Science.gov

Sample records for nuclear core spectroscopy

  1. Classification of iron-sulfur cores in ferredoxins by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Nagayama, K; Ozaki, Y; Kyogoku, Y; Hase, T; Matsubara, H

    1983-09-01

    A 1H nuclear magnetic resonance (NMR) study was carried out on various ferredoxins which possess one of three types of iron-sulfur clusters, (2Fe-2S), (3Fe-3S), or (4Fe-4S). In the isolated form, (2Fe-2S) ferredoxins from spinach (Spinacea oleracia), pokeweed (Phytolacca americana), a blue-green alga (Spirulina platensis), and a halobacterium (Halobacterium halobium) exhibited two broad resonances common in chemical shift at the region downfield of 10 ppm. In their reduced forms, seven contact-shifted resonances appeared spread over 30 ppm. Although the positions of the contact-shifted resonances in the reduced state differed among the four, a common trend in the temperature dependence of their resonance positions was recognized. Two (4Fe-4S) ferredoxins from Bacillus stearothermophilus and Bacillus thermoproteolyticus exhibited almost indistinguishable spectral patterns in both the oxidized and reduced forms. The ferricyanide-treated ferredoxins of B. stearothermophilus and B. thermoproteolyticus showed characteristic contact-shifted resonances distinct from the spectra of the original (4Fe-4S) ferredoxins. This corresponds to the recent finding of the interconversion of (4Fe-4S) and (3Fe-3S) clusters with ferricyanide in the ferredoxin. Based on our data together with reported NMR data on other ferredoxins, contact-shift resonances of three types of clusters were tabulated. The reliability of NMR classification increases when we compare the NMR spectra of a ferredoxin with the classification standards at the two redox states. Moreover, not only the absolute values of the chemical shifts of contact-shifted resonances but also their temperature dependence give distinctive information applicable to iron core identification. PMID:6417123

  2. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  3. NUCLEAR REACTOR CORE DESIGN

    DOEpatents

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  4. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  5. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  6. High-spin nuclear spectroscopy

    SciTech Connect

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  7. Nuclear core and fuel assemblies

    DOEpatents

    Downs, Robert E.

    1981-01-01

    A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

  8. Nuclear gas core propulsion research program

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  9. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  10. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  11. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  12. Neural networks for nuclear spectroscopy

    SciTech Connect

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  13. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  14. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect

    Raman, S.

    1982-01-01

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  15. Gas Core Nuclear Rocket Feasibility Project

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  16. Gas core nuclear rocket feasibility project

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  17. Hot cell remote nuclear scanning of tank core samples

    SciTech Connect

    Beck, M.A.; Blewett, G.R.; Troyer, G.L.; Keele, B.D.; Addleman, R.S.

    1995-11-01

    A Westinghouse Hanford Company (WHC)-designed remote measurement system has been constructed for gamma and beta isotopic characterization of Hanford Site high-level waste tank core sample materials in a hot cell. A small, collimated, planar CdZnTe detector is used for gamma-ray spectroscopy. Spectral resolution of 2% full-width-at-maximum at 662 kiloelectronvolts (keV) has been obtained remotely using risetime compensation and limited pulse shape discrimination (PSD). Isotopic measurement of high-energy beta emitters was accomplished with a ruggedly made, deeply depleted, surface barrier silicon detector. The primary function of the remote nuclear screening system is to provide a fast, qualitative stratigraphic assessment (with isotopic information) of high-level radioactive material. Both gamma spectroscopy and beta measurements have been performed on actual core segments. Differences in radionuclide content, which correspond with color or texture variations, have been seen in constant cross section core samples, although for many samples the activity variation can be ascribed to geometry and/or mass factors. Discussion of the design, implementation, results and potential benefits will be presented.

  18. Open cycle gas core nuclear rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert

    1991-01-01

    The open cycle gas core engine is a nuclear propulsion device. Propulsion is provided by hot hydrogen which is heated directly by thermal radiation from the nuclear fuel. Critical mass is sustained in the uranium plasma in the center. It has typically 30 to 50 kg of fuel. It is a thermal reactor in the sense that fissions are caused by absorption of thermal neutrons. The fast neutrons go out to an external moderator/reflector material and, by collision, slow down to thermal energy levels, and then come back in and cause fission. The hydrogen propellant is stored in a tank. The advantage of the concept is very high specific impulse because you can take the plasma to any temperature desired by increasing the fission level by withdrawing or turning control rods or control drums.

  19. Laser spectroscopy for nuclear structure physics

    NASA Astrophysics Data System (ADS)

    Campbell, P.; Moore, I. D.; Pearson, M. R.

    2016-01-01

    High-resolution laser spectroscopy is an established powerful tool in the study of nuclear shape, size and multipole moments. Measurements of the hyperfine structures and isotope shifts in the atomic spectra of radioactive nuclei provide unique insight into the evolution of the nuclear macroscopic shape and microscopic structure. These measurements can be made with high precision and high sensitivity and applied directly on-line at radioactive nuclear beam facilities. Recent measurements, advances at facilities and the future direction of the field are reviewed. A summary of experimental data is presented.

  20. CAC - NUCLEAR THERMAL ROCKET CORE ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1994-01-01

    One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  1. The Diversity of Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Corey W.; Alekseyev, Viktor Y.; Allwardt, Jeffrey R.; Bankovich, Alexander J.; Cade-Menun, Barbara J.; Davis, Ronald W.; Du, Lin-Shu; Garcia, K. Christopher; Herschlag, Daniel; Khosla, Chaitan; Kraut, Daniel A.; Li, Qing; Null, Brian; Puglisi, Joseph D.; Sigala, Paul A.; Stebbins, Jonathan F.; Varani, Luca

    The discovery of the physical phenomenon of Nuclear Magnetic Resonance (NMR) in 1946 gave rise to the spectroscopic technique that has become a remarkably versatile research tool. One could oversimplify NMR spectros-copy by categorizing it into the two broad applications of structure elucidation of molecules (associated with chemistry and biology) and imaging (associated with medicine). But, this certainly does not do NMR spectroscopy justice in demonstrating its general acceptance and utilization across the sciences. This manuscript is not an effort to present an exhaustive, or even partial review of NMR spectroscopy applications, but rather to provide a glimpse at the wide-ranging uses of NMR spectroscopy found within the confines of a single magnetic resonance research facility, the Stanford Magnetic Resonance Laboratory. Included here are summaries of projects involving protein structure determination, mapping of intermolecular interactions, exploring fundamental biological mechanisms, following compound cycling in the environmental, analysis of synthetic solid compounds, and microimaging of a model organism.

  2. Quantum Monte Carlo for the Spectroscopy of Core Excited States

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry

    2012-02-01

    X-ray absorption spectroscopy is a powerful experimental tool that is capable of delivering valuable information about very delicate aspects of electronic structure and reveals details of the local chemical environment in many systems of fundamental and applied importance. The rigorous interpretation of core-level spectra requires very accurate quantum chemical simulations. The trade-off between feasibility of treatment of large systems and consistency in description of electron correlation tremendously hinders the generation of accurate theoretical results for many experimental studies. We show that the fixed-node diffusion Monte Carlo (FN-DMC) approach can be used straightforwardly for the accurate simulation of core-level spectra. Basic methodological aspects are addressed, including the strategy for the construction of adequate trial wave functions. Examples of FN-DMC calculations of core-level spectra of water and pyrrole are presented. The possibility of the simulation of X-ray absorption spectra of solvent-solute systems is discussed.

  3. Covariance Spectroscopy Applied to Nuclear Radiation Detection

    SciTech Connect

    Trainham, R., Tinsley, J., Keegan, R., Quam, W.

    2011-09-01

    Covariance spectroscopy is a method of processing second order moments of data to obtain information that is usually absent from average spectra. In nuclear radiation detection it represents a generalization of nuclear coincidence techniques. Correlations and fluctuations in data encode valuable information about radiation sources, transport media, and detection systems. Gaining access to the extra information can help to untangle complicated spectra, uncover overlapping peaks, accelerate source identification, and even sense directionality. Correlations existing at the source level are particularly valuable since many radioactive isotopes emit correlated gammas and neutrons. Correlations also arise from interactions within detector systems, and from scattering in the environment. In particular, correlations from Compton scattering and pair production within a detector array can be usefully exploited in scenarios where direct measurement of source correlations would be unfeasible. We present a covariance analysis of a few experimental data sets to illustrate the utility of the concept.

  4. Positron Annihilation Spectroscopy Study of Barnett Shale Core

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu; Alsleben, Helge; Quarles, Carroll A.

    Measurements are reported of positron annihilation lifetime and Doppler broadening parameters on 14 samples of Barnett shale core selected from 196 samples ranging from depths of 6107 to 6402 feet. The Barnett shale core was taken from EOG well Two-O-Five 2H located in Johnson county TX. The selected samples are dark clay-rich mudstone consisting of fine-grained clay minerals. The samples are varied in shape, typically a few inches long and about 1/2 inch in width and thickness, and are representative of the predominant facies in the core. X-ray fluorescence (XRF), X-ray diffraction (XRD), petrographic analysis and geochemical analysis of total organic carbon (TOC) were already available for each of the selected samples. The lifetime data are analyzed in terms of three lifetime components with the shortest lifetime fixed at 125 ps. The second lifetime is attributed to positron annihilation in the bulk and positron trapping; and the third lifetime is due to positronium. Correlations of the lifetimes, intensities, the average lifetime and S and W parameters with TOC, XRF and XRD parameters are discussed. The observed correlations suggest that positron spectroscopy may be a useful tool in characterizing shale.

  5. Spectroscopy of Rb atoms in hollow-core fibers

    SciTech Connect

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-05-15

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  6. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  7. Evolution of nuclear spectroscopy at Saha Institute of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.

    2001-07-01

    Experimental studies of nuclear excitations have been an important subject from the earliest days when the institute was established. The construction of 4 MeV proton cyclotron was mainly aimed to achieve this goal. Early experiments in nuclear spectroscopy were done with radioactive nuclei with the help of beta and gamma ray spectrometers. Small NaI(Tl) detectors were used for gamma--gamma coincidence, angular correlation and life time measurements. The excited states nuclear magnetic moments were measured in perturbed gamma--gamma angular correlation experiments. A high transmission magnetic beta ray spectrometer was used to measure internal conversion coefficients and beta--gamma coincidence studies. A large number of significant contributions were made during 1950--59 using these facilities. Proton beam in the cyclotron was made available in the late 1950's and together with 14 MeV neutrons obtained from a C-W generator a large number of short-lived nuclei were investigated during 1960's and 1970's. The introduction of high resolution Ge gamma detectors and the improved electronics helped to extend the spectroscopic work which include on-line (p,p'g) and (p,n g) reaction studies. Nuclear spectroscopic studies entered a new phase in the 1980's with the availability of 40--80 MeV alpha beam from the variable energy cyclotron at VECC, Calcutta. A number of experimental groups were formed in the institute to study nuclear level schemes with (a,xn g) reactions. Initially only two unsuppressed Ge detectors were used for coincidence studies. Later in 1989 five Ge detectors with a large six segmented NaI(Tl) multiplicity-sum detector system were successfully used to select various channels in (a ,xn g) reactions. From 1990 to date a variety of medium energy heavy ions were made available from the BARC-TIFR Pelletron and the Nuclear Science Centre Pelletron. The state of the art gamma detector arrays in these centres enabled the Saha Institute groups to undertake more

  8. Nuclear spectroscopy above isomers in {sub 67}{sup 148}Ho{sub 81} and {sub 67}{sup 149}Ho{sub 82} nuclei: Search for core-excited states in {sup 149}Ho

    SciTech Connect

    Kownacki, J.; Napiorkowski, P. J.; Zielinska, M.; Kordyasz, A.; Srebrny, J.; Droste, Ch.; Morek, T.; Grodner, E.; Ruchowska, E.; Korman, A.; Czarnacki, W.; Kisielinski, M.; Kowalczyk, M.; Wrzosek-Lipska, K.; Hadynska-KlePk, K.; Mierzejewski, J.; Lieder, R. M.; Perkowski, J.; Andrzejewski, J.; Krol, A.

    2010-04-15

    The excited states of {sup 148}Ho and {sup 149}Ho isotopes are studied using gamma-ray and electron spectroscopy in off-beam and in-beam modes following {sup 112,114}Sn({sup 40}Ar,xnyp) reactions. Experiments include measurements of single gamma-rays and conversion electron spectra as well as gamma-gamma, electron-gamma, gamma-t, and gamma-gamma-t coincidences with the use of the OSIRIS-II 12-HPGe array and conversion electron spectrometer. Based on the present results, the level schemes of {sup 148}Ho and {sup 149}Ho are revised and significantly extended, up to about 4 and 5 MeV of excitation energy, respectively. Spin and parity of 5{sup -} are assigned to the 9.59-s isomer in {sup 148}Ho based on conversion electron results. Previously unobserved gamma rays feeding the 10{sup +} isomer in {sup 148}Ho and the 27/2{sup -} isomer in {sup 149}Ho nuclei are proposed. Shell-model calculations are performed. Possible core-excited states in {sup 149}Ho are discussed.

  9. The Impact of Nuclear Physics During Stellar Core Collapse

    SciTech Connect

    Hix, William Raphael; Baird, Mark L; Lentz, Eric J; Messer, Bronson; Mezzacappa, Anthony

    2008-01-01

    Nuclear electron capture and the nuclear equation of state play important roles during the collapse of a massive star and the subsequent supernova. The nuclear equation of state controls the nature of the bounce which initially forms the supernova shock while electron capture determines the location where the shock forms. Advances in nuclear structure theory have allowed a more realistic treatment of electron capture on heavy nuclei to be developed. We will review how this improvement has led to a change in our understanding of stellar core collapse, with electron capture on nuclei with masses larger than 50 found to dominate electron capture on free protons, resulting is significant changes in the hydrodynamics of core collapse and bounce. We will also demonstrate the impact of a variety of nuclear equations of state on supernova shock propagation. Of particular note is the interplay between the nuclear composition determined by the equation of state and nuclear electron capture.

  10. NAIS: Nuclear activation-based imaging spectroscopy

    SciTech Connect

    Günther, M. M.; Britz, A.; Harres, K.; Hoffmeister, G.; Nürnberg, F.; Otten, A.; Pelka, A.; Roth, M.; Clarke, R. J.; Vogt, K.

    2013-07-15

    In recent years, the development of high power laser systems led to focussed intensities of more than 10{sup 22} W/cm{sup 2} at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

  11. Nuclear waste disposal utilizing a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  12. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, M.L.; Rosenstein, R.G.

    1998-10-13

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

  13. Mox fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-05-15

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

  14. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    1998-01-01

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  15. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-07-17

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  16. Flexible Stoichiometry and Asymmetry of the PIDDosome Core Complex by Heteronuclear NMR Spectroscopy and Mass Spectrometry

    PubMed Central

    Nematollahi, Lily A.; Garza-Garcia, Acely; Bechara, Chérine; Esposito, Diego; Morgner, Nina; Robinson, Carol V.; Driscoll, Paul C.

    2015-01-01

    Homotypic death domain (DD)–DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130–158 kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional 1H,15N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. 13C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. PMID:25528640

  17. Flexible stoichiometry and asymmetry of the PIDDosome core complex by heteronuclear NMR spectroscopy and mass spectrometry.

    PubMed

    Nematollahi, Lily A; Garza-Garcia, Acely; Bechara, Chérine; Esposito, Diego; Morgner, Nina; Robinson, Carol V; Driscoll, Paul C

    2015-02-27

    Homotypic death domain (DD)-DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130-158kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional (1)H,(15)N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. (13)C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. PMID:25528640

  18. Nuclear Physics in Core-Collapse Supernovae

    SciTech Connect

    Liebendoerfer, Matthias; Fischer, T.; Froelich, C.; Hix, William Raphael; Langanke, Karlheinz; Martinez-Pinedo, Gabriel; Mezzacappa, Anthony; Scheidegger, Simon; Thielemann, Friedrich-Karl W.; Whitehouse, Stuart

    2008-01-01

    Core-collapse and the launch of a supernova explosion form a very short episode of few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 1053 erg is transformed into observable neutrino-, kinetic-, and electromagnetic radiation energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

  19. Fluorescence studies of cyanobacterial phycobiliproteins: I. Spectroscopy of allophycocyanin core complexes. II. Spectroscopy of two phycobilisome core insertion mutants

    SciTech Connect

    Maxson, P.

    1988-10-01

    The work described here relates to the mechanisms governing energy transfer in the core polypeptides of the cyanobacterial phycobilisome. Two approaches are represented: measurements were made on isolated core components for which a great deal of structural information is available; and the fluorescence properties were characterized for the whole phycobilisome from two phycobilisome core insertion mutants. 130 refs.

  20. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  1. Evaluating nuclear physics inputs in core-collapse supernova models

    SciTech Connect

    Lentz, Eric J; Hix, William Raphael; Baird, Mark L; Messer, Bronson; Mezzacappa, Anthony

    2010-01-01

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present the results of our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions. We present the results of our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions. We also investigate the feedback between different EoSs and opacities in the context of different progenitors.

  2. Thermal barrier and support for nuclear reactor fuel core

    DOEpatents

    Betts, Jr., William S.; Pickering, J. Larry; Black, William E.

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  3. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species

    PubMed Central

    2015-01-01

    X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pump–probe technique. PMID:26568779

  4. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGESBeta

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  5. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  6. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  7. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Horan, L. E.; Ruth, A. A.; Garcia Gunning, F. C.

    2012-12-01

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample.

  8. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

    PubMed

    Horan, L E; Ruth, A A; Gunning, F C Garcia

    2012-12-14

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample. PMID:23249014

  9. Spatially resolved Raman spectroscopy on indium-catalyzed core-shell germanium nanowires: size effects.

    PubMed

    Xiang, Y; Zardo, I; Cao, L Y; Garma, T; Heiss, M; Morante, J R; Arbiol, J; Brongersma, M L; Fontcuberta I Morral, A

    2010-03-12

    The structure of indium-catalyzed germanium nanowires is investigated by atomic force microscopy, scanning confocal Raman spectroscopy and transmission electron microscopy. The nanowires are formed by a crystalline core and an amorphous shell. We find that the diameter of the crystalline core varies along the nanowire, down to few nanometers. Phonon confinement effects are observed in the regions where the crystalline region is the thinnest. The results are consistent with the thermally insulating behavior of the core-shell nanowires. PMID:20154375

  10. Robustness of Nuclear Core Activity Reconstruction by Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    Inspired from meteorological applications, data assimilation techniques can be used to perform an optimal reconstruction of the neutronic field in a nuclear reactor core. Measurements and simulation information, coming from a numerical model, are merged together to build a better estimation of the whole field. In this paper, we first study the robustness of the method when the amount of measured information varies. We then study the influence of the nature of the instruments and their spatial repartition on the efficiency of the field reconstruction. This study also highlights the instruments providing most information within a data assimilation procedure. The study of various network configurations of instruments in the nuclear core establishes that the influence of each instrument depends both on the individual instrumentation location as well as on the chosen network.

  11. Architecture of the symmetric core of the nuclear pore.

    PubMed

    Lin, Daniel H; Stuwe, Tobias; Schilbach, Sandra; Rundlet, Emily J; Perriches, Thibaud; Mobbs, George; Fan, Yanbin; Thierbach, Karsten; Huber, Ferdinand M; Collins, Leslie N; Davenport, Andrew M; Jeon, Young E; Hoelz, André

    2016-04-15

    The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC's structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies. PMID:27081075

  12. Robustness of nuclear core activity reconstruction by data assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    2011-02-01

    We apply a data assimilation technique, inspired from meteorological applications, to perform an optimal reconstruction of the neutronic activity field in a nuclear core. Both measurements and information coming from a numerical model are used. We first study the robustness of the method when the amount of measured information decreases. We then study the influence of the nature of the instruments and their spatial repartition on the efficiency of the field reconstruction.

  13. Nuclear reactor spacer grid and ductless core component

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  14. K-shell double core-hole spectroscopy in molecules

    NASA Astrophysics Data System (ADS)

    Piancastelli, M. N.

    2013-10-01

    A great deal of attention has been devoted in the last few years to photoionization processes in isolated molecules leading to the formation of double core-hole (DCH) states. There are two main experimental avenues to induce such processes, namely single-photon absorption followed by the simultaneous ejection of two core electrons, and x-ray-induced multiphoton processes leading to the production of DCH states via the sequential absorption of two soft x- ray photons on a time scale on the order of the molecular Auger lifetime (4-8 femtoseconds for light elements). The formation of molecular two-site (ts) DCH states, in particular, shows great potential as a powerful tool for chemical analysis. A compelling motivation for the study of ts-DCH states is their ability to probe the local chemical environment more sensitively than either single core-hole (SCH) or single-site (ss) DCH states. The enhanced sensitivity originates from the fact that the double ionization potential (DIP) of ts-DCH states is directly coupled to induced changes in the valence charge distribution at the two different atomic sites. Here a review of the recent literature is presented on both types of experiments, and on the related theoretical work.

  15. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    PubMed

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-01

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts. PMID:27262277

  16. Nuclear Physics the core of matter, the fuel of stars.

    SciTech Connect

    Schiffer, J. P.; Physics

    1999-01-01

    Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe

  17. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  18. SPECTRW: A software package for nuclear and atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalfas, C. A.; Axiotis, M.; Tsabaris, C.

    2016-09-01

    A software package to be used in nuclear and atomic spectroscopy is presented. Apart from analyzing γ and X-ray spectra, it offers many additional features such as de-convolution of multiple photopeaks, sample analysis and activity determination, detection system evaluation and an embedded code for spectra simulation.

  19. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  20. Two level scheme solvers for nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; DiJulio, Douglas; Cederkäll, Joakim

    2011-10-01

    A program for building level schemes from γ-spectroscopy coincidence data has been developed. The scheme builder was equipped with two different algorithms: a statistical one based on the Metropolis method and a more logical one, called REMP (REcurse, Merge and Permute), developed from scratch. These two methods are compared both on ideal cases and on experimental γ-ray data sets. The REMP algorithm is based on coincidences and transition energies. Using correct and complete coincidence data, it has solved approximately half a million schemes without failures. Also, for incomplete data and data with minor errors, the algorithm produces consistent sub-schemes when it is not possible to obtain a complete scheme from the provided data.

  1. Support arrangement for core modules of nuclear reactors

    DOEpatents

    Bollinger, Lawrence R.

    1987-01-01

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  2. Support arrangements for core modules of nuclear reactors. [PWR

    DOEpatents

    Bollinger, L.R.

    1983-11-03

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  3. Laser cutting apparatus for nuclear core fuel subassembly

    DOEpatents

    Walch, Allan P.; Caruolo, Antonio B.

    1982-02-23

    The object of the invention is to provide a system and apparatus which employs laser cutting to disassemble a nuclear core fuel subassembly. The apparatus includes a gantry frame (C) which straddles the core fuel subassembly (14), an x-carriage (22) travelling longitudinally above the frame which carries a focus head assembly (D) having a vertically moving carriage (46) and a laterally moving carriage (52), a system of laser beam transferring and focusing mirrors carried by the x-carriage and focusing head assembly, and a shroud follower (F) and longitudinal follower (G) for following the shape of shroud (14) to maintain a beam focal point (44) fixed upon the shroud surface for accurate cutting.

  4. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  5. National Nuclear Security Administration Knowledge Base Core Table Schema Document

    SciTech Connect

    CARR,DORTHE B.

    2002-09-01

    The National Nuclear Security Administration is creating a Knowledge Base to store technical information to support the United States nuclear explosion monitoring mission. This document defines the core database tables that are used in the Knowledge Base. The purpose of this document is to present the ORACLE database tables in the NNSA Knowledge Base that on modifications to the CSS3.0 Database Schema developed in 1990. (Anderson et al., 1990). These modifications include additional columns to the affiliation table, an increase in the internal ORACLE format from 8 integers to 9 integers for thirteen IDs, and new primary and unique key definitions for six tables. It is intended to be used as a reference by researchers inside and outside of NNSA/DOE as they compile information to submit to the NNSA Knowledge Base. These ''core'' tables are separated into two groups. The Primary tables are dynamic and consist of information that can be used in automatic and interactive processing (e.g. arrivals, locations). The Lookup tables change infrequently and are used for auxiliary information used by the processing. In general, the information stored in the core tables consists of: arrivals; events, origins, associations of arrivals; magnitude information; station information (networks, site descriptions, instrument responses); pointers to waveform data; and comments pertaining to the information. This document is divided into four sections, the first being this introduction. Section two defines the sixteen tables that make up the core tables of the NNSA Knowledge Base database. Both internal (ORACLE) and external formats for the attributes are defined, along with a short description of each attribute. In addition, the primary, unique and foreign keys are defined. Section three of the document shows the relationships between the different tables by using entity-relationship diagrams. The last section, defines the columns or attributes of the various tables. Information that is

  6. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  7. Piezoelectric material for use in a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Parks, D. A.; Reinhardt, Brian; Tittmann, B. R.

    2012-05-01

    In radiation environments ultrasonic nondestructive evaluation has great potential for improving reactor safety and furthering the understanding of radiation effects and materials. In both nuclear power plants and materials test reactors, elevated temperatures and high levels of radiation present challenges to ultrasonic NDE methodologies. The challenges are primarily due to the degradation of the ultrasonic sensors utilized. We present results from the operation of a ultrasonic piezoelectric transducer, composed of bulk single crystal AlN, in a nuclear reactor core for over 120 MWHrs. The transducer was coupled to an aluminum cylinder and operated in pulse echo mode throughout the irradiation. In addition to the pulse echo testing impedance data were obtained. Further, the piezoelectric coefficient d33 was measured prior to irradiation and found to be 5.5 pC/N which is unchanged from as-grown samples, and in fact higher than the measured d33 for many as-grown samples.

  8. Piezoelectric material for use in a nuclear reactor core

    SciTech Connect

    Parks, D. A.; Reinhardt, Brian; Tittmann, B. R.

    2012-05-17

    In radiation environments ultrasonic nondestructive evaluation has great potential for improving reactor safety and furthering the understanding of radiation effects and materials. In both nuclear power plants and materials test reactors, elevated temperatures and high levels of radiation present challenges to ultrasonic NDE methodologies. The challenges are primarily due to the degradation of the ultrasonic sensors utilized. We present results from the operation of a ultrasonic piezoelectric transducer, composed of bulk single crystal AlN, in a nuclear reactor core for over 120 MWHrs. The transducer was coupled to an aluminum cylinder and operated in pulse echo mode throughout the irradiation. In addition to the pulse echo testing impedance data were obtained. Further, the piezoelectric coefficient d{sub 33} was measured prior to irradiation and found to be 5.5 pC/N which is unchanged from as-grown samples, and in fact higher than the measured d{sub 33} for many as-grown samples.

  9. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    PubMed

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses. PMID:27501758

  10. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Müller, C; Kong, X; Cai, J-M; Melentijević, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  11. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  12. Theoretical predictions of the impact of nuclear dynamics and environment on core-level spectra of organic molecules

    NASA Astrophysics Data System (ADS)

    Prendergast, David; Schwartz, Craig; Uejio, Janel; Saykally, Richard

    2009-03-01

    Core-level spectroscopy provides an element-specific probe of local electronic structure and bonding, but linking details of atomic structure to measured spectra relies heavily on accurate theoretical interpretation. We present first principles simulations of the x-ray absorption of a range of organic molecules both in isolation and aqueous solvation, highlighting the spectral impact of internal nuclear motion as well as solvent interactions. Our approach uses density functional theory with explicit inclusion of the core-level excited state within a plane-wave supercell framework. Nuclear degrees of freedom are sampled using various molecular dynamics techniques. We indicate specific cases for molecules in their vibrational ground state at experimental conditions, where nuclear quantum effects must be included. Prepared by LBNL under Contract DE-AC02-05CH11231.

  13. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  14. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield.

    PubMed

    Tessier, M D; Mahler, B; Nadal, B; Heuclin, H; Pedetti, S; Dubertret, B

    2013-07-10

    Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals. PMID:23731211

  15. Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

    SciTech Connect

    ALAM,TODD M.; ALAM,M. KATHLEEN

    2000-07-20

    Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.

  16. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  17. Reducing the risk to Mars: The gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  18. Reducing the risk to Mars: The gas core nuclear rocket

    NASA Astrophysics Data System (ADS)

    Howe, S. D.; Devolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. We have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  19. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-15

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. We have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  20. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-12-31

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  1. First-principles interpretation of core-level spectroscopy of photoelectrochemical materials and processes

    NASA Astrophysics Data System (ADS)

    Pemmaraju, Sri Chaitanya Das; Prendergast, David

    2014-03-01

    We present two case studies of first-principles theoretical methods applied in conjunction with experimental core-level spectroscopy measurements to investigate the electronic structure and dynamical processes in molecular and interfacial systems relevant to photoelectrochemical (PEC) technologies. In the first, we study the core-level and valence spectroscopies of two zinc(II)-porphyrin based Donor-pi-Acceptor (D-p-A) dyes using the occupancy-constrained excited electron and core-hole (XCH) approach and time-dependent density functional theory (TDDFT) simulations. In the second, we use constrained DFT and TDDFT to interpret measured transient core-level shifts in time-resolved femtosecond x-ray photoelectron spectroscopy, investigating the dynamics of the electron injection process from a N3 dye molecule chemisorbed onto a ZnO substrate. These studies illustrate the utility of first-principles methods in guiding the design of better PEC materials. This work was performed at the Molecular Foundry, LBNL, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  2. Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Spectroscopy

    SciTech Connect

    Dr. Norbert Pietralla

    2006-03-29

    The research project ''Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability'' with sponsor ID ''DE-FG02-04ER41334'' started late-summer 2004 and aims at the investigation of highly excited low-spin states of selected key-nuclei in the vicinity of the particle separation threshold by means of high-resolution gamma-ray spectroscopy in electromagnetic excitation reactions. This work addresses nuclear structures with excitation energies close to the binding energy or highly excited off-yrast states in accordance with the NSAC milestones. In 2005 the program was extended towards additional use of virtual photons and theoretical description of the low-lying collective excitations in the well deformed nuclei.

  3. Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy

    SciTech Connect

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, J. A.

    2011-06-01

    The development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Long-Wave Infrared (LWIR) spectroscopy systems is described. LWIR fiber optics are a key enabling technology needed to improve the utility and effectiveness of trace chemical detection systems based in the 8 to 12 micron region. This paper focuses on recent developments in hollow waveguide technology geared specifically for LWIR spectroscopy, including a reduction in both the length dependent loss and the bending loss while maintaining relatively high beam quality. Results will be presented from tests conducted with a Quantum Cascade Laser.

  4. Ultrafast core-loss spectroscopy in four-dimensional electron microscopy

    PubMed Central

    van der Veen, Renske M.; Penfold, Thomas J.; Zewail, Ahmed H.

    2015-01-01

    We demonstrate ultrafast core-electron energy-loss spectroscopy in four-dimensional electron microscopy as an element-specific probe of nanoscale dynamics. We apply it to the study of photoexcited graphite with femtosecond and nanosecond resolutions. The transient core-loss spectra, in combination with ab initio molecular dynamics simulations, reveal the elongation of the carbon-carbon bonds, even though the overall behavior is a contraction of the crystal lattice. A prompt energy-gap shrinkage is observed on the picosecond time scale, which is caused by local bond length elongation and the direct renormalization of band energies due to temperature-dependent electron–phonon interactions. PMID:26798793

  5. Revisiting the vortex-core tunnelling spectroscopy in YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Bruér, Jens; Maggio-Aprile, Ivan; Jenkins, Nathan; Ristić, Zoran; Erb, Andreas; Berthod, Christophe; Fischer, Øystein; Renner, Christoph

    2016-03-01

    The observation by scanning tunnelling spectroscopy of Abrikosov vortex cores in the high-temperature superconductor YBa2Cu3O7-δ (Y123) has revealed a robust pair of electron-hole symmetric states at finite subgap energy. Their interpretation remains an open question because theory predicts a different signature in the vortex cores, characterized by a strong zero-bias conductance peak. Here, we present scanning tunnelling spectroscopy data on very homogeneous Y123 at 0.4 K revealing that the subgap features do not belong to vortices: they are actually observed everywhere along the surface with high spatial and energy reproducibility, even in the absence of magnetic field. Detailed analysis and modelling show that these states remain unpaired in the superconducting phase and belong to an incoherent channel, which contributes to the tunnelling signal in parallel with the superconducting density of states.

  6. The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy

    SciTech Connect

    Lüder, Johann; Sanyal, Biplab; Eriksson, Olle; Brena, Barbara; Puglia, Carla; Simone, Monica de; Totani, Roberta; Coreno, Marcello; Grazioli, Cesare

    2015-02-21

    In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction with hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.

  7. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    SciTech Connect

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Nagle, K. P.; Elam, W. T.; Cross, J. O.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of {approx}9.3 eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.

  8. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Elam, W. T.; Cross, J. O.; Nagle, K. P.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K -edge XAS of Ag, we find nearly complete removal of ˜9.3eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.

  9. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    NASA Astrophysics Data System (ADS)

    Giraud-Carrier, M.; Hill, C.; Decker, T.; Black, J. A.; Schmidt, H.; Hawkins, A.

    2016-03-01

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F' = 2, 3, 4 transitions of the D2 line in 85Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured.

  10. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond.

    PubMed

    Schenk, A K; Rietwyk, K J; Tadich, A; Stacey, A; Ley, L; Pakes, C I

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of [Formula: see text] eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers. PMID:27299369

  11. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Rietwyk, K. J.; Tadich, A.; Stacey, A.; Ley, L.; Pakes, C. I.

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of -0.16+/- 0.05 eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers.

  12. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  13. Spectroscopy of Light Nuclei with Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Vigilante, M.

    2016-07-01

    We discuss new results concerning the investigation of the 19F(p,α 0)16O and 10B(p,α 0)7Be reactions at low energies. Both reactions are important for the nuclear spectroscopy of the formed compound nucleus, i.e. 20Ne and 11C respectively, and play a role in nuclear astrophysics. For the 10B(p,α 0)7Be case, a comprehensive analysis of our reaction data and other scattering data points out the possible presence of an unreported state in 11C at Ex ≈ 9.36 MeV. For the 19F(p,α 0)16O case, the study of the low energy angular distributions testifies the role played by low energy resonances in the S-factor, leading to an enhanced reaction rate at stellar energies.

  14. Nuclear magnetic resonance spectroscopy of the circadian clock of cyanobacteria.

    PubMed

    Chang, Yong-Gang; Tseng, Roger; Kuo, Nai-Wei; LiWang, Andy

    2013-07-01

    The most well-understood circadian clock at the level of molecular mechanisms is that of cyanobacteria. This overview is on how solution-state nuclear magnetic resonance (NMR) spectroscopy has contributed to this understanding. By exciting atomic spin-½ nuclei in a strong magnetic field, NMR obtains information on their chemical environments, inter-nuclear distances, orientations, and motions. NMR protein samples are typically aqueous, often at near-physiological pH, ionic strength, and temperature. The level of information obtainable by NMR depends on the quality of the NMR sample, by which we mean the solubility and stability of proteins. Here, we use examples from our laboratory to illustrate the advantages and limitations of the technique. PMID:23667047

  15. Nuclear spectroscopy in nuclei with Z ≥ 110

    NASA Astrophysics Data System (ADS)

    Ackermann, D.

    2015-12-01

    The nuclear structure of species at the extreme of highest atomic numbers Z and nuclear masses A promises to reveal intriguing new features of this exotic hadronic matter. Their stability itself they owe to quantum-mechanic effects only. They form metastable states which, governed by the subtle interplay of α decay and spontaneous fission versus quantum-mechanic stabilization via shell effects, are in some cases more robust against disintegration than their ground states. Following the isotopic and isotonic trends of single particle levels, as well as collective features like deformation, may reveal the path towards the gap in the level densities, expected for the next closed proton and neutron shells at the so-called "island of stability" of spherical superheavy nuclei. Their atomic configuration offers via X-ray spectroscopy a tool to identify the atomic number of heavy species, where other more traditional methods like evaporation residue (ER)-α correlation are not applicable.

  16. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  17. Identification of a Functional, CRM-1-Dependent Nuclear Export Signal in Hepatitis C Virus Core Protein

    PubMed Central

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified. We show here that the aa(109–133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1–173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication. Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection. PMID:22039426

  18. Core-hole-clock spectroscopies in the tender x-ray domain

    NASA Astrophysics Data System (ADS)

    Novella Piancastelli, Maria; Goldsztejn, Gildas; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K.; Journel, Loïc; Carniato, Stéphane; Rueff, Jean-Pascal; Céolin, Denis; Simon, Marc

    2014-06-01

    The core-hole-clock method to observe dynamical phenomena in molecular photoexcitation on the 1 fs-hundreds-of-attoseconds time scale is illustrated with examples from resonant inelastic x-ray scattering (RIXS) and resonant-Auger-emission experiments on the prototypical CH3Cl system in the tender x-ray domain. In particular, a direct comparison between RIXS and resonant-Auger data allows us to unravel subtle details of nuclear motion and interplay of potential curves of the intermediate and final states reached upon deep-core excitation.

  19. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy.

    PubMed

    Pawlowicz, N P; Groot, M-L; van Stokkum, I H M; Breton, J; van Grondelle, R

    2007-10-15

    The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC

  20. Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason M.; Gat, Nahum; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, James A.

    2011-05-01

    We describe the development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Mid-Wave Infrared (MWIR) and Long-Wave Infrared (LWIR) spectroscopy systems. Spectroscopy measurements in these wavelength regions (i.e., from 3 to 14 μm) are useful for detecting trace chemical compounds for a variety of security and defense related applications, and fiber optics are a key enabling technology needed to improve the utility and effectiveness of detection and calibration systems. Hollow glass fibers have the advantage over solid-core fibers (e.g., chalcogenide) in that they are less fragile, do not produce cladding modes, do not require angle cleaving or antireflection coatings to minimize laser feedback effects, and effectively transmit deeper into the infrared. This paper focuses on recent developments in hollow fiber technology geared specifically for infrared spectroscopy, including single mode beam delivery with relatively low bending loss. Results are presented from tests conducted using both Quantum Cascade Lasers (QCL) and CO2 lasers operating in the LWIR wavelength regime. Single-mode waveguides are shown to effectively deliver beams with relatively low loss (~ 1 dB/m) and relatively high beam quality. The fibers are also shown to effectively mode-filter the "raw" multi-mode output from a QCL, in effect damping out the higher order modes to produce a circularly symmetric Gaussian-like beam profile.

  1. Comments on the feasibility of developing gas core nuclear reactors. [for manned interplanetary spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1969-01-01

    Recent developments in the fields of gas core hydrodynamics, heat transfer, and neutronics indicate that gas core nuclear rockets may be feasible from the point of view of basic principles. Based on performance predictions using these results, mission analyses indicate that gas core nuclear rockets may have the potential for reducing the initial weight in orbit of manned interplanetary vehicles by a factor of 5 when compared to the best chemical rocket systems. In addition, there is a potential for reducing total trip times from 450 to 500 days for chemical systems to 250 to 300 days for gas core systems. The possibility of demonstrating the feasibility of gas core nuclear rocket engines by means of a logical series of experiments of increasing difficulty that ends with ground tests of full scale gas core reactors is considered.

  2. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  3. Spectromicroscopy of Polymers: Comparison of Radiation Damage with Electron and Photon Core Excitation Spectroscopy Techniques

    NASA Astrophysics Data System (ADS)

    Ade, H.; Smith, A. P.; Rightor, E. G.; Hitchcock, A. P.; Urquhart, S.; Leapman, R.

    1997-03-01

    Core excitation microspectroscopy has become a powerful tool for the characterization of polymeric materials due to its sensitivity to chemical functionality. However, the excitations utilized in electron energy loss spectroscopy performed in a scanning transmission electron microscope (TEM-EELS) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy can introduce radiation damage and chemically modify the sample. In order to understand the radiation damage associated with TEM-EELS and NEXAFS spectroscopy we have studied the radiation damage of the common polymer poly(ethylene terephthalate) (PET) as exhibited by changes in the acquired C K-edge excitation spectra. By fitting gaussian functions to the spectral intensity changes as a function of dose, we have determined the critical radiation dose of PET for both NEXAFS spectroscopy and TEM-EELS under typical operating conditions. This critical radiation dose for TEM-EELS is found to be 1.7 ± 0.2 x 10^8 grey (1.7 ± 0.2 x 10^4 Mrad) compared to a critical radiation dose for NEXAFS spectroscopy of 1.4 ± 0.7 x 10^9 grey (1.4 ± 0.7 x 10^5 Mrad). By considering the G factors of the two techniques and the critical radiation dose, a rule of thumb was derived that indicates that with typical present operating conditions, NEXAFS spectroscopy can analyze areas 500 times smaller than TEM-EELS given the same amount of radiation damage. Work supported by: NSF Young Investigator Award (DMR-9458060) and Dow Chemical

  4. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'Skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  5. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  6. Sensing explosives with suspended core fibers: identification and quantification using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsiminis, Georgios; Chu, Fenghong; Spooner, Nigel A.; Monro, Tanya M.

    2013-03-01

    This works demonstrates the use of suspended core optical fibers as a platform for explosives detection in solution using Raman spectroscopy. This architecture combines small sampling volumes with long light-analyte interaction lengths, resulting in identification of minute quantities of explosives in solutions. In addition, the Raman signature of the solvent is used as an internal calibration standard to allow quantification of the detected molecule. Our results show detection of sub-microgram amounts of hydrogen peroxide (H2O2) in aqueous solution, a molecule difficult to detect as it lacks the nitroaromatic units, characteristic of trinitrotoluene (TNT) based explosives, which are usually targeted by traditional optical methods such as fluorescence. The same platform without any modifications can also be used to identify and quantify comparable amounts of 1,4-dinitrobenzene (DNB), a substitute molecule for TNT. These results highlight the capability of suspended-core fibers as small, cost-efficient and low-volume explosives sensors.

  7. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  8. Stability of the inner structure constituting a 'kernel' in ribosomal cores probed by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Blasi, M.; Bonincontro, A.; Calandrini, V.; Onori, G.; Risuleo, G.

    2001-05-01

    In this communication we present an investigation on ribosomal cores, i.e. ribosomes deprived of a select group of ribosomal proteins by LiCl treatment. This study was conducted by dielectric spectroscopy technique. The aim was to elucidate the role of ribosomal proteins in the stabilization of a very stable structural nucleus previously observed within the ribosome. The results show that this structure withstands relatively high concentrations of LiCl and is demolished within a limited range of salt concentration. The data discussed here corroborate the idea that this structure constitutes the ribosomal kernel.

  9. Probing inhomogeneous composition in core/shell nanowires by Raman spectroscopy

    SciTech Connect

    Amaduzzi, F.; Alarcón-Lladó, E.; Russo-Averchi, E.; Matteini, F.; Heiß, M.; Tütüncüoglu, G.; Conesa-Boj, S.; Fontcuberta i Morral, A.; Mata, M. de la; Arbiol, J.

    2014-11-14

    Due to its non-destructive and its micro-spatial resolution, Raman spectroscopy is a powerful tool for a rapid structural and compositional characterization of nanoscale materials. Here, by combining the compositional dependence of the Raman peaks with the existence of photonic modes in the nanowires, we address the composition inhomogeneities of Al{sub x}Ga{sub 1−x}As/GaAs core/shell structures. The experimental results are validated with complementary chemical composition maps of the nanowire cross-sections and finite-difference time-domain simulations of the photonic modes.

  10. Continuous Wave Stimulated Raman Spectroscopy Inside a Hollow Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Domenech, Jose L.; Cueto, Maite

    2013-06-01

    Hollow-core photonic crystal fibers (HCPCF) have raised new opportunities to study light-matter interaction. Dielectric or metallic capillaries are intrinsically lossy, making poor light guides. In contrast, HCPCFs can guide light quite efficiently, due to the band-gap effect produced by an array of smaller channels which surrounds a central hollow core with a few μm diameter. The tight confinement of light inside the core, that can be filled with gases, as well as a long interaction length, enhance multiple nonlinear phenomena, making it possible to devise new ways to do low signal level spectroscopy, as is the case of high resolution stimulated Raman spectroscopy (SRS). A. Owyoung demonstrated high resolution continuous wave SRS in 1978. Shortly afterwards, seeking higher sensitivity, he developed the quasi-continuous SRS technique (a high peak power pump laser, interacting with a low power cw probe laser). That variant remains today the best compromise between resolution and sensitivity for gas-phase Raman spectroscopy. In this work, we show the possibility of fully cw stimulated Raman spectroscopy, using a gas cell built around a HCPCF to overcome the limitations posed by the weakness of the stimulated Raman effect when not using pulsed sources. The interaction length (1.2 m), longer than that of a multiple pass refocusing cell, and the narrow diameter of the core (4.8 μm), can compensate for the much lower laser powers used in the cw set-up. The experimental complexity is considerably reduced and the instrumental resolution is at the 10's of MHz level, limited, with our fiber, by transit time effects. At present, we have demonstrated the feasibility of the experiment, a sensitivity enhancement of ˜ 6000 over the single focus regime, and a spectral resolution better than 0.005 wn in the unresolved Q-branch of the ν_1 component of the Fermi dyad of CO_2 at 1388 wn. Other examples of rotationally resolved spectra will be shown: the Q branch of O_2 at 1555 wn

  11. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  12. Authentication of Medicines Using Nuclear Quadrupole Resonance Spectroscopy.

    PubMed

    Chen, Cheng; Zhang, Fengchao; Barras, Jamie; Althoefer, Kaspar; Bhunia, Swarup; Mandal, Soumyajit

    2016-01-01

    The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines. PMID:26841409

  13. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  14. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy.

    PubMed

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M Iqbal; Rahman, Atta-Ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using (1)H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  15. Multilevel memristor effect in metal-semiconductor core-shell nanoparticles tested by scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sudipto; Pal, Amlan J.

    2015-05-01

    We have grown gold (Au) and copper-zinc-tin-sulfide (CZTS) nanocrystals and Au-CZTS core-shell nanostructures, with gold in the core and the semiconductor in the shell layer, through a high-temperature colloidal synthetic approach. Following usual characterization, we formed ultrathin layers of these in order to characterize the nanostructures in an ultrahigh-vacuum scanning tunneling microscope. Scanning tunneling spectroscopy of individual nanostructures showed the memristor effect or resistive switching from a low- to a high-conducting state upon application of a suitable voltage pulse. The Au-CZTS core-shell nanostructures also show a multilevel memristor effect with the nanostructures undergoing two transitions in conductance at two magnitudes of voltage pulse. We have studied the reproducibility, reversibility, and retentivity of the multilevel memristors. From the normalized density of states (NDOS), we infer that the memristor effect is correlated to a decrease in the transport gap of the nanostructures. We also infer that the memristor effect occurs in the nanostructures due to an increase in the density of available states upon application of a voltage pulse.We have grown gold (Au) and copper-zinc-tin-sulfide (CZTS) nanocrystals and Au-CZTS core-shell nanostructures, with gold in the core and the semiconductor in the shell layer, through a high-temperature colloidal synthetic approach. Following usual characterization, we formed ultrathin layers of these in order to characterize the nanostructures in an ultrahigh-vacuum scanning tunneling microscope. Scanning tunneling spectroscopy of individual nanostructures showed the memristor effect or resistive switching from a low- to a high-conducting state upon application of a suitable voltage pulse. The Au-CZTS core-shell nanostructures also show a multilevel memristor effect with the nanostructures undergoing two transitions in conductance at two magnitudes of voltage pulse. We have studied the reproducibility

  16. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-14

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  17. Quantum information processing by nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Havel, T. F.; Cory, D. G.; Lloyd, S.; Boulant, N.; Fortunato, E. M.; Pravia, M. A.; Teklemariam, G.; Weinstein, Y. S.; Bhattacharyya, A.; Hou, J.

    2002-03-01

    Nuclear magnetic resonance (NMR) is a direct macroscopic manifestation of the quantum mechanics of the intrinsic angular momentum of atomic nuclei. It is best known for its extraordinary range of applications, which include molecular structure determination, medical imaging, and measurements of flow and diffusion rates. Most recently, liquid-state NMR spectroscopy has been found to provide a powerful experimental tool for the development and evaluation of the coherent control techniques needed for quantum information processing. This burgeoning new interdisciplinary field has the potential to achieve cryptographic, communications, and computational feats far beyond what is possible with known classical physics. Indeed, NMR has made the demonstration of many of these feats sufficiently simple to be carried out by high school summer interns working in our laboratory (see the last two authors). In this paper the basic principles of quantum information processing by NMR spectroscopy are described, along with several illustrative experiments suitable for incorporation into the undergraduate physics curriculum. These experiments are spin-spin interferometry, an implementation of the quantum Fourier transform, and the quantum simulation of a harmonic oscillator.

  18. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  19. Charge carrier identification in tunneling spectroscopy of core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Nguyen, T. H.; Habinshuti, J.; Justo, Y.; Gomes, R.; Mahieu, G.; Godey, S.; Nys, J. P.; Carrillo, S.; Hens, Z.; Robbe, O.; Turrell, S.; Grandidier, B.

    2011-11-01

    Semiconductor PbSe/CdSe core-shell nanocrystals (NCs) in a double barrier tunnel junction have been investigated by means of scanning tunneling spectroscopy at low temperature. From the analysis of the differential conductance peak position as a function of the potential distribution in both potential barriers, we demonstrate a unipolar transport regime for a large amount of NCs. The same charge carriers are injected on both sides of the zero-conductance gap, and the peaks observed at higher energy arise from the charging of the NCs. Similar results are obtained for CdSe/CdS dot-in-rod NCs, indicating that the addition of a shell favors transitions between different charge states rather than single particle excited states. Further characterization of the PbSe/CdSe core-shell NCs by x-ray photoemission spectroscopy reveals that the variations in the transport properties from NC to NC are explained by the occurrence of unprotected PbSe facets that have different orientations in the junction.

  20. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  1. Delayed Gamma-Ray Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect

    Campbell, Luke W.; Hunt, Alan W.; Ludewigt, Bernhard A.; Mozin, Vladimir V.

    2012-04-01

    High-energy, beta-delayed gamma-ray spectroscopy is investigated as a non-destructive assay technique for the determination of plutonium mass in spent nuclear fuel. This approach exploits the unique isotope-specific signatures contained in the delayed gamma-ray emission spectra detected following active interrogation with an external neutron source. A high fidelity modeling approach is described that couples radiation transport, analytical decay/depletion, and a newly developed gamma-ray emission source reconstruction code. Initially simulated and analyzed was a “one-pass” delayed gamma-ray assay that focused on the long-lived signatures. Also presented are the results of an independent study that investigated “pulsed mode” measurements, to capture the more isotope-specific, short-lived signatures. Initial modeling results outlined in this paper suggest that delayed gamma-ray assay of spent nuclear fuel assemblies can be accomplished with a neutron generator of sufficient strength and currently available gamma-ray detectors.

  2. Hanging core support system for a nuclear reactor. [LMFBR

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-04-26

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

  3. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  4. Multilevel memristor effect in metal-semiconductor core-shell nanoparticles tested by scanning tunneling spectroscopy.

    PubMed

    Chakrabarti, Sudipto; Pal, Amlan J

    2015-06-01

    We have grown gold (Au) and copper-zinc-tin-sulfide (CZTS) nanocrystals and Au-CZTS core-shell nanostructures, with gold in the core and the semiconductor in the shell layer, through a high-temperature colloidal synthetic approach. Following usual characterization, we formed ultrathin layers of these in order to characterize the nanostructures in an ultrahigh-vacuum scanning tunneling microscope. Scanning tunneling spectroscopy of individual nanostructures showed the memristor effect or resistive switching from a low- to a high-conducting state upon application of a suitable voltage pulse. The Au-CZTS core-shell nanostructures also show a multilevel memristor effect with the nanostructures undergoing two transitions in conductance at two magnitudes of voltage pulse. We have studied the reproducibility, reversibility, and retentivity of the multilevel memristors. From the normalized density of states (NDOS), we infer that the memristor effect is correlated to a decrease in the transport gap of the nanostructures. We also infer that the memristor effect occurs in the nanostructures due to an increase in the density of available states upon application of a voltage pulse. PMID:25966930

  5. Nuclear fusion in the deuterated cores of inflated hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Jaikumar, Prashanth

    2016-03-01

    Ouyed et al. (Astrophys. J. 501:367, 1998) proposed Deuterium (DD) fusion at the core-mantle interface of giant planets as a mechanism to explain their observed heat excess. But rather high interior temperatures (˜105 K) and a stratified D layer are needed, making such a scenario unlikely. In this paper, we re-examine DD fusion, with the addition of screening effects pertinent to a deuterated core containing ice and some heavy elements. This alleviates the extreme temperature constraint and removes the requirement of a stratified D layer. As an application, we propose that, if their core temperatures are a few times 104 K and core composition is chemically inhomogeneous, the observed inflated size of some giant exoplanets ("hot Jupiters") may be linked to screened DD fusion occurring deep in the interior. Application of an analytic evolution model suggests that the amount of inflation from this effect can be important if there is sufficient rock-ice in the core, making DD fusion an effective extra internal energy source for radius inflation. The mechanism of screened DD fusion, operating in the above temperature range, is generally consistent with the trend in radius anomaly with planetary equilibrium temperature T_{eq}, and also depends on planetary mass. Although we do not consider the effect of incident stellar flux, we expect that a minimum level of irradiation is necessary to trigger core erosion and subsequent DD fusion inside the planet. Since DD fusion is quite sensitive to the screening potential inferred from laboratory experiments, observations of inflated hot Jupiters may help constrain screening effects in the cores of giant planets.

  6. Hanging core support system for a nuclear reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Pan, Yen-Cheng; Saiveau, James G.; Seidensticker, Ralph W.

    1987-01-01

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform. Motion or radiation sensing detectors can be provide at the lower ends of the tension rods for obtaining pertinent readings proximate the core.

  7. Differential influence of instruments in nuclear core activity evaluation by data assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    2011-01-01

    The global neutronic activity fields of a nuclear core can be reconstructed using data assimilation. Indeed, data assimilation allows to combine both measurements from instruments and information from a model, to evaluate the best possible neutronic activity within the core. We present and apply a specific procedure which evaluates the influence of measures by adding or removing instruments in a given measurement network (possibly empty). The study of various network configurations for the instruments in the nuclear core establishes that the influence of the instruments depends both on the independent instrumentation location and on the chosen network.

  8. Shape and topography corrections for planetary nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Hendricks, John S.

    2015-11-01

    The elemental composition of planetary surfaces can be determined using gamma ray and neutron spectroscopy. Most planetary bodies for which nuclear spectroscopy data have been acquired are round, and simple, analytic corrections for measurement geometry can be applied; however, recent measurements of the irregular asteroid 4 Vesta by Dawn required more detailed corrections using a shape model (Prettyman et al., Science 2012). In addition, subtle artifacts of topography have been observed in low altitude measurements of lunar craters, with potential implications for polar hydrogen content (Eke et al., JGR 2015). To explore shape and topography effects, we have updated the general-purpose Monte Carlo radiation transport code MCNPX to include a polygonal shape model (Prettyman and Hendricks, LPSC 2015). The shape model is fully integrated with the code’s 3D combinatorial geometry modules. A voxel-based acceleration algorithm enables fast ray-intersection calculations needed for Monte Carlo. As modified, MCNPX can model neutron and gamma ray transport within natural surfaces using global and/or regional shape/topography data (e.g. from photogrammetry and laser altimetry). We are using MCNPX to explore the effect of small-scale roughness, regional-, and global-topography for asteroids, comets and close-up measurements of high-relief features on larger bodies, such as the lunar surface. MCNPX can characterize basic effects on measurements by an orbiting spectrometer such as 1) the angular distribution of emitted particles, 2) shielding of galactic cosmic rays by surrounding terrain and 3) re-entrant scattering. In some cases, re-entrant scattering can be ignored, leading to a fast ray-tracing model that treats effects 1 and 2. The algorithm is applied to forward modeling and spatial deconvolution of epithermal neutron data acquired at Vesta. Analyses of shape/topography effects and correction strategies are presented for Vesta, selected small bodies and cratered

  9. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  10. The solid-core heat-exchanger nuclear rocket program

    SciTech Connect

    Malenfant, R.E.

    1994-12-31

    As measured by the results of its accomplishments, the nuclear rocket program was a success. Why, then, was it cancelled? In my opinion, the cancellation resulted from the success of the Apollo program. President Kennedy declared that putting a man on the moon by 1969 would be a national objective. Upon the Apollo program`s completion, space spectaculars lost their attraction, and the manned exploration of Mars, which could have been accomplished with nuclear rockets, was shelved. Perhaps another generation of physicists and engineers will experience the thrill and satisfaction of participating in a nuclear-propulsion-based program for space exploration in decades to come.

  11. Real-time TDDFT simulations of time-resolved core-level spectroscopies in solid state systems

    NASA Astrophysics Data System (ADS)

    Pemmaraju, Sri Chaitanya Das; Prendergast, David; Theory of Nanostructured Materials Facility Team

    The advent of sub-femtosecond time-resolved core-level spectroscopies based on high harmonic generated XUV pulses has enabled the study of electron dyanamics on characteristic femtosecond time-scales. Unambiguous interpretation of these powerful yet complex spectroscopies however requires the development of theoretical algorithms capable of modeling light-matter interaction across a wide energy range spanning both valence and core orbitals. In this context we present a recent implementation of the velocity-gauge formalism of real-time TDDFT within a linear combination of atomic orbital (LCAO) framework, which facilitates efficient numerical treatment of localized semi-core orbitals. Dynamics and spectra obtained from LCAO based simulations are compared to those from a real-space grid implementation. Potential applications are also illustrated by applying the method towards interpreting recent atto-second time-resolved IR-pump XUV-probe spectroscopies investigating sub-cycle excitation dynamics in bulk silicon.

  12. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  13. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  14. Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Khetani, Altaf; Tiwari, Vidhu S.; Harb, Alaa; Anis, Hanan

    2011-08-01

    The feasibility of using hollow core photonic crystal fiber (HC-PCF) in conjunction with Raman spectroscopy has been explored for real time monitoring of heparin concentration in serum. Heparin is an important blood anti-coagulant whose precise monitoring and controlling in patients undergoing cardiac surgery and dialysis is of utmost importance. Our method of heparin monitoring offers a novel alternative to existing clinical procedures in terms of accuracy, response time and sample volume. The optical design configuration simply involves a 785-nm laser diode whose light is coupled into HC-PCF filled with heparin-serum mixtures. By non-selectively filling HC-PCF, a strong modal field overlap is obtained. Consequently, an enhanced Raman signal (>90 times) is obtained from various heparin-serum mixtures filled HC-PCFs compared to its bulk counterpart (cuvette). The present scheme has the potential to serve as a `generic biosensing tool' for diagnosing a wide range of biological samples.

  15. Raman spectroscopy of GaP/GaNP core/shell nanowires

    SciTech Connect

    Dobrovolsky, A.; Chen, W. M.; Buyanova, I. A.; Sukrittanon, S.; Kuang, Y. J.; Tu, C. W.

    2014-11-10

    Raman spectroscopy is employed to characterize structural and phonon properties of GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. According to polarization-dependent measurements performed on single NWs, the dominant Raman modes associated with zone-center optical phonons obey selection rules in a zinc-blende lattice, confirming high crystalline quality of the NWs. Two additional modes at 360 and 397 cm{sup −1} that are specific to the NW architecture are also detected in resonant Raman spectra and are attributed to defect-activated scattering involving zone-edge transverse optical phonons and surface optical phonons, respectively. It is concluded that the formation of the involved defect states are mainly promoted during the NW growth with a high V/III ratio.

  16. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    SciTech Connect

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  17. Long-slit spectroscopy of gas in the cores of X-ray luminous clusters

    NASA Technical Reports Server (NTRS)

    Hu, E. M.; Cowie, L. L.; Wang, Z.

    1985-01-01

    The results of long-slit spectroscopy obtained for the core regions of 14 clusters of galaxies are reported. The data are presented in detail. It is shown that the presence of optical emission is tied to the properties of the hot gas in the cluster and not to the morphology of the central galaxy or cluster, demonstrating that the optical systems are indeed formed by the cooling of hot gas. Cooling flows occur when the gas density exceeds a critical central value which corresponds to a cooling time scale which, it is argued, weakly favors low values of H(0). The kinematics of the gas flows are discussed. The excitation mechanisms, correlation of optical emission with radio properties, and upper limits on coronal line strengths from the hot gas are discussed.

  18. Raman spectroscopy: a real-time tool for identifying microcalcifications during stereotactic breast core needle biopsies

    PubMed Central

    Saha, A.; Barman, I.; Dingari, N. C.; McGee, S.; Volynskaya, Z.; Galindo, L. H.; Liu, W.; Plecha, D.; Klein, N.; Dasari, R. R.; Fitzmaurice, M.

    2011-01-01

    Microcalcifications are an early mammographic sign of breast cancer and a target for stereotactic breast needle biopsy. We present here a Raman spectroscopic tool for detecting microcalcifications in breast tissue based on their chemical composition. We collected ex vivo Raman spectra from 159 tissue sites in fresh stereotactic breast needle biopsies from 33 patients, including 54 normal sites, 75 lesions with microcalcifications and 30 lesions without microcalcifications. Application of our Raman technique resulted in a positive predictive value of 97% for detecting microcalcifications. This study shows that Raman spectroscopy has the potential to detect microcalcifications during stereotactic breast core biopsies and provide real-time feedback to radiologists, thus reducing non-diagnostic and false negative biopsies. PMID:22025985

  19. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy.

    PubMed

    Barman, Ishan; Dingari, Narahara Chari; Saha, Anushree; McGee, Sasha; Galindo, Luis H; Liu, Wendy; Plecha, Donna; Klein, Nina; Dasari, Ramachandra Rao; Fitzmaurice, Maryann

    2013-06-01

    Microcalcifications are a feature of diagnostic significance on a mammogram and a target for stereotactic breast needle biopsy. Here, we report development of a Raman spectroscopy technique to simultaneously identify microcalcification status and diagnose the underlying breast lesion, in real-time, during stereotactic core needle biopsy procedures. Raman spectra were obtained ex vivo from 146 tissue sites from fresh stereotactic breast needle biopsy tissue cores from 33 patients, including 50 normal tissue sites, 77 lesions with microcalcifications, and 19 lesions without microcalcifications, using a compact clinical system. The Raman spectra were modeled on the basis of the breast tissue components, and a support vector machine framework was used to develop a single-step diagnostic algorithm to distinguish normal tissue, fibrocystic change (FCC), fibroadenoma, and breast cancer, in the absence and presence of microcalcifications. This algorithm was subjected to leave-one-site-out cross-validation, yielding a positive predictive value, negative predictive value, sensitivity, and specificity of 100%, 95.6%, 62.5%, and 100% for diagnosis of breast cancer (with or without microcalcifications) and an overall accuracy of 82.2% for classification into specific categories of normal tissue, FCC, fibroadenoma, or breast cancer (with and without microcalcifications). Notably, the majority of breast cancers diagnosed are ductal carcinoma in situ (DCIS), the most common lesion associated with microcalcifications, which could not be diagnosed using previous Raman algorithm(s). Our study shows the potential of Raman spectroscopy to concomitantly detect microcalcifications and diagnose associated lesions, including DCIS, and thus provide real-time feedback to radiologists during such biopsy procedures, reducing nondiagnostic and false-negative biopsies. PMID:23729641

  20. TOPICAL REVIEW: Spatial localization in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2006-08-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  1. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  2. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-01

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands. PMID:26473384

  3. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  4. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Phongikaroon, Supathorn; Sattarov, Akhdiyor; Simpson, Michael; Sooby, Elizabeth; Tsvetkov, Pavel

    2013-04-01

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  5. Feasibility study on nuclear core design for soluble boron free small modular reactor

    SciTech Connect

    Rabir, Mohamad Hairie Hah, Chang Joo; Ju, Cho Sung

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  6. Feasibility study on nuclear core design for soluble boron free small modular reactor

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie; Hah, Chang Joo; Ju, Cho Sung

    2015-04-01

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  7. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  8. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  9. New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Kalynov, Yu. K.; Makhalov, P. B.; Fedotov, A. E.

    2014-01-01

    Dynamic nuclear polarization in strong-field nuclear magnetic resonance (NMR) spectroscopy requires terahertz radiation with moderate power levels. Nowadays, conventional gyrotrons are used almost exclusively to generate such radiation. In this review paper, we consider alternative variants of electronic microwave oscillators which require much weaker magnetic fields for their operation, namely, large-orbit gyrotrons operated at high cyclotron-frequency harmonics and Čerenkov-type devices, such as a backward-wave oscillator and a klystron frequency multiplier with tubular electron beams. Additionally, we consider the possibility to use the magnetic field created directly by the solenoid of an NMR spectrometer for operation of both the gyrotron and the backward-wave oscillator. Location of the oscillator in the spectrometer magnet makes it superfluous to use an additional superconducting magnet creating a strong field, significantly reduces the length of the radiation transmission line, and, in the case of Čerenkov-type devices, allows one to increase considerably the output-signal power. According to our calculations, all the electronic devices considered are capable of ensuring the power required for dynamic nuclear polarization (10 W or more) at a frequency of 260 GHz, whereas the gyrotrons, including their versions proposed in this paper, remain a single option at higher frequencies.

  10. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    SciTech Connect

    Giachetti, R.T. , Ann Arbor, MI )

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs.

  11. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas. PMID:26821329

  12. Local nuclear magnetic resonance spectroscopy with giant magnetic resistance-based sensors

    NASA Astrophysics Data System (ADS)

    Guitard, P. A.; Ayde, R.; Jasmin-Lebras, G.; Caruso, L.; Pannetier-Lecoeur, M.; Fermon, C.

    2016-05-01

    Nuclear Magnetic Resonance (NMR) spectroscopy on small volumes, either on microfluidic channels or in vivo configuration, is a present challenge. We report here a high resolution NMR spectroscopy on micron scale performed with Giant Magnetic Resistance-based sensors placed in a static magnetic B 0 field of 0.3 T. The sensing volume of the order of several tens of pL opens the way to high resolution spectroscopy on volumes unreached so far.

  13. Characterization of combustion chamber products by core-level photoabsorption spectroscopy

    SciTech Connect

    Kellar, S. A.; Huff, W. R.A.; Moler, E J; Yeah, S.; Hussain, Z.

    1997-04-01

    The lubricating performance of motor oil is adversely affected by the carbon soot contamination that is a natural by-product of the combustion process. Particularly in diesel engines, {open_quote}blow-by{close_quote} is a problem that greatly decreases the longevity of the engine-lubricating oil. Motor oil manufacturers spend considerable resources developing new oil formulations that counteract the adverse affects of this combustion soot. At present, the only effective way to test new formulations is in a working engine. This process is obviously expensive and not especially efficient. In this ongoing work in collaboration with Chevron Research and Technology, the authors goal is to find a form of carbon that chemically resembles the soot created by the {open_quote}blow-by{close_quote} in a diesel engine. The chemically correct soot substitute can be used in bench tests to replace the expensive full motor testing for new formulations. The final testing would still be done in the test motors but only with promising candidates. To these ends, Near Edge X-ray Adsorption spectroscopy Extended Fine Structure (NEXAFS) is an attractive technique in that it has chemical specificity through the core-level binding energy and because it probes the chemically important unoccupied molecular orbitals of the material. Core-level photoabsorption has been used to characterize the empty electronic states of a wide variety of materials. Specifically, the near-edge region of the photoabsorption process has been used to determine the relative quantity of sp{sup 2} and sp{sup 3}bonding in carbon films. The samples were fine grained powders pressed into pellets. The C(1s) absorption spectra were collected from each sample by measuring the total electron yield from the sample as a function of photon energy. The absorption intensity was normalized to the incoming photon flux by measuring the photoyield from a fine gold mesh.

  14. Application of gaseous core reactors for transmutation of nuclear waste

    NASA Technical Reports Server (NTRS)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  15. The open-cycle gas-core nuclear rocket engine - Some engineering considerations.

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyk, L. C.

    1971-01-01

    A preliminary design study of a conceptual 6000-MW open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 44,200 lb and a specific impulse of 4400 sec. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel) and the waste heat rejection system were considered conceptually and were sized.

  16. Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Kratt, C.; Kruse, F. A.

    2009-12-01

    Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides

  17. Undistorted X-ray Absorption Spectroscopy Using s-Core-Orbital Emissions.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Unger, Isaak; Seidel, Robert; Winter, Bernd; Aziz, Emad F

    2016-05-12

    Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future. PMID:27101344

  18. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamical masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  19. A fusion-driven gas core nuclear rocket

    SciTech Connect

    Kammash, T.; Godfroy, T.

    1998-01-15

    A magnetic confinement scheme is investigated as a potential propulsion device in which thrust is generated by a propellant heated by radiation emanating from a fusion plasma. The device in question is the gasdynamic mirror (GDM) machine in which a hot dense plasma is confined long enough to generate fusion energy while allowing a certain fraction of its charged particle population to go through one end to a direct converter. The energy of these particles is converted into electric power which is recirculated to sustain the steady state operation of the system. The injected power heats the plasma to thermonuclear temperatures where the resulting fusion energy appears a charged particle power, neutron power, and radiated power in the form of bremsstrahlung and synchrotron radiation. The neutron power can be converted through a thermal converter to electric power that can be combined with the direct converter power before being fed into the injector. The radiated power, on the other hand, can be used to heat a hydrogen propellant introduced into the system at a specified pressure and mass flow rate. This propellant can be pre-heated by regeneratively cooling the (mirror) nozzle or other components of the system if feasible, or by an electrothermal unit powered by portions of the recirculated power. Using a simple heat transfer model that ignores the heat flux to the wall, and assuming total absorption of radiation energy by the propellant it is shown that such a gas core rocket is capable of producing tens of kilonewtons of thrust and several thousands of seconds of specific impulse. It is also shown that the familiar Kelvin-Helmholtz instability which arises from the relative motion of the neutral hydrogen to the ionized fuel is not likely to occur in this system due to the presence of the confining magnetic field.

  20. A fusion-driven gas core nuclear rocket

    NASA Astrophysics Data System (ADS)

    Kammash, T.; Godfroy, T.

    1998-01-01

    A magnetic confinement scheme is investigated as a potential propulsion device in which thrust is generated by a propellant heated by radiation emanating from a fusion plasma. The device in question is the gasdynamic mirror (GDM) machine in which a hot dense plasma is confined long enough to generate fusion energy while allowing a certain fraction of its charged particle population to go through one end to a direct converter. The energy of these particles is converted into electric power which is recirculated to sustain the steady state operation of the system. The injected power heats the plasma to thermonuclear temperatures where the resulting fusion energy appears a charged particle power, neutron power, and radiated power in the form of bremsstrahlung and synchrotron radiation. The neutron power can be converted through a thermal converter to electric power that can be combined with the direct converter power before being fed into the injector. The radiated power, on the other hand, can be used to heat a hydrogen propellant introduced into the system at a specified pressure and mass flow rate. This propellant can be pre-heated by regeneratively cooling the (mirror) nozzle or other components of the system if feasible, or by an electrothermal unit powered by portions of the recirculated power. Using a simple heat transfer model that ignores the heat flux to the wall, and assuming total absorption of radiation energy by the propellant it is shown that such a gas core rocket is capable of producing tens of kilonewtons of thrust and several thousands of seconds of specific impulse. It is also shown that the familiar Kelvin-Helmholtz instability which arises from the relative motion of the neutral hydrogen to the ionized fuel is not likely to occur in this system due to the presence of the confining magnetic field.

  1. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  2. Spring design for use in the core of a nuclear reactor

    DOEpatents

    Willard, Jr., H. James

    1993-01-01

    A spring design particularly suitable for use in the core of a nuclear reactor includes one surface having a first material oriented in a longitudinal direction, and another surface having a second material oriented in a transverse direction. The respective surfaces exhibit different amounts of irraditation induced strain.

  3. Nuclear data uncertainties by the PWR MOX/UO{sub 2} core rod ejection benchmark

    SciTech Connect

    Pasichnyk, I.; Klein, M.; Velkov, K.; Zwermann, W.; Pautz, A.

    2012-07-01

    Rod ejection transient of the OECD/NEA and U.S. NRC PWR MOX/UO{sub 2} core benchmark is considered under the influence of nuclear data uncertainties. Using the GRS uncertainty and sensitivity software package XSUSA the propagation of the uncertainties in nuclear data up to the transient calculations are considered. A statistically representative set of transient calculations is analyzed and both integral as well as local output quantities are compared with the benchmark results of different participants. It is shown that the uncertainties in nuclear data play a crucial role in the interpretation of the results of the simulation. (authors)

  4. Development of a biofluid chemical measurement system using liquid core optical fiber Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, Dahu

    Near Infrared (NIR) Raman spectroscopy can provide compositional information about chemicals dissolved in biological fluids. The Raman intensity is proportional to the amount of chemicals. It has been developed for years as a tool to measure biofluid chemical concentrations by illuminating sample and collecting Raman intensity holding the sample in a cuvette geometry. It has been found that the Raman intensity can be enhanced by increasing the excitation and collection sample volume in a liquid core optical fiber (LCOF) geometry. In this thesis, we present a biofluid chemical concentration measurement system using LCOF Raman spectroscopy. A home-built LCOF Raman spectroscopy system designed for this purpose using 830 nm illumination is described in the thesis. The system is switchable between LCOF and traditional cuvette geometry. The system was characterized using aqueous solutions. The Raman intensities of aqueous solutions from the two geometries were compared in both theory and experiment. The results agreed well with each other. As high as 15 fold Raman enhancement was observed. The Raman spectra of biological chemicals in aqueous solution and spiked urine samples were acquired from LCOF and cuvette geometries. The concentrations were predicted using partial least squares (PLS) leave one out cross validation. The results from the two geometries were compared. Concentrations of creatinine were measured in both setups. The LCOF geometry had an advantage at shorter integration times because of Raman enhancement while the cuvette geometry gave better results at longer integration times due to a better system reproducibility. The LCOF Raman intensity varies from sample to sample with sample absorption coefficient as well as the chemical concentration. This effect can add uncertainty to the concentration measurement. Biofluid samples from multiple patients vary a lot in absorption coefficient, which could cause as much as 20% uncertainty in concentration measurement

  5. New Nuclear Equation of State for Core-Collapse Supernovae with the Variational Method

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Yamamuro, S.; Nakazato, K.; Takano, M.; Suzuki, H.; Sumiyoshi, K.

    2014-03-01

    We report the current status of our project to construct a new nuclear equation of state (EOS) with the variational method for core-collapse supernova (SN) simulations. Starting from the realistic nuclear Hamiltonian, the EOS for uniform nuclear matter is constructed with the cluster variational method: For non-uniform nuclear matter, the EOS is calculated with the Thomas-Fermi method. The obtained thermodynamic quantities of uniform matter are in good agreement with those with more sophisticated Fermi Hypernetted Chain variational calculations, and phase diagrams constructed so far are close to those of the Shen-EOS. The structure of neutron stars calculated with this EOS at zero temperature is consistent with recent observational data, and the maximum mass of the neutron star is slightly larger than that with the Shen-EOS. Using the present EOS of uniform nuclear matter, we also perform the 1D simulation of the core-collapse supernovae by a simplified prescription of adiabatic hydrodynamics. The stellar core with the present EOS is more compact than that with the Shen-EOS, and correspondingly, the explosion energy in this simulation with the present EOS is larger than that with the Shen-EOS.

  6. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy.

    PubMed

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B; Gee, Leland B; Scott, Aubrey D; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the (57)Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique 'wagging' mode involving H(-) motion perpendicular to the Ni(μ-H)(57)Fe plane was studied using (57)Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)(57)Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)(57)Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)(57)Fe(CO)3](+) and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H(-) binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts. PMID:26259066

  7. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  8. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    SciTech Connect

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.

  9. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    PubMed Central

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging' mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H− binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts. PMID:26259066

  10. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    DOE PAGESBeta

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; et al

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate amore » low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.« less

  11. Equation of state for nuclear matter in core-collapse supernovae by the variational method

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Takehara, Y.; Yamamuro, S.; Nakazato, K.; Suzuki, H.; Sumiyoshi, K.; Takano, M.

    2014-12-01

    We construct a new nuclear equation of state (EOS) for core-collapse supernova (SN) simulations using the variational many-body theory. For uniform nuclear matter, the EOS is constructed with the cluster variational method starting from the realistic nuclear Hamiltonian composed of the Argonne v18 two-body potential and the Urbana IX three-body potential. The masses and radii of neutron stars calculated with the obtained EOS at zero temperature are consistent with recent observational data. For non-uniform nuclear matter, we construct the EOS in the Thomas-Fermi approximation. In this approximation, we assume a functional form of the density distributions of protons, neutrons, and alpha-particles, and minimize the free energy density in a Wigner-Seitz cell with respect to the parameters included in the assumed density distribution functions. The phase diagram of hot nuclear matter at a typical temperature is reasonable as compared with that of the Shen EOS.

  12. Silver-silver oxide core-shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy

    NASA Astrophysics Data System (ADS)

    Schinca, D. C.; Scaffardi, L. B.; Videla, F. A.; Torchia, G. A.; Moreno, P.; Roso, L.

    2009-11-01

    The generation of small silver metal nanoparticles (Nps) by ultrashort pulsed laser ablation has been an active area of research in recent years due to their interest in several fields of applied research such as biotechnology and material research, in particular those with sizes smaller than 10 nm. In general, laser ablation tends to produce environmentally clean metal Nps compared with wet chemical methods. However, since silver may be oxidized in the presence of water or ethanol, core-shell silver-silver oxide (Ag-Ag2O) Nps can be formed, whose size and thickness must be determined and characterized for functionalization related to future applications. This work analyses the size characteristics of core-shell Ag-Ag2O colloid nanostructures (smaller than 10 nm) obtained by femtosecond laser ablation of solid silver targets in different liquid media (water or ethanol) through the study of their optical extinction spectra. A fit of full experimental spectrum using Mie theory allows the determination of core size and shell thickness distributions as a function of fluence. The red-shift of the plasmon peak wavelength with respect to the bare-core peak wavelength at 400 nm, produced by the oxide shell, may be easily measured even for very small thicknesses. It was found that the dominant Ag2O effective thickness is inversely proportional to the fluence, reaching a maximum of 0.2 nm for a fluence of 60 J cm-2 and a minimum of 0.04 nm for a fluence of 1000 J cm-2.

  13. Revisiting the vortex-core tunnelling spectroscopy in YBa2Cu3O7−δ

    PubMed Central

    Bruér, Jens; Maggio-Aprile, Ivan; Jenkins, Nathan; Ristić, Zoran; Erb, Andreas; Berthod, Christophe; Fischer, Øystein; Renner, Christoph

    2016-01-01

    The observation by scanning tunnelling spectroscopy of Abrikosov vortex cores in the high-temperature superconductor YBa2Cu3O7−δ (Y123) has revealed a robust pair of electron-hole symmetric states at finite subgap energy. Their interpretation remains an open question because theory predicts a different signature in the vortex cores, characterized by a strong zero-bias conductance peak. Here, we present scanning tunnelling spectroscopy data on very homogeneous Y123 at 0.4 K revealing that the subgap features do not belong to vortices: they are actually observed everywhere along the surface with high spatial and energy reproducibility, even in the absence of magnetic field. Detailed analysis and modelling show that these states remain unpaired in the superconducting phase and belong to an incoherent channel, which contributes to the tunnelling signal in parallel with the superconducting density of states. PMID:27030516

  14. Analysis of ringing due to magnetic core materials used in pulsed nuclear magnetic resonance applications

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Hadimani, Ravi; Bulu, Irfan; Song, Yi-Qiao; Mina, Mani; Jiles, David

    Oil-field well logging instruments employ pulsed nuclear magnetic resonance (NMR) techniques and use inductive sensors to detect and evaluate the presence of particular fluids in geological formations. Acting as both signal transmitters and receivers most inductive sensors employ magnetic cores to enhance the quality and amplitude of signals recorded during field measurements. It is observed that the magnetic core also responds to the applied input signal thereby generating a signal (`ringing') that interferes with the measurement of the signals from the target formations. This causes significant noise and receiver dead time and it is beneficial to eliminate/suppress the signals received from the magnetic core. In this work a detailed analysis of the magnetic core response and in particular loading of the sensor due to the presence of the magnetic core is presented. Pulsed NMR measurements over a frequency band of 100 kHz to 1MHz are used to determine the amplitude and linewidth of the signals acquired from different magnetic core materials. A lower signal amplitude and a higher linewidth are vital since these would correspond to minimal contributions from the magnetic core to the inductive sensor response and thus leading to minimized receiver dead time.

  15. Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers.

    PubMed

    Doménech, José Luis; Cueto, Maite

    2013-10-15

    We show the first experimental evidence of the sensitivity enhancement that can be achieved in high resolution stimulated Raman spectroscopy of gases using hollow-core photonic crystal fibers (HCPCFs). Using low power cw lasers and a HCPCF containing the gas, we have observed more than four orders of magnitude enhancement of sensitivity when compared with the cw single focus regime, and a similar sensitivity to that achieved in the more sensitive quasi-cw setups with multipass cells. PMID:24321926

  16. Interaction of loading pattern and nuclear data uncertainties in reactor core calculations

    SciTech Connect

    Klein, M.; Gallner, L.; Krzykacz-Hausmann, B.; Pautz, A.; Velkov, K.; Zwermann, W.

    2012-07-01

    Along with best-estimate calculations for design and safety analysis, understanding uncertainties is important to determine appropriate design margins. In this framework, nuclear data uncertainties and their propagation to full core calculations are a critical issue. To deal with this task, different error propagation techniques, deterministic and stochastic are currently developed to evaluate the uncertainties in the output quantities. Among these is the sampling based uncertainty and sensitivity software XSUSA which is able to quantify the influence of nuclear data covariance on reactor core calculations. In the present work, this software is used to investigate systematically the uncertainties in the power distributions of two PWR core loadings specified in the OECD UAM-Benchmark suite. With help of a statistical sensitivity analysis, the main contributors to the uncertainty are determined. Using this information a method is studied with which loading patterns of reactor cores can be optimized with regard to minimizing power distribution uncertainties. It is shown that this technique is able to halve the calculation uncertainties of a MOX/UOX core configuration. (authors)

  17. Development concept for a small, split-core, heat-pipe-cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Breitwieser, R.; Niederauer, G. F.

    1974-01-01

    There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.

  18. Survey of odd-odd deformed nuclear spectroscopy

    SciTech Connect

    Hoff, R.W.

    1993-09-14

    In this paper, we survey the current experimental data that support assignment of rotational bands in odd-odd deformed nuclear in the rare earth and actinide regions. We present the results of a new study of {sup 170}Mt nuclear structure. In a comparing experimental and calculated Gallagher-Moszkowski matrix elements for rare earth-region nuclei, we have developed a new approach to the systematics of these matrix elements.

  19. Natural abundance carbon-13 nuclear magnetic resonance studies of histone and DNA dynamics in nucleosome cores.

    PubMed

    Hilliard, P R; Smith, R M; Rill, R L

    1986-05-01

    Natural abundance carbon-13 nuclear magnetic resonance spectra (67.9 MHz) were obtained for native nucleosome cores: cores dissociated in 2 M NaCl and 2 M NaCl, 6 M urea; and cores degraded with DNase I plus proteinase K. Phosphorus-31 NMR spectra of native and dissociated cores and core length DNA were also obtained at 60.7 MHz. The 31P resonance and spin-lattice relaxation time (T1) of DNA were only slightly affected by packaging in nucleosome cores, in agreement with other reports, but 13C resonances of DNA were essentially unobservable. The loss of DNA spectral intensity suggests that rapid internal motions of DNA sugar carbons in protein-free DNA previously demonstrated by 13C NMR methods are partly restricted in nucleosomes. The 13C spectrum of native cores contains many narrow intense resonances assigned to lysine side chain and alpha-carbons, glycine alpha-carbons, alanine alpha- and beta- carbons, and arginine side chain carbons. Several weaker resonances were also assigned. The narrow line widths, short T1 values, and non-minimal nuclear Overhauser enhancements of these resonances, including alpha- and beta-carbons, show that some terminal chain segments of histones in nucleosomes are as mobile as small random coil polypeptides. The mobile segments include about 9% of all histone residues and 25% of all lysines, but only 10% of all arginines. The compositions of these segments indicate that mobile regions are located in amino- or carboxyl-terminal sequences of two or more histones. In addition, high mobility was observed for side chain carbons of 45-50% of all lysines (delta and epsilon carbons) and about 25% of all arginines (zeta carbon) in histones (including those in mobile segments), suggesting that basic residues in terminal histone sequences are not strongly involved in nucleosome structure and may instead help stabilize higher order chromatin structure. PMID:3700380

  20. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Cooper, C. G.; Macbeth, P. J.

    1973-01-01

    Variations in cavity wall and injection configurations of the gas core reactor were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or Freon to simulate the central nuclear fuel gas. Tests were run both in the down-firing and upfiring directions. Results showed that acceptable flow patterns with volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity long the cavity wall, using louvered injection schemes. Recirculation patterns were needed to stabilize the heavy central gas when different gases are used.

  1. Design and Performance of South Ukraine Nuclear Power Plant Mixed Cores

    SciTech Connect

    Abdullayev, A. M.; Baydulin, V.; Zhukov, A. I.; Latorre, Richard

    2011-09-24

    In 2010, 42 Westinghouse fuel assemblies (WFAs) were loaded into the core of South Ukraine Nuclear Power Plant (SUNPP) Unit 3 after four successful cycles with 6 Westinghouse Lead Test Assemblies. The scope of safety substantiating documents required for the regulatory approval of this mixed core was extended considerably, particularly with development and implementation of new methodologies and 3-D kinetic codes. Additional verification for all employed codes was also performed. Despite the inherent hydraulic non-uniformity of a mixed core, it was possible to demonstrate that all design and operating restrictions for three different types of fuel (TVS-M, TVSA and WFA) loaded in the core were conservatively met. This paper provides the main results from the first year of operation of the core loaded with 42 WFAs, the predicted parameters for the transition and equilibrium cycles with WFAs, comparisons of predicted versus measured core parameters, as well as the acceptable margin evaluation results for reactivity accidents using the 3-D kinetic codes. To date WFA design parameters have been confirmed by operation experience.

  2. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  3. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  4. Dynamic analysis of an open-cycle gas-core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Kieffer, A. W.

    1973-01-01

    Reactivity and flow disturbances were used to investigate the transient response of a conceptual open cycle gas core nuclear rocket engine. The disturbances were made with the system initially operating at its steady state design point. Results of the study show that the feedbacks associated with the propellant density and propellant temperature have a dominant effect on the response of the system. Furthermore, there appears to be a rather limited range of values of these propellant feedback coefficients for which the gas core nuclear rocket has a stable response. The system was rather insensitive to a fuel flow rate disturbance, whereas a similar disturbance in the propellant flow rate caused large changes in reactor power. For a similar disturbance in the propellant flow rate caused large changes in reactor power. For most reactivity and flow rate disturbances, the response showed oscillations of various intensity.

  5. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGESBeta

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    Here we evaluate the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product was developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK andmore » Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Finally, both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  6. Comparative assessment of out-of-core nuclear thermionic power systems

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  7. An assessment of coupling algorithms for nuclear reactor core physics simulations

    NASA Astrophysics Data System (ADS)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss-Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton-Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  8. Gaseous core nuclear-driven engines featuring a self-shutoff mechanism to provide nuclear safety

    SciTech Connect

    Heidrich, J.; Pettibone, J.; Chow, Tze-Show; Condit, R.; Zimmerman, G.

    1991-11-01

    Nuclear driven engines are described that could be run in either pulsed or steady state modes. In the pulsed mode nuclear energy is released by fissioning of uranium or plutonium in a supercritical assembly of fuel and working gas. In a steady state mode a fuel-gas mixture is injected into a magnetic nozzle where it is compressed into a critical state and produces energy. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff or control of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled up from about 100 MW{sub e}.

  9. Near-Edge X-Ray Absorption Fine Structures Revealed in Core Ionization Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Selles, P.; Lablanquie, P.; Hikosaka, Y.; Penent, F.; Shigemasa, E.; Ito, K.; Carniato, S.

    2013-09-01

    Simultaneous core ionization and core excitation have been observed in the C2H2n (n=1, 2, 3) molecular series using synchrotron radiation and a magnetic bottle time-of-flight electron spectrometer. Rich satellite patterns corresponding to (K-2V) core excited states of the K-1 molecular ions have been identified by detecting in coincidence the photoelectron with the two Auger electrons resulting from the double core hole relaxation. A theoretical model is proposed providing absolute photoionization cross sections and revealing clear signatures of direct (monopolar) and conjugate (dipolar near-edge x-ray absorption fine structure) shakeup lines of comparable magnitude.

  10. Near-edge x-ray absorption fine structures revealed in core ionization photoelectron spectroscopy.

    PubMed

    Nakano, M; Selles, P; Lablanquie, P; Hikosaka, Y; Penent, F; Shigemasa, E; Ito, K; Carniato, S

    2013-09-20

    Simultaneous core ionization and core excitation have been observed in the C(2)H(2n) (n=1, 2, 3) molecular series using synchrotron radiation and a magnetic bottle time-of-flight electron spectrometer. Rich satellite patterns corresponding to (K(-2)V) core excited states of the K(-1) molecular ions have been identified by detecting in coincidence the photoelectron with the two Auger electrons resulting from the double core hole relaxation. A theoretical model is proposed providing absolute photoionization cross sections and revealing clear signatures of direct (monopolar) and conjugate (dipolar near-edge x-ray absorption fine structure) shakeup lines of comparable magnitude. PMID:24093255

  11. Application of X-ray Absorption Spectroscopy to the study of nuclear structural materials

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan

    One of key technologies for the next generation nuclear systems are advanced materials, including high temperature structural materials, fast neutron resistance core materials and so on. Local structure determination in these systems, which often are crystallographically intractable, is critical to gaining an understanding of their properties. In this thesis, X-ray Absorption Spectroscopy (XAS), including Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), is used to examine the geometric and electronic structure of nuclear structural materials under varying conditions. The thesis is divided into two main sections. The first examines the structural analysis of nanostructured ferritic alloys (NFA) which are dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features, resulting in remarkable high temperature creep strength and radiation damage resistance. Titanium and Yttrium K-edge XAS shows commercial alloys MA957 and J12YWT more closely resemble the as received Fe-14Cr-3W-0.4Ti (wt. %) powders, and mechanically alloyed (MA) powders with 0.25Y2O3 (wt. %). It shows that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix. In contrast, annealed powders and hot isostatic press (HIP) consolidated alloys show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. The second section describes corrosion studies of Pb with 316L stainless steel, molybdenum and spinet (MgAl2O4) at high temperature by XAS. The corrosion of fuel cladding and structural materials by liquid lead at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. The results of ex-situ studies show that a Mo substrate retained a smooth and less corroded surface than 316L stainless steel sample at elevated temperature. In

  12. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  13. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  14. Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Sen Gupta, Subhra; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Tanaka, A.; Sawatzky, G. A.

    2011-08-01

    With the example of the non-resonant inelastic x-ray scattering (NIXS) at the O45 edges (5d→5f) of the actinides, we develop the theory for shallow-core to valence excitations, where the multiplet spread is larger than the core-hole attraction, such as if the core and valence orbitals have the same principal quantum number. This involves very strong final state configuration interaction (CI), which manifests itself as huge reductions in the Slater-Condon integrals, needed to explain the spectral shapes within a simple renormalized atomic multiplet theory. But more importantly, this results in a cross-over from bound (excitonic) to virtual-bound excited states with increasing energy, within the same core-valance multiplet structure, and in large differences between the dipole and high-order multipole transitions, as observed in NIXS. While the bound states (often higher multipole allowed) can still be modeled using local cluster-like models, the virtual-bound resonances (often dipole-allowed) cannot be interpreted within such local approaches. This is in stark contrast to the more familiar core-valence transitions between different principal quantum number shells, where all the final excited states almost invariably form bound core-hole excitons and can be modeled using local approaches. The possibility of observing giant multipole resonances for systems with high angular momentum ground states is also predicted. The theory is important to obtain ground state information from core-level x-ray spectroscopies of strongly correlated transition metal, rare-earth, and actinide systems.

  15. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  16. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  17. In vivo nuclear magnetic resonance spectroscopy of a transplanted brain tumour.

    PubMed Central

    Koeze, T. H.; Lantos, P. L.; Iles, R. A.; Gordon, R. E.

    1984-01-01

    In vivo nuclear magnetic resonance 31P spectroscopy was used to demonstrate different patterns of high energy phosphate metabolism in a group of malignant tumours of glial origin. In some of the more malignant tumours a decrease in adenylate energy charge was found. This was associated with a decline in phosphocreatine and an increase in sugar phosphate and inorganic phosphorus. PMID:6704312

  18. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  19. The Sensitivity of Core-collapse Supernovae to Nuclear Electron Capture

    NASA Astrophysics Data System (ADS)

    Sullivan, Chris; O'Connor, Evan; Zegers, Remco G. T.; Grubb, Thomas; Austin, Sam M.

    2016-01-01

    A weak-rate library aimed at investigating the sensitivity of astrophysical environments to variations of electron-capture rates on medium-heavy nuclei has been developed. With this library, the sensitivity of the core-collapse and early post-bounce phases of core-collapse supernovae to nuclear electron capture is examined. The rates are adjusted by factors consistent with uncertainties indicated by comparing theoretical rates to those deduced from charge-exchange and β-decay measurements. To ensure a model-independent assessment, sensitivity studies across a comprehensive set of progenitors and equations of state are performed. We find a +16/-4% range in the mass of the inner core at shock formation and a ±20% range of peak {ν }e luminosity during the deleptonization burst. These ranges are five times as large as those seen from a separate progenitor study, where we evaluate the sensitivity of these parameters to 32 presupernova models. Additionally, the simulations are found to be more sensitive to a reduction in electron-capture rates than an enhancement, and specifically to the reduction in rates for neutron-rich nuclei near the N = 50 closed neutron shell. As measurements for medium-heavy (A> 65) and neutron-rich nuclei are sparse, and because accurate theoretical models that account for nuclear structure considerations of individual nuclei are not readily available, rates for these nuclei may be overestimated. If more accurate estimates confirm this, results from this study indicate that significant changes to the core-collapse trajectory are expected. For this reason, experimental and theoretical efforts should focus on this region of the nuclear chart.

  20. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    NASA Astrophysics Data System (ADS)

    Sarmiento, L. G.; Rudolph, D.

    2016-07-01

    With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  1. Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Opella, Stanley J.

    2013-06-01

    Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.

  2. Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Opella, Stanley J.

    2014-01-01

    Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein–coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy. PMID:23577669

  3. Decay chains and photofission investigation based on nuclear spectroscopy of highly enriched uranium sample.

    PubMed

    Sibczynski, P; Kownacki, J; Syntfeld-Kazuch, A; Moszynski, M; Kisielinski, M; Czarnacki, W; Kosinski, K; Matusiak, M; Klimasz, M; Kowalczyk, M; Abraham, T; Mierzejewski, J; Srebrny, J

    2013-12-01

    Nuclear spectroscopy experiments were performed for 100g metallic uranium rod enriched to 93% (235)U, in order to establish and characterize the most prominent γ-rays in the natural decay series and photofission reaction. Single γ-ray spectra and γ-γ coincidences measurements were conducted before irradiation. The uranium sample was subsequently irradiated with 15 MeV bremsstrahlung photons. Relative intensities of γ-lines and several values of half-lives of the fission fragments decays were determined. The obtained information can be utilized in detection of smuggled nuclear materials and characterization of bulky nuclear waste packages. PMID:24013389

  4. Compact supercontinuum sources based on tellurite suspended core fibers for absorption spectroscopy beyond 2 μm

    NASA Astrophysics Data System (ADS)

    Strutynski, Clément; Picot-Clémente, Jérémy; Désévédavy, Frédéric; Jules, Jean-Charles; Gadret, Grégory; Kibler, Bertrand; Smektala, Frédéric

    2016-07-01

    We present the experimental development of two compact supercontinuum laser sources based on tellurite suspended core fibers with and without tapering post-processing. The pumping scheme makes use of commercially-available nJ-level femtosecond and picosecond fiber lasers at 1.56 and 2.06 μm respectively. The resulting spectral broadening that occurs in a few tens-of-centimeters of tellurite fiber allows coverage of the convenient molecular fingerprint region between 2 and 3 μm. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements in the mid-infrared by means of the supercontinuum absorption spectroscopy technique. Experimental results are in fairly good agreement with both numerical simulations of supercontinuum generation and spectroscopic predictions of the HITRAN database.

  5. Optical spectroscopy and energy-filtered transmission electron microscopy of surface plasmons in core-shell nanoparticles.

    SciTech Connect

    Eggeman, A. S.; Dobson, P. J.; Petford-Long, A. K.; Materials Science Division; Oxford Univ.

    2007-01-01

    Silica-silver core-shell nanoparticles were produced using colloidal chemistry methods. Surface plasmon resonances in the silver shells were investigated using optical absorption measurements in ultraviolet-to-visible (UV-vis) spectroscopy and the effect of shell thickness on the wavelength of the resonance was noted. Further studies of the resonances were performed using electron-energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscope (EFTEM) imaging. The plasmon resonance was seen in an EELS spectrum at an energy corresponding to the wavelengths measured in an UV-vis spectrophotometer, and EFTEM images confirmed that the resonance was indeed localized at the surface of the silver shell. Further features were seen in the EELS spectrum and confirmed as bulk-plasmon features of silica and the carbon support film in the TEM specimen.

  6. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field

    PubMed Central

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-01-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  7. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.

    PubMed

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-02-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  8. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, Dahu; Berger, Andrew J.

    2007-04-01

    We report measurements of chemical concentrations in clinical blood serum and urine samples using liquid-core optical fiber (LCOF) Raman spectroscopy to increase the collected signal strength. Both Raman and absorption spectra were acquired in the near-infrared region using the LCOF geometry. Spectra of 71 blood serum and 61 urine samples were regressed via partial least squares against reference analyzer values. Significant correlation was found between predicted and reference concentrations for 13 chemicals. Using absorption data to normalize the LCOF enhancement made the results more accurate. The experimental geometry is well suited for high-volume and automated chemical analysis of clear biofluids.

  9. Evaluation for 4S core nuclear design method through integration of benchmark data

    SciTech Connect

    Nagata, A.; Tsuboi, Y.; Moriki, Y.; Kawashima, M.

    2012-07-01

    The 4S is a sodium-cooled small fast reactor which is reflector-controlled for operation through core lifetime about 30 years. The nuclear design method has been selected to treat neutron leakage with high accuracy. It consists of a continuous-energy Monte Carlo code, discrete ordinate transport codes and JENDL-3.3. These two types of neutronic analysis codes are used for the design in a complementary manner. The accuracy of the codes has been evaluated by analysis of benchmark critical experiments and the experimental reactor data. The measured data used for the evaluation is critical experimental data of the FCA XXIII as a physics mockup assembly of the 4S core, FCA XVI, FCA XIX, ZPR, and data of experimental reactor JOYO MK-1. Evaluated characteristics are criticality, reflector reactivity worth, power distribution, absorber reactivity worth, and sodium void worth. A multi-component bias method was applied, especially to improve the accuracy of sodium void reactivity worth. As the result, it has been confirmed that the 4S core nuclear design method provides good accuracy, and typical bias factors and their uncertainties are determined. (authors)

  10. One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy with a Diamond Quantum Sensor.

    PubMed

    Boss, J M; Chang, K; Armijo, J; Cujia, K; Rosskopf, T; Maze, J R; Degen, C L

    2016-05-13

    We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that, by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with up to five digits of precision. The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. Presented techniques will be useful for mapping nuclear coordinates in molecules deposited on diamond sensor chips, en route to imaging their atomic structure. PMID:27232045

  11. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. PMID:26847544

  12. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    NASA Astrophysics Data System (ADS)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  13. One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy with a Diamond Quantum Sensor

    NASA Astrophysics Data System (ADS)

    Boss, J. M.; Chang, K.; Armijo, J.; Cujia, K.; Rosskopf, T.; Maze, J. R.; Degen, C. L.

    2016-05-01

    We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that, by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with up to five digits of precision. The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. Presented techniques will be useful for mapping nuclear coordinates in molecules deposited on diamond sensor chips, en route to imaging their atomic structure.

  14. The behavior of ANGRA 2 nuclear power plant core for a small break LOCA simulated with RELAP5 code

    NASA Astrophysics Data System (ADS)

    Sabundjian, Gaianê; Andrade, Delvonei A.; Belchior, Antonio, Jr.; da Silva Rocha, Marcelo; Conti, Thadeu N.; Torres, Walmir M.; Macedo, Luiz A.; Umbehaun, Pedro E.; Mesquita, Roberto N.; Masotti, Paulo H. F.; de Souza Lima, Ana Cecília

    2013-05-01

    This work discusses the behavior of Angra 2 nuclear power plant core, for a postulate Loss of Coolant Accident (LOCA) in the primary circuit for Small Break Loss Of Coolant Accident (SBLOCA). A pipe break of the hot leg Emergency Core Cooling System (ECCS) was simulated with RELAP 5 code. The considered rupture area is 380 cm2, which represents 100% of the ECCS pipe flow area. Results showed that the cooling is enough to guarantee the integrity of the reactor core.

  15. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy.

    PubMed

    Bai, Yanjie; Shi, Yong-Cheng

    2016-10-20

    Glycosidic linkages in a pyrodextrin were identified by NMR spectroscopy for the first time. Pyrodextrin was prepared by slurrying waxy maize starch at pH 3, filtering and drying at 40°C to 10-15% moisture content, then heating at 170°C for 4h. (1)H and (13)C NMR resonances of the pyrodextrin were assigned with the assistance of 2D techniques including COSY, TOCSY, HSQC, and HMBC, all measured on a 500MHz instrument. During dextrinization, native waxy maize starch was hydrolyzed and extensively branched with new glycosidic linkages. The resulting pyrodextrin became 100% soluble in water and produced lower viscosity solutions at 30% solids. There were only 1.2% reducing ends (α-form) detected in the pyrodextrin, but 1,6-anhydro-β-d-glucopyranosyl units accounted for 5.2% of repeating units and they were thought to be at the potential reducing end. New glycosyl linkages including α-1,6, β-1,6, α-1,2, and β-1,2 were identified. The total non-α-1,4 linkages in the pyrodextrin were about 17.8% compared to 5.8% in a maltodextrin prepared by α-amylase digestion. Transglycosidation and depolymerization occurred during dextrinization, and the resulting pyrodextrin was highly branched. PMID:27474585

  16. Method of using a nuclear magnetic resonance spectroscopy standard

    DOEpatents

    Spicer, Leonard D.; Bennett, Dennis W.; Davis, Jon F.

    1985-01-01

    (CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy, wherein the resonance peaks of either .sup.1 H, .sup.13 C, .sup.15 N, or .sup.29 Si may be used as a reference.

  17. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  18. The scalability of OTR (out-of-core thermionic reactor) space nuclear power systems

    SciTech Connect

    Gallup, D.R.

    1990-03-01

    In this document, masses of the STAR-C power system and an optimized out-of-core thermionic reactor (OTR) power system versus power level are investigated. The impacts of key system parameters on system performance are also addressed. The STAR-C is mass competitive below about 15 kWe, but at higher power levels the scalability is relatively poor. An optimized OR is the least massive space nuclear power system below 25 kWe, and scales well to 50 kWe. The system parameters that have a significant impact on the scalability of the STAR-C are core thermal flux, thermionic converter efficiency, and core length to diameter ratio. The emissivity of the core surface is shown to be a relatively unimportant parameter. For an optimized OR power system, the most significant system parameter is the maximum allowable fuel temperature. It is also shown that if advanced radiation-hardened electronics are used in the satellite payload, a very large mass savings is realized. 10 refs., 23 figs., 7 tabs.

  19. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  20. Potassium-induced charge redistribution on Si(111) surfaces studied by core-level photoemission spectroscopy

    SciTech Connect

    Ma, Y. ); Chen, C.T.; Meigs, G.; Sette, F. ); Illing, G. ); Shigakawa, H. )

    1992-03-15

    High-resolution core-level photoemission spectra of the K/Si(111)(7{times}7) surface system are presented. The Si 2{ital p} results show that potassium adsorption induces a Si 2{ital p} core level to shift to o/Ihighero/P binding energy, i.e., to the opposite direction than that expected from the Si-K electronegativity differences. This result is compared with that of the K/Si(111)({radical}3 {times} {radical}3 ){ital R}30{degree}-B system and is interpreted in terms of the K-induced charge redistribution between the Si-adatom--rest-atom pair.

  1. Optical Spectroscopy of Luminous Infrared Galaxies. I. Nuclear Data

    NASA Astrophysics Data System (ADS)

    Kim, D.-C.; Sanders, D. B.; Veilleux, S.; Mazzarella, J. M.; Soifer, B. T.

    1995-05-01

    A spectroscopic survey of a large sample of luminous infrared galaxies [log (L_ir_/L_sun_)^7^ ~ 10.5-12.5; H_0_ = 75 km s^-1^ Mpc^-1^] has been carried out using the Palomar 5 m telescope,, and the University of Hawaii 2.2 m telescope. Long-slit spectra covering 375o-8000 A at a resolution of ~10 A were obtained of 200 IRAS galaxies, including 114 objects from the IRAS Bright Galaxy Survey, and 86 objects with fainter infrared fluxes selected on the basis of their "warm" far-infrared (S_60_/S_100_) colors. The methods of observation and data reduction are discussed. An atlas of the spectra extracted from the nuclear region of these objects is presented along with a large number of parameters describing the properties of the emission lines, the stellar absorption lines, and the continuum emission that were measured from the spectra. An analysis of these data is presented in a companion paper (Veilleux et al. 1995) along with a discussion of the spatial variations of these parameters in a subsample of twenty-three objects.

  2. Nuclear Engineering Computer Models for In-Core Fuel Management Analysis.

    Energy Science and Technology Software Center (ESTSC)

    1992-06-12

    Version 00 VPI-NECM is a nuclear engineering computer system of modules for in-core fuel management analysis. The system consists of 6 independent programs designed to calculate: (1) FARCON - neutron slowing down and epithermal group constants, (2) SLOCON - thermal neutron spectrum and group constants, (3) DISFAC - slow neutron disadvantage factors, (4) ODOG - solution of a one group neutron diffusion equation, (5) ODMUG - three group criticality problem, (6) FUELBURN - fuel burnupmore » in slow neutron fission reactors.« less

  3. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    SciTech Connect

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  4. Analysis of the nuclear measurement program for an optimized BR2 core configuration

    SciTech Connect

    Van Den Branden, G.; Kalcheva, S.; Sikik, E.; Koonen, E.

    2013-07-01

    This paper presents the analysis of the results of the Nuclear Measurement Program (NMP) executed during the shut-down of cycle 05/2012 of the BR2 reactor. The aim of the NMP was to determine the properties of a reactor core load with a new configuration of the control rods and to evaluate/verify the predicted numerical results by MCNPX. The methods used for the interpretation of the measurement results include combinations of an analytical method for determination of the axial relative control rod efficiency and least square techniques. (authors)

  5. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... include the rupture opening. (3) Maximum hydrogen generation. The calculated total amount of...

  6. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.

  7. Low-energy nuclear spectroscopy in a microscopic multiphonon approach

    NASA Astrophysics Data System (ADS)

    Lo Iudice, N.; Ponomarev, V. Yu; Stoyanov, Ch; Sushkov, A. V.; Voronov, V. V.

    2012-04-01

    The low-lying spectra of heavy nuclei are investigated within the quasiparticle-phonon model. This microscopic approach goes beyond the quasiparticle random-phase approximation by treating a Hamiltonian of separable form in a microscopic multiphonon basis. It is therefore able to describe the anharmonic features of collective modes as well as the multiphonon states, whose experimental evidence is continuously growing. The method can be put in close correspondence with the proton-neutron interacting boson model. By associating the microscopic isoscalar and isovector quadrupole phonons with proton-neutron symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic states can be classified, just as in the algebraic model, according to their phonon content and their symmetry. In addition, these states disclose the nuclear properties which are to be ascribed to genuine shell effects, not included in the algebraic approach. Due to its flexibility, the method can be implemented numerically for systematic studies of spectroscopic properties throughout entire regions of vibrational nuclei. The spectra and multipole transition strengths so computed are in overall good agreement with the experimental data. By exploiting the correspondence of the method with the interacting boson model, it is possible to embed the microscopic states into this algebraic frame and, therefore, face the study of nuclei far from shell closures, not directly accessible to merely microscopic approaches. Here, it is shown how this task is accomplished through systematic investigations of magnetic dipole and, especially, electric dipole modes along paths moving from the vibrational to the transitional regions. The method is very well suited to the study of well-deformed nuclei. It provides reliable descriptions of low-lying magnetic as well as electric multipole modes of nuclei throughout the rare-earth and actinide regions. Attention is focused here on the low-lying 0+ states

  8. Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion

    SciTech Connect

    Sayre, Edwin D.; Ring, Peter J.; Brown, Neil; Elsner, Norbert B.; Bass, John C.

    2008-01-21

    This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

  9. Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion

    NASA Astrophysics Data System (ADS)

    Sayre, Edwin D.; Ring, Peter J.; Brown, Neil; Elsner, Norbert B.; Bass, John C.

    2008-01-01

    This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

  10. Characterization of direct-drive-implosion core conditions on OMEGA with time-resolved Ar K-shell spectroscopy

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Delettrez, J. A.; Epstein, R.; Jaanimagi, P. A.; Yaakobi, B.; Smalyuk, V. A.; Marshall, F. J.; Meyerhofer, D. D.; Seka, W.; Haynes, D. A.; Golovkin, I. E.; Hooper, C. F.

    2002-04-01

    Direct-drive-implosion core conditions have been characterized on the 60-beam OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] laser system with time-resolved Ar K-shell spectroscopy. Plastic shells with an Ar-doped deuterium fill gas were driven with a 23 kJ, 1 ns square laser pulse smoothed with 1 THz smoothing by spectral dispersion (SSD) and polarization smoothing (PS) using birefringent wedges. The targets are predicted to have a convergence ratio of ˜15. The emissivity-averaged core electron temperature (Te) and density (ne) were inferred from the measured time-dependent Ar K-shell spectral line shapes. As the imploding shell decelerates the observed Te and ne increase to 2.0 (±0.2) keV and 2.5 (±0.5)×1024cm-3 at peak neutron production, which is assumed to occur at the time of the peak emissivity-averaged Te. At peak compression the ne increases to 3.1 (±0.6)×1024cm-3 and the Te decreases to 1.7 (±0.17) keV. The observed core conditions are close to those predicted by a one-dimensional hydrodynamics code.

  11. Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution.

    SciTech Connect

    Shenoy, G. K.; Rohlsberger, R.; X-Ray Science Division; DESY

    2008-02-01

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.

  12. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  13. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  14. Nuclear structure of elements with 100 ≤ Z ≤ 109 from alpha spectroscopy

    NASA Astrophysics Data System (ADS)

    Asai, M.; Heßberger, F. P.; Lopez-Martens, A.

    2015-12-01

    Significant technical progress concerning the availability of intense heavy-ion beams and highly-efficient and sophisticated detection devices has made nuclear-structure investigations possible in the region of superheavy nuclei. Exciting new results have been obtained by applying α spectroscopy as well as α-γ and internal-conversion-electron coincidence spectroscopy. The present review article gives an overview of the experimental techniques and methods with specific attention to the recent developments of digital signal and data processing giving access to half-life ranges of less than a few microseconds. The presentation of the experimental results and the physics discussion will be focused on nuclear structure systematics in even-Z nuclei along the N = 151 , 153 ,and 155 isotonic lines, where most progress has been achieved in the last 10 years.

  15. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    PubMed

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry. PMID:25303164

  16. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  17. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  18. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    SciTech Connect

    Mitchell, Jonathan Fordham, Edmund J.

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  19. Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim; Smith, Blair; Houts, Michael

    2001-02-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a fissioning plasma core reactor (FPCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasmadynamic (MPD) thruster. The FPCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF4) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Candidate working fluids include K, Li, Na, KF, LiF, NaF, etc. The system features core outlet temperatures of 3000 to 4000 K at pressures of about 1 to 10 MPa, MHD temperatures of 2000 to 3000 K, and radiator temperatures of 1200 to 2000 K. This combination of parameters offers the potential for low total system specific mass in the range of 0.4 to 0.6 kg/kWe. The MHD output could be coupled with minimal power conditioning to the variable specific impulse magnetoplasma rocket (VASIMR), MPD thrusters or other types of thruster for producing thrust at very high specific impulse (Isp=1500 to 10,000 s). .

  20. A Practical Guide for Nuclear Resonance Vibrational Spectroscopy (NRVS) of Biochemical Samples and Model Compounds

    PubMed Central

    Wang, Hongxin; Alp, Ercan; Yoda, Yoshitaka; Cramer, Stephen P.

    2016-01-01

    Summary Nuclear resonance vibrational spectroscopy (NRVS) has been used by physicists for many years. However, it is still a relatively new technique for bioinorganic users. This technique yields a vibrational spectrum for a specific element, which can be easily interpreted. Furthermore, isotopic labeling allows for site-specific experiments. In this chapter we discuss how to access specific beamlines, what kind of equipment is used in NRVS and how the sample should be prepared and the data collected and analyzed. PMID:24639257

  1. FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION

    SciTech Connect

    Aharon, Danor; Perets, Hagai B.

    2015-02-01

    Nuclear stellar cluster (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: (1) buildup of NSCs from consecutive infall of stellar clusters and (2) continuous in situ star formation. Though the cluster infall scenario has been extensively studied, the in situ formation scenario has been hardly explored. Here we use Fokker-Planck (FP) calculations to study the effects of star formation on the buildup of NSCs and its implications for their long-term evolution and their resulting structure. We use the FP equation to describe the evolution of stellar populations and add appropriate source terms to account for the effects of newly formed stars. We show that continuous star formation even 1-2 pc away from the MBH can lead to the buildup of an NSC with properties similar to those of the Milky Way NSC. We find that the structure of the old stellar population in the NSC with in situ star formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger populations do not yet achieve a steady state. In particular, formed/evolved NSCs with in situ star formation contain differential age-segregated stellar populations that are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure toward the NSC outskirts, while showing a core-like distribution inward, with younger populations having larger core sizes. In principal, such a structure can give rise to an apparent core-like radial distribution of younger stars, as observed in the Galactic center.

  2. Spatially Resolved Far-Ultraviolet Spectroscopy of the Nuclear Region of NGC 1068

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Jun-Xian; Kriss, Gerard A.; Sahnow, David; Allen, Mark; Dopita, Michael; Tsvetanov, Zlatan; Bicknell, Geoffrey

    2008-10-01

    We carry out high-resolution FUSE spectroscopy of the nuclear region of NGC 1068. The first set of spectra was obtained with a 30'' square aperture that collected all emission from the narrow-line region. The data reveal a strong broad O VI component of FWHM ~3500 km s-1 and two narrow O VI λλ1031, 1037 components of ~350 km s-1. The C III λ977 and N III λ991 emission lines in this spectrum can be fitted with a narrow component of FWHM ~1000 km s-1 and a broad one of ~2500 km s-1. Another set of seven spatially resolved spectra was made using a long slit of 1.25'' × 20'' at steps of ~1'' along the axis of the emission-line cone. We find the following: (1) Major emission lines in the FUSE wavelength range consist of a broad and a narrow component. (2) There is a gradient in the velocity field for the narrow O VI component of ~200 km s-1 from ~2'' southwest of the nucleus to ~4'' northeast. A similar pattern is also observed with the broad O VI component, with a gradient of ~3000 km s-1. These are consistent with the HST STIS findings and suggest a biconical structure in which the velocity field is mainly radial outflow. (3) A major portion of the C III and N III line flux is produced in the compact core. They are therefore not effective temperature diagnostics for the conical region. (4) The best-fit UV continuum suggests virtually no reddening, and the He II I(λ1640)/I(λ1085) ratio suggests a consistently low extinction factor across the cone. At ~2'' northeast of the nucleus there is a region characterized by (a) a strong Lyα flux but normal C IV flux, (b) a broad O VI line, and (c) a significantly enhanced C III flux. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE), which is operated for NASA by The Johns Hopkins University under NASA contract NAS5-32985, and observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of

  3. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  4. First X-Ray absorption spectroscopy results on Aeolian dust archived in Antarctica and Alpine firn cores

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Maggi, V.; Cibin, G.; Sala, M.; Marino, F.; Delmonte, B.

    2006-12-01

    We present the first x-ray absorption spectroscopy (XAS) data at the Fe K-edge collected on insoluble mineral dust from Talos Dome firn core (TDC, 159°04'E, 72°46'S, 2316 m a.s.l., mean accumulation rate 8 g cm-2 yr- 1), drilled in the framework of the International Trans Antarctic Scientific Expedition (ITASE), and from a Colle del Lys 2003 firn core (CDL03, 45°92'N, 7°86'E, 4248m a.s.l., mean accumulation rate 134 g cm-2 yr-1, Lys Glacier, Mt. Rosa, Italy). The low concentration of mineral particles, obtained by filtering each firn core melted samples on Nuclepore membranes in a 1000 class clean room, required a specific procedure to prepare the samples necessary to the successful collection of the XAS data. The firn samples were decontaminated in clean room under laminar flow bench by means of a ceramic knife and discarding the external part of the cores. Analyses of the insoluble particle content were performed by particle counter Beckman CounterãMultisizer III in order to defined concentration and size distribution of particles in each samples. A dedicated HV experimental chamber, devoted to the realization of XAS experiments on very low absorber concentration samples, was developed and realized in the framework of the CryoAlp collaboration at IMONT, the Italian National Institute for Mountains. The original experimental setup, thanks to the presence of an in-vacuum sample micromanipulator and special sample alignment and docking system installed for these experiments at the Stanford Synchrotron Radiation Laboratory at the beamline 6-2, allows both normal-incidence X-ray Fluorescence detection using a Ketek SDD detector having an energy resolution of about 150 eV and extremely low energy detection limit, and Total X-ray Reflection Fluorescence and Absorption Spectroscopy measurements. The high quality of the XANES experiments performed, using both normal incidence and Total Reflection XAS measurements, allowed recognizing iron-inclusion mineral fractions

  5. Design and analysis of a nuclear reactor core for innovative small light water reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, Alexey I.

    In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.

  6. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOEpatents

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  7. Core Level Spectroscopy and Tautomerism of Key Biomolecules in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Feyer, V.; Plekan, O.; Richter, R.; Prince, K. C.; Coreno, M.; Giuliano, B. M.; Evangelisti, L.; Melandri, S.; Caminati, W.; Trofimov, A. B.; Zaytseva, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2010-06-01

    The nucleobases cytosine, thymine and uracil are pyrimidine derivatives. They pair with their complementary purines, guanine and adenine, through hydrogen bonding to form DNA and RNA chains. The tautomeric forms of DNA bases are capable of unusual base pairing like thymine-guanine and cytosine-adenine and create mutations, which are the precursors of some molecular-based diseases. Low energy spectroscopies such as microwave, laser and infrared techniques are commonly used as methods to investigate the conformatonal and tautomeric equilibria of biomolecules, while the high energy technique of x-ray photoemission spectroscopy (XPS) has yielded a smaller amount of significant structural information about biomolecules in the gas phase. In the present studies we successfully apply XPS to the study of five nucleic acid base tautomers, as well as the prototypical system 2-hydroxypyridimine and the related molecules S-methyl-2-thiouracil and 2-thiouracil in the vapor phase. XPS is a quantitative technique, allowing the experimental determination of the populations of keto and enol tautomers at known equilibrium temperatures: it is difficult to obtain this information otherwise. The effect of different substituents on stability of tautomers has been revealed. Quantum chemistry calculations have been carried out in order to obtain information about the structure, relative stability and difference in populations of the tautomers and conformers under study.

  8. Exploring the nuclear pasta phase in Core-Collapse Supernova Matter

    SciTech Connect

    Pais, Helena; Stone, Jirina R

    2012-01-01

    The core-collapse supernova (CCSN) phenomenon, one of the most explosive events in the Uni- verse, presents a challenge to theoretical astrophysics. Of the large variety of forms of matter present in CCSN, we focus on the transitional region between homogeneous and inhomogeneous phases. Traditionally, here the nuclear structures undergo a series of changes in shape from spher- ical to exotic deformed forms: rods, slabs, cylindrical holes and bubbles, termed nuclear pasta . A fully self-consistent three-dimensional, finite temperature Skyrme-Hartree-Fock + BCS (SHF) calculation yields, for the first time, the critical density and temperature of both the onset of the pasta in inhomogeneous matter, consisting of neutron heavy nuclei and a free neutron and electron gas, and its dissolution in to a homogeneous neutron, proton and electron liquid. As the nuclear matter properties depend on the effective nucleon-nucleon interaction in the SHF model, we employ four different forms of the Skyrme interaction, SkM , SLy4, NRAPR and SQMC700 and find subtle variations in the low density and high density transitions into and out of the pasta phase. Two new stable pasta shapes have been identified, in addition to the classic ones, on the grid of densities and temperatures used in this work. Detailed examination and clasification of the transitions found will form the content of a forthcoming publication.

  9. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression.

    PubMed

    Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias

    2016-09-01

    We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681

  10. High Momentum Transfer Shallow Core-to-valence Spectroscopy in the Actinides

    NASA Astrophysics Data System (ADS)

    Gupta, Subhra Sen; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Sawatzky, G. A.

    2010-03-01

    We calculate the dynamic structure factor S(q,φ) within a renormalized atomic multiplet approach, to describe the 5d->5f non-resonant inelastic x-ray scattering (NIXS) in actinide compounds ThO2 (5f^0) and UO2 (5f^2). For small q, the spectra select the dipole-allowed transitions which are degenerate with continuum states, hindering their use in ground electronic structure determination. However dipole-forbidden multiplets reached with large q are strongly bound to the core-hole, enabling the use of a renormalized atom approach to extract the ground state electronic structure. This crossover from unbound to bound states, reachable by low-q and high-q experiments respectively, is a result of the large multiplet spread of the 5d^95f^N+1 multiplets exceeding the attractive core-hole potential. We discuss the details of the calculations and emphasize the importance of high-q experiments in studies of the ground state electronic structure of actinides.