Sample records for nuclear desalination plants

  1. Preliminary design studies on a nuclear seawater desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibisono, A. F.; Jung, Y. H.; Choi, J.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less

  2. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. Themore » total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)« less

  3. Environmental impact of seawater desalination plants.

    PubMed

    Al-Mutaz, I S

    1991-01-01

    Enormous amounts of seawater are desalted everyday worldwide. The total world production of fresh water from the sea is about 2621 mgd (9.92 million m(3) day(-1) 1985 figures). Desalting processes are normally associated with the rejection of high concentration waste brine from the plant itself or from the pretreatment units as well as during the cleaning period. In thermal processes, mainly multistage flash (MSF) thermal pollution occurs. These pollutants increase the seawater temperature, salinity, water current and turbidity. They also harm the marine environment, causing fish to migrate while enhancing the presence of algae, nematods and tiny molluscus. Sometimes micro-elements and toxic materials appear in the discharged brine.This paper will discuss the impact of the effluents from the desalination plants on the seawater environment with particular reference to the Saudi desalination plants, since they account for about 50% of the world desalination capacity.

  4. New prospects for PV powered water desalination plants: case studies in Saudi Arabia: New prospects for PV powered water desalination plants

    DOE PAGES

    Fthenakis, Vasilis; Atia, Adam A.; Morin, Olivier; ...

    2015-01-28

    Increased water demand and increased drought episodes in the Middle East and other regions necessitate an expansion in desalination projects and create a great market opportunity for photovoltaics (PV). PV-powered desalination has previously been regarded as not being a cost-competitive solution when compared with conventionally powered desalination; however, the decline in PV costs over the last few years has changed this outlook. Here, this article presents up-to-date performance and cost analysis of reverse osmosis (RO) desalination powered with PV connected to the Saudi Arabian grid. Reference cases include relatively small (i.e., producing 6550 m 3 water per day) and largemore » (i.e., 190 000 m 3/day) desalination plants using seawater at a salinity of 40 000 ppm. We used data from a King Abdullah University for Science and Technology presentation and Hybrid Optimization Model for Electric Renewables 2.81 Energy Modeling Software (HOMER Energy LLC) in tandem with Desalination Economic Evaluation Program 4.0 (International Atomic Energy Agency) desalination software to analyze the techno-economic feasibility of these plants. The first phase of our work entailed a comparison between dual-axis high concentration PV (CPV) equipped with triple junction III/V solar cells and CdTe PV-powered RO systems. The estimated levelized cost of electricity from CPV is 0.16/kWh dollars, whereas that from CdTe PV is $0.10/kWh dollars and 0.09/kWh dollars for fixed-tilt and one-axis tracking systems, respectively. These costs are higher than the price of diesel-based grid electricity in the region because diesel fuel is heavily subsidized in Saudi Arabia.« less

  5. Improvement of water desalination technologies in reverse osmosis plants

    NASA Astrophysics Data System (ADS)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  6. Nuclear Security for Floating Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less

  7. Planning and Design of Seawater Reverse Osmosis Desalination Plants Marine Outfalls

    NASA Astrophysics Data System (ADS)

    Maalouf, S.; Yeh, W. W.

    2011-12-01

    Increasing demands for water in urban areas and agricultural zones in arid and semi-arid regions have urged planners and regulators to look for alternative renewable water sources. Worldwide, seawater reverse osmosis (SWRO) desalination plants have become an essential supply source for the production of fresh water in such regions. Disposal of their wastes, however, has not been fully and properly addressed. This study presents a strategy for the analysis and design of optimal disposal systems of hypersaline wastes that are generated by SWRO desalination plants. The study evaluates current disposal methods and recommends ways to effectively employ multiport marine outfalls for this purpose. Such outfalls emerged as reliable means for conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO desalination plants is still in its beginning stage, and much work needs to be done to employ them effectively. Therefore, the main objective of this research is to provide design engineers with effective procedures that meet environmental permitting requirements and restrictions, while ascertaining adequate hydrodynamic performance. The study is tested by employing a simulation model and examining its reliability under many parameter perturbation scenarios. This is further extended by providing a solution to the same problem using a heuristic approach.

  8. Desalination: Status and Federal Issues

    DTIC Science & Technology

    2009-12-30

    on one side and lets purified water through. Reverse osmosis plants have fewer problems with corrosion and usually have lower energy requirements...Texas) and cities are actively researching and investigating the feasibility of large-scale desalination plants for municipal water supplies...desalination research and development, and in construction and operational costs of desalination demonstration projects and full-scale plants

  9. The techno-economic optimization of a 100MWe CSP-desalination plant in Arandis, Namibia

    NASA Astrophysics Data System (ADS)

    Dall, Ernest P.; Hoffmann, Jaap E.

    2017-06-01

    Energy is a key factor responsible for a country's economic growth and prosperity. It is closely related to the main global challenges namely: poverty mitigation, global environmental change and food and water security [1.]. Concentrating solar power (CSP) is steadily gaining more market acceptance as the cost of electricity from CSP power plants progressively declines. The cogeneration of electricity and water is an attractive prospect for future CSP developments as the simultaneous production of power and potable water can have positive economic implications towards increasing the feasibility of CSP plant developments [2.]. The highest concentrations of direct normal irradiation are located relatively close to Western coastal and Middle-Eastern North-African regions. It is for this reason worthwhile investigating the possibility of CSP-desalination (CSP+D) plants as a future sustainable method for providing both electricity and water with significantly reduced carbon emissions and potential cost reductions. This study investigates the techno-economic feasibility of integrating a low-temperature thermal desalination plant to serve as the condenser as opposed to a conventional dry-cooled CSP plant in Arandis, Namibia. It outlines the possible benefits of the integration CSP+D in terms of overall cost of water and electricity. The high capital costs of thermal desalination heat exchangers as well as the pumping of seawater far inland is the most significant barrier in making this approach competitive against more conventional desalination methods such as reverse osmosis. The compromise between the lowest levelized cost of electricity and water depends on the sizing and the top brine temperature of the desalination plant.

  10. Possibility of Thermomechanical Compressor Application in Desalination Plants

    NASA Astrophysics Data System (ADS)

    Blagin, E. V.; Shimanov, A. A.; Uglanov, D. A.; Korneev, S. S.

    2018-01-01

    This article deals with estimation of thermocompressor operating possibility in desalination plant with mechanical vapour compressor. In this plant thermocompressor is used instead of commonly used centrifugal compressor. Preliminary analysis shows that such plant is able to operate, however, power consumption is 3.5-6.5 higher in comparison with traditional MVC plant. In turn, utilization of thermocompressor allows avoiding usual high-frequency drive of centrifugal compressor. Drives with frequency of 50 Hz are enough for thermocompressor when centrifugal compressor requires drives with frequency up to 500 Hz and higher. Approximate thermocompressor dimensions are estimated.

  11. Efficiency mark of the two-product power complex of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Khrustalev, V. A.; Suchkov, V. M.

    2017-11-01

    The article discusses the combining nuclear power plants (NPP) with pressurized water reactors and distillation-desalination plants (DDP), their joint mode of operation during periods of coating failures of the electric power load graphs and thermo-economical efficiency. Along with the release of heat and generation of electric energy a desalination complex with the nuclear power plant produces distillate. Part of the selected steam “irretrievably lost” with a mix of condensation of this vapor in a desalination machine with a flow of water for distillation. It means that this steam transforms into condition of acquired product - distillate. The article presents technical solutions for the return of the working fluid for turbine К-1000-60/1500-2 и К-1200-6,8/50, as well as permissible part of low pressure regime according to the number of desalination units for each turbine. Patent for the proposed two-product energy complex, obtained by Gagarin State Technical University is analyzed. The energy complex has such system advantages as increasing the capacity factor of a nuclear reactor and also allows to solve the problem of shortage of fresh water. Thermo-economics effectiveness of this complex is determined by introducing a factor-“thermo-economic index”. During analyzing of the results of the calculations of a thermo-economic index we can see a strong influence of the cost factor of the distillate on the market. Then higher participation of the desalination plant in coverage of the failures of the graphs of the electric loading then smaller the payback period of the NPP. It is manifested more clearly, as it’s shown in the article, when pricing options depend on time of day and the configuration of the daily electric load diagram. In the geographical locations of the NPPs with PWR the Russian performance in a number of regions with low freshwater resources and weak internal electrical connections combined with DDP might be one of the ways to improve the

  12. The Threat of Intentional Oil Spills to Desalination Plants in the Middle East: A U.S. Security Threat

    DTIC Science & Technology

    1998-04-01

    desalination plants.”14 Kuwait and Qatar are almost entirely dependant on desalination plants already for their drinking water and with Qatar’s only aquifer ...rivers), below ground aquifers , and desalination facilities; the focus of this paper. Mary E. Morris most succinctly describes the basic water issues in...with different players and different issues: The first set involves the Jordan and Yarmuk River systems, as well as the West Bank and Gaza aquifers

  13. Simulating the impact of brine from desalination plants on the salinity of the Persian/Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; Ibrahim, H. D.

    2016-12-01

    The Middle East has an arid climate and very little freshwater from river runoff, which has forced a rapid expansion of desalination plants in the region in order to meet current and future freshwater demand due to rising population. The Gulf is the source of feedwater and sink of concentrated discharge (brine) for plants producing more than half of the world's desalination capacity. Moreover, the Gulf is one of the most saline water bodies in the world due to large evaporation that far exceeds the input of freshwater from precipitation and river runoff. An increase in salinity at the regional scale due to brine discharge may reduce the quality of feedwater to plants and efficiency of desalination, and at the basin scale, a rise in salinity may change the dynamics of water circulation and adversely impact the marine biota. Here we present modeling results from simulating the impact of desalination on the natural Gulf environment using a coupled Gulf-atmosphere regional model (GARM). GARM is the first two-way coupled model developed for the Gulf system. The hydrodynamic component of GARM is the unstructured grid finite volume coastal ocean model (FVCOM) and the atmosphere component of GARM is the MIT regional climate model (MRCM), both of which have been widely used in simulating regional ocean and atmospheric dynamics. Desalination activity is incorporated into GARM as a boundary condition and the Gulf system is simulated for a ten-year time period in order to quantify the impact of brine discharge both at regional and basin scales. These results will be useful for desalination plant design and planning for current and future water security in the region.

  14. Integration of solar process heat into an existing thermal desalination plant in Qatar

    NASA Astrophysics Data System (ADS)

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.

    2016-05-01

    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  15. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding themore » RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d

  16. Parametric optimization of the MVC desalination plant with thermomechanical compressor

    NASA Astrophysics Data System (ADS)

    Blagin, E. V.; Biryuk, V. V.; Anisimov, M. Y.; Shimanov, A. A.; Gorshkalev, A. A.

    2018-03-01

    This article deals with parametric optimization of the Mechanical Vapour Compression (MVC) desalination plant with thermomechanical compressor. In this plants thermocompressor is used instead of commonly used centrifugal compressor. Influence of two main parameters was studied. These parameters are: inlet pressure and number of stages. Analysis shows that it is possible to achieve better plant performance in comparison with traditional MVC plant. But is required reducing the number of stages and utilization of low or high initial pressure with power consumption maximum at approximately 20-30 kPa.

  17. The look of into Desalination and Natural Hazard

    NASA Astrophysics Data System (ADS)

    Arregoitia Sarabia, C. A.

    2012-04-01

    Today due to climate change and population growth, cities and especially larger cities have become more water stressed. Thus the growing demand for drinkable water due to water scarcity in different World regions and its reliable supply, have persuaded humans to construct desalination plants. Today, the implementation of different large-scale desalination methods is increasing. Desalination is a separation process that consists on the removal of salts from water (seawater or brackish water) to make it suitable for other purposes. Some important environmental aspects for a desalination plant are the location of the plant, brine disposal and energy considerations. However these issues become affected when natural adversity happens. Desalination processes used are normally classified in thermal and membrane. The energy required by these processes could be of any form of heat, electrical or mechanical depending on the separation process. These types of energy derive from fossil fuels, which conditions the desalination sustainability -environmental and economical. To improve this reality, the desalination industry is making a great research effort related to novel technologies, the use of renewable energies, and brine management. Presently desalination membrane technologies are preferred over thermal ones (based on evaporation) since they allow for continuous operations close to ambient temperatures. Moreover, the offer for a wider selection of large equipment and modules is increasing. This makes it possible to design processes according to potable needs as well as ease the use of membranes and other separation technologies together. Traditionally the location of the plant is an obvious matter where selection of site should be determined by considerations of mainly energy supply available and distance in relation to feed water intake, disposal site and end-user. This means locating these plants in coastal areas or inland locations and look for a solution to then

  18. Microfluidic desalination techniques and their potential applications.

    PubMed

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  19. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    PubMed

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  20. Composition and Variability of Biofouling Organisms in Seawater Reverse Osmosis Desalination Plants ▿ †

    PubMed Central

    Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli

    2011-01-01

    Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Cellulophaga based on 16S rRNA gene sequencing analysis. The 16S rRNA gene clone library of the SWRO membrane biofilm showed that a filamentous bacterium, Leucothrix mucor, which belongs to the gammaproteobacteria, accounted for nearly 30% of the clone library, while the rest of the microorganisms (61.2% of the total clones) were related to the alphaproteobacteria. 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that bacteria colonizing the SWRO membrane represented a subportion of microbes in the source seawater; however, they were quite different from those colonizing the cartridge filter. The examination of five SWRO membranes from desalination plants located in different parts of the world showed that although the bacterial communities from the membranes were not identical to each other, some dominant bacteria were commonly observed. In contrast, bacterial communities in source seawater were significantly different based on location and season. Microbial profiles from 14 cartridge filters collected from different plants also revealed spatial trends. PMID:21551282

  1. Stacked microbial desalination cells to enhance water desalination efficiency.

    PubMed

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.

  2. Reverse osmosis desalination: water sources, technology, and today's challenges.

    PubMed

    Greenlee, Lauren F; Lawler, Desmond F; Freeman, Benny D; Marrot, Benoit; Moulin, Philippe

    2009-05-01

    Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.

  3. An exergy approach to efficiency evaluation of desalination

    NASA Astrophysics Data System (ADS)

    Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.

    2017-05-01

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  4. Energy Implications of Seawater Desalination (Invited)

    NASA Astrophysics Data System (ADS)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to

  5. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  6. Bioremediation of steel plant wastewater and enhanced electricity generation in microbial desalination cell.

    PubMed

    Shinde, Omkar A; Bansal, Ankita; Banerjee, Angela; Sarkar, Supriya

    2018-05-01

    Microbial desalination cell (MDC) is a propitious technology towards water desalination by utilizing wastewater as an energy source. In this study, a multi-chambered MDC was used to bioremediate steel plant wastewater using the same wastewater as a fuel for anodic bacteria. A pure culture of Pseudomonas putida MTCC 1194 was isolated and inoculated to remove toxic phenol. Three different inoculum conditions, namely P. putida (INC-A), a mixture of P. putida and activated sludge (INC-B), and activated sludge alone (INC-C) were employed in an anodic chamber to mainly compare the electricity generation and phenol degradation in MDCs. The study revealed the maximum phenol removal of 82 ± 2.4%, total dissolved solids (TDS) removal of 68 ± 1.5%, and power generation of 10.2 mW/m 2 using INC-B. The synergistic interactions between microorganisms, can enhance the toxic phenol degradation and also electricity generation in MDC for onsite wastewater application.

  7. Identified Natural Hazards May Cause Adverse Impact on Sustainability of Desalination Plants in Red Sea

    NASA Astrophysics Data System (ADS)

    Aburizaiza, O. S.; Zaigham, N. A.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.; Eusufi, S. N.

    2011-12-01

    The Red Sea and its surrounding countries have harsh arid climatic conditions where fast growth of the socio-economic activities and rapid change of lifestyle have caused tremendous stress on water to the level of acute crisis. To meet the water demands, the Red Sea countries have adopted seawater desalination giving priority against their land-based resources. Saudi Arabia is the largest desalinated-water producers in the Red Sea and has practically no adequate backup plan in case of sudden unforeseen emergency. Out of about 3.64 million m3/day, Saudi Arabia is alone being desalinated about 3.29 m3/day seawater from Red Sea and more projects are in progress. Present integrated research study has identified some of natural and anthropogenic hazards, which may be major threats to the quality of the seawater as well as to the desalination plants themselves. Results of present study reveal that the submarine complex morphologic features may cause the isolation of Red Sea from any of the open sea, the increase in the seismicity trends, the active volcanism causing unique longitudinal as well as transverse deformations of the axial trough particularly in the southern part of the Red Sea, the consistently generating enormous hot-brine tectonic-factory all along the deeper parts of the Red Sea rifting trough and other related issues. Considering the identified odd conditions, the total dependence on seawater desalination may not be worthwhile for sustainable water management strategy and consequent socio-economic developments in future. It is recommended that the priority should also be given mainly in three main disciplines to meet the future water challenges - one, developing reliable backup water management; second, alternate options for the supplementary resources of water; and third, the development and immediate implementation of the water-use conservation strategy plan.

  8. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  9. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE PAGES

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    2016-06-17

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  10. Impact of socio-economic growth on desalination in the US.

    PubMed

    Ziolkowska, Jadwiga R; Reyes, Reuben

    2016-02-01

    In 2013, around 1336 desalination plants in the United States (US) provided purified water mainly to municipalities, the industry sector and for power generation. In 2013 alone, ∼200 million m(3) of water were desalinated; the amount that could satisfy annual municipal water consumption of more than 1.5 million people in the US. Desalination has proven to be a reliable water supply source in many countries around the world, with the total global desalination capacity of ∼60 million m(3)/day in 2013. Desalination has been used to mitigate water scarcity and lessen the pressure on water resources. Currently, data and information about desalination are still limited, while extensive socio-economic analyses are missing. This paper presents an econometric model to fill this gap. It evaluates the impact of selected socio-economic variables on desalination development in the US in the time span 1970-2013. The results show that the GDP and population growth have significantly impacted the desalination sector over the analyzed time period. The insights into the economics of desalination provided with this paper can be used to further evaluate cost-effectiveness of desalination both in the US and in other countries around the world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An Interactive Computer Tool for Teaching About Desalination and Managing Water Demand in the US

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    This paper presents an interactive tool to geospatially and temporally analyze desalination developments and trends in the US in the time span 1950-2013, its current contribution to satisfying water demands and its future potentials. The computer tool is open access and can be used by any user with Internet connection, thus facilitating interactive learning about water resources. The tool can also be used by stakeholders and policy makers for decision-making support and with designing sustainable water management strategies. Desalination technology has been acknowledged as a solution to a sustainable water demand management stemming from many sectors, including municipalities, industry, agriculture, power generation, and other users. Desalination has been applied successfully in the US and many countries around the world since 1950s. As of 2013, around 1,336 desalination plants were operating in the US alone, with a daily production capacity of 2 BGD (billion gallons per day) (GWI, 2013). Despite a steady increase in the number of new desalination plants and growing production capacity, in many regions, the costs of desalination are still prohibitive. At the same time, the technology offers a tremendous potential for `enormous supply expansion that exceeds all likely demands' (Chowdhury et al., 2013). The model and tool are based on data from Global Water Intelligence (GWI, 2013). The analysis shows that more than 90% of all the plants in the US are small-scale plants with the capacity below 4.31 MGD. Most of the plants (and especially larger plants) are located on the US East Coast, as well as in California, Texas, Oklahoma, and Florida. The models and the tool provide information about economic feasibility of potential new desalination plants based on the access to feed water, energy sources, water demand, and experiences of other plants in that region.

  12. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers

    NASA Astrophysics Data System (ADS)

    Antia, David D. J.

    2018-05-01

    Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.

  13. Forward Osmosis in India: Status and Comparison with Other Desalination Technologies

    PubMed Central

    2014-01-01

    With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for desalination. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing desalination. As energy consumption and associated greenhouse gas emissions are one of the major concerns of desalination, this paper concludes that forward osmosis is an emerging sustainable technology for seawater desalination. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well. PMID:27350984

  14. Forward Osmosis in India: Status and Comparison with Other Desalination Technologies.

    PubMed

    Mehta, Dhruv; Gupta, Lovleen; Dhingra, Rijul

    2014-01-01

    With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for desalination. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing desalination. As energy consumption and associated greenhouse gas emissions are one of the major concerns of desalination, this paper concludes that forward osmosis is an emerging sustainable technology for seawater desalination. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well.

  15. Desalination

    EPA Science Inventory

    To cope with the rising demand for fresh water, desalination of brackish groundwater and seawater is increasingly being viewed as a pragmatic option for augmenting fresh water supplies. The large scale deployment of desalination is likely to demonstrably increase electricity use,...

  16. An arduino based control system for a brackish water desalination plant

    NASA Astrophysics Data System (ADS)

    Caraballo, Ginna

    Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.

  17. A framework for investigating the interactions between climate, dust, solar power generation and water desalination processes in Desert Climate

    NASA Astrophysics Data System (ADS)

    Siam, M. S.; Alqatari, S.; Ibrahim, H. D.; AlAloula, R. A.; Alrished, M.; AlSaati, A.; Eltahir, E. A. B.

    2016-12-01

    Increasing water demand in Saudi Arabia due to rapid population growth has forced the rapid expansion of seawater desalination plants in order to meet both current and future freshwater needs. Saudi Arabia has a huge potential for solar energy, hence, solar-powered desalination plants provide an opportunity to sustainably address the freshwater demand in the kingdom without relying on fossil fuels energy. However, the desert climate of Saudi Arabia and limited access to the open ocean imposes several challenges to the expansion and sustainability of solar-powered desalination plants. For example, the frequent and intense dust storms that occur in the region can degrade solar panels and significantly reduce their efficiency. Moreover, the high salinity Arabian Gulf is both the source of feedwater and sink of hypersaline discharge (brine) for many plants in the east of the Kingdom, and the brine may alter the salinity, temperature and movement of the water thereby reducing the quality of the feedwater to the desalination plants. Here, we propose a framework to investigate the different interactions between climate, dust, solar power generation and seawater desalination in order to identify optimal parameters such as locations of solar panels and seawater intake for sustainable implementation of solar-powered desalination plants. This framework integrates several numerical models including regional climate, hydrodynamics, Photovoltaics (PV) and Photovoltaic-Reverse Osmosis (PV-RO) models that are used to investigate these interactions for a solar-powered desalination plant at AlKhafji on the Northeastern coast of Saudi Arabia.

  18. Seawater quality and microbial communities at a desalination plant marine outfall. A field study at the Israeli Mediterranean coast.

    PubMed

    Drami, Dror; Yacobi, Yosef Z; Stambler, Noga; Kress, Nurit

    2011-11-01

    Global desalination quadrupled in the last 15 years and the relative importance of seawater desalination by reverse osmosis (SWRO) increased as well. While the technological aspects of SWRO plants are extensively described, studies on the environmental impact of brine discharge are lacking, in particular in situ marine environmental studies. The Ashqelon SWRO plant (333,000 m(3) d(-1) freshwater) discharges brine and backwash of the pre-treatment filters (containing ferric hydroxide coagulant) at the seashore, next to the cooling waters of a power plant. At the time of this study brine and cooling waters were discharged continuously and the backwash discharge was pulsed, with a frequency dependent on water quality at the intake. The effects of the discharges on water quality and neritic microbial community were identified, quantified and attributed to the different discharges. The mixed brine-cooling waters discharge increased salinity and temperature at the outfall, were positively buoyant, and dispersed at the surface up to 1340 m south of the outfall. Nutrient concentrations were higher at the outfall while phytoplankton densities were lower. Chlorophyll-a and picophytoplankton cell numbers were negatively correlated with salinity, but more significantly with temperature probably as a result of thermal pollution. The discharge of the pulsed backwash increased turbidity, suspended particulate matter and particulate iron and decreased phytoplankton growth efficiency at the outfall, effects that declined with distance from the outfall. The discharges clearly reduced primary production but we could not attribute the effect to a specific component of the discharge. Bacterial production was also affected but differently in the three surveys. The combined and possible synergistic effects of SWRO desalination along the Israeli shoreline should be taken into account when the three existing plants and additional ones are expected to produce 2 Mm(3) d(-1) freshwater by

  19. Why do local communities support or oppose seawater desalination?

    NASA Astrophysics Data System (ADS)

    Mirza Ordshahi, B.; Heck, N.; Faraola, S.; Paytan, A.; Haddad, B.; Potts, D. C.

    2016-12-01

    Freshwater shortages have become a global problem due to increasing water consumption and environmental changes which are reducing the reliability of traditional water resources. One option to address water shortages in coastal areas is the use of seawater desalination. Desalination technology is particularly valued for the production of high quality drinking water and consistent production. However, seawater desalination is controversial due to potential environmental, economic, and societal impacts and lack of public support for this water supply method. Compared to alternative potable water production methods, such as water recycling, little is known about public attitudes towards seawater desalination and factors that shape local support or rejection. Our research addresses this gap and explores variables that influence support for proposed desalination plants in the Monterey Bay region, where multiple facilities have been proposed in recent years. Data was collected via a questionnaire-based survey among a random sample of coastal residents and marine stakeholders between June-July, 2016. Findings of the study identify the influence of socio-demographic variables, knowledge about desalination, engagement in marine activities, perception of the environmental context, and the existence of a National Marine Sanctuary on local support. Research outcome provide novel insights into public attitudes towards desalination and enhances our understanding of why communities might support or reject this water supply technology.

  20. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    NASA Astrophysics Data System (ADS)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and

  1. A new method for water desalination using microbial desalination cells.

    PubMed

    Cao, Xiaoxin; Huang, Xia; Liang, Peng; Xiao, Kang; Zhou, Yingjun; Zhang, Xiaoyuan; Logan, Bruce E

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.

  2. Design and development of an air humidifier using finite difference method for a solar desalination plant

    NASA Astrophysics Data System (ADS)

    Chiranjeevi, C.; Srinivas, T.

    2017-11-01

    Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.

  3. Perspectives and Challenges for Water Desalination - A Socio-Economic Multi-Regional Analysis and a Case Study for Texas

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Scanlon, B. R.; Young, M.

    2013-12-01

    Water desalination is anticipated to become a prospective solution for mitigating future water shortages in Texas. As of 2010, 46 municipal brackish water desalination plants were operating in Texas with an estimated total desalination capacity of about 120 million gallons per day (2.3% of state water use) (TWDB 2010; TWDB 2013). In 2011, 99% of the State of Texas suffered extreme drought, with large portions suffering through exceptional drought. This event was classified as the one-year drought of record. Moreover, the growing population of Texas and the subsequent growing water demand create an immediate need for long-term planning for a reliable and efficient water supply. Desalination, even though acknowledged as a reliable option in many countries in the world, requires high investment costs and energy inputs. Current costs of desalinated water can range between US1.09/1,000 gallons and US3.7/1,000 gallons (Arroyo and Shirazi 2012), which are about two to three times higher than water costs from conventional sources (San Antonio Water System 2012; AustinTexas.gov 2013). Economic efficiency is still the main factor determining future developments of desalination investments in Texas, and the technology is still emerging. While currently only investment, maintenance and total capital costs per unit water are considered as factors determining viability of a desalination plant, this study aims at depicting a broader picture of socio-economic impacts related to the construction project itself, both in the immediate region and adjacent communities and interlinked sectors. This study presents an Input-Output model for the brackish water desalination plant in San Antonio, with the first stage expected to be completed in 2016. By using multi-regional and sectoral multipliers, the analysis shows that constructing the desalination plant can create 2,050 jobs in the San Antonio region, while it will add 316 more jobs in other regions in Texas by 2016. Construction will

  4. Formation and fate of chlorination by-products in reverse osmosis desalination systems.

    PubMed

    Agus, Eva; Sedlak, David L

    2010-03-01

    Chlorination by-products may be formed during pretreatment or posttreatment disinfection in reverse osmosis (RO) desalination systems, potentially posing health, aesthetic and ecological risks. To assess the formation and fate of by-products under different conditions likely to be encountered in desalination systems, trihalomethanes, dihaloacetonitriles, haloacetic acids, and bromophenols were analyzed in water samples from a pilot-scale seawater desalination plant with a chlorine pretreatment system and in benchscale experiments designed to simulate other feed water conditions. In the pilot plant, RO rejection performance as low as 55% was observed for neutral, low-molecular-weight by-products such as chloroform or bromochloroacetonitrile. Benchscale chlorination experiments, conducted on seawater from various locations indicated significant temporal and spatial variability for all by-products, which could not be explained by measured concentrations of organic carbon or bulk parameters such as SUVA(254). When desalinated water was blended with freshwater, elevated concentrations of bromide in the blended water resulted in dihaloacetonitrile concentrations that were higher than those expected from dilution. In most situations, the concentration of chlorination by-products formed from continuous chlorination of seawater or blending of desalinated water and freshwater will not compromise water quality or pose significant risks to aquatic ecosystems. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.

    PubMed

    Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia

    2012-08-01

    A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A desalination battery.

    PubMed

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  7. Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: Assessment of environmental pollution.

    PubMed

    Alshahri, Fatimh

    2017-01-01

    Accumulation of heavy metals in environment may cause series potential risk in the living system. This study was carried out to investigate heavy metal contamination in sand samples and sediments along the beach near to disposal site of reject brine from Alkhobar desalination plant, which is one of the oldest and largest reverse osmosis desalination plants in eastern Saudi Arabia, Arabian Gulf. Fourteen heavy metals (U, Ca, Fe, Al, Ti, Sr, Rb, Ni, Pb, Cd, Cr, Cu, As, and Zr) were measured using gamma-ray spectrometry, atomic absorption spectrometer (AAS) and energy dispersive X-ray fluorescence spectrometer (EDX). The obtained data revealed that the concentrations of these metals were higher than the values in sediment and soil for other studies in Arabian Gulf. Furthermore, the mean values of Fe, Mn, Cr, Cu, As, Sr, and Zr concentrations in sand and sediments were higher than the geochemical background values in shale. The contamination factor (CF), modified degree of contamination (mC d ) and pollution load index (PLI) were assessed. According to contamination factors (CF > 1), the results showed elevated levels of Cu, Cr, Mn, Zr, and As in all samples. The highest value of contamination factor was found for As. Based on PLI (PLI > 1), the values of all sampling sites indicate a localized pollution in the study area. Current study could be useful as baseline data for heavy metals in sand and sediments nearby a desalination plant.

  8. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power

    NASA Astrophysics Data System (ADS)

    Rabas, T.; Panchal, C. B.; Genens, L.

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. Different OTEC plants are described that can supply various mixes of desalinated water and vapor; the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs where appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed; 40 inch high density polyethylene pipe at Keahole Point in Hawaii.

  9. Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination

    PubMed Central

    Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.

    2011-01-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685

  10. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    PubMed Central

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  11. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  12. [Effects of Suaeda glauca planting and straw mulching on soil salinity dynamics and desalination in extremely heavy saline soil of coastal areas.

    PubMed

    Zhang, Jiao; Cui, Shi You; Feng, Zhi Xiang

    2018-05-01

    To elucidate the seasonal variations in soil salinity and its driving factors, and to explore the effects of planting Suaeda glauca and straw mulching on soil desalination and salinity controlling, a field experiment was conducted in extremely heavy saline soil of coastal areas in Rudong, Jiangsu Province. There were four treatments: control (bare land, CK), planting S. glauca (PS), straw mulching A (at 15 t·hm -2 , SM-A), straw mulching 2A (at 30 t·hm -2 , SM-2A). Climate factors (including rainfall, atmospheric temperature, sunshine duration, and atmospheric evaporation) and soil salinity dynamic changes were determined from May 2014 to May 2015. Results showed that: (1) The seasonal variation of soil salinity was obvious in the bare ground (CK), with the lowest (8.69 g·kg -1 ) during June-August and the highest (26.66 g·kg -1 ) during September-December. The changes of soil salinity in topsoil (0-20 cm) were more intense than that in sub-topsoil (20-40 cm), with the changes in sub-topsoil having somewhat time lag compared the topsoil. (2) Soil salinity in CK treatment had a significantly linear correlation with the cumulative rainfall and evaporation-precipitation ratio of the fifteen-day before sampling. The results from multifactor and interphase analysis indicated that the increases of rainfall would promote soil desalinization. The rise of atmospheric temperature could exacerbate soil salt accumulation in surface soil. The interaction between rainfall and atmospheric temperature would have a positive effect on soil salt accumulation. (3) PS treatment did not alter the seasonal variation in soil salinity, but it reduced soil salinity in topsoil. (4) In SM-A and SM-2A treatments, the relationship of soil desalinization rate (%, Y) and treatment time (days, X) was expressed as Logistic curve equation. Moreover, the soil desalination rate was over 95.0% in the topsoil after 90-100 days of straw mul-ching treatment and was over 92.0% in sub-topsoil after 120

  13. Future Energy Benchmark for Desalination: is it Better to have a Power (electricity) Plant with ro or Med/msf?

    NASA Astrophysics Data System (ADS)

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw

    2016-06-01

    Power and desalination cogeneration plants are common in many water scared courtiers. Designers and planners for cogeneration face tough challenges in deciding the options:- Is it better to operate a power plant (PP) with the reverse osmosis (i.e., PP+RO) or the thermally-driven multi-effect distillation/multi-stage flashed (PP+MED/MSF) methods. From literature, the RO methods are known to be energy efficient whilst the MED/MSF are known to have excellent thermodynamic synergies as only low pressure and temperature steam are used. Not with-standing the challenges of severe feed seawater of the Gulf, such as the frequent harmful algae blooms (HABs) and high silt contents, this presentation presents a quantitative analyses using the exergy and energetic approaches in evaluating the performances of a real cogeneration plant that was recently proposed in the eastern part of Saudi Arabia. We demonstrate that the process choice of PP+RO versus PP+MED depends on the inherent efficiencies of individual process method which is closely related to innovative process design. In this connection, a method of primary fuel cost apportionment for a co-generation plant with a MED desalination is presented. We show that an energy approach, that captures the quality of expanding steam, is a better method over the conventional work output (energetic) and the energy method seems to be over-penalizing a thermally-driven MED by as much as 22% in the operating cost of water.

  14. Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.

    The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

  15. Desalination Brine Discharge Impacts on Coastal Biology and Water Chemistry - A Case Study from Carlsbad Southern California

    NASA Astrophysics Data System (ADS)

    Petersen, K. L.; Heck, N.; Potts, D. C.; Paytan, A.

    2017-12-01

    Fresh water demand is increasing world-wide due to on-going droughts, climate change and increasing human population and associated demand for food and water. Desalination of seawater is a reliable source of potable water; however the effects of byproduct brine discharge from desalination plants on coastal areas have not been thoroughly assessed. Here we report results from in-situmeasurements of the effects of brine discharge on water chemistry and coastal biology from a desalination plant in Carlsbad, Southern California. We compared select parameters in the coastal zone around the discharge site before and after operation began and conducted additional controlled laboratory incubations with key coastal species and brine effluent. Our in-situ data shows differences in salinity and temperature between the discharge area and a control site both before and after the desalination plant started operation. The discharge water is warmer by 3-5 Co than the ambient seawater and a temperature gradient is seen around the discharge channel. This is likely a result of mixing of the desalination brine with power plant cooling water for dilution prior to discharge and the higher temperatures are not directly attributed to the desalination. Our post-discharge results show a decipherable salinity plume at the bottom of the water column ( 6 m depth) reaching up to 600 m offshore from the discharge site. This indicates inefficient mixing of the brine in the coastal discharge zone. No significant differences are found in nutrient levels, organic carbon or chlorophyll a concentrations around the discharge. The benthic biology assemblage post-discharge is significantly different from the pre-discharge organisms' assemblage. However, the role of seasonal changes in temperature may also have impacted the data as the sampling was conducted during different seasons. Controlled incubation experiments of brittle stars (Ophiothrix spiculata) shows no significant difference in growth or

  16. The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    March, Hug; Saurí, David; Rico-Amorós, Antonio M.

    2014-11-01

    In this paper we explore the new orientation taken by Spanish water policy since the beginning of the 21st century and very specifically the shift towards desalination as an alternative to other water supply options such as river regulation or inter-basin water transfers. Desalination has been seen as the cure for everything that dams and inter-basin water transfers were unable to solve, including droughts, scarcities, social conflicts, environmental impacts, and political rivalries among the different Spanish regions. Desalination also means a new and powerful element in water planning and management that could provide water for the continuous expansion of the urban and tourist growth machine in Mediterranean Spain and thus relax possible water constraints on this growth. However, by 2012 most new desalination plants along the Mediterranean coast remained almost idle. Focusing on the case of the Mancomunidad de los Canales del Taibillla in South-eastern Spain, our aim is to develop a critical, integrated and reflexive perspective on the use of desalination as a source of water for urban and regional growth.

  17. Energy portfolio of Iran: A case study of solar desalination

    NASA Astrophysics Data System (ADS)

    Besharati, Adib

    Energy plays a very important role in the economic development of a country such as Iran where industrial progress and higher living standards increase demand for energy. Iran is one of the countries in the world that simultaneously produces and consumes large amounts of energy. Because of its geographic latitude and weather conditions, Iran has the potential to develop and use of both fossil and renewable energy sources. In South Iran, there are huge oil and gas resources, and at the same time high potential of solar radiation. However, at the present large-scale utilization, solar energy is prohibitively expensive for Iran. Therefore, this study investigates an economical way to utilize solar energy in a meaningful way for Iran. One of the possible uses of solar energy that is both economical and technically feasible is desalination of water using solar energy. People in South Iran live in different areas with relatively low population density. One of the critical problems in those areas is a lack of clean drinking water. As a result, there is an urgent need to investigate ways to produce clean water from the saltwater. Therefore, the present study conducts a case study of solar desalination in south Iran using solar. Different desalination methods, such as humidification dehumidification by using a solar collector, and reverse osmosis, are discussed. In the case study, a prototype desalination plant was considered and both technical and economic aspects of the plant were investigated in details. The results showed higher productivity of drinking water in reverse osmosis method for south Iran.

  18. Harmful algae and their potential impacts on desalination operations off southern California.

    PubMed

    Caron, David A; Garneau, Marie-Eve; Seubert, Erica; Howard, Meredith D A; Darjany, Lindsay; Schnetzer, Astrid; Cetinić, Ivona; Filteau, Gerry; Lauri, Phil; Jones, Burton; Trussell, Shane

    2010-01-01

    Seawater desalination by reverse osmosis (RO) is a reliable method for augmenting drinking water supplies. In recent years, the number and size of these water projects have increased dramatically. As freshwater resources become limited due to global climate change, rising demand, and exhausted local water supplies, seawater desalination will play an important role in the world's future water supply, reaching far beyond its deep roots in the Middle East. Emerging contaminants have been widely discussed with respect to wastewater and freshwater sources, but also must be considered for seawater desalination facilities to ensure the long-term safety and suitability of this emerging water supply. Harmful algal blooms, frequently referred to as 'red tides' due to their vibrant colors, are a concern for desalination plants due to the high biomass of microalgae present in ocean waters during these events, and a variety of substances that some of these algae produce. These compounds range from noxious substances to powerful neurotoxins that constitute significant public health risks if they are not effectively and completely removed by the RO membranes. Algal blooms can cause significant operational issues that result in increased chemical consumption, increased membrane fouling rates, and in extreme cases, a plant to be taken off-line. Early algal bloom detection by desalination facilities is essential so that operational adjustments can be made to ensure that production capacity remains unaffected. This review identifies the toxic substances, their known producers, and our present state of knowledge regarding the causes of toxic episodes, with a special focus on the Southern California Bight. (c) 2009 Elsevier Ltd. All rights reserved.

  19. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    PubMed

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes

  20. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: amore » nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.« less

  1. Osmotically-assisted desalination method and system

    DOEpatents

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  2. Optimizing desalinated sea water blending with other sources to meet magnesium requirements for potable and irrigation waters.

    PubMed

    Avni, Noa; Eben-Chaime, Moshe; Oron, Gideon

    2013-05-01

    Sea water desalination provides fresh water that typically lacks minerals essential to human health and to agricultural productivity. Thus the rising proportion of desalinated sea water consumed by both the domestic and agricultural sectors constitutes a public health risk. Research on low-magnesium water irrigation showed that crops developed magnesium deficiency symptoms that could lead to plant death, and tomato yields were reduced by 10-15%. The World Health Organization (WHO) reported on a relationship between sudden cardiac death rates and magnesium intake deficits. An optimization model, developed and tested to provide recommendations for Water Distribution System (WDS) quality control in terms of meeting optimal water quality requirements, was run in computational experiments based on an actual regional WDS. The expected magnesium deficit due to the operation of a large Sea Water Desalination Plant (SWDP) was simulated, and an optimal operation policy, in which remineralization at the SWDP was combined with blending desalinated and natural water to achieve the required quality, was generated. The effects of remineralization costs and WDS physical layout on the optimal policy were examined by sensitivity analysis. As part of the sensitivity blending natural and desalinated water near the treatment plants will be feasible up to 16.2 US cents/m(3), considering all expenses. Additional chemical injection was used to meet quality criteria when blending was not feasible. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    PubMed

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Environmental concerns of desalinating seawater using reverse osmosis.

    PubMed

    Tularam, Gurudeo Anand; Ilahee, Mahbub

    2007-08-01

    This Critical Review on environmental concerns of desalination plants suggests that planning and monitoring stages are critical aspects of successful management and operation of plants. The site for the desalination plants should be selected carefully and should be away from residential areas particularly for forward planning for possible future expansions. The concerning issues identified are noise pollution, visual pollution, reduction in recreational fishing and swimming areas, emission of materials into the atmosphere, the brine discharge and types of disposal methods used are the main cause of pollution. The reverse osmosis (RO) method is the preferred option in modern times especially when fossil fuels are becoming expensive. The RO has other positives such as better efficiency (30-50%) when compared with distillation type plants (10-30%). However, the RO membranes are susceptible to fouling and scaling and as such they need to be cleaned with chemicals regularly that may be toxic to receiving waters. The input and output water in desalination plants have to be pre and post treated, respectively. This involves treating for pH, coagulants, Cl, Cu, organics, CO(2), H(2)S and hypoxia. The by-product of the plant is mainly brine with concentration at times twice that of seawater. This discharge also includes traces of various chemicals used in cleaning including any anticorrosion products used in the plant and has to be treated to acceptable levels of each chemical before discharge but acceptable levels vary depending on receiving waters and state regulations. The discharge of the brine is usually done by a long pipe far into the sea or at the coastline. Either way the high density of the discharge reaches the bottom layers of receiving waters and may affect marine life particularly at the bottom layers or boundaries. The longer term effects of such discharge concentrate has not been documented but it is possible that small traces of toxic substances used in the

  5. A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination.

    PubMed

    Zuo, Kuichang; Cai, Jiaxiang; Liang, Shuai; Wu, Shijia; Zhang, Changyong; Liang, Peng; Huang, Xia

    2014-08-19

    The architecture and performance of microbial desalination cell (MDC) have been significantly improved in the past few years. However, the application of MDC is still limited in a scope of small-scale (milliliter) reactors and high-salinity-water desalination. In this study, a large-scale (>10 L) stacked MDC packed with mixed ion-exchange resins was fabricated and operated in the batch mode with a salt concentration of 0.5 g/L NaCl, a typical level of domestic wastewater. With circulation flow rate of 80 mL/min, the stacked resin-packed MDC (SR-MDC) achieved a desalination efficiency of 95.8% and a final effluent concentration of 0.02 g/L in 12 h, which is comparable with the effluent quality of reverse osmosis in terms of salinity. Moreover, the SR-MDC kept a stable desalination performance (>93%) when concentrate volume decreased from 2.4 to 0.1 L (diluate/concentrate volume ratio increased from 1:1 to 1:0.04), where only 0.875 L of nonfresh water was consumed to desalinate 1 L of saline water. In addition, the SR-MDC achieved a considerable desalination rate (95.4 mg/h), suggesting a promising application for secondary effluent desalination through deriving biochemical electricity from wastewater.

  6. Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea.

    PubMed

    Khan, Muhammad Tariq; Manes, Carmem-Lara de O; Aubry, Cyril; Croué, Jean-Philippe

    2013-02-01

    The complexity of Reverse Osmosis (RO) membrane fouling phenomenon has been widely studied and several factors influencing it have been reported by many researchers. This original study involves the investigation of two different fouling profiles produced at a seawater RO desalination plant installed on a floating mobile barge. The plant was moved along the coastline of the Red Sea in Saudi Arabia. The two locations where the barge was anchored showed different water quality. At the second location, two modules were harvested. One of the modules was pre-fouled by inorganics during plant operation at the previous site while the other was installed at the second site. Fouled membranes were subjected to a wide range of chemical and microbiological characterization procedures. Drastically different fouling patterns were observed in the two membranes which indicates the influence of source water quality on membrane surface modification and on fouling of RO membranes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  8. Nanostructured materials for water desalination

    NASA Astrophysics Data System (ADS)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  9. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Turchi, Craig

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less

  10. CSP cogeneration of electricity and desalinated water at the Pentakomo field facility

    NASA Astrophysics Data System (ADS)

    Papanicolas, C. N.; Bonanos, A. M.; Georgiou, M. C.; Guillen, E.; Jarraud, N.; Marakkos, C.; Montenon, A.; Stiliaris, E.; Tsioli, E.; Tzamtzis, G.; Votyakov, E. V.

    2016-05-01

    The Cyprus Institute's Pentakomo Field Facility (PFF) is a major infrastructure for research, development and testing of technologies relating to concentrated solar power (CSP) and solar seawater desalination. It is located at the south coast of Cyprus near the sea and its environmental conditions are fully monitored. It provides a test facility specializing in the development of CSP systems suitable for island and coastal environments with particular emphasis on small units (<25 MWth) endowed with substantial storage, suitable for use in isolation or distributed in small power grids. The first major experiment to take place at the PFF concerns the development of a pilot/experimental facility for the co-generation of electricity and desalinated seawater from CSP. Specifically, the experimental plant consists of a heliostat-central receiver system for solar harvesting, thermal energy storage in molten salts followed by a Rankine cycle for electricity production and a multiple-effect distillation (MED) unit for desalination.

  11. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel.

    PubMed

    Meng, Fanyu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Guodong; Fan, Qingxin; Wei, Liangliang; Ding, Jing; Zheng, Zhen

    2014-04-01

    Microbial desalination cells (MDCs) with common liquid anodic substrate exhibit a slow startup and destructive pH drop, and abiotic cathodes have high cost and low sustainability. A biocathode MDC with dewatered sludge as fuel was developed for synergistic desalination, electricity generation and sludge stabilization. Experimental results indicated that the startup period was reduced to 3d, anodic pH was maintained between 6.6 and 7.6, and high stability was shown under long-term operation (300d). When initial NaCl concentrations were 5 and 10g/L, the desalinization rates during stable operation were 46.37±1.14% and 40.74±0.89%, respectively. The maximum power output of 3.178W/m(3) with open circuit voltage (OCV) of 1.118V was produced on 130d. After 300d, 25.71±0.15% of organic matter was removed. These results demonstrated that dewatered sludge was an appropriate anodic substrate to enhance MDC stability for desalination and electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Caldera, Upeksha; Breyer, Christian

    2017-12-01

    Seawater reverse osmosis (SWRO) desalination is expected to play a pivotal role in helping to secure future global water supply. While the global reliance on SWRO plants for water security increases, there is no consensus on how the capital costs of SWRO plants will vary in the future. The aim of this paper is to analyze the past trends of the SWRO capital expenditures (capex) as the historic global cumulative online SWRO capacity increases, based on the learning curve concept. The SWRO capex learning curve is found based on 4,237 plants that came online from 1977 to 2015. A learning rate of 15% is determined, implying that the SWRO capex reduced by 15% when the cumulative capacity was doubled. Based on SWRO capacity annual growth rates of 10% and 20%, by 2030, the global average capex of SWRO plants is found to fall to 1,580 USD/(m3/d) and 1,340 USD/(m3/d), respectively. A learning curve for SWRO capital costs has not been presented previously. This research highlights the potential for decrease in SWRO capex with the increase in installation of SWRO plants and the value of the learning curve approach to estimate future SWRO capex.

  13. Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; He, Zhen

    2018-05-01

    In this work, a microbial desalination cell (MDC) was employed to desalinate the FO treated leachate for reduction of both salinity and chemical oxygen demand (COD). The FO recovered 51.5% water from a raw leachate and the recovery increased to 83.5% from the concentrated leachate after desalination in the MDC fed with either acetate or another leachate as an electron source and at a different hydraulic retention time (HRT). Easily-degraded substrate like acetate and a long HRT resulted in a low conductivity desalinated effluent. Ammonia was also recovered in the MDC cathode with a recovery efficiency varying from 11 to 64%, affected by current generation and HRT. Significant COD reduction, as high as 65.4%, was observed in the desalination chamber and attributed to the decrease of both organic and inorganic compounds via diffusion and electricity-driven movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment

    NASA Astrophysics Data System (ADS)

    Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel

    2017-07-01

    Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: <1 mS cm-1) using a filter press-based MDC prototype without any energy supply (excluding peristaltic pump energy). This start-up protocol is not only optimized for time but also simplifies operational procedures making it a more feasible strategy for future scaling-up of MDCs either as a single process or as a pre-treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.

  15. Solar-Powered Desalination: A Modelling and Experimental Study

    NASA Astrophysics Data System (ADS)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger

  16. Is irrigation with partial desalinated seawater a policy option for saving freshwater in the Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Multsch, Sebastian; Alquwaizany, Abdulaziz S.; Lehnert, Karl-H.; Frede, Hans-Georg; Breuer, Lutz

    2015-04-01

    The agriculture sector consumes with 88 % a majority of the almost fossil water resources in the Kingdom of Saudi Arabia (KSA). Irrigation with saline water has been highlighted to be a promising technique to reduce fresh water consumption. Current desalination techniques, further developments, salt tolerant crop types and improved irrigation systems can potentially redesign future perspectives for irrigation agriculture, in particular by considering the growing desalination capacity in KSA (5 million m3 day-1 in 2003). Hence, we have analyzed the potential of using desalinated and partial desalinated seawater for growing crops in KSA by considering scenarios of salinity levels and desalination costs. The desalination process has been modelled with the ROSA© software considering a reverse osmosis (RO) plant. The spatial decision support system SPARE:WATER has been applied to assess the water footprint of crops (WFcrop). In order to maintain high crop yields, salts need to be washed out from the rooting zone, which requires the application of additional salt-free water. Therefore, high crop yields come along with additional water requirements and increased desalination effort and increased costs for proving high quality water. As an example, growing wheat with partial desalinated seawater from the Arabian Gulf with a RO plant has been investigated. Desalination reduces the salinity level from 76 dS m-1 to 0.5 dS m-1 considering two RO cycles, with cost of desalinized water in the range of 0.5 to 1.2 m-3. We acknowledge that cost only refer to desalination without considering others such as transport, water pumping or crop fertilization. The study shows that Boron is the most problematic salt component, because it is difficult to remove by RO and toxic in high concentrations for crops (wheat threshold of 0.5 to 1.0 mg l-1). The nationwide average WFcrop of wheat under surface irrigation is 2,628 m3 t-1 considering high water quality of 1 dS m-1 and 3,801 m3 t-1 at

  17. Using Solar Energy to Desalinate Water.

    ERIC Educational Resources Information Center

    Tabor, Harry Z.

    1978-01-01

    Material presented is adapted from Desalination with Solar Energy, a paper presented before the International Symposium on Energy Sources and Development, held in Spain in 1977. Desalination systems energized by the sun, conditions governing their efficiency, and their costs are discussed. (HM)

  18. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO).

    PubMed

    Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B

    2013-07-04

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.

  19. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)

    PubMed Central

    Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940

  20. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  1. Sodium Hydroxide Production from Seawater Desalination Brine: Process Design and Energy Efficiency.

    PubMed

    Du, Fengmin; Warsinger, David M; Urmi, Tamanna I; Thiel, Gregory P; Kumar, Amit; Lienhard V, John H

    2018-05-15

    The ability to increase pH is a crucial need for desalination pretreatment (especially in reverse osmosis) and for other industries, but processes used to raise pH often incur significant emissions and nonrenewable resource use. Alternatively, waste brine from desalination can be used to create sodium hydroxide, via appropriate concentration and purification pretreatment steps, for input into the chlor-alkali process. In this work, an efficient process train (with variations) is developed and modeled for sodium hydroxide production from seawater desalination brine using membrane chlor-alkali electrolysis. The integrated system includes nanofiltration, concentration via evaporation or mechanical vapor compression, chemical softening, further ion-exchange softening, dechlorination, and membrane electrolysis. System productivity, component performance, and energy consumption of the NaOH production process are highlighted, and their dependencies on electrolyzer outlet conditions and brine recirculation are investigated. The analysis of the process also includes assessment of the energy efficiency of major components, estimation of system operating expense and comparison with similar processes. The brine-to-caustic process is shown to be technically feasible while offering several advantages, that is, the reduced environmental impact of desalination through lessened brine discharge, and the increase in the overall water recovery ratio of the reverse osmosis facility. Additionally, best-use conditions are given for producing caustic not only for use within the plant, but also in excess amounts for potential revenue.

  2. The intriguing plant nuclear lamina.

    PubMed

    Ciska, Malgorzata; Moreno Díaz de la Espina, Susana

    2014-01-01

    The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.

  3. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Styczynski, Jordyn; Huang, Yuankai; Xu, Zhiheng; McCutcheon, Jeffrey; Li, Baikun

    2017-07-01

    Simultaneous removal of nitrogen in municipal wastewater, metal in industrial wastewater and saline in seawater was achieved in an integrated microbial desalination cell-microbial electrolysis cell (MDC-MEC) system. Batch tests showed that more than 95.1% of nitrogen was oxidized by nitrification in the cathode of MDC and reduced by heterotrophic denitrification in the anode of MDC within 48 h, leading to the total nitrogen removal rate of 4.07 mg L-1 h-1. Combining of nitrogen removal and desalination in MDC effectively solved the problem of pH fluctuation in anode and cathode, and led to 63.7% of desalination. Power generation of MDC (293.7 mW m-2) was 2.9 times higher than the one without salt solution. The electric power of MDC was harvested by a capacitor circuit to supply metal reduction in a MEC, and 99.5% of lead (II) was removed within 48 h. A kinetic MDC model was developed to elucidate the correlation of voltage output and desalination efficiency. Ratio of wastewater and sea water was calculated for MDC optimal operation. Energy balance of nutrient removal, metal removal and desalination in the MDC-MEC system was positive (0.0267 kW h m-3), demonstrating the promise of utilizing low power output of MDCs.

  4. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

  5. Low-cost, light-switched, forward-osmosis desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, John C.

    The looming water crisis is the second largest issue facing humanity after energy. In order to meet the increasing demand for clean water, new efficient and low-cost methods of water purification must be developed. A promising method for dry regions with sea borders is the desalination of seawater. While there remain many disadvantages to current desalination techniques, such as environmental pollution and high cost, there is a strong opportunity for new technology development in this area. In this Phase I program, the development of a light-switchable, low-cost desalination system was explored. The system requires photoselective switching of water solubility. Ninemore » new light-switchable spiropyran-based small molecule and polymeric materials were synthesized, and methods to evaluate their desalination potential were developed and utilized. Severable promising spiropyran analogues proved to be photoswitchable, but so far sufficient photoswitchablity of solubility for a commercial desalination system was not achieved. More development is required.« less

  6. Corrosion and Protection of Metal in the Seawater Desalination

    NASA Astrophysics Data System (ADS)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  7. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour

    2018-05-01

    Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.

  8. The Badger Company conceptual design of a 50 MGD desalination plant. Special report No. 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1965-08-01

    The objective of this study is to produce a design which advances the technology of seawater conversion and to present the results in a form which can be used by any qualified individual or firm as the basis for an architectural-engineering design. Ground rules furnished by OSW specified that only the desalination section of a dual-purpose power-water plant be considered and that it be designed for a 30-year life. Process and structural design ideas are to be presented in terms of the complete plant concept. The complex is to be located on a typical California coastal site with capital andmore » operating costs based on December, 1964, values. The Badger study considers the Multi-Stage Flash (MSF) process, achieving a minimum overall pressure drop by an uninterrupted flow path of brine and product water through the evaporator flashing area. A performance ratio of 20 pounds of product water per pound of steam yields a calculated water cost of $0.323 per thousand gallons. The specified 30-year write-off at low interest rates allows comparatively high capital expenditures favoring titanium tubing for brine service which contributes to low maintenance and operating costs. (GRA)« less

  9. Shoreham Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated onmore » such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.« less

  10. Coupling Power Generation, Geologic CO2 Storage and Saline Groundwater Desalination to Address Growing Energy Needs in Water Constrained Regions

    NASA Astrophysics Data System (ADS)

    Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.

    2010-12-01

    As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, desalination is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and desalinating brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be desalinated to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-desalination projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model

  11. Integrated processes for desalination and salt production: A mini-review

    NASA Astrophysics Data System (ADS)

    Wenten, I. Gede; Ariono, Danu; Purwasasmita, Mubiar; Khoirudin

    2017-03-01

    The scarcity of fresh water due to the rapid growth of population and industrial activities has increased attention on desalination process as an alternative freshwater supply. In desalination process, a large volume of saline water is treated to produce freshwater while a concentrated brine is discharged back into the environment. The concentrated brine contains a high concentration of salt and also chemicals used during desalination operations. Due to environmental impacts arising from improper treatment of the brine and more rigorous regulations of the pollution control, many efforts have been devoted to minimize, treat, or reuse the rejected brine. One of the most promising alternatives for brine handling is reusing the brine which can reduce pollution, minimize waste volume, and recover valuable salt. Integration of desalination and salt production can be implemented to reuse the brine by recovering water and the valuable salts. The integrated processes can achieve zero liquid discharge, increase water recovery, and produce the profitable salt which can reduce the overall desalination cost. This paper gives an overview of desalination processes and the brine impacts. The integrated processes, including their progress and advantages in dual-purpose desalination and salt production are discussed.

  12. Rotating carbon nanotube membrane filter for water desalination

    NASA Astrophysics Data System (ADS)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-05-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.

  13. Rotating carbon nanotube membrane filter for water desalination

    PubMed Central

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-01-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982

  14. Treatment and desalination of domestic wastewater for water reuse in a four-chamber microbial desalination cell.

    PubMed

    Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen

    2016-09-01

    Microbial desalination cells (MDCs) have been studied for contaminant removal from wastewater and salinity reduction in saline water. However, in an MDC wastewater treatment and desalination occurs in different streams, and high salinity of the treated wastewater creates challenges for wastewater reuse. Herein, a single-stream MDC (SMDC) with four chambers was developed for simultaneous organic removal and desalination in the same synthetic wastewater. This SMDC could achieve a desalination rate of 12.2-31.5 mg L(-1) h(-1) and remove more than 90 % of the organics and 75 % of NH4 (+)-N; the pH imbalance between the anode and cathode chambers was also reduced. Several strategies such as controlling catholyte pH, increasing influent COD concentration, adopting the batch mode, applying external voltage, and increasing the alkalinity of wastewater were investigated for improving the SMDC performance. Under a condition of 0.4 V external voltage, anolyte pH adjustment, and a batch mode, the SMDC decreased the wastewater salinity from 1.45 to below 0.75 mS cm(-1), which met the salinity standard of wastewater for irrigation. Those results encourage further development of the SMDC technology for sustainable wastewater treatment and reuse.

  15. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Calvert Cliffs.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed operator...

  16. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  17. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1...

  18. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  19. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    PubMed

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  20. Online PH measurement technique in seawater desalination

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Wu, Kaihua; Hu, Shaopeng

    2009-11-01

    The measurement technology of pH is essential in seawater desalination. Glass electrode is the main pH sensor in seawater desalination. Because the internal impedance of glass electrode is high and the signal of pH sensor is easy to be disturbed, a signal processing circuit with high input impedance was designed. Because of high salinity of seawater and the characteristic of glass electrode, ultrasonic cleaning technology was used to online clean pH sensor. Temperature compensation was also designed to reduce the measurement error caused by variety of environment temperature. Additionally, the potential drift of pH sensor was analyzed and an automatic calibration method was proposed. In order to online monitor the variety of pH in seawater desalination, three operating modes were designed. The three modes are online monitoring mode, ultrasonic cleaning mode and auto-calibration mode. The current pH in seawater desalination was measured and displayed in online monitoring mode. The cleaning process of pH sensor was done in ultrasonic cleaning mode. The calibration of pH sensor was finished in auto-calibration mode. The result of experiments showed that the measurement technology of pH could meet the technical requirements for desalination. The glass electrode could be promptly and online cleaned and its service life was lengthened greatly.

  1. Development of a Desalination Membrane Bioinspired by Mangrove Roots for Spontaneous Filtration of Sodium Ions.

    PubMed

    Kim, Kiwoong; Kim, Hyejeong; Lim, Jae Hong; Lee, Sang Joon

    2016-12-27

    The shortage of available fresh water is one of the global issues presently faced by humanity. To determine a solution to this problem, the survival strategies of plants have been examined. In this study, a nature-inspired membrane with a highly charged surface is proposed as an effective membrane for the filtration of saline water. To mimic the desalination characteristics of mangrove roots, a macroporous membrane based on polyethylene terephthalate is treated with polyelectrolytes using a layer-by-layer deposition method. The fabricated membrane surface has a highly negative charged ζ-potential value of -97.5 ± 4.3 mV, similar to that of the first layer of mangrove roots. Desalination of saline water using this membrane shows a high salt retention rate of 96.5%. The highly charged surface of the membrane may induce a relatively thick and stable ion depletion zone in front of the membrane. As a result, most co-ions are repelled from the membrane surface, and counterions are also rejected by virtue of their electroneutrality. The water permeability is found to be 7.60-7.69 L/m 2 ·h, which is 10 times higher than that of the reverse osmosis desalination method. This nature-inspired filtration membrane exhibits steady desalination performance over 72 h of operation, successfully demonstrating the stable filtration of saline water. This nature-inspired membrane is applicable to the design of a small-scale, portable, and energy-free desalination device for use in third-world countries or small villages.

  2. Emerging desalination technologies for water treatment: a critical review.

    PubMed

    Subramani, Arun; Jacangelo, Joseph G

    2015-05-15

    In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  4. Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties.

    PubMed

    Suzuki, Tasuma; Tanaka, Ryohei; Tahara, Marina; Isamu, Yuya; Niinae, Masakazu; Lin, Lin; Wang, Jingbo; Luh, Jeanne; Coronell, Orlando

    2016-09-01

    While it is known that the performance of reverse osmosis membranes is dependent on their physicochemical properties, the existing literature studying membranes used in treatment facilities generally focuses on foulant layers or performance changes due to fouling, not on the performance and physicochemical changes that occur to the membranes themselves. In this study, the performance and physicochemical properties of a polyamide reverse osmosis membrane used for three years in a seawater desalination plant were compared to those of a corresponding unused membrane. The relationship between performance changes during long-term use and changes in physicochemical properties was evaluated. The results showed that membrane performance deterioration (i.e., reduced water flux, reduced contaminant rejection, and increased fouling propensity) occurred as a result of membrane use in the desalination facility, and that the main physicochemical changes responsible for performance deterioration were reduction in PVA coating coverage and bromine uptake by polyamide. The latter was likely promoted by oxidant residual in the membrane feed water. Our findings indicate that the optimization of membrane materials and processes towards maximizing the stability of the PVA coating and ensuring complete removal of oxidants in feed waters would minimize membrane performance deterioration in water purification facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  6. Plant maintenance and advanced reactors issue, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada;more » Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.« less

  7. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    PubMed

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Solar powered desalination system using Fresnel lens

    NASA Astrophysics Data System (ADS)

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  10. A prototype for communitising technology: Development of a smart salt water desalination device

    NASA Astrophysics Data System (ADS)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  11. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  12. Science Communication and Desalination Research: Water Experts' Views

    ERIC Educational Resources Information Center

    Schibeci, R. A.; Williams, A. J.

    2014-01-01

    Access to clean drinking water is a major problem for many people across the world. Desalination is being increasingly used in many countries to provide this important resource. Desalination technology has received varying degrees of support in the communities in which this technology has been adopted. Productive communication suggests we…

  13. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  14. Drivers of an urban community's acceptance of a large desalination scheme for drinking water

    NASA Astrophysics Data System (ADS)

    Gibson, Fiona L.; Tapsuwan, Sorada; Walker, Iain; Randrema, Elodie

    2015-09-01

    Changing climates and growing populations have prompted policy makers to shift to more climate resilient, technology-driven water sources, such as seawater desalination. Desalination is a prominent water resource in the Middle East but countries in other parts of the world with similar scarcity issues and good access to sea water, such as Australia, have been comparatively slow to adopt it. This paper explores attitudes to desalination in Perth, Western Australia, and the factors that influence its acceptance. We compared individuals' acceptance of desalination over two time periods by using identical surveys administered in 2007 and 2012. We then examined the attitudinal factors - attitudes towards desalination and attitudes towards the environment - that influence acceptance. Acceptance of desalination was reasonably high and stable at both times (74% and 73% in 2007 and 2012 respectively). We found that respondents' attitudes to perceived outcomes and benefits, fairness, environmental obligation and risk were important predictors of their acceptance of desalination in both surveys. However the weight given to these aspects varied over time. The findings show that there is still mixed community sentiment towards desalination, which helps to explain why acceptance has not increased since desalination was introduced in 2006.

  15. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...

  16. Desalination of Walls and Façades

    NASA Astrophysics Data System (ADS)

    Wedekind, W.; Jáuregui Arreola, K.; Siegesmund, S.

    2012-04-01

    For large monumental objects like walls and façades, the common technique of applying poultices for desalination often are not effective. This practice is neither cost effective nor does it lead to the desired result of desalination. To manage the conservation and desalination of these kinds of objects, several sprinkling techniques are known and have been applied on historical objects. For example, in the wooden warship Vasa, which was excavated from the sea bottom in Stockholm/Sweden, a sprinkling method was applied in 1961 for conservation and desalination. A sprinkling method to desalinate porous mineral materials will be presented using three different case studies: the rock cut monument no. 825 in Petra/Jordan, the medieval monastary church of the former Franziscan convent in Zeitz/Germany and the baroque monastary church Santa Monica in Guadalajara/Mexico. Before to start with practical conservation, the material- and petropysical properties, focoussed on water transport properties, like porosity, pore size distribution, water uptake and drying rate were investigadet. Diagnostic investigations on the objects included the mapping of deterioration, moister content measurements and salt accumulation determined by borehole cuts samples at depth. In the sprinkling method water is sprayed onto the wall surface through nozzels arranged in a modular grid. Depending on the sprinkling duration, a small or a large amount of water seeps into the porous materials, whereby the depth penetration can be adjusted accordingly. The water not absorbed by the stone runs off the facade and can be collected in liter amounts and tested by electrical conductivity with respect to the dissolved substances. After the drying of the wall's surface and the accumulation of salt at the material's surface, the procedure is repeated. For each subsequent washing a lower content of salt should be brought to the surface. Step by step the salt concentration will eventually decrease to almost

  17. Seawater desalination and serum magnesium concentrations in Israel.

    PubMed

    Koren, Gideon; Shlezinger, Meital; Katz, Rachel; Shalev, Varda; Amitai, Yona

    2017-04-01

    With increasing shortage of fresh water globally, more countries are consuming desalinated seawater (DSW). In Israel >50% of drinking water is now derived from DSW. Desalination removes magnesium, and hypomagnesaemia has been associated with increased cardiac morbidity and mortality. Presently the impact of consuming DSW on body magnesium status has not been established. We quantified changes in serum magnesium in a large population based study (n = 66,764), before and after desalination in regions consuming DSW and in regions where DSW has not been used. In the communities that switched to DSW in 2013, the mean serum magnesium was 2.065 ± 0.19 mg/dl before desalination and fell to 2.057 ± 0.19 mg/dl thereafter (p < 0.0001). In these communities 1.62% of subjects exhibited serum magnesium concentrations ≤1.6 mg/dl between 2010 and 2013. This proportion increased by 24% between 2010-2013 and 2015-2016 to 2.01% (p = 0.0019). In contrast, no such changes were recorded in the communities that did not consume DSW. Due to the emerging evidence of increased cardiac morbidity and mortality associated with hypomagnesaemia, it is vital to consider re-introduction of magnesium to DSW.

  18. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  19. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to themore » nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.« less

  20. The salinity gradient power generating system integrated into the seawater desalination system

    NASA Astrophysics Data System (ADS)

    Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua

    2017-01-01

    Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.

  1. Saline Groundwater from Coastal Aquifers As a Source for Desalination.

    PubMed

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni

    2016-02-16

    Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.

  2. Impacts of effluent from Carlsbad Desalination Plant on the coastal biology and chemistry in a in-situ study of pre- and post-discharge

    NASA Astrophysics Data System (ADS)

    Petersen, K. L.; Heck, N.; Paytan, A.; Potts, D. C.

    2016-12-01

    Ongoing droughts throughout the world and increasing water demand are creating critical water shortage in arid and semi-arid regions. Desalination of seawater is a powerful source of potable water, however the effects of the brine discharge on coastal areas are insufficiently studied. Here we report results from in-situ measurements of the effects of brine discharge from a desalination plant in Carlsbad, in Southern California before and after operation began. Operation as of December 2015. Pre-discharge samples were collected in December 2014 and September 2015. Post-discharge samples were collected in May 2016 and November 2016. Water samples are collected at the mount of the discharge channel and out to 1000 m offshore. Both surface and bottom water samples were collected and analyzed for salinity, temperature, Chl a concentration, nutrients (NO3, PO4 and silica), δ13C and δ15N of suspended matter, DOC and organic contaminants. Samples are also collected for phytoplankton cell count and sediment grain size. A biological swath was done by SCUBA divers to verify abundance and diversity of benthic organisms. The pre-discharge measurements show a homogenous water column for salinity, Chl a and nutrients. There is a slight temperature difference between the discharge channel and the intake channel due to activities of a power plant around the discharge channel. There are significantly fewer species and a lower abundance of benthic organism by the discharge channel than by the intake. This is possibly due to a higher flow rate at the discharge channel. The preliminary post-discharge analyses show a stratified water column at the discharge area. The salinity was higher by 2 to 3 salinity units at the discharge site. This trend is evident to 600 m offshore. How this affects the benthic organisms and the phytoplankton will be reported.

  3. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...

  4. Impact of Desalination on Physical and Mechanical Properties of Lanzhou Loess

    NASA Astrophysics Data System (ADS)

    Bing, Hui; Zhang, Ying; Ma, Min

    2017-12-01

    Soluble salt in soil has a significant influence on the physical and mechanical properties of the soil. We performed desalination experiments on Lanzhou loess, a typical sulfate saline soil, to study the effects of salt on the physical and mechanical properties of the loess and compare variations in the soil properties after desalination. The Atterberg limits of the soil increased after desalination as a result of changes in the soil particle composition and grain refinement. The shear and uniaxial compressive strength of the soil increased as a result of decreased calcitic cementation and other changes to the soil structure. Scanning electron microstructure (SEM) and mercury intrusion porosimetry (MIP) procedures revealed changes to the microstructure and pore-size distribution of the Lanzhou loess after desalination.

  5. Coupling desalination and energy storage with redox flow electrodes.

    PubMed

    Hou, Xianhua; Liang, Qian; Hu, Xiaoqiao; Zhou, Yu; Ru, Qiang; Chen, Fuming; Hu, Shejun

    2018-06-26

    Both freshwater shortage and energy crisis are global issues. Herein, we present a double-function system of faradaic desalination and a redox flow battery consisting of VCl3|NaI redox flow electrodes and a feed stream. The system has a nominal cell potential (E0 = +0.79 V). During the discharge process, the salt ions in the feed are extracted by the redox reaction of the flow electrodes, which is indicated by salt removal. Stable and reversible salt removal capacity and electricity can be achieved up to 30 cycles. The energy consumption is as low as 10.27 kJ mol-1 salt. The energy efficiency is as high as 50% in the current aqueous redox flow battery. With energy recovery, the desalination energy consumption decreases greatly to 5.38 kJ mol-1; this is the lowest reported value to date. This "redox flow battery desalination generator" can be operated in a voltage range of 0.3-1.1 V. Our research provides a novel method for obtaining energy-saving desalination and redox flow batteries.

  6. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  7. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  8. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

  9. Forward osmosis niches in seawater desalination and wastewater reuse.

    PubMed

    Valladares Linares, R; Li, Z; Sarp, S; Bucs, Sz S; Amy, G; Vrouwenvelder, J S

    2014-12-01

    This review focuses on the present status of forward osmosis (FO) niches in two main areas: seawater desalination and wastewater reuse. Specific applications for desalination and impaired-quality water treatment and reuse are described, as well as the benefits, advantages, challenges, costs and knowledge gaps on FO hybrid systems are discussed. FO can play a role as a bridge to integrate upstream and downstream water treatment processes, to reduce the energy consumption of the entire desalination or water recovery and reuse processes, thus achieving a sustainable solution for the water-energy nexus. FO hybrid membrane systems showed to have advantages over traditional membrane process like high pressure reverse osmosis and nanofiltration for desalination and wastewater treatment: (i) chemical storage and feed water systems may be reduced for capital, operational and maintenance cost, (ii) water quality is improved, (iii) reduced process piping costs, (iv) more flexible treatment units, and (v) higher overall sustainability of the desalination and wastewater treatment process. Nevertheless, major challenges make FO systems not yet a commercially viable technology, the most critical being the development of a high flux membrane, capable of maintaining an elevated salt rejection and a reduced internal concentration polarization effect, and the availability of appropriate draw solutions (cost effective and non-toxic), which can be recirculated via an efficient recovery process. This review article highlights the features of hybrid FO systems and specifically provides the state-of-the-art applications in the water industry in a novel classification and based on the latest developments toward scaling up these systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  11. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...

  12. Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2017-03-01

    A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.

  13. Integrated pretreatment and desalination by electrocoagulation (EC)-ion concentration polarization (ICP) hybrid.

    PubMed

    Choi, Siwon; Kim, Bumjoo; Han, Jongyoon

    2017-06-13

    Conventional water treatment process is composed of multiple stages, including desalination (salt removal) and pre/post-treatment of desalination to remove particles, chemicals, and other potential foulants for desalination. In this work, we developed a microfluidic proof-of-concept for a single device water treatment system, which removes both salt ions and non-salt contaminants. Our system combines electrocoagulation (EC), a versatile contaminant removal process, and ion concentration polarization (ICP) desalination, which is an electromembrane desalination process. We demonstrated a continuous EC-ICP operation that removed >95% of suspended solids and reduced the salinity from brackish range (20 mM NaCl) to a potable level (<8.6 mM NaCl). We also demonstrated that our system is flexible in terms of the type and concentration of contaminants it can handle. Combining two different electrochemical processes into a single system, we can reduce unnecessary voltage drop by having a shared anode, and achieve both seamless integration and energy efficient operation. Our system will find applications as a small-scale water treatment system, if properly scaled up in the future.

  14. Economic and Policy Drivers of Agricultural Water Desalination in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Welle, P.; Medellin-Azuara, J.; Viers, J. H.; Mauter, M.

    2016-12-01

    Agriculture in arid regions is threatened by the twin stresses of soil salinity and uncertain water availability. Recently, water desalination has been a proposed solution for mitigating the effects of drought, soil salinization, and the ecological impacts of agricultural drainage. In this study, we combine data from earth observing systems with auxiliary information on prices, yields, and farmer behavior in order to create a decision framework which assesses the public and private costs and benefits of distributed desalination in the Central Valley (CV) of California. The use of remotely sensed crop classifiers allows us to resolve our analysis at the 30m pixel scale across the CV, a feature that allows us to characterize regional differences in technology effectiveness. We employ environmental and economic modeling to estimate the value of lower salinity irrigation water; the value of augmented water supply under present and future climate scenarios; and the human health, environmental, and climate change damages associated with generating power to desalinate water. We find that water desalination is only likely to be profitable in 4% of the CV during periods of severe drought, and that current costs would need to decrease by 70-90% for adoption to occur on the median acre. Fossil-fuel powered desalination technologies also generate air emissions that impose significant public costs in the form of human health and climate change damages, although these damages vary greatly depending on technology. The ecosystem service benefits of reduced agricultural drainage would need to be valued between 800 and 1200 per acre-foot, or nearly the full capital and operational costs of water desalination, for the net benefits of water desalination to be positive from a societal perspective.

  15. Solar energy water desalination in the United States and Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Luft, W.; William, J.

    1981-01-01

    Five solar energy water desalination systems were designed to deliver 6000 cubic m/day of desalted water from either seawater or brackish water. Two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 100 to 400 m/day. Goals of the Project Agreement for Cooperation in the Field of Solar Energy, under the auspices of the United States-Saudi Arabian Joint Commission on Economic Cooperation, are to: (1) cooperate in the field of solar energy technology for the mutual benefit of the two countries, including the development and stimulation of solar industries within the two countries; (2) advance the development of solar energy technology in the two countries; and (3) facilitate the transfer between the two countries of technology developed under this agreement.

  16. Nuclear Power Plants | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-06-22

    Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.

  17. Efficiently Combining Water Reuse and Desalination through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review.

    PubMed

    Blandin, Gaetan; Verliefde, Arne R D; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre

    2016-07-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

  18. Model-based Extracted Water Desalination System for Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gettings, Rachel; Dees, Elizabeth

    The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. Amore » quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.« less

  19. Safety Regulation of Nuclear Power Plant License Renewal

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoe; Liu, Ting; Qi, Yuan; Yang, LiLi

    2018-01-01

    China’s regulations stipulate that a nuclear power plant license is valid for a design life period (generally 30 or 40 years). Whether the nuclear power plant’s license is renewed after the expiration of the license is to be determined based on the safety and economy of the nuclear power plant..

  20. Desalinated drinking water in the GCC countries - The need to address consumer perceptions.

    PubMed

    Shomar, Basem; Hawari, Jalal

    2017-10-01

    The Gulf Cooperation Council (GCC) countries consist of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates. These countries depend mainly on seawater desalination to meet their water needs. Although great emphasis is given to characterize desalinated water for its physicochemical and microbial properties, e.g. presence of metals, other organic contaminants and for bacteria, sensorial characteristics including smell, taste and color have not received the same attention. This is possibly attributed to the fact that inhabitants of GCC States do not use desalinated tap water for drinking consumption, rather they depend on locally produced or imported bottled water where color, taste and odor are not problematic. To address the consumer needs and perceptions of drinking desalinated water in GCC countries, water quality standards and guidelines, should respond to the public concern about other sensorial characteristics (organoleptic properties) including taste, odor, and trigeminal sensations. Often the root causes of color and smell in water are attributed to the presence of organic and inorganic contaminants and to bacterial growth which is frequently accompanied by the production of metabolites and byproducts that are obnoxious. The unpleasant sensorial problems associated with desalinated drinking tap water may constitute the driving force for most people in GCC countries to depend on bottled water. To encourage people in the GCC countries to consume desalinated tap water, it is essential that water testing include measurements of physicochemical properties, biofilm presence and organoleptic parameters to improve overall water quality. This review highlights the contribution of organoleptics for consumers of desalinated tap water. It extends water quality research to be addressed by standards for organoleptic parameters in desalinated drinking water. Accordingly, consumer awareness and outreach campaigns should be implemented to encourage people

  1. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    PubMed

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A seawater desalination scheme for global hydrological models

    NASA Astrophysics Data System (ADS)

    Hanasaki, Naota; Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro

    2016-10-01

    Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 × 109 m3 yr-1 in 2005 to 4.0-6.0 × 109 m3 yr-1), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 × 109 m3 yr-1). The estimated global costs for production for each period are USD 1.1-10.6 × 109 (0.002-0.019 % of the total global GDP), USD 1.6-22.8 × 109 (0.001-0.020 %), and USD 7.5-183.9 × 109 (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios.

  3. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  4. Review of Water Resources and Desalination Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MILLER, JAMES E.

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, andmore » inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.« less

  5. Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing,more » or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)« less

  6. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    PubMed

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  8. Intelligent Modeling for Nuclear Power Plant Accident Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Michael Christropher; Luger, George F.; Jones, Thomas B.

    This study explores the viability of using counterfactual reasoning for impact analyses when understanding and responding to “beyond-design-basis” nuclear power plant accidents. Currently, when a severe nuclear power plant accident occurs, plant operators rely on Severe Accident Management Guidelines. However, the current guidelines are limited in scope and depth: for certain types of accidents, plant operators would have to work to mitigate the damage with limited experience and guidance for the particular situation. We aim to fill the need for comprehensive accident support by using a dynamic Bayesian network to aid in the diagnosis of a nuclear reactor’s state andmore » to analyze the impact of possible response measures.« less

  9. Intelligent Modeling for Nuclear Power Plant Accident Management

    DOE PAGES

    Darling, Michael Christropher; Luger, George F.; Jones, Thomas B.; ...

    2018-03-29

    This study explores the viability of using counterfactual reasoning for impact analyses when understanding and responding to “beyond-design-basis” nuclear power plant accidents. Currently, when a severe nuclear power plant accident occurs, plant operators rely on Severe Accident Management Guidelines. However, the current guidelines are limited in scope and depth: for certain types of accidents, plant operators would have to work to mitigate the damage with limited experience and guidance for the particular situation. We aim to fill the need for comprehensive accident support by using a dynamic Bayesian network to aid in the diagnosis of a nuclear reactor’s state andmore » to analyze the impact of possible response measures.« less

  10. Nanotechnology applications to desalination : a report for the joint water reuse & desalination task force.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy

    2011-01-01

    Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimickingmore » carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.« less

  11. Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO) Hybrids: A Critical Review

    PubMed Central

    Blandin, Gaetan; Verliefde, Arne R.D.; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre

    2016-01-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling. PMID:27376337

  12. Forward-Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents.

    PubMed

    Fan, Xuelin; Liu, Huili; Gao, Yating; Zou, Zhu; Craig, Vincent S J; Zhang, Guangzhao; Liu, Guangming

    2016-06-01

    The combination of high desalination efficiency, negligible draw-solute leakage, nontoxicity, ease of regeneration, and effective separation to produce liquid water makes the smart draw agents developed here highly suited for forward-osmosis desalination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Model-Based Extracted Water Desalination System for Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, Elizabeth M.; Moore, David Roger; Li, Li

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site andmore » a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore

  14. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0245] Access Authorization Program for Nuclear Power... Program for Nuclear Power Plants.'' This guide describes a method that NRC staff considers acceptable to... Regulations (10 CFR), section 73.56, ``Personnel Access Authorization Requirements for Nuclear Power Plants...

  15. Effects of blending of desalinated water with treated surface drinking water on copper and lead release.

    PubMed

    Liu, Haizhou; Schonberger, Kenneth D; Korshin, Gregory V; Ferguson, John F; Meyerhofer, Paul; Desormeaux, Erik; Luckenbach, Heidi

    2010-07-01

    This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the zeta-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO(4) were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Nuclear plants gain integrated information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-10-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features anmore » integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants.« less

  17. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report NEI 06-11...(c)(25). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment...

  18. [Risk communication in construction of new nuclear power plant].

    PubMed

    He, Gui-Zhen; Lü, Yong-Long

    2013-03-01

    Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.

  19. On-line condition monitoring applications in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastiemian, H. M.; Feltus, M. A.

    2006-07-01

    Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less

  20. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  1. Structural considerations for underground nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarne, Y.

    The advantages and disadvantages of underground nuclear power plants are briefly reviewed. The impact of underground contruction on plant layout and structural design are discussed. Schedules and costs for construction are compared with those for conventional plants.

  2. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.

    PubMed

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-08

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  4. Risk in nuclear power plants due to natural hazard phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.C.

    1995-12-01

    For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less

  5. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC...: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute). The...

  6. Carbon electrode for desalination purpose in capacitive deionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consistedmore » of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.« less

  7. Desalination. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    This guide provides a review of the relevant literature on desalination within the collections of the Library of Congress. While not intended as a comprehensive bibliography, this guide is designed as a quick and ready reference source for the reader, and includes the following sections: (1) articles that provide introductions to the topic of…

  8. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  9. NUA Activities at the Plant Nuclear Pore

    PubMed Central

    Xu, Xianfeng Morgan; Rose, Annkatrin

    2007-01-01

    NUA (Nuclear Pore Anchor), the Arabidopsis homolog of Tpr (Translocated Promoter Region), is one of the few nuclear pore proteins conserved between animals, yeast and plants. In the May issue of Plant Cell, we report that null mutants of NUA show a pleiotropic, early flowering phenotype accompanied by changes in SUMo and RNA homeostasis. We have shown that the early flowering phenotype is caused by changed abundances of flowering time regulators involved in several pathways. Arabidopsis nua mutants phenocopy mutants lacking the ESD4 (EARlY IN ShoRT DAYS 4) SUMo protease, similar to mutants of their respective yeast homologs. however, in contrast to the comparable yeast mutants, ESD4 does not appear to be delocalized from the nuclear pore in nua mutants. Taken together, our experimental data suggests a role for NUA in controlling mRNA export from the nucleus as well as SUMo protease activity at the nuclear pore, comparable but not identical to its homologs in other eukaryotes. Furthermore, characterization of NUA illustrates a potential link at the nuclear pore between SUMo modification, RNA homeostasis and plant developmental control. PMID:19704557

  10. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. DEVELOPMENT OF HIGHLY-EFFICIENT AQUAPORIN-BASED WATER TREATMENTMEMBRANES FOR DESALINATION AND CONTAMINANT REMOVAL

    EPA Science Inventory

    As an outcome of this project data on the applicability of protein polymer membranes for application to water desalination will be obtained. This will provide information on the stability and permeability of these membranes under simulated desalination conditions. The struct...

  12. Nuclear Power as a Basis for Future Electricity Generation

    NASA Astrophysics Data System (ADS)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  13. 76 FR 46856 - Qualification of Connection Assemblies for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S..., ``Qualification of Connection Assemblies for Nuclear Power Plants.'' This guide describes a method that the NRC... in nuclear power plants. The environmental qualification helps ensure that connection assemblies can...

  14. ALARA at nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  15. Peach Bottom and Vermont Yankee Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governmentsmore » provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.« less

  16. Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination.

    PubMed

    Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui

    2016-04-13

    Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.

  17. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  18. Safety system augmentation at Russian nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.

    1996-12-31

    This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC powermore » supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.« less

  19. Exploiting interfacial water properties for desalination and purification applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongwu; Varma, Sameer; Nyman, May Devan

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  20. 75 FR 14473 - Entergy Nuclear Operations, Inc., Palisades Nuclear Plant; Environmental Assessment and Finding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-255; NRC-2010-0127] Entergy Nuclear Operations, Inc., Palisades Nuclear Plant; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... Operating License No. DPR-20, issued to Entergy Nuclear Operations, LLC (ENO) (the licensee), for operation...

  1. 78 FR 35989 - Tennessee Valley Authority; Watts Bar Nuclear Plant, Unit 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Bar Nuclear Plant, Unit 2 AGENCY: Nuclear Regulatory Commission. ACTION: Final environmental statement... Operation of Watts Bar Nuclear Plant (WBN), Unit 2'' (SFES). ADDRESSES: Please refer to Docket ID NRC-2008... option of issuing the operating license for Watts Bar Nuclear Plant, Unit 2. This recommendation is based...

  2. Water desalination by electrical resonance inside carbon nanotubes.

    PubMed

    Feng, Jia-Wei; Ding, Hong-Ming; Ma, Yu-Qiang

    2016-10-12

    Although previous studies have indicated that the carbon nanotube (CNT) can be used for directed transportation of water and ions, it is still a challenging problem to design a CNT-based device for high performance water desalination. In this study, by using molecular dynamics simulations, we successfully design one type of CNT as a highly efficient desalination membrane through electrical resonance. By decorating the two ends of the CNT with vibrational charges, an alternating electric field is created inside the CNT. When the amplitude of the vibrational charge is 0.05 e, and the vibrational frequency is between 10 THz and 20 THz, the CNT can completely block the transportation of ions. The decrease of the amplitude or the deviation of the frequency in an appropriate range will gradually increase the ion flow. Besides, we also reveal the underlying molecular mechanism of ion blockage, i.e., the electric resonance can disrupt the water structure inside the CNT and then alter the hydration energy of ions inside the CNT. More importantly, we further demonstrate that this mechanism is universal, which is independent of the type of ions and the size of CNT. The present work could be useful for designing water desalination membranes with lower energy consumption and higher fresh water production.

  3. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... date for all operating nuclear power plants, but noted that the Commission's regulations provide... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power...

  4. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  5. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.

    1963-06-26

    A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)

  7. Desalination of brick masonry and stone carvings in Capitullum hall of Riga Dome Cathedral

    NASA Astrophysics Data System (ADS)

    Grave, J.; Krage, L.; Lusis, R.; Vitina, I.

    2011-12-01

    The construction of Riga Dome Cathedral and its Capithullum hall were initiated in 1211. Through centuries they were damaged a lot due to migration of soluble salts and moisture. During the last restoration (1888-1891) a lot of mistakes were conceded and subsequently some of probable solutions for restoration were unsuccessful. In 2009 the new restoration stage in Capithullum hall was started. Two types of desalination methods were used in hall - desalination with lime-sand plaster and poultice of lignin. Both quantitative and semiquantitative chemical analyses were performed in order to appreciate the desalination process.

  8. Nuclear Hybrid Energy System Model Stability Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Michael Scott; Cetiner, Sacit M.; Fugate, David W.

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idahomore » National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.« less

  9. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  10. Membraneless seawater desalination

    DOEpatents

    Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.

    2018-04-03

    Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.

  11. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  12. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power... nuclear power plants that were licensed before January 1, 1979, satisfy the requirements of 10 CFR Part 50...

  13. Synergies of solar energy use in the desalination of seawater: A case study in northern Chile

    NASA Astrophysics Data System (ADS)

    Servert, Jorge F.; Cerrajero, Eduardo; Fuentealba, Edward L.

    2016-05-01

    The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the "conventional" option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.

  14. 75 FR 16869 - Entergy Nuclear Operations, LLC; Palisades Nuclear Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... generic industry request to extend the rule's compliance date for all operating nuclear power plants, but..., to M. S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is therefore... exemption will not have a significant effect on the quality of the human environment [75 FR 14473; dated...

  15. Biodesalination-On harnessing the potential of nature's desalination processes.

    PubMed

    Taheri, Reza; Razmjou, Amir; Szekely, Gyorgy; Hou, Jingwei; Ghezelbash, Gholam Reza

    2016-07-08

    Water scarcity is now one of the major global crises, which has affected many aspects of human health, industrial development and ecosystem stability. To overcome this issue, water desalination has been employed. It is a process to remove salt and other minerals from saline water, and it covers a variety of approaches from traditional distillation to the well-established reverse osmosis. Although current water desalination methods can effectively provide fresh water, they are becoming increasingly controversial due to their adverse environmental impacts including high energy intensity and highly concentrated brine waste. For millions of years, microorganisms, the masters of adaptation, have survived on Earth without the excessive use of energy and resources or compromising their ambient environment. This has encouraged scientists to study the possibility of using biological processes for seawater desalination and the field has been exponentially growing ever since. Here, the term biodesalination is offered to cover all of the techniques which have their roots in biology for producing fresh water from saline solution. In addition to reviewing and categorizing biodesalination processes for the first time, this review also reveals unexplored research areas in biodesalination having potential to be used in water treatment.

  16. Modeling Remineralization of Desalinated Water by Micronized Calcite Dissolution.

    PubMed

    Hasson, David; Fine, Larissa; Sagiv, Abraham; Semiat, Raphael; Shemer, Hilla

    2017-11-07

    A widely used process for remineralization of desalinated water consists of dissolution of calcite particles by flow of acidified desalinated water through a bed packed with millimeter-size calcite particles. An alternative process consists of calcite dissolution by slurry flow of micron-size calcite particles with acidified desalinated water. The objective of this investigation is to provide theoretical models enabling design of remineralization by calcite slurry dissolution with carbonic and sulfuric acids. Extensive experimental results are presented displaying the effects of acid concentration, slurry feed concentration, and dissolution contact time. The experimental data are shown to be in agreement within less than 10% with theoretical predictions based on the simplifying assumption that the slurry consists of uniform particles represented by the surface mean diameter of the powder. Agreement between theory and experiment is improved by 1-8% by taking into account the powder size distribution. Apart from the practical value of this work in providing a hitherto lacking design tool for a novel technology. The paper has the merit of being among the very few publications providing experimental confirmation to the theory describing reaction kinetics in a segregated flow system.

  17. Complex admixtures of clathrate hydrates in a water desalination method

    DOEpatents

    Simmons, Blake A [San Francisco, CA; Bradshaw, Robert W [Livermore, CA; Dedrick, Daniel E [Berkeley, CA; Anderson, David W [Riverbank, CA

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  18. NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1962-12-01

    A power plant is described that comprises a nuclear reactor and a heat exchanger which is included in primary and secondary circuits. Fluid in the primary circuit extracts heat from the reactor and transfers it in the heat exchanger to the fluid in the secondary circuit which transmits energy to one or more utilization points. Means are provided for detecting, isolating, and removing radioactive fluid from the secondary circuit. (R.J.S.)

  19. A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management

    NASA Astrophysics Data System (ADS)

    Kim, Tae Woo; Yun, Hong Sik

    2017-04-01

    The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).

  20. Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit

    NASA Astrophysics Data System (ADS)

    Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.

    2017-11-01

    In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.

  1. Geochemical Processes During Managed Aquifer Recharge With Desalinated Seawater

    NASA Astrophysics Data System (ADS)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2018-02-01

    We study geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW). The DSW, post-treated at the desalination plant by calcite dissolution (remineralization) to meet the Israeli water quality standards, is recharged into the Israeli Coastal Aquifer through an infiltration pond. Water quality monitoring during two MAR events using suction cups and wells inside the pond indicates that cation exchange is the dominant subsurface reaction, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the shallow groundwater composition is similar to the recharged DSW, except for enrichment of Mg2+, Na+, Ca2+, and HCO3-. A calibrated variably-saturated reactive transport model is used to predict the geochemical evolution during 50 years of MAR for two water quality scenarios: (i) post-treated DSW (current practice) and (ii) soft DSW (lacking the remineralization post-treatment process). The latter scenario was aimed to test soil-aquifer-treatment (SAT) as an alternative post-treatment technique. Both scenarios provide an enrichment of ˜2.5 mg L-1 in Mg2+ due to cation exchange, compared to practically zero Mg2+ currently found in the Israeli DSW. Simulations of the alternative SAT scenario provide Ca2+ and HCO3- remineralization due to calcite dissolution at levels that meet the Israeli standard for DSW. The simulated calcite content reduction in the sediments below the infiltration pond after 50 years of MAR was low (<1%). Our findings suggest that remineralization using SAT for DSW is a potentially sustainable practice at MAR sites overlying calcareous sandy aquifers.

  2. Simultaneous Removal of Phenol and Dissolved Solids from Wastewater Using Multichambered Microbial Desalination Cell.

    PubMed

    Pradhan, Harapriya; Jain, Sumat Chand; Ghangrekar, Makarand M

    2015-12-01

    Microbial desalination cell (MDC) has great potential toward direct electricity generation from wastewater and concurrent desalination through potential difference developed due to microbial activity. Degradation of phenol by isolate Pseudomonas aeruginosa in anodic chamber and simultaneous desalination of water in middle desalination chamber of multichamber MDC is demonstrated in this study. Performance of the MDCs with different anodic inoculum conditions, namely pure culture of P. aeruginosa (MDC-1), 50 % v/v mixture of P. aeruginosa and anaerobic mixed consortia (MDC-2) and anaerobic mixed consortia (MDC-3), was evaluated to compare the phenol degradation in anodic chamber, bioelectricity generation, and simultaneous total dissolved solids (TDS) removal from saline water in desalination chamber. Synergistic effect between P. aeruginosa and mixed anaerobic consortia as inoculum was evident in MDC-2 demonstrating phenol degradation of 90 %, TDS removal of 75 % in 72 h of reaction time along with higher power generation of 27.5 mW/m(2) as compared to MDC-1 (95 %, 64 %, 12.8 mW/m(2), respectively) and MDC-3 (58 %, 52 %, 4.8 mW/m(2), respectively). The results illustrate that the multichamber MDC-2 is effective for simultaneous removal of phenol and dissolved solids contained in industrial wastewaters.

  3. Sabotage at Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigationmore » conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.« less

  4. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.

    PubMed

    Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat

    2014-03-01

    Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community. Copyright © 2013

  5. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  6. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  7. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...

  8. Monitoring and management of tritium from the nuclear power plant effluent

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoe; Liu, Ting; Yang, Lili; Meng, De; Song, Dahu

    2018-01-01

    It is important to regulate tritium nuclides from the nuclear power plant effluent, the paper briefly analyzes the main source of tritium, and the regulatory requirements associated with tritium in our country and the United States. The monitoring methods of tritium from the nuclear power plant effluent are described, and the purpose to give some advice to our national nuclear power plant about the effluent of tritium monitoring and management.

  9. Fighting the Epidemic of Nuclear Plant Leaks.

    ERIC Educational Resources Information Center

    Udell, Richard A.

    1983-01-01

    The current epidemic of steam generator tube leaks alone should put to rest the rosy future once envisioned for nuclear power. It is impossible to regulate quality into a nuclear plant; it must be built and designed that way. The economic impact of the leaks is discussed. (RM)

  10. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE PAGES

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...

    2016-10-05

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  11. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  12. Volume 1: Survey of Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Aghajanzadeh, Arian; Sheaffer, Paul

    The U.S. Department of Energy (DOE) has set a goal to reduce the cost of seawater desalination systems to $0.50/ cubic meter (m 3) through the development of technology pathways to reduce energy, capital, operating, soft, and system integration costs.1 In support of this goal and to evaluate the technology pathways to lower the energy and carbon intensity of desalination while also reducing the total water cost, DOE is undertaking a comprehensive study of the energy consumption and carbon dioxide (CO 2) emissions for desalination technologies and systems. This study is being undertaken in two phases. Phase 1, Survey ofmore » Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems, collected the background information that will underpin Phase 2, the Energy Water Bandwidth Study for Desalination Systems. This report (Volume 1) summarizes the results from Phase 1. The results from Phase 2 will be summarized in Volume 2: Energy Water Bandwidth Study for Desalination Systems (Volume 2). The analysis effort for Phase 2 will utilize similar methods as other industry-specific Energy Bandwidth Studies developed by DOE,2 which has provided a framework to evaluate and compare energy savings potentials within and across manufacturing sectors at the macroscale. Volume 2 will assess the current state of desalination energy intensity and reduction potential through the use of advanced and emerging technologies. For the purpose of both phases of study, energy intensity is defined as the amount of energy required per unit of product water output (for example, kilowatt-hours per cubic meter of water produced). These studies will expand the scope of previous sectorial bandwidth studies by also evaluating CO 2 intensity and reduction opportunities and informing a techno-economic analysis of desalination systems. Volume 2 is expected to be completed in 2017.« less

  13. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim

    PubMed Central

    Rose, Annkatrin; Meier, Iris

    2001-01-01

    Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475

  14. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  15. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  16. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  17. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  18. Microprocessor-based control systems application in nuclear power plant critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.R.; Nowak, J.B.

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less

  19. Autonomous Control of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less

  20. Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windsor, Lindsay K.; Kessler, Carol E.

    An exceptional number of Middle Eastern and North African nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many of these countries have explored nuclear research in limited ways in the past, but the current focused interest and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination plants is unprecedented. Consequently, questions arise in response to this emerging trend: What instigated this interest? To what end(s) will a nuclear program be applied? Does the country have adequate technical, political, legislative, nonproliferation, and safety infrastructure required for the capability desired? If so, what are the next stepsmore » for a country in preparation for a future nuclear program? And if not, what collaboration efforts are possible with the United States or others? This report provides information on the capabilities and interests of 13 countries in the region in nuclear energy programs in light of safety, nonproliferation and security concerns. It also provides information useful for determining potential for offering technical collaboration, financial aid, and/or political support.« less

  1. Use of simulated evaporation to assess the potential for scale formation during reverse osmosis desalination

    USGS Publications Warehouse

    Huff, G.F.

    2004-01-01

    The tendency of solutes in input water to precipitate efficiency lowering scale deposits on the membranes of reverse osmosis (RO) desalination systems is an important factor in determining the suitability of input water for desalination. Simulated input water evaporation can be used as a technique to quantitatively assess the potential for scale formation in RO desalination systems. The technique was demonstrated by simulating the increase in solute concentrations required to form calcite, gypsum, and amorphous silica scales at 25??C and 40??C from 23 desalination input waters taken from the literature. Simulation results could be used to quantitatively assess the potential of a given input water to form scale or to compare the potential of a number of input waters to form scale during RO desalination. Simulated evaporation of input waters cannot accurately predict the conditions under which scale will form owing to the effects of potentially stable supersaturated solutions, solution velocity, and residence time inside RO systems. However, the simulated scale-forming potential of proposed input waters could be compared with the simulated scale-forming potentials and actual scale-forming properties of input waters having documented operational histories in RO systems. This may provide a technique to estimate the actual performance and suitability of proposed input waters during RO.

  2. 75 FR 14638 - FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and Finding of No Significant Impact The U.S...,'' for Facility Operating License No. NPF-58, issued to FirstEnergy Nuclear Operating Company (FENOC, the...

  3. Graphene membranes with nanoslits for seawater desalination via forward osmosis.

    PubMed

    Dahanayaka, Madhavi; Liu, Bo; Hu, Zhongqiao; Pei, Qing-Xiang; Chen, Zhong; Law, Adrian Wing-Keung; Zhou, Kun

    2017-11-22

    Stacked graphene (GE) membranes with cascading nanoslits can be synthesized economically compared to monolayer nanoporous GE membranes, and have potential for molecular separation. This study focuses on investigating the seawater desalination performance of these stacked GE layers as forward osmosis (FO) membranes by using molecular dynamics simulations. The FO performance is evaluated in terms of water flux and salt rejection and is explained by analysing the water density distribution and radial distribution function. The water flow displays an Arrhenius type relation with temperature and the activation energy for the stacked GE membrane is estimated to be 8.02 kJ mol -1 , a value much lower than that of commercially available FO membranes. The study reveals that the membrane characteristics including the pore width, offset, interlayer separation distance and number of layers have significant effects on the desalination performance. Unlike monolayer nanoporous GE membranes, at an optimum layer separation distance, the stacked GE membranes with large pore widths and completely misaligned pore configuration can retain complete ion rejection and maintain a high water flux. Findings from the present study are helpful in developing GE-based membranes for seawater desalination via FO.

  4. Managing nuclear power plant induced disasters.

    PubMed

    Kyne, Dean

    2015-01-01

    To understand the management process of nuclear power plant (NPP) induced disasters. The study shields light on phases and issues associated with the NPP induced disaster management. This study uses Palo Verde Nuclear Generation Station as study subject and Arizona State as study area. This study uses the Radiological Assessment System for Consequence Analysis (RASCAL) Source Term to Dose (STDose) of the Nuclear Regulatory Commission, a computer software to project and assess the source term dose and release pathway. This study also uses ArcGIS, a geographic information system to analyze geospatial data. A detailed case study of Palo Verde Nuclear Power Generation (PVNPG) Plant was conducted. The findings reveal that the NPP induced disaster management process is conducted by various stakeholders. To save lives and to minimize the impacts, it is vital to relate planning and process of the disaster management. Number of people who expose to the radioactive plume pathway and level of radioactivity could vary depending on the speed and direction of wind on the day the event takes place. This study findings show that there is a need to address the burning issue of different racial and ethnic groups' unequal exposure and unequal protection to potential risks associated with the NPPs.

  5. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    PubMed

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  6. Desalination with Carbon Aerogel Electrodes

    DTIC Science & Technology

    1996-12-04

    Desalination with Carbon Aerogel Electrodes Joseph C. Farmer, Jeffrey H Richardson and David V Fix Chemistry and Materials Science Department Lawrence...Department of Interior, 190 pages, May (1966). 9. A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne , C. M. Wong,, W. S. Gillam, S. Johnson, R. H...200 056, 31 pages, March (1970). 10. A. M. Johnson, A. W. Venolia, R. G. Wilbourne , J. Newman, "The Electrosorb Process for Desalting Water," Marquardt

  7. Questions and Answers About Nuclear Power Plants.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  8. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  9. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination

    PubMed Central

    Thomas, Michael; Corry, Ben

    2016-01-01

    Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and desalination, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for desalination applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in desalination by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639

  10. Coastal Residents Ocean Literacy about Seawater Desalination and its Impacts on Marine Ecosystems in the Monterey Bay

    NASA Astrophysics Data System (ADS)

    Faraola, S.; Heck, N.; Mirza Ordshahi, B.; Paytan, A.; Petersen, K. L.; Haddad, B.; Potts, D. C.

    2016-12-01

    The current lack of available freshwater in California has brought about the consideration of utilizing seawater desalination to provide a consistent drinking water source for local residents of coastal areas. Public literacy about this technology and its impacts on the ocean is vital to making informed policy decisions about marine resources and ecosystems, which may empower local communities to become more involved stewards of the ocean. Our study evaluates public literacy about seawater desalination and its impacts on the ocean. Data was collected using a questionnaire-based survey from a randomly selected sample of residents and marine stakeholders in coastal communities around Monterey Bay. The study explored (1) self-assessed and accurate knowledge about marine impacts from seawater desalination and (2) what shapes public literacy concerning pertinent ocean issues in communities near a National Marine Sanctuary. Our findings show to what extent the public is prepared to engage in meaningful discussions about marine issues and seawater desalination and if an understanding of the ocean shapes perceptions on saltwater desalination.

  11. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  12. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  13. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment and Finding of No Significant Impact... Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with 10 CFR 51.21... of Nuclear Plants: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437...

  14. 75 FR 73135 - Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-348 and 50-364; NRC-2009-0375] Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to Title 10 of the Code of Federal...

  15. Indirect contact freeze water desalination for an ice maker machine - CFD simulation

    NASA Astrophysics Data System (ADS)

    Jayakody, Harith; Al-Dadah, Raya; Mahmoud, Saad

    2017-11-01

    To offer for potable water shortages, sea water desalination is a potential solution for the global rising demand for fresh water. The latent heat of fusion is about one-seventh the latent heat of vaporisation, thus indicating the benefit of lower energy consumption for the freeze desalination process. Limited literature is reported on computational fluid dynamics (CFD) on freeze desalination. Therefore, analysing and investigating thermodynamic processes are easily conducted by the powerful tool of CFD. A single unit of ice formation in an ice maker machine was modelled using ANSYS Fluent software three-dimensionally. Energy, species transport and solidification/melting modules were used in building the CFD model. Parametric analysis was conducted using the established CFD model to predict the effects of freezing temperature and the geometry of the ice maker machine; on ice production and the freezing time. Lower freezing temperatures allowed more ice production and faster freezing. Increasing the diameter and the length of the freezing tube enabled more ice to be produced.

  16. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    NASA Astrophysics Data System (ADS)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  17. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  18. Method for assigning sites to projected generic nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for themore » site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.« less

  19. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed...

  20. 10 CFR 50.120 - Training and qualification of nuclear power plant personnel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...

  1. 10 CFR 50.120 - Training and qualification of nuclear power plant personnel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...

  2. Apros-based Kola 1 nuclear power plant compact training simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porkholm, K.; Kontio, H.; Nurmilaukas, P.

    1996-11-01

    Imatran Voima Oy`s subsidiary IVO International Ltd (IVO IN) and the Technical Research Centre of Finland (VTT) in co-operation with Kola staff supplies the Kola Nuclear Power Plant in the Murmansk region of Russia with a Compact Training Simulator. The simulator will be used for the training of the plant personnel in managing the plant disturbance and accident situations. By means of the simulator is is also possible to test how the planned plant modifications will affect the plant operation. The simulator delivery is financed by the Finnish Ministry of Trade and Industry and the Ministry of Foreign Affairs. Themore » delivery is part of the aid program directed to Russia for the improvement of the nuclear power plant safety.« less

  3. Chloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage.

    PubMed Central

    Oliver, J L; Marín, A; Martínez-Zapater, J M

    1990-01-01

    During plant evolution, some plastid genes have been moved to the nuclear genome. These transferred genes are now correctly expressed in the nucleus, their products being transported into the chloroplast. We compared the base compositions, the distributions of some dinucleotides and codon usages of transferred, nuclear and chloroplast genes in two dicots and two monocots plant species. Our results indicate that transferred genes have adjusted to nuclear base composition and codon usage, being now more similar to the nuclear genes than to the chloroplast ones in every species analyzed. PMID:2308837

  4. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning ofmore » Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  5. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    PubMed

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. 10 CFR Appendix C to Part 73 - Nuclear Power Plant Safeguards Contingency Plans

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear Power Plant Safeguards Contingency Plans C Appendix C to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND... sabotage relating to special nuclear material or nuclear facilities licensed under the Atomic Energy Act of...

  7. 10 CFR Appendix C to Part 73 - Nuclear Power Plant Safeguards Contingency Plans

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear Power Plant Safeguards Contingency Plans C Appendix C to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND... sabotage relating to special nuclear material or nuclear facilities licensed under the Atomic Energy Act of...

  8. Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery.

    PubMed

    Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-09-01

    Bioelectrochemical systems (BESs) are integrated water treatment technologies that generate electricity using organic matter in wastewater. In situ use of bioelectricity can direct the migration of ionic substances in a BES, thereby enabling water desalination, resource recovery, and valuable substance production. Recently, much attention has been placed on the microbial desalination cells in BESs to drive water desalination, and various configurations have optimized electricity generation and desalination performance and also coupled hydrogen production, heavy metal reduction, and other reactions. In addition, directional transport of other types of charged ions can remediate polluted groundwater, recover nutrient, and produce valuable substances. To better promote the practical application, the use of BESs as directional drivers of ionic substances requires further optimization to improve energy use efficiency and treatment efficacy. This article reviews existing researches on BES-driven directional ion transport to treat wastewater and identifies a few key factors involved in efficiency optimization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission tomore » Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  10. ATMOSPHERIC RELEASES FROM STANDARDIZED NUCLEAR POWER PLANTS: A WIND TUNNEL STUDY

    EPA Science Inventory

    Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard design nuclear power plants. The main objective of the study was to compare the dispersion in the wake of the standardized nuclear power plants with that in a s...

  11. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    PubMed

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.

  12. Experience with ALARA and ALARA procedures in a nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamse, J.C.

    1995-03-01

    The nuclear power plant Borssele is a Siemens two-loop Pressurized Water Reactor having a capacity of 480 MWe and in operation since 1973. The nuclear power plant Borssle is located in the southwest of the Netherlands, near the Westerschelde River. In the first nine years of operation the radiation level in the primary system increased, reaching a maximum in 1983. The most important reason for this high radiation level was the cobalt content of the grid assemblies of the fuel elements. After resolving this problem, the radiation level decreased to a level comparable with that of other nuclear power plants.

  13. The optimization of nuclear power plants operation modes in emergency situations

    NASA Astrophysics Data System (ADS)

    Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.

    2018-01-01

    An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.

  14. Atmospheric emission of 137Cs82 from Beloyarsk nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kolotkov, G. A.

    2018-01-01

    Citing Beloyarsk nuclear power plant (Russia) as an example, the problem of remote detection of radioactivity in the atmospheric pollution is examined. The comparative analysis of injected radionuclides into the atmosphere from the nuclear power plant with advanced fast neutron reactor is carried out. The main radionuclides throw out into the atmosphere from the nuclear power plant are beta-radionuclides. The secondary and tertiary spectra of beta-electrons decay for artificial radionuclide 137Cs82 is calculated, using Spencer-Fano’s equation. The averaged parameters of initial beta - electrons generated by 137Cs82 decay in the atmosphere is calculated.

  15. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  16. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path

    PubMed Central

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-01-01

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber−bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution. PMID:27872280

  17. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path.

    PubMed

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-12-06

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.

  18. Analysis on capability of load following for nuclear power plants abroad and its enlightenment

    NASA Astrophysics Data System (ADS)

    Zheng, Kuan; Zhang, Fu-qiang; Deng, Ting-ting; Zhang, Jin-fang; Hao, Weihua

    2017-01-01

    With the acceleration adjustment of China’s energy structure, the development of nuclear power plants in China has been going back to the fast track. While as the trend of slowing electric power demand is now unmistakable, it enforces the power system to face much greater pressure in some coastal zones where the nuclear power plants are of a comparative big proportion, such as Fujian province and Liaoning province. In this paper, the capability of load following of nuclear power plants of some developed countries with high proportion of nuclear power generation such as France, US and Japan are analysed, also from the aspects including the safety, the economy and their practical operation experience is studied. The feasibility of nuclear power plants to participate in the peak regulation of system is also studied and summarized. The results of this paper could be of good reference value for the China’s nuclear power plants to participate in system load following, and also of great significance for the development of the nuclear power plants in China.

  19. Third generation nuclear plants

    NASA Astrophysics Data System (ADS)

    Barré, Bertrand

    2012-05-01

    After the Chernobyl accident, a new generation of Light Water Reactors has been designed and is being built. Third generation nuclear plants are equipped with dedicated systems to insure that if the worst accident were to occur, i.e. total core meltdown, no matter how low the probability of such occurrence, radioactive releases in the environment would be minimal. This article describes the EPR, representative of this "Generation III" and a few of its competitors on the world market.

  20. What affects public acceptance of recycled and desalinated water?

    PubMed Central

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2011-01-01

    This paper identifies factors that are associated with higher levels of public acceptance for recycled and desalinated water. For the first time, a wide range of hypothesized factors, both of socio-demographic and psychographic nature, are included simultaneously. The key results, based on a survey study of about 3000 respondents are that: (1) drivers of the stated likelihood of using desalinated water differ somewhat from drivers of the stated likelihood of using recycled water; (2) positive perceptions of, and knowledge about, the respective water source are key drivers for the stated likelihood of usage; and (3) awareness of water scarcity, as well as prior experience with using water from alternative sources, increases the stated likelihood of use. Practical recommendations for public policy makers, such as key messages to be communicated to the public, are derived. PMID:20950834

  1. 78 FR 46255 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... environmental effect of renewing the operating license of a nuclear power plant. This document is necessary to..., Environmental impact statement, Nuclear materials, Nuclear power plants and reactors, Reporting and... Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction AGENCY: Nuclear...

  2. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A; Wilgen, John B; Ewing, Paul D

    2006-01-01

    Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less

  3. Regulatory guidance for lightning protection in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.

    2006-07-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less

  4. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  5. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  6. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  7. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  8. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  9. Psychology in nuclear power plants: an integrative approach to safety - general statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shikiar, R.

    Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals withmore » the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety.« less

  10. Mesoporous Three-Dimensional Graphene Networks for Highly Efficient Solar Desalination under 1 sun Illumination.

    PubMed

    Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun

    2018-05-09

    Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.

  11. Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales.

    PubMed

    Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V

    2013-07-01

    This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Knowledge of and Attitude to Nuclear Power among Residents around Tianwan Nuclear Power Plant in Jiangsu of China

    PubMed Central

    Yu, Ningle; Zhang, Yimei; Wang, Jin; Cao, Xingjiang; Fan, Xiangyong; Xu, Xiaosan; Wang, Furu

    2012-01-01

    Aims: The aims of this paper were to determine the level of knowledge of and attitude to nuclear power among residents around Tianwan Nuclear power plant in Jiangsu of China. Design: A descriptive, cross-sectional design was adopted. Participants: 1,616 eligible participants who lived around the Tianwan nuclear power plant within a radius of 30km and at least 18 years old were recruited into our study and accepted epidemiological survey. Methods: Data were collected through self-administered questionnaires consisting of a socio-demographic sheet. Inferential statistics, t-test, ANOVA test and multivariate regression analysis were used to compare the differences between each subgroup and correlation analysis was conducted to understand the relationship between different factors and dependent variables. Results: Our investigation found that the level of awareness and acceptance of nuclear power was generally not high. Respondents' gender, age, marital status, residence, educational level, family income and the distance away from the nuclear power plant are important effect factors to the knowledge of and attitude to nuclear power. Conclusions: The public concerns about nuclear energy's impact are widespread. The level of awareness and acceptance of nuclear power needs to be improved urgently. PMID:22811610

  13. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater.

    PubMed

    Luo, Haiping; Xu, Pei; Ren, Zhiyong

    2012-09-01

    Microbial desalination cell represents a new technology for simultaneous wastewater treatment, water desalination, and energy production. This study characterized the long-term performance of MDC during wastewater treatment and identified the key factors that caused performance decline. The 8-month operation shows that MDC performance decreased over time, as indicated by a 47% decline in current density, a 46% drop in Columbic efficiency, and a 27% decrease in desalination efficiency. Advanced electrochemical, microscopy, and spectroscopy analyses all confirmed biofouling on the anion exchange membrane, which increased system resistance and reduced ionic transfer and energy conversion efficiency. Minor chemical scaling was found on the cation exchange membrane surface. Microbial communities became less diverse at the end of operation, and Proteobacteria spp. was dominant on both anode and AEM fouling layer surface. These results provide insights into the viability of long-term MDC operation on reactor performance and direct system development through membrane optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  15. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    PubMed Central

    Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel

    2013-01-01

    Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943

  16. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.

    PubMed

    Biesheuvel, P M; Bazant, M Z

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  17. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NASA Astrophysics Data System (ADS)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  18. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  19. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    NASA Astrophysics Data System (ADS)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-06-01

    THE ACCEPTANCE STRATEGY FOR NUCLEAR POWER PLANT IN INDONESIA. Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R&D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.

  20. Aging assessment of large electric motors in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failuremore » in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.« less

  1. NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE

    EPA Science Inventory

    The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...

  2. Development of Northeast Asia Nuclear Power Plant Accident Simulator.

    PubMed

    Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff

    2017-06-15

    A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Design and implementation of a simple nuclear power plant simulator

    NASA Astrophysics Data System (ADS)

    Miller, William H.

    1983-02-01

    A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.

  4. Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator

    NASA Astrophysics Data System (ADS)

    Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul

    2016-09-01

    The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.

  5. Particulate-free porous silicon networks for efficient capacitive deionization water desalination

    PubMed Central

    Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.

    2016-01-01

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809

  6. Particulate-free porous silicon networks for efficient capacitive deionization water desalination.

    PubMed

    Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L

    2016-04-22

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.

  7. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    PubMed

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  8. 78 FR 37325 - License Renewal of Nuclear Power Plants; Generic Environmental Impact Statement and Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Nuclear Power Plants; Generic Environmental Impact Statement and Standard Review Plans for Environmental... for Nuclear Power Plants, Supplement 1: Operating License Renewal'' (ESRP). The ESRP serves as a guide... published a final rule, ``Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating...

  9. 76 FR 62457 - Tennessee Valley Authority (Bellefonte Nuclear Plant, Unit 1)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... (Bellefonte Nuclear Plant, Unit 1) Order I. The Tennessee Valley Authority (TVA, or the applicant) is the... Nuclear Plant (BLN), Units 1 and 2, respectively. The CPs for CPPR-122 and CPPR-123 expire on October 1... option for future power generation at BLN Unit 1. In the letter dated April 25, 2011, TVA informed the...

  10. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ..., Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the... Operating License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant, Unit 1... rule's compliance date for all operating nuclear power plants, but noted that the Commission's...

  11. Unique electric power and water desalination scheme underway in Libya. Student essay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eason, C.N.

    1975-02-21

    With continuing interest in the Mediterranean and the Middle East as a backdrop, focus is put on the basic necessities of water and power in Libya. An analysis is made, on a national basis, of the choice of means for meeting an urgent need for both power and potable water in an economy, exploding in development with limited skills, but with unlimited funds. This could be typical of situations in several Mid-East nations. A discussion includes factors of fuels, fuel costs, capital costs, efficiency, reliability, potential for local operation and timing. These several elements are weighed by the Libyans. Themore » resulting decisions are sound, however, they have adopted a highly sophisticated combination of gas turbine-generators (GT), and heat recovery steam generators (HRSG) to produce steam for water desalination plants at several locations. (GRA)« less

  12. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  13. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  14. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  15. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  16. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  17. Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranganathan, Shashidhar

    Desalination technologies have been used increasingly throughout the world to produce the drinking water from the brackish ground and sea water for the past few decades. Among the commercially available desalination technologies, reverse osmosis (RO) and multi-stage flash distillation are the most widely used technologies globally. However, these technologies are difficult to be directly integrated with green energies without converting them to electricity. Dewvaporation, a desalination process, uses saturated steam as a carrier-gas to evaporate water from saline feeds and form pure condensate. It has the major technical benefit of reusing energy, released from vapor condensation, multiple times. The currentmore » proposal has been planned to address this issue. In Phase I, we have successfully demonstrated the feasibility of a new plasmonic nanoparticle based approach through fabrication and evaluation of a solar powered water vapor generation module. The water vapor generation module allows generation of high temperature plasmon on a fiber bundle end, where strong water and plasmon interaction occurs generating water vapor. Plasmon enhanced water evaporation has been realized on plasmonic nanoparticle immobilized substrate with an energy conversion efficiency of over 50%.« less

  18. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    EIA Publications

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  19. 75 FR 69137 - Southern Nuclear Operating Company Inc. Edwin I. Hatch Nuclear Plant, Unit No. 2 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-366; NRC-2010-0345] Southern Nuclear Operating Company Inc. Edwin I. Hatch Nuclear Plant, Unit No. 2 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering the issuance of an exemption from Title 10 of the Code of Federal Regulations, ...

  20. Seismic risk management solution for nuclear power plants

    DOE PAGES

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  1. Instrumentation and control upgrade plan for Browns Ferry nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belew, M.R.; Langley, D.T.; Torok, R.C.

    1992-01-01

    A comprehensive upgrade of the instrumentation and control (I C) systems at a power plant represents a formidable project for any utility. For a nuclear plant, the extra safety and reliability requirements along with regulatory constraints add further complications and cost. The need for the upgrade must, therefore, be very compelling, and the process must be well planned from the start. This paper describes the steps taken to initiate the I C upgrade process for Tennessee Valley Authority's (TVA's) Browns Ferry 2 nuclear plant. It explains the impetus for the upgrade, the expected benefits, and the process by which systemmore » upgrades will be selected and implemented.« less

  2. Biomedical Lessons from the Chernobyl Nuclear Power Plant Accident

    DTIC Science & Technology

    1990-10-01

    Lessons From the Lt Col Doris Browne, MC Chernobyl Nuclear Power Plant Accident The Chernobyl nuclear accident afforded the treating physicians a...radiation accident posited on the skin and mucous mem- A Lt Col Dori Browne, MC, is Chief, Medicaloccurred at the Chernobyl nuclear branes from the molten...Conclusion ulcers of oral mucosa, which required irradiation. He also had persistent The consequences ot the Chernobyl sterile saline irrigation and

  3. Thermal and nuclear power plants: Competitiveness in the new economic conditions

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2017-05-01

    In recent years, the conditions of development and functionality of power generating assets have notably changed. Considering the decline in the price of hydrocarbon fuel on the global market, the efficiency of combined-cycle gas-turbine plants in the European part of Russia is growing in comparison with nuclear power plants. Capital investments in the construction of nuclear power plants have also increased as a result of stiffening the safety requirements. In view of this, there has been an increasing interest in exploration of effective lines of development of generating assets in the European part of Russia, taking consideration of the conditions that may arise in the nearest long-term perspective. In particular, the assessment of comparative efficiency of developing combined-cycle gas-turbine plants (operating on natural gas) in the European part of Russia and nuclear power plants is of academic and practical interest. In this article, we analyze the trends of changes in the regional price of hydrocarbon fuel. Using the prognosis of net-weighted import prices of natural gas in Western European countries—prepared by the International Energy Agency (IEA) and the Energy Research Institute of the Russian Academy of Sciences (ERIRAS)—the prices of natural gas in the European part of Russia equilibrated with import prices of this heat carrier in Western Europe were determined. The methodology of determining the comparative efficiency of combined-cycle gas turbine plants (CCGT) and nuclear power plants (NPP) were described; based on this, the possible development of basic CCGTs and NPPs with regard to the European part of Russia for various scenarios in the prognosis of prices of gaseous fuel in a broad range of change of specific investments in the given generating sources were assessed, and the extents of their comparative efficiency were shown. It was proven that, at specific investments in the construction of new NPPs in the amount of 5000 dollars/kW, nuclear

  4. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... CONTACT: Felix Gonzalez, Fire Research Branch, Division of Risk Analysis, Office of Nuclear Regulatory...

  5. 75 FR 3761 - Southern Nuclear Operating Company, Inc., Edwin I. Hatch Nuclear Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-321 and 50-366; NRC-2010-0024] Southern Nuclear Operating Company, Inc., Edwin I. Hatch Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to Title 10 of the Code of...

  6. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.

    PubMed

    Talaeipour, M; Nouri, J; Hassani, A H; Mahvi, A H

    2017-01-01

    As an appropriate tool, membrane process is used for desalination of brackish water, in the production of drinking water. The present study aims to investigate desalination processes of brackish water of Qom Province in Iran. This study was carried out at the central laboratory of Water and Wastewater Company of the studied area. To this aim, membrane processes, including nanofiltration (NF) and reverse osmosis (RO), separately and also their hybrid process were applied. Moreover, water physical and chemical parameters, including salinity, total dissolved solids (TDS), electric conductivity (EC), Na +1 and Cl -1 were also measured. Afterward, the rejection percent of each parameter was investigated and compared using nanofiltration and reverse osmosis separately and also by their hybrid process. The treatment process was performed by Luna domestic desalination device, which its membrane was replaced by two NF90 and TW30 membranes for nanofiltration and reverse osmosis processes, respectively. All collected brackish water samples were fed through membranes NF90-2540, TW30-1821-100(RO) and Hybrid (NF/RO) which were installed on desalination household scale pilot (Luna water 100GPD). Then, to study the effects of pressure on permeable quality of membranes, the simulation software model ROSA was applied. Results showed that percent of the salinity rejection was recorded as 50.21%; 72.82 and 78.56% in NF, RO and hybrid processes, respectively. During the study, in order to simulate the performance of nanofiltartion, reverse osmosis and hybrid by pressure drive, reverse osmosis system analysis (ROSA) model was applied. The experiments were conducted at performance three methods of desalination to remove physic-chemical parameters as percentage of rejections in the pilot plant are: in the NF system the salinity 50.21, TDS 43.41, EC 43.62, Cl 21.1, Na 36.15, and in the RO membrane the salinity 72.02, TDS 60.26, EC 60.33, Cl 43.08, Na 54.41. Also in case of the rejection in

  7. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    PubMed

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  8. Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell.

    PubMed

    Zuo, Kuichang; Yuan, Lulu; Wei, Jincheng; Liang, Peng; Huang, Xia

    2013-10-01

    Mixed ion-exchange resins packed microbial desalination cell (R-MDC) could stabilize the internal resistance, however, the impacts of multiple ions on R-MDC performance was unclear. This study investigated the desalination performance, multiple ions migration behaviors and their impacts on R-MDCs fed with salt solution containing multiple anions and cations. Results showed that R-MDC removed multiple anions better than multiple cations with desalination efficiency of 99% (effluent conductivity <0.05 ms/cm) at hydraulic retention time of 50 h. Competitive migration order was SO4(2-)>NO3(-)>Cl(-) for anions and Ca(2+)≈Mg(2+)>NH4(+)>Na(+) for cations, jointly affected by both their molar conductivity and exchange selectivity on resins. After long-term operation, the existence of higher concentration Ca(2+) and Mg(2+) caused the electric conductivity of mixed resins decrease and scaling on the surface of cation-exchange membrane adjoined with cathode chamber, suggesting that R-MDC would be more suitable for desalination of water with lower hardness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  10. Geochemical processes during managed aquifer recharge with desalinated seawater

    NASA Astrophysics Data System (ADS)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2017-12-01

    In this work we study the geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport model was used to predict the geochemical evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.

  11. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  12. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  13. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  14. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  15. Holdup measurement for nuclear fuel manufacturing plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucker, M.S.; Degen, M.; Cohen, I.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  16. Membrane scaling and flux decline during fertiliser-drawn forward osmosis desalination of brackish groundwater.

    PubMed

    Phuntsho, Sherub; Lotfi, Fezeh; Hong, Seungkwan; Shaffer, Devin L; Elimelech, Menachem; Shon, Ho Kyong

    2014-06-15

    Fertiliser-drawn forward osmosis (FDFO) desalination has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the desalination of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result in any scaling when used as an FO draw solution (DS), diammonium phosphate (DAP or (NH4)2HPO4) resulted in significant scaling, which contributed to severe flux decline. Membrane autopsy using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) analysis indicated that the reverse diffusion of DAP from the DS to the feed solution was primarily responsible for scale formation during the FDFO process. Physical cleaning of the membrane with deionised water at varying crossflow velocities was employed to evaluate the reversibility of membrane scaling and the extent of flux recovery. For the membrane scaled using DAP as DS, 80-90% of the original flux was recovered when the crossflow velocity for physical cleaning was the same as the crossflow velocity during FDFO desalination. However, when a higher crossflow velocity or Reynolds number was used, the flux was recovered almost completely, irrespective of the DS concentration used. This study underscores the importance of selecting a suitable fertiliser for FDFO desalination of brackish groundwater to avoid membrane scaling and severe flux decline. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Geochemical processes in a calcareous sandstone aquifer during managed aquifer recharge with desalinated seawater

    NASA Astrophysics Data System (ADS)

    Ganot, Yonatan; Russak, Amos; Siebner, Hagar; Bernstein, Anat; Katz, Yoram; Guttman, Jospeh; Kurtzman, Daniel

    2017-04-01

    In the last three years we monitor Managed Aquifer Recharge (MAR) of post-treated desalinated seawater (PTDES) in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. The PTDES are stabilized with CaCO3 during post-treatment in the desalination plant and their chemical composition differs from those of any other water recharged to the aquifer and of the natural groundwater. We use suction cups in the unsaturated zone, shallow observation wells within the pond and production wells that encircles the MAR Menashe site, to study the geochemical processes during MAR with PTDES. Ion-enrichment (remineralization) of the recharged water was observed in both unsaturated zone and shallow observation wells samples. Enrichment occurs mainly in the first few meters below the pond surface by ion-exchange processes. Mg2+ enrichment is most prominent due to its deficiency in the PTDES. It is explained by ion-exchange with Ca2+, as the PTDES (enriched with Ca2+) infiltrates through a calcareous-sandstone aquifer with various amount of adsorbed Mg2+ (3-27 meq/kg). Hence, the higher concentration of Ca+2 in the PTDES together with its higher affinity to the sediments promotes the release of Mg2+ ions to the recharged water. Water isotopes analysis of the production wells were used to estimate residence time and mixing with local groundwater. At the end of 2016, it was found that the percentage of PTDES in adjacent down-gradient production wells was around 10%, while more distant or up-gradient wells show no mixing with PTDES. The distinct isotope contrast between the recharged desalinated seawater (δ2H=+11.2±0.2‰) and the local groundwater (δ2H ranged from -22.7 to -16.7‰) is a promising tool to evaluate future mixing processes at the Menshae MAR site. Using the Menashe MAR system for remineralization could be beneficial as a primary or complementary post-treatment technique. However, the sustainability of this process is

  18. Effect of the scale inhibitor on ion content in reverse osmosis system for seawater desalination

    NASA Astrophysics Data System (ADS)

    Gao, Yuhua; Liu, Zhenfa; Zhang, Lihui; Li, Haihua

    2017-09-01

    A scale inhibitor was synthesized from polysuccinimide with 2-aminoethanesulfonic acid and aspartic acid. The effect of scale inhibitor on ion content in reverse osmosis system for seawater desalination was studied. The results showed that the ion content of permeate water is lower with the scale inhibitor added in RO system for seawater desalination than without scale inhibitor. On the contrary, the ion content of concentrate water is higher when with scale inhibitor in RO system.

  19. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  20. Summit on Improving the Economics of America's Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, John; Mason, Charles

    The Summit on Improving the Economics of America’s Nuclear Power Plants was convened May 19, 2016, by Secretary of Energy Ernest Moniz and co-sponsored by Idaho Senator Mike Crapo to stress the importance of existing nuclear reactors in meeting our nation’s energy goals. The summit was also designed to identify and discuss policy options that can be pursued at federal and state levels to address economic challenges, as well as technical options that utilities can use to improve the economic competitiveness of operating nuclear power plants (NPPs) and avoid early plant retirements that are driven by temporary market conditions. Themore » owners of NPPs face difficult economic decisions and are working to improve the performance of existing NPPs. However, it soon became clear that some of the actions taken by states and regional markets have had an impact on the economic viability of existing power plants, including carbon free NPPs. Summit speakers identified concepts and actions that could be taken at state and federal levels to improve the economics of the existing fleet within these regulated and restructured electricity markets. This report summarizes the speeches, concepts, and actions taken.« less

  1. Radiological impact of airborne effluents of coal and nuclear plants.

    PubMed

    McBride, J P; Moore, R E; Witherspoon, J P; Blanco, R E

    1978-12-08

    Radiation doses from airborne effluents of model coal-fired and nuclear power plants (1000 megawatts electric) are compared. Assuming a 1 percent ash release to the atmosphere (Environmental Protection Agency regulation) and 1 part per million of uranium and 2 parts per million of thorium in the coal (approximately the U.S. average), population doses from the coal plant are typically higher than those from pressurized-water or boiling-water reactors that meet government regulations. Higher radionuclide contents and ash releases are common and would result in increased doses from the coal plant. The study does not assess the impact of non-radiological pollutants or the total radiological impacts of a coal versus a nuclear economy.

  2. Forward osmosis :a new approach to water purification and desalination.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution basedmore » solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and

  3. Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China

    PubMed Central

    Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K.; Bi, Jun; Liu, Yang

    2013-01-01

    We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public’s attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies. PMID:24248341

  4. Counter Action Procedure Generation in an Emergency Situation of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Gofuku, A.

    2018-02-01

    Lessons learned from the Fukushima Daiichi accident revealed various weak points in the design and operation of nuclear power plants at the time although there were many resilient activities made by the plant staff under difficult work environment. In order to reinforce the measures to make nuclear power plants more resilient, improvement of hardware and improvement of education and training of nuclear personnel are considered. In addition, considering the advancement of computer technology and artificial intelligence, it is a promising way to develop software tools to support the activities of plant staff.This paper focuses on the software tools to support the operations by human operators and introduces a concept of an intelligent operator support system that is called as co-operator. This paper also describes a counter operation generation technique the authors are studying as a core component of the co-operator.

  5. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    DOE PAGES

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; ...

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less

  6. Response of amphipod assemblages to desalination brine discharge: Impact and recovery

    NASA Astrophysics Data System (ADS)

    de-la-Ossa-Carretero, J. A.; Del-Pilar-Ruso, Y.; Loya-Fernández, A.; Ferrero-Vicente, L. M.; Marco-Méndez, C.; Martinez-Garcia, E.; Sánchez-Lizaso, J. L.

    2016-04-01

    Desalination has become an important industry whose dense, high-salinity effluent has an impact on marine communities. Without adequate dilution, brine remains on the bottom increasing bottom salinity and affecting benthic communities. Amphipods showed high sensitivity to increased salinity produced by desalination brine discharge. A decrease in abundance and diversity of amphipods was detected at the station closest to the outfall, where salinity values reached 53. This salinity was later reduced by including a diffuser at the end of the pipeline. Six months after diffuser installation, amphipod abundance increased. During the first stage of this recovery, species such as Photis longipes recovered their abundance, others such as Microdeutopus versiculatus displayed opportunistic patterns, while others needed more time for recovery, e.g. Harpinia pectinata. These differences may be dependent on the organism living habits.

  7. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...

  8. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...

  9. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...

  10. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination.

    PubMed

    Oh, Byung Soo; Oh, Sang Guen; Hwang, Youn Young; Yu, Hye-Weon; Kang, Joon-Wun; Kim, In S

    2010-11-01

    From our previous study, an electrochemical process was determined to be a promising tool for disinfection in a seawater desalination system, but an investigation on the production of several hazardous by-products is still required. In this study, a more intensive exploration of the formation patterns of perchlorate and bromate during the electrolysis of seawater was conducted. In addition, the rejection efficiencies of the targeted by-products by membrane processes (microfiltration and seawater reverse osmosis) were investigated to uncover the concentrations remaining in the final product from a membrane-based seawater desalination system for the production of drinking water. On the electrolysis of seawater, perchlorate did not provoke any problem due to the low concentrations formed, but bromate was produced at a much higher level, resulting in critical limitation in the application of the electrochemical process to the desalination of seawater. Even though the formed bromate was rejected via microfiltration and reverse osmosis during the 1st and 2nd passes, the residual concentration was a few orders of magnitude higher than the USEPA regulation. Consequently, it was concluded that the application of the electrochemical process to seawater desalination cannot be recommended without the control of bromate. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Use of Low-Temperature Geothermal Energy for Desalination in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S.; Akar, Sertac; Cath, Tzahi

    2015-11-01

    This joint project between the National Renewable Energy Laboratory and the Colorado School of Mines has examined the potential of using low-temperature geothermal resources for desalination. The temperature range in question is not well suited for electricity generation, but can be used for direct heating. Accordingly, the best integration approaches use thermal desalination technologies such as multi-effect distillation (MED) or membrane distillation (MD), rather than electric-driven technologies such as reverse osmosis (RO). The examination of different desalination technologies led to the selection of MD for pairing with geothermal energy. MD operates at near-ambient pressure and temperatures less than 100°C withmore » hydrophobic membranes. The technology is modular like RO, but the equipment costs are lower. The thermal energy demands of MD are higher than MED, but this is offset by an ability to run at lower temperatures and a low capital cost. Consequently, a geothermal-MD system could offer a low capital cost and, if paired with low-cost geothermal energy, a low operating cost. The target product water cost is $1.0 to $1.5 per cubic meter depending on system capacity and the cost of thermal energy.« less

  12. Design and Manufacturing of Desalination System Powered by Solar Energy Using CDI Technique

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad Sajjad; Khashehchi, Morteza; Pipelzadeh, Ehsan

    2017-11-01

    Capacitive deionization (CDI) is an emerging energy efficient, low pressure and low capital intensive desalination process where ions are separated by a pure electrostatic force imposed by a small bias potential as low as 1 V That funded by an external Renewable (Solar) power supply to materials with high specific surface area. The main objective of this configuration is to separate the cation and anions on oppositely charged electrodes. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Various electrode materials have been developed in the past, which have suffered from instability and lack of performance. Preliminary experimental results using carbon black, graphite powder, graphene ∖ graphite ∖ PTFE (Active ∖ Conductive ∖ binder) show that the graphene reduced via urea method is a suitable method to develop CDI electrode materials. Although some progress has been made, production of efficient and stable carbon based electrode materials for large scale desalination has not been fully realized. A new desalination technique using capacitive deionization.

  13. A Review of Information for Managing Aging in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WC Morgan; JV Livingston

    1995-09-01

    Age related degradation effects in safety related systems of nuclear power plants should be managed to prevent safety margins from eroding below the acceptable limits provided in plant design bases. The Nuclear Plant Aging Research (NPAR) Pro- gram, conducted under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, and other related aging management programs are developing technical information on managing aging. The aging management process central to these efforts consists of three key elements: 1) selecting structures, systems, and components (SSCs) in which aging should be controlled; 2) understanding the mechanisms and rates ofmore » degradation in these SSCs; and 3) managing degradation through effective inspection, surveillance, condition monitoring, trending, record keeping, mainten- ance, refurbishment, replacement, and adjustments in the operating environment and service conditions. This document concisely reviews and integrates information developed under the NPAR Program and other aging management studies and other available information related to understanding and managing age-related degradation effects and provides specific refer- ences to more comprehensive information on the same subjects.« less

  14. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less

  16. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... integral part of NRC-approved fire protection programs. However, compensatory measures are not expected to...

  17. 78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0079] Qualification Tests for Safety-Related Actuators in..., ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants.'' This RG is being revised to provide... power plants. This RG is proposed Revision 1 of RG 1.73, ``Qualification Tests of Electric Valve...

  18. 77 FR 37937 - License Renewal Application for Prairie Island Nuclear Generating Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Prairie Island Nuclear Generating Plant Independent Spent Fuel Storage Installation AGENCY: Nuclear... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... February 29, 2012 (ADAMS Accession number ML12065A073), by Prairie Island Nuclear Generating Plant (PINGP...

  19. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    PubMed

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  20. Enhancement of NRC station blackout requirements for nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50,more » Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended

  1. Reclaiming Our Lives in the Wake of a Nuclear Plant Accident.

    PubMed

    Ando, R

    2016-04-01

    Ryoko Ando lives and works in Iwaki-shi, which is located in the coastal area of Fukushima Prefecture. On 11 March 2011, Iwaki was hit by the Great East Japan Earthquake and tsunami. Then the nuclear plant accident at Fukushima No. 1 nuclear power plant, also located in the coastal area of Fukushima Prefecture, added to the woes of Iwaki residents. Although Iwaki-shi is outside of the ‘restricted area’ set up by the government in the 20 km radius around the nuclear power plant, some municipalities in Iwaki-shi lie within the 30 km radius zone. The residents of Iwaki were naturally concerned about the effects of radioactive contamination. On top of these, they had to confront a wide range of issues, including confusion and miscommunication, reputation risk and infrastructural constraints due to the influx of residents from the ‘restricted area’.

  2. Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis.

    PubMed

    Kim, Jaeyoung; Bang, Yejin; Lee, Won Jin

    2016-02-01

    There has been public concern regarding the safety of residing near nuclear power plants, and the extent of risk for thyroid cancer among adults living near nuclear power plants has not been fully explored. In the present study, a systematic review and meta-analysis of epidemiologic studies was conducted to investigate the association between living near nuclear power plants and the risk of thyroid cancer. A comprehensive literature search was performed on studies published up to March 2015 on the association between nuclear power plants and thyroid cancer risk. The summary standardized incidence ratio (SIR), standardized mortality ratio (SMR), and 95% confidence intervals (CIs) were calculated using a random-effect model of meta-analysis. Sensitivity analyses were performed by study quality. Thirteen studies were included in the meta-analysis, covering 36 nuclear power stations in 10 countries. Overall, summary estimates showed no significant increased thyroid cancer incidence or mortality among residents living near nuclear power plants (summary SIR=0.98; 95% CI 0.87-1.11, summary SMR=0.80; 95% CI 0.62-1.04). The pooled estimates did not reveal different patterns of risk by gender, exposure definition, or reference population. However, sensitivity analysis by exposure definition showed that living less than 20 km from nuclear power plants was associated with a significant increase in the risk of thyroid cancer in well-designed studies (summary OR=1.75; 95% CI 1.17-2.64). Our study does not support an association between living near nuclear power plants and risk of thyroid cancer but does support a need for well-designed future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  4. 76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0212] Monitoring the Effectiveness of Maintenance at... comment draft regulatory guide (DG) DG-1278, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources Council (NUMARC) 93...

  5. 77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0212] Monitoring the Effectiveness of Maintenance at... (RG) 1.160, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources Council (NUMARC) 93-01, ``Industry Guideline for...

  6. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This report describes the environmental radiological monitoring programs conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1987. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstreams from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 34 tabs.« less

  7. Browns Ferry Nuclear Plant annual radiological environmental operating report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1990. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  8. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1989. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts if plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in river sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  9. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 2 tabs.« less

  10. 77 FR 55509 - Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ...; Donald C. Cook Nuclear Plant, Unit 2; Exemption 1.0 Background Indian Michigan Power Company (the... Donald C. Cook Nuclear Plant, Unit 2 (CNP-2). The license provides, among other things, that the facility is subject to all rules, regulations, and orders of the U.S Nuclear Regulatory Commission (NRC, or...

  11. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, L

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, togethermore » with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.« less

  12. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    PubMed

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  13. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...

  14. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...

  15. Desalination of simulated seawater by purge-air pervaporation using an innovative fabricated membrane.

    PubMed

    Naim, Mona; Elewa, Mahmoud; El-Shafei, Ahmed; Moneer, Abeer

    2015-01-01

    An innovative polymeric membrane has been invented, which presents a breakthrough in the field of desalination membranes. It can desalinate simulated seawater of exceptionally high concentration to produce a high flux of potable water with over 99.7% salt rejection (%SR) in a once-through purge-air pervaporation (PV) process. A set-up was constructed for conducting the desalination experiments and the effect of initial salt solution concentration (Ci) and pervaporation temperature (Tpv) on the water flux (J), %SR, separation factor, and pervaporation separation index were determined. The membrane was prepared by the phase-inversion technique, of a specially formulated casting solution consisting of five ingredients, after which the membrane was subjected to a post-treatment by which certain properties were conferred. The results confirmed that the salinity of the pervaporate was independent of Ci (all %SR above 99.7). The best result was at Tpv=70 °C, where J varied from 5.97 to 3.45 l/m2 h for Ci=40-140 g NaCl/l, respectively. The membrane morphology was confirmed to be asymmetric. The contact angle was immeasurable, indicating the membrane to be super-hydrophilic. Activation energies computed using Arrhenius law were, under all conditions investigated, less than 20 kJ/mol K.

  16. 75 FR 14637 - James A. FitzPatrick Nuclear Power Plant; Environmental Assessment and Finding of No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Power Plant; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County, NY. In accordance with 10 CFR...Patrick Nuclear Power Plant Power Authority of the State of New York, Docket No. 50-333,'' dated March...

  17. 78 FR 25488 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0079] Qualification Tests for Safety-Related Actuators in... regulatory guide (DG), DG-1235, ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants...-251- 7495, email: [email protected] . Both of the Office of Nuclear Regulatory Research, U.S. Nuclear...

  18. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0293] Initial Test Programs for Water-Cooled Nuclear Power... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs...

  19. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft Report for Comment AGENCY: Nuclear Regulatory Commission... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...

  20. Fault Tree Analysis for an Inspection Robot in a Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Ferguson, Thomas A.; Lu, Lixuan

    2017-09-01

    The life extension of current nuclear reactors has led to an increasing demand on inspection and maintenance of critical reactor components that are too expensive to replace. To reduce the exposure dosage to workers, robotics have become an attractive alternative as a preventative safety tool in nuclear power plants. It is crucial to understand the reliability of these robots in order to increase the veracity and confidence of their results. This study presents the Fault Tree (FT) analysis to a coolant outlet piper snake-arm inspection robot in a nuclear power plant. Fault trees were constructed for a qualitative analysis to determine the reliability of the robot. Insight on the applicability of fault tree methods for inspection robotics in the nuclear industry is gained through this investigation.

  1. Nuclear processes associated with plant immunity and pathogen susceptibility.

    PubMed

    Motion, Graham B; Amaro, Tiago M M M; Kulagina, Natalja; Huitema, Edgar

    2015-07-01

    Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. © The Author 2015. Published by Oxford University Press.

  2. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  3. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  4. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  5. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  6. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  7. Mechanical properties of water desalination and wastewater treatment membranes

    DOE PAGES

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.; ...

    2017-07-13

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  8. Mechanical properties of water desalination and wastewater treatment membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  9. Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction.

    PubMed

    Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo

    2018-06-01

    Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

    PubMed

    Chen, Xi; Yip, Ngai Yin

    2018-02-20

    Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.

  11. Analysis of failed nuclear plant components

    NASA Astrophysics Data System (ADS)

    Diercks, D. R.

    1993-12-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.

  12. Nuclear processes associated with plant immunity and pathogen susceptibility

    PubMed Central

    Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja

    2015-01-01

    Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755

  13. 75 FR 11575 - James A. Fitzpatrick Nuclear Power Plant Environmental Assessment and Finding of No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Power Plant Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... Code of Federal Regulations (10 CFR), Appendix R, ``Fire Protection Program for Nuclear Power...), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County...

  14. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less

  15. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  16. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  17. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  18. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  19. Electricity-market price and nuclear power plant shutdown: Evidence from California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, C. K.; Ho, T.; Zarnikau, J.

    Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market pricemore » data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010-December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation.« less

  20. Vulnerability, safety and response of nuclear power plants to the hydroclimatic hazards

    NASA Astrophysics Data System (ADS)

    János Katona, Tamás; Vilimi, András

    2016-04-01

    The Great Tohoku Earthquake and Tsunami, and the severe accident at Fukushima Dai-ichi nuclear power plant 2011 alerted the nuclear industry to danger of extreme rare natural hazards. The subsequent "stress tests" performed by the nuclear industry in Europe and all over the world identifies the nuclear power plant (NPP) vulnerabilities and define the measures for increasing the plant safety. According to the international practice of nuclear safety regulations, the cumulative core damage frequency for NPPs has to be 10-5/a, and the cumulative frequency of early large release has to be 10-6/a. In case of operating plants these annual probabilities can be little higher, but the licensees are obliged to implement all reasonable practicable measures for increasing the plant safety. For achieving the required level of safety, design basis of NPPs for natural hazards has to be defined at the 10-4/a ⎯10-5/a levels of annual exceedance probability. Tornado hazard is some kind of exception, e.g., the design basis annual probability for tornado in the US is equal to 10-7/a. Design of the NPPs shall provide for an adequate margin to protect items ultimately necessary to prevent large or early radioactive releases in the event of levels of natural hazards exceeding those to be considered for design. The plant safety has to be reviewed for accounting the changes of the environmental conditions and natural hazards in case of necessity, but as minimum every ten years in the frame of periodic safety reviews. Long-term forecast of environmental conditions and hazards has to be accounted for in the design basis of the new plants. Changes in hydroclimatic variables, e.g., storms, tornadoes, river floods, flash floods, extreme temperatures, droughts affect the operability and efficiency as well as the safety the NPPs. Low flow rates and high water temperature in the rivers may force to operate at reduced power level or shutdown the plant (Cernavoda NPP, Romania, August 2009). The

  1. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  2. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  3. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  4. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  5. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  6. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...

  7. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...

  8. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...

  9. Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, C.F.

    On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iranmore » achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.« less

  10. Experiment of monitoring thermal discharge drained from nuclear plant through airborne infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Difeng; Pan, Delu; Li, Ning

    2009-07-01

    The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.

  11. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  12. A defense in depth approach for nuclear power plant accident management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chih-Yao Hsieh; Hwai-Pwu Chou

    2015-07-01

    An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identifymore » what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident

  13. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    PubMed

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  14. 76 FR 52355 - NUREG-1482, Revision 2, “Guidelines for Inservice Testing at Nuclear Power Plants, Draft Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Testing at Nuclear Power Plants, Draft Report for Comment'' AGENCY: Nuclear Regulatory Commission. ACTION... Testing at Nuclear Power Plants, Draft Report for Comment,'' and subtitled ``Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of Dynamic Restraints (Snubbers) at Nuclear Power...

  15. Spent fuel cask handling at an operating nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices atmore » all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant.« less

  16. New research discovery may mean less radioactive contamination, safer nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S.

    Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.

  17. Verifying the Performance of RTDs in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.

    2003-09-01

    This paper describes a number of techniques that have been developed for nuclear power plants to ensure that optimum steady-state and transient performance is achieved with the resistance temperature detectors (RTDs) that are used in the plant for critical temperature measurements. This includes precision laboratory calibration of RTDs, the Loop Current Step Response (LCSR) method for in-situ response time measurements, a cross calibration technique to verify the steady-state performance of RTDs as installed in the plant, and the Time Domain Reflectometry (TDR) test that is used to identify the location of a problem along RTD cables.

  18. Regulatory requirements for nuclear power plant site selection in Malaysia-a review.

    PubMed

    Basri, N A; Hashim, S; Ramli, A T; Bradley, D A; Hamzah, K

    2016-12-01

    Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.

  19. 75 FR 9620 - Southern Nuclear Operating Company, Inc.; Edwin I. Hatch Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... industry request to extend the rule's compliance date for all operating nuclear power plants, but noted... M.S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is therefore... effect. The facility consists of two boiling-water reactors located in Appling County, Georgia. 2.0...

  20. Emergency Preparedness in the 10-Mile Emergency Planning Zone Surrounding Nuclear Power Plants

    PubMed Central

    Adalja, Amesh A.; Sell, Tara Kirk; Ravi, Sanjana J.; Minton, Katie; Morhard, Ryan

    2015-01-01

    Objectives Each of the nuclear power plants in the US is encircled by an Emergency Planning Zone (EPZ). Within each EPZ, government officials, utility professionals, emergency managers, and public health practitioners collectively conduct extensive planning, exercises, and outreach to better protect their communities in the event of a nuclear accident. Our objective was to conduct a cross-sectional study of off-site public health preparedness within EPZs to better understand the dynamics of nuclear preparedness and uncover lessons for all-hazards preparedness. Methods Using a qualitative, interview-based method, we consulted 120 county emergency managers, state health preparedness officers, state radiation health officials, and industry officials from 17 EPZs in ten different states. Results Interviewees reflected that EPZ emergency preparedness is generally robust, results from strong public-private partnership between nuclear plants and emergency management agencies, and enhances all-hazard preparedness. However, there exist a few areas which merit further study and improvement. These areas include cross-state coordination, digital public communication, and optimizing the level of public education within EPZs. Conclusions This first-of-its-kind study provides a cross-sectional snapshot of emergency preparedness in the 10-mile EPZ surrounding nuclear power plants. PMID:26692825

  1. Emergency Preparedness in the 10-Mile Emergency Planning Zone Surrounding Nuclear Power Plants.

    PubMed

    Adalja, Amesh A; Sell, Tara Kirk; Ravi, Sanjana J; Minton, Katie; Morhard, Ryan

    2014-12-01

    Each of the nuclear power plants in the US is encircled by an Emergency Planning Zone (EPZ). Within each EPZ, government officials, utility professionals, emergency managers, and public health practitioners collectively conduct extensive planning, exercises, and outreach to better protect their communities in the event of a nuclear accident. Our objective was to conduct a cross-sectional study of off-site public health preparedness within EPZs to better understand the dynamics of nuclear preparedness and uncover lessons for all-hazards preparedness. Using a qualitative, interview-based method, we consulted 120 county emergency managers, state health preparedness officers, state radiation health officials, and industry officials from 17 EPZs in ten different states. Interviewees reflected that EPZ emergency preparedness is generally robust, results from strong public-private partnership between nuclear plants and emergency management agencies, and enhances all-hazard preparedness. However, there exist a few areas which merit further study and improvement. These areas include cross-state coordination, digital public communication, and optimizing the level of public education within EPZs. This first-of-its-kind study provides a cross-sectional snapshot of emergency preparedness in the 10-mile EPZ surrounding nuclear power plants.

  2. AN EARLY STAGE IN THE PLANT RECOLONIZATION OF A NUCLEAR TARGET AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickard, W.H.; Shields, L.M.

    1963-01-01

    Vegetational analyses were conducted three years postdetonation in a nuclear target area in a Grayia spinosa-Lycium andersonii community in Yucca Fiat, Nevada. Annual plants dominated the early stage of recolonization and were quantitatively more abundant in the disturbed areas than in an adjacent undisturbed shrub community. Ment zelia albicaulis and Chaenactis steviodes occurred in both disturbed and undisturbed areas, however; Mentzelia was more abundant in disturbed areas while Chaenactis was more abundant in the undisturbed community. Salsola kali was confined to disturbed areas while Phacelia vallismortae was more often encountered in the undisturbed community. The plant recolonization of a mechanicallymore » disturbed area was quantitatively and qualitatively more like that of the interior zone of the nuclear target area than less disturbed habitats. These data support a conclusion that soil displacement presents a more rigorous habitat for plant recolonization than disturbances created by the wider ranging destructive components of a nuclear detonation. (auth)« less

  3. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-06-22

    Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with internationalmore » politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R and D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.« less

  4. 78 FR 47805 - Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Documents Access and Management System (ADAMS): You may access publicly available documents online in the... Management Plans for Digital Computer Software used in Safety Systems of Nuclear Power Plants,'' issued for... Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Revision...

  5. 75 FR 76052 - Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... rule's compliance date for all operating nuclear power plants, but noted that the Commission's... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy... significant effect on the quality of the human environment (75 FR 73135, dated November 29, 2010). This...

  6. Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications

    NASA Astrophysics Data System (ADS)

    Kim, K.; Bushart, S.

    2009-12-01

    A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power

  7. 76 FR 55422 - Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...; Donald C. Cook Nuclear Plant, Unit 1; Exemption 1.0 Background Indiana Michigan Power Company (the... C. Cook Nuclear Plant, Unit 1 (CNP-1). The license provides, among other things, that the facility... material different from Optimized ZIRLO\\TM\\. The licensee's requested exemption relates solely to the...

  8. Desalination of brackish groundwater by direct contact membrane distillation.

    PubMed

    Hou, D Y; Wang, J; Qu, D; Luan, Z K; Zhao, C W; Ren, X J

    2010-01-01

    The direct contact membrane distillation (DCMD) applied for desalination of brackish groundwater with self-made polyvinylidene fluoride (PVDF) membranes was presented in the paper. The PVDF membrane exhibited high rejection of non-volatile inorganic salt solutes and a maximum permeate flux 24.5 kg m(-2) h(-1) was obtained with feed temperature at 70 degrees C. The DCMD experimental results indicated that the feed concentration had no significant influence on the permeate flux and the rejection of solute. When natural groundwater was used directly as the feed, the precipitation of CaCO(3) would be formed and clog the hollow fibre inlets with gradual concentration of the feed, which resulted in a rapid decline of the module efficiency. The negative influence of scaling could be eliminated by acidification of the feed. Finally, a 250 h DCMD continuous desalination experiment of acidified groundwater with the concentration factor at constant 4.0 was carried out. The permeate flux kept stable and the permeate conductivity was less than 7.0 microS cm(-1) during this process. Furthermore, there was no deposit observed on the membrane surface. All of these demonstrated that DCMD could be efficiently used for production of high-quality potable water from brackish groundwater with water recovery as high as 75%.

  9. 75 FR 5355 - Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... Plant Fire Modeling Application Guide (NPP FIRE MAG)'' is available electronically under ADAMS Accession...

  10. Tracing airborne particles after Japan's nuclear plant explosion

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Nakamura, Hisashi; Nakajima, Teruyuki

    2011-11-01

    The powerful Tohoku earthquake and consequent tsunami that occurred off the east coast of Japan on 11 March 2011 devastated dozens of coastal cities and towns, causing the loss of more than 15,000 lives and leaving close to 4000 people still missing. Although nuclear reactors at the Fukushima Daiichi Nuclear Power Plant, located on the Pacific coast, stopped their operation automatically upon the occurrence of the Mw 9.0 quake [Showstack, 2011], the cooling system for nuclear fuel broke down. From 12 to 16 March, vapor and hydrogen blasts destroyed the buildings that had contained the reactors, resulting in the release into the atmosphere of radioactive materials such as sulfur-35, iodine-131, cesium-134, and cesium-137, which collectively can cause harmful health effects such as tissue damage and increased risk of cancer (particularly in children), depending on dose. Most of those materials emitted from the power plant rained out onto the grounds within its vicinity and forced tens of thousands within a 20-kilometer radius to evacuate (residents to the northwest of the site within about 40 kilometers also were moved from their homes). Some of the radioactive materials were transported and then detected at such distant locations as North America and Europe, although the level of radiation dose was sufficiently low not to affect human health in any significant manner.

  11. Characterisation of Liquefaction Effects for Beyond-Design Basis Safety Assessment of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László

    2015-04-01

    Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic

  12. Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination

    NASA Astrophysics Data System (ADS)

    El-Gendi, Ayman; Abdallah, Heba; Amin, Ashraf; Amin, Shereen Kamel

    2017-10-01

    The pollution of water resources, severe climate changes, rapid population growth, increasing agricultural demands, and rapid industrialization insist the development of innovative technologies for generating potable water. Polyvinylchloride/cellulose acetate (PVC/CA) membranes were prepared using phase inversion technique for seawater reverse osmosis (SWRO). The membrane performance was investigated using Red Sea water (El-Ein El-Sokhna-Egypt). The membrane performance indicated that the prepared membranes were endowed to work under high pressure; increasing in feeding operating pressure led to increase permeate flux and rejection. Increasing feed operating pressure from zero to 40 bar led to increase in the salt rejection percent. Salt rejection percent reached to 99.99% at low feed concentration 5120 ppm and 99.95% for Red Sea water (38,528 ppm). The prepared membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, and mechanical properties. SEM, FTIR and mechanical results were used to distinguish the best membrane for desalination. According to characterization results, one prepared membrane was selected to run performance test in desalination testing unit. The membrane (M3) showed excellent performance and stability under different operating conditions and during the durability test for 36 days.

  13. Predictive aging results for cable materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.; Clough, R.L.

    1990-11-01

    In this report, we provide a detailed discussion of methodology of predicting cable degradation versus dose rate, temperature, and exposure time and its application to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicon rubber and two ethylenetetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7 to 9 years), low dose-rate results recently obtained for the same material types actually aged under nuclear power plant conditions. Based on a combination of the modelling and long-term results, we findmore » indications of reasonably similar degradation responses among several different commercial formulations for each of the following generic'' materials: hypalon, ethylenetetrafluoroethylene, silicone rubber and PVC. If such generic'' behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated. Finally, to aid utilities in their cable life extension decisions, we utilize our modelling results to generate lifetime prediction curves for the materials modelled to data. These curves plot expected material lifetime versus dose rate and temperature down to the levels of interest to nuclear power plant aging. 18 refs., 30 figs., 3 tabs.« less

  14. A Cyber Security Self-Assessment Method for Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, Clifford S.; Coles, Garill A.; Bass, Robert B.

    2004-11-01

    A cyber security self-assessment method (the Method) has been developed by Pacific Northwest National Laboratory. The development of the Method was sponsored and directed by the U.S. Nuclear Regulatory Commission. Members of the Nuclear Energy Institute Cyber Security Task Force also played a substantial role in developing the Method. The Method's structured approach guides nuclear power plants in scrutinizing their digital systems, assessing the potential consequences to the plant of a cyber exploitation, identifying vulnerabilities, estimating cyber security risks, and adopting cost-effective protective measures. The focus of the Method is on critical digital assets. A critical digital asset is amore » digital device or system that plays a role in the operation, maintenance, or proper functioning of a critical system (i.e., a plant system that can impact safety, security, or emergency preparedness). A critical digital asset may have a direct or indirect connection to a critical system. Direct connections include both wired and wireless communication pathways. Indirect connections include sneaker-net pathways by which software or data are manually transferred from one digital device to another. An indirect connection also may involve the use of instructions or data stored on a critical digital asset to make adjustments to a critical system. The cyber security self-assessment begins with the formation of an assessment team, and is followed by a six-stage process.« less

  15. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant.

  16. Tunable water desalination across Graphene Oxide Framework membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolai, Adrien; Sumpter, Bobby G; Meunier, V.

    2014-01-01

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increasesmore » when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.« less

  17. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1991. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations.« less

  18. Two-step optimization of pressure and recovery of reverse osmosis desalination process.

    PubMed

    Liang, Shuang; Liu, Cui; Song, Lianfa

    2009-05-01

    Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-step optimization procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the optimal net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the optimal recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the optimal net driving pressure and recovery. The dependences of the optimal net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed.

  19. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen-Tanugi, David; Grossman, Jeffrey C.

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeabilitymore » even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.« less

  20. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  1. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    ERIC Educational Resources Information Center

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  2. Geophysical remote sensing of water reservoirs suitable for desalinization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at amore » lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics

  3. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination.

    PubMed

    Zhang, Lulu; Xing, Jun; Wen, Xinglin; Chai, Jianwei; Wang, Shijie; Xiong, Qihua

    2017-09-14

    Passive solar evaporation represents a promising and environmentally benign method of water purification/desalination. Plasmonic nanoparticles have been demonstrated as an effective approach for enhancing solar steam generation through a plasmonic heating effect, nonetheless the efficiency is constrained by unnecessary bulk heating of the entire liquid volume, while the noble metals commonly used are not cost-effective in terms of availability and their sophisticated preparation. Herein, a paper-like plasmonic device consisting of a microporous membrane and indium nanoparticles (In NPs/MPM) is fabricated through a simple thermal evaporation method. Due to the light-weight and porous nature of the device, the broadband light absorption properties, and theoretically the excellent plasmonic heating effect from In NP which could be even higher than gold, silver and aluminium nanoparticles, our device can effectively enhance solar water evaporation by floating on the water surface and its utility has been demonstrated in the solar desalination of a real seawater sample. The durability of the device in solar seawater desalination has also been investigated over multiple cycles with stable performances. This portable device could provide a solution for individuals to do water/seawater purification in under-developed areas with limited/no access to electricity or a centralized drinking water supply.

  4. 78 FR 28245 - In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... recent public examples, including those documented in EA-12-240 and EA-12-230, and the impacts when there... and EA-12-230, and the impacts when there is a loss of integrity and trustworthiness. f. By the later...-8; EA-12-145] In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and...

  5. Neutrino Physics at Kalinin Nuclear Power Plant: 2002 - 2017

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye; Shirchenko, M.; Shitov, Yu; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2017-12-01

    The results of the research in the field of neutrino physics obtained at Kalinin nuclear power plant during 15 years are presented. The investigations were performed in two directions. The first one includes GEMMA I and GEMMA II experiments for the search of the neutrino magnetic moment, where the best result in the world on the value of the upper limit of this quantity was obtained. The second direction is tied with the measurements by a solid scintillator detector DANSS designed for remote on-line diagnostics of nuclear reactor parameters and search for short range neutrino oscillations. DANSS is now installed at the Kalinin Nuclear Power Plant under the 4-th unit on a movable platform. Measurements of the antineutrino flux demonstrated that the detector is capable to reflect the reactor thermal power with an accuracy of about 1.5% in one day. Investigations of the neutrino flux and their energy spectrum at different distances allowed to study a large fraction of a sterile neutrino parameter space indicated by recent experiments and perform the reanalysis of the reactor neutrino fluxes. Status of the short range oscillation experiment is presented together with some preliminary results based on about 170 days of active data taking during the first year of operation.

  6. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documentsmore » have also been provided to KHNP-CRI.« less

  7. 75 FR 34776 - Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... changes to the reactor, fuel, plant, structures, support structures, water, or land at the Turkey Point... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-250 and 50-251; NRC-2010-0212] Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4; Environmental Assessment and Finding of No...

  8. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-07-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues. © 2015 Wiley Periodicals, Inc.

  9. Method of installing a control room console in a nuclear power plant

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  10. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...

  11. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...

  12. Effects of drinking desalinated seawater on cell viability and proliferation.

    PubMed

    Macarrão, Camila Longhi; Bachi, André Luis Lacerda; Mariano, Mario; Abel, Lucia Jamli

    2017-06-01

    Desalination of seawater is becoming an important means to address the increasing scarcity of freshwater resources in the world. Seawater has been used as drinking water in the health, food, and medical fields and various beneficial effects have been suggested, although not confirmed. Given the presence of 63 minerals and trace elements in drinking desalinated seawater (63 DSW), we evaluated their effects on the behavior of tumorigenic and nontumorigenic cells through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and annexin-V-fluorescein isothiocyanate/propidium iodide staining. Our results showed that cell viability and proliferation in the presence of 63 DSW were significantly greater than in mineral water and in the presence of fetal bovine serum in a dose-dependent manner. Furthermore, 63 DSW showed no toxic effect on murine embryonic fibroblast (NIH-3T3) and murine melanoma (B16-F10) cells. In another assay, we also showed that pre-treatment of non-adherent THP-1 cells with 63 DSW reduces apoptosis incidence, suggesting a protective effect against cell death. We conclude that cell viability and proliferation were improved by the mineral components of 63 DSW and this effect can guide further studies on health effects associated with DSW consumption.

  13. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    PubMed Central

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  14. The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, C.

    1999-05-10

    Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less

  15. 76 FR 29279 - Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... NUCLEAR REGULATORY COMMISSION NORTHERN STATES POWER COMPANY [Docket Numbers 50-282 and 50-306; NRC-2009-0507] Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final Supplement 39 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Regarding the License Renewal of Prairie Island...

  16. Development of a smart type motor operated valve for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  17. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Sankaran; Cai, Guowei; Agarwal, Vivek

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoringmore » of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  18. The debate over re-licensing the Vermont Yankee nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Richard; Hines, Paul; Dowds, Jonathan

    2010-05-15

    In 2009, the NRC's Atomic Safety and Licensing Board approved a 20-year license extension for the Vermont Yankee Nuclear Power plant. Less than seven months later, the Vermont State Senate voted 26-4 to block the required certificate for public good. How did a plant seen as likely to be re-licensed become the first in 20 years to be rejected in a public vote? (author)

  19. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies

    PubMed Central

    Vane, Leland M.

    2017-01-01

    BACKGROUND When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. RESULTS This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. CONCLUSION Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used. PMID:29225395

  20. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    PubMed

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  1. LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Dr Leonard S; Duckworth, Robert C; Glass III, Dr. Samuel W.

    Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal is both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions.more » The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long-term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme

  2. Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell

    NASA Astrophysics Data System (ADS)

    Mirzaienia, Fariba; Asadipour, Ali; Jafari, Ahmad Jonidi; Malakootian, Mohammad

    2017-11-01

    Microbial desalination cell (MDC) is a new method of desalination. Its energy is supplied through microbial metabolism of organic materials. In this study, synthetic samples were provided with concentration of 25, 50, 75, 100 mg/L Ni and Pb. Removal efficiency of each metal was analyzed after 60, 90, 120 min, psychrophilic, mesophilic, thermophilic and 3-4, 4-5, 5-6 mg/L dissolved oxygen. Optimum conditions for removing Ni and Pb were achieved in 100, 4.5 and 4.6 mg/L dissolved oxygen, respectively, 26 °C and 120 min. Nickel and led were removed from wastewaters of Isfahan electroplating industry and steel company. The maximum removal efficiencies of Ni and Pb in real samples were 68.81 and 70.04%. MDC can be considered as a good choice for removing Ni and Pb from industrial wastewater. Due to microorganisms for decomposing organic material in municipal wastewater, metals from industrial wastewater can be removed simultaneously.

  3. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    PubMed Central

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504

  4. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water.

    PubMed

    Yuan, Lulu; Yang, Xufei; Liang, Peng; Wang, Lei; Huang, Zheng-Hong; Wei, Jincheng; Huang, Xia

    2012-04-01

    A new technology (CDI-MFC) that combined capacitive deionization (CDI) and microbial fuel cell (MFC) was developed to treat low-concentration salt water with NaCl concentration of 60mg/L. The water desalination rate was 35.6mg/(Lh), meanwhile the charge efficiency was 21.8%. Two desorption modes were investigated: discharging (DC) mode and short circuit (SC) mode. The desalination rate in the DC mode was 200.6±3.1mg/(Lh), 47.8% higher than that in the SC mode [135.7±15.3mg/(Lh)]. The average current in the DC mode was also much higher than that of the SC mode. The energy stored in the CDI cell has been reused to enhance the electron production of MFC by the discharging desorption mode (DC mode), which offers an approach to recover the electrostatic energy in the CDI cell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. 76 FR 73720 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0272] Knowledge and Abilities Catalog for Nuclear Power...) is issuing for public comment a draft NUREG, NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized-Water Reactors. DATES: Submit...

  6. Computer program for afterheat temperature distribution for mobile nuclear power plant

    NASA Technical Reports Server (NTRS)

    Parker, W. G.; Vanbibber, L. E.

    1972-01-01

    ESATA computer program was developed to analyze thermal safety aspects of post-impacted mobile nuclear power plants. Program is written in FORTRAN 4 and designed for IBM 7094/7044 direct coupled system.

  7. 75 FR 3762 - Tennessee Valley Authority; Sequoyah Nuclear Plant, Units 1 and 2; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... Authority; Sequoyah Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant... licensee), for operation of the Sequoyah Nuclear Plant, Units 1 and 2 (SQN), located in Hamilton County... Reference staff by telephone at 1-800-397-4209 or 301-415-4737, or send an e-mail to [email protected

  8. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  9. Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresco, A.; Subudhi, M.; Gunther, W.

    1993-12-01

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance,more » Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.« less

  10. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  11. Desalination of Ground Water Minerals (Case Study: Kashan Desert in Iran)

    NASA Astrophysics Data System (ADS)

    Mahani, S. E.; Esmaeli Mahani, M.; Siavoshi, F.; Jafari, M.

    2009-12-01

    The present study focuses on testing quality and desalination of minerals from ground water that is used as the only source of water supply particularly for drinking in the Kashan Desert in Iran. About 14.2 cubic meter water/year from 59 wells, with the average depth of 120 meter, are used for drinking and personal usage in the selected study area. To test the quality of ground water, in general, salinity of minerals such as: chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), as well as PH, Total Dissolved Solids (TDS), Electric Conductivity (EC), and Temperature (T) are measured. EC and TDS in the deserts and arid areas are usually very high because of lack of rainfall, higher temperature, and high rate of evaporation. If the TDS is greater than 1000 mg/l, ground water needs to be desalinated. The TDS of ground water samples in Kashan Desert is greater than 2500 mg/l, which is higher than international World Health Organization (WHO) and Environmental Protection Agency (EPA) standard values. Conventional treatment can not be the only solution for making Kashan Desert ground water that much pure that can be used as fresh water for drinking because EC, Mg, Na, Cl, and SO4 are also higher than standard values. Various techniques such as: Ion Exchange (IX), Microfiltration (MF), Ultra Filtration (UF), Nano Filtration (NF), Electro Dialysis (ED), and Reserve Osmosis (RO) are examined to desalinate above mentioned minerals. Based on molecular weight and diameter of chemical particles which should be removed, in addition to experiences of operational groups in Iran, the RO technique has been selected as the best methodology. The results show that the RO technique could improve the quality of Kashan Desert ground water by comparison with the standard fresh water up to 95% to 99%.

  12. Consequences of the nuclear power plant accident at Chernobyl.

    PubMed Central

    Ginzburg, H M; Reis, E

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion. Images p38-a p38-b PMID:1899937

  13. Twenty-five years of environmental radionuclide concentrations near a nuclear power plant.

    PubMed

    Harris, Charles; Kreeger, Danielle; Patrick, Ruth; Palms, John

    2015-05-01

    The areas in and along a 262-km length of the Susquehanna River in Pennsylvania were monitored for the presence of radioactive materials. This study began two months after the 1979 Three Mile Island (TMI) partial reactor meltdown; it spanned the next 25 y. Monitoring points included stations at the PPL Susquehanna and TMI nuclear power plants. Monthly gamma measurements document concentrations of radionuclides from natural and anthropogenic sources. During this study, various series of gamma-emitting radionuclide concentration measurements were made in many general categories of animals, plants, and other inorganic matter. Sampling began in 1979 before the first start-up of the PPL Susquehanna power plant. Although all species were not continuously monitored for the entire period, an extensive database was compiled. In 1986, the ongoing measurements detected fallout from the Chernobyl nuclear accident. These data may be used in support of dose or environmental transport calculations.

  14. Lesser scaup forage on zebra mussels at Cook nuclear plant, Michigan

    USGS Publications Warehouse

    Mitchell, C.A.; Carlson, J.

    1993-01-01

    Nineteen of 21 Lesser Scaup (Aythya affinis) entrained while foraging at the water intake structures of Cook Nuclear Plant, Bridgman, Michigan had consumed zebra mussels (Dreissena polymorpha). The average number of zebra mussels in the upper gastrointestinal tract was 260; maximum number was 987. Migrating Lesser Scaup found this new food source during the first winter following settlement of zebra mussels on the water intake structures of the power plant.

  15. Federal securities law and the need to disclose the risk of canceling nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponseller, D.

    1984-11-08

    Almost every electric utility company involved in nuclear plant construction has experienced difficulty as a result of the deteriorating condition of the nuclear industry as a whole. The thrust of a growing number of lawsuits brought against electric companies for alleged violations of federal securities laws is that the companies failed to reveal cost overruns, delays, and the risk of cancellation and write-off of nuclear plants in their annual reports and registration statements. A review of several suits and the disclosure requirements of securities statutes concludes that, although investors have known about utility problems, they have just become aware thismore » year that the entire financial viability of the electric companies is threatened.« less

  16. The nuclear disaster management system in Taiwan: a case study of the third (Maanshan) nuclear power plant.

    PubMed

    Yang, Yung-Nane

    2016-07-01

    This paper explores the effectiveness of the nuclear disaster management system in Taiwan via a review of the third (Maanshan) nuclear power plant. In doing so, the Fukushima Daiichi nuclear disaster in Japan on 11 March 2011 is reviewed and compared with the situation in Taiwan. The latter's nuclear disaster management system is examined with respect to three key variables: information; mobilisation; and inter-organisational cooperation. In-depth interviews with 10 policy stakeholders with different backgrounds serve as the research method. The results point up the need for improvement in all dimensions. In addition, they highlight three principal problems with the nuclear disaster management system: (i) it might not be possible to provide first-hand nuclear disaster information immediately to the communities surrounding the Maanshan facility in Pingtung County, southern Taiwan; (ii) the availability of medical resources for treating radiation in Hengchun Township is limited; and (iii) the inter-organisational relationships for addressing nuclear disasters need to be strengthened. Hence, cooperation among related organisations is necessary. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  17. Turbomachinery design considerations for the nuclear HTGR-GT power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, C.F.; Smith, M.J.

    1979-11-01

    For several years, design studies have been under way in the USA on a nuclear closed-cycle gas turbine plant (HTGR-GT). Design aspects of the helium turbomachine portion of these studies are presented. Gas dynamic and mechanical design considerations are presented for helium turbomachines in the 400-MW(e) (non-intercooled) and 600-MW(e) (intercooled) power range. Design of the turbomachine is a key element in the overall power plant program effort, which is currently directed toward the selection of a reference HTGR-GT commercial plant configuration for the US utility market. A conservative design approach has been emphasized to provide maximum safety and durability. Themore » studies presented for the integrated plant concept outline the necessary close working relationship between the reactor primary system and turbomachine designers.« less

  18. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    NASA Astrophysics Data System (ADS)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  19. 76 FR 39445 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ..., combined-cycle plant; a combination of natural gas, wind, and wood-fired generation and conservation; a... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-282 and 50-306; NRC-2009-0507] Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of Renewed...

  20. Situation awareness and trust in computer-based procedures in nuclear power plant operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Throneburg, E. B.; Jones, J. M.

    2006-07-01

    Situation awareness and trust are two issues that need to be addressed in the design of computer-based procedures for nuclear power plants. Situation awareness, in relation to computer-based procedures, concerns the operators' knowledge of the plant's state while following the procedures. Trust concerns the amount of faith that the operators put into the automated procedures, which can affect situation awareness. This paper first discusses the advantages and disadvantages of computer-based procedures. It then discusses the known aspects of situation awareness and trust as applied to computer-based procedures in nuclear power plants. An outline of a proposed experiment is then presentedmore » that includes methods of measuring situation awareness and trust so that these aspects can be analyzed for further study. (authors)« less

  1. Cows, Sirens, Iodine, and Public Education about the Risks of Nuclear Power Plants.

    ERIC Educational Resources Information Center

    Rosener, Judy B.; Russell, Sallie C.

    1987-01-01

    Discusses some of the activities of the California Task Force on Nuclear Emergency Response. Raises some issues that some feel should be addressed in the task force's report to the state legislature. Points out the need for further involvement by citizens and scientists in dealing with nuclear power plant safety. (TW)

  2. Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Timothy A.; Denman, Matthew R.; Williams, R. A.

    Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities.more » iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.« less

  3. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Lightmore » Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.« less

  4. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  5. 78 FR 53774 - Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...] Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10, Rev. 1... the Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10... Agency (FEMA) issued FEMA-REP-10, Guide for the Evaluation of Alert and Notification Systems for Nuclear...

  6. The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China

    NASA Astrophysics Data System (ADS)

    Weng, Yuqing

    Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.

  7. Experience gained from engineering, construction, and maintenance of nuclear power plants in the Federal Republic of Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, G.; Huempfner, P.

    From the very beginning of nuclear power engineering in the Federal Republic of Germany (FRG), the main objective was to achieve a high degree of reliability for all safety systems, the nuclear steam supply systems, and the balance of plant. Major measures of a general nature included the following: (1) provision of the same redundancy for all parts of systems related to safety or availability; (2) introduction of appropriate quality assurance programs for design, development, manufacture, erection, testing, operation, and maintenance; and (3) optimization of design, not with the aim of reducing plant costs but in order to improve operationmore » and safety. A few examples are provided of improvements that Kraftwerk Union AG, as a supplier of turnkey nuclear power plants, has incorporated in its plants over the past years.« less

  8. Aging management guideline for commercial nuclear power plants - heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, S.; Lehnert, D.; Daavettila, N.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activitiesmore » to the more generic results and recommendations presented herein.« less

  9. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant... that the applicant wishes to have the application considered under 10 CFR part 52, appendix N, and must...

  10. Calculation of energetic characteristics of C-14 emitted from Beloyarsk nuclear power plant plume with fast neutron reactor

    NASA Astrophysics Data System (ADS)

    Kolotkov, Gennady A.; Penin, Sergei

    2017-11-01

    The paper examines an update of comparative analysis of radionuclides released into the atmosphere from Beloyarsk nuclear power plant with fast-neutron reactor for nine years in a row, from 2008 to 2016. It has been shown that the main radionuclides throw out into the atmosphere from Beloyarsk nuclear power plant are beta-active radionuclides. Based on data releases of the RPA "Typhoon", it has been conclude that radiation situation become worse insignificantly; beside on the new reactor BN-800 was put in operation in 2016. Using Spencer-Fano's equation, it was carried out the summary spectrum of emitted radionuclides. On example of Beloyarsk nuclear power plant, it was considered a question about ability of remote detection of raised radioactivity in the atmospheric radioactive plume. It has been shown that it possible to detect raised radioactivity in the emission plume from Beloyarsk nuclear power plant.

  11. Deionization and desalination using electrostatic ion pumping

    DOEpatents

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O& #x27; Brien, Kevin C.; Cussler, Edward

    2013-06-11

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  12. Deionization and desalination using electrostatic ion pumping

    DOEpatents

    Bourcier, William L [Livermore, CA; Aines, Roger D [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Schaldach, Charlene M [Pleasanton, CA; O'Brien, Kevin C [San Ramon, CA; Cussler, Edward [Edina, MN

    2011-07-19

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  13. Review of Knowledge on the Occurrence, Chemical Composition, and Potential Use for Desalination of Saline Ground Water in Arizona, New Mexico, and Texas with a Discussion of Potential Future Study Needs

    DTIC Science & Technology

    2004-01-01

    Parsons Company and Texas Water Development Board, 1967; Schultz and others, 1967; Morris and Prehn , 1971; and Stucky and Arnwine, 1971). Desalination is...Inland desalination operations commonly dispose of concentrate using evaporation ponds (Morris and Prehn , 1971; Stucky and Arnwine, 1971) or deep-well...New Mexico, 1976). The potential contribution of desalination to water supply in New Mexico has been discussed by Morris and Prehn (1971) and Stucky

  14. Devices and methods for managing noncombustible gasses in nuclear power plants

    DOEpatents

    Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

    2014-12-23

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  15. Devices and methods for managing noncondensable gasses in nuclear power plants

    DOEpatents

    Marquino, Wayne; Moen, Stephan C.; Wachowiak, Richard M.; Gels, John L.; Diaz-Quiroz, Jesus; Burns, Jr., John C.

    2016-11-15

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  16. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  17. 26 CFR 1.468A-6 - Disposition of an interest in a nuclear power plant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Disposition of an interest in a nuclear power...-6 Disposition of an interest in a nuclear power plant. (a) In general. This section describes the Federal income tax consequences of a transfer of the assets of a nuclear decommissioning fund (Fund...

  18. 26 CFR 1.468A-6 - Disposition of an interest in a nuclear power plant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Disposition of an interest in a nuclear power...-6 Disposition of an interest in a nuclear power plant. (a) In general. This section describes the Federal income tax consequences of a transfer of the assets of a nuclear decommissioning fund (Fund...

  19. 26 CFR 1.468A-6 - Disposition of an interest in a nuclear power plant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Disposition of an interest in a nuclear power...-6 Disposition of an interest in a nuclear power plant. (a) In general. This section describes the Federal income tax consequences of a transfer of the assets of a nuclear decommissioning fund (Fund...

  20. Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold.

    PubMed

    Lee, Jongho; Boo, Chanhee; Ryu, Won-Hee; Taylor, André D; Elimelech, Menachem

    2016-05-04

    In this study, we present a facile and scalable approach to fabricate omniphobic nanofiber membranes by constructing multilevel re-entrant structures with low surface energy. We first prepared positively charged nanofiber mats by electrospinning a blend polymer-surfactant solution of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and cationic surfactant (benzyltriethylammonium). Negatively charged silica nanoparticles (SiNPs) were grafted on the positively charged electrospun nanofibers via dip-coating to achieve multilevel re-entrant structures. Grafted SiNPs were then coated with fluoroalkylsilane to lower the surface energy of the membrane. The fabricated membrane showed excellent omniphobicity, as demonstrated by its wetting resistance to various low surface tension liquids, including ethanol with a surface tension of 22.1 mN/m. As a promising application, the prepared omniphobic membrane was tested in direct contact membrane distillation to extract water from highly saline feed solutions containing low surface tension substances, mimicking emerging industrial wastewaters (e.g., from shale gas production). While a control hydrophobic PVDF-HFP nanofiber membrane failed in the desalination/separation process due to low wetting resistance, our fabricated omniphobic membrane exhibited a stable desalination performance for 8 h of operation, successfully demonstrating clean water production from the low surface tension feedwater.

  1. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    PubMed

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...

  3. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    ERIC Educational Resources Information Center

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  4. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-04-01

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  5. Lessons Learned in Protection of the Public for the Accident at the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Callen, Jessica; Homma, Toshimitsu

    2017-06-01

    What insights can the accident at the Fukushima Daiichi nuclear power plant provide in the reality of decision making on actions to protect the public during a severe reactor and spent fuel pool emergency? In order to answer this question, and with the goal of limiting the consequences of any future emergencies at a nuclear power plant due to severe conditions, this paper presents the main actions taken in response to the emergency in the form of a timeline. The focus of this paper is those insights concerning the progression of an accident due to severe conditions at a light water reactor nuclear power plant that must be understood in order to protect the public.

  6. Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species

    PubMed Central

    Loureiro, João; Rodriguez, Eleazar; Doležel, Jaroslav; Santos, Conceição

    2007-01-01

    Background and Aims After the initial boom in the application of flow cytometry in plant sciences in the late 1980s and early 1990s, which was accompanied by development of many nuclear isolation buffers, only a few efforts were made to develop new buffer formulas. In this work, recent data on the performance of nuclear isolation buffers are utilized in order to develop new buffers, general purpose buffer (GPB) and woody plant buffer (WPB), for plant DNA flow cytometry. Methods GPB and WPB were used to prepare samples for flow cytometric analysis of nuclear DNA content in a set of 37 plant species that included herbaceous and woody taxa with leaf tissues differing in structure and chemical composition. The following parameters of isolated nuclei were assessed: forward and side light scatter, propidium iodide fluorescence, coefficient of variation of DNA peaks, quantity of debris background, and the number of particles released from sample tissue. The nuclear genome size of 30 selected species was also estimated using the buffer that performed better for a given species. Key Results In unproblematic species, the use of both buffers resulted in high quality samples. The analysis of samples obtained with GPB usually resulted in histograms of DNA content with higher or similar resolution than those prepared with the WPB. In more recalcitrant tissues, such as those from woody plants, WPB performed better and GPB failed to provide acceptable results in some cases. Improved resolution of DNA content histograms in comparison with previously published buffers was achieved in most of the species analysed. Conclusions WPB is a reliable buffer which is also suitable for the analysis of problematic tissues/species. Although GPB failed with some plant species, it provided high-quality DNA histograms in species from which nuclear suspensions are easy to prepare. The results indicate that even with a broad range of species, either GPB or WPB is suitable for preparation of high

  7. Tracing nuclear elements released by Fukushima Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Onda, Y.; Abe, Y.; Hada, M.; Pun, I.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring regions due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami occurred on 11th March 2011. The small experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima Prefecture, located approximately 35 km west from the Fukushima NPP. The tritium (3H) concentration and stable isotopic compositions of deuterium and oxygen-18 have been determined on the water samples of precipitation, soil water at the depths of 10 to 30 cm, groundwater at the depths of 5 m to 50 m, spring water and stream water taken at the watersheds in the recharge and discharge zones from the view point of the groundwater flow system. The tritium concentration of the rain water fell just a few days after the earthquake showed a value of approximately 17 Tritium Unit (T.U.), whereas the average concentration of the tritium in the precipitation was less than 5 T.U. before the Fukushima accident. The spring water in the recharge zone showed a relatively high tritium concentration of approximately 12 T.U., whereas that of the discharge zone showed less than 5 T.U. Thus, the artificial tritium was apparently injected in the groundwater flow system due to the Fukushima NPP accident, whereas that has not reached at the discharge zone yet. The monitoring of the nuclear elements is now on going from the view points of the hydrological cycles and the drinking water security.

  8. Design of stand-alone brackish water desalination wind energy system for Jordan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habali, S.M.; Saleh, I.A.

    1994-06-01

    More than 100 underground water wells drilled in Jordan are known to have brackish water with total desolved solids (TDS) over 1500 ppm but not greater than 4000 ppm. The world standard for potable water limits the TDS count to 500 ppm in addition to being free from live microorganisms or dangerous mineral and organic substances. A reverse osmosis desalination scheme powered by a stand-alone wind energy converter (WEC) is proposed to produce fresh water water from wells located in potentially high-wind sites. The purpose of this study if to present the main design parameters and economic estimates of amore » wind-assisted RO system using a diesel engine as the baseline energy source and an electric wind turbine for the wind energy source. It is found that brackish water pumping and desalinating using WECs costs 0.67 to 1.16 JD/m[sup 3] (JD = Jordanian Dinar, 1US$ = 0.68 JD), which is less than using conventional diesel engines especially in remote areas. In addition, the wind-reverse osmosis system becomes more economically feasible for higher annual production rates or in good wind regimes.« less

  9. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers.

    PubMed

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-20

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

  10. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    PubMed

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  11. 75 FR 11578 - Northern States Power Company of Minnesota, Monticello Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... generically extend the rule's compliance date for all operating nuclear power plants, but noted that the..., Nuclear Energy Institute). The licensee's request for an exemption is, therefore, consistent with the... Commission (NRC, the Commission) now or hereafter in effect. The facility consists of a General Electric...

  12. The effect of leader communication style on safety-conscious work environments at domestic nuclear power plants

    NASA Astrophysics Data System (ADS)

    Goldberg, Edward Michael

    Public risk from unsafe nuclear power plant operations increases when plant workers are reluctant to raise issues and concerns. The effect of leader communication style on the safety-conscious work environment (SCWE) at domestic nuclear power plants was evaluated using a descriptive quantitative research study. A sample of 379 plant employees was surveyed to determine leader communication style elements that foster SCWE. The results reveal that leader communication style significantly affects a safety-conscious work environment. Specific attributes such as wit, articulation, self-disclosure, and social composure, confirmation, and experience, were proven to directly affect worker's likelihood to raise issues and concerns. The direct effect of leader, communication style on safe plant operations and the communication actions leaders can take to improve the safety of those operations is discussed.

  13. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    ERIC Educational Resources Information Center

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  14. Inspection of Nuclear Power Plant Containment Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discoveredmore » at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.« less

  15. Comparative Developmental Toxicity of Desalination Brine and Sulfate-Dominated Saltwater in a Euryhaline Fish.

    PubMed

    Kupsco, Allison; Sikder, Rafid; Schlenk, Daniel

    2017-02-01

    Desalination is a promising sustainable solution to meet growing water needs of cities across the United States. However, the environmental impacts of the resulting filtrate (brine) discharged to surface water need to be evaluated before large-scale desalination can be successful in the United States. Developing fish are especially sensitive to changes in salinity and varying ionic composition. Limited research is available on the impacts of hypersalinity on chronic vertebrate embryonic development, particularly on sublethal effects. To investigate this, Japanese medaka (Oryzias latipes) embryos were treated with: (1) graphite filtered freshwater; (2) artificial seawater [17, 35, 42, 56, and 70 parts per thousand (ppt)]; (3) effluent from a desalination facility at Monterey Bay Aquarium, CA, diluted to 75, 50, and 25% with 35 ppt artificial seawater to simulate mixing (39, 42, 46, and 50 ppt); (4) artificial San Joaquin River water (CA, USA) (9, 13, and 17 ppt); and (5) artificial San Joaquin River water diluted to 75, 50, and 25% with artificial seawater to simulate estuarine mixing in the San Francisco Bay (13, 19, 24, and 30 ppt). Percent hatch, survival post hatch, deformities, swim bladder inflation, and median day to hatch were recorded to calculate EC 50 (50% effect concentration) and NOEC (no observable effect concentration) values. No significant difference was observed between artificial seawater and Monterey Bay aquarium effluent (EC 50  = 45-55 ppt). However, San Joaquin River water decreased survival post hatch and increased deformities in comparison to artificial seawater and San Joaquin River water mixed with seawater, suggesting that unique ion compositions may play a role in embryo and larval toxicity.

  16. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.

    PubMed

    Raju, Muralikrishna; Govindaraju, Pavan B; van Duin, Adri C T; Ihme, Matthias

    2018-02-22

    Recent theoretical and experimental studies reported ultra-high water permeability and salt rejection in nanoporous single-layer graphene. However, creating and controlling the size and distribution of nanometer-scale pores pose significant challenges to application of these membranes for water desalination. Graphyne and hydrogenated graphyne have tremendous potential as ultra-permeable membranes for desalination and wastewater reclamation due to their uniform pore-distribution, atomic thickness and mechano-chemical stability. Using molecular dynamics (MD) simulations and upscale continuum analysis, the desalination performance of bare and hydrogenated α-graphyne and γ-{2,3,4}-graphyne membranes is evaluated as a function of pore size, pore geometry, chemical functionalization and applied pressure. MD simulations show that pores ranging from 20 to 50 Å 2 reject in excess of 90% of the ions for pressures up to 1 GPa. Water permeability is found to range up to 85 L cm -2 day -1 MPa -1 , which is up to three orders of magnitude larger than commercial seawater reverse osmosis (RO) membranes and up to ten times that of nanoporous graphene. Pore chemistry, functionalization and geometry are shown to play a critical role in modulating the water flux, and these observations are explained by water velocity, density, and energy barriers in the pores. The atomistic scale investigations are complemented by upscale continuum analysis to examine the performance of these membranes in application to cross-flow RO systems. This upscale analysis, however, shows that the significant increase in permeability, observed from MD simulations, does not fully translate to current RO systems due to transport limitations. Nevertheless, upscale calculations predict that the higher permeability of graphyne membranes would allow up to six times higher permeate recovery or up to 6% less energy consumption as compared to thin-film composite membranes at currently accessible operating conditions

  17. Health effects of desalinated water: Role of electrolyte disturbance in cancer development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nriagu, Jerome, E-mail: jnriagu@umich.edu

    This review contends that “healthy” water in terms of electrolyte balance is as important as “pure” water in promoting public health. It considers the growing use of desalination (demineralization) technologies in drinking water treatment which often results in tap water with very low concentrations of sodium, potassium, magnesium and calcium. Ingestion of such water can lead to electrolyte abnormalities marked by hyponatremia, hypokalemia, hypomagnesemia and hypocalcemia which are among the most common and recognizable features in cancer patients. The causal relationships between exposure to demineralized water and malignancies are poorly understood. This review highlights some of the epidemiological and inmore » vivo evidence that link dysregulated electrolyte metabolism with carcinogenesis and the development of cancer hallmarks. It discusses how ingestion of demineralized water can have a procarcinogenic effect through mediating some of the critical pathways and processes in the cancer microenvironment such as angiogenesis, genomic instability, resistance to programmed cell death, sustained proliferative signaling, cell immortalization and tumorigenic inflammation. Evidence that hypoosmotic stress-response processes can upregulate a number of potential oncogenes is well supported by a number studies. In view of the rising production and consumption of demineralized water in most parts of the world, there is a strong need for further research on the biological importance and protean roles of electrolyte abnormalities in promoting, antagonizing or otherwise enabling the development of cancer. The countries of the Gulf Cooperative Council (GCC) where most people consume desalinated water would be a logical place to start this research. - Highlights: • Ingestion of low-mineral waters disrupts electrolyte homeostasis and cellular processes. • Electrolyte imbalance can affect the tumor microenvironment and many stages of tumorigenesis. • Electrolyte

  18. Massive arrival of desalinated seawater in a regional urban water cycle: A multi-isotope study (B, S, O, H).

    PubMed

    Kloppmann, W; Negev, Ido; Guttman, Joseph; Goren, Orly; Gavrieli, Ittai; Guerrot, Catherine; Flehoc, Christine; Pettenati, Marie; Burg, Avihu

    2018-04-01

    "Man-made" or unconventional freshwater, like desalinated seawater or reclaimed effluents, is increasingly introduced into regional water cycles in arid or semi-arid countries. We show that the breakthrough of reverse osmosis-derived freshwater in the largely engineered water cycle of the greater Tel Aviv region (Dan Region) has profoundly changed previous isotope fingerprints. This new component can be traced throughout the system, from the drinking water supply, through sewage, treated effluents, and artificially recharged groundwater at the largest Soil-Aquifer Treatment system in the Middle East (Shafdan) collecting all the Dan region sewage. The arrival of the new water type (desalinated seawater) in 2007 and its predominance since 2010 constitutes an unplanned, large-scale, long-term tracer test and the monitoring of the breakthrough of desalination-specific fingerprints in the aquifer system of Shafdan allowed to get new insights on the water and solute flow and behavior in engineered groundwater systems. Our approach provides an investigation tool for the urban water cycle, allowing estimating the contribution of diverse freshwater sources, and an environmental tracing method for better constraining the long-term behavior and confinement of aquifer systems with managed recharge. Copyright © 2017. Published by Elsevier B.V.

  19. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells.

    PubMed

    Quentin, Michaëel; Abad, Pierre; Favery, Bruno

    2013-01-01

    Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.

  20. 78 FR 16302 - Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-302; NRC-2011-0301] Crystal River Unit 3 Nuclear... the Crystal River Unit 3 Nuclear Generating Plant (CR-3), located in Florida, Citrus County. The... notice (if that document is available in ADAMS) is provided the first time that a document is referenced...