. This research investigates contact between droplets and pools of liquid hypergolic propellants under various conditions in order to investigate these liquid-phase reactions and categorize the resulting interaction. During this experiment, 142 drop tests were performed to investigate phenomena associated with hypergolic contact of various propellants. A drop of fuel impacted a semi-ellipsoidal pool of oxidizer at varying impact velocities and impact geometries. The temperature, pressure, ambient atmosphere, and propellant quality were all controlled during the experiment, as these factors have been shown to influence hypergolic ignition delay. Three distinct types of impacts were identified: explosions, bounces, and splashes. The impact type was found to depend on the impact Weber number and impact angle. Splashes occurred above a critical Weber number of 250, regardless of impact angle. Explosions occurred for Weber numbers less than 250, and for impact angles less than seven degrees. If the impact angle was greater than seven degrees then the test resulted in a bounce. Literature related to explosions induced by hypergolic contact was reviewed. Explosions were observed to occur inconsistently, a feature that has never been addressed. Literature related to non-reactive splashing, bouncing, and coalescence was reviewed for insight into the explosion phenomenon. I propose that the dependence of impact angle on the transition between explosion and

  11. Role of nuclear factor of activated T-cells 5 in regulating hypertonic-mediated secretin receptor expression in kidney collecting duct cells.

    PubMed

    Chua, Oscar W H; Wong, Kenneth K L; Ko, Ben C; Chung, Sookja K; Chow, Billy K C; Lee, Leo T O

    2016-07-01

    A growing body of evidence suggests that secretin (SCT) is an important element in the osmoregulatory pathway. It is interesting to note that both SCT and its receptor (SCTR) gene are activated upon hyperosmolality in the kidney. However, the precise molecular mechanisms underlying the induction of the SCTR gene expression in response to changes in osmolality have yet to be clarified. Detailed DNA sequence analysis of the promoter regions of the SCTR gene reveals the presence of multiple osmotic response elements (ORE). The ORE is the binding site of a key osmosensitive transactivator, namely, the nuclear factor of activated T-cells 5 (NFAT5). SCTR and NFAT5 are co-expressed in the kidney cortex and medulla collecting duct cells. We therefore hypothesize that NFAT5 is responsible for modulating SCTR expression in hypertonic environments. In this study, we found hypertonicity stimulates the promoter activities and endogenous gene expression of SCTR in mouse kidney cortex collecting duct cells (M1) and inner medulla collecting duct cells (mIMCD3). The overexpression and silencing of NFAT5 further confirmed it to be responsible for the up-regulation of the SCTR gene under hypertonic conditions. A significant increase in the interaction between NFAT5 and the SCTR promoter was also observed following chromatin immunoprecipitation assay. In vivo, osmotic stress up-regulates the SCTR gene in the kidney cortex and medulla of wild-type mice, but does not do so in NFAT5(+/-) animals. Hence, this study provides comprehensive information on how NFAT5 regulates SCTR expression in different osmotic environments. PMID:27080132

  12. Phenomena associated with magma expansion into a drift

    SciTech Connect

    Gaffney, E. S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  13. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  14. Fluctuation theory of critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Martynov, G. A.

    2016-07-01

    It is assumed that critical phenomena are generated by density wave fluctuations carrying a certain kinetic energy. It is noted that all coupling equations for critical indices are obtained within the context of this hypothesis. Critical indices are evaluated for 15 liquids more accurately than when using the current theory of critical phenomena.

  15. Interplay between one-particle and collective degrees of freedom in nuclei

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ikuko

    2016-02-01

    Some developments of nuclear-structure physics uniquely related to Copenhagen School are sketched based on theoretical considerations versus experimental findings and one-particle versus collective aspects. Based on my personal overview I pick up the following topics; (1) Study of vibration in terms of particle-vibration coupling; (2) one-particle motion in deformed and rotating potentials, and yrast spectroscopy in high-spin physics; (3) triaxial shape in nuclei: wobbling motion and chiral bands; (4) nuclear structure of drip line nuclei: in particular, shell-structure (or magic numbers) change and spherical or deformed halo phenomena; (5) shell structure in oblate deformation.

  16. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    SciTech Connect

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  17. Specific activity and activity ratios of radionuclides in soil collected about 20 km from the Fukushima Daiichi Nuclear Power Plant: Radionuclide release to the south and southwest.

    PubMed

    Tagami, Keiko; Uchida, Shigeo; Uchihori, Yukio; Ishii, Nobuyoshi; Kitamura, Hisashi; Shirakawa, Yoshiyuki

    2011-10-15

    Soil samples at different depths (0-2, 5-7 and 10-12cm) were collected from J Village, about 20km south of Fukushima Daiichi Nuclear Power Plant (FNPP) to determine their radionuclide specific activities and activity ratios. The concentrations and activity ratios of (131)I, (134, 136, 137)Cs and (129m)Te were obtained, but only trace amounts of (95)Nb, (110m)Ag and (140)La were detected which were too low to provide accurate concentrations. Radionuclides such as (95)Zr, (103, 106)Ru and (140)Ba that were found in Chernobyl fallout, were not found in these soil samples. This suggests that noble gasses and volatile radionuclides predominated in the releases from FNPP to the terrestrial environment. The average activity ratios of (131)I/(137)Cs, (134)Cs/(137)Cs, (136)Cs/(137)Cs and (129m)Te/(137)Cs were 55, 0.90, 0.22 and 4.0 (corrected to March 11, 2011) in the 0-2cm soil samples of April 20 and 28, 2011. PMID:21906779

  18. Compression and immersion tests and leaching of radionuclides, stable metals, and chelating agents from cement-solidified decontamination waste collected from nuclear power stations

    SciTech Connect

    Akers, D.W.; Kraft, N.C.; Mandler, J.W.

    1994-06-01

    A study was performed for the Nuclear Regulatory Commission (NRC) to evaluate structural stability and leachability of radionuclides, stable metals, and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from seven commercial boiling water reactors and one pressurized water reactor. The decontamination methods used at the reactors were the Can-Decon, AP/Citrox, Dow NS-1, and LOMI processes. Samples of untreated resin waste and solidified waste forms were subjected to immersion and compressive strength testing. Some waste-form samples were leach-tested using simulated groundwaters and simulated seawater for comparison with the deionized water tests that are normally performed to assess waste-form leachability. This report presents the results of these tests and assesses the effects of the various decontamination methods, waste form formulations, leachant chemical compositions, and pH of the leachant on the structural stability and leachability of the waste forms. Results indicate that releases from intact and degraded waste forms are similar and that the behavior of some radionuclides such as {sup 55}Fe, {sup 60}Co, and {sup 99}Tc were similar. In addition, the leachability indexes are greater than 6.0, which meets the requirement in the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  19. Concentrations of Radiocesium in Local Foods Collected in Kawauchi Village after the Accident at the Fukushima Dai-ichi Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Orita, Makiko; Nakashima, Kanami; Hayashida, Naomi; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2016-06-01

    We evaluated the current concentrations of radiocesium in local foods collected in Kawauchi Village, which is located less than 30 km from Fukushima Daiichi Nuclear Power Station, to minimize public anxiety regarding internal radiation exposure through the consumption of locally produced foods after the 2011 Fukushima accident. The number of samples exceeding the regulatory radiocesium limit (100 Bq/kg for general foods) was five out of 4,080 vegetables (0.1%), 652 of 1,986 (32.8%) among edible wild plants and fungi, and eight of 647 (1.2%) in fruits. Our study confirmed that the internal radiation doses of ingesting these foods are acceptably low compared to the public dose limit, ranging from 24.4 to 42.7 μSv for males and from 21.7 to 43.4 μSv for females, although the potential for radiation exposure still exists. Long-term comprehensive follow-up should take place to clarify trends in radiocesium concentrations in local foods and the committed effective doses found in Fukushima-area residents. By constructing a system that allows residents to access information on radiocesium concentration in foods, a risk communication model between specialists and residents could be developed in the recovery phase after the Fukushima accident.

  20. Concentrations of Radiocesium in Local Foods Collected in Kawauchi Village after the Accident at the Fukushima Dai-ichi Nuclear Power Station.

    PubMed

    Orita, Makiko; Nakashima, Kanami; Hayashida, Naomi; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2016-01-01

    We evaluated the current concentrations of radiocesium in local foods collected in Kawauchi Village, which is located less than 30 km from Fukushima Daiichi Nuclear Power Station, to minimize public anxiety regarding internal radiation exposure through the consumption of locally produced foods after the 2011 Fukushima accident. The number of samples exceeding the regulatory radiocesium limit (100 Bq/kg for general foods) was five out of 4,080 vegetables (0.1%), 652 of 1,986 (32.8%) among edible wild plants and fungi, and eight of 647 (1.2%) in fruits. Our study confirmed that the internal radiation doses of ingesting these foods are acceptably low compared to the public dose limit, ranging from 24.4 to 42.7 μSv for males and from 21.7 to 43.4 μSv for females, although the potential for radiation exposure still exists. Long-term comprehensive follow-up should take place to clarify trends in radiocesium concentrations in local foods and the committed effective doses found in Fukushima-area residents. By constructing a system that allows residents to access information on radiocesium concentration in foods, a risk communication model between specialists and residents could be developed in the recovery phase after the Fukushima accident. PMID:27334847

  1. Concentrations of Radiocesium in Local Foods Collected in Kawauchi Village after the Accident at the Fukushima Dai-ichi Nuclear Power Station

    PubMed Central

    Orita, Makiko; Nakashima, Kanami; Hayashida, Naomi; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2016-01-01

    We evaluated the current concentrations of radiocesium in local foods collected in Kawauchi Village, which is located less than 30 km from Fukushima Daiichi Nuclear Power Station, to minimize public anxiety regarding internal radiation exposure through the consumption of locally produced foods after the 2011 Fukushima accident. The number of samples exceeding the regulatory radiocesium limit (100 Bq/kg for general foods) was five out of 4,080 vegetables (0.1%), 652 of 1,986 (32.8%) among edible wild plants and fungi, and eight of 647 (1.2%) in fruits. Our study confirmed that the internal radiation doses of ingesting these foods are acceptably low compared to the public dose limit, ranging from 24.4 to 42.7 μSv for males and from 21.7 to 43.4 μSv for females, although the potential for radiation exposure still exists. Long-term comprehensive follow-up should take place to clarify trends in radiocesium concentrations in local foods and the committed effective doses found in Fukushima-area residents. By constructing a system that allows residents to access information on radiocesium concentration in foods, a risk communication model between specialists and residents could be developed in the recovery phase after the Fukushima accident. PMID:27334847

  2. Exclusive processes: Tests of coherent QCD phenomena and nucleon substructure at CEBAF

    SciTech Connect

    Brodsky, S.J.

    1994-07-01

    Measurements of exclusive processes such as electroproduction, photoproduction, and Compton scattering are among the most sensitive probes of proton structure and coherent phenomena in quantum chromodynamics. The continuous electron beam at CEBAF, upgraded in laboratory energy to 10--12 GeV, will allow a systematic study of exclusive, semi-inclusive, and inclusive reactions in a kinematic range well-tuned to the study of fundamental nucleon and nuclear substructure. I also discuss the potential at CEBAF for studying novel QCD phenomena at the charm production threshold, including the possible production of nuclear-bound quarkonium.

  3. Polarization phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1994-03-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron helicity retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. He also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  4. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  5. Critical phenomena in active matter

    NASA Astrophysics Data System (ADS)

    Paoluzzi, Matteo; Marchetti, M. Cristina; Claudio Maggi Collaboration; Umberto Marini Bettolo Marconi Collaboration; Nicoletta Gnan Collaboration

    A collection of active agents can organize in phases with structural properties remarkably similar to those of ordinary materials, such as active gases, liquids and glasses. These phases are formed, however, out of equilibrium, where the machinery of equilibrium statistical mechanics cannot be applied. It has recently been shown that models of particles with Gaussian colored noise can capture some of the nonequilibrium behavior of active Brownian particles, including motility-induced phase separation. By using the Unified Gaussian Colored Noise Approximation (UCNA) it has been possible to obtain an equilibrium-like probability distribution function and an effective free energy for active Brownian particles. Here we employ UCNA to examine the effect of colored noise on mean-field order-disorder transitions. Starting with a φ4 Landau model that undergoes a second-order phase transition as a function of a tuning parameter, we calculate the shift in transition due to colored noise as a function of the noise amplitude and correlation time τ. We find that the transition line exhibits reentrance as a function of τ. The mean-field theoretical predictions are compared with Molecular Dynamics simulations of active Lennard-Jones particles. We acknowledge support from NSF-DMR-1305184.

  6. Perspective: Emergent magnetic phenomena at interfaces

    SciTech Connect

    Suzuki, Yuri

    2015-06-01

    The discovery of emergent magnetic phenomena is of fundamental and technological interest. This perspective highlights recent promising examples of emergent ferromagnetism at complex oxide interfaces in the context of spin based electronics.

  7. Canister storage building natural phenomena design loads

    SciTech Connect

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site.

  8. Isotopic compositions of (236)U and Pu isotopes in "black substances" collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Sakaguchi, Aya; Steier, Peter; Takahashi, Yoshio; Yamamoto, Masayoshi

    2014-04-01

    Black-colored road dusts were collected in high-radiation areas in Fukushima Prefecture. Measurement of (236)U and Pu isotopes and (134,137)Cs in samples was performed to confirm whether refractory elements, such as U and Pu, from the fuel core were discharged and to ascertain the extent of fractionation between volatile and refractory elements. The concentrations of (134,137)Cs in all samples were exceptionally high, ranging from 0.43 to 17.7 MBq/kg, respectively. (239+240)Pu was detected at low levels, ranging from 0.15 to 1.14 Bq/kg, and with high (238)Pu/(239+240)Pu activity ratios of 1.64-2.64. (236)U was successfully determined in the range of (0.28 to 6.74) × 10(-4) Bq/kg. The observed activity ratios for (236)U/(239+240)Pu were in reasonable agreement with those calculated for the fuel core inventories, indicating that trace amounts of U from the fuel cores were released together with Pu isotopes but without large fractionation. The quantities of U and (239+240)Pu emitted to the atmosphere were estimated as 3.9 × 10(6) Bq (150 g) and 2.3 × 10(9) Bq (580 mg), respectively. With regard to U, this is the first report to give a quantitative estimation of the amount discharged. Appreciable fractionation between volatile and refractory radionuclides associated with the dispersal/deposition processes with distance from the Fukushima Dai-ichi Nuclear Power Plant was found. PMID:24601520

  9. Radiocesium concentrations in the bark, sapwood and heartwood of three tree species collected at Fukushima forests half a year after the Fukushima Dai-ichi nuclear accident.

    PubMed

    Kuroda, Katsushi; Kagawa, Akira; Tonosaki, Mario

    2013-08-01

    Radiocesium ((134)Cs and (137)Cs) distribution in tree stems of Japanese cedar (aged 40-56 y), red pine (42 y), and oak (42 y) grown in Fukushima Prefecture were investigated approximately half a year after the Fukushima Dai-ichi nuclear accident. Japanese cedar, red pine, and oak were selected from five sites, one site, and one site, respectively. Three trees at each site were felled, and bark, sapwood (the outer layer of wood in the stem), and heartwood (the inner layer of wood in the stem) separately collected to study radiocesium concentrations measured by gamma-ray spectrometry. The radiocesium deposition densities at the five sites were within the range of 16-1020 kBq m(-2). The radiocesium was distributed in bark, sapwood, and heartwood in three tree species, indicating that very rapid translocation of radiocesium into the wood. The concentration of radiocesium in oak (deciduous angiosperm) bark was higher than that in the bark of Japanese cedar and red pine (evergreen gymnosperms). Both sapwood and heartwood contained radiocesium, and the values were much lower than that in the bark samples. The results suggest that radiocesium contamination half a year after the accident was mainly attributable to the direct radioactive deposition. The radiocesium concentrations in the Japanese cedar samples taken from five sites rose with the density of radiocesium accumulation on the ground surface. To predict the future dynamics of radiocesium in tree stems, the present results taken half a year after the accident are important, and continuous study of radiocesium in tree stems is necessary. PMID:23531497

  10. Comparative analyses of observations of lunar transient phenomena.

    NASA Technical Reports Server (NTRS)

    Cameron, W. S.

    1972-01-01

    From the author's collection of more than 900 reports of lunar transient phenomena (LTP) covering the period 1540-1970, 771 positive plus 112 negative observations (several times more than any previously published analyses) with sufficient ancillary data were analyzed for five hypotheses of causes. Treated as two groups they were divided into four categories (gaseous, reddish, bluish, and brightenings) and were analyzed separately and combined with respect to the hypotheses. The five hypotheses involved effects of tides, sunrise, low-angle illumination, earth's magnetic tail, and solar particles.

  11. Ion Beam Induced Charge Collection (IBICC) microscopy of ICs: Relation to Single Event Upsets (SEU)

    SciTech Connect

    Horn, K.M.; Doyle, B.L.; Sexton, F.W. ); Laird, J.S.; Saint, A.; Cholewa, M.; Legge, G.J.F. . Micro Analytical Research Center )

    1992-01-01

    Single Event Upset (SEU) Imaging is a new diagnostic technique recently developed using Sandia's nuclear microprobe. This technique directly images, with micron resolution, those regions within an integrated circuit which are susceptible to ion-induced malfunctions. Such malfunctions are an increasing threat to space-based systems which make use of current generation IC designs. A complimentary technique to SEU-Imaging involves measurement of the charge collection volumes within integrated circuits; charge collection is the underlying physical process responsible for single event phenomena. This technique, which we term. Ion Beam Induced Charge Collection (IBICC) has been used here and elsewhere to generate micron resolution maps of the charge collection response of integrated circuits. In this paper, we demonstrate the utility of combining the SEU-Imaging and IBICC techniques in order to gain a better understanding of single event upset phenomena. High resolution IBICC images are used to extract more detailed information from charge collection spectra than that obtained from conventional broad-area ion exposures, such as from radioactive sources. Lastly, we will comment on the applications for IBICC as a replacement of Electron Beam Induced Conduction/Current (EBIC) measurements. As reductions in circuit feature size continue in the sub-micron regime, IBICC could certainly prove to be a technologically valuable replacement for EBlC and an important business opportunity for all nuclear microprobe facilities. 12 ref.

  12. Ion Beam Induced Charge Collection (IBICC) microscopy of ICs: Relation to Single Event Upsets (SEU)

    SciTech Connect

    Horn, K.M.; Doyle, B.L.; Sexton, F.W.; Laird, J.S.; Saint, A.; Cholewa, M.; Legge, G.J.F.

    1992-07-01

    Single Event Upset (SEU) Imaging is a new diagnostic technique recently developed using Sandia`s nuclear microprobe. This technique directly images, with micron resolution, those regions within an integrated circuit which are susceptible to ion-induced malfunctions. Such malfunctions are an increasing threat to space-based systems which make use of current generation IC designs. A complimentary technique to SEU-Imaging involves measurement of the charge collection volumes within integrated circuits; charge collection is the underlying physical process responsible for single event phenomena. This technique, which we term. Ion Beam Induced Charge Collection (IBICC) has been used here and elsewhere to generate micron resolution maps of the charge collection response of integrated circuits. In this paper, we demonstrate the utility of combining the SEU-Imaging and IBICC techniques in order to gain a better understanding of single event upset phenomena. High resolution IBICC images are used to extract more detailed information from charge collection spectra than that obtained from conventional broad-area ion exposures, such as from radioactive sources. Lastly, we will comment on the applications for IBICC as a replacement of Electron Beam Induced Conduction/Current (EBIC) measurements. As reductions in circuit feature size continue in the sub-micron regime, IBICC could certainly prove to be a technologically valuable replacement for EBlC and an important business opportunity for all nuclear microprobe facilities. 12 ref.

  13. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  14. Investigating the students' understanding of surface phenomena

    NASA Astrophysics Data System (ADS)

    Hamed, Kastro Mohamad

    1999-11-01

    This study investigated students' understanding of surface phenomena. The main purpose for conducting this research endeavor was to understand how students think about a complex topic about which they have little direct or formal instruction. The motivation for focusing on surface phenomena stemmed from an interest in integrating research and education. Despite the importance of surfaces and interfaces in research laboratories, in technological applications, and in everyday experiences, no previous systematic effort was done on pedagogy related to surface phenomena. The design of this research project was qualitative, exploratory, based on a Piagetian semi-structured clinical piloted interview, focused on obtaining a longitudinal view of the intended sample. The sampling was purposeful and the sample consisted of forty-four undergraduate students at Kansas State University. The student participants were enrolled in physics classes that spanned a wide academic spectrum. The data were analyzed qualitatively. The main themes that emerged from the analysis were: (a) students used analogies when confronted with novel situations, (b) students mixed descriptions and explanations, (c) students used the same explanation for several phenomena, (d) students manifested difficulties transferring the meaning of vocabulary across discipline boundaries, (e) in addition to the introductory chemistry classes, students used everyday experiences and job-related experiences as sources of knowledge, and (f) students' inquisitiveness and eagerness to investigate and discuss novel phenomena seemed to peak about the time students were enrolled in second year physics classes.

  15. The making of extraordinary psychological phenomena.

    PubMed

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. PMID:25363382

  16. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  17. Modeling of fundamental phenomena in welds

    SciTech Connect

    Zacharia, T.; Vitek, J.M.; Goldak, J.A.; DebRoy, T.A.; Rappaz, M.; Bhadeshia, H.K.D.H.

    1993-12-31

    Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

  18. Incorporating interfacial phenomena in solidification models

    NASA Technical Reports Server (NTRS)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  19. A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures.

    PubMed

    Nonnenmann, Stephen S

    2016-02-14

    Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end. PMID:26795921

  20. A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures

    NASA Astrophysics Data System (ADS)

    Nonnenmann, Stephen S.

    2016-02-01

    Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end.

  1. Description of the US Geological Survey`s water level monitoring program at the Hallam Nuclear Facility, September 1993--February 1994; Description of the collection of continuous water-level data; Description of the collection of monthly water-level data

    SciTech Connect

    1994-03-15

    The US Department of Energy and the US Department of the Interior agreed to monitor water-level data in 16 observation wells located at Hallam Facility, Hallam, Nebraska. The data collection period began in September 1993 and continued through August 1994. This report contains the interim summary representing six months of data collection. Specific sections include the following: description of the US Geological Survey`s monitoring program at the Hallam Nuclear Facility (Sept. 1993 to Feb. 1994); description of the collection of continuous water-level data; description of the collection of monthly water-level data; table of observation well number, latitude, longitude, and depth; table of monthly ground-water levels data; table of recorder wells, rainfall, and barometric pressure unit values; and table of recorder well, rainfall, and barometric daily values; hydrographs of selected wells.

  2. Spin Circuit Representation for Spin Pumping Phenomena

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal; Datta, Supriyo

    2015-03-01

    There has been enormous progress in the field of spintronics and nanomagnetics in recent years with the discovery of many new materials and phenomena and it remains a formidable challenge to integrate these phenomena into functional devices and evaluate their potential. To facilitate this process a modular approach has been proposed whereby different phenomena are represented by spin circuit components. Unlike ordinary circuit components, these spin circuit components are characterized by 4-component voltages and currents (one for charge and three for spin). In this talk we will (1) present a spin circuit representation for spin pumping phenomena, (2) combine it with a spin circuit representation for the spin Hall effect to show that it reproduces established results obtained earlier by other means, and finally (3) use it to propose a possible method for enhancing the spin pumping efficiency by an order of magnitude through the addition of a spin sink layer. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  3. Phylogeny of Aging and Related Phenoptotic Phenomena.

    PubMed

    Libertini, G

    2015-12-01

    The interpretation of aging as adaptive, i.e. as a phenomenon genetically determined and modulated, and with an evolutionary advantage, implies that aging, as any physiologic mechanism, must have phylogenetic connections with similar phenomena. This review tries to find the phylogenetic connections between vertebrate aging and some related phenomena in other species, especially within those phenomena defined as phenoptotic, i.e. involving the death of one or more individuals for the benefit of other individuals. In particular, the aim of the work is to highlight and analyze similarities and connections, in the mechanisms and in the evolutionary causes, between: (i) proapoptosis in prokaryotes and apoptosis in unicellular eukaryotes; (ii) apoptosis in unicellular and multicellular eukaryotes; (iii) aging in yeast and in vertebrates; and (iv) the critical importance of the DNA subtelomeric segment in unicellular and multicellular eukaryotes. In short, there is strong evidence that vertebrate aging has clear similarities and connections with phenomena present in organisms with simpler organization. These phylogenetic connections are a necessary element for the sustainability of the thesis of aging explained as an adaptive phenomenon, and, on the contrary, are incompatible with the opposite view of aging as being due to the accumulation of random damages of various kinds. PMID:26638678

  4. Simple Phenomena, Slow Motion, Surprising Physics

    ERIC Educational Resources Information Center

    Koupil, Jan; Vicha, Vladimir

    2011-01-01

    This article describes a few simple experiments that are worthwhile for slow motion recording and analysis either because of interesting phenomena that can be seen only when slowed down significantly or because of the ability to do precise time measurements. The experiments described in this article are quite commonly done in Czech schools. All…

  5. MIXING PHENOMENA IN INDUSTRIAL FUME AFTERBURNER SYSTEMS

    EPA Science Inventory

    The report reviews the physical-mixing phenomena involved in the reactions that occur in afterburners or fume incinerators. It considers mixing in after-burners from three points of view. It first covers typical designs of afterburner components that are involved in the mixing ph...

  6. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  7. Geophysical phenomena classification by artificial neural networks

    SciTech Connect

    Gough, M.P.; Bruckner, J.R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN`s) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN`s were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  8. Solar Phenomena Associated with "EIT Waves"

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  9. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  10. Atmospheric phenomena before and during sunset

    NASA Astrophysics Data System (ADS)

    Menat, M.

    The atmospheric transmittance and the astronomical refraction for low-elevation trajectories are discussed and quantitatively developed. The results are used to describe and calculate some of the fascinating atmospheric phenomena occurring shortly before and during sunset, such as the diminishing apparent luminance of the sun, its shape during sunset, and the green flash.

  11. A 'Phenomena Laboratory' for Physics Students.

    ERIC Educational Resources Information Center

    Houlden, M. A.; And Others

    1983-01-01

    Describes a laboratory designed to give students practical experiences with experimental phenomena discussed in lectures, focusing on laboratory organization and typical experiment. In addition to a list of experiments, three exercises are discussed: fluorescence/laser, ferromagnetic domains, and thermal population (which uses PET computer…

  12. Temporal Phenomena in the Korean Conjunctive Constructions

    ERIC Educational Resources Information Center

    Kim, Dongmin

    2015-01-01

    The goal of this study is to characterize the temporal phenomena in the Korean conjunctive constructions. These constructions consist of three components: a verbal stem, a clause medial temporal suffix, and a clause terminal suffix. This study focuses on both the temporality of the terminal connective suffixes and the grammatical meanings of the…

  13. Intervention in Biological Phenomena via Feedback Linearization.

    PubMed

    Fnaiech, Mohamed Amine; Nounou, Hazem; Nounou, Mohamed; Datta, Aniruddha

    2012-01-01

    The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented demonstrate the effectiveness of the proposed technique. PMID:23209459

  14. The dynamics of information-driven coordination phenomena: A transfer entropy analysis

    PubMed Central

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-01-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data. PMID:27051875

  15. The dynamics of information-driven coordination phenomena: A transfer entropy analysis.

    PubMed

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-04-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data. PMID:27051875

  16. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    SciTech Connect

    Kelly, Elizabeth J.; Dewart, Jean Marie; Deola, Regina

    2015-12-10

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete. In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.

  17. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS states contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as such to the geometry at the Planck scale. In the second part, we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multicentered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.

  18. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2010-02-01

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS state contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as to the geometry at the Planck scale.In the second part we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multi-centered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.

  19. Self-consistent description of coexistence phenomena in medium mass nuclei

    SciTech Connect

    Petrovici, A.; Schmid, K. W.; Faessler, Amand; Andrei, O.

    2010-11-24

    Shape coexistence and mixing, isospin mixing, the competition between neutron-proton and like-nucleon pairing correlations have been identified as the main characteristic features of nuclei near the N = Z line in the A{approx_equal}70 mass region. The self-consistent treatment of exotic phenomena dominated by their interplay represents a challenge for the nuclear many-body models. The realistic description of tiny effects in this mass region aiming to test the fundamental interactions and symmetries as well as the required theoretical predictions concerning the nuclear properties relevant for astrophysical scenarios are still open problems of the low-energy nuclear physics today.

  20. PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.

    2014-03-01

    Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph

  1. Radioactive Decay: Audio Data Collection

    ERIC Educational Resources Information Center

    Struthers, Allan

    2009-01-01

    Many phenomena generate interesting audible time series. This data can be collected and processed using audio software. The free software package "Audacity" is used to demonstrate the process by recording, processing, and extracting click times from an inexpensive radiation detector. The high quality of the data is demonstrated with a simple…

  2. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  3. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike. PMID:17842831

  4. Switching Phenomena in a System with No Switches

    NASA Astrophysics Data System (ADS)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  5. Physics-based prognostic modelling of filter clogging phenomena

    NASA Astrophysics Data System (ADS)

    Eker, Omer F.; Camci, Fatih; Jennions, Ian K.

    2016-06-01

    In industry, contaminant filtration is a common process to achieve a desired level of purification, since contaminants in liquids such as fuel may lead to performance drop and rapid wear propagation. Generally, clogging of filter phenomena is the primary failure mode leading to the replacement or cleansing of filter. Cascading failures and weak performance of the system are the unfortunate outcomes due to a clogged filter. Even though filtration and clogging phenomena and their effects of several observable parameters have been studied for quite some time in the literature, progression of clogging and its use for prognostics purposes have not been addressed yet. In this work, a physics based clogging progression model is presented. The proposed model that bases on a well-known pressure drop equation is able to model three phases of the clogging phenomena, last of which has not been modelled in the literature yet. In addition, the presented model is integrated with particle filters to predict the future clogging levels and to estimate the remaining useful life of fuel filters. The presented model has been implemented on the data collected from an experimental rig in the lab environment. In the rig, pressure drop across the filter, flow rate, and filter mesh images are recorded throughout the accelerated degradation experiments. The presented physics based model has been applied to the data obtained from the rig. The remaining useful lives of the filters used in the experimental rig have been reported in the paper. The results show that the presented methodology provides significantly accurate and precise prognostic results.

  6. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  7. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  8. Study of non-equilibrium transport phenomena

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1987-01-01

    Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.

  9. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  10. A review of impulsive phase phenomena

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    A brief review is given of impulsive phase phenomena in support of the models used to compute the energies of the different components of the flares under study. The observational characteristics of the impulsive phase are discussed as well as the evidence for multi-thermal or non-thermal phenomena. The significance of time delays between hard X-rays and microwaves is discussed in terms of electron beams and Alfven waves, two-step acceleration, and secondary bursts at large distances from the primary source. Observations indicating the occurrence of chromospheric evaporation, coronal explosions, and thermal conduction fronts are reviewed briefly, followed by the gamma ray and neutron results. Finally, a preferred flare scenario and energy source are presented involving the interactions in a complex of magnetic loops with the consequent reconnection and electron acceleration.

  11. Natural phenomena hazards site characterization criteria

    SciTech Connect

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  12. Coronal Mass Ejections (CMEs) and Associated Phenomena

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.

    2008-10-01

    The Sun is the most powerful radio waves emitting object in the sky. The first documented recognition of the reception of radio waves from the Sun was made in 1942 by Hey.15 Since then solar radio observations, from ground-based and space-based instruments, have played a major role in understanding the physics of the Sun and fundamental physical processes of the solar radio emitting phenomena...

  13. Coherent topological phenomena in protein folding.

    PubMed

    Bohr, H; Brunak, S; Bohr, J

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long-range excitations, 'wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force. PMID:9218961

  14. Particle Modelling of Fluid Phenomena in Three -

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Mohsen

    A new, numerical approach is developed to simulate fluid phenomena by means of molecular type behavior. First, consider the large number of molecules to be approximated by a smaller number of aggregates called particles. Then, let the particles interact with each other according to a classical molecular type force vec F whose magnitude F is given (Hirchfelder, Curtiss and Bird (1954)) by: F = rm -{Gover r^{p}} + {Hover r^{q}}, in which G, H, p, q, are positive constants and r is the distance between two particles. The acceleration of each particle is related to the force by the Newtonian dynamical equations vec F = m vec a. Displacement, velocity, and acceleration of each particle are then approximated by the "Leap Frog" formulas. The CRAY X-MP/24 is used to solve numerically the resulting large system of nonlinear, ordinary differential equations. We then study fluid phenomena in the following order. Part 1. Generation of particle fluids in a cylindrical region. Part 2. Verification of basic fluid properties. Part 3. Simulation of surface motion. In this part, we simulate three phenomena, which can be observed physically, by dropping a small object into a container filled with liquid. First, there is a backdrop. Then, a wave will be generated and going outward from the point of entry of the object into the container. Last, a reaction which can be recorded only with a high speed camera (Trefethen (1972)) is that very small drops of the container fluid may actually pinch off from the backdrop. Part 4. Simulation of surface tension. This phenomena can be observed by performing the following experiment. A small needle placed gently upon a water surface will not be sunk but will be supported by the molecular forces in the liquid surface. The molecules in the surface are depressed slightly in the process.

  15. Nonlinear phenomena in plasma physics and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sagdeev, R. Z.

    Advances in the theory of nonlinear phenomena are discussed in individual chapters contributed by Soviet physicists. Topics examined include vortices in plasma and hydrodynamics, oscillations and bifurcations in reversible systems, regular and chaotic dynamics of particles in a magnetic field, and renormalization-group theory and Kolmogorov-Arnold-Moser theory. Consideration is given to nonlinear problems of the turbulent dynamo, strong turbulence and topological solitons, self-oscillations in chemical systems, and autowaves in biologically active media.

  16. Tunable caustic phenomena in electron wavefields.

    PubMed

    Tavabi, Amir Hossein; Migunov, Vadim; Dwyer, Christian; Dunin-Borkowski, Rafal E; Pozzi, Giulio

    2015-10-01

    Novel caustic phenomena, which contain fold, butterfly and elliptic umbilic catastrophes, are observed in defocused images of two approximately collinear oppositely biased metallic tips in a transmission electron microscope. The observed patterns depend sensitively on defocus, on the applied voltage between the tips and on their separation and lateral offset. Their main features are interpreted on the basis of a projected electrostatic potential model for the electron-optical phase shift. PMID:26069930

  17. How do Turkish High School Graduates Use the Wave Theory of Light to Explain Optics Phenomena?

    ERIC Educational Resources Information Center

    Sengoren, S. K.

    2010-01-01

    This research was intended to investigate whether Turkish students who had graduated from high school used the wave theory of light properly in explaining optical phenomena. The survey method was used in this research. The data, which were collected from 175 first year university students in Turkey, were analysed quantitatively and qualitatively.…

  18. Seismoelectric Phenomena in Fluid-Saturated Sediments

    SciTech Connect

    Block, G I; Harris, J G

    2005-04-22

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.

  19. Physical mechanism of membrane osmotic phenomena

    SciTech Connect

    Guell, D.C.; Brenner, H.

    1996-09-01

    The microscale, physicomechanical cause of osmosis and osmotic pressure in systems involving permeable and semipermeable membranes is not well understood, and no fully satisfactory mechanism has been offered to explain these phenomena. A general theory, albeit limited to dilute systems of inert, noninteracting solute particles, is presented which demonstrates that short-range forces exerted by the membrane on the dispersed solute particles constitute the origin of osmotic phenomena. At equilibrium, the greater total force exerted by the membrane on those solute particles present in the reservoir containing the more concentrated of the two solutions bathing the membrane is balanced by a macroscopically observable pressure difference between the two reservoirs. The latter constitutes the so-called osmotic pressure difference. Under nonequilibrium conditions, the membrane-solute force is transmitted to the solvent, thus driving the convective flow of solvent observed macroscopically as osmosis. While elements of these ideas have been proposed previously in various forms, the general demonstration offered here of the physicomechanical source of osmotic phenomena is novel. Beyond the purely academic interest that exists in establishing a mechanical understanding of osmotic pressure, the analysis lays the foundation underlying a quantitative theory of osmosis in dilute, nonequilibrium systems outlined in a companion paper.

  20. Stability and restoration phenomena in competitive systems

    NASA Astrophysics Data System (ADS)

    Uechi, Lisa; Akutsu, Tatsuya

    2013-10-01

    A conservation law along with stability, recovering phenomena, and characteristic patterns of a nonlinear dynamical system have been studied and applied to physical, biological, and ecological systems. In our previous study, we proposed a system of symmetric 2n-dimensional conserved nonlinear differential equations. In this paper, competitive systems described by a 2-dimensional nonlinear dynamical (ND) model with external perturbations are applied to population cycles and recovering phenomena of systems from microbes to mammals. The famous 10-year cycle of population density of Canadian lynx and snowshoe hare is numerically analyzed. We find that a nonlinear dynamical system with a conservation law is stable and generates a characteristic rhythm (cycle) of population density, which we call the standard rhythm of a nonlinear dynamical system. The stability and restoration phenomena are strongly related to a conservation law and the balance of a system. The standard rhythm of population density is a manifestation of the survival of the fittest to the balance of a nonlinear dynamical system.

  1. An interpretation of passive containment cooling phenomena

    SciTech Connect

    Chung, Bum-Jin; Kang, Chang-Sun,

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  2. Further investigations of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1988-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are described. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricoshet and penetration damage phenomena in a multi-sheet structure as functions of the geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is shown that, in general, the most damaging ricochet debris particle is approximately 0.25 cm (0.10 in) in diameter and travels at the speed of approximately 2.1 km/sec (6,890 ft/sec). The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.

  3. Spacecraft-induced plasma energization and its role in flow phenomena

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Smith, R. A.

    1985-01-01

    Plasma instabilities induced by orbiting vehicles can cause many important phenomena ranging from electron and ion heating and suprathermal electron tail energization, to enhanced ionization and optical emissions. We outline the basic collective processes leading to plasma energization near plasma sheaths and in regions of neutral gas streaming through plasma, and discuss the role of the induced collective effects in producing the optical emission spectra.

  4. Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation.

    PubMed

    Talbot, Neil C; Powell, Anne M; Camp, Mary; Ealy, Alan D

    2007-02-01

    Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming. PMID:17570020

  5. Determination of 90Sr / 238U ratio by double isotope dilution inductively coupled plasma mass spectrometer with multiple collection in spent nuclear fuel samples with in situ 90Sr / 90Zr separation in a collision-reaction cell

    NASA Astrophysics Data System (ADS)

    Isnard, H.; Aubert, M.; Blanchet, P.; Brennetot, R.; Chartier, F.; Geertsen, V.; Manuguerra, F.

    2006-02-01

    Strontium-90 is one of the most important fission products generated in nuclear industry. In the research field concerning nuclear waste disposal in deep geological environment, it is necessary to quantify accurately and precisely its concentration (or the 90Sr / 238U atomic ratio) in irradiated fuels. To obtain accurate analysis of radioactive 90Sr, mass spectrometry associated with isotope dilution is the most appropriated method. But, in nuclear fuel samples the interference with 90Zr must be previously eliminated. An inductively coupled plasma mass spectrometer with multiple collection, equipped with an hexapole collision cell, has been used to eliminate the 90Sr / 90Zr interference by addition of oxygen in the collision cell as a reactant gas. Zr + ions are converted into ZrO +, whereas Sr + ions are not reactive. A mixed solution, prepared from a solution of enriched 84Sr and a solution of enriched 235U was then used to quantify the 90Sr / 238U ratio in spent fuel sample solutions using the double isotope dilution method. This paper shows the results, the reproducibility and the uncertainties that can be obtained with this method to quantify the 90Sr / 238U atomic ratio in an UOX (uranium oxide) and a MOX (mixed oxide) spent fuel samples using the collision cell of an inductively coupled plasma mass spectrometer with multiple collection to perform the 90Sr / 90Zr separation. A comparison with the results obtained by inductively coupled plasma mass spectrometer with multiple collection after a chemical separation of strontium from zirconium using a Sr spec resin (Eichrom) has been performed. Finally, to validate the analytical procedure developed, measurements of the same samples have been performed by thermal ionization mass spectrometry, used as an independent technique, after chemical separation of Sr.

  6. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  7. Studies of Novel Quantum Phenomena in Ruthenates

    SciTech Connect

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  8. Rod Driven Frequency Entrainment and Resonance Phenomena.

    PubMed

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  9. Simulating physical phenomena with a quantum computer

    NASA Astrophysics Data System (ADS)

    Ortiz, Gerardo

    2003-03-01

    In a keynote speech at MIT in 1981 Richard Feynman raised some provocative questions in connection to the exact simulation of physical systems using a special device named a ``quantum computer'' (QC). At the time it was known that deterministic simulations of quantum phenomena in classical computers required a number of resources that scaled exponentially with the number of degrees of freedom, and also that the probabilistic simulation of certain quantum problems were limited by the so-called sign or phase problem, a problem believed to be of exponential complexity. Such a QC was intended to mimick physical processes exactly the same as Nature. Certainly, remarks coming from such an influential figure generated widespread interest in these ideas, and today after 21 years there are still some open questions. What kind of physical phenomena can be simulated with a QC?, How?, and What are its limitations? Addressing and attempting to answer these questions is what this talk is about. Definitively, the goal of physics simulation using controllable quantum systems (``physics imitation'') is to exploit quantum laws to advantage, and thus accomplish efficient imitation. Fundamental is the connection between a quantum computational model and a physical system by transformations of operator algebras. This concept is a necessary one because in Quantum Mechanics each physical system is naturally associated with a language of operators and thus can be considered as a possible model of quantum computation. The remarkable result is that an arbitrary physical system is naturally simulatable by another physical system (or QC) whenever a ``dictionary'' between the two operator algebras exists. I will explain these concepts and address some of Feynman's concerns regarding the simulation of fermionic systems. Finally, I will illustrate the main ideas by imitating simple physical phenomena borrowed from condensed matter physics using quantum algorithms, and present experimental

  10. BWR core melt progression phenomena: Experimental analyses

    SciTech Connect

    Ott, L.J.

    1992-06-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component.

  11. BWR core melt progression phenomena: Experimental analyses

    SciTech Connect

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component.

  12. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  13. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  14. Rod Driven Frequency Entrainment and Resonance Phenomena

    PubMed Central

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  15. Recovery rate, morphological quality and nuclear maturity of canine cumulus-oocyte complexes collected from anestrous or diestrous bitches of different ages.

    PubMed

    Lopes, G; Sousa, M; Luvoni, G Cecilia; Rocha, A

    2007-10-01

    Canine cumulus-oocyte complexes (COC) were recovered from ovaries of post-pubertal animals (1-3, 4-6 and 7-10 years old) at different ovarian estrous phases (anestrus and diestrus). The number of COCs, and the number and nuclear maturity of high-quality (grade-1) oocytes were assessed. For all animals, no significant differences were found between the two reproductive phases relatively to the total number of COCs and grade-1 oocytes recovered. However, significant higher numbers of COCs were recovered from young than from elderly animals, and the proportion of grade-1 oocytes was also significantly higher in the younger group than in the other two age-groups. Of 226 grade-1 oocytes, 73% were at the germinal vesicle stage (GV), 10% had resumed meiosis (9% at germinal vesicle breakdown; 1% at metaphase-I) and 17% were degenerated. A significant effect of the reproductive phase on oocyte nuclear maturity was found only for adult animals, with a higher number of GV oocytes being found at anestrous (79%) due to higher rates of meiosis resumption (34%) at diestrous. The high number of grade-1 oocytes with meiosis resumption and fragmented or unidentified nuclear contents, indicates that current criteria for the selection of viable canine COCs are not optimized and need a new definition. PMID:17714773

  16. Fundamental investigation of Duct/ESP phenomena: 1. 7 MW pilot parametric testing results

    SciTech Connect

    McGuire, L.M.; Brown, C.A.

    1991-07-22

    Radian Corporation was contracted to investigate duct injection and electrostatic precipitator phenomena in a 1.7-MW pilot plant constructed for this test program. This study was an attempt to resolve previous problems and to answer remaining questions with the technology using an approach which concentrated on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of the duct injection process to an existing ESP particulate collection device. (VC)

  17. Electronic phenomena in adsorption and catalysis

    SciTech Connect

    Kiselev, V.F.; Krylov, O.V.

    1987-01-01

    This book is the second of a three-volume treatment prepared by a physicist and a chemist, who took a common standpoint in considering the close relationship between the electronic processes taking place on the semiconductor-dielectric interface on the one hand, and the adsorptive and catalytic phenomena on the other. This volume brings together, and generalizes, a vast bulk of knowledge on the nature of surface and interface states, on the mechanism of surface electronic processes in semiconductors, as well as considers ways of controlling these processes. In addition, the authors discuss plausible mechanisms of elementary acts in surface charging during adsorption and catalysis.

  18. Phenomena and Parameters Important to Burnup Credit

    SciTech Connect

    Parks, C.V.

    2001-01-10

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given.

  19. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  20. Paramagnetic Meissner effect and related dynamical phenomena

    NASA Astrophysics Data System (ADS)

    Li, Mai Suan

    2003-03-01

    The hallmark of superconductivity is the diamagnetic response to external magnetic field. In striking contrast to this behavior, a paramagnetic response or paramagnetic Meissner effect was observed in ceramic high- Tc and in conventional superconductors. The present review is given on this interesting effect and related phenomena. We begin with a detailed discussion of experimental results on the paramagnetic Meissner effect in both granular and conventional superconductors. There are two main mechanisms leading to the paramagnetic response: the so-called d-wave and the flux compression. In the first scenario, the Josephson critical current between two d-wave superconductors becomes negative or equivalently one has a π junction. The paramagnetic signal occurs due to the nonzero spontaneous supercurrent circulating in a loop consisting of odd number of π junctions. In addition to the d-wave mechanism we present the flux compression mechanism for the paramagnetic Meissner effect. The compression may be due to either an inhomogeneous superconducting transition or flux trap inside the giant vortex state. The flux trapping which acts like a total nonzero spontaneous magnetic moment causes the paramagnetic signal. The anisotropic pairing scenario is believed to be valid for granular materials while the flux trap one can be applied to both conventional and high- Tc superconductors. The study of different phenomena by a three-dimensional lattice model of randomly distributed π Josephson junctions with finite self-inductance occupies the main part of our review. By simulations one can show that the chiral glass phase in which chiralities are frozen in time and in space may occur in granular superconductors possessing d-wave pairing symmetry. Experimental attempts on the search for the chiral glass phase are analysed. Experiments on dynamical phenomena such as AC susceptibility, compensation effect, anomalous microwave absorption, aging effect, AC resistivity and

  1. General unifying features of controlled quantum phenomena

    SciTech Connect

    Pechen, Alexander; Brif, Constantin; Wu, Rebing; Chakrabarti, Raj; Rabitz, Herschel

    2010-09-15

    Many proposals have been put forth for controlling quantum phenomena, including open-loop, adaptive feedback, and real-time feedback control. Each of these approaches has been viewed as operationally, and even physically, distinct from the others. This work shows that all such scenarios inherently share the same fundamental control features residing in the topology of the landscape relating the target physical observable to the applied controls. This unified foundation may provide a basis for development of hybrid control schemes that would combine the advantages of the existing approaches to achieve the best overall performance.

  2. Observations of cometary plasma wave phenomena

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Coroniti, F. V.; Kennel, C. F.; Gurnett, D. A.; Ip, W.-H.; Smith, E. J.

    1986-01-01

    The ICE plasma wave investigation utilized very long electric antennas (100 m tip-to-tip) and a very high sensitivity magnetic search coil to obtain significant local information on plasma physics phenomena occurring in the distant pickup regions of Comet Giacobini-Zinner and Comet Halley; and information on the processes that developed in the coma and tail of Giacobini-Zinner. The ICE plasma wave measurements associated with both comet encounters are summarized, and high sensitivity ICE observations are related to corresponding measurements from the other Halley spacecraft.

  3. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  4. On periodicity of solar wind phenomena

    NASA Technical Reports Server (NTRS)

    Verma, V. K.; Joshi, G. C.

    1995-01-01

    We have investigated the rate of occurrence of solar wind phenomena observed between 1972-1984 using power spectrum analysis. The data have been taken from the high speed solar wind (HSSW) streams catalogue published by Mavromichalaki et al. (1988). The power spectrum analysis of HSSW events indicate that HSSW stream events have a periodicity of 9 days. This periodicity of HSSW events is 1/3 of the 27 days period of coronal holes which are the major source of solar wind events. In our opinion the 9 days period may be the energy build up time to produce the HSSW stream events.

  5. Monte Carlo analysis of magnetic aftereffect phenomena

    NASA Astrophysics Data System (ADS)

    Andrei, Petru; Stancu, Alexandru

    2006-04-01

    Magnetic aftereffect phenomena are analyzed by using the Monte Carlo technique. This technique has the advantage that it can be applied to any model of hysteresis. It is shown that a log t-type dependence of the magnetization can be qualitatively predicted even in the framework of hysteresis models with local history, such as the Jiles-Atherton model. These models are computationally much more efficient than the models with global history such as the Preisach model. Numerical results related to the decay of the magnetization as of function of time, as well as to the viscosity coefficient, are presented.

  6. Implementation strategies for U.S. DOE Order 5480.28 Natural Phenomena Hazards Mitigation

    SciTech Connect

    Conrads, T.J.

    1995-01-01

    This paper describes the strategies used by Westinghouse Hanford Company for implementing a new U.S. Department of Energy Order 5480.28, Natural Phenomena Hazards Mitigation. The order requires that all new and existing structures, systems, and components be designed and evaluated for the effects of natural phenomena (seismic, wind, flood, and volcano) applicable at a given site. It also requires that instrumentation be available to record the expected seismic events and that procedures be available to inspect facilities for damage following a natural phenomena event. This order requires that probabilistic hazards studies be conducted for the applicable natural phenomena to determine appropriate loads to be applied in a graded approach to structures, systems, and components important to safety. This paper discusses the processes, tasks, and methods used to implement this directive, which altered the standard design basis for new and existing structures, systems, and components at the Hanford Site. It also addresses a correlation between the performance category nomenclature of DOE Order 5480.28 and the safety classification described in DOE Order 5480.23, Nuclear Safety Analysis Reports. This correlation was deemed to be a prerequisite for the cost-effective implementation of the new DOE Order on natural phenomena hazards mitigation.

  7. Collection Development.

    ERIC Educational Resources Information Center

    School Libraries in Canada, 2002

    2002-01-01

    Includes 21 articles that discuss collection development in Canadian school libraries. Topics include digital collections in school library media centers; print and electronic library resources; library collections; collaborative projects; print-disabled students; informing administrators of the importance of collection development; censorship;…

  8. Directions for nuclear research in the transplutonium elements

    SciTech Connect

    Wilhelmy, J.B.; Chasman, R.R.; Friedman, A.M.; Ahmad, I.

    1983-01-01

    The study of the heavy nuclides has played a vital role in our understanding of the alpha decay process, nuclear fission, nuclear binding energies and the limits of nuclear stability. This study has led to the understanding of novel shape degrees of freedom, such as the very large quadrupole deformations associated with the fission isomer process, and the very recently discovered octupole deformation. The existence of these unique phenomena in the heavy element region is not accidental. Fission isomerism is due to the delicate balance between nuclear forces holding the nucleus together and Coulomb forces causing nuclear fission. Octupole deformation arises from the increasing strength of matrix elements with increasing oscillator shell. Both illustrate the unique features of the heavy element region. Fission studies have given us information about large collective aspects in nuclei and the importance that nuclear structural effects can play in altering these macro properties. A new class of atomic studies has become possible with the availability of heavy elements. With these isotopes, we are now able to produce electric fields of such magnitude that it becomes possible to spontaneously create positron-electron pairs in the vacuum. We have organized this presentation into three major sections: nuclear structure, fission studies and atomic studies of supercritical systems. In each we will try to emphasize the new directions which can benefit from the continued availability of isotopes supplied by the Trans-plutonium Production Program. 117 references. (WHK)

  9. Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples

    SciTech Connect

    Lorence, L.J. Jr.; Beutler, D.E.

    1997-09-01

    This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices.

  10. The development of detection technique for fatigue crack due to thermal stratification phenomena in RCS piping

    NASA Astrophysics Data System (ADS)

    Lee, Sam Lai; Kim, Byoung Chul; Lim, Hyung Taik; Lee, Jong Po; Chang, Kee Ok

    1992-01-01

    Piping stress analysis was performed using computer code ANSYS in order to find the stress profile considering thermal stratification phenomena. This kind of analysis can be a useful tool to assist inspection engineers to choose the right method and area of inspection during in-service inspection of nuclear power plants. Mechanical fatigue cracks were generated in order to improve detection reliability of defect ultrasonically since the defects that were searched for are mostly related to fatigue cracks in pressurized water reactors.

  11. High Energy Phenomena on the Sun. [conference on solar activity effects and solar radiation

    NASA Technical Reports Server (NTRS)

    Ramaty, R. (Editor); Stone, R. G. (Editor)

    1973-01-01

    The proceedings of a symposium of high energy phenomena on the sun are presented. The subjects discussed include the following: (1) flare theories and optical observations, (2) microwave and hard X-ray observations, (3) ultraviolet and soft X-ray emissions, (4) nuclear reactions in solar flares, (5) energetic particles from the sun, (6) magnetic fields and particle storage, and (7) radio emissions in the corona and interplanetary space.

  12. Quantum Phenomena Tested By Neutron Interferometry

    SciTech Connect

    Rauch, Helmut

    2005-02-15

    Entanglement of two photons, or atoms is a complementary situation to a double slit situation of a single photon, neutron or atom. With neutrons single particle interference phenomena can be observed and the 'entanglement of degrees of freedom', i.e. contextuality can be verified. In this respect, neutrons are proper tools for testing quantum mechanics because they are massive, they couple to electromagnetic fields due to their magnetic moment and they are subject to all basic interactions, and they are sensitive to topological effects, as well. Related experiments will be discussed. Deterministic and stochastic partial absorption experiments can be described by Bell-type inequalities. Recent neutron interferometry experiments based on postselection methods renewed the discussion about quantum nonlocality and the quantum measuring process. It has been shown that interference phenomena can be revived even when the overall interference pattern has lost its contrast. This indicates a persisting coupling in phase space even in cases of spatially separated Schroedinger cat-like situations. These states are extremely fragile and sensitive against any kind of fluctuations and other decoherence processes. More complete quantum experiments also show that a complete retrieval of quantum states behind an interaction volume becomes impossible in principle.

  13. Effects of electrostatic correlations on electrokinetic phenomena.

    PubMed

    Storey, Brian D; Bazant, Martin Z

    2012-11-01

    The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt concentrations. PMID:23214872

  14. Auroral Phenomena in Brown Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; Hallinan, Gregg

    2016-01-01

    Since the unexpected discovery of radio emission from brown dwarfs some 15 years ago, investigations into the nature of this emission have revealed that, despite their cool and neutral atmospheres, brown dwarfs harbor strong kG magnetic fields, but unlike the warmer stellar objects, they generate highly circularly polarized auroral radio emission, like the giant planets of the Solar System. Our recent results from Keck LRIS monitoring of the brown dwarf LSR1835+32 definitively confirm this picture by connecting the auroral radio emission to spectroscopic variability at optical wavelengths as coherent manifestations of strong large-scale magnetospheric auroral current systems. I present some of the results of my dissertation work to understand the nature brown dwarf auroral phenomena. My efforts include a survey of Late L dwarfs and T dwarfs, looking for auroral Hα emission and a concurrent survey looking for the auroral emission of H3+ from brown dwarfs with radio pulse detections. I discuss the potential connection of this auroral activity to brown dwarf weather phenomena and how brown dwarf aurorae may differ from the analogous emission of the magnetized giant planets in the Solar System.

  15. Animal network phenomena: insights from triadic games

    NASA Astrophysics Data System (ADS)

    Mesterton-Gibbons, Mike; Sherratt, Tom N.

    Games of animal conflict in networks rely heavily on computer simulation because analysis is difficult, the degree of difficulty increasing sharply with the size of the network. For this reason, virtually the entire analytical literature on evolutionary game theory has assumed either dyadic interaction or a high degree of symmetry, or both. Yet we cannot rely exclusively on computer simulation in the study of any complex system. So the study of triadic interactions has an important role to play, because triads are both the simplest groups in which asymmetric network phenomena can be studied and the groups beyond dyads in which analysis of population games is most likely to be tractable, especially when allowing for intrinsic variation. Here we demonstrate how such analyses can illuminate a variety of behavioral phenomena within networks, including coalition formation, eavesdropping (the strategic observation of contests between neighbors) and victory displays (which are performed by the winners of contests but not by the losers). In particular, we show that eavesdropping acts to lower aggression thresholds compared to games without it, and that victory displays to bystanders will be most intense when there is little difference in payoff between dominating an opponent and not subordinating.

  16. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  17. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  18. Mathematical methods of studying physical phenomena

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of

  19. Just the two of us: misalignment of theory and methods in examining dyadic phenomena.

    PubMed

    Krasikova, Dina V; LeBreton, James M

    2012-07-01

    Many organizational phenomena such as leader-member exchange, mentoring, coaching, interpersonal conflict and cooperation, negotiation, performance appraisal, and the employment interview involve inherently dyadic relationships and interactions. Even when theories explicitly acknowledge the dyadic nature of such phenomena, it is not uncommon to observe a disconnection or misalignment between the level of theory and method. Our purpose in the current paper is to discuss how organizational scholars might better align these components of their research endeavors. We discuss how recent developments involving the actor-partner interdependence model (APIM) and reciprocal one-with-many (OWM) models are applicable to studying dyadic phenomena in organizations. The emphasis is on preanalytic considerations associated with collecting and organizing reciprocal dyadic data, types of research questions that APIM and reciprocal OWM models can help answer, and specific analytic techniques involved in testing dyadic hypotheses. PMID:22486363

  20. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  1. NUCLEAR DATABASES FOR REACTOR APPLICATIONS.

    SciTech Connect

    PRITYCHENKO, B.; ARCILLA, R.; BURROWS, T.; HERMAN, M.W.; MUGHABGHAB, S.; OBLOZINSKY, P.; ROCHMAN, D.; SONZOGNI, A.A.; TULI, J.; WINCHELL, D.F.

    2006-06-05

    The National Nuclear Data Center (NNDC): An overview of nuclear databases, related products, nuclear data Web services and publications. The NNDC collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. The NNDC maintains and contributes to the nuclear reaction (ENDF, CSISRS) and nuclear structure databases along with several others databases (CapGam, MIRD, IRDF-2002) and provides coordination for the Cross Section Evaluation Working Group (CSEWG) and the US Nuclear Data Program (USNDP). The Center produces several publications and codes such as Atlas of Neutron Resonances, Nuclear Wallet Cards booklets and develops codes, such as nuclear reaction model code Empire.

  2. Collecting apparatus

    DOEpatents

    Duncan, Charles P.

    1983-01-01

    An improved collecting apparatus for small aquatic or airborne organisms such as plankton, larval fish, insects, etc. The improvement constitutes an apertured removal container within which is retained a collecting bag, and which is secured at the apex of a conical collecting net. Such collectors are towed behind a vessel or vehicle with the open end of the conical net facing forward for trapping the aquatic or airborne organisms within the collecting bag, while allowing the water or air to pass through the apertures in the container. The container is readily removable from the collecting net whereby the collecting bag can be quickly removed and replaced for further sample collection. The collecting bag is provided with means for preventing the bag from being pulled into the container by the water or air flowing therethrough.

  3. Topological Spintronics: Materials, Phenomena and Devices

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    2015-03-01

    The two-dimensional surface states of three-dimensional topological insulators such as Bi2Se3and(Bi,Sb)2Te3 possess a spin texture that can potentially be exploited for spintronics applications. We provide a perspective on the emergence of ``topological spintronics,'' demonstrating how this spin texture can be engineered using either quantum tunneling between surfaces or by breaking time-reversal symmetry. We then discuss recent experiments that show striking spintronic phenomena useful for proof-of-concept devices, including a spin-orbit torque of record efficiency at room temperature and an electrically-gated ``giant anisotropic magnetoresistance'' at low temperature. This work was carried out in collaboration with A. Richardella, S.-Y. Xu, M. Neupane, A. Mellnik, A. Kandala, J. S. Lee, D. M. Zhang, M. Z. Hasan and D. C. Ralph. We acknowledge funding from the DARPA Meso program, ONR and C-SPIN (under sponsorship of MARCO and DARPA).

  4. Transient Phenomena: Opportunities for New Discoveries

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.

    Known classes of radio wavelength transients range from the nearby (stellar flares and radio pulsars) to the distant Universe (γ-ray burst afterglows). Hypothesized classes of radio transients include analogs of known objects, such as extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, such as prompt emission from γ-ray bursts, evaporating black holes and transmitters from other civilizations. Time domain astronomy has been recognized internationally as a means of addressing key scientific questions in astronomy and physics, and pathfinders and Precursors to the Square Kilometre Array (SKA) are beginning to offer a combination of wider fields of view and more wavelength agility than has been possible in the past. These improvements will continue when the SKA itself becomes operational. I illustrate the range of transient phenomena and discuss how the detection and study of radio transients will improve immensely.

  5. Transient Phenomena: Opportunities for New Discoveries

    NASA Technical Reports Server (NTRS)

    Lazio, T. Joseph W.

    2010-01-01

    Known classes of radio wavelength transients range from the nearby (stellar flares and radio pulsars) to the distant Universe (gamma-ray burst afterglows). Hypothesized classes of radio transients include analogs of known objects, such as extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, such as prompt emission from gamma-ray bursts, evaporating black holes and transmitters from other civilizations. Time domain astronomy has been recognized internationally as a means of addressing key scientific questions in astronomy and physics, and pathfinders and Precursors to the Square Kilometre Array (SKA) are beginning to offer a combination of wider fields of view and more wavelength agility than has been possible in the past. These improvements will continue when the SKA itself becomes operational. I illustrate the range of transient phenomena and discuss how the detection and study of radio transients will improve immensely.

  6. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  7. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  8. Lunar orbital photography of astronomical phenomena.

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.; Dunkelman, L.; Ross, C. L.; Worden, A.

    1972-01-01

    This paper reports further progress on photography of faint astronomical and geophysical phenomena accomplished during the recent Apollo missions. Command module pilots have been able to photograph such astronomical objects as the solar corona, zodiacal light-corona transition region, lunar libration region, and portions of the Milky Way. The methods utilized for calibration of the film by adaptation of the High Altitude Observatory sensitometer are discussed. Kodak 2485 high-speed recording film was used in both 35-mm and 70-mm formats. The cameras used were Nikon f/1.2 55-mm focal length and Hasselblad f/2.8 80-mm focal length. Preflight and postflight calibration exposures were included on both the flight and control films, corresponding to luminances extending from the inner solar corona to as faint as 1/10 of the luminance of the light of the night sky. The photographs obtained from unique vantage points available during lunar orbit are discussed.

  9. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  10. Teaching wave phenomena via biophysical applications

    NASA Astrophysics Data System (ADS)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  11. Critical and resonance phenomena in neural networks

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Lopes, M. A.; Lee, K.-E.; Mendes, J. F. F.

    2013-01-01

    Brain rhythms contribute to every aspect of brain function. Here, we study critical and resonance phenomena that precede the emergence of brain rhythms. Using an analytical approach and simulations of a cortical circuit model of neural networks with stochastic neurons in the presence of noise, we show that spontaneous appearance of network oscillations occurs as a dynamical (non-equilibrium) phase transition at a critical point determined by the noise level, network structure, the balance between excitatory and inhibitory neurons, and other parameters. We find that the relaxation time of neural activity to a steady state, response to periodic stimuli at the frequency of the oscillations, amplitude of damped oscillations, and stochastic fluctuations of neural activity are dramatically increased when approaching the critical point of the transition.

  12. Equatorial phenomena in neutral thermospheric composition.

    NASA Technical Reports Server (NTRS)

    Reber, C. A.; Hedin, A. E.; Chandra, S.

    1973-01-01

    Several interesting phenomena relating to the equatorial ionosphere have been observed in the data from the OGO-6 mass spectrometer. The diurnal variations during equinox at an altitude of 450 km show the N2 and O densities peaking near 1500 hr while He peaks near 1000 hr. The latitudinal variation in N2 during the day is very similar to the F-region electron density exhibiting the well known features of the ionospheric anomaly. During periods of intense geomagnetic disturbance (e.g. the large storm of 8 March 1970), the low latitude thermospheric temperature increases on the order of 50-150 K, while at mid latitudes, increases of more than 1000 K are observed.

  13. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  14. Analysis of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1988-01-01

    This paper describes the results of an experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to a meteoroid or space debris environement.

  15. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  16. Threshold Phenomena in a Throbbing Complex Plasma

    SciTech Connect

    Mikikian, Maxime; Coueedel, Lenaiec; Cavarroc, Marjorie; Tessier, Yves; Boufendi, Laiefa

    2010-08-13

    In complex plasmas, the trapped dust particle cloud is often characterized by a central dust-free region ('void'). The void induces a spatial inhomogeneity of the dust particle distribution and is at the origin of many intricate unstable phenomena. One type of this kind of behavior is the so-called heartbeat instability consisting of successive contractions and expansions of the void. This instability is characterized by a strong nonlinear dynamics which can reveal the occurrence of incomplete sequences corresponding to failed contractions. Experimental results based on high-speed imaging are presented for the first time and underline this threshold effect in both the dust cloud motion and the evolution of the plasma light emission.

  17. Single event phenomena: Testing and prediction

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.

    1992-01-01

    Highly integrated microelectronic devices are often used to increase the performance of satellite systems while reducing the system power dissipation, size, and weight. However, these devices are usually more susceptible to radiation than less integrated devices. In particular, the problem of sensitivity to single event upset and latchup is greatly increased as the integration level is increased. Therefore, a method for accurately evaluating the susceptibility of new devices to single event phenomena is critical to qualifying new components for use in space systems. This evaluation includes testing devices for upset or latchup and extrapolating the results of these tests to the orbital environment. Current methods for testing devices for single event effects are reviewed, and methods for upset rate prediction, including a new technique based on Monte Carlo simulation, are presented.

  18. Opportunities in nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Nunes, Filomena

    2015-10-01

    The last decade has seen important advances in the area of low energy nuclear physics. New measurements have provided crucial insight into the behavior of nuclei at the limits of stability, including the mapping of the neutron dripline up to Oxygen, investigations of unbound nuclear states, and the discovery of new super-heavy elements. In parallel we have seen a revolution in low-energy nuclear theory, moving toward quantified predictability, rooted in the underlying inter-nucleon forces. But the next decade offers even more opportunities with a new generation factory of rare isotopes, and the anticipated developments in high performance computing. The Facility for Rare Isotope Beams coupled with new state-of-the-art detectors will allow us to access a large fraction of the necessary information for the r-process responsible for making at least half of the heavy elements in our universe. FRIB will provide the needed intensities to study global nuclear properties, shell structure, and collective phenomena far from stability. Key measurements are anticipated, at various facilities, which will inform symmetry tests with rare isotopes. We expect to put strict constraints on the equation of state. These and many other opportunities will be highlighted in this overview talk.

  19. Meteorological phenomena in Western classical orchestral music

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  20. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    SciTech Connect

    Crotts, Arlin P. S.

    2009-05-20

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: {approx}50% of reports originate from near Aristarchus, {approx}16% from Plato, {approx}6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that {approx}80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.

  1. Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites

    SciTech Connect

    Anthony, P.L.; Delayen, J.R.; Fryberger, D.; Goree, W.S.; Mammosser, J.; Szalata, Z.M.; II, J.G.Weisend /SLAC

    2009-08-04

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  2. Collections Conservation.

    ERIC Educational Resources Information Center

    DeCandido, Robert

    Collections conservation is an approach to the preservation treatment of books and book-like materials that is conceptualized and organized in terms of large groups of materials. This guide is intended to enable a library to evaluate its current collections conservation activities. The introduction describes collections conservation and gives…

  3. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  4. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  5. Comparison of single event phenomena for front/back irradiations

    SciTech Connect

    Musseau, O.; Ferlet-Cavrois, V.; Campbell, A.B.; Stapor, W.J.; McDonald, P.T.

    1997-12-01

    For devices irradiated from the front and the back, where ions have the same LET in the sensitive volumes, the SEU sensitivities and charge collection spectra are different. A specific test setup has been developed to make precise measurements of both collected charge and SEU in CMOS SRAMs. The authors present a set of new data and discuss the possible experimental artifacts that could affect these measurements. In all the cases, the device is more sensitive when irradiated from the back than from the front. This phenomenon seems related to energy transfer mechanisms from the ion to the material target, with secondary particles from both electronic and nuclear reactions being forward emitted. This effect may influence to net sensitivity of scaled down devices, with shallow sensitive layers, and heavy metal interconnects.

  6. Collection Mapping and Collection Development.

    ERIC Educational Resources Information Center

    Murray, William; And Others

    1985-01-01

    Describes the use of collection mapping to assess media collections of Aurora, Colorado, Public Schools. Case studies of elementary, middle, and high school media centers describe materials selection and weeding and identify philosophies that library collections should support school curriculum, and teacher-library media specialist cooperation in…

  7. Collective Intelligence. Chapter 17

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2003-01-01

    Many systems of self-interested agents have an associated performance criterion that rates the dynamic behavior of the overall system. This chapter presents an introduction to the science of such systems. Formally, collectives are defined as any system having the following two characteristics: First, the system must contain one or more agents each of which we view as trying to maximize an associated private utility; second, the system must have an associated world utility function that rates the possible behaviors of that overall system. In practice, collectives are often very large, distributed, and support little, if any, centralized communication and control, although those characteristics are not part of their formal definition. A naturally occurring example of a collective is a human economy. One can identify the agents and their private utilities as the human individuals in the economy and the associated personal rewards they are each trying to maximize. One could then identify the world utility as the time average of the gross domestic product. ("World utility" per se is not a construction internal to a human economy, but rather something defined from the outside.) To achieve high world utility it is necessary to avoid having the agents work at cross-purposes lest phenomena like liquidity traps or the Tragedy of the Commons (TOC) occur, in which agents' individually pursuing their private utilities lowers world utility. The obvious way to avoid such phenomena is by modifying the agents utility functions to be "aligned" with the world utility. This can be done via punitive legislation. A real-world example of an attempt to do this was the creation of antitrust regulations designed to prevent monopolistic practices.

  8. Black Holes Admitting Strong Resonant Phenomena

    NASA Astrophysics Data System (ADS)

    Stuchlík, Z.; Kotrlová, A.; G. Török

    2008-12-01

    High-frequency twin peak quasiperiodic oscillations (QPOs) are observed in four microquasars, i.e., Galactic black hole binary systems, with frequency ratio very close to 3:2. In the microquasar GRS 1915+105 the structure of QPOs exhibits additional frequencies and more than two frequencies are observed in the Galaxy nuclei Sgr A* or in some extragalactic sources (NGC 4051, MCG-6-30-15 and NGC 5408 X-1). The observed QPOs can be explained by a variety of the orbital resonance model versions assuming resonance of oscillations with the Keplerian frequency νK or the vertical epicyclic frequency νθ, and the radial epicyclic frequency νr, or some combinations of these frequencies. Generally, different resonances could arise at different radii of an accretion disk. However, we have shown that for special values of dimensionless black hole spin a strong resonant phenomena could occur when different resonances can be excited at the same radius, as cooperative phenomena between the resonances may work in such situations. The special values of a are determined for triple frequency ratio sets νK:νθ:νr=s:t:u with s,t,u being small integers. The most promising example of such a special situation arises for black holes with extraordinary resonant spin a=0.983 at the radius r=2.395 M, where νK:νθ:νr=3:2:1. We also predict that when combinations of the orbital frequencies are allowed, QPOs with four frequency ratio set 4:3:2:1 could be observed in the field of black holes with a=0.866,0.882 and 0.962. Assuming the extraordinary resonant spin a=0.983 in Sgr A*, its QPOs with observed frequency ratio ≍3:2:1 imply the black hole mass in the interval 4.3×106 Msolar< M< 5.4×106 Msolar, in agreement with estimates given by other, independent, observations.

  9. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  10. Polar Phenomena in Outer Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Orton, G.; Fletcher, L.; Yanamandra-Fisher, P.; Leyrat, C.; Greathouse, T.; Parrish, P.; Encrenaz, T.; Simon-Miller, A.

    2008-12-01

    Infrared observations of the polar regions of the outer planets have revealed similarities to the Earth's atmosphere and some new phenomena. The most dominant force which is apparent in time-dependent studies of the poles is seasonal radiative forcing, which was detected in Saturn's stratosphere as early as 1973. For Saturn, Uranus and Neptune, planets with substantial obliquities, the seasonally dependent changes are predictable and can be used to constrain abundances of optically active gases and the rate of restoration by stratospheric circulation. In the case of Neptune, recent evidence shows that the heating is sufficient to allow a "leak" from the reservoir of methane in the deep atmosphere into the polar stratosphere. New thermal images of Uranus show that the winter pole of Uranus which has only recently emerged fully from darkness is colder than when it was in the middle of winter when Voyager 2 visited, confirming the substantial seasonal phase delay associated with radiative heating and cooling models. Even Jupiter with its 3-degree obliquity shows clear evidence for seasonal forcing of temperatures in the upper troposphere and stratosphere. The second most prominent characteristic of the resolvable polar temperature fields in Jupiter and Saturn is the formation of polar vortices. Jupiter's polar vortices are cold, similar to those detected in the terrestrial planets; they have sharp equatorward boundaries which are characterized by Rossby waves which rotate at the speed of the local zonal wind flow and are coincident with the similarly irregular boundaries of a polar haze, also known as "polar hoods". The cold vortex at Saturn's northern winter pole is muted, but Saturn also has a unique "warm polar vortex" in the south (late summer) pole which shows no apparent wave structure. Saturn's warm polar vortex has no counterpart in the Earth's atmosphere, where summer radiative warming simply dissipates the cold winter vortex. Saturn also possesses

  11. Operation Dominic, Shot Sword Fish. Project Officers report - project 1. 2 surface phenomena

    SciTech Connect

    Young, G.A.; Phillips, D.E.

    1985-04-01

    Shot Sword Fish was an operational test of the ASROC antisubmarine weapon system. The general objectives of the project were (1) to record and measure the formation, growth, and dissipation of the visible surface phenomena, including slicks, spray domes, plumes, fallout, base surge, and foam patch resulting from the underwater detonation of an ASROC weapon; (2) to use the data obtained to estimate the actual depth of burst, position of burst, yield, and bubble period; (3) to determine the location of ships and platforms in the experimental array before, during, and after the test; (4) to provide surface-phenomena time-of-arrival data at platforms and ships in the array for use by other projects; and 85) to make the results available for improving the surface-phenomena scaling and prediction techniques employed f,r establishing delivery and lethal ranges for fleet nuclear weapons. In general, there was good agreement between the observed dimensions of the Sword Fish phenomena and the predictions.

  12. Rheological Properties and Transfer Phenomena of Nanofluids

    NASA Astrophysics Data System (ADS)

    Jung, Kang-min; Kim, Sung Hyun

    2008-07-01

    This study focused on the synthesis of stable nanofluids and investigation of their rhelogical properties and transfer phenomena. Nanofluids of diamond/ethylene glycol, alumina/transformer oil and silica/water were made to use in this study. Rheological properties of diamond nanofluids were determined at constant temperature (25 °C) using a viscometer. For the convective heat transfer experiment, alumina nanofluid passed through the plate heat exchanger. CO2 absorption experiment was conducted in a bubble type absorber containing silica nanofluid. Diamond nanofluid showed non-Newtonian behaviors under a steady-shear flow except the case of very low concentration of solid nanoparticles. The heat transfer coefficient of alumina nanofluid was higher than that of base fluid. One possible reason is that concentration of nanoparticles at the wall side is higher than that of microparticles. Silica nanofluid showed that both average CO2 absorption rate and total absorption amount enhanced than those of base fluid. The stably suspended nanoparticles create a mesh-like structure. That structure arrangement cracks the gas bubble and increases the surface area.

  13. Transition phenomena in unstably stratified turbulent flows.

    PubMed

    Bukai, M; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I; Sapir-Katiraie, I

    2011-03-01

    We study experimentally and theoretically the transition phenomena caused by external forcing from Rayleigh-Bénard convection with large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent flow without LSC, where the temperature field behaves like a passive scalar. In the experiments we use the Rayleigh-Bénard apparatus with an additional source of turbulence produced by two oscillating grids located near the sidewalls of the chamber. When the frequency of the grid oscillations is larger than 2 Hz, the LSC in turbulent convection is destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio [(ℓ{x}∇{x}T)²+(ℓ{y}∇{y}T)² + (ℓ{z}∇{z}T)²]/<θ²> varies slightly (even in the range of parameters where the behavior of the temperature field is different from that of the passive scalar). Here ℓ{i} are the integral scales of turbulence along the x,y,z directions, and T and θ are the mean and fluctuating parts of the fluid temperature. At all frequencies of the grid oscillations we have detected long-term nonlinear oscillations of the mean temperature. The theoretical predictions based on the budget equations for turbulent kinetic energy, turbulent temperature fluctuations, and turbulent heat flux, are in agreement with the experimental results. PMID:21517582

  14. Efferent feedback can explain many hearing phenomena

    NASA Astrophysics Data System (ADS)

    Holmes, W. Harvey; Flax, Matthew R.

    2015-12-01

    The mixed mode cochlear amplifier (MMCA) model was presented at the last Mechanics of Hearing workshop [4]. The MMCA consists principally of a nonlinear feedback loop formed when an efferent-controlled outer hair cell (OHC) is combined with the cochlear mechanics and the rest of the relevant neurobiology. Essential elements of this model are efferent control of the OHC motility and a delay in the feedback to the OHC. The input to the MMCA is the passive travelling wave. In the MMCA amplification is localized where both the neural and tuned mechanical systems meet in the Organ of Corti (OoC). The simplest model based on this idea is a nonlinear delay line resonator (DLR), which is mathematically described by a nonlinear delay-differential equation (DDE). This model predicts possible Hopf bifurcations and exhibits its most interesting behaviour when operating near a bifurcation. This contribution presents some simulation results using the DLR model. These show that various observed hearing phenomena can be accounted for by this model, at least qualitatively, including compression effects, two-tone suppression and some forms of otoacoustic emissions (OAEs).

  15. The Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Doorn, Jarrel; Eaton, M.; Ahrendts, G.; Barker, T.

    2011-05-01

    Transient Lunar Phenomena (TLP's) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP activity has a higher number of reports, though unsubstantiated, in specific areas of the Moon such as the Aristarchus plateau. Our current research includes the division of lunar images taken through multiple filters using a Santa-Barbara Instrument Group (SBIG) ST8-E CCD camera mounted on a 0.45m Centurion telescope. We are also taking spectra of regions such as Aristarchus and the crater Ina, which shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006) using an SBIG DSS-7 spectrometer mounted on a 0.30m Schmidt-Cassegrain optical tube assembly on a Software Bisque Paramount drive system. Future research will include infrared imaging of the lunar surface. We are grateful for the support provided by the NASA Rhode Island Space Grant Consortium and the National Geographic Society.

  16. Viscous theory of surface noise interaction phenomena

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1980-01-01

    A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.

  17. Two-Stage Modelling Of Random Phenomena

    NASA Astrophysics Data System (ADS)

    Barańska, Anna

    2015-12-01

    The main objective of this publication was to present a two-stage algorithm of modelling random phenomena, based on multidimensional function modelling, on the example of modelling the real estate market for the purpose of real estate valuation and estimation of model parameters of foundations vertical displacements. The first stage of the presented algorithm includes a selection of a suitable form of the function model. In the classical algorithms, based on function modelling, prediction of the dependent variable is its value obtained directly from the model. The better the model reflects a relationship between the independent variables and their effect on the dependent variable, the more reliable is the model value. In this paper, an algorithm has been proposed which comprises adjustment of the value obtained from the model with a random correction determined from the residuals of the model for these cases which, in a separate analysis, were considered to be the most similar to the object for which we want to model the dependent variable. The effect of applying the developed quantitative procedures for calculating the corrections and qualitative methods to assess the similarity on the final outcome of the prediction and its accuracy, was examined by statistical methods, mainly using appropriate parametric tests of significance. The idea of the presented algorithm has been designed so as to approximate the value of the dependent variable of the studied phenomenon to its value in reality and, at the same time, to have it "smoothed out" by a well fitted modelling function.

  18. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  19. Phantom black holes and critical phenomena

    SciTech Connect

    Azreg-Aïnou, Mustapha; Marques, Glauber T.

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  20. Quantification of statistical phenomena in turbulent dispersions

    NASA Astrophysics Data System (ADS)

    Yates, Matthew; Hann, David; Hewakandamby, Buddhika

    2015-11-01

    Understanding of turbulent dispersions is of great importance for environmental and industrial applications. This includes developing a greater understanding of particle movement in atmospheric flows, and providing data that can be used to validate CFD models aimed at producing more accurate simulations of dispersed turbulent flows, aiding design of many industrial components. Statistical phenomena in turbulent dispersions were investigated using Particle Image Velocimetry. Experiments were carried out in a two dimensional channel over a Reynolds number range of 10000-30000, using water and 500 micron hydrogel particles. Particles were injected at the channel entrance, and dispersion properties were characterised at different distances downstream from the injection point. Probability density functions were compiled for the velocity components of the hydrogels for differing flow conditions. Higher order PDFs were constructed to investigate the behaviour of particle pairs. Dispersed phase data was also used to investigate the mechanics of collisions between hydrogel particles, allowing for calculation of the co-efficient of restitution. PIV algorithms were used to create velocity maps for the continuous phase for varying dispersed phase fractions. Thanks to support of Chevron grant as part of TMF consortium.

  1. Cooperative phenomena in strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Farkašovský, Pavol

    2010-10-01

    In this review we present results of our theoretical study of cooperative phenomena in strongly correlated electron systems obtained within various generalizations of the Falicov-Kimball model. The primary goal of this study was to identify crucial interactions that lead to the stabilization of the specific cooperative phenomenon, and then try to elaborate its comprehensive microscopic description. The main attention is devoted to a discussion of valence and metal-insulator transitions, formation of charge and spin ordering, electronic ferroelectricity, itinerant ferromagmetism and mechanisms leading to their stabilization. Among the major mechanisms we examine the effect of local and nonlocal Coulomb interaction between localized and itinerant electrons, local and nonlocal hybridization, long-range and correlated hopping of itinerant electrons and spin-dependent interaction between localized and itinerant electrons, both for zero and nonzero temperatures, as well as for doped and undoped systems. Finally, the relevance of resultant solutions for a description of rare-earth and transition-metal compounds is discussed.

  2. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  3. Further shock tunnel studies of scramjet phenomena

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Morris, N. A.; Stalker, R. J.

    1986-01-01

    Scramjet phenomena were studied using the shock tunnel T3 at the Australian National University. Simple two dimensional models were used with a combination of wall and central injectors. Silane as an additive to hydrogen fuel was studied over a range of temperatures and pressures to evaluate its effect as an ignition aid. The film cooling effect of surface injected hydrogen was measured over a wide range of equivalence. Heat transfer measurements without injection were repeated to confirm previous indications of heating rates lower than simple flat plate predictions for laminar boundary layers in equilibrium flow. The previous results were reproduced and the discrepancies are discussed in terms of the model geometry and departures of the flow from equilibrium. In the thrust producing mode, attempts were made to increase specific impulse with wall injection. Some preliminary tests were also performed on shock induced ignition, to investigate the possibility in flight of injecting fuel upstream of the combustion chamber, where it could mix but not burn.

  4. Ultrashort Phenomena in Biochemistry and Biological Signaling

    NASA Astrophysics Data System (ADS)

    Splinter, Robert

    2014-11-01

    In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.

  5. Impact phenomena in fluidized granular matter

    NASA Astrophysics Data System (ADS)

    Mayor, Patrick; Katsuragi, Hiroaki; Durian, Douglas

    2009-03-01

    Projectiles dropped into granular media form a crater and come to rest in a particular way that has been actively investigated in numerous studies. These impact phenomena illustrate how particulate materials respond to externally applied forces. Several recent experiments have focused on the penetration of projectiles impacting granular materials at relatively low speeds, and measured the dynamics of the impact process, yielding force laws accounting for the observations. We present results showing how granular impacts are affected when the load on the grains is modified using a vertical gas flow. Balls or cylinders are dropped into a dry, noncohesive granular medium and we measure the penetration depth when gas is flown upward (thus unloading the contacts) or downward (loading the contacts). We observe that the frictional drag decreases linearly with the flow rate, and vanishes completely once the system is fluidized. Different projectile geometries allow us to separate the effect of normal and tangential frictional forces. We also consider the case of objects that are lowered quasistatically into the granular medium and measure the net vertical force exerted by the granular system on the objects at each immersion depth. We then discuss how this resistance force compares with the forces observed in actual impacts experiments.

  6. Dynamical magnetoelectric phenomena of multiferroic skyrmions.

    PubMed

    Mochizuki, Masahito; Seki, Shinichiro

    2015-12-23

    Magnetic skyrmions, vortex-like swirling spin textures characterized by a quantized topological invariant, realized in chiral-lattice magnets are currently attracting intense research interest. In particular, their dynamics under external fields is an issue of vital importance both for fundamental science and for technical application. Whereas observations of magnetic skyrmions has been limited to metallic magnets so far, their realization was also discovered in a chiral-lattice insulating magnet Cu2OSeO3 in 2012. Skyrmions in the insulator turned out to exhibit multiferroic nature with spin-induced ferroelectricity. Strong magnetoelectric coupling between noncollinear skyrmion spins and electric polarizations mediated by relativistic spin-orbit interaction enables us to drive motion and oscillation of magnetic skyrmions by application of electric fields instead of injection of electric currents. Insulating materials also provide an environment suitable for detection of pure spin dynamics through spectroscopic measurements owing to the absence of appreciable charge excitations. In this article, we review recent theoretical and experimental studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulators. We argue that multiferroic skyrmions show unique coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active, and interference between the electric and magnetic activation processes leads to peculiar magnetoelectric effects in a microwave frequency regime. PMID:26624202

  7. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  8. Surface photovoltage phenomena: theory, experiment, and applications

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Shapira, Yoram

    1999-12-01

    The theoretical concepts, experimental tools, and applications of surface photovoltage (SPV) techniques are reviewed in detail. The theoretical discussion is divided into two sections. The first reviews the electrical properties of semiconductor surfaces and the second discusses SPV phenomena. Next, the most common tools for SPV measurements and their relative advantages and disadvantages are reviewed. These include the Kelvin probe and the use of MIS structures, as well as other less used techniques. Recent novel high-spatial-resolution SPV measurement techniques are also presented. Applications include surface photovoltage spectroscopy (SPS) which is a very effective tool for gap state spectroscopy. An in-depth review of quantitative analyses, which permit the extraction of various important surface and bulk parameters, follows. These analyses include: carrier diffusion length; surface band bending, charge, and dipole; surface and bulk recombination rates; surface state distribution and properties; distinction between surface and bulk states; spectroscopy of thin films, heterostructures and quantum structures; and construction of band diagrams. Finally, concluding remarks are given.

  9. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  10. Emergent phenomena in manganites under spatial confinement

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Z. Ward, T.; F. Yin, L.

    2013-01-01

    It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high-Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom—charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS “electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.

  11. Numerical analysis and modeling of atmospheric phenomena

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.

    1994-01-01

    For the past 22 years Grant NGR 22-009-727 has been supporting research in the Center for Meteorology and Physical Oceanography (and its predecessors) in a wide variety of diagnostic and modeling studies of atmospheric and ocean phenomena. Professor Jule Charney was the initial Principal Investigator. Professor Peter Stone joined him as co-Principal Investigator in 1975 and became the sole Principal Investigator in 1981. During its lifetime the Grant has supported in whole or in part 11 Master's theses, 14 Ph.D. theses, and 45 papers published in refereed scientific journals. All of these theses and papers (with bibliographic references) are listed below. All but one of the theses were used to fulfill the requirements for MIT (Massachusetts Institute of Technology) degrees and are available from the MIT libraries. The one exception is F. Chen's Ph.D. thesis which was for a Harvard degree and is available from the Harvard libraries. In addition to the work described in the citations listed below, the Grant has supported Research Assistant Amy Solomon during the past two years to carry out a study of how baroclinic adjustment is affected by vertical resolution, vertical temperature structure, and dissipation. Ms. Solomon plans to use this project for her Ph.D. thesis. Support for this project will continue under NASA Grant NAG 5-2490, 'The Factors Controlling Poleward Heat Transport in Climate Models.'

  12. Some novel phenomena at high density

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan Scott

    Astrophysical environments probe matter in ways impossible on Earth. In particular, matter in compact objects are extraordinarily dense. In this thesis we discuss two phenomena that may occur at high density. First, we study toroidal topological solitons called vortons, which can occur in the kaon-condensed color-flavor-locked phase of high-density quark matter, a candidate phase for the core of some neutron stars. We show that vortons have a large radius compared to their thickness if their electrical charge is on the order of 104 times the fundamental charge. We show that shielding of electric fields by electrons dramatically reduces the size of a vorton. Second, we study an unusual phase of degenerate electrons and nonrelativistic Bose-condensed helium nuclei that may exist in helium white dwarfs. We show that this phase supports a previously-unknown gapless mode, known as the half-sound, that radically alters the material's specific heat, and can annihilate into neutrinos. We provide evidence that this neutrino radiation is negligible compared to the star's surface photoemission.

  13. Ion effects on ionospheric electron resonance phenomena

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1974-01-01

    Ion effects are often observed on topside-sounder stimulated electron plasma wave phenomena. A commonly observed effect is a spur, appearing after a time delay corresponding to the proton gyro period, attached to the low frequency side of an electron plasma resonance. The spurs are often observed on the resonances at the electron plasma frequency f sub N, the harmonics nf sub H of the electron cyclotron frequency f sub H (n = 2, 3, 4, ...), and occasionally on the upper hybrid frequency. The spurs on the f sub N resonance are usually quite small unless the f sub N resonance overlaps with an nf sub H resonance; very large spurs are observed during such overlap conditions. Proton spurs are only observed on the nf sub H resonances when the electron plasma waves associated with these resonances are susceptible to the Harris instability and when the electromagnetic z wave can be initiated by the sounderpulse. This instability is the result of a sounder stimulated anisotropic electron velocity distribution. The observations suggest that energy is fed into the nf sub H longitudinal plasma wave from the z wave via wave-mode coupling. The magnitude of the nf sub H spurs for large n is much greater than for small n.

  14. Final report, BWR drywell debris transport Phenomena Identification and Ranking Tables (PIRTs)

    SciTech Connect

    Wilson, G.E.; Boyack, B.E.; Leonard, M.T.; Williams, K.A.; Wolf, L.T.

    1997-09-01

    The Nuclear Regulatory Commission has issued a Regulatory Bulletin and accompanying Regulatory Guide (1.82, Rev. 2) which requires licensees of boiling water reactors to develop a specific plan of action (including hardware backfits, if necessary) to preclude the possibility of early emergency core cooling system strainer blockage following a postulated loss-of-coolant-accident. The postulated mechanism for strainer blockage is destruction of piping insulation in the vicinity of the break and subsequent transport of fragmented insulation to the wetwell. In the absence of more definitive information, the Regulatory Guide recommends that licensees assume a drywell debris transport fraction of 1.0. Accordingly, the Nuclear Regulatory Commission initiated research focused toward developing a technical basis to provide insights useful to regulatory oversight of licensee submittals associated with resolution of the postulated strainer blockage issue. Part of this program was directed towards experimental and analytical research leading to a more realistic specification of the debris transport through the drywell to the wetwell. To help focus this development into a cost effective effort, a panel, with broad based knowledge and experience, was formed to address the relative importance of the various phenomena that can be expected in plant response to postulated accidents that may produce strainer blockage. The resulting phenomena identification and ranking tables reported herein were used to help guide research. The phenomena occurring in boiling water reactors drywells was the specific focus of the panel, although supporting experimental data and calculations of debris transport fractions were considered.

  15. The Role of Family Phenomena in Posttraumatic Stress in Youth

    PubMed Central

    Deatrick, Janet A.

    2010-01-01

    Topic Youth face trauma that can cause posttraumatic stress (PTS). Purpose 1). To identify the family phenomena used in youth PTS research; and 2). Critically examine the research findings regarding the relationship between family phenomena and youth PTS. Sources Systematic literature review in PsycInfo, PILOTS, CINAHL, and MEDLINE. Twenty-six empirical articles met inclusion criteria. Conclusion Measurement of family phenomena included family functioning, support, environment, expressiveness, relationships, cohesion, communication, satisfaction, life events related to family, parental style of influence, and parental bonding. Few studies gave clear conceptualization of family or family phenomena. Empirical findings from the 26 studies indicate inconsistent empirical relationships between family phenomena and youth PTS, though a majority of the prospective studies support a relationship between family phenomena and youth PTS. Future directions for leadership by psychiatric nurses in this area of research and practice are recommended. PMID:21344778

  16. Natural phenomena hazards, Hanford Site, south central Washington

    SciTech Connect

    Tallman, A.M.

    1996-04-16

    This document presents the natural phenomena hazard (NPH) loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, at the Hanford Site in south-central Washington State. The purpose of this document is twofold: (1) summarize the NPH that are important to the design and evaluation of structures, systems, and components at the Hanford Site; (2) develop the appropriate natural phenomena loads for use in the implementation of DOE Order 5480.28. The supporting standards, DOE-STD-1020-94, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities (DOE 1994a); DOE-STD-1022-94, Natural Phenomena Hazards Site Characteristics Criteria (DOE 1994b); and DOE-STD-1023-95, Natural Phenomena Hazards Assessment Criteria (DOE 1995) are the basis for developing the NPH loads.

  17. Politeness Phenomena in South African Black English.

    ERIC Educational Resources Information Center

    de Kadt, Elizabeth

    1992-01-01

    A study investigated requests as speech acts in "Zulu English," the English of Zulu first-language speakers, seeking to explain miscommunication in interactions between Zulu- and English-speakers by pointing to pragmatic transfer as one possible cause. Data were collected by means of a series of discourse completion tests in Zulu, Zulu English,…

  18. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary...

  19. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary...

  20. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary...

  1. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary...

  2. Power-law behavior in social and economical phenomena

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keizo; Miyazima, Sasuke

    2004-12-01

    We have already found power-law behavior in various phenomena such as high-tax payer, population distribution, name distribution, passenger number at stations, student number in a university from high schools, and so on. We can explain why these phenomena show such interesting behaviors by doing simulations based on adequate models. We have come to the conclusion that there are fractal structures underlying those phenomena.

  3. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  4. Jay's Collectibles

    ERIC Educational Resources Information Center

    Cappel, James J.; Gillman, Jason R., Jr.

    2011-01-01

    There is growing interest in collectibles of many types, as indicated by the popularity of television programs such as the History Channel's "Pawn Stars" and "American Pickers" and the Public Broadcasting Service's "Antiques Road Show." The availability of online auction sites such as eBay has enabled many people to collect items of interest as a…

  5. Collective Enumeration

    ERIC Educational Resources Information Center

    Bahrami, Bahador; Didino, Daniele; Frith, Chris; Butterworth, Brian; Rees, Geraint

    2013-01-01

    Many joint decisions in everyday life (e.g., Which bar is less crowded?) depend on approximate enumeration, but very little is known about the psychological characteristics of counting together. Here we systematically investigated collective approximate enumeration. Pairs of participants made individual and collective enumeration judgments in a…

  6. Collective Bargaining.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    This chapter discusses litigation touching on collective bargaining issues. The chapter is organized to follow the collective bargaining process, from cases dealing with union organizing to cases involving arbitration. Issues covered also include determination of bargaining units, scope of bargaining, union security, and unfair labor practices in…

  7. Threshold Phenomena in Atomic Inner Shells

    NASA Astrophysics Data System (ADS)

    Wang, Honghong

    1995-01-01

    Two types of atomic inner-shell threshold phenomena are studied: (1) atomic inner-shell radiationless resonant Raman scattering (RRRS) as a function of excitation energy, and (2) the onset of Cu Coster-Kronig (CK) transitions due to extraatomic relaxation, as a function of cluster size. (1). The K-L_{2,3}L _{2,3} and L_{2,3 }-VV Auger spectra of P in InP were measured in the vicinity of the P K-shell ionization threshold as well as at high excess energies. The evolution of the P K-L_{2,3 }L_{2,3} ^1D Auger spectrum from the radiationless resonant Raman scattering regime into the normal Auger transition regime in InP is found to be in accordance with time-independent resonant scattering theory of inner-shell threshold phenomena. The measured RRRS intensity reveals a quasi-bound state in the bulk-sensitive P K absorption spectrum. The origins of deviations of the RRRS energy from linear dispersion are examined in terms of the finite incident-photon-energy distribution and multiple resonances. Both our measurements and semiclassical calculations show that the post-collision interaction effect is relatively small. The measured P K-L_{2,3}L_{2,3} intensities and P 1s lifetime width are found to be in good agreement with atomic calculations, revealing the predominantly atomic character of P inner-shell transitions in InP. The evolution of P L_{2,3 }-VV Auger transitions in InP is found to be sensitive to the excitation energy at the P 1s threshold; the P K-L_{2,3}L_{2,3 } Raman resonance causes changes in the L _{2,3}-VV diagram-transition line shape as well as intensity enhancement of all L _{2,3}-VV features. Applying the Cini-Sawatzky model to the line shape reveals a 0.3-eV change in the local effective Coulomb interaction U _{eff} near the resonance. The difference in the line shapes between the satellite and diagram transitions indicates a change of the local density of states in the valence band in the presence of a spectator 2p hole. The single- and double-2p

  8. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  9. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  10. Dynamical phenomena: implications for extreme event attribution

    NASA Astrophysics Data System (ADS)

    Mitchell, Dann; Davini, Paolo; Harvey, Ben; Massey, Neil; Haustein, Karsten; Woollings, Tim; Jones, Richard; Otto, Fredi; Guillod, Benoit; Sparrow, Sarah; Wallom, David; Allen, Myles

    2016-04-01

    Atmospheric modes of variability relevant for extreme temperature and precipitation events are evaluated in models currently being used for extreme event attribution. A multi-thousand initial condition ensemble of the global circulation model HadAM3P is compared with both the multi-model ensemble from the Coupled Model Inter-comparison Project, Phase 5 (CMIP-5) and the CMIP-5 atmosphere-only counterparts (AMIP-5). The analysis focuses on mid Northern Latitudes (primarily Europe) during winter, and is compared with ERA-Interim reanalysis. The tri-modal Atlantic Eddy-driven jet distribution is remarkably well captured in HadAM3P, but not so in CMIP-5 or AMIP-5. The well known underestimation of blocking in the Atlantic region is apparent in CMIP-5 and AMIP-5, and to a lesser extent in HadAM3P. Pacific blocking features are well produced in all modeling initiatives. Blocking duration is generally biased towards models reproducing too many short-lived events. Associated storm tracks are too zonal over the Atlantic in the CMIP-5 ensemble, but well simulated in HadAM3P with the exception of being too weak over Western Europe. In all cases, the CMIP-5 and AMIP-5 performances were almost identical, suggesting that the atmospheric modes considered here are not strongly coupled to SSTs, and perhaps other model characteristics such as resolution are more important. It is recommended that only models capable of producing the necessary dynamical phenomena be used for event attribution analyses.

  11. Programmed death phenomena: from organelle to organism.

    PubMed

    Skulachev, Vladimir P

    2002-04-01

    Programmed death phenomena appear to be inherent not only in living cells (apoptosis), but also in subcellular organelles (e.g., self-elimination of mitochondria, called mitoptosis), organs (organoptosis), and even whole organisms (phenoptosis). In all these cases, the "Samurai law of biology"--it is better to die than to be wrong--seems to be operative. The operation of this law helps complicated living systems avoid the risk of ruin when a system of lower hierarchic position makes a significant mistake. Thus, mitoptosis purifies a cell from damaged and hence unwanted mitochondria; apoptosis purifies a tissue from unwanted cells; and phenoptosis purifies a community from unwanted individuals. Defense against reactive oxygen species (ROS) is probably one of the primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo-, and phenoptoses, which is consistent with Harman's theory of aging. Here a concept is described that tries to unite Weismann's hypothesis of aging as an adaptive programmed death mechanism and the generally accepted alternative point of view that considers aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by a system(s) actuating a phenoptotic death program when the number of injuries reaches some critical level. The system(s) in question are organized in such a way that the lethal case appears to be a result of phenoptosis long before the occasional injuries make impossible the functioning of the organism. It is stressed that for humans these cruel regulations look like an atavism that, if overcome, might dramatically prolong the human life span. PMID:11976198

  12. International Halley Watch: Discipline specialists for large scale phenomena

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Niedner, M. B., Jr.

    1986-01-01

    The largest scale structures of comets, their tails, are extremely interesting from a physical point of view, and some of their properties are among the most spectacular displayed by comets. Because the tail(s) is an important component part of a comet, the Large-Scale Phenomena (L-SP) Discipline was created as one of eight different observational methods in which Halley data would be encouraged and collected from all around the world under the aspices of the International Halley Watch (IHW). The L-SP Discipline Specialist (DS) Team resides at NASA/Goddard Space Flight Center under the leadership of John C. Brandt, Malcolm B. Niedner, and their team of image-processing and computer specialists; Jurgan Rahe at NASA Headquarters completes the formal DS science staff. The team has adopted the study of disconnection events (DE) as its principal science target, and it is because of the rapid changes which occur in connection with DE's that such extensive global coverage was deemed necessary to assemble a complete record.

  13. Kinetic phenomena in charged particle transport in gases and plasmas

    SciTech Connect

    Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana

    2012-05-25

    The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.

  14. Non-equilibrium phenomena in disordered colloidal solids

    NASA Astrophysics Data System (ADS)

    Yunker, Peter

    Colloidal particles are a convenient tool for studying a variety of non-equilibrium phenomena. I will discuss experiments that investigate the aging and non-equilibrium growth of disordered solids. In the first set of experiments, colloidal glasses are rapidly formed to study aging in jammed packings. A colloidal fluid, composed of micron-sized temperature-sensitive pNIPAM particles, is rapidly quenched into a colloidal glass. After the glass is formed, collective rearrangements occur as the glass ages. Particles that undergo irreversible rearrangements, which break nearest-neighbor pairings and allow the glass to relax, are identified. These irreversible rearrangements are accompanied by large clusters of fast moving particles; the number of particles involved in these clusters increases as the glass ages, leading to the slowing of dynamics that is characteristic of aging. In the second set of experiments, we study the role particle shape, and thus, interparticle interaction, plays in the formation of disordered solids with different structural and mechanical properties. Aqueous suspensions of colloidal particles with different shapes evaporate on glass slides. Convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow heterogeneously from the edge on the air-water interface. Three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. Mechanical testing of these particulate deposits reveals that the deposit bending rigidity increases as particles become more anisotropic in shape.

  15. 1995 national heat transfer conference: Proceedings. Volume 4: Transport phenomena in manufacturing and materials processing; Transport phenomena in materials joining processes; Transport phenomena in net shape manufacturing; HTD-Volume 306

    SciTech Connect

    Mahajan, R.L.

    1995-12-31

    This book is divided into three sections: (1) transport phenomena in manufacturing and materials processing; (2) transport phenomena in net shape manufacturing: and (3) transport phenomena in materials joining processes. Separate abstracts were prepared for most papers in this volume.

  16. Experimental studies of collision and fragmentation phenomena

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Davis, D. R.; Weidenschilling, S. J.

    1987-01-01

    The reduction and publication of an extensive data set collected in experiments over several years at Ames and PSI is briefly examined. Hartmann has been assembling data sets from his experiments on catastrophic fragmentation of various materials, including basalt, other igneous rock, ice, and weak dirt clods. Weidenschilling and Davis have continued to gather and reduce data on oblique impacts. The data indicate a power law distribution of ejecta mass vs. velocity, with a slope that is independent of azimuth, and does not vary with impact angle from normal impacts to at least 75 deg from vertical. In order to improve models of coagulation of dust aggregates in the solar nebula, SJW developed an apparatus for drop tests of fragile projectiles. Davis and Weidenschilling continued to collect and analyze experimental data on collisional catastrophic disruption at the Ames Vertical Gun Range.

  17. Astrophysical constraints on Planck scale dissipative phenomena.

    PubMed

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles. PMID:24785026

  18. Nuclear Nonproliferation

    SciTech Connect

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  19. Collective Enumeration

    PubMed Central

    Bahrami, Bahador; Didino, Daniele; Frith, Chris; Butterworth, Brian; Rees, Geraint

    2012-01-01

    Many joint decisions in everyday life (e.g., Which bar is less crowded?) depend on approximate enumeration, but very little is known about the psychological characteristics of counting together. Here we systematically investigated collective approximate enumeration. Pairs of participants made individual and collective enumeration judgments in a 2-alternative forced-choice task and when in disagreement, they negotiated joint decisions via verbal communication and received feedback about accuracy at the end of each trial. The results showed that two people could collectively count better than either one alone, but not as well as expected by previous models of collective sensory decision making in more basic perceptual domains (e.g., luminance contrast). Moreover, such collective enumeration benefited from prior, noninteractive practice showing that social learning of how to combine shared information about enumeration required substantial individual experience. Finally, the collective context had a positive but transient impact on an individual's enumeration sensitivity. This transient social influence may be explained as a motivational factor arising from the fact that members of a collective must take responsibility for their individual decisions and face the consequences of their judgments. PMID:22889187

  20. Culture collections.

    PubMed

    Smith, David

    2012-01-01

    Culture collections no matter their size, form, or institutional objectives play a role in underpinning microbiology, supplying the resources for study, innovation, and discovery. Their basic roles include providing a mechanism for ex situ conservation of organisms; they are repositories for strains subject to publication, taking in safe, confidential, and patent deposits from researchers. They supply strains for use; therefore, the microorganisms provided must be authentic and preserved well, and any associated information must be valid and sufficient to facilitate the confirmation of their identity and to facilitate their use. The organisms must be collected in compliance with international conventions, international and national legislation and distributed to users indicating clearly the terms and conditions under which they are received and can be used. Collections are harmonizing approaches and characterizing strains to meet user needs. No one single collection can carry out this task alone, and therefore, it is important that output and strategy are coordinated to ensure culture collections deliver the basic resources and services microbiological innovation requires. This chapter describes the types of collection and how they can implement quality management systems and operate to deliver their basic functions. The links to information sources given not only provide support for the practitioners within collections but also provide guidance to users on accessing the huge resource available and how they can help ensure microbiology has the resources and a solid platform for future development. PMID:22569518

  1. Nuclear Structure at the Limits

    SciTech Connect

    Nazarewicz, Witold

    1997-12-31

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure at the limits are discussed from a theoretical perspective.

  2. Environmental consequences of postulated radionuclide releases from the Battelle Memorial Institute Columbus Laboratories JN-1b Building at the West Jefferson site as a result of severe natural phenomena

    SciTech Connect

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated radionuclide releases caused by severe natural phenomena at the Battelle Memorial Institute Columbus Laboratories JN-1b Building at the West Jefferson site. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum radioactive material deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum radioactive material deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the events are well below the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The likely maximum residual contamination from beta and gamma emitters are far below the background produced by fallout from nuclear weapons tests in the atmosphere.

  3. Micrometeorite Collecting

    ERIC Educational Resources Information Center

    Toubes, Joe; Hoff, Darrel

    1974-01-01

    Describes how to collect micrometeorites and suggests a number of related activities such as determining the number of meteors entering the atmosphere and determining the composition of the micrometeorites. (BR)

  4. Oscillatory phenomena in solar and stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Bloomfield, David Shaun

    This thesis presents varying studies into the nature of intensity oscillations observed both on the Sun and two active cool stars. The first part concentrates on the detection of correlated oscillations occuring between differing heights in the solar atmosphere above quiet-Sun magnetic network bright points (NBPs), interpreted as signatures of energy propagation. This is achieved through correlating in time the wavelet power spectra of lightcurves from images obtained in several optical wavelengths. In four of the eleven NBPs studied, evidence is found for upwardly-propagating, low-frequency waves (1.4 mHz, 2.1 mHz) in the lower chromosphere, decreasing in oscillatory power with the onset, or increase in power, of higher-frequency waves (2.9 mHz, 4.0 mHz) within the upper chromosphere. Moving higher into the atmosphere two of the four cases of higher frequency waves also show a decrease in power. These observational detections are interpreted as transverse-mode magnetohydrodynamic (MHD) waves undergoing non-linear mode coupling to longitudinal-modes at double the frequency, which shock or otherwise dissipate in the high chromosphere. Evidence is also found for additional upward- and downward- directed waves within all the NBPs studied. The extension of wavelet power techniques into the analysis of phase difference and phase coherence is also presented, utilising UV intensities obtained from above a weak solar network element. The problems associated with the quantification of phase coherence values are outlined and a comparison of two differing methods is carried out. Changes observed in the evolution of phase difference between oscillations detected in the UV emission of the temperature minimum and low transition region are shown to be due to the alteration of the underlying magnetic topology, occuring when same polarity flux emerges nearby. The final part of this thesis concerns the differing situation of intensity variations during energetic flare phenomena on

  5. Fibre Optic Temperature Sensors Using Fluorescent Phenomena.

    NASA Astrophysics Data System (ADS)

    Selli, Raman Kumar

    Available from UMI in association with The British Library. A number of fibre optic sensors based on fluorescent phenomena using low cost electronic and optical filtering techniques, for temperature sensing applications are described and discussed. The initial device developed uses the absorption edge change of an optical glass to monitor changes in temperature with a second wavelength reference channel being generated from a fluorescent material, neodymium doped in glass. This device demonstrates the working of the self-referencing principle in a practical device tested over the temperature range of -60^circ C to 200^circC. This initial device was improved by incorporating a microprocessor and by modifying the processing electronic circuitry. An alternative probe was constructed which used a second fibre placed along-side the addressing fibre in contrast to the original device where the fibre is placed at the opposite end of the addressing fibre. A device based on the same principle but with different absorption glasses and a different fluorescent medium, crystalline ruby, was also examined. This device operated at a lower wavelength region compared to the infra -red working region of the first device. This work illustrated the need to make an appropriate choice of sensor absorption glass so that the cheaper indicator type LEDs, which operated at lower wavelengths, may be used. Ruby is a fluorescent material which is characterized by each emission wavelength having its own temperature characteristics. The integrated energy output over the complete emission spectrum is independent of temperature. This provided a means of generating a reference from the complete spectrum while a small frequency band gave a temperature dependent output. This characteristic of ruby was used to develop a temperature measuring device. A final system which utilises the temperature dependent decay-time emission properties of crystalline ruby was developed. In this case the ruby was

  6. Saving the Phenomena in Medieval Astronomy

    NASA Astrophysics Data System (ADS)

    Seeskin, K.

    2011-06-01

    Aristotle's theory of motion is based on two principles: (1) all motion to either from the midpoint of the Earth, toward it, or around it, and (2) circular motion must proceed around an immovable point. On this view, the heavenly bodies are individual points of light carried around by a series of concentric spheres rotating at a constant pace around the midpoint of the Earth. But even in Aristotle's day, it was known that this theory had a great deal of difficulty accounting for planetary motion. Ptolemy's alternative was to introduce epicycles and eccentric orbits, thus denying Aristotle's view of natural motion. There was no doubt that Ptolemy's predictions were far better than Aristotle's. But for the medievals, Aristotle's theory made better intuitive sense. Moreover, Ptolemy's theory raised the question of how one sphere could pass through another. What to do? The solution of Moses Maimonides (1138-1204) was to say that it is not the job of the astronomer to tell us how things actually are but merely to propose a series of hypotheses that allow us to explain the relevant data. This view had obvious theological implications. If astronomy could explain planetary motion in an acceptable way, there was reason to believe that the order or structure of the heavens is what it is by necessity. This suggests that God did not exercise any degree of choice in making it that way. But if astronomy cannot explain planetary motion, the most reasonable explanation is that we are dealing with contingent phenomena rather than necessary ones. If there is contingency, there is reason to think God did exercise a degree of choice in making the heavens the way they are. A God who exercises choice is much closer to the God of Scripture. Although Galileo changed all of this, and paved the way for a vastly different view of astronomy, the answer to one set of questions raises a whole different set. In short, the heavenly motion still poses ultimate questions about God, existence, and

  7. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  8. Scaling Extreme Astrophysical Phenomena to the Laboratory

    SciTech Connect

    Remington, B A

    2007-11-01

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  9. Shock Tunnel Studies of Scramjet Phenomena 1994

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Stalker, R. J.

    1997-01-01

    Reports by the research staff and graduate students of the Mechanical Engineering Department at the University of Queensland are collected and presented. These reports cover various studies related to the advancement of scramjet technology and the operation of advanced hypervelocity shock-expansion tubes. The report topics include the experimental studies of mixing and combustion in a scramjet flow path, the measurement of integrated thrust and skin friction, and the development of a free-piston-driven expansion tunnel capable of delivering a test gas at superorbital velocities.

  10. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGESBeta

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  11. Conceptual Framework to Enable Early Warning of Relevant Phenomena (Emerging Phenomena and Big Data)

    SciTech Connect

    Schlicher, Bob G; Abercrombie, Robert K; Hively, Lee M

    2013-01-01

    Graphs are commonly used to represent natural and man-made dynamic systems such as food webs, economic and social networks, gene regulation, and the internet. We describe a conceptual framework to enable early warning of relevant phenomena that is based on an artificial time-based, evolving network graph that can give rise to one or more recognizable structures. We propose to quantify the dynamics using the method of delays through Takens Theorem to produce another graph we call the Phase Graph. The Phase Graph enables us to quantify changes of the system that form a topology in phase space. Our proposed method is unique because it is based on dynamic system analysis that incorporates Takens Theorem, Graph Theory, and Franzosi-Pettini (F-P) theorem about topology and phase transitions. The F-P Theorem states that the necessary condition for phase transition is a change in the topology. By detecting a change in the topology that we represent as a set of M-order Phase Graphs, we conclude a corresponding change in the phase of the system. The onset of this phase change enables early warning of emerging relevant phenomena.

  12. 78 FR 33116 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... collected? 4. How can the burden of the information collection be minimized, including the use of automated.... Nuclear Regulatory Commission, Washington, DC 20555-0001, by telephone at 301-415-6258, or by email...

  13. 75 FR 82413 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... collected? 4. How can the burden of the information collection be minimized, including the use of automated..., Tremaine Donnell (T-5 F53), U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, by telephone...

  14. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    SciTech Connect

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method

  15. Precrystallisation fluctuation phenomena in homopolymer melts.

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Fairclough, J. P. A.; Terrill, N. J.; Young, R. J.; Towns-Andrews, E.; Komanschek, B. U.

    1997-03-01

    In order to separate nucleation from growth, two types of experiments have been performed on polypropylene, polyethylene, polyethylene oxide and polyethylene terepthalate. Rapid crystallisations were studied by melt extrusion of a tape. The extrusion of tape is a steady-state process where the distance down the spin-line is directly proportional to the crystallisation time. This allowed long data collection times (minutes) for very short crystallisation times. Prior to the development of crystallinity, well resolved, oriented small-angle patterns could be collected with length scales (50-200Åand intensities that grew down the spin-line. The orientation of the patterns was caused by the coupling of the density fluctuations with the elongational flow-field. Slow crystallisations with long induction times have been studied by simultaneous SAXS and WAXS. Clear development of small angle scattering, due to the density fluctuations, with a characteristic length scale of ≈ 100Åwas observed prior to the presence of crystals identified by wide-angle scattering. The growth of these fluctuations is analysed in terms of Cahn Hilliard kinetics. We could estimate the both the dominant length scale and the effective diffusion coefficient and by conducting experiments at a series of temperature we could find the stability limit.

  16. FULL SCALE PLUME STUDY: A SUMMARY OF DATA COLLECTED AND PHENOMENA OBSERVED

    EPA Science Inventory

    The paper briefly describes the field tracer studies that were conducted in support of EPA's Complex Terrain Model Development project. A more detailed description is given of the last field study, conducted from the Tracy Power Plant near Reno, Nevada. During 14 experiment perio...

  17. Numerical Studies of Collective Phenomena in Two-Dimensional Electron and Cold Atom Systems

    SciTech Connect

    Rezayi, Edward

    2013-07-25

    Numerical calculations were carried out to investigate a number of outstanding questions in both two-dimensional electron and cold atom systems. These projects aimed to increase our understanding of the properties of and prospects for non-Abelian states in quantum Hall matter.

  18. Collective phenomena in large-eddy simulations of extended wind farms

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Meneveau, Charles

    2012-11-01

    A major issue with respect to the incorporation of large wind farms in power grids is that their power output strongly fluctuates over time. Understanding these fluctuations, especially its spatio-temporal characteristics, is important for the design of the backup power that must be available. The power fluctuations of the turbines depend on the effect of the wakes, created by a prior row of turbines, on the operation of the turbines, the inter-turbine correlations, and the interaction between the turbines and the atmospheric boundary layer (ABL). We analyze the power fluctuations in large eddy simulations of extended wind-parks in the ABL. We consider various aggregates of wind turbines such as the total average power signal, or sub-averages within the wind farm. In particular, we find that the power variations of the total wind park decreases more than one would expect if one assumes the power output of the turbines to be uncorrelated. The non-trivial correlations are due to the interactions between turbines placed down-stream from each other. Surprisingly, the frequency spectra of the total wind-farm output show a decay that follows approximately a -5/3 power-law scaling regime, qualitatively consistent with observations made in field-scale operational wind parks (Apt, 2007). RS is supported by a ``Fellowship for Young Energy Scientists'' (YES!) of the Foundation for Fundamental Research on Matter (FOM), which is supported by the Netherlands Organization for Scientific Research (NWO). CM is supported by NSF-CBET 1133800.

  19. Giant mini-clusters as possible origin of halo phenomena observed in super-families

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Among 91 mini-clusters from 30 high energy Chiron-type families in Chacaltaya emulsion chambers, there were observed several extremely large multiplicity clusters in the highest energy range, far beyond the average of ordinary type clusters. Some details of microscopic observation of those giant mini-clusters in nuclear emulsion plates and some phenomenological regularity found in common among them are described. Such giant mini-clusters are possible candidates for the origin of narrow symmetric single halo phenomena in X-ray films which are frequently observed in super-families of visible energy greater than 1,000 TeV.

  20. Certain relativistic phenomena in crystal optics

    NASA Astrophysics Data System (ADS)

    Chee-Seng, Lim

    1980-01-01

    Relativistic unsteady phenomena are established for a crystalline medium with unaligned sets of permittivity and permeability principal axes, but incorporating a compounded uniaxiality about some nonprincipal direction. All effects originate from a suddenly activated, arbitrarily oriented, maintained line current conducted with a finite velocity v. Integral representations studied in another paper (Chee-Seng) are applied. The original coordinate system is subjected to a series of rotational and translational, scaled and unscaled transformations. No specific coordinate frame is strictly adhered to. Instead, it is often expedient and advantageous to exploit several reference frames simultaneously in the course of the analysis and interpretations. The electric field is directly related to a net scalar field Δ involving another scalar Ψ and its complement Ψ¯ which can be deduced from Ψ; Ψ and Ψ¯ are associated with two expanding, inclined ellipsoidal wavefronts ξ and ξ¯; these are cocentered at the current origin and touch each other twice along the uniaxis. Elsewhere, ξ leads ξ¯. For a source current faster than ξ:vt ∈ extξ, Ψ≢0 within a finite but growing ''ice-cream cone'' domain, its nontrivial composition being χ-1/2 inside ξ and 2χ-1/2 inside part of a tangent cone from the advancing current edge vt to, and terminating at, ξ; the function χ vanishes along such a tangent cone. Alternatively, for a source current slower than ξ:vt∈ intξ, if vt is avoided, χ≳0 everywhere, while Ψ=χ-1/2 inside ξ but vanishes identically outside ξ. However, the crucial scalar field Δ depends on three separate current-velocity regimes. Over a slow regime: vt∈ intξ¯, Δ is nontrivial inside ξ wherein it is discontinuous across ξ¯. Over an intermediate regime: vt ∈ intξ extξ¯, Δ takes four distinct forms on 12 adjacent domains bounded by ξ, ξ¯ and a double-conical tangent surface linking vt to ξ¯. But for a fast regime: vt∈ ext

  1. Nonlinear resonant phenomena in multilevel quantum systems

    NASA Astrophysics Data System (ADS)

    Hicke, Christian

    We study nonlinear resonant phenomena in two-level and multilevel quantum systems. Our results are of importance for applications in the areas of quantum control, quantum computation, and quantum measurement. We present a method to perform fault-tolerant single-qubit gate operations using Landau-Zener tunneling. In a single Landau-Zoner pulse, the qubit transition frequency is varied in time so that it passes through the frequency of a radiation field. We show that a simple three-pulse sequence allows eliminating errors in the gate up to the third order in errors in the qubit energies or the radiation frequency. We study the nonlinear transverse response of a spin S > 1/2 with easy-axis anisotropy. The coherent transverse response displays sharp dips or peaks when the modulation frequency is adiabatically swept through multiphoton resonance. The effect is a consequence of a certain conformal property of the spin dynamics in a magnetic field for the anisotropy energy ∝ S2z . The occurrence of the dips or peaks is determined by the spin state. Their shape strongly depends on the modulation amplitude. Higher-order anisotropy breaks the symmetry, leading to sharp steps in the transverse response as function of frequency. The results bear on the dynamics of molecular magnets in a static magnetic field. We show that a modulated large-spin system has special symmetry. In the presence of dissipation it leads to characteristic nonlinear effects. They include abrupt switching between transverse magnetization branches with varying modulating field without hysteresis and a specific pattern of switching in the presence of multistability and hysteresis. Along with steady forced vibrations the transverse spin components can display transient vibrations at a combination of the Larmor frequency and a slower frequency determined by the anisotropy energy. The analysis is based on a microscopic theory that takes into account relaxation mechanisms important for single

  2. Mixed burden softening and melting phenomena

    NASA Astrophysics Data System (ADS)

    Kaushik, Pallav

    The blast furnace (BF) will remain the major iron producing unit for the foreseeable future. The cohesive zone, where ferrous materials soften and melt, affects the productivity of the BF. This research was focused on expanding the current understanding of the mechanism of softening and melting of the ferrous materials. The other objective of this project was to examine the potential use of direct reduced iron (DRI) and hot briquetted iron (HBI) as the BF burden. The materials used in this study were DRI, HBI, lump iron ore and pellets. A wide variety of experimental procedures were employed to completely understand the process phenomena. The softening and melting (SM) experiments were conducted under load and X-Ray fluoroscopy was used to visualize the process. The results of these experiments were conducive in determining a suitable mechanism of softening and melting of the burden. For single burdens of DRI and HBI, softening occurred when metal began to melt. For mixed burdens of DRI and pellets/lump ore, the initial deformation was not affected by DRI; however DRI dominated as the temperature increased and melting occurred only when DRI melted. Melt dripping was observed at temperatures close to meltdown. A FactSage slag model was used to obtain the evolution of liquid with temperature. It was compared with the bed shrinkage which indicated that the most likely reason of the softening of the burden is the deformation of solid, phases, especially iron. The bulk SM experiments were interrupted at temperatures of interest and samples were examined for the morphological changes. These experiments were instrumental in studying the burden interaction at different stages during softening and melting of the burden. In addition, in separate experiments (without load), the melting structure of DRI/HBI samples was studied. The results of these experiments were expanded to include viscosity, surface energy and deformation rate calculations which were helpful in

  3. Blood Collection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The method that is used for the collection, storage and real-time analysis of blood and other bodily fluids has been licensed to DBCD, Inc. by NASA. The result of this patent licensing agreement has been the development of a commercial product that can provide serum or plasma from whole blood volumes of 20 microliters to 4 milliliters. The device has a fibrous filter with a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein. The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber. The method used by this product is useful to NASA for blood analysis on manned space missions.

  4. Mesoscale cloud phenomena observed by LANDSAT

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1977-01-01

    Examples of certain mesoscale cloud features - jet cirrus, eddies/vortices, cloud banding, and wave clouds - were collected from LANDSAT imagery and placed into Mason's four groups of causes of cloud formation based on the mechanism of vertical motion which produces condensation. These groups are as follows: (1) layer clouds formed by widespread regular ascent; (2) layer clouds caused by irregular stirring motions; (3) convective clouds; and (4) clouds formed by orographic disturbances. These mechanisms explain general cloud formation. Once formed, other forces may play a role in the deformation of a cloud or cloud mass into unusual and unique meso- and microscale patterns. Each example presented is followed by a brief discussion describing the synoptic situation, and some inference into the formation and occurrence of the more salient features. No major attempt was made to discuss in detail the meteorological and topographic interplay producing these mesoscale features.

  5. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.; Brock, W.R.; Denton, D.R.

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  6. Collecting Artifacts

    ERIC Educational Resources Information Center

    Coffey, Natalie

    2004-01-01

    Fresh out of college, the author had only a handful of items worthy of displaying, which included some fossils she had collected in her paleontology class. She had binders filled with great science information, but kids want to see "real" science, not paper science. Then it came to her: she could fill the shelves with science artifacts with the…

  7. Wastewater Collection.

    ERIC Educational Resources Information Center

    Chatterjee, Samar; And Others

    1978-01-01

    Presents a literature review of wastewater collection systems and components. This review covers: (1) planning, (2) construction; (3) sewer system evaluation; (4) maintenance; (5) rehabilitation; (6) overview prevention; and (7) wastewater pumping. A list of 111 references is also presented. (HM)

  8. Collection Security.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    1984-01-01

    Presents a systematic approach to the problem of security of library collections and facilities from theft and vandalism. Highlights include responses to losses, defining security needs, typical weaknesses of facilities, policies and procedures that weaken a library's security, conducting a security audit, cost of security, cost-effectiveness, and…

  9. Collective Bargaining.

    ERIC Educational Resources Information Center

    Goldschmidt, Steven M.

    This chapter summarizes recent state supreme court and federal court decisions involving collective bargaining for employees of public educational institutions. The cases discussed are generally limited to those decided during 1975 and reported in the General Digest as of March 1976. In his discussion, the author attempts to integrate related…

  10. Collective Bargaining.

    ERIC Educational Resources Information Center

    Goldschmidt, Steven M.

    This chapter deals with the legal process by which employers and employee organizations discuss matters related to employment. The chapter is organized to reflect the initial sequence of events in the collective bargaining process. Cases are reported and analyzed in nine sections: obligation and authority to bargain; unit determination and…

  11. Collective Bargaining.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    Higher education collective bargaining cases reviewed in this chapter follow the basic sequence of steps in the negotiation process, from issues of the rights of organization and negotiation through scope of bargaining, bargaining conduct, and union security to the ultimate problems of strikes and contract enforcement. Within this common outline,…

  12. Culturomics meets random fractal theory: insights into long-range correlations of social and natural phenomena over the past two centuries

    PubMed Central

    Gao, Jianbo; Hu, Jing; Mao, Xiang; Perc, Matjaž

    2012-01-01

    Culturomics was recently introduced as the application of high-throughput data collection and analysis to the study of human culture. Here, we make use of these data by investigating fluctuations in yearly usage frequencies of specific words that describe social and natural phenomena, as derived from books that were published over the course of the past two centuries. We show that the determination of the Hurst parameter by means of fractal analysis provides fundamental insights into the nature of long-range correlations contained in the culturomic trajectories, and by doing so offers new interpretations as to what might be the main driving forces behind the examined phenomena. Quite remarkably, we find that social and natural phenomena are governed by fundamentally different processes. While natural phenomena have properties that are typical for processes with persistent long-range correlations, social phenomena are better described as non-stationary, on–off intermittent or Lévy walk processes. PMID:22337632

  13. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  14. Time-Variable Phenomena in the Jovian System

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S. (Editor); West, Robert A. (Editor); Rahe, Jurgen (Editor); Pereyda, Margarita

    1989-01-01

    The current state of knowledge of dynamic processes in the Jovian system is assessed and summaries are provided of both theoretical and observational foundations upon which future research might be based. There are three sections: satellite phenomena and rings; magnetospheric phenomena, Io's torus, and aurorae; and atmospheric phenomena. Each chapter discusses time dependent theoretical framework for understanding and interpreting what is observed; others describe the evidence and nature of observed changes or their absence. A few chapters provide historical perspective and attempt to present a comprehensive synthesis of the current state of knowledge.

  15. Analytical investigation of critical phenomena in MHD power generators

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the U.S. U-25 Experiment, are analyzed. The performance of a NASA specified 500 MW(th) flow train is analyzed. Critical phenomena analyzed include: Hall voltage overshoots; optimal load schedules; parametric dependence of the electrode voltage drops; boundary layer behavior; near electrode phenomena with finite electrode segmentation; current distribution in the end regions; scale up rules; optimum Mach number distribution; and the effects of alternative cross sectional shapes.

  16. Pulmonary macrophages: Phenomena associated with the particle overload'' condition

    SciTech Connect

    Lehnert, B.E.; Sebring, R.J. ); Oberdoerster, G. )

    1993-01-01

    Numerous lines of evidence support the generalization that alveolar macrophage (AM)-mediated particle clearance, or the transport of particle-containing AM from the alveoli out of the lung via the mucociliary apparatus, is a prominent mechanism that determines the pulmonary retention characteristics of relatively insoluble particles. Studies have also shown that the alveolar deposition of excessive burdens of particles with even low intrinsic cytotoxicity can result in impairments of the AM-mediated panicle clearance mechanism and the development of pathologic disorders including pulmonary fibrosis and lung cancer, at least in the lungs of rats. We briefly review evidence consistent with the idea that the high volumetric loads of particles contained in AM during particle overload conditions underlies their inabilities to translocate from the lung. Using a condition of particle overload brought about by subchronic exposure of rats to ultra-fine titanium dioxide as an experimental model, we have obtained ultrastructural and other evidence that indicates an association between particle overload and: The occurrence of aggregates of particle-containing AM in alveoli, Type II cell hyperplasia in alveoli that contain the AM aggregates, a loss in patent pores of Kohn in alveoli that contain the AM aggregates and show Type II cell hyperplasia, the interstitialization of particles at the sites where these phenomena collectively occur, and the development of fibrosis in alveolar regions where particle interstitialization occurs. The loss of pores of Kohn in the alveoli that contain aggregates of particle-laden AM suggests that these interalveolar pores normally serve as passageways through which AM may migrate to neighboring alveoli as they perform their function of phagocytizing particles that have deposited on the alveolar surface. The pores of Kohn also serve as short-cut pathways for AM to reach the mucociliary apparatus from more distal alveoli.

  17. Pulmonary macrophages: Phenomena associated with the particle ``overload`` condition

    SciTech Connect

    Lehnert, B.E.; Sebring, R.J.; Oberdoerster, G.

    1993-05-01

    Numerous lines of evidence support the generalization that alveolar macrophage (AM)-mediated particle clearance, or the transport of particle-containing AM from the alveoli out of the lung via the mucociliary apparatus, is a prominent mechanism that determines the pulmonary retention characteristics of relatively insoluble particles. Studies have also shown that the alveolar deposition of excessive burdens of particles with even low intrinsic cytotoxicity can result in impairments of the AM-mediated panicle clearance mechanism and the development of pathologic disorders including pulmonary fibrosis and lung cancer, at least in the lungs of rats. We briefly review evidence consistent with the idea that the high volumetric loads of particles contained in AM during particle overload conditions underlies their inabilities to translocate from the lung. Using a condition of particle overload brought about by subchronic exposure of rats to ultra-fine titanium dioxide as an experimental model, we have obtained ultrastructural and other evidence that indicates an association between particle overload and: The occurrence of aggregates of particle-containing AM in alveoli, Type II cell hyperplasia in alveoli that contain the AM aggregates, a loss in patent pores of Kohn in alveoli that contain the AM aggregates and show Type II cell hyperplasia, the interstitialization of particles at the sites where these phenomena collectively occur, and the development of fibrosis in alveolar regions where particle interstitialization occurs. The loss of pores of Kohn in the alveoli that contain aggregates of particle-laden AM suggests that these interalveolar pores normally serve as passageways through which AM may migrate to neighboring alveoli as they perform their function of phagocytizing particles that have deposited on the alveolar surface. The pores of Kohn also serve as short-cut pathways for AM to reach the mucociliary apparatus from more distal alveoli.

  18. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  19. Fundamental pairs in nuclear collective motion

    NASA Astrophysics Data System (ADS)

    Naotaka, Yoshinaga

    1994-03-01

    Usefulness of the pair approximation is shown in both vibrational and rotational regions. The renormalized SDG-pair space is sufficiently enough to reproduce moment of inertia of the ground band that was previously thought as a difficult physical quantity to be reproduced.

  20. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  1. 78 FR 74175 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... for the Collection of Qualitative Feedback on Agency Service Delivery AGENCY: Nuclear Regulatory... streamline the process to seek feedback from the public on service delivery, the U.S. Nuclear Regulatory... for the Collection of Qualitative Feedback on Agency Service Delivery'' to OMB for approval under...

  2. Probing Cytological and Reproductive Phenomena by Means of Bryophytes.

    ERIC Educational Resources Information Center

    Newton, M. E.

    1985-01-01

    Describes procedures (recommended for both secondary and college levels) to study mitosis, Giemsa C-banding, reproductive phenomena (including alternation of generations), and phototropism in mosses and liverworts. (JN)

  3. INVESTIGATION INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    EPA Science Inventory

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. ine pore diffusers were obtained from five municipal wastewate...

  4. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    EPA Science Inventory

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  5. Collective motion in Proteus mirabilis swarms

    NASA Astrophysics Data System (ADS)

    Haoran, Xu

    Proteus mirabilisis a Gram-negative, rod-shaped bacterium. It is widely distributed in soil and water, and it is well known for exhibiting swarming motility on nutrient agar surfaces. In our study, we focused on the collective motility of P. mirabilis and uncovered a range of interesting phenomena. Here we will present our efforts to understand these phenomena through experiments and simulation. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail:xhrphx@gmail.com.

  6. Inference of physical phenomena from FFTF (Fast Flux Test Facility) noise analysis

    SciTech Connect

    Thie, J.A.; Damiano, B.; Campbell, L.R.

    1989-01-01

    The source of features observed in noise spectra collected by an automated data collection system operated by the Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF) can be identified using a methodology based on careful data observation and intuition. When a large collection of data is available, as in this case, automatic pattern recognition and parameter storage and retrieval using a data base can be used to extract useful information. However, results can be limited to empirical signature comparison monitoring unless an effort is made to determine the noise sources. This paper describes the identification of several FFTF noise data phenomena and suggests how this understanding may lead to new or enhanced monitoring. 13 refs., 4 figs.

  7. Hadrons in the Nuclear Medium

    SciTech Connect

    Misak Sargsian; G.A. Miller; John Arrington; William Bertozzi; Werner Boeglin; Carl Carlson; Donal Day; Leonid Frankfurt; Kim Egiyan; Rolf Ent; Shalev Gilad; Keith Griffioen; Douglas Higinbotham; Sebastian Kuhn; Wally Melnitchouk; Eliezer Piasetzky; Stepan Stepanyan; Mark Strikman; Lawrence Weinstein

    2002-10-01

    Quantum Chromodynamics, the microscopic theory of strong interactions, has not yet been applied to the calculation of nuclear wave functions. However, it certainly provokes a number of specific questions and suggests the existence of novel phenomena in nuclear physics which are not part of the traditional framework of the meson-nucleon description of nuclei. Many of these phenomena are related to high nuclear densities and the role of color in nucleonic interactions. Quantum fluctuations in the spatial separation between nucleons may lead to local high density configurations of cold nuclear matter in nuclei, up to four times larger than typical nuclear densities. We argue here that experiments utilizing the higher energies available upon completion of the Jefferson Laboratory energy upgrade will be able to probe the quark-gluon structure of such high density configurations and therefore elucidate the fundamental nature of nuclear matter. We review three key experimental programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic scattering from nuclei at x>1, and the measurement of tagged structure functions. These interrelated programs are all aimed at the exploration of the quark structure of high density nuclear configurations. The study of the QCD dynamics of elementary hard processes is another important research direction and nuclei provide a unique avenue to explore these dynamics. We argue that the use of nuclear targets and large values of momentum transfer at would allow us to determine whether the physics of the nucleon form factors is dominated by spatially small configurations of three quarks.

  8. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  9. Unusual radio and plasma wave phenomena observed in March 1991

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    During the intense solar flare activity in March 1991 a number of unusual radio emission and Langmuir wave phenomena were observed by the radio and plasma wave (URAP) experiment on the Ulysses spacecraft. These phenomena were associated with unusual conditions in the interplanetary medium (IPM) presumably resulting from intense solar activity. Some of these URAP observations cannot be explained by mechanisms usually attributed to interplanetary (IP) radio emissions and Langmuir wave activity and require other interpretations.

  10. Department of Energy Natural Phenomena Hazards Mitigation Program

    SciTech Connect

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  11. Classification of Transient Phenomena in Distribution System using wavelet Transform

    NASA Astrophysics Data System (ADS)

    Sedighi, Alireza

    2014-05-01

    An efficient procedure for classification of transient phenomena in distribution systems is proposed in this paper. The proposed method has been applied to classify some transient phenomena such as inrush current, load switching, capacitor switching and single phase to ground fault. The new scheme is based on wavelet transform algorithm. All of the events for feature extraction and test are simulated using Electro Magnetic Transient Program (EMTP). Results show high accuracy of proposed method.

  12. Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Spivak, B. Z.; Andreev, A. V.

    2016-02-01

    We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric, and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependencies. We also discuss properties of magnetoplasmons and magnetopolaritons, whose existences are entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasiclassical description of electron transport phenomena related to the chiral anomaly.

  13. Deep Inelastic Scattering and Related Phenomena

    NASA Astrophysics Data System (ADS)

    D'Agostini, G.; Nigro, A.

    1997-03-01

    Inelastic Scattering * Instantons and Forward Jets at HERA * Forward Jets at HERA and at the Tevatron * Distinguishing the DGLAP and BFKL Evolutions with Transverse Momentum Spectra * The Properties of Hadrons in Neutrino-Neon Interactions * Transverse Energy Flow Distributions in Deep Inelastic Scattering at HERA * WORKING GROUP 5: Polarized Structure Functions * A New Measurement of the Spin Dependent Structure Functions gp1 and gd1 * Spin Asymmetry in Muon-deuteron Deep Inelastic Scattering on a Transversely Polarized Target * Polarization of Valence and Light Sea Quarks in the Nucleon * Results from SLAC * Inclusive Spin-Dependent DIS from the Nucleon with HERMES * Semi-Inclusive Data from HERMES * Future Measurements of the g1 Spin Structure function with Polarized e - p Collisions and Determination of Δg * A Future Measurement of ΔG at CERN * The Polarized Two-Loop Splitting Functions * Polarized Parton Distributions from a Global NLO-QCD Analysis * Polarized Partons at Next-to-leading Order * Small-x Behaviour of the Structure Function g1 * On Small-x Resummations for the Evolution of Unpolarized and Polarized Non-Singlet and singlet Structure Functions * Parton Model Prediction for g2 * On the Twist-2 Contributions to Polarized Structure Functions and New Sum Rules * Some Aspects of the Polarized Structure Functions * Inclusive Production of Hadrons in l↑p↑ → h↑X and Spin Measurements * Polarized Structure Functions and QPMSR * Polarization Phenomena and Photon Dissociation in Deep-Inelastic Lepton-Nucleon Scattering * Prospects for Measuring Δg from Jets at HERA with Polarized Protons * On the Q2 Dependence of Asymmetry A1 * WORKING GROUP 6: Special Theoretical Topics * Coherence and Final States in DIS at Small x * Unitarity and Saturation in the Dipole Formulation * Radiative Corrections to the Leading log(1/x) Approximation for Structure Functions * Effective Action Approach for Small-x Physics in QCD * Unitarization of BFKL Pomeron * The Role of the

  14. [Non-epileptic motor paroxysmal phenomena in wakefulness in childhood].

    PubMed

    Ruggieri, Víctor L; Arberas, Claudia L

    2013-09-01

    Paroxysmal events in childhood are a challenge for pediatric neurologists, given its highly heterogeneous clinical manifestations, often difficult to distinguish between phenomena of epileptic seizure or not. The non-epileptic paroxysmal episodes are neurological phenomena, with motor, sensory symptoms, and/or sensory impairments, with or without involvement of consciousness, epileptic phenomena unrelated, so no electroencephalographic correlative expression between or during episodes. From the clinical point of view can be classified into four groups: motor phenomena, syncope, migraine (and associated conditions) and acute psychiatric symptoms. In this paper we analyze paroxysmal motor phenomena in awake children, dividing them according to their clinical manifestations: extrapyramidal episodes (paroxysmal kinesiogenic, non kinesiogenic and not related to exercise dyskinesias, Dopa responsive dystonia) and similar symptoms of dystonia (Sandifer syndrome); manifestations of startle (hyperekplexia); episodic eye and head movements (benign paroxysmal tonic upward gaze nistagmus deviation); episodic ataxia (familial episodic ataxias, paroxysmal benign vertigo); stereotyped and phenomena of self-gratification; and myoclonic events (benign myoclonus of early infancy). The detection of these syndromes will, in many cases, allow an adequate genetic counseling, initiate a specific treatment and avoid unnecessary additional studies. Molecular studies have demonstrated a real relationship between epileptic and non-epileptic basis of many of these entities and surely the identification of the molecular basis and understanding of the pathophysiological mechanisms in many of them allow us, in the near future will benefit our patients. PMID:23897137

  15. A systems-analytical approach to macro-evolutionary phenomena.

    PubMed

    Riedl, R

    1977-12-01

    Two sets of evolutionary phenomena find no explanation through current theory. For the static phenomena (such as homology, homonomy, systematic weight, and "Type") there is no causal base, although these principles are responsible for all phenomena of predictable order in the living world. The dynamic phenomena (such as homodynamy, coadaptation, parallel evolution, orthogenesis, Cartesian transformation, typostrophy, hetermorphosis, systemic mutation, and spontaneous atavism) have no causal explanation, although they are responsible for all directed phenomena in macroevolution. These phenomena share one unifying principle which can be explained by a system theory of evolution based on, but extending, the current synthetic theory. This system theory envisages feedback conditions between genotype and phenotype by which the chances of successful adaptation increase if the genetic units, by insertion of superimposed genes, copy the functional dependencies of those phene structures for which they code. This positive feedback of the adaptive speed (or probability) within a single adaptive direction is compensated by negative feedback in most of the alternative directions. The negative feedback operates as selection not be environmental but by systemic conditions developed by the organization of the organism. The consequences are an imitatively organized system of gene interractions, the rehabilitation of classical systematics, the reality of the "natural system," and, in general, the resolution of the contradiction between neodarwinists and their critics, between reductionists and holists, between "a priori" and "a posteriori" views, between idealism and materialism, and between the notions of freedom and of purpose in evolution. PMID:343152

  16. Development of a phenomena identification and ranking table for thermal-hydraulic phenomena during a double-ended guillotine break LOCA in an SRS production reactor

    SciTech Connect

    Hanson, R.G.; Ortiz, M.G.; Bolander, M.A.; Wilson, G.E.

    1989-07-01

    A rising level of scrutiny is being directed toward the Savannah River Site (SRS) production reactors. Improved calculational capabilities are being developed to provide a best estimate analytical process to determine the safe operating margins of the reactors. The Code Scaling, Applicability, and Uncertainty (CSAU) methodology, developed by the US Nuclear Regulatory Commission to support best estimate simulations, is being applied to the best estimate limits analysis for the SRS production reactors. One of the foundational parts of the method is the identification and ranking of all the processes that occur during the specific limiting scenario. The phenomena ranking is done according to their importance to safety criteria during the transient and is used to focus the uncertainty analysis on a sufficient, yet cost effective scope of work. This report documents the thermal-hydraulic phenomena that occur during a limiting break in an SRS production reactor and their importance to the uncertainty in simulations of the reactor behavior. 9 refs., 14 figs., 10 tabs.

  17. Cooperative and collective effects in light of the maximum energy dissipation principle

    NASA Astrophysics Data System (ADS)

    Moroz, Adam

    2010-04-01

    We compare the collective phenomena in physics and cooperative phenomena in biology/chemistry in terms of the variational description. The maximum energy dissipation employed and the cost-like functional was chosen according to an optimal control based formulation. Using this approach, the variational outline has been considered for non-equilibrium thermodynamic conditions. The differences between the application of the proposed approach to the description of cooperative phenomena in chemical/biochemical kinetics and the Landau free energy approach to collective phenomena in physics have been investigated.

  18. Encoding continuous spatial phenomena in GML

    NASA Astrophysics Data System (ADS)

    de Vries, M. E.; Ledoux, H.

    2009-04-01

    of samples of the phenomenon; 2. an interpolation function to reconstruct the continuity of the phenomenon studied. The samples can be any data that was collected to study the phenomenon: a set of scattered points in 2D or 3D; a set of lines (e.g. contour lines coming from a topographic map); a raster image coming from remote sensing or photogrammetry where the value of each pixel represents the temperature of the sea for instance; a triangulated irregular network or its counterpart in 3D; etc. For the interpolation function one must think of the usual interpolation methods (Piecewise, IDW, Kriging, NearestNeighbour, RST, GridInterpolation (Bilinear, Trilinear) etc.), but the list can easily be extended. The proposed conceptual model has the following advantages: - it respects the scientific definition of a field; - it is simple from a theoretical point of view, and thus easy to understand for users. A field is always something continuous; if you only have a dataset of scattered points, this is not a field. - it permits us to model every situation (and that in 2D and in 3D). Thus, no sub-types are necessary. - it uses types already defined in current implementation standards (i.e. GML). - it is extensible. Users can "plug" their own interpolation methods. - more importantly, it is more adapted than raster structures to the kind of datasets found in GIS related applications, because it permits us to always keep the original data that were collected to study a phenomenon, and simply generate new representations that are adapted to a particular use and application. - it is implementable. As a proof of concept a GML application schema was created, and some datasets were made as examples. We have called this prototype encoding language FieldGML, because as much as possible existing elements from the GML specification have been used (but not the coverage type itself). At the workshop we will go deeper into the 'why' and 'how' of the proposed conceptual model for fields

  19. Interferometer-Based Studies of Quantum Hall Phenomena

    NASA Astrophysics Data System (ADS)

    McClure, Douglas Templeton, III

    The fractional quantum Hall (FQH) effect harbors a wealth of unique phenomena, many of which remain mysterious. Of particular interest is the predicted existence of quasi-particles with unusual topological properties, especially in light of recent proposals to observe these properties using electronic interferometers. An introduction to quantum Hall physics and electronic interferometry is given in Chapter 1 of this thesis. The remaining chapters, summarized below, describe a set of experiments in which FQH systems are studied using electronic Fabry-Perot interferometry and related techniques. Since prior studies of electronic Fabry-Perot interferometers revealed unexpected behavior even in the integer quantum Hall (IQH) regime, we began our measurements there. Our initial experiment, presented in Chapter 2, disentangles signatures of Coulomb interaction effects from those of Aharonov-Bohm (AB) interference and provides the first measurement of pure AB interference in these devices. In our next experiment, presented in Chapter 3, we measure AB interference oscillations as a function of an applied dc bias, use their period to study the velocity of the interfering electrons, and study how the oscillations decay as a function of bias and magnetic field. Moving to the FQH regime, applying a similar-sized bias to a quantum point contact leads to long-lasting changes in the strengths and positions of FQH plateaus. The involvement of lattice nuclear spins in this effect, suggested by the long persistence times, is confirmed using NMR-type measurements. Although the exact physical process responsible for the effect remains unclear, its filling-factor dependence provides a striking illustration of composite fermion physics. These measurements are described in Chapter 4. In certain devices, interference oscillations associated with several FQH states are observed. Interpretation of their magnetic-field and gate-voltage periods provides a measurement of quasi-particle charge

  20. Nuclear Molecular Resonances in Heavy-Ion Collisions.

    ERIC Educational Resources Information Center

    Erb, Karl A.; Bromley, D. Allan

    1979-01-01

    Explains that some nuclear scattering phenomena can be attributed to states in which two nuclei are bound to each other at their surfaces, revolving and vibrating for a time before coalescing or disintegrating. (Author/GA)

  1. Using Authentic Oceanographic, Climatic, and Polar Data with Students: Improving Student Understanding of Environmental Phenomena

    NASA Astrophysics Data System (ADS)

    Mckay, M.; Albrecht, M.

    2011-12-01

    Background: Information on climatic change, ocean acidification, and the melting of polar ice sheets fill today's headlines. Students typically lack experience in finding, collecting, or interpreting real oceanographic or climatic data. They are usually provided with data-sets that are not current or representative of actual environmental conditions, or of interest to current scientific investigations. As a result, most students do not have an appreciation of the scope or impact of environmental changes occurring both in the past and in the present day. The focus of this study included climate change, ocean drilling core data from the Integrated Ocean Drilling Program (IODP), phytoplankton/zooplankton studies, and satellite studies of the Monterey Bay, the Arctic, and areas of Paleoclimate interest. Methods: Researchers compared student understanding of paleoclimatic concepts, along with present day oceanographic, climatic, and polar phenomena, when taught using authentic data and data analysis with non-inquiry based instruction. Techniques used in the study by students included the visualization of ocean cores and analysis of cataloged ocean core data. Techniques also included the use of Geographic Information Systems (GIS) and Remote Sensing techniques to analyze present day oceanographic, climatic, and polar phenomena. Results: Study results indicate that students gained a greater understanding of paleoclimate and contemporary environmental phenomena when using authentic data-sets when compared with non-current data-sets. Students also performed better in designing investigations and interpreting results.

  2. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  3. NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.

    SciTech Connect

    PRITYCHENKO, B.

    2006-06-05

    The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

  4. Spin-Dependent Transport Phenomena in Ferromagnet/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Geppert, Chad Christopher

    This dissertation examines several aspects of spin-dependent transport phenomena in epitaxially grown ferromagnet/n-GaAs heterostructures. Further maturation of the field of semiconductor-based spintronics is hindered by difficulties in evaluating device performance across materials systems. Using Fe/n-GaAs and Co2MnSi/n-GaAs heterostructures as a test case, the main goal of this work is to demonstrate how such difficulties may be overcome by (1) specifying a more quantitative framework for evaluating transport parameters and (2) the introduction of a new spin-to-charge conversion phenomenon which may be parameterized by bulk semiconductor parameters. In the introductory chapter, this work is placed in the broader context of developing improved methods for the generation, modulation, and detection of spins. The lateral spin-valve geometry is presented as a concrete example of the typical measurement procedures employed. Chapter 2 presents the charge-based transport properties of these samples and establishes the notation and calculation techniques to be employed in subsequent chapters. In particular, we examine in detail the calculation of the electrochemical potential for a given carrier concentration. Chapter 3 provides a full derivation of the equations governing spin-dependent transport in the large polarization regime. This is applied to the case of extracting spin lifetimes and diffusion rates, demonstrating how quantitative agreement with theoretical predictions may be obtained upon properly accounting for both device geometry and material parameters. Further examination of the boundary conditions applicable to the heterojunctions of these samples demonstrates to what extent device performance may be parameterized across materials systems. Chapter 4 presents experimental observations of a new spin-to-charge conversion phenomenon using a non-magnetic probe. In the presence of a large non-equilibrium spin accumulation, the combination of a non-constant density

  5. 10 CFR 15.20 - Aggressive agency collection activity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Aggressive agency collection activity. 15.20 Section 15.20 Energy NUCLEAR REGULATORY COMMISSION DEBT COLLECTION PROCEDURES Administrative Collection of Claims § 15.20 Aggressive agency collection activity. (a) The NRC shall take aggressive action to collect...

  6. 10 CFR 15.53 - Reasons for suspending collection action.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reasons for suspending collection action. 15.53 Section 15.53 Energy NUCLEAR REGULATORY COMMISSION DEBT COLLECTION PROCEDURES Suspension or Termination of Collection Action § 15.53 Reasons for suspending collection action. The NRC may suspend collection activity when: (a) The NRC cannot locate the debtor;...

  7. Comprehending emergent systems phenomena through direct-manipulation animation

    NASA Astrophysics Data System (ADS)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  8. Challenges in Modeling Astrophysical Phenomena Involving Radiative, Reactive, and Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Leung, C. M.

    1994-05-01

    Computer modeling is an indispensable research tool in advancing our understanding of astrophysical phenomena. With the rapid increase in both quality and quantity of astronomical data from ground-based and space-based facilities, a major challenge facing computational astrophysicists is to construct models with increasing degree of realism (in terms of physical and chemical processes, as well as source geometry) to interpret these data. The continuing advance in computer hardware and the associated increase in computing power allow the inclusion of more realistic microphysics and physico- chemical processes in the models. While many astrophysical phenomena are dominated by the collective effects of gas dynamics, there are many situations in which radiation transport, heterogeneous chemical kinetics, and gas dynamics all play an important role, making the modeling of radiative and reactive flow problems difficult. In particular, the modeling of astrophysical phenomena involving radiative, reactive, and multiphase flows not only increases the number of simultaneous processes occurring but also expands the range of both time and space scales in the problem. Counterintuitive behavior arises from the interactions of the various local, diffusive, convective, and oscillatory phenomena in the flow. Some examples are chemical and dynamical evolution of interstellar clouds involving both gas-phase and grain-surface chemistry, dust formation in radiation-driven stellar winds, and grain alignment in magnetohydrodynamic shocks. In this talk I will first review the basic concepts and computational techniques in modeling astrophysical systems involving radiation hydrodynamics, chemical kinetics, and heterogeneous components. I will describe a few selected results to demonstrate some recent progress made and identify the technical challenges that we still need to overcome.

  9. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    NASA Astrophysics Data System (ADS)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  10. Dynamical analysis of mCAT2 gene models with CTN-RNA nuclear retention

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2015-02-01

    As an experimentally well-studied nuclear-retained RNA, CTN-RNA plays a significant role in many aspects of mouse cationic amino acid transporter 2 (mCAT2) gene expression, but relevant dynamical mechanisms have not been completely clarified. Here we first show that CTN-RNA nuclear retention can not only reduce pre-mCAT2 RNA noise but also mediate its coding partner noise. Then, by collecting experimental observations, we conjecture a heterodimer formed by two proteins, p54nrb and PSP1, named p54nrb-PSP1, by which CTN-RNA can positively regulate the expression of nuclear mCAT2 RNA. Therefore, we construct a sequestration model at the molecular level. By analyzing the dynamics of this model system, we demonstrate why most nuclear-retained CTN-RNAs stabilize at the periphery of paraspeckles, how CTN-RNA regulates its protein-coding partner, and how the mCAT2 gene can maintain a stable expression. In particular, we obtain results that can easily explain the experimental phenomena observed in two cases, namely, when cells are stressed and unstressed. Our entire analysis not only reveals that CTN-RNA nuclear retention may play an essential role in indirectly preventing diseases but also lays the foundation for further study of other members of the nuclear-regulatory RNA family with more complicated molecular mechanisms.

  11. Safety culture in the nuclear versus non-nuclear organization

    SciTech Connect

    Haber, S.B.; Shurberg, D.A.

    1996-10-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period.

  12. Exploring Collective Dynamics in Communication Networks

    PubMed Central

    Yuan, Jian; Mills, Kevin

    2002-01-01

    A communication network, such as the Internet, comprises a complex system where cooperative phenomena may emerge from interactions among various traffic flows generated and forwarded by individual nodes. To identify and understand such phenomena, we model a network as a two-dimensional cellular automaton. We suspect such models can promote better understanding of the spatial-temporal evolution of network congestion, and other emergent phenomena in communication networks. To search the behavior space of the model, we study dynamic patterns arising from interactions among traffic flows routed across shared network nodes, as we employ various configurations of parameters and two different congestion-control algorithms. In this paper, we characterize correlation in congestion behavior within the model at different system sizes and time granularities. As expected, we find that long-range dependence (LRD) appears at some time granularities, and that for a given network size LRD decays as time granularity increases. As network size increases, we find that long-range dependence exists at larger time scales. To distinguish effects due to network size from effects due to collective phenomena, we compare congestion behavior within networks of selected sizes to congestion behavior within comparably sized sub-areas in a larger network. We find stronger long-range dependence for sub-areas within the larger network. This suggests the importance of modeling networks of sufficiently large size when studying the effects of collective dynamics.

  13. Condensed Matter in Ultrafast and Superstrong Fields: Attosecond Phenomena

    NASA Astrophysics Data System (ADS)

    Stockman, Mark

    We present our latest results for a new class of phenomena in condensed matter optics when a strong optical field 1-3 V/Å changes a solid within optical cycle. Such a pulse drives ampere-scale currents in dielectrics and adiabatically controls their properties, including optical absorption and reflection, extreme UV absorption, and generation of high harmonics in a non-perturbative manner on a 100-as temporal scale. Applied to a metal, such a pulse causes an instantaneous and, potentially, reversible change from the metallic to semimetallic properties. We will also discuss our latest theoretical results on graphene that in a strong ultrashort pulse field exhibits unique behavior. New phenomena are predicted for buckled two-dimensional solids, silicene and germanine. These are fastest phenomena in optics unfolding within half period of light. They offer potential for petahertz-bandwidth signal processing, generation of high harmonics on a nanometer spatial scale, etc.

  14. The Center for Natural Phenomena Engineering (CNPE), 1990--1991

    SciTech Connect

    1992-07-01

    The Center for Natural Phenomena Engineering (CNPE) was established to provide a natural phenomena (NP) engineering oversight role within Martin Marietta Energy Systems, Inc. (MMES). In this oversight role CNPE`s goals are to provide coordination and direction of activities related to earthquake and other natural phenomena engineering, including development of hazard definition, development of design criteria, conducting new facility design, development and conducting of testing, performance of analysis and vulnerability studies, development of analysis methodology, and provision of support for preparation of safety analysis reports for the five MMES sites. In conducting these activities it is CNPE`s goal to implement the elements of Total Quality Management (TQM) in a cost-effective manner, providing its customers with a quality product. This report describes 1990--1991 activities.

  15. Diffusion phenomena of cells and biomolecules in microfluidic devices

    PubMed Central

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-01-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules. PMID:26180576

  16. Phenomena Identification and Ranking Technique (PIRT) Panel Meeting Summary Report

    SciTech Connect

    Mark Holbrook

    2007-07-01

    Phenomena Identification and Ranking Technique (PIRT) is a systematic way of gathering information from experts on a specific subject and ranking the importance of the information. NRC, in collaboration with DOE and the working group, conducted the PIRT exercises to identify safety-relevant phenomena for NGNP, and to assess and rank the importance and knowledge base for each phenomenon. The overall objective was to provide NRC with an expert assessment of the safety-relevant NGNP phenomena, and an overall assessment of R and D needs for NGNP licensing. The PIRT process was applied to five major topical areas relevant to NGNP safety and licensing: (1) thermofluids and accident analysis (including neutronics), (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat for hydrogen cogeneration.

  17. Direct observation of thitherto unobservable quantum phenomena by using electrons

    PubMed Central

    Tonomura, Akira

    2005-01-01

    Fundamental aspects of quantum mechanics, which were discussed only theoretically as “thought experiments” in the 1920s and 1930s, have begun to frequently show up in nanoscopic regions owing to recent rapid progress in advanced technologies. Quantum phenomena were once regarded as the ultimate factors limiting further miniaturization trends of microstructured electronic devices, but now they have begun to be actively used as the principles for new devices such as quantum computers. To directly observe what had been unobservable quantum phenomena, we have tried to develop bright and monochromatic electron beams for the last 35 years. Every time the brightness of an electron beam improved, fundamental experiments in quantum mechanics became possible, and quantum phenomena became observable by using the wave nature of electrons. PMID:16150719

  18. Current program to investigate phenomena in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Oran, William A.

    1986-01-01

    Current NASA Microgravity Science and Applications Division Shuttle and terrestrial experiments to acquire basic data for space-based materials processing activities are summarized. The research is carried out to increase the understanding and to improve ground-based and space-based processing, to enhance the understanding of basic physical phenomena, and to characterize the forces which effect low-gravity processing. The main areas of research are crystal growth, metallic alloy solidification, bioseparation processes, blood rheology, containerless processing, and studies of combustion processes, chemical and transport phenomena, cloud microphysics and fluid behavior and surface phenomena in microgravity. Specific experiments, which exemplify the research goals and were performed on KC-135 flights along Keplerian trajectories and on Shuttle missions, are described.

  19. Group process and group phenomena on the Internet.

    PubMed

    Weinberg, H

    2001-07-01

    This article identifies group processes and group phenomena in discussion lists on the Internet and examines the differences and similarities with the processes in small and large groups. Group dynamics and phenomena, such as boundaries, cohesion, transference, scapegoating, and the leader's role are addressed. Large group features, such as alienation, vulnerability, and the vast amount of issues discussed in parallel are described. There are similarities between the discussion list and small groups on issues of cohesion and group norms, and in the psychological mechanisms of transference and scapegoating. There are differences regarding the contract, boundaries, leaving the group, and extra-group socialization. Although many of the phenomena described resemble a large group, a discussion list on the Internet maintains the illusion of being a small group and frequently acts like one. While a virtual therapy group would be somewhat different from a real group, it could nonetheless be useful. PMID:11447785

  20. Nuclear weapon detection categorization analysis

    SciTech Connect

    1997-12-01

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  1. Conference on electrical insulation and dielectric phenomena (Annual Report)

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers discussed at the Annual Report, 1985 Conference on Dielectric Phenomena and Electrical Insulation. The topics covered at the conference were: a study of streamer initiation in liquid hydrocarbons; simulation and verification of transient EHD motion, effects of hydrostatic pressure on the prebreakdown phenomena in dielectric liquids; measurements of surface changes on the barrier and their effects on the oil gap breakdown; space change and ionic conduction in transformer oil; high voltage engineering in space; design of solid insulation systems; and future of high voltage transmission. This description provides only a partial list of the contents.

  2. RELAP5-3D code validation for RBMK phenomena

    SciTech Connect

    Fisher, J.E.

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  3. RELAP5-3D Code Validation for RBMK Phenomena

    SciTech Connect

    Fisher, James Ebberly

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  4. Quantum Simulator for Transport Phenomena in Fluid Flows

    PubMed Central

    Mezzacapo, A.; Sanz, M.; Lamata, L.; Egusquiza, I. L.; Succi, S.; Solano, E.

    2015-01-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors. PMID:26278968

  5. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  6. Radioactive γ/β tracer to explore dangerous technogenic phenomena

    NASA Astrophysics Data System (ADS)

    Nagorsky, P. M.; Yakovleva, V. S.; Makarov, E. O.; Firstov, P. P.; Kondratyeva, A. G.; Stepanenko, A. A.

    2016-06-01

    A radioactive γ/β tracer to explore dangerous technogenic phenomena has been proposed: the ratio of the measured flux density of β- and γ-radiations in the surface layer of the atmosphere. The time dependence analysis of the ratio of β- and γ-pulse count rate has been carried out. A significant increase of the γ/β ratio was recorded under the cyclone passing through Japan (Fukushima) to Kamchatka. The proposed γ/β tracer can be a very sensitive indicator of nonstationary processes related to hazardous natural and technogenic phenomena.

  7. Efficient Attosecond Phenomena in the Relativistic {lambda}3 Regime

    SciTech Connect

    Naumova, Natalia; Mourou, Gerard; Nees, John

    2006-04-07

    Particle-in-cell simulations of relativistically strong laser pulses interacting with overdense plasma targets predict that coherent motion of electrons leads to the efficient generation of strong attosecond electromagnetic pulses and dense attosecond electron bunches. The optimal conditions for these attosecond phenomena are achieved in the {lambda}3 regime, when few-cycle laser pulses are focused to a wavelength-limited spot, producing maximal intensity and maximal gradients with a given energy. The natural synchronism of these attosecond phenomena should enable a kind of relativistic attosecond optoelectronics.

  8. Quantum Simulator for Transport Phenomena in Fluid Flows.

    PubMed

    Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-01-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors. PMID:26278968

  9. Signatures of α Clustering in Light Nuclei from Relativistic Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Ruiz Arriola, Enrique

    2014-03-01

    We argue that relativistic nuclear collisions may provide experimental evidence of α clustering in light nuclei. A light α-clustered nucleus has a large intrinsic deformation. When collided against a heavy nucleus at very high energies, this deformation transforms into the deformation of the fireball in the transverse plane. The subsequent collective evolution of the fireball leads to harmonic flow reflecting the deformation of the initial shape, which can be measured with standard methods of relativistic heavy-ion collisions. We illustrate the feasibility of the idea by modeling the C12-Pb208 collisions and point out that very significant quantitative and qualitative differences between the α-clustered and uniform C12 nucleus occur in such quantities as the triangular flow, its event-by-event fluctuations, or the correlations of the elliptic and triangular flows. The proposal offers a possibility of studying low-energy nuclear structure phenomena with "snapshots" made with relativistic heavy-ion collisions.

  10. Gloss Phenomena and Image Analysis of Atomic Force Microscopy in Molecular and Cell Biology

    PubMed Central

    Zhu, Jie; Sabharwal, Tanya; Guo, Lianhong; Kalyanasundaram, Aruna; Wang, Guodong

    2010-01-01

    Summary Proper sample preparation, scan setup, data collection and image analysis are key factors in successful atomic force microscopy which can avoid gloss phenomena effectively from unreasonable manipulations or instrumental defaults. Fresh cleaved mica and newly treated glass cover were checked firstly as the substrates for all of the sample preparation for atomic force microscopy. Then, crystals contamination from buffer were studied separately or combined with several biologic samples, and the influence of scanner, scan mode and cantilever to data collection were also discussed intensively using molecular and cellular samples. At last, images treatment and analysis with off-line software had been focused on standard and biologic samples, and artificial glosses were highly considered for their high probability in occurring. PMID:19191267

  11. Structural walkdown procedure for natural phenomena engineering analyses at the Oak Ridge Y-12 Plant

    SciTech Connect

    1992-06-01

    This walkdown plan outlines the process to be followed and the pertinent structural information to be collected for the assessment of the adequacy of existing or future natural phenomena analyses for the Oak Ridge Y-12 Plant. This approach is being followed in order to develop input to assess that the critical facilities were constructed in accordance with the design drawings, that any major configuration changes to the principle structures are identified and that the location of major equipment loadings are defined. This structural walkdown plan is not intended to collect detailed information for the purpose of developing as-built structural drawings or to evaluate equipment or safety system/component interaction. Implementation of this plan is required for the walkdown phase of the Y-12 Plant natural phenomena analyses. The types of walkdowns to be performed in this procedure include: (1) A walkdown based on a sampling approach to collect detailed structural design information relative to member sizes, orientation, connection, and base details to support the conclusion that the structural configuration is consistent with the design drawings. (2) A walkdown to collect detailed information relative to equipment loadings on top and bottom of floors and roof. (3) A walkthrough inspection of all areas of the building to identify any areas of major configuration change from design drawings. Basic floor loading information such as size, location, and weight is to be obtained. Actual dead loads and live loads are to be determined. Floor load drawings will be developed to show the location, weights, etc., for major dead and live loads. One walkdown package will be generated for each of the following Y-12 Plant structures: Buildings 9212, 9980, 9996, 9723-25, 9828-1, 9828-2, 9828-3, 9767-10, 9812, 9815, 9818, 9999, 9423. The justification for these walkdowns is the potential for release of radioactive and/or other hazardous materials.

  12. Nuclear magnetometry studies of spin dynamics in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Watanabe, S.; Hirayama, Y.

    2014-12-01

    We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.

  13. Nuclear power and nuclear weapons

    SciTech Connect

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

  14. Collective Political Opinion Formation in Nonlinear Social Interaction

    NASA Astrophysics Data System (ADS)

    Kim, Soo Yong; Park, Chung Hyun; Kim, Kyungsik

    We have presented a numerical model of a collective opinion formation procedure to explain political phenomena such as two-party and multi-party systems in politics, political unrest, military coup d'etats and netizen revolutions. Nonlinear interaction with binary and independent decision making processes can yield various collective behaviors or collective political opinions. Statistical physics and nonlinear dynamics may provide useful tools to study various socio-political dynamics.

  15. Interfacial Transport Phenomena Stability in Liquid-Metal/Water Systems

    SciTech Connect

    Michael Corradini; Anderson, Mark; Bonazza, Riccardo; Cho, D. H.

    2002-12-19

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area can give rise to large heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability.In order to investigate the characteristics of such a molten metal/water direct contact heat exchanger, a series of experiments were performed in both a 1-D and 2-d experimental facility. The facilities primarily consist of a liquid-metal melt chamber, heated test section, water pumping/injection system, and steam suppression tank (condenser). A real-time high energy X-ray imaging system along with several temperature measurements and flow measurements were developed and utilized to measure the multiphase flow and obtain an empirical database of local as well as overall system parameters. Results have found volumetric void fraction between 0.05-0.2, overall volumetric heat transfer coefficient ranging from 4-20 kW/m3K, evaporation zone lengths on the order of 10cm and local heat transfer coefficients varying between 500-5000 W/m2K depending on the inlet water injection conditions and system pressure. Time-dependent void fraction distribution and generated water-vapor bubble characteristics (i.e. bubble formation rate, bubble rise velocity, and bubble surface area) were measured using an X-ray image analysis technique. These measurements aided in the determination of the volumetric thermal performance as well as well as the first detailed information on local interfacial phenomenon. This information in turn resulted in the first experimental measurements of the local heat transfer coefficient

  16. Binding Phenomena within a Reductionist Theory of Grammatical Dependencies

    ERIC Educational Resources Information Center

    Drummond, Alex

    2011-01-01

    This thesis investigates the implications of binding phenomena for the development of a reductionist theory of grammatical dependencies. The starting point is the analysis of binding and control in Hornstein (2001, 2009). A number of revisions are made to this framework in order to develop a simpler and empirically more successful account of…

  17. Linguistic Studies on English Pronominalization: Syntactic, Discourse and Pragmatic Phenomena.

    ERIC Educational Resources Information Center

    Barnitz, John G.

    To integrate many of the theoretical linguistic studies examining pronoun reference, this paper focuses on tracing the shift from purely transformational syntactic studies of intrasentential phenomena to the wider orientations of discourse and pragmatic studies. The first section describes the classic studies of pronominalization within the…

  18. The Discovery of Transient Phenomena by NASA's K2 Mission

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.

    2016-01-01

    The NASA K2 space mission is photometrically monitoring fields along the ecliptic to achieve a variety of science goals. These goals involve time variable observations of Solar System objects, extrasolar planets, star clusters, supernovae, and more. Because K2 observes each of its fields for just ~80 days, it has a finite baseline over which to acquire observations of photometrically varying astrophysical objects. Thanks to their extended baseline of observations, wide-field ground-based photometric and spectroscopic surveys that have been monitoring the sky for years can provide robust constraints on transiting planets, supernova events, or other transient phenomena that have been newly identified in K2 data. I will discuss the opportunities for synergistic activities between the K2 space mission and such long-running ground-based surveys as HATNet, KELT, SuperWASP, and APOGEE that will maximize the scientific output from these surveys. In particular, I will present results from a search for transient phenomena in K2 data and will use ground-based survey data to aid the characterization of these phenomena. Examples of these phenomena include single planetary transit events and stars with long-duration dimmings caused by an eclipse of a protoplanetary disk. I will also discuss the benefits that upcoming surveys like the NASA Transiting Exoplanet Survey Satellite (TESS) mission and the Large Synoptic Survey Telescope (LSST) will gain from long-term ground-based surveys.

  19. A Curriculum Framework Based on Archetypal Phenomena and Technologies.

    ERIC Educational Resources Information Center

    Zubrowski, Bernie

    2002-01-01

    Presents an alternative paradigm of curriculum development based on the theory of situated cognition. This approach starts with context rather than concept, gives greater weight to students' interpretative frameworks, and provides for a more holistic development. Presents a grade 1-8 framework that uses archetypal phenomena and technologies as the…

  20. New Phenomena in NC Field Theory and Emergent Spacetime Geometry

    SciTech Connect

    Ydri, Badis

    2010-10-31

    We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar {phi}{sup 4} field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at {theta} = 0 there must exist a novel fixed point at {theta} = {infinity} corresponding to the quartic hermitian matrix model.