Science.gov

Sample records for nuclear desalination utilizing

  1. Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants

    SciTech Connect

    Faibish, R.S.; Konishi, T.; Gasparini, M.

    2002-07-01

    Nuclear energy is playing an important role in electricity generation, producing 16% of the world's electricity. However, most of the world's energy consumption is in the form of heat, in which case nuclear energy could also play an important role. In particular, process heat for seawater desalination using nuclear energy has been of growing interest to some Member States of the International Atomic Energy Agency over the past two decades. This growing interest stems from increasingly acute freshwater shortages in many arid and semi-arid zones around the world. Indeed, several national and international nuclear desalination demonstration programs are already under way or being planned. Of particular interest are projects for seawater nuclear desalination plants in coastal regions, where saline feed water can serve the dual purpose of cooling water for the nuclear reactor and as feed water for the desalination plant. In principle any nuclear reactor can provide energy (low-grade heat and/or electricity), as required by desalination processes. However, there are some additional requirements to be met under specific conditions in order to introduce nuclear desalination. Technical issues include meeting more stringent safety requirements (nuclear reactors themselves and nuclear-desalination integrated complexes in particular), and performance improvement of the integrated systems. Economic competitiveness is another important factor to be considered for a broader deployment of nuclear desalination. For technical robustness and economic competitiveness a number of design variants of coupling configurations of nuclear desalination integrated plant concepts are being evaluated. This paper identifies and discusses various factors, which support the attractiveness of nuclear desalination. It further summarizes some of the key approaches recommended for nuclear desalination complex design and gives an overview of various design concepts of nuclear desalination plants, which

  2. Economic Considerations of Nuclear Desalination in Korea

    SciTech Connect

    Man-Ki, Lee; Seung-Su, Kim

    2006-07-01

    The objective of this study is to assess the economics of SMART (System-integrated Modular Advanced Reactor) desalination plant in Korea through DEEP (Devaluation Economic Evaluation Program). SMART is mainly designed for the dual purpose of producing water and electricity with the total capacity of 100 MWe which 10 MWe is used for water production and the remains for the electric generation. SMART desalination plant using MED (Multi-Effect Distillation) process is in the stage of the commercial development and its cost information is also being accumulated. In this circumstances, the economic assessment of nuclear desalination by SMART and the effect of water(or electric) supply price to the regional economy is meaningful to the policy maker. This study is focused on the case study analysis about the economics of SMART desalination plant and the meanings of the case study result. This study is composed of two parts. One is prepared to survey the methodology regarding cost allocation between electricity and water in DEEP and the other is for the economic assessment of SMART. The cost allocation methods that have been proposed or used can be classified into two main groups, one is the cost prorating method and the other is the credit method. The cost of an product item in the dual-purpose plant can be determined differently depending on the costing methods adopted. When it comes to applying credit method adopted in this thesis, the production cost of water depends on what kind of the power cost will be chosen in calculating the power credit. This study also analyses the changes of nuclear desalination economics according to the changes of the important factors such as fossil fuel price. I wish that this study can afford to give an insight to the policy maker about SMART desalination plant. (authors)

  3. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  4. Desalination

    EPA Science Inventory

    To cope with the rising demand for fresh water, desalination of brackish groundwater and seawater is increasingly being viewed as a pragmatic option for augmenting fresh water supplies. The large scale deployment of desalination is likely to demonstrably increase electricity use,...

  5. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy; Greathouse, Jeffery A.; Majzoub, Eric H.

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  6. An Advanced Reverse Osmosis Technology For Application in Nuclear Desalination Facilities

    SciTech Connect

    Humphries, J.R.; Davies, K.; Ackert, J.A.

    2002-07-01

    The lack of adequate supplies of clean, safe water is a growing global problem that has reached crisis proportions in many parts of the world. It is estimated that 1.5 billion people do not have access to adequate supplies of safe water, and that as a result nearly 10,000 people die every day and thousands more suffer from a range of debilitating illnesses due to water related diseases. Included in this total is an estimated 2.2 million child deaths annually. As the world's need for additional sources of fresh water continues to grow, seawater and brackish water desalination are providing an increasingly important contribution to the solution of this problem. Because desalination is an energy intensive process, nuclear desalination provides an economically attractive and environmentally sound alternative to the burning of fossil fuels for desalination. Nevertheless, the enormity of the problem dictates that additional steps must be taken to improve the efficiency of energy utilization and reduce the cost of water production in order to reduce the financial and environmental burden to communities in need. An advanced reverse osmosis (RO) desalination technology has been developed that emphasizes a nontraditional approach to system design and operation, and makes use of a sophisticated design optimization process that can lead to highly optimized design configurations and operating regimes. The technology can be coupled with a nuclear generating station (NGS) to provide an integrated facility for the co-generation of both water and electricity. Waste heat from the NGS allows the use of 'preheated' feedwater into the RO system, improving the efficiency of the RO process and reducing the cost of water production. Because waste heat, rather than process heat, is used the desalination system can be readily coupled to any existing or advanced reactor technology with little or no impact on reactor design and operation and without introducing additional reactor safety

  7. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. PMID:21262520

  8. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    PubMed

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. PMID:22682269

  9. Safety Aspects of Nuclear Desalination with Innovative Systems; the EURODESAL Project

    SciTech Connect

    Alessandroni, C.; Cinotti, L.; Mini, G.; Nisan, S.

    2002-07-01

    The proposed paper reports the results of a preliminary investigation on safety impact deriving from the coupling of a desalination plant with a 600 MWe Passive Design PWR like the AP600 Nuclear Power Plant. This evaluation was performed in the frame of the EURODESAL Project of the 5. EURATOM Framework Programme. (authors)

  10. Economic Evaluation of Nuclear Reactor Coupling with Seawater Desalination Facility

    SciTech Connect

    Danrong Song; Tong Liu; Hua Zhao

    2006-07-01

    Nowadays only 1/2000 of overall fresh water resource can be used in the world, 1.1 billion people in the world are short of safety drinkable water, so the supply of freshwater is one of the major problems facing to the world in 21. century. China is one of the thirteen water-poorest countries and fresh water has become a choke point of the economic development in those water-poor regions. The desalination of sea water is a very important way to find new fresh water resource and sea water is inexhaustible. (authors)

  11. Initial cost analysis of a desalination process utilizing hydrotalcite and permutite for ion sequestration.

    SciTech Connect

    Miller, James Edward; Evans, Lindsey R.

    2004-12-01

    An initial cost analysis of a proposed desalination process was performed. The proposed process utilizes tailored inorganic ion exchangers, hydrotalcite and permutite, to sequester anions and cations from a brackish water solution. Three different process scenarios were considered: (1) disposal of the spent exchangers as dry waste (2) conventional chemical regeneration, and (3) acid regeneration of permutite coupled with thermal (550 C) regeneration of hydrotalcite. Disposal of the resin and conventional regeneration are not viable options from an economic standpoint. Applying limited data and optimistic assumptions to the third scenario yielded an estimate of $2.34/kgal of product water. Published values for applying conventional reverse osmosis to similar water streams range from $0.70 to $2.65/kgal. Consistent with these baseline values, the Water Treatment Estimation Routine, WaTER, developed by the United States Department of the Interior, Bureau of Reclamation produced a cost estimate of $1.16/kgal for brackish water reverse osmosis.

  12. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    SciTech Connect

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan; Lim, ChaeYoung

    2004-07-01

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. The total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)

  13. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    SciTech Connect

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  14. Optimal Coupling of a Nuclear Reactor and a Thermal Desalination Plant

    SciTech Connect

    Caruso, G.; Naviglio, A.; Nisan, S.; Bielak, B.; Cinotti, L.; Humphries, J.R.; Martins, N.; Volpi, L.

    2002-07-01

    The present study, performed in the framework of the EURODESAL Project (5. EU FWP), deals with the analysis of the 'optimum' coupling of a PWR and of a HTGR plant with a thermal desalination plant, based on the Multiple Effects process. The reference reactors are the AP600 and the PWR900 as Pressurized reactors and the GT-MHR as Gas reactor. The calculations performed show that there are several technical solutions allowing to couple PWRs and GRs to a ME desalination plant. The optimization criteria concern the technical feasibility of the coupling, producing the maximum quantity of fresh water at the lower cost, without unacceptable reduction of the electrical power produced and without undue health hazard for population. (authors)

  15. Spanish nuclear utilities: Passing the peseta

    SciTech Connect

    1995-01-01

    Financial and technical data on nuclear utilities in Spain is presented within the framework of the overall national energy policy. Technical data are of a broad nature; cancelled nuclear power plants and reactor types and locations are noted. Legal and political issues affecting nuclear utilities, including the Electrical Law, are described. The Electric Law emphasizes greater use of gas-fired power generation and increased electricity output.

  16. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  17. High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

  18. Wave energy desalinization

    SciTech Connect

    Hopfe, H.H.

    1982-06-22

    A device for producing fresh water from salt sea water by utilizing the hydrodynamic energy of waves, comprising a buoyant platform; means for mooring the platform; a pump connected to the mooring means; a reservoir for pressurized sea water; a desalination system for extracting fresh water from the sea water; hydraulic flow control means for causing the pump to pump sea water into the sea water reservoir, as motion of the buoyant platform is produced due to the passing of waves beneath it; measuring means for measuring parameters of the sea adjacent the buoyant platform; and a control device connected to control the pressure in the sea water reservoir and the flow of sea water from the reservoir through the desalination system in response to the parameters of the sea.

  19. Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Sun, Haotian; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-08-01

    Microbial desalination cells are considered a low-energy-consumption, clean technology to simultaneously purify wastewater and desalinate saline water by utilizing the in situ energy source contained in wastewater. To enhance desalination performance and achieve an optimal membrane stack configuration, an enlarged stacked microbial desalination cell (SMDC) has been developed and tested with 6-14 desalination cells. The cross-membrane area of the enlarged SMDC is 100 cm2. The anode and cathode volumes are both 200 mL. To reduce internal resistance, the width of desalination cells is kept as <0.5 mm. The optimal configuration with 10 desalination cells achieves the highest total desalination rate (TDR) of 423 mg/h and the highest charge transfer efficiency (CTE) of 836% when treating the 20 g/L NaCl solution. During this process, the junction potential across membranes increases from 0 to 374 mV, and occupies up to 74% of the total potential loss inside the SMDC. This shows that the SMDC used in this work achieves the highest TDR and CTE among the reported studies, and the junction potential should be effectively controlled to achieve the desired desalination performance in future practical applications.

  20. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination.

    PubMed

    Luo, Haiping; Xu, Pei; Roane, Timberley M; Jenkins, Peter E; Ren, Zhiyong

    2012-02-01

    The low conductivity and alkalinity in municipal wastewater significantly limit power production from microbial fuel cells (MFCs). This study integrated desalination with wastewater treatment and electricity production in a microbial desalination cell (MDC) by utilizing the mutual benefits among the above functions. When using wastewater as the sole substrate, the power output from the MDC (8.01 W/m(3)) was four times higher than a control MFC without desalination function. In addition, the MDC removed 66% of the salts and improved COD removal by 52% and Coulombic efficiency by 131%. Desalination in MDCs improved wastewater characteristics by increasing the conductivity by 2.5 times and stabilizing anolyte pH, which therefore reduced system resistance and maintained microbial activity. Microbial community analysis revealed a more diverse anode microbial structure in the MDC than in the MFC. The results demonstrated that MDC can serve as a viable option for integrated wastewater treatment, energy production, and desalination. PMID:22178493

  1. Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing, or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)

  2. Solar desalination system and method

    SciTech Connect

    Kruse, C.L.

    1985-03-12

    A solar desalination system in which fresh water is derived from sea water by focussing solar ray energy from a collecting reflector onto an evaporator tube located at substantially the focal apex of the reflector. The reflector/evaporator tube assembly is mounted on a horizontal open grid platform which may support a plurality of parallel reflector/evaporator tube assemblies. The reflectors may serve as pontoons to support the desalination system unit on a body of sea water. The solar heat generated vapor is condensed in condenser tubes immersed in the sea water. Intermittently sea water concentrate is withdrawn from the evaporator tubes. Velocity of the vapor passing from the evaporator tubes to the condensers may be utilized for generating power.

  3. Photocatalysis: Plasmonic solar desalination

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Li, Yat

    2016-06-01

    The sustainability of many existing desalination technologies is questionable. Plasmon-mediated solar desalination has now been demonstrated for the first time, using an aluminium structure that absorbs photons spanning the 200 nm to 2,500 nm wavelength range, and is both cheap and 'clean'.

  4. A desalination battery.

    PubMed

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-01

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. PMID:22268456

  5. Desalination processes and performance

    SciTech Connect

    Summers, L. J.

    1995-06-01

    Different desalination processes are evaluated for feed, capacity, performance, energy requirements, and cost. These include distillation, reverse osmosis, or electrodialysis. Detailed information is given on distillation processes and membrane processes.

  6. Nuclear Education and Training Programs of Potential Interest to Utilities.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    This compilation of education and training programs related to nuclear applications in electric power generation covers programs conducted by nuclear reactor vendors, public utilities, universities, technical institutes, and community colleges, which were available in December 1968. Several training-program consultant services are also included.…

  7. Stacked microbial desalination cells to enhance water desalination efficiency.

    PubMed

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance. PMID:21322552

  8. Effect of nuclear ownership on utility bond ratings and yields

    SciTech Connect

    Nesse, R.J.

    1982-02-01

    The major objective of this study was to test the hypothesis that investors have required an additional interest rate premium before purchasing bonds of utilities with large investments in nuclear facilities. The study required several tasks. First, the literature relating to firm bankruptcy and default was reviewed. Second, the failing financial health of the electric utility industry was assessed in terms of construction problems, the impact of federal and state regulations, and the impact of Three Mile Island. Finally, data were collected on 63 electric utilities. This allowed statistical estimation of the magnitude of the risk premium associated with utility involvement in nuclear power. The effect of this involvement on a utility's bond ratings was also examined. Multiple regression was the statistical tool used for the statistical testing and estimation.

  9. Energy Implications of Seawater Desalination (Invited)

    NASA Astrophysics Data System (ADS)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to

  10. EPRI guide to managing nuclear utility protective clothing programs

    SciTech Connect

    Kelly, J.J. )

    1991-05-01

    The Electric Power Research Institute (EPRI) commissioned a radioactive waste related project (RP2414-34) during the last quarter of 1989 to produce a guide for developing and managing nuclear protective clothing programs. Every nuclear facility must coordinate some type of protective clothing program for its radiation workers to insure proper and safe protection for the wearer and to maintain control over the spread of contamination. Yet, every nuclear facility has developed its own unique program for managing such clothing. Accordingly, a need existed for a reference guide to assist with the standardization of protective clothing programs and to assist in controlling the potentially runaway economics of such programs. This document is the first known effort to formalize the planning and economic factors surrounding a nuclear utility protective clothing program. It is intended to be informative by addressing the various pieces of information necessary to establish and maintain an effective, professionally managed protective clothing program. It also attempts to provide guidance toward tailoring the information and providing examples within the report to fit each utility's specific needs. This report is further intended to address new issues and trends occurring throughout the nuclear industry in late 1989 which can have either a significant positive or negative impact on the operations or economics of nuclear protective clothing programs. 1 ref., 11 tabs.

  11. Graphene and graphene oxide for desalination.

    PubMed

    You, Yi; Sahajwalla, Veena; Yoshimura, Masamichi; Joshi, Rakesh K

    2016-01-01

    There is a huge scope for graphene-based materials to be used as membranes for desalination. A very recent study has confirmed that 100% salt rejection can be achieved for commonly used ions by utilizing single layer nonporous graphene. However, the cost effective fabrication procedure for graphene oxide membranes with precise control of pore size can offer a practical solution for filtration if one can achieve 100% percent salt rejection. PMID:26615882

  12. Desalination apparatus with power generation

    SciTech Connect

    Humiston, G.F.

    1981-11-24

    An apparatus for desalinating ocean waters by distillation and furnishing electrical power, utilizes an evaporator, barometric leg conduits, a closed condenser, ocean water circulating circuits for circulating warm surface water to the evaporator and cool ocean water to the condenser and using the mass flow of vapors evolved from the evaporator to drive a prime mover which in turn drives an electrical generator. A portion of the electrical power so-generated is used to control the operation of respective pumps and valves in the apparatus. The liquid level of the condensate water is controlled in a barometric leg condensate outlet conduit. The system is also provided with a vacuum pump at least for initiating a reduced pressure and particle separator channel means is provided to prevent liquid entrainment in the condenser.

  13. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  14. Water Desalination with Wires.

    PubMed

    Porada, S; Sales, B B; Hamelers, H V M; Biesheuvel, P M

    2012-06-21

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode pairs in freshwater with and in brine without an applied cell voltage, we create an ion adsorption/desorption cycle. We show experimentally how in six subsequent cycles we can reduce the salinity of 20 mM feed (brackish) water by a factor of 3, while application of a cation exchange membrane on the cathode wires makes the desalination factor increase to 4. Theoretical modeling rationalizes the experimental findings, and predicts that system performance can be significantly enhanced by material modifications. To treat large volumes of water, multiple stacks of wire pairs can be used simultaneously in a "merry-go-round" operational mode. PMID:26285717

  15. Illustrative comparison of one utility's coal and nuclear choices

    SciTech Connect

    Keeney, R.L.; Sicherman, A.

    1983-01-01

    The technology choices facing an individual utility are complex decision problems. The paper illustrates a method designed to assist an individual utility company in making the choices in a logically consisnt manner. The resulting evaluation model, based on the principles of decision analysis, explicitly addresses the complexity to provide a basis for decision making and support for defending the decision before reviewers. The model, which incorporates economic, environmental, social, safety, and regulatory effects, is demonstrated using a coal/nuclear choice which may be faced by Utah Power and Light Company in the near future. This analysis is meant to be illustrative; more effort would be needed to gather information to support a policy decision.

  16. Hybrid solar powered desalination plant

    SciTech Connect

    Hamester, H.L.; Husseiny, A.; Lumdstrom, J.; La Porta, C.; McLagan, G.

    1981-01-01

    A solar powered sea water desalination system design is described. The commercial size plant is specified to provide at least 1.8*10/sup 6/m/sup 3//year of product water (<500 kg/m/sup 3/ total dissolved solids) from sea water containing 44,000 kg/m/sup 3/ total dissolved solids. The basis of the design is a two-stage desalination system employing membrane technologies. Membrane technologies were selected since they require about a factor of five less energy than desalination technologies which use distillation.

  17. A new method for water desalination using microbial desalination cells.

    PubMed

    Cao, Xiaoxin; Huang, Xia; Liang, Peng; Xiao, Kang; Zhou, Yingjun; Zhang, Xiaoyuan; Logan, Bruce E

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria. PMID:19806756

  18. Complex admixtures of clathrate hydrates in a water desalination method

    DOEpatents

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  19. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. PMID:21680966

  20. Desalination Plant Optimization

    Energy Science and Technology Software Center (ESTSC)

    1992-10-01

    MSF21 and VTE21 perform design and costing calculations for multistage flash evaporator (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. An optimization capability is available, if desired. The MSF plant consists of a recovery section, reject section, brine heater, and associated buildings and equipment. Operating costs and direct and indirect capital costs for plant, buildings, site, and intakes are calculated. Computations are based on the first and last stages of each section and amore » typical middle recovery stage. As a result, the program runs rapidly but does not give stage by stage parameters. The VTE plant consists of vertical tube effects, multistage flash preheater, condenser, and brine heater and associated buildings and equipment. Design computations are done for each vertical tube effect, but preheater computations are based on the first and last stages and a typical middle stage.« less

  1. Microfluidic desalination techniques and their potential applications.

    PubMed

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community. PMID:26226407

  2. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  3. Osmotically-assisted desalination method and system

    SciTech Connect

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  4. Desalination of water

    SciTech Connect

    Pasternak, M.; Morduchowitz, A.

    1991-08-06

    This patent describes the method of treating a charge aqueous solution containing a soluble salt. It comprises maintaining a non-porous separating membrane of thickness of 0.2-1 microns of polyimine polymer which has been cross-linked with a polyisocyanate - NCO or a poly(carbonyl chloride - COCl) cross-linking agent sufficient for providing properties for at least desalinating salt water; maintaining a pressure drop across the non-porous separating polyimine layer; passing a charge aqueous solution containing a soluble salt into contact with the high pressure side of the non-porous separating polyimine layer whereby at least a portion of the water in the charge aqueous solution and a lesser portion of salt pass through the non-porous separating layer of polyimine; recovering from the low pressure side of the polyimine separating layer the lean liquid containing a lesser concentration of salt than is present in the charge aqueous solution; and recovering from the high pressure side of the polyimine separating layer the rich liquid containing a lesser concentration of salt than is present in the charge aqueous solution.

  5. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-01

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination. PMID:27269411

  6. Real-time graphic display utility for nuclear safety applications

    SciTech Connect

    Yang, S.; Huang, X.; Taylor, J.; Stevens, J.; Gerardis, T.; Hsu, A.; McCreary, T.

    2006-07-01

    With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long history of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data

  7. Nuclear criticality safety engineer qualification program utilizing SAT

    SciTech Connect

    Baltimore, C.J.; Dean, J.C.; Henson, T.L.

    1996-12-31

    As part of the privatization process of the U.S. uranium enrichment plants, the Paducah Gaseous Diffusion Plant (PGDP) and the Portsmouth Gaseous Diffusion Plant (PORTS) have been in transition from U.S. Department of Energy (DOE) regulatory oversight to U.S. Nuclear Regulatory Commission (NRC) oversight since July 1993. One of the focus areas of this transition has been training and qualification of plant personnel who perform tasks important to nuclear safety, such as nuclear criticality safety (NCS) engineers.

  8. Desalination. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    This guide provides a review of the relevant literature on desalination within the collections of the Library of Congress. While not intended as a comprehensive bibliography, this guide is designed as a quick and ready reference source for the reader, and includes the following sections: (1) articles that provide introductions to the topic of…

  9. Nuclear waste disposal utilizing a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  10. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  11. The Maryland nuclear science baccalaureate degree program: The utility perspective

    SciTech Connect

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization.

  12. Numerical simulation of electrochemical desalination.

    PubMed

    Hlushkou, D; Knust, K N; Crooks, R M; Tallarek, U

    2016-05-18

    We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier-Stokes, Nernst-Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass-charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration. PMID:27089841

  13. Numerical simulation of electrochemical desalination

    NASA Astrophysics Data System (ADS)

    Hlushkou, D.; Knust, K. N.; Crooks, R. M.; Tallarek, U.

    2016-05-01

    We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier–Stokes, Nernst–Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass–charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration.

  14. A UK utility perspective on irradiated nuclear fuel management

    SciTech Connect

    Wilmer, P.C.

    1994-12-31

    Before privatisation in 1990, the Central Electricity Generating Board (CEGB), had a statutory responsibility for the supply of electricity in England and Wales. Nuclear Electric took over the operation of the CEGB`s nuclear assets whilst remaining in the public sector. It now has to compete with private sector companies within the privatised market for electricity in the UK. The UK has had a tradition of reprocessing originating in the early weapons programme and all irradiated fuel from the Magnox reactors continues to be reprocessed. Specific consideration is given to the fuel used in the Advanced Gas Cooled Reactors (AGR) and the competing irradiated fuel management strategies of early reprocessing British Nuclear Fuel`s (BNFL) Thermal Oxide Reprocessing Plant (THORP) at Sellafield or the alternative of long term storage followed by direct disposal. The fuel management strategy for the UK`s first Pressurised Water Reactor (PWR), Sizewell B, will also be discussed. This review considers the following issues: (1) Plant technology and the effect on back-end strategies; (2) Nuclear Electric`s commercial approach to the changing UK business environment; (3) The inevitability of storage in the management of irradiated fuel; (4) Dry storage as an option in the UK Non economic issues such as safety, public perception, proliferation, International Safeguards and bilateral trade agreements; and (5) The experience of THORP and the issues it raises concerning two stage licensing. This paper not only reflects on the worldwide issues relating to the {open_quotes}reprocess or not decision{close_quotes} but also considers UK specific actions both historic and current. It concludes that whether to exercise the option of reprocessing in the short or long term, or at all, is a matter of commercial and strategic judgement of Nuclear Electric.

  15. Microbial desalination cell with capacitive adsorption for ion migration control.

    PubMed

    Forrestal, Casey; Xu, Pei; Jenkins, Peter E; Ren, Zhiyong

    2012-09-01

    A new microbial desalination cell with capacitive adsorption capability (cMDC) was developed to solve the ion migration problem facing current MDC systems. Traditional MDCs remove salts by transferring ions to the anode and cathode chambers, which may prohibit wastewater beneficial reuse due to increased salinity. The cMDC uses adsorptive activated carbon cloth (ACC) as the electrodes and utilizes the formed capacitive double layers for electrochemical ion adsorption. The cMDC removed an average of 69.4% of the salt from the desalination chamber through electrode adsorption during one batch cycle, and it did not add salts to the anode or cathode chamber. It was estimated that 61-82.2mg of total dissolved solids (TDS) was adsorbed to 1g of ACC electrode. The cMDC provides a new approach for salt management, organic removal, and energy production. Further studies will be conducted to optimize reactor configuration and achieve in situ electrode regeneration. PMID:22784594

  16. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  17. Proposed advanced satellite applications utilizing space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  18. Energy portfolio of Iran: A case study of solar desalination

    NASA Astrophysics Data System (ADS)

    Besharati, Adib

    Energy plays a very important role in the economic development of a country such as Iran where industrial progress and higher living standards increase demand for energy. Iran is one of the countries in the world that simultaneously produces and consumes large amounts of energy. Because of its geographic latitude and weather conditions, Iran has the potential to develop and use of both fossil and renewable energy sources. In South Iran, there are huge oil and gas resources, and at the same time high potential of solar radiation. However, at the present large-scale utilization, solar energy is prohibitively expensive for Iran. Therefore, this study investigates an economical way to utilize solar energy in a meaningful way for Iran. One of the possible uses of solar energy that is both economical and technically feasible is desalination of water using solar energy. People in South Iran live in different areas with relatively low population density. One of the critical problems in those areas is a lack of clean drinking water. As a result, there is an urgent need to investigate ways to produce clean water from the saltwater. Therefore, the present study conducts a case study of solar desalination in south Iran using solar. Different desalination methods, such as humidification dehumidification by using a solar collector, and reverse osmosis, are discussed. In the case study, a prototype desalination plant was considered and both technical and economic aspects of the plant were investigated in details. The results showed higher productivity of drinking water in reverse osmosis method for south Iran.

  19. 40 CFR 35.1605-7 - Desalinization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Desalinization. 35.1605-7 Section 35.1605-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... Lakes § 35.1605-7 Desalinization. Any mechanical procedure or process where some or all of the salt...

  20. 40 CFR 35.1605-7 - Desalinization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Desalinization. 35.1605-7 Section 35.1605-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... Lakes § 35.1605-7 Desalinization. Any mechanical procedure or process where some or all of the salt...

  1. 40 CFR 35.1605-7 - Desalinization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Desalinization. 35.1605-7 Section 35.1605-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... Lakes § 35.1605-7 Desalinization. Any mechanical procedure or process where some or all of the salt...

  2. 40 CFR 35.1605-7 - Desalinization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Desalinization. 35.1605-7 Section 35.1605-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... Lakes § 35.1605-7 Desalinization. Any mechanical procedure or process where some or all of the salt...

  3. 40 CFR 35.1605-7 - Desalinization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Desalinization. 35.1605-7 Section 35.1605-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... Lakes § 35.1605-7 Desalinization. Any mechanical procedure or process where some or all of the salt...

  4. Using Solar Energy to Desalinate Water.

    ERIC Educational Resources Information Center

    Tabor, Harry Z.

    1978-01-01

    Material presented is adapted from Desalination with Solar Energy, a paper presented before the International Symposium on Energy Sources and Development, held in Spain in 1977. Desalination systems energized by the sun, conditions governing their efficiency, and their costs are discussed. (HM)

  5. Method for utilizing decay heat from radioactive nuclear wastes

    DOEpatents

    Busey, H.M.

    1974-10-14

    Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

  6. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  7. The application of utility analysis processes to estimate the impact of training for nuclear maintenance personnel

    SciTech Connect

    Groppel, C.F.

    1991-01-01

    The primary objectives of this study were to test two utility analysis models, the Cascio-Ramos Estimate of Performance in Dollars (CREPID) model and Godkewitsch financial utility analysis model and to determine their appropriateness as tools for evaluating training. This study was conducted in conjunction with Philadelphia Electric Company's Nuclear Training Group. Job performance of nuclear maintenance workers was assessed to document the impact of the training program. Assessment of job performance covered six job performance themes. Additionally, front-line nuclear maintenance supervisors were interviewed to determine their perceptions of the nuclear maintenance training. A comparison of supervisor's perceptions and outcomes of the utility analysis models was made to determine the appropriateness of utility analysis as quantitative tools for evaluating the nuclear maintenance training program. Application of the CREPID utility analysis model indicated the dollar value of the benefits of training through utility analysis was $5,843,750 which represented only four of the job performance themes. Application of the Godkewitsch utility analysis model indicated the dollar value of the benefits of training was $3,083,845 which represented all six performance themes. A comparison of the outcomes indicated a sizeable difference between the dollar values produced by the models. Supervisors indicated training resulted in improved productivity, i.e., improved efficiency and effectiveness. Additionally, supervisors believed training was valuable because it provided nonmonetary benefits, e.g., improved self-esteem and confidence. The application of utility analysis addressed only monetary benefits of training. The variation evidenced by the difference in the outcome of the two models suggests that utility analysis [open quotes]estimates[close quotes] may not accurately reflect the impact of training.

  8. Method for desalinating water

    SciTech Connect

    Diggs, R.E.

    1982-08-10

    An apparatus and method are disclosed for removing contaminants from water having solid contaminants dissolved therein. Contaminated water flows across a grid and into a storage tank. The grid utilizes solar energy to heat that water to a predetermined temperature. A heat transfer structure which is dome-shaped and receives water from the storage tank and a preheater means utilizing solar energy heats the water to a further predetermined temperature. An evaporator means receives the heated water and exposes it to a vacuum condition so that the temperature of the water is above the saturation temperature. The water is thus vaporized, and solid contaminants dissolved therein are separated therefrom. The solids are deposited on a plurality of moving belts and are then moved into a solids removal system. The solids removal system comprises a plurality of trap door pairs upon which the solids are deposited and which are sequentially opened so that the vacuum conditions existing in the evaporator are not disturbed. Vapor transferring means removes the water vapor from the evaporator and transfers it to the heat transfer structure wherein it is condensed to form distillate which is free of solid contaminants. Distillate removal means then removes the distillate from the heat transfer structure to collection or usage means.

  9. Apparatus for desalinating water

    SciTech Connect

    Diggs, R.E.

    1980-04-22

    An apparatus and method is described for removing contaminants from water having solid contaminants dissolved therein. Contaminated water flows across a grid and into a storage tank. The grid utilizes solar energy to heat that water to a predetermined temperature. A heat transfer structure which is dome-shaped and receives water from the storage tank and a preheater means utilizing solar energy heats the water to a further predetermined temperature. An evaporator means receives the heated water and exposes it to a vacuum condition so that the temperature of the water is above the saturation temperature. The water is thus vaporized, and solid contaminants dissolved therein are separated therefrom. The solids are deposited on a plurality of moving belts and are then moved into a solids removal system. The solids removal system comprises a plurality of trap door pairs upon which the solids are deposited and which are sequentially opened so that the vacuum conditions existing in the evaporator are not disturbed. Vapor transferring means removes the water vapor from the evaporator and transfers it to the heat transfer structure wherein it is condensed to form distillate which is free of solid contaminants. Distillate removal means then removes the distillate from the heat transfer structure to collection or usage means.

  10. Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1

    SciTech Connect

    McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C.

    1995-04-01

    The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

  11. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Paviet-Hartmann, P.; Riddle, C.; Campbell, K.; Mausolf, E.

    2013-07-01

    The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promising because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.

  12. Drug and alcohol abuse: the bases for employee assistance programs in the nuclear-utility industry

    SciTech Connect

    Radford, L.R.; Rankin, W.L.; Barnes, V.; McGuire, M.V.; Hope, A.M.

    1983-07-01

    This report describes the nature, prevalence, and trends of drug and alcohol abuse among members of the US adult population and among personnel in non-nuclear industries. Analogous data specific to the nuclear utility industry are not available, so these data were gathered in order to provide a basis for regulatory planning. The nature, prevalence, and trend inforamtion was gathered using a computerized literature, telephone discussions with experts, and interviews with employee assistance program representatives from the Seattle area. This report also evaluates the possible impacts that drugs and alcohol might have on nuclear-related job performance, based on currently available nuclear utility job descriptions and on the scientific literature regarding the impairing effects of drugs and alcohol on human performance. Employee assistance programs, which can be used to minimize or eliminate job performance decrements resulting from drug or alcohol abuse, are also discussed.

  13. Desalination with carbon aerogel electrodes

    SciTech Connect

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  14. Scale inhibition in desalination applications: An overview

    SciTech Connect

    Amjad, Z.

    1996-12-01

    Desalination is a process in which dissolved impurities are removed from water. Three processes commonly employed include: distillation, electrodialysis, and reverse osmosis. This paper provides a general discussion of various desalination processes including advantages and disadvantages of each, performance comparisons, and problems encountered in the operation of the process. An in-depth discussion of fouling by mineral scales, colloidal matter, and metal hydroxides is also included. The role of the foulant control agent in treating a desalination system is also presented. Basic chemistry and efficacy of the individual scale inhibitors is summarized.

  15. Desalination: the state-of-the-art

    SciTech Connect

    Awerbach, L.

    1984-02-01

    A review of desalination technologies shows a good level of success at acceptable costs, with plants ranging in size from small units used for hotels to those with 40,000 m/sup 3/. This article covers the 2200 plants with 100 m/sup 3/ capacity, beginning with an overview of desalination theory. Multiple-effect distillation is expected to supplant the predominant multistage flash (MSF). Both technologies are described, along with vapor compression (VC) distillation, reverse osmosis, freezing desalination, electrodialysis, and some new developments. 8 figures (DCK)

  16. Utility of Social Modeling in Assessment of a State’s Propensity for Nuclear Proliferation

    SciTech Connect

    Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

    2011-06-01

    This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

  17. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    SciTech Connect

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-10-03

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region.

  18. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production.

    PubMed

    Kokabian, Bahareh; Gude, Veera Gnaneswar

    2013-12-01

    Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells. PMID:24154718

  19. Desalination of geothermal brines by means of combustion residues

    SciTech Connect

    Pernklau, E.; Althaus, E.

    1986-01-01

    Geothermal brines with high salinity are frequently encountered. Their commercial utilization, e.g. for heat recovery, is handicapped by scaling and disposal problems. A simple method for attaining a significant reduction of salinity would solve this problem. This paper examines the possibility of desalinating by entrapment of sodium chloride in sodalite. Sodalite is formed by the reaction of a hot brine with materials containing aluminum and silicon, e.g. combustion residues. The authors have reduced the sodium chloride content of a model brine in this manner.

  20. Potential displacement of oil by nuclear energy and coal in electric utilities

    NASA Astrophysics Data System (ADS)

    1981-07-01

    Discrepancies exist between estimates of the amount of oil displaced by nuclear fuels or coal in 1979 as determined by DOE and other researchers. Future trends in utility fuel use are discussed from the point of view of construction, replacement, energy costs to consumer, availability of fossil fuels (other than oil), and site selection.

  1. Utilities For the NJOY (6/83) Nuclear Data Processing System.

    Energy Science and Technology Software Center (ESTSC)

    1990-12-11

    Version 00 NJOY-UTIL-EIR complements the NJOY (6/83) nuclear data processing system. The eight modules in the system have the following functions: collapsing of groupwise files, combining of ENDF/B formatted files, separation of one file, plotting of cross sections or differences between two cross section files and combining ACE cross section files.

  2. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes. PMID:26806020

  3. INTEGRATING DESALINATION AND AGRICULTURAL SALINITY CONTROL ALTERNATIVES

    EPA Science Inventory

    The cost-effectiveness relationships for various agricultural and desalination alternatives for controlling salinity in irrigation return flows are developed. Selection of optimal salinity management strategies on a river basin scale is described as a problem of integrating optim...

  4. Performance of solar multiflash desalination plants

    SciTech Connect

    Ruggiero, U.; Ciciolla, C.; Fabiano, M.; Fortunato, B.

    1982-08-01

    In the present paper the authors study the performance of solar multiflash desalination plants. In the first part of the study a computer program is coded for the design and calculation of the steady working conditions of the desalination plant. The code has been tested by comparing the theoretical results with the experimental ones obtained from a prototype and a satisfactory agreement has been found. In the second part of the work the authors study the working condition of the desalination plant connected with a solar system. Finally the unsteady performance of the multiflash desalination plant is also predicted by using another computer program, based on a ''Montecarlo'' simulation algorithm for the generation of the atmospheric conditions. This code simulates the working conditions of the plant in a given period of time by computing all the relevant parameters.

  5. Desalination and sustainability - An appraisal and current perspective.

    PubMed

    Gude, Veera Gnaneswar

    2016-02-01

    Desalination technologies have evolved and advanced rapidly along with increasing water demands around the world since 1950s. Many reviews have focused on the techno-economic and environmental and ecological issues of the desalination technologies and emphasized the feasibility of desalination industry as an alternative to meet the water demands in many water scarce regions. Despite these efforts, many perceptions about desalination processes hinder their applications for potential water supplies. This article has two specific aims: 1) provide an overview of the desalination trends around the world and discuss the sustainability components of desalination processes in comparison with other water supply alternatives; and 2) discuss case studies for desalination, and drivers and factors that influence sustainable desalination and other alternative water sources for desalination to increase our current understanding on the sensitive and futuristic issues of water supply and resource management options for drought facing regions. Although some of the facts and recent developments discussed here show that desalination can be affordable and potentially sustainable, contributions that meaningfully address socio-economic and ecological and environmental issues of desalination processes are urgently required in this critical era of severe water stress for the present context and the future development of desalination technologies. PMID:26641014

  6. Optimization of ramified absorber networks doing desalination.

    PubMed

    Singleton, Martin S; Heiss, Gregor; Hübler, Alfred

    2011-01-01

    An iterated function system is used to generate fractal-like ramified graph networks of absorbers, which are optimized for desalination performance. The diffusion equation is solved for the boundary case of constant pressure difference at the absorbers and a constant ambient salt concentration far from the absorbers, while constraining both the total length of the network and the total area of the absorbers to be constant as functions of generation G. A linearized form of the solution was put in dimensionless form which depends only on a dimensionless membrane resistance, a dimensionless inverse svelteness ratio, and G. For each of the first nine generations G=2,…,10, the optimal graph shapes were obtained. Total water production rate increases parabolically as a function of generation, with a maximum at G=7. Total water production rate is shown to be approximately linearly related to the power consumed, for a fixed generation. Branching ratios which are optimal for desalination asymptote decreasingly to r=0.510 for large G, while branching angles which are optimal for desalination asymptote decreasingly to 1.17 radians. Asymmetric graphs were found to be less efficient for desalination than symmetric graphs. The geometry which is optimal for desalination does not depend strongly on the dimensionless parameters, but the optimal water production does. The optimal generation was found to increase with the inverse svelteness ratio. PMID:21405775

  7. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination.

    PubMed

    Kim, Younggy; Logan, Bruce E

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. PMID:21671676

  8. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  9. Water desalination across nanoporous graphene.

    PubMed

    Cohen-Tanugi, David; Grossman, Jeffrey C

    2012-07-11

    We show that nanometer-scale pores in single-layer freestanding graphene can effectively filter NaCl salt from water. Using classical molecular dynamics, we report the desalination performance of such membranes as a function of pore size, chemical functionalization, and applied pressure. Our results indicate that the membrane's ability to prevent the salt passage depends critically on pore diameter with adequately sized pores allowing for water flow while blocking ions. Further, an investigation into the role of chemical functional groups bonded to the edges of graphene pores suggests that commonly occurring hydroxyl groups can roughly double the water flux thanks to their hydrophilic character. The increase in water flux comes at the expense of less consistent salt rejection performance, which we attribute to the ability of hydroxyl functional groups to substitute for water molecules in the hydration shell of the ions. Overall, our results indicate that the water permeability of this material is several orders of magnitude higher than conventional reverse osmosis membranes, and that nanoporous graphene may have a valuable role to play for water purification. PMID:22668008

  10. Environmental impact of seawater desalination plants.

    PubMed

    Al-Mutaz, I S

    1991-01-01

    Enormous amounts of seawater are desalted everyday worldwide. The total world production of fresh water from the sea is about 2621 mgd (9.92 million m(3) day(-1) 1985 figures). Desalting processes are normally associated with the rejection of high concentration waste brine from the plant itself or from the pretreatment units as well as during the cleaning period. In thermal processes, mainly multistage flash (MSF) thermal pollution occurs. These pollutants increase the seawater temperature, salinity, water current and turbidity. They also harm the marine environment, causing fish to migrate while enhancing the presence of algae, nematods and tiny molluscus. Sometimes micro-elements and toxic materials appear in the discharged brine.This paper will discuss the impact of the effluents from the desalination plants on the seawater environment with particular reference to the Saudi desalination plants, since they account for about 50% of the world desalination capacity. PMID:24241776

  11. Performance of solar multiflash desalination plants

    NASA Astrophysics Data System (ADS)

    Ruggiero, U.; Ciciolla, C.; Fabiano, M.; Fortunato, B.

    A theoretical model is presented for calculating the steady and unsteady performance of a solar desalinization plant. A Monte Carlo method is used to generate the atmospheric parameters, and a once-through multi-flash desalinization plant is considered, using data from a 100 C operating temperature prototype plant. Energy and mass balances are formulated for the generic stage, a heat balance is defined for the brine heater stage, and a total heat transfer coefficient is calculated for all system stages. Focusing solar collectors are considered for the power source, and an approximation is employed to predict the solar input for a specific time of day. Short and long term thermal losses are analyzed, together with the cost of the water produced. Increases in oil costs are projected to be necessary to make solar powered desalinization plants preferable over conventional plants.

  12. Desalination of brackish water from oil wells

    SciTech Connect

    Fenton, D.M.

    1991-12-31

    This patent describes an apparatus for producing non-brackish water from brackish water found in an inactivated oil well. It comprises at least one inactive oil well located on an offshore oil platform, the well having a perforated well casing at a level of a geological formation known to contain flowable brackish water; a desalination plant located on the offshore platform receiving flowable brackish water from the inactive oil well; and means to transport the non-brackish water produced by the desalination plant. This patent also describes a method of using an inactivated oil well. It comprises ceasing oil production in an inactive oil well having a well casing that penetrates a plurality of geological formations; recovering brackish water from the inactive oil well from a geological formation containing flowable brackish water; and desalinating the brackish water producing non-brackish water.

  13. Preliminary research study for the construction of a pilot cogeneration desalination plant in southern California. Water treatment technology program report No. 7 (Final)

    SciTech Connect

    Tadros, S.K.

    1995-05-01

    A conceptual plant design and a slightly conservative cost estimate were developed to evaluate the economic desirability and the overall system efficiency impact. The conceptual design includes a gas turbine-generator set with a heat recovery steam generator to produce electricity and steam. The steam is utilized in the desalination processes. For this study, two desalination technologies were considered: multi-effect distillation and multi-stage flash evaporation.

  14. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    SciTech Connect

    Not Available

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  15. New desalination concept: the solar evaporator and condenser system (SEACS)

    SciTech Connect

    ElDifrawi, A.; Yudow, B.; Grotheer, R.H.

    1981-01-01

    A new concept for a solar-powered, modular desalination plant has been developed. Plants will utilize a Solar Evaporator and Condenser System which provides a simple, reliable, and low-cost method for desalination. The system is an augmented solar still. Air drawn at low velocity over glazed solar ponds picks up moisture and transports it to a condenser where it picks up the latent heat of condensation. The warm seawater then flows by gravity through the ponds and is pumped over an evaporator pad at the air stream inlet. Most of the latent heat of condensation recovered at the condenser will provide additional moisture to the air stream. The cold brine will flow by gravity back to the sea. Product water from the condenser is stored for subsequent use by the community. The level of technology is low. Major components are low speed pumps and fans, heat exchangers, battery storage systems, and photovoltaic power panels. Plant capacity is determined by the number of modules in the plant. Total electric power requirements are anticipated to be as low as 1.2 to 1.5 kWhr/m/sup 3/ of product water. Cost of water production over the 20-year plant life is estimated to be $2.40/m/sup 3/. System is attractive in its simplicity, both from a construction and operation standpoint.

  16. The future of seawater desalination: energy, technology, and the environment.

    PubMed

    Elimelech, Menachem; Phillip, William A

    2011-08-01

    In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages. PMID:21817042

  17. Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination.

    PubMed

    Wen, Qinxue; Zhang, Huichao; Chen, Zhiqiang; Li, Yufei; Nan, Jun; Feng, Yujie

    2012-12-01

    A microbial desalination cell (MDC) is able to desalinate salt water without energy consumption whilst generating bioenergy. Previously MDCs used abiotic cathodes, which are restricted in application by high operating costs and low levels of sustainability whereas, in the present study, an aerobic biocathode consisting of carbon felt and bacterial catalysts was tested. The biocathode MDC produced a maximum voltage of 609 mV, the value of which was 136 mV higher than that of an air cathode MDC operated under the same conditions. The salinity of 39 mL of salt water (35 g L(-1) NaCl) was reduced by 92% using 0.441 L of anode solution (11.3:1), with a coulombic efficiency of 96.2 ± 3.8% and a total desalination rate of 2.83 mg h(-1). The biocathode MDC proved to be a promising approach for efficient desalination of salt water. PMID:23026321

  18. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO).

    PubMed

    Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940

  19. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)

    PubMed Central

    Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940

  20. A portable and high energy efficient desalination/purification system by ion concentration polarization

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jae; Kim, Bumjoo; Kwak, Rhokyun; Kim, Geunbae; Han, Jongyoon

    2012-10-01

    The shortage of fresh water is one of the acute challenges that the world is facing now and, thus, energy efficient desalination strategies can provide substantial answers for the water-crisis. Current desalination methods utilizing reverse-osmosis and electrodialysis mechanisms required high power consumptions/large-scale infrastructures which do not make them appropriate for disaster-stricken area or underdeveloped countries. In addition, groundwater contamination by heavy metal compounds, such as arsenic, cadmium and lead, poses significant public health challenges, especially in developing countries. Existing water purification strategies for heavy metal removal are not readily applicable due to technological, environmental, and economical barriers. This presentation elucidates a novel desalination/purification process, where a continuous contaminated stream is divided into filtered and concentrated stream by the ion concentration polarization. The key distinct feature is that both salts and larger particles (cells, viruses, and microorganisms) are pushed away from the membrane, in continuous flow operations, eliminating the membrane fouling that plagues the membrane filtration methods. The power consumption is less than 5Wh/L, comparable to any existing systems. The energy and removal efficiency, and low cost manufacturability hold strong promises for portable, self-powered water purification/desalination system that can have significant impacts on water shortage in developing/rural part of the world.

  1. Utility of nuclear DNA intron markers at lower taxonomic levels: phylogenetic resolution among nine Tragelaphus spp.

    PubMed

    Willows-Munro, Sandi; Robinson, Terence J; Matthee, Conrad A

    2005-06-01

    Phylogenetic relationships among the nine spiral-horn antelope species of the African bovid tribe Tragelaphini are controversial. In particular, mitochondrial DNA sequencing studies are not congruent with previous morphological investigations. To test the utility of nuclear DNA intron markers at lower taxonomic levels and to provide additional data pertinent to tragelaphid evolution, we sequenced four nuclear DNA segments (MGF, PRKCI, SPTBN, and THY) and combined these data with mitochondrial DNA sequences from three genes (cytochrome b, 12S rRNA, and 16S rRNA). Our molecular supermatrix comprised 4682 characters which were analyzed independently and in combination. Parsimony and model based phylogenetic analyses of the combined nuclear DNA data are congruent with those derived from the analysis of mitochondrial gene sequences. The corroboration between nuclear and mtDNA gene trees reject the possibility that genetic processes such as lineage sorting, gene duplication/deletion and hybrid speciation account for the conflict evident in the previously published phylogenies. It suggests rather that the morphological characters used to delimit the Tragelaphid species are subject to convergent evolution. Divergence times among species, calculated using a relaxed Bayesian molecular clock, are consistent with hypotheses proposing that climatic oscillations and their impact on habitats were the major forces driving speciation in the tribe Tragelaphini. PMID:15878131

  2. The {open_quotes}special employer{close_quotes} issue for nuclear utilities

    SciTech Connect

    Jose, D.E.

    1992-01-01

    Legal aspects of the Rudenjak versus Jersey Central Power and Light Company lawsuit are summarized in the article. Rudenjak, while working for an independent contractor at the Oyster Creek Nuclear Power Plant, received a 3.335 Rem dose of whole-body radiation over a 4-month period in 1980. In 1988, Rudenjak died of acute leukemia and his widow sued the power company. The utility filed a motion to dismiss based on the statutory employer defense, which was granted by the court; excepts of the court`s decision are included in the article. A similar suit in California is also described; the implication is that legal precedent has been established in California and New Jersey to prevent employees of independent contractors from suing utilities.

  3. Utilization of the Philippine Research Reactor as a training facility for nuclear power plant operators

    SciTech Connect

    Palabrica, R.J.

    1981-01-01

    The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).

  4. Potential health impacts of consuming desalinated bottled water.

    PubMed

    Rowell, Candace; Kuiper, Nora; Shomar, Basem

    2015-06-01

    This study compared physicochemical properties, anion and carbon content and major and trace elements in desalinated and non-desalinated bottled water available in Qatar, and assessed the potential health risks associated with prolonged consumption of desalinated water. Results indicate that Qatar's population is not at elevated risk of dietary exposure to As (mean = 666 ng/L), Ba (48.0 μg/L), Be (9.27 ng/L), Cd (20.1 ng/L), Cr (874 ng/L), Pb (258 ng/L), Sb (475 ng/L) and U (533 ng/L) from consumption of both desalinated and non-desalinated bottled water types available in the country. Consumers who primarily consume desalinated water brands further minimize risk of exposure to heavy metals as levels were significantly lower than in non-desalinated bottled water. Desalinated bottled water was not a significant contributor to recommended daily intakes for Ca, Mg and F(-) for adults and children and may increase risk of deficiencies. Desalinated bottled water accounted for only 3% of the Institute of Medicine (IOM) adequate intake (AI) for Ca, 5-6% of the recommended daily allowance for Mg and 4% of the AI for F among adults. For children desalinated water contributed 2-3% of the IOM AICa, 3-10% of the RDA(Mg) and 3-9% of the AIF. PMID:26042976

  5. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil. PMID:25145172

  6. A desalination plant with solar and wind energy

    NASA Astrophysics Data System (ADS)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the

  7. Geophysical remote sensing of water reservoirs suitable for desalinization.

    SciTech Connect

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics

  8. Disinfection by-product formation during seawater desalination: A review.

    PubMed

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water. PMID:26099832

  9. Mild desalination of various raw water streams.

    PubMed

    Groot, C K; van den Broek, W B P; Loewenberg, J; Koeman-Stein, N; Heidekamp, M; de Schepper, W

    2015-01-01

    For chemical industries, fresh water availability is a pre-requisite for sustainable operation. However, in many delta areas around the world, fresh water is scarce. Therefore, the E4 Water project (www.e4water.eu) comprises a case study at the Dow site in Terneuzen, The Netherlands, which is designed to develop commercial applications for mild desalination of brackish raw water streams from various origins to enable reuse in industry or agriculture. This study describes an effective two-stage work process, which was used to narrow down a broad spectrum of desalination technologies to a selection of the most promising techniques for a demonstration pilot at 2-4 m³/hour. Through literature study, laboratory experiments and multi-criteria analysis, nanofiltration and electrodialysis reversal were selected, both having the potential to attain the objectives of E4Water at full scale. PMID:26204068

  10. Waters and desalination programs of Saudi Arabia

    SciTech Connect

    Wojcik, C.K.; Maadhah, A.G.

    1981-07-01

    Saudi Arabia is an arid desert country without rivers or sweet-water lakes. It does, however, have large amounts of ground water and seawater. These waters must be desalted by some means in order to make them potable. The most frequently used methods for that purpose are: multistage flash (MSF) evaporation, reverse osmosis (RO), and electrodialysis (ED). Because of rapid industrialization of the country, the demand for fresh water has been growing steadily. This, in turn, has resulted in a spectacular growth of the water-desalination industry. This paper discusses the availability and properties of the waters. It gives a detailed description of the major accomplishments and of the ongoing and future programs in the field of water desalination in Saudi Arabia. 14 references, 6 figures, 8 tables.

  11. Nuclear power and the market value of the shares of electric utilities

    NASA Astrophysics Data System (ADS)

    Lyons, Joseph T.

    The most basic principle of security valuation is that market prices are determined by investors' expectations of the firm's performance in the future. These expectations are generally understood to be related to the risk that investors will bear by holding the firm's equity. There is considerable evidence that financial statements prepared in accordance with accrual-based accounting standards consistent with Generally Accepted Accounting Principles (GAAP) have information content relevant to the establishment of market prices. In 2001, the Financial Accounting Standards Board (FASB) issued Statement of Financial Accounting Standard No. 143, "Accounting for Asset Retirement Obligations," changing the accounting standards that must be used to prepare financial statements. This paper investigates the effect that investment in nuclear power has on the market value of electric utilities and the impact on the securities markets of the significant changes in financial statement presentation mandated by this new standard.

  12. The ERDA thermionic program. [for nuclear propulsion and utility power plants

    NASA Technical Reports Server (NTRS)

    Newby, G. A.

    1975-01-01

    A rationale for increased Federal support of thermionic research is considered and the objectives and milestones of the thermionic program of the U.S. Energy Research and Development Administration (ERDA) are examined. The ERDA program is to provide very high specific power systems needed for planned future NASA nuclear electric propulsion missions. Another objective is the enhancement of the overall thermal conversion efficiency of the present utility power plants from approximately 35% to 50% or more. Attention is given to key problem areas, taking into account inadequate analytical tools, the reduction of the plasma arc-drop losses, aspects of hot shell materials development, and the coordination of the participating groups programmatic activities.

  13. Desalination with carbon aerogel electrodes. Revision 1

    SciTech Connect

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.; Thomson, S.L.; May, S.C.

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  14. Review of Water Resources and Desalination Technologies

    SciTech Connect

    MILLER, JAMES E.

    2003-03-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, and inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.

  15. Direct seawater desalination by ion concentration polarization

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jae; Ko, Sung Hee; Kang, Kwan Hyoung; Han, Jongyoon

    2010-04-01

    A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity ~500 mM or ~30,000 mg l-1) to fresh water (salinity <10 mM or <600 mg l-1) in which a continuous stream of sea water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (~99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l-1, which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.

  16. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl‑ = 2.03[10‑9m2s‑1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D‑ ‑ D+)/(D‑ + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  17. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination.

    PubMed

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10(-9)m(2)s(-1)]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  18. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    PubMed Central

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl− = 2.03[10−9m2s−1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D− − D+)/(D− + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  19. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  20. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

    SciTech Connect

    Kang, Won Kyung . E-mail: wkkang@riken.jp; Kurihara, Masaaki . E-mail: mkuri@riken.jp; Matsumoto, Shogo . E-mail: smatsu@riken.jp

    2006-06-20

    The BRO proteins of Bombyx mori nucleopolyhedrovirus (BmNPV) display a biphasic pattern of intracellular localization during infection. At early times, they reside in the nucleus but then show both cytoplasmic and nuclear localization as the infection proceeds. Therefore, we examined the possibility of nuclear export. Using inhibitors, we reveal that BmNPV BRO proteins shuttle between the nucleus and cytoplasm. Mutations on the leucine-rich region of BRO proteins resulted in nuclear accumulation of transiently expressed proteins, suggesting that this region functions as a CRM1-dependent nuclear export signal (NES). On the contrary, mutant BRO-D with an altered NES did not show nuclear accumulation in infected cells, although protein production seemed to be reduced. RT-PCR analysis showed that the lower level of protein production was due to a reduction in RNA synthesis. Taken together, our results suggest that BRO proteins are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway.

  1. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    SciTech Connect

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

  2. Utilization of Used Nuclear Fuel in a Potential Future US Fuel Cycle Scenario - 13499

    SciTech Connect

    Worrall, Andrew

    2013-07-01

    from the FRs due to time in the core, cooling time, reprocessing, and re-fabrication time is built into the analysis, along with impacts in delays and other key assumptions and sensitivities have been investigated. The results of this assessment highlight how the UNF from future reactors (LWRs and FRs) and the resulting fissile materials (U and Pu) from reprocessing can be effectively utilized, and show that the timings of future nuclear programs are key considerations (both for reactors and fuel cycle facilities). The analysis also highlights how the timings are relevant to managing the UNF and how such an analysis can therefore assist in informing the potential future R and D strategy and needs of the US fuel cycle programs and reactor technology. (authors)

  3. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel.

    PubMed

    Meng, Fanyu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Guodong; Fan, Qingxin; Wei, Liangliang; Ding, Jing; Zheng, Zhen

    2014-04-01

    Microbial desalination cells (MDCs) with common liquid anodic substrate exhibit a slow startup and destructive pH drop, and abiotic cathodes have high cost and low sustainability. A biocathode MDC with dewatered sludge as fuel was developed for synergistic desalination, electricity generation and sludge stabilization. Experimental results indicated that the startup period was reduced to 3d, anodic pH was maintained between 6.6 and 7.6, and high stability was shown under long-term operation (300d). When initial NaCl concentrations were 5 and 10g/L, the desalinization rates during stable operation were 46.37±1.14% and 40.74±0.89%, respectively. The maximum power output of 3.178W/m(3) with open circuit voltage (OCV) of 1.118V was produced on 130d. After 300d, 25.71±0.15% of organic matter was removed. These results demonstrated that dewatered sludge was an appropriate anodic substrate to enhance MDC stability for desalination and electricity generation. PMID:24534793

  4. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.

    PubMed

    Luo, Haiping; Jenkins, Peter E; Ren, Zhiyong

    2011-01-01

    The versatility of bioelectrochemical systems (BESs) makes them promising for various applications, and good combinations could make the system more applicable and economically effective. An integrated BES called microbial electrolysis and desalination cell (MEDC) was developed to concurrently desalinate salt water, produce hydrogen gas, and potentially treat wastewater. The reactor is divided into three chambers by inserting a pair of ion exchange membranes, with each chamber serving one of the three functions. With an added voltage of 0.8 V, lab scale batch study shows the MEDC achieved the highest H(2) production rate of 1.5 m(3)/m(3) d (1.6 mL/h) from the cathode chamber, while also removing 98.8% of the 10 g/L NaCl from the middle chamber. The anode recirculation alleviated pH and high salinity inhibition on bacterial activity and further increased system current density from 87.2 to 140 A/m(3), leading to an improved desalination rate by 80% and H(2) production by 30%. Compared to slight changes in desalination, H(2) production was more significantly affected by the applied voltage and cathode buffer capacity, suggesting cathode reactions were likely affected by the external power supply in addition to the anode microbial activity. PMID:21121677

  5. Integrated experimental investigation and mathematical modeling of brackish water desalination and wastewater treatment in microbial desalination cells.

    PubMed

    Ping, Qingyun; Huang, Zuyi; Dosoretz, Carlos; He, Zhen

    2015-06-15

    Desalination of brackish water can provide freshwater for potable use or non potable applications such as agricultural irrigation. Brackish water desalination is especially attractive to microbial desalination cells (MDCs) because of its low salinity, but this has not been well studied before. Herein, three brackish waters prepared according to the compositions of actual brackish water in three locations in Israel were examined with domestic wastewater as an electron source in a bench-scale MDC. All three brackish waters could be effectively desalinated with simultaneous wastewater treatment. The MDC achieved the highest salt removal rate of 1.2 g L(-1) d(-1) with an initial salinity of 5.9 g L(-1) and a hydraulic retention time (HRT) of 0.8 d. The desalinated brackish water could meet the irrigation standard of both salinity (450 mg L(-1) TDS) and the concentrations of major ionic species, given a sufficient HRT. The MDC also accomplished nearly 70% removal of organic compounds in wastewater with Coulombic efficiency varied between 5 and 10%. A previously developed MDC model was improved for brackish water desalination, and could well predict salinity variation and the concentrations of individual ions. The model also simulated a staged operation mode with improved desalination performance. This integrated experiment and mathematical modeling approach provides an effective method to understand the key factors in brackish water desalination by MDCs towards further system development. PMID:25839832

  6. Bioelectricity inhibits back diffusion from the anolyte into the desalinated stream in microbial desalination cells.

    PubMed

    Ping, Qingyun; Porat, Oded; Dosoretz, Carlos G; He, Zhen

    2016-01-01

    Microbial desalination cells (MDCs) taking advantage of energy in wastewater to drive desalination represent a promising approach for energy-efficient desalination, but concerns arise whether contaminants in wastewater could enter the desalinated stream across ion exchange membranes. Such back diffusion of contaminants from the anolyte into the desalinated stream could be controlled by two mechanisms, Donnan effect and molecule transport. This study attempted to understand those mechanisms for inorganic and organic compounds in MDCs through two independently conducted experiments. Donnan effect was found to be the dominant mechanism under the condition without current generation. Under open circuit condition, the MDC fed with 5 g L(-1) salt solution exhibited 1.9 ± 0.7%, 10.3 ± 1.3%, and 1.8 ± 1.2% back diffusion of acetic, phosphate, and sulfate ions, respectively. Current generation effectively suppressed Donnan effect from 68.2% to 7.2%, and then molecule transport became more responsible for back diffusion. A higher initial salt concentration (35 g L(-1)) and a shorter HRT (1.0 d) led to the highest concentration gradient, resulting in the most back diffusion of 7.1 ± 1.2% and 6.8 ± 3.1% of phosphate and sulfate ions, respectively. Three representative organic compounds were selected for test, and it was found that organic back diffusion was intensified with a higher salt concentration gradient and molecular weight played an important role in compound movement. Principal component analysis confirmed the negative correlation between Donnan effect and current, and the positive correlation between molecule transport and concentration gradient related conditions. PMID:26512804

  7. 77 FR 134 - In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... opportunity to request a hearing was published in the Federal Register on July 14, 2011 (76 FR 41532). No... COMMISSION In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power Station); Order Approving Application Regarding Proposed Merger I Yankee Atomic Electric Company...

  8. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  9. ORFIG-MSF. Desalination Flash Evaporator

    SciTech Connect

    Browell, R.W.; Burris, J.H.; Friedrich, R.O.; Parsley, I.R.

    1989-07-01

    ORFIG-MSF was developed to determine the flexibility of a fixed-geometry water desalination plant to operate under off-design point conditions. The program accepts the variation of all major parameters and the specification of a number of logically possible dependent-independent parameter combinations. Input is in the form of punched cards and includes plant geometry specifications, operating and fixed cost data, parameter control information and operating variables. Output is printed hard copy from the standard output channel and includes detailed stage-by-stage flow and thermodynamic operating characteristics, costs and differential costs referred to the first case processed.

  10. Desalination using low grade heat sources

    NASA Astrophysics Data System (ADS)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  11. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    SciTech Connect

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  12. Projected world market for seawater desalination equipment

    SciTech Connect

    Not Available

    1984-10-01

    A forecast is presented of the market for seawater desalination plants. The conclusions presented herein are based on a number of sources of information, of which the most important are: responses to questionnaires mailed to 300 cognizant water agencies in 61 countries; the published market growth trend over the period 1971 to 1983; and an analysis of the geography, rainfall, population, industrial growth, and energy availability in the respective countries. Analysis suggests the possibility that financing, although currently a major stumbling block to the purchase of desalting plants, may be effected by an exchange program in which the purchaser of plants will offer some exportable product(s) in exchange. The forecast suggests the likelihood that the seawater desalination market is becoming saturated. A plateau is expected to develop in new plant sales of additional capacity in the immediate future, followed by a downturn by the end of the century. This report, however, emphasizes the importance of the replacement market, which will involve substantial sales to replace worn-out and obsolescent equipment. The combined new-plus-replacement annual sales can be expected to reach 1.25 million m/sup 3//d (330 Mgd) by the year 2000. Seawater reverse osmosis (SWRO) is expected to represent 270,000 m/sup 3//d (70 Mgd) by the end of the century because of technological improvements in membrane systems and components.

  13. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  14. Rotating carbon nanotube membrane filter for water desalination

    PubMed Central

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-01-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982

  15. Rotating carbon nanotube membrane filter for water desalination.

    PubMed

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-01-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982

  16. Rotating carbon nanotube membrane filter for water desalination

    NASA Astrophysics Data System (ADS)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-05-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.

  17. A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination.

    PubMed

    Zuo, Kuichang; Cai, Jiaxiang; Liang, Shuai; Wu, Shijia; Zhang, Changyong; Liang, Peng; Huang, Xia

    2014-08-19

    The architecture and performance of microbial desalination cell (MDC) have been significantly improved in the past few years. However, the application of MDC is still limited in a scope of small-scale (milliliter) reactors and high-salinity-water desalination. In this study, a large-scale (>10 L) stacked MDC packed with mixed ion-exchange resins was fabricated and operated in the batch mode with a salt concentration of 0.5 g/L NaCl, a typical level of domestic wastewater. With circulation flow rate of 80 mL/min, the stacked resin-packed MDC (SR-MDC) achieved a desalination efficiency of 95.8% and a final effluent concentration of 0.02 g/L in 12 h, which is comparable with the effluent quality of reverse osmosis in terms of salinity. Moreover, the SR-MDC kept a stable desalination performance (>93%) when concentrate volume decreased from 2.4 to 0.1 L (diluate/concentrate volume ratio increased from 1:1 to 1:0.04), where only 0.875 L of nonfresh water was consumed to desalinate 1 L of saline water. In addition, the SR-MDC achieved a considerable desalination rate (95.4 mg/h), suggesting a promising application for secondary effluent desalination through deriving biochemical electricity from wastewater. PMID:25075560

  18. Mathematical model of dynamic behavior of microbial desalination cells for simultaneous wastewater treatment and water desalination.

    PubMed

    Ping, Qingyun; Zhang, Chenyao; Chen, Xueer; Zhang, Bo; Huang, Zuyi; He, Zhen

    2014-11-01

    Microbial desalination cells (MDCs) are an emerging concept for simultaneous wastewater treatment and water desalination. This work presents a mathematical model to simulate dynamic behavior of MDCs for the first time through evaluating multiple factors such as organic supply, salt loading, and current generation. Ordinary differential equations were applied to describe the substrate as well as bacterial concentrations in the anode compartment. Local sensitivity analysis was employed to select model parameters that needed to be re-estimated from the previous studies. This model was validated by experimental data from both a bench- and a large-scale MDC system. It could fit current generation fairly well and simulate the change of salt concentration. It was able to predict the response of the MDC with time under various conditions, and also provide information for analyzing the effects of different operating conditions. Furthermore, optimal operating conditions for the MDC used in this study were estimated to have an acetate flow rate of 0.8 mL·min(-1), influent salt concentration of 15 g·L(-1) and salt solution flow rate of 0.04 mL·min(-1), and to be operated with an external resistor less than 30 Ω. The MDC model will be helpful with determining operational parameters to achieve optimal desalination in MDCs. PMID:25316438

  19. COST EFFECTIVE SEAWATER DESALINATION WITH ICP ELEMENT ARRAYS - PHASE I

    EPA Science Inventory

    Okeanos Technologies is developing a desalination system that uses Ion Concentration Polarization (ICP) elements and modular arrays. ICP can separate water from solutes and contaminants far more efficiently than reverse osmosis (RO) or electrodialysis (ED) because no extrem...

  20. Solar membrane distillation: desalination for the Navajo Nation.

    PubMed

    Karanikola, Vasiliki; Corral, Andrea F; Mette, Patrick; Jiang, Hua; Arnoldand, Robert G; Ela, Wendell P

    2014-01-01

    Provision of clean water is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. One clear example is the Navajo Nation. The reservation covers 27,000 square miles, mainly in northeastern Arizona. Low population density coupled with water scarcity and impairment makes provision of clean water particularly challenging. The Navajos rely primarily on ground water, which is often present in deep aquifers or of brackish quality. Commonly, reverse osmosis (RO) is chosen to desalinate brackish ground water, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies demand technical experience for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling sources of heat and does not require extensive operational experience. This presentation discusses a project on the Navajo Nation, Arizona (Native American tribal lands) that is designed to investigate and deploy an autonomous (off-grid) system to pump and treat brackish groundwater using solar energy. Βench-scale, hollow fiber MD experiment results showed permeate water fluxes from 21 L/m2·d can be achieved with transmembrane temperature differences between 40 and 80˚C. Tests run with various feed salt concentrations indicate that the permeate flux decreases only about 25% as the concentration increases from 0 to 14% (w/w), which is four times seawater salt

  1. Solar-Powered Desalination: A Modelling and Experimental Study

    NASA Astrophysics Data System (ADS)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger

  2. Polymer coated Capacitive Deionization Electrode for Desalination: A mini review

    NASA Astrophysics Data System (ADS)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-02-01

    This mini review deals with a recently developing water purification technology, i.e. capacitive deionization. It presents the current progress achieved with polymer coated electrodes in capacitive deionization for desalination. The introduction covers capacitive deionization, application of polymer or polymer composite in capacitive deionization electrode, comparative study and discussion on fabrication of electrode. This paper aims at indicating novel research prospects in capacitive deionization technology for desalination.

  3. Deionization and desalination using electrostatic ion pumping

    SciTech Connect

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O'Brien, Kevin C.; Cussler, Edward

    2011-07-19

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  4. Solar desalination by freezing and distillation

    NASA Astrophysics Data System (ADS)

    Kvajic, G.

    It is noted that among seawater desalination processes the absorption-freeze vapor compression processes based on the thermal heat pump, although untested commercially and still in the development stage, appears technically and economically an attractive application of low-grade (exergy) solar heat. The distillation processes proposed here may be conveniently powered by low-grade solar heat (from flat plate solar collectors). It is expected that the scaling problem will be insignificant in comparison with that encountered in the conventional multistage flash process. The novel feature here is the use of enlarged capacity for heat exchange between distillate and brine via latent heat of solid-liquid phase change of a suitable hydrophobic intermediate heat transfer material.

  5. Deionization and desalination using electrostatic ion pumping

    SciTech Connect

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O'Brien, Kevin C.; Cussler, Edward

    2013-06-11

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  6. Reverse osmosis desalination: water sources, technology, and today's challenges.

    PubMed

    Greenlee, Lauren F; Lawler, Desmond F; Freeman, Benny D; Marrot, Benoit; Moulin, Philippe

    2009-05-01

    Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics. PMID:19371922

  7. Emerging desalination technologies for water treatment: a critical review.

    PubMed

    Subramani, Arun; Jacangelo, Joseph G

    2015-05-15

    In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption. PMID:25770440

  8. The utilization of LANDSAT imagery in nuclear power plant siting. [in Pakistan, South Carolina, and Spain

    NASA Technical Reports Server (NTRS)

    Eggenberger, A. J.; Rowlands, D.; Rizzo, P. C.

    1975-01-01

    LANDSAT imagery was used primarily to map geologic features such as lineaments, linears, faults, and other major geologic structures which affect site selection for a nuclear power plant. Areas studied include Pakistan, the South Carolina Piedmont, and Huelva, Spain.

  9. Overview of implementing a project control system in the nuclear utility industry

    SciTech Connect

    Cooprider, D.H. )

    1994-03-01

    During the late 1980s, a metamorphosis began at Florida Power and Light Company (FPL). A strategic step in nuclear engineering's efforts to become more cost effective began in January 1990. A project control department was formed. The initial mission was to provide support for nuclear engineering design activities associated with FPL's two twin-unit nuclear power generation facilities - Turkey Point and St. Lucie. Later, the goal expanded to include the division's materials management, nuclear licensing, and information management departments. The project control group was organized along the lines of the organizations served. Separate dedicated groups were established for each plant. Since most engineering activity was based at the Juno Beach headquarters, the project control staff also was based there.

  10. Forward-Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents.

    PubMed

    Fan, Xuelin; Liu, Huili; Gao, Yating; Zou, Zhu; Craig, Vincent S J; Zhang, Guangzhao; Liu, Guangming

    2016-06-01

    The combination of high desalination efficiency, negligible draw-solute leakage, nontoxicity, ease of regeneration, and effective separation to produce liquid water makes the smart draw agents developed here highly suited for forward-osmosis desalination. PMID:27007083

  11. Evaluating the costs of desalination and water transport

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Tol, Richard S. J.

    2005-03-01

    Many regions of the world are facing formidable freshwater scarcity. Although there is substantial scope for economizing on the consumption of water without affecting its service level, the main response to water scarcity has been to increase the supply. To a large extent, this is done by transporting water from places where it is abundant to places where it is scarce. At a smaller scale and without a lot of public and political attention, people have started to tap into the sheer limitless resource of desalinated water. This study looks at the development of desalination and its costs over time. The unit costs of desalinated water for five main processes are evaluated, followed by regressions to analyze the main influencing factors to the costs. The unit costs for all processes have fallen considerably over the years. This study suggests that a cost of $1/m3 for seawater desalination and $0.6/m3 for brackish water would be feasible today. The costs will continue to decline in the future as technology progresses. In addition, a literature review on the costs of water transport is conducted in order to estimate the total cost of desalination and the transport of desalinated water to selected water stress cities. Transport costs range from a few cents per cubic meter to over a dollar. A 100 m vertical lift is about as costly as a 100 km horizontal transport ($0.05-0.06/m3). Transport makes desalinated water prohibitively expensive in highlands and continental interiors but not elsewhere.

  12. Evaluating the costs of desalination and water transport

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Tol, Richard S. J.

    2005-03-01

    Many regions of the world are facing formidable freshwater scarcity. Although there is substantial scope for economizing on the consumption of water without affecting its service level, the main response to water scarcity has been to increase the supply. To a large extent, this is done by transporting water from places where it is abundant to places where it is scarce. At a smaller scale and without a lot of public and political attention, people have started to tap into the sheer limitless resource of desalinated water. This study looks at the development of desalination and its costs over time. The unit costs of desalinated water for five main processes are evaluated, followed by regressions to analyze the main influencing factors to the costs. The unit costs for all processes have fallen considerably over the years. This study suggests that a cost of 1/m3 for seawater desalination and 0.6/m3 for brackish water would be feasible today. The costs will continue to decline in the future as technology progresses. In addition, a literature review on the costs of water transport is conducted in order to estimate the total cost of desalination and the transport of desalinated water to selected water stress cities. Transport costs range from a few cents per cubic meter to over a dollar. A 100 m vertical lift is about as costly as a 100 km horizontal transport ($0.05-0.06/m3). Transport makes desalinated water prohibitively expensive in highlands and continental interiors but not elsewhere.

  13. The look of into Desalination and Natural Hazard

    NASA Astrophysics Data System (ADS)

    Arregoitia Sarabia, C. A.

    2012-04-01

    Today due to climate change and population growth, cities and especially larger cities have become more water stressed. Thus the growing demand for drinkable water due to water scarcity in different World regions and its reliable supply, have persuaded humans to construct desalination plants. Today, the implementation of different large-scale desalination methods is increasing. Desalination is a separation process that consists on the removal of salts from water (seawater or brackish water) to make it suitable for other purposes. Some important environmental aspects for a desalination plant are the location of the plant, brine disposal and energy considerations. However these issues become affected when natural adversity happens. Desalination processes used are normally classified in thermal and membrane. The energy required by these processes could be of any form of heat, electrical or mechanical depending on the separation process. These types of energy derive from fossil fuels, which conditions the desalination sustainability -environmental and economical. To improve this reality, the desalination industry is making a great research effort related to novel technologies, the use of renewable energies, and brine management. Presently desalination membrane technologies are preferred over thermal ones (based on evaporation) since they allow for continuous operations close to ambient temperatures. Moreover, the offer for a wider selection of large equipment and modules is increasing. This makes it possible to design processes according to potable needs as well as ease the use of membranes and other separation technologies together. Traditionally the location of the plant is an obvious matter where selection of site should be determined by considerations of mainly energy supply available and distance in relation to feed water intake, disposal site and end-user. This means locating these plants in coastal areas or inland locations and look for a solution to then

  14. Saline Groundwater from Coastal Aquifers As a Source for Desalination.

    PubMed

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni

    2016-02-16

    Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs. PMID:26810309

  15. Utilizing a Russian space nuclear reactor for a United States space mission: Systems integration issues

    SciTech Connect

    Reynolds, E.; Schaefer, E.; Polansky, G.; Lacy, J.; Bocharov, A.

    1993-09-30

    The Nuclear Electric Propulsion Space Test Program (NEPSTP) has developed a cooperative relationship with several institutes of the former Soviet Union to evaluate Russian space hardware on a US spacecraft One component is the Topaz II Nuclear Power System; a built and flight qualified nuclear reactor that has yet to be tested in space. The access to the Topaz II reactor provides the NEPSTP with a rare opportunity; to conduct an early flight demonstration of nuclear electric propulsion at a relatively low cost. This opportunity, however, is not without challenges. Topaz II was designed to be compatible with Russian spacecraft and launch vehicles. It was manufactured and flight qualified by Russian techniques and standards and conforms to safety requirements of the former Soviet Union, not the United States. As it is desired to make minimal modifications to the Topaz II, integrating the reactor system with a United States spacecraft and launch vehicle presents an engineering challenge. This paper documents the lessons teamed regarding the integration of reactor based spacecraft and also some insight about integrating Russian hardware. It examines the planned integration flow along with specific reactor requirements that affect the spacecraft integration including American-Russian space system compatibility.

  16. Integration and Utilization of Nuclear Systems on the Moon and Mars

    SciTech Connect

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Poston, David; Reid, Bob; Schneider, Todd; Stewart, Eric; Turpin, Jason; Van Dyke, Melissa; Vaughn, Jason; Wagner, David

    2006-01-20

    Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that could be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.

  17. Understanding transport in model water desalination membranes

    NASA Astrophysics Data System (ADS)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  18. Nanotechnology applications to desalination : a report for the joint water reuse & desalination task force.

    SciTech Connect

    Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy

    2011-01-01

    Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimicking carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.

  19. Enhanced solar desalination unit: modified evaporating wick technique

    SciTech Connect

    El-Bassuoni, A.M.A.

    1983-12-01

    The use of solar energy for producing fresh water by desalination could avoid or reduce the expenditure of fossil fuels for that purpose. At the current time, all solar stills can be viewed as being in various stages of development, rather than as an established technology. Evaporating wick technique is developed world wide, but still has got some limitations. In the ordinary evaporating wick still made of black dyed jute, the heat collection, evaporation, and condensation takes place in the same still. To improve the efficiency and reduce the total cost of the solar still a modified unit was designed and tried. In the modified unit, the condensation operation is separated from the evaporation one. The evaporation unit which is inclined at 24/sup 0/ (the latitude of our place) consists mainly of a metallic basin having dimensions ( 1 x 1 meter) insulating with a layer of foam urethane 4 cm. thickness beneath it. The wick is suspended between two tubes, upper feeding perforated tube (2 mm. hole diameter) and lower suspending tube. The condensation unit contains the condenser which is a metallic box having dimensions of (0.9 x 0.9 meter) over which the vapor condenses. In between the evaporation and condensation unit there is a 0.1 HP. fan to suck the humid air from the evaporation unit to the condensation one. The wick still is fed continuously with water (trickle feeding) from a tank equipped with a level control valve. From this feed system water will ascard by capillarity to the edge of the gutter and then flow downward by gravity. It was found that the outside condensation enhance the efficiency of energy utilization, and the productivity of the still. The performance of the still was tested in many periods all over the year, important observations from the still performance during these period were analysed. The temperature distribution was observed and analysed. Experimental results are presented in the full paper.

  20. Utilization of nuclear structural proteins for targeted therapy and detection of proliferative and differentiation disorders

    DOEpatents

    Lelievre, Sophie; Bissell, Mina

    2001-01-01

    The localization of nuclear apparatus proteins (NUMA) is used to identify tumor cells and different stages in the tumor progression and differentiation processes. There is a characteristic organization of NuMA in tumor cells and in phenotypically normal cells. NuMA distribution patterns are significantly less diffuse in proliferating non-malignant cells compared to malignant cells. The technique encompasses cell immunostaining using a NuMA specific antibody, and microscopic analysis of NuMA distribution within each nucleus.

  1. The phylogenetic utility of chloroplast and nuclear DNA markers and the phylogeny of the Rubiaceae tribe Spermacoceae.

    PubMed

    Kårehed, Jesper; Groeninckx, Inge; Dessein, Steven; Motley, Timothy J; Bremer, Birgitta

    2008-12-01

    The phylogenetic utility of chloroplast (atpB-rbcL, petD, rps16, trnL-F) and nuclear (ETS, ITS) DNA regions was investigated for the tribe Spermacoceae of the coffee family (Rubiaceae). ITS was, despite often raised cautions of its utility at higher taxonomic levels, shown to provide the highest number of parsimony informative characters, in partitioned Bayesian analyses it yielded the fewest trees in the 95% credible set, it resolved the highest proportion of well resolved clades, and was the most accurate region as measured by the partition metric and the proportion of correctly resolved clades (well supported clades retrieved from a combined analysis regarded as "true"). For Hedyotis, the nuclear 5S-NTS was shown to be potentially as useful as ITS, despite its shorter sequence length. The chloroplast region being the most phylogenetically informative was the petD group II intron. We also present a phylogeny of Spermacoceae based on a Bayesian analysis of the four chloroplast regions, ITS, and ETS combined. Spermacoceae are shown to be monophyletic. Clades supported by high posterior probabilities are discussed, especially in respect to the current generic classification. Notably, Oldenlandia is polyphyletic, the two subgenera of Kohautia are not sister taxa, and Hedyotis should be treated in a narrow sense to include only Asian species. PMID:18950720

  2. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  3. Exploiting interfacial water properties for desalination and purification applications.

    SciTech Connect

    Xu, Hongwu; Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo; Xomeritakis, George K.; Frankamp, Benjamin L.; Siepmann, J. Ilja; Cygan, Randall Timothy; Hartl, Monika A.; Travesset, Alex; Anderson, Joshua A.; Huber, Dale L.; Kissel, David J.; Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C.; McGrath, Matthew J.; Farrow, Darcie; Cecchi, Joseph L.; van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu; Zhu, Xiaoyang; Dunphy, Darren Robert; Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L.; Gerung, Henry; Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  4. Optimization Study of Small-Scale Solar Membrane Distillation Desalination Systems (s-SMDDS)

    PubMed Central

    Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong

    2014-01-01

    Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m2 and 23 m2 are analyzed. The lowest water production costs are $5.92/m3 and $5.16/m3 for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction. PMID:25421065

  5. Optimization study of small-scale solar membrane distillation desalination systems (s-SMDDS).

    PubMed

    Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong

    2014-11-01

    Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m(2) and 23 m(2) are analyzed. The lowest water production costs are $5.92/m(3) and $5.16/m(3) for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction. PMID:25421065

  6. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  7. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    PubMed

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. PMID:24926621

  8. Benefits of utilizing CellProfiler as a characterization tool for U-10Mo nuclear fuel

    SciTech Connect

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G.; King, J.; Keiser, D.; Schulthess, J.

    2015-05-01

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium-molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries.

  9. Benefits of utilizing CellProfiler as a characterization tool for U-10Mo nuclear fuel

    DOE PAGESBeta

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G.; King, J.; Keiser, D.; Schulthess, J.

    2015-05-01

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium-molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries.« less

  10. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1991-01-01

    The following paper reports on a design study of a novel space transportation concept known as a 'NIMF' (Nuclear rocket using Indigenous Martian Fuel). The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO2. This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34,000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface.

  11. Formulation and utilization of choline based samples for dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Bowen, Sean; Ardenkjaer-Larsen, Jan Henrik

    2013-11-01

    Hyperpolarization by the dissolution dynamic nuclear polarization (DNP) technique permits the generation of high spin polarization of solution state. However, sample formulation for dissolution-DNP is often difficult, as concentration and viscosity must be optimized to yield a dissolved sample with sufficient concentration, while maintaining polarization during the dissolution process. The unique chemical properties of choline permit the generation of highly soluble salts as well as deep eutectic mixtures with carboxylic acids and urea. We describe the formulation of these samples and compare their performance to more traditional sample formulations. Choline yields stable samples with exceptional polarization performance while simultaneously offering the capability to easily remove the choline after dissolution, perform experiments with the hyperpolarized choline, or anything in between.

  12. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1990-01-01

    A design study of a novel space transportation concept called NIMF (Nuclear rocket using Indigenous Martian Fuel) is reported. In this concept, Martian CO2 gas, which constitutes 95 percent of the atmosphere, is liquified by simple compression to about 100 psi and remains stable without refrigeration. When heated and exhausted out of a rocket nozzle, a specific impulse of about 264 s can be achieved, sufficient for flights from the surface to highly energetic orbits or from one point on the surface to any other point. The propellant acquisition system can travel with the vehicle, allowing it to refuel itself each time it lands. The concept offers unequalled potential to achieve planetwide mobility, allowing complete global access for the exploration of Mars. By eliminating the necessity of transporting ascent propellant to Mars, the NIMF can also significantly reduce the initial mass in LEO and of a manned Mars mission.

  13. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    SciTech Connect

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G.; King, J.; Keiser, D.; Schulthess, J.

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.

  14. Chlorine resistant glutaraldehyde crosslinked polyelectrolyte multilayer membranes for desalination.

    PubMed

    Cho, Kwun Lun; Hill, Anita J; Caruso, Frank; Kentish, Sandra E

    2015-05-01

    Crosslinked polyelectrolyte multilayer membranes are synthesized with salt rejection values approaching those of commercial desalination membranes, but with increased chlorine resistance. The membranes are fabricated directly onto porous commercial substrates. Subsequent crosslinking of the polycation layers with glutaraldehyde leads to NaCl rejections of up to 97%, while the incorporation of a highly sulfonated polysulfone polyanion leads to high chlorine resistance. PMID:25776340

  15. Tandem electrochemical desalination-potentiometric nitrate sensing for seawater analysis.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Bakker, Eric

    2015-08-18

    We report on a methodology for the direct potentiometric determination of nitrate in seawater by in-line coupling to an electrochemical desalination module. A microfluidic custom-fabricated thin layer flat cell allows one to electrochemically reduce the chloride concentration of seawater more than 100-fold, from 600 mM down to ∼2.8 mM. The desalinator operates by the exhaustive electrochemical plating of the halides from the thin layer sample onto a silver element as silver chloride, which is coupled to the transfer of the counter cations across a permselective ion-exchange membrane to an outer solution. As a consequence of suppressing the major interference of an ion-exchanger based membrane, the 80 μL desalinated sample plug is passed to a potentiometric flow cell of 13 μL volume. The potentiometric sensor is composed of an all-solid-state nitrate selective electrode based on lipophilic carbon nanotubes (f-MWCNTs) as an ion-to-electron transducer (slope of -58.9 mV dec(-1), limit of detection of 5 × 10(-7) M, and response time of 5 s in batch mode) and a miniaturized reference electrode. Nitrate is successfully determined in desalinated seawater using ion chromatography as the reference method. It is anticipated that this concept may form an attractive platform for in situ environmental analysis of a variety of ions that normally suffer from interference by the high saline level of seawater. PMID:26201537

  16. Precipitation softening: a pretreatment process for seawater desalination.

    PubMed

    Ayoub, George M; Zayyat, Ramez M; Al-Hindi, Mahmoud

    2014-02-01

    Reduction of membrane fouling in reverse osmosis systems and elimination of scaling of heat transfer surfaces in thermal plants are a major challenge in the desalination of seawater. Precipitation softening has the potential of eliminating the major fouling and scaling species in seawater desalination plants, thus allowing thermal plants to operate at higher top brine temperatures and membrane plants to operate at a reduced risk of fouling, leading to lower desalinated water costs. This work evaluated the use of precipitation softening as a pretreatment step for seawater desalination. The effectiveness of the process in removing several scale-inducing materials such as calcium, magnesium, silica, and boron was investigated under variable conditions of temperature and pH. The treatment process was also applied to seawater spiked with other known fouling species such as iron and bacteria to determine the efficiency of removal. The results of this work show that precipitation softening at a pH of 11 leads to complete elimination of calcium, silica, and bacteria; to very high removal efficiencies of magnesium and iron (99.6 and 99.2 %, respectively); and to a reasonably good removal efficiency of boron (61 %). PMID:24151028

  17. Overview of village scale, renewable energy powered desalination

    SciTech Connect

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  18. Desalinated water hygiene and scientific bases for its investigation.

    PubMed

    Sidorenko, G I; Rakhmanin YuA

    1978-01-01

    In view of the increasing scarcity of fresh water reserves in many countries of the world, a thorough hygienic evaluation of the different methods of desalinating highly mineralized underground and sea waters for economic and drinking purpose becomes indispensable. In addition to generally accepted hygienic criteria (favourable organoleptic properties, innocuous chemical composition and epidemiological safety), introduction of supplementary criteria for the assessment of the characteristic of the quality of freshened drinking water is necessary, i.e., its full value in the physiological sense and stability of drinking properties. The necessity of hygienic tests concerned with the study and regulation of the mineral and microelement composition of desalinated drinking water as well as of its microbial composition, structural peculiarities, the so-called "deuterium number" and the presence of various organic substances in desalinated water was pointed out. A certain degree of priority should be given to the study of the mentioned indices in hygienic assessment of the different methods of water desalination (distillation, freezing out, ion exchange, electrodialysis, inverse osmosis and others). PMID:570985

  19. Method for non-intrusively identifying a contained material utilizing uncollided nuclear transmission measurements

    DOEpatents

    Morrison, John L.; Stephens, Alan G.; Grover, S. Blaine

    2001-11-20

    An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.

  20. Method for Non-Intrusively Identifying a Contained Material Utilizing Uncollided Nuclear Transmission Measurements

    SciTech Connect

    Morrison, John L.; Stephens, Alan G.; Grover Blaine S.

    1999-02-26

    An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.

  1. A sex-specific metabolite identified in a marine invertebrate utilizing phosphorus-31 nuclear magnetic resonance.

    PubMed

    Kleps, Robert A; Myers, Terrell C; Lipcius, Romuald N; Henderson, Thomas O

    2007-01-01

    Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus) contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female) proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry? PMID:17712428

  2. Forward osmosis niches in seawater desalination and wastewater reuse.

    PubMed

    Valladares Linares, R; Li, Z; Sarp, S; Bucs, Sz S; Amy, G; Vrouwenvelder, J S

    2014-12-01

    This review focuses on the present status of forward osmosis (FO) niches in two main areas: seawater desalination and wastewater reuse. Specific applications for desalination and impaired-quality water treatment and reuse are described, as well as the benefits, advantages, challenges, costs and knowledge gaps on FO hybrid systems are discussed. FO can play a role as a bridge to integrate upstream and downstream water treatment processes, to reduce the energy consumption of the entire desalination or water recovery and reuse processes, thus achieving a sustainable solution for the water-energy nexus. FO hybrid membrane systems showed to have advantages over traditional membrane process like high pressure reverse osmosis and nanofiltration for desalination and wastewater treatment: (i) chemical storage and feed water systems may be reduced for capital, operational and maintenance cost, (ii) water quality is improved, (iii) reduced process piping costs, (iv) more flexible treatment units, and (v) higher overall sustainability of the desalination and wastewater treatment process. Nevertheless, major challenges make FO systems not yet a commercially viable technology, the most critical being the development of a high flux membrane, capable of maintaining an elevated salt rejection and a reduced internal concentration polarization effect, and the availability of appropriate draw solutions (cost effective and non-toxic), which can be recirculated via an efficient recovery process. This review article highlights the features of hybrid FO systems and specifically provides the state-of-the-art applications in the water industry in a novel classification and based on the latest developments toward scaling up these systems. PMID:25201336

  3. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  4. Impact of socio-economic growth on desalination in the US.

    PubMed

    Ziolkowska, Jadwiga R; Reyes, Reuben

    2016-02-01

    In 2013, around 1336 desalination plants in the United States (US) provided purified water mainly to municipalities, the industry sector and for power generation. In 2013 alone, ∼200 million m(3) of water were desalinated; the amount that could satisfy annual municipal water consumption of more than 1.5 million people in the US. Desalination has proven to be a reliable water supply source in many countries around the world, with the total global desalination capacity of ∼60 million m(3)/day in 2013. Desalination has been used to mitigate water scarcity and lessen the pressure on water resources. Currently, data and information about desalination are still limited, while extensive socio-economic analyses are missing. This paper presents an econometric model to fill this gap. It evaluates the impact of selected socio-economic variables on desalination development in the US in the time span 1970-2013. The results show that the GDP and population growth have significantly impacted the desalination sector over the analyzed time period. The insights into the economics of desalination provided with this paper can be used to further evaluate cost-effectiveness of desalination both in the US and in other countries around the world. PMID:26610194

  5. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes

    SciTech Connect

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel{reg_sign} Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  6. Drivers of an urban community's acceptance of a large desalination scheme for drinking water

    NASA Astrophysics Data System (ADS)

    Gibson, Fiona L.; Tapsuwan, Sorada; Walker, Iain; Randrema, Elodie

    2015-09-01

    Changing climates and growing populations have prompted policy makers to shift to more climate resilient, technology-driven water sources, such as seawater desalination. Desalination is a prominent water resource in the Middle East but countries in other parts of the world with similar scarcity issues and good access to sea water, such as Australia, have been comparatively slow to adopt it. This paper explores attitudes to desalination in Perth, Western Australia, and the factors that influence its acceptance. We compared individuals' acceptance of desalination over two time periods by using identical surveys administered in 2007 and 2012. We then examined the attitudinal factors - attitudes towards desalination and attitudes towards the environment - that influence acceptance. Acceptance of desalination was reasonably high and stable at both times (74% and 73% in 2007 and 2012 respectively). We found that respondents' attitudes to perceived outcomes and benefits, fairness, environmental obligation and risk were important predictors of their acceptance of desalination in both surveys. However the weight given to these aspects varied over time. The findings show that there is still mixed community sentiment towards desalination, which helps to explain why acceptance has not increased since desalination was introduced in 2006.

  7. Mechanical strength of nanoporous graphene as a desalination membrane.

    PubMed

    Cohen-Tanugi, David; Grossman, Jeffrey C

    2014-11-12

    Recent advances in the development of nanoporous graphene (NPG) hold promise for the future of water supply by reverse osmosis (RO) desalination. But while previous studies have highlighted the potential of NPG as an RO membrane, there is less understanding as to whether NPG is strong enough to maintain its mechanical integrity under the high hydraulic pressures inherent to the RO desalination process. Here, we show that an NPG membrane can maintain its mechanical integrity in RO but that the choice of substrate for graphene is critical to this performance. Using molecular dynamics simulations and continuum fracture mechanics, we show that an appropriate substrate with openings smaller than 1 μm would allow NPG to withstand pressures exceeding 57 MPa (570 bar) or ten times more than typical pressures for seawater RO. Furthermore, we demonstrate that NPG membranes exhibit an unusual mechanical behavior in which greater porosity may help the membrane withstand even higher pressures. PMID:25357231

  8. Materials for next-generation desalination and water purification membranes

    NASA Astrophysics Data System (ADS)

    Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem

    2016-05-01

    Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

  9. What affects public acceptance of recycled and desalinated water?

    PubMed Central

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2011-01-01

    This paper identifies factors that are associated with higher levels of public acceptance for recycled and desalinated water. For the first time, a wide range of hypothesized factors, both of socio-demographic and psychographic nature, are included simultaneously. The key results, based on a survey study of about 3000 respondents are that: (1) drivers of the stated likelihood of using desalinated water differ somewhat from drivers of the stated likelihood of using recycled water; (2) positive perceptions of, and knowledge about, the respective water source are key drivers for the stated likelihood of usage; and (3) awareness of water scarcity, as well as prior experience with using water from alternative sources, increases the stated likelihood of use. Practical recommendations for public policy makers, such as key messages to be communicated to the public, are derived. PMID:20950834

  10. Water desalination using carbon-nanotube-enhanced membrane distillation.

    PubMed

    Gethard, Ken; Sae-Khow, Ornthida; Mitra, Somenath

    2011-02-01

    Carbon nanotube (CNT) enhanced membrane distillation is presented for water desalination. It is demonstrated that the immobilization of the CNTs in the pores of a hydrophobic membrane favorably alters the water-membrane interactions to promote vapor permeability while preventing liquid penetration into the membrane pores. For a salt concentration of 34 000 mg L(-1) and at 80 °C, the nanotube incorporation led to 1.85 and 15 times increase in flux and salt reduction, respectively. PMID:21188976

  11. Development of Eu-Enhanced TiO2 Nanophotocatalyst for Effective Utilization of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Setiawati, Elly; Hong, Byung-Chul; Murayama, Takahumi; Kawano, Katsuyasu

    2007-09-01

    A UV-photoactive Eu-doped TiO2 nanoparticle activated with its wavelength-matched nanoscintillator is proposed for the effective utilization of spent nuclear fuel. The Eu-doped TiO2 nanoparticles were synthesized by the alkoxide-based sol-gel method at various doping concentrations and sintering temperatures. The X-ray diffraction (XRD) spectra revealed that the existence of the anatase phase of TiO2, which is favorable for photocatalytic application, was extended up to 800 °C by Eu doping. The average crystallite size of 40 nm in the pure TiO2 sintered at 600 °C was decreased by 50% in the case of the 0.5 mol % Eu-doped one. The absorption edge obtained from UV-vis absorbance spectra yielded a slightly blue shift that gave a good agreement with the results of size suppression. The photocatalytic activities of nanoparticles were evaluated from the degradation of methylene blue (MB) solution under UV irradiation, and the optimum activity obtained for the 0.75 mol % Eu-doped TiO2 was three times higher than that of the pure TiO2.

  12. Tunable C2N Membrane for High Efficient Water Desalination

    NASA Astrophysics Data System (ADS)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  13. Tunable C2N Membrane for High Efficient Water Desalination.

    PubMed

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  14. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.

    PubMed

    Biesheuvel, P M; Bazant, M Z

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration. PMID:20365735

  15. Basic hydrodynamic aspects of a solar energy based desalination process

    SciTech Connect

    Bemporad, G.A.

    1995-02-01

    The theoretical feasibility of a solar energy based desalination scheme is analyzed in this study. The proposed scheme exploits the vapor pressure difference between fluids of different salinities and temperatures to produce fresh water from seawater. The scheme`s basic components are a seawater column, an injection pipe heated on top through a heat exchanger loop, a withdrawal pipe, a vacuum chamber filled with vapour, and a fresh water column cooled on top where vapour condenses into fresh water. A mathematical model was developed to simulate unsteady mass, heat and solute transfer during the desalination process. The governing equations were integrated numerically in space and time through a finite difference technique. The numerical simulations considered both steady-state and time dependent heat sources. The numerical results proved the theoretical feasibility of the proposed desalination scheme. However, the presence of an unsteady heat source, typical to solar energy based schemes, may lead to an unstable density profile in the water column and reduce the scheme efficiency if not properly controlled. 16 refs., 8 figs.

  16. Carbon electrode for desalination purpose in capacitive deionization

    NASA Astrophysics Data System (ADS)

    Endarko, Fadilah, Nurul; Anggoro, Diky

    2016-03-01

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 - 1400 m2/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  17. Biodesalination-On harnessing the potential of nature's desalination processes.

    PubMed

    Taheri, Reza; Razmjou, Amir; Szekely, Gyorgy; Hou, Jingwei; Ghezelbash, Gholam Reza

    2016-01-01

    Water scarcity is now one of the major global crises, which has affected many aspects of human health, industrial development and ecosystem stability. To overcome this issue, water desalination has been employed. It is a process to remove salt and other minerals from saline water, and it covers a variety of approaches from traditional distillation to the well-established reverse osmosis. Although current water desalination methods can effectively provide fresh water, they are becoming increasingly controversial due to their adverse environmental impacts including high energy intensity and highly concentrated brine waste. For millions of years, microorganisms, the masters of adaptation, have survived on Earth without the excessive use of energy and resources or compromising their ambient environment. This has encouraged scientists to study the possibility of using biological processes for seawater desalination and the field has been exponentially growing ever since. Here, the term biodesalination is offered to cover all of the techniques which have their roots in biology for producing fresh water from saline solution. In addition to reviewing and categorizing biodesalination processes for the first time, this review also reveals unexplored research areas in biodesalination having potential to be used in water treatment. PMID:27387607

  18. Tunable C2N Membrane for High Efficient Water Desalination

    PubMed Central

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  19. Thermal analysis of an innovative heat pump operated desalination plant

    SciTech Connect

    Site, V.D.

    1995-12-31

    Sea and brackish water desalination can contribute to solve the problem of fresh water shortage in many and regions of the world. Nowadays most of the installed desalination plants employ distillation processes, like Multistage Flash (MSF), Multi effect Distillation (MED) and Vapor Compression (VC). VC process is called Mechanical Vapor Compression (MVC) when it employs a mechanical compressor, while it is called Thermal Compression when it employs a steam-ejector compressor. In this paper a new distillation plant for the treatment of sea water for drinking water purposes is presented. The most innovative feature of this system is the use of a heat pump as part of the desalting unit. The use of the heat pump in the proposed system enables desalting water evaporation and steam condensation at the same temperature, unlike conventional VC desalting systems where a steam compression stage is necessary. A thermal analysis of the heat pump-operated desalination (HPD) plant and a comparison between the HPD and a conventional MVC plant is presented, in order to determine the main advantages and disadvantages of the new system.

  20. Freeze desalination of seawater using LNG cold energy.

    PubMed

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Tai-Shung

    2016-10-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around -8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater. PMID:27371931

  1. Desalination of backish water of brine from hydrocarbon wells

    SciTech Connect

    Fenton, D.M.

    1992-07-07

    This patent describes an apparatus for producing non-brackish water from water containing at least 500 ppm total dissolved solids found in an active hydrocarbon product well. It comprises at least one active hydrocarbon product well located on an offshore oil platform; a means for separating the hydrocarbon product from the water; a desalination plant located on the offshore platform for receiving water containing at least 500 ppm total dissolved solids from the means for separating and for producing non-brackish water; and means for transporting non-brackish water produced by the desalination plant. This paper also describes a method of using an inactivated gas well. It comprises ceasing all gas production in an inactive gas well; recovering water containing at least 500 ppm total dissolved solids from the inactive gas well from a geological formation containing flowable water containing at least 500 ppm total dissolved solids; and desalinating the water to produce liquid water having less than 500 ppmw total dissolved solids.

  2. Knowledge, attitudes and practice of desalinated water among professionals in health and water departments in Shengsi, China: a qualitative study.

    PubMed

    Chen, Tao; Wang, Qiqi; Qin, Yu; Chen, Xi; Yang, Xiaoxiong; Lou, Wei; Zhou, Mikang; He, Guangxue; Lu, Kai

    2015-01-01

    Desalination has been considered as an essential way to solve water stress all over the world. Most of previous studies focused on its environmental impacts, energy consumption and desalination technologies rather than human health. However, the safety of desalinated water remains unclear. This study was undertaken to investigate the knowledge, attitude and practice (KAP) of the residents in an island county in eastern China to desalinated water. Seventeen people working in medical and water industries were recruited, and focus group discussion and in-depth interview were conducted among them. Our results showed that the majority of people interviewed knew the definition and local supply pattern of desalinated water, while some of them showed some concern about the safety and nutrition of desalinated water. Current drinking water standard has no specific item for desalination, so we strongly suggest issuing a standard for desalinated water. PMID:25874459

  3. Knowledge, Attitudes and Practice of Desalinated Water among Professionals in Health and Water Departments in Shengsi, China: A Qualitative Study

    PubMed Central

    2015-01-01

    Desalination has been considered as an essential way to solve water stress all over the world. Most of previous studies focused on its environmental impacts, energy consumption and desalination technologies rather than human health. However, the safety of desalinated water remains unclear. This study was undertaken to investigate the knowledge, attitude and practice (KAP) of the residents in an island county in eastern China to desalinated water. Seventeen people working in medical and water industries were recruited, and focus group discussion and in-depth interview were conducted among them. Our results showed that the majority of people interviewed knew the definition and local supply pattern of desalinated water, while some of them showed some concern about the safety and nutrition of desalinated water. Current drinking water standard has no specific item for desalination, so we strongly suggest issuing a standard for desalinated water. PMID:25874459

  4. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.

    PubMed

    Hancock, Nathan T; Black, Nathan D; Cath, Tzahi Y

    2012-03-15

    The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact. PMID:22209275

  5. EPRI Guide to Managing Nuclear Utility Protective Clothing Programs. PCEVAL User`s Manual, A computer code for evaluating the economics of nuclear plant protective clothing programs: Final report

    SciTech Connect

    Kelly, J.J.; Kelly, D.M.

    1993-10-01

    The Electric Power Research Institute (EPRI) commissioned a radioactive waste related project (RP2414-34) in 1989 to produce a guide for developing and managing nuclear plant protective clothing programs. Every nuclear facility must coordinate some type of protective clothing program for its radiation workers to ensure proper and safe protection for the wearer and to maintain control over the spread of contamination. Yet, every nuclear facility has developed its own unique program for managing such clothing. Accordingly, a need existed for a reference guide to assist with standardizing protective clothing programs and in controlling the potentially escalating economics of such programs. The initial Guide to Managing Nuclear Utility Protective Clothing Programs, NP-7309, was published in May 1991. Since that time, a number of utilities have reviewed and/or used the report to enhance their protective clothing programs. Some of these utilities requested that a computer program be developed to assist utilities in evaluating the economics of protective clothing programs consistent with the guidance in NP-7309. The PCEVAL computer code responds to that industry need. This report, the PCEVAL User`s Manual, provides detailed instruction on use of the software.

  6. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.

    PubMed

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong; Hou, Yanping

    2012-07-01

    The microbial electrolysis desalination and chemical-production cell (MEDCC) is a device to desalinate seawater, and produce acid and alkali. The objective of this study was to enhance the desalination and chemical-production performance of the MEDCC using two types of stack structure. Experiments were conducted with different membrane spacings, numbers of desalination chambers and applied voltages. Results showed that the stack construction in the MEDCC enhanced the desalination and chemical-production rates. The maximal desalination rate of 0.58 ± 0.02 mmol/h, which was 43% higher than that in the MEDCC, was achieved in the four-desalination-chamber MEDCC with the AEM-CEM stack structure and the membrane spacing of 1.5mm. The maximal acid- and alkali-production rates of 0.079 ± 0.006 and 0.13 ± 0.02 mmol/h, which were 46% and 8% higher than that in the MEDCC, respectively, were achieved in the two-desalination-chamber MEDCC with the BPM-AEM-CEM stack structure and the membrane spacing of 3mm. PMID:22608915

  7. DEVELOPMENT OF HIGHLY-EFFICIENT AQUAPORIN-BASED WATER TREATMENTMEMBRANES FOR DESALINATION AND CONTAMINANT REMOVAL

    EPA Science Inventory

    As an outcome of this project data on the applicability of protein polymer membranes for application to water desalination will be obtained. This will provide information on the stability and permeability of these membranes under simulated desalination conditions. The struct...

  8. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. PMID:26367771

  9. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Tan, Yingling; Wang, Jingyang; Xu, Weichao; Yuan, Ye; Cai, Wenshan; Zhu, Shining; Zhu, Jia

    2016-06-01

    Plasmonics has generated tremendous excitement because of its unique capability to focus light into subwavelength volumes, beneficial for various applications such as light harvesting, photodetection, sensing, catalysis and so on. Here we demonstrate a plasmon-enhanced solar desalination device, fabricated by the self–assembly of aluminium nanoparticles into a three-dimensional porous membrane. The formed porous plasmonic absorber can float naturally on water surface, efficiently absorb a broad solar spectrum (>96%) and focus the absorbed energy at the surface of the water to enable efficient (∼90%) and effective desalination (a decrease of four orders of magnitude). The durability of the devices has also been examined, indicating a stable performance over 25 cycles under various illumination conditions. The combination of the significant desalination effect, the abundance and low cost of the materials, and the scalable production processes suggest that this type of plasmon-enhanced solar desalination device could provide a portable desalination solution.

  10. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater.

    PubMed

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-05-15

    Bioelectrochemical desalination is potentially advantageous because of bioenergy production and integrated wastewater treatment and desalination. In this work, the performance and energy benefits of a liter-scale upflow microbial desalination cell (UMDC) were evaluated. The UMDC desalinated both salt solution (NaCl) and artificial seawater, and the removal rate of total dissolved solid (TDS) increased with an increased hydraulic retention time, although TDS reduction in artificial seawater was lower than that in salt solution. Our analysis suggested that electricity generation was a predominant factor in removing TDS (more than 70%), and that other factors, like water osmosis and unknown processes, also contributed to TDS reduction. It was more favorable given the high energy efficiency, when treating salt solution, to operate the UMDC under the condition of high power output compared with that of high current generation because of the amount of energy production; while high current generation was more desired with seawater desalination because of lower salinity in the effluent. Under the condition of the high power output and the assumption of the UMDC as a predesalination in connection with a reversal osmosis (RO) system, the UMDC could produce electrical energy that might potentially account for 58.1% (salt solution) and 16.5% (artificial seawater) of the energy required by the downstream RO system. Our results demonstrated the great potential of bioelectrochemical desalination. PMID:21526816

  11. Photocatalytic Treatment of Desalination Concentrate Using Optical Fibers Coated With Nanostructured Thin Films: Impact of Water Chemistry and Seasonal Climate Variations.

    PubMed

    Lin, Lu; Wang, Huiyao; Luo, Hongmei; Xu, Pei

    2016-05-01

    Treatment of desalination concentrate can reduce concentrate volume for disposal, increase water recovery and convert waste to resource. However, concentrate treatment is costly and energy intensive due to high concentrations of salt and recalcitrant organic matter in concentrate. Photocatalytic oxidation provides a novel energy neutral technology for concentrate treatment by degrading organic contaminants. Polymer-assisted hydrothermal deposition method was used to synthesize innovative pure and Fe-doped TiO2 mixed-phase nanocomposite thin films on side-glowing optical fibers (SOFs). The properties of the photocatalysts-coated SOF were characterized by surface morphology, nanostructure, crystallite size and phase and zeta potential. Photodegradation efficiency and durability of the photocatalysts treating different types of desalination concentrate was studied under natural sunlight. Synthetic solutions and reverse osmosis (RO) concentrates from brackish water and municipal wastewater desalination facilities were tested to elucidate the impact of water chemistry, operating conditions and seasonal climate variations (solar irradiation intensity and temperature) on photocatalytic efficiency. High ionic strength and divalent electrolyte ions in RO concentrate accelerated photocatalytic process, whereas the presence of carbonate species and organic matter hindered photodegradation. Outdoor testing of immobilized continuous-flow photoreactors suggested that the catalyst-coated SOFs can utilize a wide spectrum of natural sunlight and achieved durable photocatalytic performance. PMID:27038235

  12. Forward osmosis :a new approach to water purification and desalination.

    SciTech Connect

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and optimization

  13. Consider zig-zag impeller for desalination projects

    SciTech Connect

    O'Keefe, W.

    1993-10-01

    This article describes the application of a novel pump with a zig-zag impeller that is suited for vapor condensation. The pump is proposed to be used as the vapor condensation portion of a vapor desalination plant. Small scale testing is currently under way. No additional heat needs to be added to the seawater which boils by application of a vacuum to the desalting tank. The zig-zag pump then condenses the resulting pure water vapor and pumps it to a holding tank.

  14. Using mesoporous carbon electrodes for brackish water desalination.

    PubMed

    Zou, Linda; Li, Lixia; Song, Huaihe; Morris, Gayle

    2008-04-01

    Electrosorptive deionisation is an alternative process to remove salt ions from the brackish water. The porous carbon materials are used as electrodes. When charged in low voltage electric fields, they possess a highly charged surface that induces adsorption of salt ions on the surface. This process is reversible, so the adsorbed salt ions can be desorbed and the electrode can be reused. In the study, an ordered mesoporous carbon (OMC) electrode was developed for electrosorptive desalination. The effects of pore arrangement pattern (ordered and random) and pore size distribution (mesopores and micropores) on the desalination performance was investigated by comparing OMC and activated carbon (AC). It were revealed from X-ray diffraction and N(2) sorption measurements that AC has both micropores and mesopores, whereas ordered mesopores are dominant in OMC. Their performance as potential electrodes to remove salt was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests at a range of electrolyte concentrations and sweep rates. It is deduced that under the same electrochemical condition the specific capacitance values of OMC electrode (i.e. 133 F/g obtained from CV at a sweep rate of 1 mV/s in 0.1M NaCl solution) are larger than those of AC electrode (107 F/g), suggesting that the former has a higher desalting capacity than the latter. Furthermore, the OMC electrode shows a better rate capacity than the AC electrode. In addition, the desalination capacities were quantified by the batch-mode experiment at low voltage of 1.2V in 25 ppm NaCl solution (50 micros/cm conductivity). It was found that the adsorbed ion amounts of OMC and AC electrodes were 11.6 and 4.3 micromol/g, respectively. The excellent electrosorptive desalination performance of OMC electrode might be not only due to the suitable pore size (average of 3.3 nm) for the propagation of the salt ions, but also due to the ordered mesoporous structure that facilitates desorption of the

  15. Desalination technology: Report on the state-of-the-art

    SciTech Connect

    Awerbuch, L.; Roger, A.N.; Siebenthal, C.D.; Battey, R.

    1984-01-01

    A comparison of multistage flash distillation, multi-effect distillation, vapor compression distillation, reverse osmosis, plate and frame assembly, spiral wound, hollow fiber, and electrodialysis technologies for desalination concludes that the multi-effect, horizontal tube, low temperature process is technically superior. This process produces desalted water at the lowest cost when starting with a seawater feed. For brackish or wastewater feed, however, the membrane processes are more economical than distillation. The relative cost advantage between reverse osmosis and electrodialysis depends on the total concentration of dissolved salts and their chemical composition. 1 table.

  16. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

    PubMed

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-01-01

    Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes. PMID:20584603

  17. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    PubMed Central

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  18. Synergies of solar energy use in the desalination of seawater: A case study in northern Chile

    NASA Astrophysics Data System (ADS)

    Servert, Jorge F.; Cerrajero, Eduardo; Fuentealba, Edward L.

    2016-05-01

    The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the "conventional" option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.

  19. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    PubMed

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  20. Bioindicators as metrics for environmental monitoring of desalination plant discharges.

    PubMed

    de-la-Ossa-Carretero, J A; Del-Pilar-Ruso, Y; Loya-Fernández, A; Ferrero-Vicente, L M; Marco-Méndez, C; Martinez-Garcia, E; Giménez-Casalduero, F; Sánchez-Lizaso, J L

    2016-02-15

    Development of desalination projects requires simple methodologies and tools for cost-effective and environmentally-sensitive management. Sentinel taxa and biotic indices are easily interpreted in the perspective of environment management. Echinoderms are potential sentinel taxon to gauge the impact produced by brine discharge and the BOPA index is considered an effective tool for monitoring different types of impact. Salinity increase due to desalination brine discharge was evaluated in terms of these two indicators. They reflected the environmental impact and recovery after implementation of a mitigation measure. Echinoderms disappeared at the station closest to the discharge during the years with highest salinity and then recovered their abundance after installation of a diffuser reduced the salinity increase. In the same period, BOPA responded due to the decrease in sensitive amphipods and the increase in tolerant polychaete families when salinities rose. Although salinity changes explained most of the observed variability in both indicators, other abiotic parameters were also significant in explaining this variability. PMID:26781455

  1. Optimizing Nanopore Surface Properties for High-Efficiency Water Desalination

    NASA Astrophysics Data System (ADS)

    Cohen-Tanugi, David; Grossman, Jeffrey

    2011-03-01

    As water resources worldwide become rapidly scarcer, it is becoming increasingly important to devise new techniques to obtain clean water from seawater. At present, water purification technologies are limited by costly energy requirements relative to the theoretical thermodynamic limit and by insufficient understanding of the physical processes underlying ion filtration and fluid transport at the molecular scale. New advances in computational materials science offer a promising way to deepen our understanding of these physical phenomena. In this presentation, we describe a new approach for high-efficiency water desalination based on surface-engineered porous materials. This approach is especially relevant for promising technologies such as nanofiltration and membrane distillation, which offers promising advantages over traditional desalination technologies using mesoporous membranes that are only permeable to pure water vapor. More accurate molecular modeling of mesoporous and nanoporous materials represents a key step towards efficient large-scale treatment of seawater. Results regarding the effect of pore properties (surface texture, morphology, density, tortuosity) on desired performance characteristics such as ion selectivity, maximal water flux and energy requirements will be presented.

  2. Desalination of brackish waters using ion-exchange media

    SciTech Connect

    Pless, J.D.; Philips, M.L.F.; Voigt, J.A.; Moore, D.; Axness, M.; Krumhansl, J.L.; Nenoff, T.M.

    2006-06-21

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of around 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x}+2yAl{sub x}Si{sub 1}-xO{sub 2+y}), has an IEC of around to 2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = similar to 11 000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  3. Desalination of brackish waters using ion exchange media.

    SciTech Connect

    Pless, Jason D.; Krumhansl, James Lee; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn

    2005-01-01

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  4. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air. PMID:25084346

  5. Desalination of brackish groundwater by direct contact membrane distillation.

    PubMed

    Hou, D Y; Wang, J; Qu, D; Luan, Z K; Zhao, C W; Ren, X J

    2010-01-01

    The direct contact membrane distillation (DCMD) applied for desalination of brackish groundwater with self-made polyvinylidene fluoride (PVDF) membranes was presented in the paper. The PVDF membrane exhibited high rejection of non-volatile inorganic salt solutes and a maximum permeate flux 24.5 kg m(-2) h(-1) was obtained with feed temperature at 70 degrees C. The DCMD experimental results indicated that the feed concentration had no significant influence on the permeate flux and the rejection of solute. When natural groundwater was used directly as the feed, the precipitation of CaCO(3) would be formed and clog the hollow fibre inlets with gradual concentration of the feed, which resulted in a rapid decline of the module efficiency. The negative influence of scaling could be eliminated by acidification of the feed. Finally, a 250 h DCMD continuous desalination experiment of acidified groundwater with the concentration factor at constant 4.0 was carried out. The permeate flux kept stable and the permeate conductivity was less than 7.0 microS cm(-1) during this process. Furthermore, there was no deposit observed on the membrane surface. All of these demonstrated that DCMD could be efficiently used for production of high-quality potable water from brackish groundwater with water recovery as high as 75%. PMID:20388998

  6. Designing carbon nanotube membranes for efficient water desalination.

    PubMed

    Corry, Ben

    2008-02-01

    The transport of water and ions through membranes formed from carbon nanotubes ranging in diameter from 6 to 11 A is studied using molecular dynamics simulations under hydrostatic pressure and equilibrium conditions. Membranes incorporating carbon nanotubes are found to be promising candidates for water desalination using reverse osmosis, and the size and uniformity of tubes that is required to achieve a desired salt rejection is determined. By calculating the potential of mean force for ion and water translocation, we show that ions face a large energy barrier and will not pass through the narrower tubes studied ((5,5) and (6,6) "armchair" type tubes) but can pass through the wider (7,7) and (8,8) nanotubes. Water, however, faces no such impediment due to the formation of stable hydrogen bonds and crosses all of the tubes studied at very large rates. By measuring this conduction rate under a hydrostatic pressure difference, we show that membranes incorporating carbon nanotubes can, in principle, achieve a high degree of desalination at flow rates far in excess of existing membranes. PMID:18163610

  7. Tunable water desalination across graphene oxide framework membranes.

    PubMed

    Nicolaï, Adrien; Sumpter, Bobby G; Meunier, Vincent

    2014-05-14

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection of GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure ΔP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from ∼5 (n = 32 and h = 6.5 nm) to 400 L cm(-2) day(-1) MPa(-1) (n = 64 and h = 2.5 nm) and follows a Cnh(-αn) law. For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n ≤ 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (ΔP ∼ 10 MPa and h ∼ 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL cm(-2) day(-1) MPa(-1) to a few L cm(-2) day(-1) MPa(-1). PMID:24675972

  8. Tailor-made polyamide membranes for water desalination.

    PubMed

    Choi, Wansuk; Gu, Joung-Eun; Park, Sang-Hee; Kim, Seyong; Bang, Joona; Baek, Kyung-Youl; Park, Byoungnam; Lee, Jong Suk; Chan, Edwin P; Lee, Jung-Hyun

    2015-01-27

    Independent control of the extrinsic and intrinsic properties of the polyamide (PA) selective layer is essential for designing thin-film composite (TFC) membranes with performance characteristics required for water purification applications besides seawater desalination. Current commercial TFC membranes fabricated via the well-established interfacial polymerization (IP) approach yield materials that are far from ideal because their layer thickness, surface roughness, polymer chemistry, and network structure cannot be separately tailored. In this work, tailor-made PA-based desalination membranes based on molecular layer-by-layer (mLbL) assembly are presented. The mLbL technique enables the construction of an ultrathin and highly cross-linked PA selective layer in a precisely and independently controlled manner. The mLbL-assembled TFC membranes exhibit significant enhancements in performance compared to their IP-assembled counterparts. A maximum sodium chloride rejection of 98.2% is achieved along with over 2.5 times higher water flux than the IP-assembled counterpart. More importantly, this work demonstrates the broad applicability of mLbL in fabricating a variety of PA-based TFC membranes with nanoscale control of the selective layer thickness and roughness independent of the specific polyamide chemistry. PMID:25548959

  9. Tunable water desalination across Graphene Oxide Framework membranes

    SciTech Connect

    Nicolai, Adrien; Sumpter, Bobby G; Meunier, V.

    2014-01-01

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.

  10. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    SciTech Connect

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  11. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-01

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs. PMID:23885720

  12. Thermal and economic analysis of a solar multi-effect desalination system

    SciTech Connect

    Hamed, O.A.

    1996-10-01

    The performance of a solar multieffect desalination pilot plant has been studied over an extended period of one year. The impact of solar flux, ambient and sea water temperatures on the monthly average water production and plant performance ratios are investigated. The specific thermal and electric energy requirements of the system have been examined and compared with the requirements of conventional fossil fuel powered desalination plants. The economic viability of the solar desalination system has been assessed. It reveals that the capital and operating costs represent around 93 and 7 percent of the overall water production cost respectively. The capital cost critically depends on solar radiation and distiller performance ratio.

  13. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    NASA Astrophysics Data System (ADS)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and

  14. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    PubMed

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. PMID:22728187

  15. Environmental concerns of desalinating seawater using reverse osmosis.

    PubMed

    Tularam, Gurudeo Anand; Ilahee, Mahbub

    2007-08-01

    This Critical Review on environmental concerns of desalination plants suggests that planning and monitoring stages are critical aspects of successful management and operation of plants. The site for the desalination plants should be selected carefully and should be away from residential areas particularly for forward planning for possible future expansions. The concerning issues identified are noise pollution, visual pollution, reduction in recreational fishing and swimming areas, emission of materials into the atmosphere, the brine discharge and types of disposal methods used are the main cause of pollution. The reverse osmosis (RO) method is the preferred option in modern times especially when fossil fuels are becoming expensive. The RO has other positives such as better efficiency (30-50%) when compared with distillation type plants (10-30%). However, the RO membranes are susceptible to fouling and scaling and as such they need to be cleaned with chemicals regularly that may be toxic to receiving waters. The input and output water in desalination plants have to be pre and post treated, respectively. This involves treating for pH, coagulants, Cl, Cu, organics, CO(2), H(2)S and hypoxia. The by-product of the plant is mainly brine with concentration at times twice that of seawater. This discharge also includes traces of various chemicals used in cleaning including any anticorrosion products used in the plant and has to be treated to acceptable levels of each chemical before discharge but acceptable levels vary depending on receiving waters and state regulations. The discharge of the brine is usually done by a long pipe far into the sea or at the coastline. Either way the high density of the discharge reaches the bottom layers of receiving waters and may affect marine life particularly at the bottom layers or boundaries. The longer term effects of such discharge concentrate has not been documented but it is possible that small traces of toxic substances used in the

  16. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  17. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    SciTech Connect

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented.

  18. Localized hyper saline waters in Arabian Gulf from desalination activity--an example from South Kuwait.

    PubMed

    Uddin, Saif; Al Ghadban, Abdul Nabi; Khabbaz, Ahmed

    2011-10-01

    Desalination is the only means of reliable water supply in most of the Arabian Gulf States including Kuwait, Saudi Arabia, Bahrain, Qatar, and United Arab Emirates. Huge desalination capacities are installed on the western margin of the Arabian Gulf contributing to increased salinity off the coast. This paper presents long term salinity observation made near outfall of Az Zour Power and Desalination Plant in South Kuwait. The salinity values peak at around 50 ppt at observation station located in open gulf around 5 km from the outfall of the power and desalination plant. The observation highlights the stress on the local marine environment continued incremental salinity can impair the marine biodiversity in the area. The study suggests that a stringent post construction and operational offshore water quality assessment can help in early detection of potentially complex environmental issues. PMID:21213041

  19. Experimental results from RO-PRO: a next generation system for low-energy desalination.

    PubMed

    Achilli, Andrea; Prante, Jeri L; Hancock, Nathan T; Maxwell, Eric B; Childress, Amy E

    2014-06-01

    A pilot system was designed and constructed to evaluate reverse osmosis (RO) energy reduction that can be achieved using pressure-retarded osmosis (PRO). The RO-PRO experimental system is the first known system to utilize energy from a volume of water transferred from atmospheric pressure to elevated pressure across a semipermeable membrane to prepressurize RO feedwater. In other words, the system demonstrated that pressure could be exchanged between PRO and RO subsystems. Additionally, the first experimental power density data for a RO-PRO system is now available. Average experimental power densities for the RO-PRO system ranged from 1.1 to 2.3 W/m2. This is higher than previous river-to-sea PRO pilot systems (1.5 W/m2) and closer to the goal of 5 W/m2 that would make PRO an economically feasible technology. Furthermore, isolated PRO system testing was performed to evaluate PRO element performance with higher cross-flow velocities and power densities exceeding 8 W/m2 were achieved with a 28 g/L NaCl draw solution. From this empirical data, inferences for future system performance can be drawn that indicate future RO-PRO systems may reduce the specific energy requirements for desalination by ∼1 kWh/m3. PMID:24798068

  20. Corrosion coupon testing in natural waters: A case history dealing with reverse osmosis desalination of seawater

    SciTech Connect

    Kain, R.M.; Adamson, W.L.; Weber, B.

    1997-12-31

    This paper describes a series of corrosion tests performed to determine the general and localized corrosion behavior of two stainless alloys (UNS S31603 and UNS N08367) and 70/30 CuNi (UNS C71500) in three aqueous environments associated with advanced reverse osmosis (TO) desalination of natural seawater. In addition to seawater (the RO feed stock), the other environments included a 2nd-pass RO brine with lower chloride content and total dissolved solids than raw seawater, and an ultrapure 3rd-pass permeate. Two ASTM standards were reviewed for guidance in the design of the experiment. Since testing could be conducted in an operating prototype RO system, the test program followed the general procedures for an in-plant corrosion tests described by ASTM G4-95: Standard Guide for Conducting Corrosion Coupon Tests in Field Applications. This standard, along with G78-95: Standard Guide for Crevice Corrosion Testing of Iron-Base and Nickel-Base Alloys in Seawater and Other Chloride-Containing Environments, provided guidance in the selection of test specimens and mounting fixtures as well as crevice formers utilized. The G78-95 standard guide also provided considerations associated with the interpretation of the crevice corrosion test results.

  1. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    SciTech Connect

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically

  2. Effectiveness of water desalination by membrane distillation process.

    PubMed

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  3. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    PubMed Central

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2013-01-01

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm2/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes. PMID:24196437

  4. Effectiveness of Water Desalination by Membrane Distillation Process

    PubMed Central

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  5. Quantized water transport: ideal desalination through graphyne-4 membrane.

    PubMed

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E G; Meng, Sheng

    2013-01-01

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm(2)/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes. PMID:24196437

  6. Water desalination using capacitive deionization with microporous carbon electrodes.

    PubMed

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination. PMID:22329838

  7. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.

    PubMed

    Pugazhenthiran, Nalenthiran; Sen Gupta, Soujit; Prabhath, Anupama; Manikandan, Muthu; Swathy, Jakka Ravindran; Raman, V Kalyan; Pradeep, Thalappil

    2015-09-16

    We describe a simple and inexpensive cellulose-derived and layer-by-layer stacked carbon fiber network electrode for capacitive deionization (CDI) of brackish water. The microstructure and chemical composition were characterized using spectroscopic and microscopic techniques; electrochemical/electrical performance was evaluated by cyclic voltammetry and 4-probe electrical conductivity and surface area by Brunauer-Emmett-Teller analysis, respectively. The desalination performance was investigated using a laboratory batch model CDI unit, under fixed applied voltage and varying salt concentrations. Electro-adsorption of NaCl on the graphite reinforced-cellulose (GrC) electrode reached equilibrium quickly (within 90 min) and the adsorbed salts were released swiftly (in 40 min) back into the solution, during reversal of applied potential. X-ray photoelectron spectroscopic studies clearly illustrate that sodium and chloride ions were physisorbed on the negative and positive electrodes, respectively during electro-adsorption. This GrC electrode showed an electro-adsorption capacity of 13.1 mg/g of the electrode at a cell potential of 1.2 V, with excellent recyclability and complete regeneration. The electrode has a high tendency for removal of specific anions, such as fluoride, nitrate, chloride, and sulfate from water in the following order: Cl->NO3->F->SO4(2-). GrC electrodes also showed resistance to biofouling with negligible biofilm formation even after 5 days of incubation in Pseudomonas putida bacterial culture. Our unique cost-effective methodology of layer-by-layer stacking of carbon nanofibers and concurrent reinforcement using graphite provides uniform conductivity throughout the electrode with fast electro-adsorption, rapid desorption, and extended reuse, making the electrode affordable for capacitive desalination of brackish water. PMID:26305260

  8. Full-depth desalination of warm sea ice

    NASA Astrophysics Data System (ADS)

    Jardon, F. P.; Vivier, F.; Vancoppenolle, M.; LourençO, A.; Bouruet-Aubertot, P.; Cuypers, Y.

    2013-01-01

    Abstract The large-scale Arctic sea-ice retreat induces a gradual replacement of thick, multi-year sea ice by thinner first-year ice. The latter has distinctive physical properties and is in particular substantially saltier. It is generally thought that while salt rejection occurs primarily during ice formation in winter, most of the remaining brine is flushed out of the ice by the percolating surface melt water in summer. Here, it is argued that a substantial part of this residual <span class="hlt">desalination</span> of first-year sea ice can occur well before summer melt, due to brine convection over the full thickness of the ice, once the ice temperature is higher than a threshold that depends on bulk salinity and thickness. This critical temperature is substantially higher than the permeability threshold. The argument stems from a theoretical analysis of the porous Rayleigh number depicting the propensity for convection in the mushy-layer theory. It is supported by simulations performed with a state-of-the-art 1-D sea-ice model. The study was initially motivated by observations collected in March 2007 in Storfjorden, Svalbard. Those are indirect, however, and are thus presented here as a possible example. Two sporadic anomalies of seawater salinity were recorded close to the base of 40 cm thick ice in temperature conditions that are incompatible with ice formation. Analyses and simulations forced with observed atmospheric conditions suggest that the second peak is caused by flushing of meltwater, while the first and most intense peak is likely associated with an episode of brine convection over the full depth of the ice, yielding significant <span class="hlt">desalination</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897452','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897452"><span id="translatedtitle">Forward Osmosis in India: Status and Comparison with Other <span class="hlt">Desalination</span> Technologies</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be <span class="hlt">desalinated</span> to make it drinkable. While <span class="hlt">desalination</span> technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for <span class="hlt">desalination</span>. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing <span class="hlt">desalination</span>. As energy consumption and associated greenhouse gas emissions are one of the major concerns of <span class="hlt">desalination</span>, this paper concludes that forward osmosis is an emerging sustainable technology for seawater <span class="hlt">desalination</span>. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well. PMID:27350984</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27350984','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27350984"><span id="translatedtitle">Forward Osmosis in India: Status and Comparison with Other <span class="hlt">Desalination</span> Technologies.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehta, Dhruv; Gupta, Lovleen; Dhingra, Rijul</p> <p>2014-01-01</p> <p>With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be <span class="hlt">desalinated</span> to make it drinkable. While <span class="hlt">desalination</span> technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for <span class="hlt">desalination</span>. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing <span class="hlt">desalination</span>. As energy consumption and associated greenhouse gas emissions are one of the major concerns of <span class="hlt">desalination</span>, this paper concludes that forward osmosis is an emerging sustainable technology for seawater <span class="hlt">desalination</span>. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well. PMID:27350984</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24940607','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24940607"><span id="translatedtitle">Enhancement in ion adsorption rate and <span class="hlt">desalination</span> efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep</p> <p>2014-07-01</p> <p>Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their <span class="hlt">desalination</span> efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average <span class="hlt">desalination</span> efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area <span class="hlt">utilization</span>, and the magnitude of electric field force acting on an ion of unit charge for each potential. PMID:24940607</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21156298','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21156298"><span id="translatedtitle">Long-term storage facility for reactor compartments in Sayda Bay - German support for <span class="hlt">utilization</span> of <span class="hlt">nuclear</span> submarines in Russia</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang; Noack, Volker; Baeuerle, Guenther</p> <p>2007-07-01</p> <p>The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for <span class="hlt">nuclear</span> submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all <span class="hlt">nuclear</span>-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted waste monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for <span class="hlt">nuclear</span> submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/20798004','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/20798004"><span id="translatedtitle">REIMR - A Process for <span class="hlt">Utilizing</span> Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in <span class="hlt">Nuclear</span> Thermal Propulsion</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ballard, Richard O.</p> <p>2006-01-20</p> <p>This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of <span class="hlt">nuclear</span> thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060024932','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060024932"><span id="translatedtitle">REIMR - A Process for <span class="hlt">Utilizing</span> Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in <span class="hlt">Nuclear</span> Thermal Propulsion</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ballard, RIchard O.</p> <p>2006-01-01</p> <p>This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of <span class="hlt">nuclear</span> thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AIPC..813..514B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AIPC..813..514B"><span id="translatedtitle">REIMR - A Process for <span class="hlt">Utilizing</span> Liquid Rocket Propulsion-Oriented `Lessons Learned' to Mitigate Development Risk in <span class="hlt">Nuclear</span> Thermal Propulsion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballard, Richard O.</p> <p>2006-01-01</p> <p>This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the ``Fundamental Root Causes'' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of <span class="hlt">nuclear</span> thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/5762747','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/5762747"><span id="translatedtitle">Department of Energy plan for recovery and <span class="hlt">utilization</span> of <span class="hlt">nuclear</span> byproducts from defense wastes. Volume 1. Executive summary</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p></p> <p>1983-08-01</p> <p><span class="hlt">Nuclear</span> byproducts are a major national resource that has yet to be incorporated into the economy. The current Defense Byproducts Program is designed to match specific military and commercial needs with the availability of valuable products which are currently treated as waste at considerable expense in waste management costs. This program plan focuses on a few specific areas with the greatest potential for near-term development and application. It also recognizes the need for a continuing effort to develop new applications for byproducts and to continue to assess the impacts on waste management. The entire program has been, and will continue to be structured so as to ensure the safety of the public and maintain the purity of the environment. Social and institutional concerns have been recognized and will be handled appropriately. A significant effort will be undertaken to inform the public of the benefits of byproduct use and of the care being taken to ensure safe, efficient operation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3219496','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3219496"><span id="translatedtitle">Phylogenetic <span class="hlt">utility</span> of the <span class="hlt">nuclear</span> genes AGAMOUS 1 and PHYTOCHROME B in palms (Arecaceae): an example within Bactridinae</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ludeña, Bertha; Chabrillange, Nathalie; Aberlenc-Bertossi, Frédérique; Adam, Hélène; Tregear, James W.; Pintaud, Jean-Christophe</p> <p>2011-01-01</p> <p>Background and Aims Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy <span class="hlt">nuclear</span> genes as valuable tools for palm phylogenetics. Methods New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated. Key Results The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS <span class="hlt">nuclear</span> markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics. Conclusions AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JHyd..519.2642M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JHyd..519.2642M"><span id="translatedtitle">The end of scarcity? Water <span class="hlt">desalination</span> as the new cornucopia for Mediterranean Spain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>March, Hug; Saurí, David; Rico-Amorós, Antonio M.</p> <p>2014-11-01</p> <p>In this paper we explore the new orientation taken by Spanish water policy since the beginning of the 21st century and very specifically the shift towards <span class="hlt">desalination</span> as an alternative to other water supply options such as river regulation or inter-basin water transfers. <span class="hlt">Desalination</span> has been seen as the cure for everything that dams and inter-basin water transfers were unable to solve, including droughts, scarcities, social conflicts, environmental impacts, and political rivalries among the different Spanish regions. <span class="hlt">Desalination</span> also means a new and powerful element in water planning and management that could provide water for the continuous expansion of the urban and tourist growth machine in Mediterranean Spain and thus relax possible water constraints on this growth. However, by 2012 most new <span class="hlt">desalination</span> plants along the Mediterranean coast remained almost idle. Focusing on the case of the Mancomunidad de los Canales del Taibillla in South-eastern Spain, our aim is to develop a critical, integrated and reflexive perspective on the use of <span class="hlt">desalination</span> as a source of water for urban and regional growth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21077623','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21077623"><span id="translatedtitle">Microbial electrodialysis cell for simultaneous water <span class="hlt">desalination</span> and hydrogen gas production.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehanna, Maha; Kiely, Patrick D; Call, Douglas F; Logan, Bruce E</p> <p>2010-12-15</p> <p>A new approach to water <span class="hlt">desalination</span> is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial <span class="hlt">desalination</span> cell. <span class="hlt">Desalination</span> efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the <span class="hlt">desalination</span> chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m(3) H(2)/m(3) d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the <span class="hlt">desalination</span> process self-sustaining with respect to electrical power requirements. PMID:21077623</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26373945','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26373945"><span id="translatedtitle">Simultaneous Removal of Phenol and Dissolved Solids from Wastewater Using Multichambered Microbial <span class="hlt">Desalination</span> Cell.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pradhan, Harapriya; Jain, Sumat Chand; Ghangrekar, Makarand M</p> <p>2015-12-01</p> <p>Microbial <span class="hlt">desalination</span> cell (MDC) has great potential toward direct electricity generation from wastewater and concurrent <span class="hlt">desalination</span> through potential difference developed due to microbial activity. Degradation of phenol by isolate Pseudomonas aeruginosa in anodic chamber and simultaneous <span class="hlt">desalination</span> of water in middle <span class="hlt">desalination</span> chamber of multichamber MDC is demonstrated in this study. Performance of the MDCs with different anodic inoculum conditions, namely pure culture of P. aeruginosa (MDC-1), 50 % v/v mixture of P. aeruginosa and anaerobic mixed consortia (MDC-2) and anaerobic mixed consortia (MDC-3), was evaluated to compare the phenol degradation in anodic chamber, bioelectricity generation, and simultaneous total dissolved solids (TDS) removal from saline water in <span class="hlt">desalination</span> chamber. Synergistic effect between P. aeruginosa and mixed anaerobic consortia as inoculum was evident in MDC-2 demonstrating phenol degradation of 90 %, TDS removal of 75 % in 72 h of reaction time along with higher power generation of 27.5 mW/m(2) as compared to MDC-1 (95 %, 64 %, 12.8 mW/m(2), respectively) and MDC-3 (58 %, 52 %, 4.8 mW/m(2), respectively). The results illustrate that the multichamber MDC-2 is effective for simultaneous removal of phenol and dissolved solids contained in industrial wastewaters. PMID:26373945</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27232262','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27232262"><span id="translatedtitle">Reverse osmosis <span class="hlt">desalination</span> of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei</p> <p>2016-07-01</p> <p>With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water <span class="hlt">desalination</span>. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) <span class="hlt">desalination</span>, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO <span class="hlt">desalination</span> performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current <span class="hlt">desalination</span> performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water <span class="hlt">desalination</span> applications. PMID:27232262</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016Nanot..27A4002D&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016Nanot..27A4002D&link_type=ABSTRACT"><span id="translatedtitle">Reverse osmosis <span class="hlt">desalination</span> of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei</p> <p>2016-07-01</p> <p>With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water <span class="hlt">desalination</span>. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) <span class="hlt">desalination</span>, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO <span class="hlt">desalination</span> performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion–GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current <span class="hlt">desalination</span> performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water <span class="hlt">desalination</span> applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70027145','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70027145"><span id="translatedtitle">Use of simulated evaporation to assess the potential for scale formation during reverse osmosis <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huff, G.F.</p> <p>2004-01-01</p> <p>The tendency of solutes in input water to precipitate efficiency lowering scale deposits on the membranes of reverse osmosis (RO) <span class="hlt">desalination</span> systems is an important factor in determining the suitability of input water for <span class="hlt">desalination</span>. Simulated input water evaporation can be used as a technique to quantitatively assess the potential for scale formation in RO <span class="hlt">desalination</span> systems. The technique was demonstrated by simulating the increase in solute concentrations required to form calcite, gypsum, and amorphous silica scales at 25??C and 40??C from 23 <span class="hlt">desalination</span> input waters taken from the literature. Simulation results could be used to quantitatively assess the potential of a given input water to form scale or to compare the potential of a number of input waters to form scale during RO <span class="hlt">desalination</span>. Simulated evaporation of input waters cannot accurately predict the conditions under which scale will form owing to the effects of potentially stable supersaturated solutions, solution velocity, and residence time inside RO systems. However, the simulated scale-forming potential of proposed input waters could be compared with the simulated scale-forming potentials and actual scale-forming properties of input waters having documented operational histories in RO systems. This may provide a technique to estimate the actual performance and suitability of proposed input waters during RO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016AIPC.1734n0001D&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016AIPC.1734n0001D&link_type=ABSTRACT"><span id="translatedtitle">Integration of solar process heat into an existing thermal <span class="hlt">desalination</span> plant in Qatar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.</p> <p>2016-05-01</p> <p>The water supply of many countries in the Middle East relies mainly on water <span class="hlt">desalination</span>. In Qatar, the water network is completely fed with water from <span class="hlt">desalination</span> plants. One of these power and <span class="hlt">desalination</span> plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal <span class="hlt">desalination</span> is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the <span class="hlt">desalination</span> units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25092215','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25092215"><span id="translatedtitle">Electrokinetic <span class="hlt">desalination</span> using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Qile; Kong, Xian; Li, Jipeng; Lu, Diannan; Liu, Zheng</p> <p>2014-09-21</p> <p>A new concept of electrokinetic <span class="hlt">desalination</span> using a CNT honeycomb is presented through molecular dynamics simulation. The preferential translocation of ions towards the outlets near two electrodes was realized by applying an electric field perpendicular to bulk fluid flow in a CNT network, which, in the meantime, generated deionized water flux discharged from the central outlets. The effects of the major factors such as electric field strength, numbers of separation units, diameter of CNT, and ion concentration on the <span class="hlt">desalination</span> were examined. It was shown that over 95% salt rejection and around 50% fresh water recovery were achieved by the presented module by applying an electric field of 0.8 V nm(-1). CNT diameter, which is critical to ion rejection without the electric field, had a marginal effect on the <span class="hlt">desalination</span> of this new module when a strong electric field was applied. The <span class="hlt">desalination</span> was also not sensitive to ion concentration, indicating its excellent workability for a wide range of water salinity, e.g. from brackish water to seawater. A potential of mean force profile revealed a free energy barrier as large as 2.0-6.0 kcal mol(-1) for ions to move opposite to the implemented electrical force. The simulation confirmed the high potential of the CNT honeycomb in water <span class="hlt">desalination</span>. PMID:25092215</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/20453317','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/20453317"><span id="translatedtitle">Potential drawbacks associated with agricultural irrigation with treated wastewaters from <span class="hlt">desalinated</span> water origin and possible remedies.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lahav, Ori; Kochva, Malka; Tarchitzky, Jorge</p> <p>2010-01-01</p> <p>Over 90% of the water supplied in the coastal region in Israel in 2013 (600 Mm(3) y(-1)) will be from <span class="hlt">desalination</span> plants. The wastewater generated from this water (>400 Mm(3) y(-1)) is planned, after proper treatment, to be reused for agricultural irrigation, making this low-salinity water the main agricultural-sector future water source. In this respect both the Mg(2 + ) concentration and the Sodium Adsorption Ratio value of the water are of concern. We show that the typical Na(+) concentration addition to wastewater (between approximately 100 and approximately 165 mg L(-1)) is much higher than the combined addition of Ca(2 + ) and Mg(2 + ) (between 0 and several mg L(-1)). Since <span class="hlt">desalinated</span> water is typically supplied with low Ca(2 + ) and Mg(2 + ) concentrations ( approximately 35 and 0 mg L(-1) respectively), the treated wastewater is characterized by very low Mg(2 + ) concentrations, low salinity and very high SAR values, typically >6 and up to 10 (meq L(-1))(0.5). SAR values can be lowered by adding either Ca(2 + ) or Mg(2 + ) to <span class="hlt">desalinated</span> water. Adding Mg(2 + ) is preferable from both health (minimizing cardiovascular disease hazards) and agriculture (inexpensive Mg fertilization) aspects. The low cost of Mg(2 + ) addition at the post-treatment stage of <span class="hlt">desalination</span> plants corroborates the request for Mg(2 + ) addition in regions where treated wastewater from <span class="hlt">desalinated</span> water origin is planned to be reused for irrigation. PMID:20453317</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19895465','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19895465"><span id="translatedtitle">Electrodialysis <span class="hlt">desalination</span> of fish sauce: electrodialysis performance and product quality.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn</p> <p>2009-09-01</p> <p>Fish sauce has a unique, pleasant flavor, but contains high levels of sodium chloride, which is nowadays not desirable for health-conscious consumers. Although many researchers have attempted to solve this problem by substituting sodium with potassium in fish sauce, potassium-based products are still unsuitable for patients with kidney disease. Thus, electrodialysis (ED) <span class="hlt">desalination</span> of fish sauce was carried out. The rate of salt removal, evolution of total soluble solids, and electrical conductivity of the electrodialysis-treated fish sauce were investigated. Moreover, the system performance in terms of yield, energy consumption, and current efficiency were examined. Density, viscosity, ion concentrations (that is, Na(+), K(+)), total nitrogen, amino nitrogen, and color were investigated at various values of input voltage (6, 7, and 8 V) and remaining salt concentration (22%, 18%, 14%, 10%, 6%, and 2%[w/w]). The results indicated that an increase in the input voltage led to an increase in the rates of salt removal, electrical conductivity, and total soluble solids. The energy consumption increased whereas current efficiency and yield decreased significantly with an increase in input voltage and the salt removal level. Physicochemical properties of the treated fish sauce, in terms of the total soluble solids, density, viscosity, ion concentrations (that is, Na(+), K(+)), total nitrogen, and color were significantly affected by the input voltage and the salt-removal level. PMID:19895465</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25799521','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25799521"><span id="translatedtitle">Water <span class="hlt">desalination</span> using nanoporous single-layer graphene.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Surwade, Sumedh P; Smirnov, Sergei N; Vlassiouk, Ivan V; Unocic, Raymond R; Veith, Gabriel M; Dai, Sheng; Mahurin, Shannon M</p> <p>2015-05-01</p> <p>By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a <span class="hlt">desalination</span> membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 10(6) g m(-2) s(-1) at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m(-2) s(-1) atm(-1). PMID:25799521</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23848277','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23848277"><span id="translatedtitle">Simulation insights for graphene-based water <span class="hlt">desalination</span> membranes.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Konatham, Deepthi; Yu, Jing; Ho, Tuan A; Striolo, Alberto</p> <p>2013-09-24</p> <p>Molecular dynamics simulations were employed to study the transport of water and ions through pores created on the basal plane of one graphene sheet (GS). Graphene pore diameters ranged from 7.5 to 14.5 Å. Different pore functionalities were considered, obtained by tethering various functional groups to the terminal carbon atoms. The ease of ion and water translocation across the pores was monitored by calculating the potential of mean force along the direction perpendicular to the GS pore. The results indicate that effective ion exclusion can be achieved only using nonfunctionalized (pristine) pores of diameter ~7.5 Å, whereas the ions can easily penetrate pristine pores of diameters ~10.5 and 14.5 Å. Carboxyl functional groups can enhance ion exclusion for all pores considered, but the effect becomes less pronounced as both the ion concentration and the pore diameter increase. When compared to a carbon nanotube of similar pore diameter, our results suggest that GS pores functionalized with COO(-) groups are more effective in excluding Cl(-) ions from passing through the membrane. Our results suggest that narrow graphene pores functionalized with hydroxyl groups remain effective at excluding Cl(-) ions even at moderate solution ionic strength. The results presented could be useful for the design of water <span class="hlt">desalination</span> membranes. PMID:23848277</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25137614','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25137614"><span id="translatedtitle">Does hindered transport theory apply to <span class="hlt">desalination</span> membranes?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dražević, Emil; Košutić, Krešimir; Kolev, Vesselin; Freger, Viatcheslav</p> <p>2014-10-01</p> <p>As reverse osmosis (RO) and nanofiltration polyamide membranes become increasingly used for water purification, prediction of pollutant transport is required for membrane development and process engineering. Many popular models use hindered transport theory (HTT), which considers a spherical solute moving through an array of fluid-filled rigid cylindrical pores. Experiments and molecular dynamic simulations, however, reveal that polyamide membranes have a distinctly different structure of a "molecular sponge", a network of randomly connected voids widely distributed in size. In view of this disagreement, this study critically examined the validity of HTT by directly measuring diffusivities of several alcohols within a polyamide film of commercial RO membrane using attenuated total reflection-FTIR. It is found that measured diffusivities deviate from HTT predictions by as much as 2-3 orders of magnitude. This result indicates that HTT does not adequately describe solute transport in <span class="hlt">desalination</span> membranes. As a more adequate alternative, the concept of random resistor networks is suggested, with resistances described by models of activated transport in "soft" polymers without a sharp size cutoff and with a proper address of solute partitioning. PMID:25137614</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatNa..10..459S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatNa..10..459S"><span id="translatedtitle">Water <span class="hlt">desalination</span> using nanoporous single-layer graphene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon M.</p> <p>2015-05-01</p> <p>By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a <span class="hlt">desalination</span> membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 106 g m-2 s-1 at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m-2 s-1 atm-1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011APS..DFDE15001L&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011APS..DFDE15001L&link_type=ABSTRACT"><span id="translatedtitle">Vapor transport through short hydrophobic nanopores for <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Rahman, Faizur; Karnik, Rohit</p> <p>2011-11-01</p> <p>We propose a concept for <span class="hlt">desalination</span> of water by reverse osmosis (RO) using a vapor-trapping membrane composed of short hydrophobic nanopores and separates the salt water (feed) and the fresh water (permeate) on each side. The feed water is vaporized by applied pressure and the water vapor condenses on the permeate side accompanied by recovery of latent heat. A probabilistic model based on rarified gas conditions predicted 3-5 times larger mass flux by the proposed membrane than conventional RO membranes at temperatures in the range of 30-50C. To realize the short hydrophobic nanopores, gold was deposited at the entrance of alumina pores followed by SAM formation. The fraction of leaking pores was confirmed to be less than 0.2% using a calcium ion indicator (Fluo-4). Finally, a microfluidic flow cell was fabricated for characterizing the transport properties of the membranes. The authors would like to thank the King Fahd University of Petroleum and Minerals in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6886971','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6886971"><span id="translatedtitle">Improved solvents for seawater <span class="hlt">desalination</span> (the Puraq process)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Not Available</p> <p>1991-01-01</p> <p>The Puraq process for <span class="hlt">desalinating</span> seawater is based on solven extraction of fresh water from seawater using specially tailored liquid polymers with molecular weights of 3000 or less. This polymeric solvent insures that the solubility of solvent in the coexistent aqueous phases within the process will be essentially zero. Although it was indicated earlier that the upper limit of polymer content in recycle solvent stream could not exceed 92%, this restrictive upper limit could be exceeded by broadening the field of possible polymer compositions used in choosing a particular sample. This would further decrease the projected cost of product water from $2.03 to $1.08 per thousand gallons. Presence in the polymer of water-soluble components prevented the separation of water droplets when determining the cloud point with small amounts of water in the sample. A number of measurements of true'' phase points indicated that for most samples, the difference in temperatures of phase separation between compositions of 80 and 98% was 15 C or less.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/5151066','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/5151066"><span id="translatedtitle">Guidelines and workbook for assessment of organization and administration of <span class="hlt">utilities</span> seeking operating license for a <span class="hlt">nuclear</span> power plant. Guidelines for <span class="hlt">utility</span> organization and administration plan. Volume 1, Revision 1</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Thurber, J.A.; Olson, J.; Osborn, R.N.; Sommers, P.; Widrig, R.D.</p> <p>1986-09-01</p> <p>Volumes 1 and 2 of this report are a partial response to the requirements of Item I.B.1.1 of the ''NRC Action Plan Developed as a Result of the TMI-2 Accident,'' NUREG-0660, and are designed to serve as a basis for replacing the earlier NUREG-0731, ''Guidelines for <span class="hlt">Utility</span> Management Structure and Technical Resources.'' These Guidelines are intended to provide guidance to the user in preparing a written plan for a proposed <span class="hlt">nuclear</span> organization and administration. The purpose of the Workbook (Vol. 2) is to guide the NRC reviewer through a systematic review and assessment of a proposed organization and administration. It is the NRC's intention to incorporate these Guidelines and Workbook into a future revision of the Standard Review Plan (SRP), NUREG-0800. However, at this time the report is being published so that the material may be used on a voluntary basis by industry to systematically prepare or evaluate their organization or administration plans. Use of the report by the NRC would not occur until after it has been incorpoarted in the SRP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/948995','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/948995"><span id="translatedtitle">Candidate for solar power : a novel <span class="hlt">desalination</span> technology for coal bed methane produced water.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hanley, Charles J.; Andelman, Marc; Hightower, Michael M.; Sattler, Allan Richard</p> <p>2005-03-01</p> <p>Laboratory and field developments are underway to use solar energy to power a <span class="hlt">desalination</span> technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U.S., as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be <span class="hlt">utilized</span> for various applications, but also for its potentially lower energy consumption compared to other technologies, such as reverse osmosis. This, coupled with the remoteness (Figure 1) of thousands of these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness and energy requirements of each technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to driving the design of integrated PV-powered treatment systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Early laboratory studies of capacitive deionization have shown promise that at common CBM salinity levels, the technology may require less energy, is less susceptible to fouling, and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduces the ion concentrations in the liquid. This paper discusses the results of these laboratory studies and extends these results to energy consumption and design considerations for field implementation of produced water treatment using photovoltaic systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23941894','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23941894"><span id="translatedtitle">Carbon nanotube membranes with ultrahigh specific adsorption capacity for water <span class="hlt">desalination</span> and purification.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit</p> <p>2013-01-01</p> <p>Development of technologies for water <span class="hlt">desalination</span> and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional <span class="hlt">desalination</span> methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior <span class="hlt">desalination</span>, disinfection and filtration properties. PMID:23941894</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016AIPC.1734j0008P&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016AIPC.1734j0008P&link_type=ABSTRACT"><span id="translatedtitle">CSP cogeneration of electricity and <span class="hlt">desalinated</span> water at the Pentakomo field facility</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papanicolas, C. N.; Bonanos, A. M.; Georgiou, M. C.; Guillen, E.; Jarraud, N.; Marakkos, C.; Montenon, A.; Stiliaris, E.; Tsioli, E.; Tzamtzis, G.; Votyakov, E. V.</p> <p>2016-05-01</p> <p>The Cyprus Institute's Pentakomo Field Facility (PFF) is a major infrastructure for research, development and testing of technologies relating to concentrated solar power (CSP) and solar seawater <span class="hlt">desalination</span>. It is located at the south coast of Cyprus near the sea and its environmental conditions are fully monitored. It provides a test facility specializing in the development of CSP systems suitable for island and coastal environments with particular emphasis on small units (<25 MWth) endowed with substantial storage, suitable for use in isolation or distributed in small power grids. The first major experiment to take place at the PFF concerns the development of a pilot/experimental facility for the co-generation of electricity and <span class="hlt">desalinated</span> seawater from CSP. Specifically, the experimental plant consists of a heliostat-central receiver system for solar harvesting, thermal energy storage in molten salts followed by a Rankine cycle for electricity production and a multiple-effect distillation (MED) unit for <span class="hlt">desalination</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1982pvse.conf...67N&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1982pvse.conf...67N&link_type=ABSTRACT"><span id="translatedtitle">The photovoltaic-powered water <span class="hlt">desalination</span> plant 'SORO' design, start up, operating experience</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neuhaeusser, G.; Mohn, J.; Petersen, G.</p> <p></p> <p>Design features, operational parameters, and test results of a year of operation of the SORO prototype photovoltaic (PV) reverse osmosis salt water <span class="hlt">desalinization</span> plant are described. Chemicals are added to the salt water to control the pH, prevent formation of compounds which could plug the flow system, and kill bacteria and slime which might grow in the solution. The water is pressurized and forced into contact with membranes which separate the fresh water from the brackish or sea water. The flow rate in the project was 180 l/h, with the main electrical energy load being the high pressure pump and the well pump. Batteries are charged before current is switched to power the <span class="hlt">desalinization</span> system. The plant yielded 1.50 cu of fresh water/day and is concluded to be a viable design for scale-up to larger production figures, besides being economically competitive with solar <span class="hlt">desalinization</span> installations where the salt content is 2000 ppm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21160777','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21160777"><span id="translatedtitle">Water <span class="hlt">desalination</span> as a possible opportunity for the GT- and H2-MHR</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Bogart, S. Locke; Schultz, Ken</p> <p>2004-07-01</p> <p>There is growing concern that many areas of the world are suffering ongoing and increasing water shortages. Much of this concern is manifested in the United Nation's World Water Assessment Programme, the results of which were published in the spring of 2003. Other researchers have corroborated the findings of this work. However, while the UN has characterized water availability as a 'crisis', this view would seem to be excessive. Nevertheless, many parts of the world, particularly in developing nations inclusive of the middle east, are experiencing severe water stress and some of these have embarked on large-scale seawater <span class="hlt">desalination</span> projects. The current work explores, in a preliminary way, the application of high temperature helium cooled reactors in either an electricity or a hydrogen production mode for <span class="hlt">desalination</span>. Three <span class="hlt">desalination</span> technologies are discussed: reverse osmosis (RO) and thermal processes using either Multi-stage flash distillation (MSF) or Multi-effect distillation (MED). For the latter, it is found that the waste heat rejected from a high temperature reactor comes in power levels and temperatures reasonably well suited for <span class="hlt">desalination</span>. An economic comparison was made using the best available data and scaling to compare the processes. What was found that reverse osmosis and thermal distillation possess comparable costs within the error bars of the analysis but that the former generally resulted in slightly lower costs. Thus the choice between them can be made with other criteria such as feed salinity and product quality. It was also found that <span class="hlt">desalinated</span> water co-produced with either electricity (RO and MED) or hydrogen (MED) are expected to cost about the same. Since hydrogen and <span class="hlt">desalinated</span> water can be produced off the grid, this co-production architecture appears attractive for the early deployment of high temperature helium cooled reactors. (authors)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/160981','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/160981"><span id="translatedtitle">Preliminary research study of a water <span class="hlt">desalination</span> system for the East Montana area subdivisions of El Paso County, El Paso, Texas. Water treatment technology program report No. 6. (Final)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Turner, C.; Swift, A.; Golding, P.</p> <p>1995-06-01</p> <p>Currently, water <span class="hlt">utility</span> districts in the East Montana area subdivisions are either unable to provide potable water within acceptable federal and/or state drinking water standards, or furnish an adequate water supply to area residents. This preliminary research study ascertained the economical and technical feasibility of a <span class="hlt">desalination</span> plant to treat brackish groundwater for potable use. Population growth, and the current and projected water demand and consumption were evaluated for the area. Water quality characterization of the local ground-water supply was conducted to evaluate the chemical composition and suitability of the groundwater for <span class="hlt">desalination</span>. Reverse osmosis, electrodialysis, and multistage flash distillation were evaluated on an economic and technical basis. The objective was to determine the least expensive system that produced a reliable water supply within federal and/or state drinking water standards. In conjunction, an evaluation of numerous brine disposal technologies was made based on economics, technical feasibility, and federal and state regulations. Several recommendations are presented that met the objectives of this study. A pilot <span class="hlt">desalination</span> plant investigation is proposed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/970543','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/970543"><span id="translatedtitle">TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY <span class="hlt">UTILIZING</span> THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT TO SAFELY AND EFFECTIVELY COMPLETE <span class="hlt">NUCLEAR</span> CONSTRUCTION WORK</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>LESO KF; HAMILTON HM; FARNER M; HEATH T</p> <p>2010-01-14</p> <p>Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of <span class="hlt">Nuclear</span> Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. <span class="hlt">Utilizing</span> the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that <span class="hlt">utilized</span> a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25549211','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25549211"><span id="translatedtitle">Functionalized thermo-responsive microgels for high performance forward osmosis <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartanto, Yusak; Yun, Seonho; Jin, Bo; Dai, Sheng</p> <p>2015-03-01</p> <p>Stimuli-responsive hydrogels were recently proposed for energy-saving forward osmosis (FO) process. However, their low water flux and dewatering ability for reuse make them less attractive for industrial <span class="hlt">desalination</span> process. In this work, the co-polymer microgels of N-isopropylacrylamide and acrylic acid with different mixing ratios were synthesized using surfactant-free emulsion polymerization to produce submicron-size hydrogels with high surface area and fast swelling-deswelling response. The microgels were employed as draw agents in a laboratory scale FO <span class="hlt">desalination</span> system. The microgel-based FO process performed a high water flux up to 23.8 LMH and high water recovery ability of 72.4%. In addition, we explored a new conductivity measurement method to online analyze water flux of the FO system. This on-line conductivity analysis approach appeared to be an accurate and efficient method for evaluating microgel-based FO <span class="hlt">desalination</span> performance. Our experimental data revealed that the stimuli-responsive microgel was an efficient draw agent for FO <span class="hlt">desalination</span>. PMID:25549211</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26302966','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26302966"><span id="translatedtitle">Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Li-Chiang; Choi, Jongwon; Grossman, Jeffrey C</p> <p>2015-10-14</p> <p>We computationally demonstrate that two-dimensional covalent triazine frameworks (CTFs) provide opportunities in water <span class="hlt">desalination</span>. By varying the chemical building blocks, the pore structure, chemistry, and membrane performance can be designed, leading to two orders of magnitude higher water permeability than polyamide membranes while maintaining excellent ability to reject salts. PMID:26302966</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24721664','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24721664"><span id="translatedtitle">Membrane scaling and flux decline during fertiliser-drawn forward osmosis <span class="hlt">desalination</span> of brackish groundwater.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phuntsho, Sherub; Lotfi, Fezeh; Hong, Seungkwan; Shaffer, Devin L; Elimelech, Menachem; Shon, Ho Kyong</p> <p>2014-06-15</p> <p>Fertiliser-drawn forward osmosis (FDFO) <span class="hlt">desalination</span> has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the <span class="hlt">desalination</span> of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result in any scaling when used as an FO draw solution (DS), diammonium phosphate (DAP or (NH4)2HPO4) resulted in significant scaling, which contributed to severe flux decline. Membrane autopsy using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) analysis indicated that the reverse diffusion of DAP from the DS to the feed solution was primarily responsible for scale formation during the FDFO process. Physical cleaning of the membrane with deionised water at varying crossflow velocities was employed to evaluate the reversibility of membrane scaling and the extent of flux recovery. For the membrane scaled using DAP as DS, 80-90% of the original flux was recovered when the crossflow velocity for physical cleaning was the same as the crossflow velocity during FDFO <span class="hlt">desalination</span>. However, when a higher crossflow velocity or Reynolds number was used, the flux was recovered almost completely, irrespective of the DS concentration used. This study underscores the importance of selecting a suitable fertiliser for FDFO <span class="hlt">desalination</span> of brackish groundwater to avoid membrane scaling and severe flux decline. PMID:24721664</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=259732&keyword=desalination&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=64251502&CFTOKEN=11135218','EPA-EIMS'); return false;" href="http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=259732&keyword=desalination&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=64251502&CFTOKEN=11135218"><span id="translatedtitle">IMPROVING THE QUALITY, AVAILABILITY AND SUSTAINABILITY OF DRINKING WATER SUPPLIES THROUGH ANTIFOULING AND ANTISCALING <span class="hlt">DESALINATION</span> MEMBRANES</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>Surface modification with the selected polymers is expected to reduce the fouling and scaling propensity of <span class="hlt">desalination</span> membranes by strongly binding water at the membrane surface. Foulants will interact with this bound water layer and not with the membrane surface itself....</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1136204','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1136204"><span id="translatedtitle">Solar Energy Water <span class="hlt">Desalination</span> in the United States and Saudi Arabia</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Luft, W.</p> <p>1981-04-01</p> <p>Five solar energy water <span class="hlt">desalination</span> systems are described. The systems will each deliver 6000 m3/day of desalted water from either seawater or brackish water. After the system definition study is completed in August 1981, two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 1 00 to 400 m3/day.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26800095','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26800095"><span id="translatedtitle">Tunable, Strain-Controlled Nanoporous MoS₂ Filter for Water <span class="hlt">Desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Weifeng; Yang, Yanmei; Weber, Jeffrey K; Zhang, Gang; Zhou, Ruhong</p> <p>2016-02-23</p> <p>The deteriorating state of global fresh water resources represents one of the most serious challenges that scientists and policymakers currently face. <span class="hlt">Desalination</span> technologies, which are designed to extract potable water from the planet's bountiful stores of seawater, could serve to alleviate much of the stress that presently plagues fresh water supplies. In recent decades, <span class="hlt">desalination</span> methods have improved via water-filtering architectures based on nanoporous graphene filters and artificial membranes integrated with biological water channels. Here, we report the auspicious performance (in simulations) of an alternative nanoporous <span class="hlt">desalination</span> filter constructed from a MoS2 nanosheet. In striking contrast to graphene-based filters, we find that the "open" and "closed" states of the MoS2 filter can be regulated by the introduction of mechanical strain, yielding a highly tunable nanopore interface. By applying lateral strain to the MoS2 filter in our simulations, we see that the transition point between "open" and "closed" states occurs under tension that induces about 6% cross-sectional expansion in the membrane (6% strain); the open state of the MoS2 filter demonstrates high water transparency and a strong salt filtering capability even under 12% strain. Our results thus demonstrate the promise of a controllable nanoporous MoS2 <span class="hlt">desalination</span> filter, wherein the morphology and size of the central nanopore can be precisely regulated by tensile strain. These findings support the design and proliferation of tunable nanodevices for filtration and other applications. PMID:26800095</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27019007','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27019007"><span id="translatedtitle">Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater <span class="hlt">Desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui</p> <p>2016-04-13</p> <p>Today's scientific advances in water <span class="hlt">desalination</span> dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the <span class="hlt">desalination</span> of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater <span class="hlt">desalination</span>, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater <span class="hlt">desalination</span> and high-salinity wastewater treatment. PMID:27019007</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=hydraulic&pg=3&id=ED526659','ERIC'); return false;" href="http://eric.ed.gov/?q=hydraulic&pg=3&id=ED526659"><span id="translatedtitle">Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater <span class="hlt">Desalination</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ladner, David Allen</p> <p>2009-01-01</p> <p>Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater <span class="hlt">desalination</span>. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51U..02Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51U..02Z"><span id="translatedtitle">Perspectives and Challenges for Water <span class="hlt">Desalination</span> - A Socio-Economic Multi-Regional Analysis and a Case Study for Texas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ziolkowska, J. R.; Scanlon, B. R.; Young, M.</p> <p>2013-12-01</p> <p>Water <span class="hlt">desalination</span> is anticipated to become a prospective solution for mitigating future water shortages in Texas. As of 2010, 46 municipal brackish water <span class="hlt">desalination</span> plants were operating in Texas with an estimated total <span class="hlt">desalination</span> capacity of about 120 million gallons per day (2.3% of state water use) (TWDB 2010; TWDB 2013). In 2011, 99% of the State of Texas suffered extreme drought, with large portions suffering through exceptional drought. This event was classified as the one-year drought of record. Moreover, the growing population of Texas and the subsequent growing water demand create an immediate need for long-term planning for a reliable and efficient water supply. <span class="hlt">Desalination</span>, even though acknowledged as a reliable option in many countries in the world, requires high investment costs and energy inputs. Current costs of <span class="hlt">desalinated</span> water can range between US1.09/1,000 gallons and US3.7/1,000 gallons (Arroyo and Shirazi 2012), which are about two to three times higher than water costs from conventional sources (San Antonio Water System 2012; AustinTexas.gov 2013). Economic efficiency is still the main factor determining future developments of <span class="hlt">desalination</span> investments in Texas, and the technology is still emerging. While currently only investment, maintenance and total capital costs per unit water are considered as factors determining viability of a <span class="hlt">desalination</span> plant, this study aims at depicting a broader picture of socio-economic impacts related to the construction project itself, both in the immediate region and adjacent communities and interlinked sectors. This study presents an Input-Output model for the brackish water <span class="hlt">desalination</span> plant in San Antonio, with the first stage expected to be completed in 2016. By using multi-regional and sectoral multipliers, the analysis shows that constructing the <span class="hlt">desalination</span> plant can create 2,050 jobs in the San Antonio region, while it will add 316 more jobs in other regions in Texas by 2016. Construction will</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26173458','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26173458"><span id="translatedtitle">Deletion of <span class="hlt">nuclear</span> factor-κB p50 upregulates fatty acid <span class="hlt">utilization</span> and contributes to an anti-obesity and high-endurance phenotype in mice.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Minegishi, Yoshihiko; Haramizu, Satoshi; Misawa, Koichi; Shimotoyodome, Akira; Hase, Tadashi; Murase, Takatoshi</p> <p>2015-09-15</p> <p>The transcription factor <span class="hlt">nuclear</span> factor-κB (NF-κB) plays an important role in regulating physiological processes such as immunity and inflammation. In addition to this primary role, NF-κB interacts physically with peroxisome proliferator-activated receptors regulating lipid metabolism-related gene expression and inhibits their transcriptional activity. Therefore, inhibition of NF-κB may promote fatty acid <span class="hlt">utilization</span>, which could ameliorate obesity and improve endurance capacity. To test this hypothesis, we attempted to elucidate the energy metabolic status of mice lacking the p50 subunit of NF-κB (p50 KO mice) from the tissue to whole body level. p50 KO mice showed a significantly lower respiratory quotient throughout the day than did wild-type (WT) mice; this decrease was associated with increased fatty acid oxidation activity in liver and gastrocnemius muscle of p50 KO mice. p50 KO mice that were fed a high-fat diet were also resistant to fat accumulation and adipose tissue inflammation. Furthermore, p50 KO mice showed a significantly longer maximum running time compared with WT mice, with a lower respiratory exchange ratio during exercise as well as higher residual muscle glycogen content and lower blood lactate levels after exercise. These results suggest that p50 deletion facilitates fatty acid catabolism, leading to an anti-obesity and high-endurance phenotype of mice and supporting the idea that NF-κB is an important regulator of energy metabolism. PMID:26173458</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/5402887','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/5402887"><span id="translatedtitle">(Radiopharmacokinetics: <span class="hlt">Utilization</span> of <span class="hlt">nuclear</span> medicine)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Wolf, W.</p> <p>1989-01-01</p> <p>The work performed in the 1986/1989 period can be characterized as one of testing and documenting that the Radiopharmacokinetic technique is both feasible and applicable to human studies, as well as developing spectroscopic methods for undertaking noninvasive human studies. Main accomplishments include studies which: show that drug targeting can be monitored noninvasively using radiolabeled drugs. The study that documented this finding involved an analysis of the comparative kinetics of biodistribution of {sup 195m}Pt-cisplatin to brain tumors, when administered intravenously and intra-arterially; show that such differential targeting of Platinum represents a differential quantity of drug and a differential amount of the active component reaching the target site; show that in vivo NMRS studies of drugs are possible, as documented by our studies of 5-fluorouracil; show that 5-fluorouracil can be trapped in tumors, and that such trapping may be directly correlatable to patient response; show that the radiopharmacokinetic technique can also be used effectively for the study of radiopharmaceuticals used for imaging, as documented in our studies with {sup 99m}T{sub c}-DMSA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5254K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5254K"><span id="translatedtitle">Managed Aquifer Recharge of Surplus <span class="hlt">Desalinated</span> Seawater: a MARSOL Case Study from Israel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurtzman, Daniel; Ganot, Yonatan; Russak, Ammos; Nitzan, Ido; Bernstein, Anat; Katz, Yoram; Guttman, Yossi</p> <p>2015-04-01</p> <p>MARSOL is an EU-funded project on demonstrating managed aquifer recharge (MAR) as a solution to water scarcity and drought. Among other activities in MARSOL, 7 demo-sites in Mediterranean countries were chosen for research and demonstration of different types of MAR (e.g. soil aquifer treatment, river infiltration basins etc.). One of these demo sites is the Menashe infiltration basin (Israel) in which MAR of surplus <span class="hlt">desalinated</span> sea water is demonstrated, monitored and investigated in the last year. Different operational circumstances create periods in which water from the Hadera seawater <span class="hlt">desalination</span> plant cannot be distributed through the national water carrier to consumers. A solution was set in MAR of this water through sandy infiltration ponds to the Israeli coastal aquifer which is consisted mainly from calcareous sandstone. Hydrological and geochemical aspects are of interest in this MAR operation due to the high discharge rates of low-salinity chlorinated water to the infiltration pond. Monitoring of operational events, laboratory experiments, controlled field-experiments and modelling are carried out aiming at clarifying the following issues: infiltration rates - spatial and temporal variability; recharge and withdrawal operation; disinfection by-products due to infiltration of chlorinated water; changes in hydraulic properties due to dissolution/precipitation processes; and using MAR of <span class="hlt">desalinated</span> water as a remineralization treatment. We will present some results concerning these aspects concentrating on the last one. Observations show that <span class="hlt">desalinated</span> water dissolve carbonates relatively fast in the unsaturated zone and shallow groundwater of the infiltration site. This process which increases significantly the water's alkalinity also enriches the water with magnesium which its deficiency in <span class="hlt">desalinated</span> seawater is an unsolved concern. Further increase in calcium and magnesium concentration requires flow in the aquifer through the calcareous</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/535169','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/535169"><span id="translatedtitle">Fate and control of blistering chemical warfare agents in Kuwait`s <span class="hlt">desalination</span> industry</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Khordagui, H.K.</p> <p>1997-01-01</p> <p>Kuwait, as most of the other states located along the Western shores of the Arabian Gulf, relies upon the Gulf as its main drinking water resource via <span class="hlt">desalination</span>. In case of seawater contamination with blistering chemical warfare agents, traces of the agents and/or degradation products in the finished water might pose a serious health hazard. The objective of the present review is to study the potential contamination, transport, fate, effect and control of blistering chemical warfare agents (CWAs), in the Kuwaiti <span class="hlt">desalination</span> industry. In general, all the environmental factors involved in the aquatic degradation of CWAs in Kuwait marine environment except for the high salinity in case of blistering agents such as sulphur mustard, and in favor of a fast degradation process. In case of massive releases of CWAs near the Kuwaiti shorelines, turbulence resulting from tidal cycles and high temperature will affect the dissolution process and extend the toxicity of the insoluble agent. Post- and pre-chlorination during the course of seawater <span class="hlt">desalination</span> will catalyze and significantly accelerate the hydrolysis processes of the CWAs. The heat exerted on CWAs during the power generation-<span class="hlt">desalination</span> processes is not expected to thermally decompose them. However, the steam heat will augment the agent`s rate of hydrolysis with subsequent acceleration in their rate of detoxification. Conventional pretreatment of feed seawater for reverse-osmosis <span class="hlt">desalination</span> is theoretically capable of reducing the concentration of CWAs by coprecipitation and adsorption on flocs formed during coagulation. Prechlorination and prolonged detention in time in pretreatment units will simultaneously promote hydrolysis reactions. 50 refs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNH31A1526A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNH31A1526A"><span id="translatedtitle">Identified Natural Hazards May Cause Adverse Impact on Sustainability of <span class="hlt">Desalination</span> Plants in Red Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aburizaiza, O. S.; Zaigham, N. A.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.; Eusufi, S. N.</p> <p>2011-12-01</p> <p>The Red Sea and its surrounding countries have harsh arid climatic conditions where fast growth of the socio-economic activities and rapid change of lifestyle have caused tremendous stress on water to the level of acute crisis. To meet the water demands, the Red Sea countries have adopted seawater <span class="hlt">desalination</span> giving priority against their land-based resources. Saudi Arabia is the largest <span class="hlt">desalinated</span>-water producers in the Red Sea and has practically no adequate backup plan in case of sudden unforeseen emergency. Out of about 3.64 million m3/day, Saudi Arabia is alone being <span class="hlt">desalinated</span> about 3.29 m3/day seawater from Red Sea and more projects are in progress. Present integrated research study has identified some of natural and anthropogenic hazards, which may be major threats to the quality of the seawater as well as to the <span class="hlt">desalination</span> plants themselves. Results of present study reveal that the submarine complex morphologic features may cause the isolation of Red Sea from any of the open sea, the increase in the seismicity trends, the active volcanism causing unique longitudinal as well as transverse deformations of the axial trough particularly in the southern part of the Red Sea, the consistently generating enormous hot-brine tectonic-factory all along the deeper parts of the Red Sea rifting trough and other related issues. Considering the identified odd conditions, the total dependence on seawater <span class="hlt">desalination</span> may not be worthwhile for sustainable water management strategy and consequent socio-economic developments in future. It is recommended that the priority should also be given mainly in three main disciplines to meet the future water challenges - one, developing reliable backup water management; second, alternate options for the supplementary resources of water; and third, the development and immediate implementation of the water-use conservation strategy plan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19664796','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19664796"><span id="translatedtitle">Harmful algae and their potential impacts on <span class="hlt">desalination</span> operations off southern California.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caron, David A; Garneau, Marie-Eve; Seubert, Erica; Howard, Meredith D A; Darjany, Lindsay; Schnetzer, Astrid; Cetinić, Ivona; Filteau, Gerry; Lauri, Phil; Jones, Burton; Trussell, Shane</p> <p>2010-01-01</p> <p>Seawater <span class="hlt">desalination</span> by reverse osmosis (RO) is a reliable method for augmenting drinking water supplies. In recent years, the number and size of these water projects have increased dramatically. As freshwater resources become limited due to global climate change, rising demand, and exhausted local water supplies, seawater <span class="hlt">desalination</span> will play an important role in the world's future water supply, reaching far beyond its deep roots in the Middle East. Emerging contaminants have been widely discussed with respect to wastewater and freshwater sources, but also must be considered for seawater <span class="hlt">desalination</span> facilities to ensure the long-term safety and suitability of this emerging water supply. Harmful algal blooms, frequently referred to as 'red tides' due to their vibrant colors, are a concern for <span class="hlt">desalination</span> plants due to the high biomass of microalgae present in ocean waters during these events, and a variety of substances that some of these algae produce. These compounds range from noxious substances to powerful neurotoxins that constitute significant public health risks if they are not effectively and completely removed by the RO membranes. Algal blooms can cause significant operational issues that result in increased chemical consumption, increased membrane fouling rates, and in extreme cases, a plant to be taken off-line. Early algal bloom detection by <span class="hlt">desalination</span> facilities is essential so that operational adjustments can be made to ensure that production capacity remains unaffected. This review identifies the toxic substances, their known producers, and our present state of knowledge regarding the causes of toxic episodes, with a special focus on the Southern California Bight. PMID:19664796</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26961714','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26961714"><span id="translatedtitle">Bioelectrochemical systems-driven directional ion transport enables low-energy water <span class="hlt">desalination</span>, pollutant removal, and resource recovery.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia</p> <p>2016-09-01</p> <p>Bioelectrochemical systems (BESs) are integrated water treatment technologies that generate electricity using organic matter in wastewater. In situ use of bioelectricity can direct the migration of ionic substances in a BES, thereby enabling water <span class="hlt">desalination</span>, resource recovery, and valuable substance production. Recently, much attention has been placed on the microbial <span class="hlt">desalination</span> cells in BESs to drive water <span class="hlt">desalination</span>, and various configurations have optimized electricity generation and <span class="hlt">desalination</span> performance and also coupled hydrogen production, heavy metal reduction, and other reactions. In addition, directional transport of other types of charged ions can remediate polluted groundwater, recover nutrient, and produce valuable substances. To better promote the practical application, the use of BESs as directional drivers of ionic substances requires further optimization to improve energy use efficiency and treatment efficacy. This article reviews existing researches on BES-driven directional ion transport to treat wastewater and identifies a few key factors involved in efficiency optimization. PMID:26961714</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24433022','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24433022"><span id="translatedtitle">In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for <span class="hlt">desalination</span> by capacitive deionization.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suss, Matthew E; Biesheuvel, P M; Baumann, Theodore F; Stadermann, Michael; Santiago, Juan G</p> <p>2014-01-01</p> <p>Capacitive deionization (CDI) is an emerging water <span class="hlt">desalination</span> technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we <span class="hlt">utilize</span> our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements. PMID:24433022</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/15022764','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/15022764"><span id="translatedtitle"><span class="hlt">Nuclear</span> corroboration of DNA-DNA hybridization in deep phylogenies of hummingbirds, swifts, and passerines: the phylogenetic <span class="hlt">utility</span> of ZENK (ii).</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chubb, Alison L</p> <p>2004-01-01</p> <p>This paper documents the phylogenetic <span class="hlt">utility</span> of ZENK at the avian intra-ordinal level using hummingbirds, swifts, and passerines as case studies. ZENK sequences (1.7 kb) were used to reconstruct separate gene trees containing the major lineages of each group, and the three trees were examined for congruence with existing DNA-DNA hybridization trees. The results indicate both that ZENK is an appropriate <span class="hlt">nuclear</span> marker for resolving relationships deep in the avian tree, and that many relationships within these three particular groups are congruent among the different datasets. Specifically, within hummingbirds there was topological agreement that the major hummingbird lineages diverged in a graded manner from the "hermits," to the "mangoes," to the "coquettes," to the "emeralds," and finally to a sister relationship between the "mountain-gems" and the "bees." Concerning swifts, the deepest divergences were congruent: treeswifts (Hemiprocnidae) were sister to the typical swifts (Apodidae), and the subfamily Apodinae was monophyletic relative to Cypseloidinae. Within Apodinae, however, were short, unresolved branches among the swiftlets, spinetails, and more typical swifts; a finding which coincides with other datasets. Within passerine birds, there was congruent support for monophyly of sub-oscines and oscines, and within sub-oscines, for monophyly of New World groups relative to the Old World lineages. New World sub-oscines split into superfamilies Furnaroidea and Tyrannoidea, with the Tyrannoid relationships completely congruent among ZENK and DNA-DNA hybridization trees. Within Furnaroidea, however, there was some incongruence regarding the positions of Thamnophilidae and Formicariidae. Concerning oscine passerines, both datasets showed a split between Corvida and Passerida and confirmed the traditional membership of passerid superfamilies Muscicapoidea and Passeroidea. Monophyly of Sylvioidea, however, remained uncertain, as did the relationships among the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016APS..MARX53001E&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016APS..MARX53001E&link_type=ABSTRACT"><span id="translatedtitle">Generation of Electric Energy and <span class="hlt">Desalinating</span> Water from Solar Energy and the Oceans Hydropower</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elfikky, Niazi</p> <p></p> <p>Brief.All warnings and fears about the environment in our Earth planet due to the serious effects of the industrial revolution were certainly predicted early. But the eager contest and the powerful desire for more profits beside the human interest for welfare and development closed all minds about the expected severe destuctive impacts on our earth planet. Also, we have to remember that the majority of the African, Asian and Latin American countries are still in the first stage of their development and if they will be left to generate all their demand of energy by the conventional machine e.g (Fossil Fuel, Biofuel and <span class="hlt">Nuclear</span> Fuel), then our Earth planet will confront an endless and ceasless severe destructive impacts due to the encroach of the released hot Carbon Doxide and hot vapours of Acids which will never forgive any fruitful aspect in our Earth Planet from destruction. 1. Importance of the New Project. Building the Extra cheap, clean Power plants with safe and smooth Operation in addition to the long life time in service for generating enough and plentiful electric energy the sustainable renwable resources will invigorate the foresaking of all <span class="hlt">Nuclear</span>, Fossil and Biofuel power plants to avoide the <span class="hlt">nuclear</span> hazards and stop releasing the hot carbon doxide, hot acids for the recovery of our ill environment. Also, the main sustainable, renewable, and cheap resources for generating the bulky capacity of the electric energy in our project are the Sun and the Oceans in addition to all Seas Surrounding all Continents in our Earth planet. Therefore, our recourses are so much enormous plentiful, clean, and renewable. 2. .Generation of Electricity from Solar Energy by Photovoltiac Cells (PVCs) or Concentrated Solar Power (CSP). Characteristics of Photovoltiac Cells (PVCs). It is working only by Sun's Light (Light photons) and its efficiency will decrease as the Solar Thermal Radiation will increase, i.e. as the temerature of the Solar Voltiac will increase, its output</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22364771','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22364771"><span id="translatedtitle">Capacitive deionization coupled with microbial fuel cells to <span class="hlt">desalinate</span> low-concentration salt water.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Lulu; Yang, Xufei; Liang, Peng; Wang, Lei; Huang, Zheng-Hong; Wei, Jincheng; Huang, Xia</p> <p>2012-04-01</p> <p>A new technology (CDI-MFC) that combined capacitive deionization (CDI) and microbial fuel cell (MFC) was developed to treat low-concentration salt water with NaCl concentration of 60mg/L. The water <span class="hlt">desalination</span> rate was 35.6mg/(Lh), meanwhile the charge efficiency was 21.8%. Two desorption modes were investigated: discharging (DC) mode and short circuit (SC) mode. The <span class="hlt">desalination</span> rate in the DC mode was 200.6±3.1mg/(Lh), 47.8% higher than that in the SC mode [135.7±15.3mg/(Lh)]. The average current in the DC mode was also much higher than that of the SC mode. The energy stored in the CDI cell has been reused to enhance the electron production of MFC by the discharging desorption mode (DC mode), which offers an approach to recover the electrostatic energy in the CDI cell. PMID:22364771</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/250792','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/250792"><span id="translatedtitle">Performance analysis of an OTEC plant and a <span class="hlt">desalination</span> plant using an integrated hybrid cycle</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Uehara, Haruo; Miyara, Akio; Ikegami, Yasuyuki; Nakaoka, Tsutomu</p> <p>1996-05-01</p> <p>A performance analysis of an OTEC plant using an integrated hybrid cycle (I-H OTEC Cycle) has been conducted. The I-H OTEC cycle is a combination of a closed-cycle OTEC plant and a spray flash <span class="hlt">desalination</span> plant. In an I-H OTEC cycle, warm sea water evaporates the liquid ammonia in the OTEC evaporator, then enters the flash chamber and evaporates itself. The evaporated steam enters the <span class="hlt">desalination</span> condenser and is condensed by the cold sea water passed through the OTEC condenser. The optimization of the I-H OTEC cycle is analyzed by the method of steepest descent. The total heat transfer area of heat exchangers per net power is used as an objective function. Numerical results are reported for a 10 MW I-H OTEC cycle with plate-type heat exchangers and ammonia as working fluid. The results are compared with those of a joint hybrid OTEC cycle (J-H OTEC Cycle).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/18929385','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/18929385"><span id="translatedtitle">Electrosorptive <span class="hlt">desalination</span> by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Haibo; Gao, Yang; Pan, Likun; Zhang, Yanping; Chen, Yiwei; Sun, Zhuo</p> <p>2008-12-01</p> <p>A novel membrane capacitive deionization (MCDI) device, integrating both the advantages of carbon nanotubes and carbon nanofibers (CNTs-CNFs) composite film and ion-exchange membrane, was proposed with high removal efficiency, low energy consumption and low cost. The CNTs-CNFs film was synthesized by low pressure and low temperature thermal chemical vapor deposition. Several experiments were conducted to compare <span class="hlt">desalination</span> performance of MCDI with capacitive deionization (CDI), showing that salt removal of the MCDI system was 49.2% higher than that of the CDI system. The electrosorption isotherms of MCDI and CDI show both of them follow Langmuir adsorption, indicating no change in adsorption behavior when ion-exchange membranes are introduced into CDI system. The better <span class="hlt">desalination</span> performance of MCDI than that of CDI is due to the minimized ion desorption during electrosorption. PMID:18929385</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/pages/biblio/1185491-water-desalination-using-nanoporous-single-layer-graphene-tunable-pore-size','SCIGOV-DOEP'); return false;" href="http://www.osti.gov/pages/biblio/1185491-water-desalination-using-nanoporous-single-layer-graphene-tunable-pore-size"><span id="translatedtitle">Water <span class="hlt">Desalination</span> Using Nanoporous Single-Layer Graphene with Tunable Pore Size</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGESBeta</a></p> <p>Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon Mark</p> <p>2015-03-23</p> <p>Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a <span class="hlt">desalination</span> membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water <span class="hlt">desalination</span> membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22419806','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22419806"><span id="translatedtitle">Water permeability of nanoporous graphene at realistic pressures for reverse osmosis <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Cohen-Tanugi, David; Grossman, Jeffrey C.</p> <p>2014-08-21</p> <p>Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water <span class="hlt">desalination</span> thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG <span class="hlt">desalination</span> and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25149803','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25149803"><span id="translatedtitle">Water permeability of nanoporous graphene at realistic pressures for reverse osmosis <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cohen-Tanugi, David; Grossman, Jeffrey C</p> <p>2014-08-21</p> <p>Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water <span class="hlt">desalination</span> thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG <span class="hlt">desalination</span> and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000-2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.1 × 10−15 l/h bar per pore [Corrected], or equivalently 1041 ± 20 l/m(2)-h-bar assuming a nanopore density of 1.7 × 10(13) cm(-2). PMID:25149803</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21045342','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21045342"><span id="translatedtitle">High performance RO membranes for <span class="hlt">desalination</span> and wastewater reclamation and their operation results.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Henmi, M; Fusaoka, Y; Tomioka, H; Kurihara, M</p> <p>2010-01-01</p> <p>Reverse osmosis (RO) membrane is one of the most powerful tools for solving the global water crisis, and is used in a variety of water treatment scenes such as drinking water purification, waste-water treatment, boiler feed water production, ultra pure water production for semiconductor industry, etc. The desired performance of RO membrane varies according to quality of feed water being treated, and Toray has been developing RO membranes with suitable characteristic for each operating condition. RO membranes for seawater <span class="hlt">desalination</span> and wastewater reclamation are especially regarded as most promising targets. Recently, high boron removal and energy saving RO membrane for seawater <span class="hlt">desalination</span> and low fouling RO membrane for wastewater reclamation have been developed. In this paper, the prospect of attaining these renovative RO membrane, and furthermore, job references will be discussed. PMID:21045342</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1185491','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1185491"><span id="translatedtitle">Water <span class="hlt">Desalination</span> Using Nanoporous Single-Layer Graphene with Tunable Pore Size</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon Mark</p> <p>2015-03-23</p> <p>Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a <span class="hlt">desalination</span> membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water <span class="hlt">desalination</span> membrane. Salt rejection selectivity of nearly 100% and exceptionally high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFD.M1009R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFD.M1009R"><span id="translatedtitle">Characterization of <span class="hlt">desalination</span> performance of CDI electrode materials using extended electroimpedance spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rios Perez, Carlos; Wilkes, Ellen; Hidrovo, Carlos</p> <p>2015-11-01</p> <p>A comprehensive characterization of porous materials developed for capacitive deionization (CDI) electrodes is very important for the future of this <span class="hlt">desalination</span> technology. Traditional methods assess the adsorption performance of the electrodes using gas adsorption techniques and electrochemical tests. However, these results fail at comparing quantitatively the performance of different electrode materials. This presentation proposes using a combination of extended electroimpedance spectroscopy (EIS) tests and BET analysis to appraise the amount of salt adsorbed in a flow-by CDI system. The extended EIS experiments were analyzed using an equivalent circuit with three characteristic tiers that represent the dominant ionic migration processes with different time-scales: electro adsorption of ions in the micropores, migration of ion from bulk solution through macropores, adsorption of ions from the bulk solution. The results obtained show a very good agreement between characterization and <span class="hlt">desalination</span> performance experiments for three commercial electrodes with different structure topology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..172...13D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..172...13D"><span id="translatedtitle">Response of amphipod assemblages to <span class="hlt">desalination</span> brine discharge: Impact and recovery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de-la-Ossa-Carretero, J. A.; Del-Pilar-Ruso, Y.; Loya-Fernández, A.; Ferrero-Vicente, L. M.; Marco-Méndez, C.; Martinez-Garcia, E.; Sánchez-Lizaso, J. L.</p> <p>2016-04-01</p> <p><span class="hlt">Desalination</span> has become an important industry whose dense, high-salinity effluent has an impact on marine communities. Without adequate dilution, brine remains on the bottom increasing bottom salinity and affecting benthic communities. Amphipods showed high sensitivity to increased salinity produced by <span class="hlt">desalination</span> brine discharge. A decrease in abundance and diversity of amphipods was detected at the station closest to the outfall, where salinity values reached 53. This salinity was later reduced by including a diffuser at the end of the pipeline. Six months after diffuser installation, amphipod abundance increased. During the first stage of this recovery, species such as Photis longipes recovered their abundance, others such as Microdeutopus versiculatus displayed opportunistic patterns, while others needed more time for recovery, e.g. Harpinia pectinata. These differences may be dependent on the organism living habits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5982380','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5982380"><span id="translatedtitle">Progress under the USDI-SWCC agreement for technical cooperation in <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Jamjoom, I.M.R.; Al-Yousef, A.R.F.; Heizer, R.T.</p> <p>1981-07-01</p> <p>Progress is reported on two <span class="hlt">desalination</span> projects in Saudi Arabia sponsored by a joint agreement of the Saline Water Conversion Corporation (SWCC) and the US Department of the Interior (USDI). Project A, research, development, and training center (R, D and T), conducts needs analyses and trains Saudi Arabians to operate and maintain <span class="hlt">desalination</span> plants. Project B is developing the technology for large-scale multistage flash (MSF) evaporation plants. A recent change in focus is deemphasizing project B, but the Joint Agreement continues to make progress on its goals. The appendix presents a summary of the operation and projects and lists the major design features of the R, D and T Center. 1 reference, 1 table. (DCK)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24956943','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24956943"><span id="translatedtitle">Temperature and Pressure Effects of <span class="hlt">Desalination</span> Using a MFI-Type Zeolite Membrane.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel</p> <p>2013-01-01</p> <p>Zeolites are potentially a robust <span class="hlt">desalination</span> alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could <span class="hlt">desalinate</span> "challenging" waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent <span class="hlt">desalination</span> tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L-1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature <span class="hlt">desalination</span>, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L-1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22806549','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22806549"><span id="translatedtitle"><span class="hlt">Desalination</span> and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G</p> <p>2012-08-28</p> <p>We demonstrate and analyze a novel <span class="hlt">desalination</span> method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to <span class="hlt">desalinate</span> salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art <span class="hlt">desalination</span> methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a <span class="hlt">desalination</span>-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide. PMID:22806549</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021941','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021941"><span id="translatedtitle">Temperature and Pressure Effects of <span class="hlt">Desalination</span> Using a MFI-Type Zeolite Membrane</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel</p> <p>2013-01-01</p> <p>Zeolites are potentially a robust <span class="hlt">desalination</span> alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could <span class="hlt">desalinate</span> “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent <span class="hlt">desalination</span> tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature <span class="hlt">desalination</span>, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26923172','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26923172"><span id="translatedtitle">Toward high permeability, selectivity and controllability of water <span class="hlt">desalination</span> with FePc nanopores.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Qingming; Pan, Jun; Yin, Xiaohui; Wang, Xiaofeng; Zhao, Lina; Kang, Seung-gu; Jimenez-Cruz, Camilo A; Zhou, Ruhong; Li, Jingyuan</p> <p>2016-03-21</p> <p>Nanoporous materials exhibit promising potential in water transportation applications, especially in ocean water <span class="hlt">desalination</span>. It is highly desired to have great permeability, selectivity and controllability in the <span class="hlt">desalination</span> performance of these nanopores. However, it is still a challenge to achieve all three features in one material or device. Here, we demonstrate efficient and controllable water <span class="hlt">desalination</span> with a nanoporous 2D Fe phthalocyanine (FePc) membrane using molecular dynamics simulations. We find the FePc membrane not only conducts fast water flow, but it also suppresses ion permeation. The selectivity is attributed to a mechanism distinct from the traditional steric exclusion: cations are excluded due to electrostatic repulsion, whereas anions can be trapped in the nanopore and induce the reorganization of ions in the vicinity of the nanopore, which in turn creates a tendency for the trapped anions to move back into the saline reservoir. More interestingly, we find such mechanism is largely due to the sufficiently strong electrostatic interaction of the charged nanopore region with ions and is not restricted to the FePc nanopore. In addition, the number of protonated nitrogen atoms in FePc pores can be modulated by adjusting the pH value of the solution. The extent of the anion occupancy can thus be regulated, giving rise to control of the water flow. Taken together, great permeability, selectivity and controllability can be achieved with this nanosheet system. Moreover, our study suggests there is an alternative mechanism of water <span class="hlt">desalination</span> which may be realized by intrinsically nanoporous materials such as FePc membranes. PMID:26923172</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25464328','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25464328"><span id="translatedtitle">Shale gas produced water treatment using innovative microbial capacitive <span class="hlt">desalination</span> cell.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stoll, Zachary A; Forrestal, Casey; Ren, Zhiyong Jason; Xu, Pei</p> <p>2015-01-01</p> <p>The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive <span class="hlt">desalination</span> cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the <span class="hlt">desalination</span> of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with <span class="hlt">desalination</span> of contaminated water without external energy input. PMID:25464328</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27101809','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27101809"><span id="translatedtitle">Particulate-free porous silicon networks for efficient capacitive deionization water <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L</p> <p>2016-01-01</p> <p>Energy efficient water <span class="hlt">desalination</span> processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water <span class="hlt">desalination</span>. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water <span class="hlt">desalination</span> technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26031907','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26031907"><span id="translatedtitle">Contactless conductometric determination of methanol and ethanol in samples containing water after their electrophoretic <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tůma, Petr; Opekar, František</p> <p>2015-08-01</p> <p>Determination of the contents of methanol and ethanol in aqueous solutions was performed by measuring the permittivity of solutions using a contactless conductivity detector (C(4) D) normally used for detection in capillary electrophoresis. The detection cell is a section of a fused silica capillary with an internal diameter of 50 μm with a pair of conductivity electrodes on the external walls. The C(4) D response to samples of methanol/water and ethanol/water mixtures is linear in the concentration interval of approx. 40-100% v/v alcohol content. In the analysis of technical samples of methanol and ethanol, the determination is disturbed by the presence of even trace amounts of salts. This interference can be effectively eliminated by integrated electrophoretic <span class="hlt">desalination</span> of the sample by the application of a direct current electric voltage with a magnitude of 10 kV to the capillary with the injected sample zone. Under these conditions, the ions migrate out of the sample zone and the detector response is controlled purely by the permittivity of the solvent/water zone. <span class="hlt">Desalinating</span> is effective for NaCl contents in the range from 0 to 5 mmol/L NaCl. The effectiveness of the <span class="hlt">desalinating</span> process has been verified on MeOH/water samples and in determination of the ethanol content in distilled beverages normally available in the retail network. PMID:26031907</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23726714','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23726714"><span id="translatedtitle">Towards temperature driven forward osmosis <span class="hlt">desalination</span> using Semi-IPN hydrogels as reversible draw agents.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cai, Yufeng; Shen, Wenming; Loo, Siew Leng; Krantz, William B; Wang, Rong; Fane, Anthony G; Hu, Xiao</p> <p>2013-07-01</p> <p>We report a study to explore new materials and a new concept for temperature driven quasi-continuous <span class="hlt">desalination</span> using hydrogels as draw agents in forward osmosis (FO). This concept is enabled by the design and preparation of thermally responsive hydrogels having a semi-interpenetrating network (semi-IPN) structure. Thermally responsive semi-IPN hydrogels were synthesized by polymerization of N-isopropylacrylamide (NIPAm) in the presence of polysodium acrylate (PSA) or polyvinyl alcohol (PVA). Their functions as draw agents in FO were systematically studied and compared with hydrogels prepared from the PNIPAm homopolymer or the NIPAM-SA copolymer. While the semi-IPN hydrogels displayed the desirable balanced thermally responsive swelling and dewatering behavior, the NIPAm-SA copolymer hydrogels were found to have poor dewatering behavior, making them unsuitable for a continuous temperature driven <span class="hlt">desalination</span> process. At 40 °C, the semi-IPN hydrogels rapidly release nearly 100% of the water absorbed during the FO drawing process carried out at room temperature. Results clearly indicate the potential of semi-IPN hydrogels as semi-solid draw agents in the FO process, in which quasi-continuous <span class="hlt">desalination</span> could be achieved by cyclic heating and cooling within a moderate temperature change. PMID:23726714</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4840374','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4840374"><span id="translatedtitle">Particulate-free porous silicon networks for efficient capacitive deionization water <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.</p> <p>2016-01-01</p> <p>Energy efficient water <span class="hlt">desalination</span> processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water <span class="hlt">desalination</span>. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water <span class="hlt">desalination</span> technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/992344','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/992344"><span id="translatedtitle">Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) <span class="hlt">Desalination</span> System: Preprint</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Al-Karaghouli, A.; Kazmerski, L. L.</p> <p>2010-10-01</p> <p>The photovoltaic (PV)-powered reverse-osmosis (RO) <span class="hlt">desalination</span> system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to <span class="hlt">desalinate</span> brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized <span class="hlt">desalination</span> plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015AIPC.1699f0019N&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015AIPC.1699f0019N&link_type=ABSTRACT"><span id="translatedtitle">Effect of silica particle size in cellulose membrane for <span class="hlt">desalination</span> process</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nurkhamidah, Siti; Rahmawati, Yeni; Taufany, Fadlilatul; Merta, I. Made Pendi Adi; Putra, Deffry Danius Dwi; Woo, Eamor M.</p> <p>2015-12-01</p> <p>Development of <span class="hlt">desalination</span> technologies is very important for fulfilling future water demand. The objective of this research is to synthesis membrane for <span class="hlt">desalination</span> process from cellulose acetate (CA) by blending with polyethylene glycol (PEG) and silica resulting CA/PEG/Silica composite membrane. In this study, the synthesis and characterization of composite membrane is attempt where membrane performance is investigated for reverse osmosis <span class="hlt">desalination</span> of saline water. CA/PEG membrane with ratio 80/20 (wt%) was modified with three different particle sizes of silica: 0.007, 0.02, and 60 µm. Composite membranes were characterized for their hydrophilicity, functional groups and permeation properties. The experiment results show that hydrophilicity of CA/PEG membrane increases after the addition of silica as shown by the decreasing of contact angle and the increasing of silanol group. Hydrophilicity of composite membrane increases with the decreasing of particle size of silica. The best performance membrane is obtained by using silica with particle size of 0.02 µm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016NatSR...624680M&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016NatSR...624680M&link_type=ABSTRACT"><span id="translatedtitle">Particulate-free porous silicon networks for efficient capacitive deionization water <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.</p> <p>2016-04-01</p> <p>Energy efficient water <span class="hlt">desalination</span> processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water <span class="hlt">desalination</span>. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water <span class="hlt">desalination</span> technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26287838','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26287838"><span id="translatedtitle"><span class="hlt">Desalination</span> of simulated seawater by purge-air pervaporation using an innovative fabricated membrane.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naim, Mona; Elewa, Mahmoud; El-Shafei, Ahmed; Moneer, Abeer</p> <p>2015-01-01</p> <p>An innovative polymeric membrane has been invented, which presents a breakthrough in the field of <span class="hlt">desalination</span> membranes. It can <span class="hlt">desalinate</span> simulated seawater of exceptionally high concentration to produce a high flux of potable water with over 99.7% salt rejection (%SR) in a once-through purge-air pervaporation (PV) process. A set-up was constructed for conducting the <span class="hlt">desalination</span> experiments and the effect of initial salt solution concentration (Ci) and pervaporation temperature (Tpv) on the water flux (J), %SR, separation factor, and pervaporation separation index were determined. The membrane was prepared by the phase-inversion technique, of a specially formulated casting solution consisting of five ingredients, after which the membrane was subjected to a post-treatment by which certain properties were conferred. The results confirmed that the salinity of the pervaporate was independent of Ci (all %SR above 99.7). The best result was at Tpv=70 °C, where J varied from 5.97 to 3.45 l/m2 h for Ci=40-140 g NaCl/l, respectively. The membrane morphology was confirmed to be asymmetric. The contact angle was immeasurable, indicating the membrane to be super-hydrophilic. Activation energies computed using Arrhenius law were, under all conditions investigated, less than 20 kJ/mol K. PMID:26287838</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3127716','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3127716"><span id="translatedtitle">Composition and Variability of Biofouling Organisms in Seawater Reverse Osmosis <span class="hlt">Desalination</span> Plants ▿ †</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli</p> <p>2011-01-01</p> <p>Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the <span class="hlt">desalination</span> industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a <span class="hlt">desalination</span> pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Cellulophaga based on 16S rRNA gene sequencing analysis. The 16S rRNA gene clone library of the SWRO membrane biofilm showed that a filamentous bacterium, Leucothrix mucor, which belongs to the gammaproteobacteria, accounted for nearly 30% of the clone library, while the rest of the microorganisms (61.2% of the total clones) were related to the alphaproteobacteria. 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that bacteria colonizing the SWRO membrane represented a subportion of microbes in the source seawater; however, they were quite different from those colonizing the cartridge filter. The examination of five SWRO membranes from <span class="hlt">desalination</span> plants located in different parts of the world showed that although the bacterial communities from the membranes were not identical to each other, some dominant bacteria were commonly observed. In contrast, bacterial communities in source seawater were significantly different based on location and season. Microbial profiles from 14 cartridge filters collected from different plants also revealed spatial trends. PMID:21551282</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21551282','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21551282"><span id="translatedtitle">Composition and variability of biofouling organisms in seawater reverse osmosis <span class="hlt">desalination</span> plants.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M V; Cai, Baoli</p> <p>2011-07-01</p> <p>Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the <span class="hlt">desalination</span> industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a <span class="hlt">desalination</span> pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Cellulophaga based on 16S rRNA gene sequencing analysis. The 16S rRNA gene clone library of the SWRO membrane biofilm showed that a filamentous bacterium, Leucothrix mucor, which belongs to the gammaproteobacteria, accounted for nearly 30% of the clone library, while the rest of the microorganisms (61.2% of the total clones) were related to the alphaproteobacteria. 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that bacteria colonizing the SWRO membrane represented a subportion of microbes in the source seawater; however, they were quite different from those colonizing the cartridge filter. The examination of five SWRO membranes from <span class="hlt">desalination</span> plants located in different parts of the world showed that although the bacterial communities from the membranes were not identical to each other, some dominant bacteria were commonly observed. In contrast, bacterial communities in source seawater were significantly different based on location and season. Microbial profiles from 14 cartridge filters collected from different plants also revealed spatial trends. PMID:21551282</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS33C1677M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS33C1677M"><span id="translatedtitle">Planning and Design of Seawater Reverse Osmosis <span class="hlt">Desalination</span> Plants Marine Outfalls</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maalouf, S.; Yeh, W. W.</p> <p>2011-12-01</p> <p>Increasing demands for water in urban areas and agricultural zones in arid and semi-arid regions have urged planners and regulators to look for alternative renewable water sources. Worldwide, seawater reverse osmosis (SWRO) <span class="hlt">desalination</span> plants have become an essential supply source for the production of fresh water in such regions. Disposal of their wastes, however, has not been fully and properly addressed. This study presents a strategy for the analysis and design of optimal disposal systems of hypersaline wastes that are generated by SWRO <span class="hlt">desalination</span> plants. The study evaluates current disposal methods and recommends ways to effectively employ multiport marine outfalls for this purpose. Such outfalls emerged as reliable means for conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO <span class="hlt">desalination</span> plants is still in its beginning stage, and much work needs to be done to employ them effectively. Therefore, the main objective of this research is to provide design engineers with effective procedures that meet environmental permitting requirements and restrictions, while ascertaining adequate hydrodynamic performance. The study is tested by employing a simulation model and examining its reliability under many parameter perturbation scenarios. This is further extended by providing a solution to the same problem using a heuristic approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFD.L3011R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFD.L3011R"><span id="translatedtitle">Transport and electrochemistry based characterization of porous electrodes for CDI applications and comparison with <span class="hlt">desalination</span> performance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rios Perez, Carlos; Wilkes, Ellen; Guitierrez, Luis; Hidrovo, Carlos</p> <p>2014-11-01</p> <p>Development of carbon-based materials with high specific surface area at the end of last century has made researchers to look back at capacitive deionization as a potential <span class="hlt">desalination</span> technique for brackish water. Several publications evaluate the adsorption capacity of electrode materials under different conditions. Many others present the development/characterization of new electrode materials using electrochemical analysis and other techniques. Although some work has been done to model the electro-adsorption process at the macro and micro-scale, there is still a gap to tie the characterization of the electrodes to their performance. Here a simplified one-dimensional model is used to estimate the characteristic net electro-adsorption velocities for fully-developed or developing regimes in a flow-by capacitive deionization system. This methodology is applied to three commercially available materials with very distinct structure topology to estimate electromigration velocities at a specific solution flow rate. The calculated electro-adsorption rates and other characterization parameters obtained using traditional electrochemical techniques were compared against important <span class="hlt">desalination</span> performance parameters such as amount of salt adsorbed and <span class="hlt">desalination</span> proficiency (amount of salt adsorbed per unit of energy). The results obtained show interesting correlations and sometimes-unexpected behavior under constant current and constant voltage operation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1227955','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1227955"><span id="translatedtitle">Use of Low-Temperature Geothermal Energy for <span class="hlt">Desalination</span> in the Western United States</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Turchi, Craig S.; Akar, Sertac; Cath, Tzahi; Vanneste, Johan; Geza, Mengistu</p> <p>2015-11-01</p> <p>This joint project between the National Renewable Energy Laboratory and the Colorado School of Mines has examined the potential of using low-temperature geothermal resources for <span class="hlt">desalination</span>. The temperature range in question is not well suited for electricity generation, but can be used for direct heating. Accordingly, the best integration approaches use thermal <span class="hlt">desalination</span> technologies such as multi-effect distillation (MED) or membrane distillation (MD), rather than electric-driven technologies such as reverse osmosis (RO). The examination of different <span class="hlt">desalination</span> technologies led to the selection of MD for pairing with geothermal energy. MD operates at near-ambient pressure and temperatures less than 100°C with hydrophobic membranes. The technology is modular like RO, but the equipment costs are lower. The thermal energy demands of MD are higher than MED, but this is offset by an ability to run at lower temperatures and a low capital cost. Consequently, a geothermal-MD system could offer a low capital cost and, if paired with low-cost geothermal energy, a low operating cost. The target product water cost is $1.0 to $1.5 per cubic meter depending on system capacity and the cost of thermal energy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5386217','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5386217"><span id="translatedtitle"><span class="hlt">Nuclear</span> power: Fourth edition</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Deutsch, R.W.</p> <p>1986-01-01</p> <p>This book describes the basics of <span class="hlt">nuclear</span> power generation, explaining both the benefits and the real and imagined risks of <span class="hlt">nuclear</span> power. It includes a discussion of the Three Mile Island accident and its effects. <span class="hlt">Nuclear</span> Power has been used in the public information programs of more than 100 <span class="hlt">utilities</span>. The contents discussed are: <span class="hlt">Nuclear</span> Power and People; Why <span class="hlt">Nuclear</span> Power. Electricity produced by coal; Electricity produced by <span class="hlt">nuclear</span> fuel; <span class="hlt">Nuclear</span> plant sites in the United States; Short History of Commercial <span class="hlt">Nuclear</span> Power; U.S. <span class="hlt">nuclear</span> submarines, Regulation of <span class="hlt">Nuclear</span> Power Plants; Licensing process, <span class="hlt">Nuclear</span> Power Plant Operator Training; <span class="hlt">Nuclear</span> power plant simulator, Are <span class="hlt">Nuclear</span> Plants Safe.; Containment structure, <span class="hlt">Nuclear</span> Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is <span class="hlt">Nuclear</span> Fuel.; Fuel cycle for commercial <span class="hlt">nuclear</span> power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; <span class="hlt">Nuclear</span> Opposition; and <span class="hlt">Nuclear</span> Power in the Future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=Nuclear&pg=2&id=EJ832445','ERIC'); return false;" href="http://eric.ed.gov/?q=Nuclear&pg=2&id=EJ832445"><span id="translatedtitle">Elements of an Alternative to <span class="hlt">Nuclear</span> Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy <span class="hlt">Utility</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mathai, Manu V.</p> <p>2009-01-01</p> <p>Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" <span class="hlt">nuclear</span> power as part of a strategy to address the crisis. Surveying the development of <span class="hlt">nuclear</span> power in India, this article finds that it is predisposed to…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5563983','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5563983"><span id="translatedtitle"><span class="hlt">Utility</span> robotic planning: case studies</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Roman, H.T.; Travato, S.A.; Irving, T.L.; Patnaude, L.G.</p> <p>1986-03-01</p> <p>Currently, the <span class="hlt">utility</span> use of robotic devices is most appropriate in <span class="hlt">nuclear</span> power plants. Four <span class="hlt">utilities</span> are currently approaching the task of robotic applications. The planning program of each of the <span class="hlt">utilities</span> is discussed. The following similarities of approach are noted: Plant operating personnel are surveyed for application ideas, and a company task force is established involving these personnel to determine specific application needs and cost-benefit. The state-of-the-art of various robotic devices is evaluated and selected equipment is tested in existing plants. The robotic experience gained from <span class="hlt">nuclear</span> plant applications is extended to other non-<span class="hlt">nuclear</span> areas. 2 figures, 1 table.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26684268','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26684268"><span id="translatedtitle">Amorphous SiO2 NP-Incorporated Poly(vinylidene fluoride) Electrospun Nanofiber Membrane for High Flux Forward Osmosis <span class="hlt">Desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Obaid, M; Ghouri, Zafar Khan; Fadali, Olfat A; Khalil, Khalil Abdelrazek; Almajid, Abdulhakim A; Barakat, Nasser A M</p> <p>2016-02-01</p> <p>Novel amorphous silica nanoparticle-incorporated poly(vinylidine fluoride) electrospun nanofiber mats are introduced as effective membranes for forward osmosis <span class="hlt">desalination</span> technology. The influence of the inorganic nanoparticle content on water flux and salt rejection was investigated by preparing electrospun membranes with 0, 0.5, 1, 2, and 5 wt % SiO2 nanoparticles. A laboratory-scale forward osmosis cell was <span class="hlt">utilized</span> to validate the performance of the introduced membranes using fresh water as a feed and different brines as draw solution (0.5, 1, 1.5, and 2 M NaCl). The results indicated that the membrane embedding 0.5 wt % displays constant salt rejection of 99.7% and water flux of 83 L m(-2) h(-1) with 2 M NaCl draw solution. Moreover, this formulation displayed the lowest structural parameter (S = 29.7 μm), which represents approximately 69% reduction compared to the pristine membrane. Moreover, this study emphasizes the capability of the electrospinning process in synthesizing effective membranes as the observed water flux and average salt rejection of the pristine poly(vinylidine fluoride) membrane was 32 L m(-2) h(-1) (at 2 M NaCl draw solution) and 99%, respectively. On the other hand, increasing the inorganic nanoparticles to 5 wt % showed negative influence on the salt rejection as the observed salt flux was 1651 mol m(-2) h(-1). Besides the aforementioned distinct performance, studies of the mechanical properties, porosity, and wettability concluded that the introduced membranes are effective for forward osmosis <span class="hlt">desalination</span> technology. PMID:26684268</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/1232064-labview-utilities','SCIGOV-ESTSC'); return false;" href="http://www.osti.gov/scitech/biblio/1232064-labview-utilities"><span id="translatedtitle">Labview <span class="hlt">utilities</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech/">Energy Science and Technology Software Center (ESTSC)</a></p> <p></p> <p>2011-09-30</p> <p>The software package provides several <span class="hlt">utilities</span> written in LabView. These <span class="hlt">utilities</span> don't form independent programs, but rather can be used as a library or controls in other labview programs. The <span class="hlt">utilities</span> include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015EGUGA..17.6215M&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015EGUGA..17.6215M&link_type=ABSTRACT"><span id="translatedtitle">Is irrigation with partial <span class="hlt">desalinated</span> seawater a policy option for saving freshwater in the Kingdom of Saudi Arabia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Multsch, Sebastian; Alquwaizany, Abdulaziz S.; Lehnert, Karl-H.; Frede, Hans-Georg; Breuer, Lutz</p> <p>2015-04-01</p> <p>The agriculture sector consumes with 88 % a majority of the almost fossil water resources in the Kingdom of Saudi Arabia (KSA). Irrigation with saline water has been highlighted to be a promising technique to reduce fresh water consumption. Current <span class="hlt">desalination</span> techniques, further developments, salt tolerant crop types and improved irrigation systems can potentially redesign future perspectives for irrigation agriculture, in particular by considering the growing <span class="hlt">desalination</span> capacity in KSA (5 million m3 day-1 in 2003). Hence, we have analyzed the potential of using <span class="hlt">desalinated</span> and partial <span class="hlt">desalinated</span> seawater for growing crops in KSA by considering scenarios of salinity levels and <span class="hlt">desalination</span> costs. The <span class="hlt">desalination</span> process has been modelled with the ROSA© software considering a reverse osmosis (RO) plant. The spatial decision support system SPARE:WATER has been applied to assess the water footprint of crops (WFcrop). In order to maintain high crop yields, salts need to be washed out from the rooting zone, which requires the application of additional salt-free water. Therefore, high crop yields come along with additional water requirements and increased <span class="hlt">desalination</span> effort and increased costs for proving high quality water. As an example, growing wheat with partial <span class="hlt">desalinated</span> seawater from the Arabian Gulf with a RO plant has been investigated. <span class="hlt">Desalination</span> reduces the salinity level from 76 dS m-1 to 0.5 dS m-1 considering two RO cycles, with cost of <span class="hlt">desalinized</span> water in the range of 0.5 to 1.2 m-3. We acknowledge that cost only refer to <span class="hlt">desalination</span> without considering others such as transport, water pumping or crop fertilization. The study shows that Boron is the most problematic salt component, because it is difficult to remove by RO and toxic in high concentrations for crops (wheat threshold of 0.5 to 1.0 mg l-1). The nationwide average WFcrop of wheat under surface irrigation is 2,628 m3 t-1 considering high water quality of 1 dS m-1 and 3,801 m3 t-1 at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H21A1016D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H21A1016D"><span id="translatedtitle">Coupling Power Generation, Geologic CO2 Storage and Saline Groundwater <span class="hlt">Desalination</span> to Address Growing Energy Needs in Water Constrained Regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.</p> <p>2010-12-01</p> <p>As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, <span class="hlt">desalination</span> is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and <span class="hlt">desalinating</span> brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be <span class="hlt">desalinated</span> to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-<span class="hlt">desalination</span> projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H41K1376N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H41K1376N"><span id="translatedtitle">Robust Operation of a System of Reservoir and <span class="hlt">Desalination</span> Plant using a Multi-Objective Optimization Framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ng, T.; Bhushan, R.</p> <p>2013-12-01</p> <p>In many cities, the water supply system is under stress due to increased competition for reliable fresh water supplies from population growth and climate uncertainties resulting in water insecurity. One method to augment fresh water supplies is seawater <span class="hlt">desalination</span>, which converts seawater to fresh water for industrial and domestic potable and non-potable uses. We propose to address this issue of water supply scarcity and uncertainty in coastal metropolitan cities by developing a robust operating policy for the joint operation of a <span class="hlt">desalination</span> plant with a freshwater reservoir system using a multi-objective optimization framework. Due to the unlimited availability of seawater, <span class="hlt">desalination</span> has a strong potential as a reliable source of water in coastal cities around the world. However, being an energy intensive and expensive process, its application is limited. Reservoir water, while cheaper due to its relatively small cost of transportation to the cities, is often limited and variable in its availability. We observe that combining the operation of a <span class="hlt">desalination</span> plant with a water supply reservoir leads to more cost efficient and reliable water production than if both were to be operated separately. We model a joint reservoir-<span class="hlt">desalination</span> system as a multi-objective optimization problem with risk, resilience, and vulnerability as the objective functions, and cost as a constraint. In our simulations, rule curves determine the release from the reservoir as a function of existing storage level, and the remaining demand that is unmet by the release from the reservoir determines the amount of water produced from <span class="hlt">desalination</span>. The overall cost of the system is the sum of the cost of transporting reservoir water and the cost of energy of <span class="hlt">desalinating</span> seawater. We employ a genetic algorithm to find the optimal values of the thresholds of the reservoir rule curves and the maximum operating capacity of the <span class="hlt">desalination</span> plant. We will discuss the tradeoffs between water</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23537704','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23537704"><span id="translatedtitle">Optimizing <span class="hlt">desalinated</span> sea water blending with other sources to meet magnesium requirements for potable and irrigation waters.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Avni, Noa; Eben-Chaime, Moshe; Oron, Gideon</p> <p>2013-05-01</p> <p>Sea water <span class="hlt">desalination</span> provides fresh water that typically lacks minerals essential to human health and to agricultural productivity. Thus the rising proportion of <span class="hlt">desalinated</span> sea water consumed by both the domestic and agricultural sectors constitutes a public health risk. Research on low-magnesium water irrigation showed that crops developed magnesium deficiency symptoms that could lead to plant death, and tomato yields were reduced by 10-15%. The World Health Organization (WHO) reported on a relationship between sudden cardiac death rates and magnesium intake deficits. An optimization model, developed and tested to provide recommendations for Water Distribution System (WDS) quality control in terms of meeting optimal water quality requirements, was run in computational experiments based on an actual regional WDS. The expected magnesium deficit due to the operation of a large Sea Water <span class="hlt">Desalination</span> Plant (SWDP) was simulated, and an optimal operation policy, in which remineralization at the SWDP was combined with blending <span class="hlt">desalinated</span> and natural water to achieve the required quality, was generated. The effects of remineralization costs and WDS physical layout on the optimal policy were examined by sensitivity analysis. As part of the sensitivity blending natural and <span class="hlt">desalinated</span> water near the treatment plants will be feasible up to 16.2 US cents/m(3), considering all expenses. Additional chemical injection was used to meet quality criteria when blending was not feasible. PMID:23537704</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25212471','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25212471"><span id="translatedtitle">Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial <span class="hlt">desalination</span> cells.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Euntae; Choi, Mi-Jin; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Kim, In S</p> <p>2015-01-01</p> <p>Microbial <span class="hlt">desalination</span> cells (MDCs) are modified microbial fuel cells (MFCs) that concurrently produce electricity and <span class="hlt">desalinate</span> seawater, but adding a <span class="hlt">desalination</span> compartment and an ion-exchange membrane may increase the internal resistance (Ri), which can limit the cell performance. However, the effects of a <span class="hlt">desalination</span> chamber and initial NaCl concentrations on the internal resistances and the cell performances (i.e. Coulombic efficiency (CE), current and power density) of MDCs have yet to be thoroughly explored; thus, the cell performance and Ri distributions of MDCs having different initial concentrations and an MFC having no <span class="hlt">desalination</span> chamber were compared. In the MDCs, the current and power density generation increased from 2.82 mA and 158.2 mW/m2 to 3.17 mA and 204.5 mW/m2 when the initial NaCl concentrations were increased from 5 to 30 g/L, as a consequence of the internal resistances decreasing from 2432.0 to 2328.4 Ω. And even though the MFC has a lower Ri than the MDCs, lower cell performances (current: 2.59 mA; power density: 141.6 mW/m2 and CE: 62.1%) were observed; there was no effect of improved junction potential in the MFC. Thus, in the MDCs, the higher internal resistances due to the addition of a <span class="hlt">desalination</span> compartment can be offset by reducing the electrolyte resistance and improving the junction potential at higher NaCl concentrations. PMID:25212471</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26512800','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26512800"><span id="translatedtitle">Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater <span class="hlt">desalination</span> and wastewater recovery.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S</p> <p>2016-01-01</p> <p>In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater <span class="hlt">desalination</span> and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater <span class="hlt">desalination</span> and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) <span class="hlt">desalination</span> process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO <span class="hlt">desalination</span> system has a 16% cost reduction compared to the benchmark for <span class="hlt">desalination</span>, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for <span class="hlt">desalination</span>, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26588699','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26588699"><span id="translatedtitle">Water <span class="hlt">Desalination</span> through Zeolitic Imidazolate Framework Membranes: Significant Role of Functional Groups.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gupta, Krishna M; Zhang, Kang; Jiang, Jianwen</p> <p>2015-12-01</p> <p>A molecular simulation study is reported for water <span class="hlt">desalination</span> through five zeolitic imidazolate framework (ZIF) membranes, namely ZIF-25, -71, -93, -96, and -97. The five ZIFs possess identical rho-topology but differ in functional groups. The rejection of salt (NaCl) is found to be around 97% in ZIF-25, and 100% in the other four ZIFs. The permeance ranges from 27 to 710 kg/(m(2)·h·bar), about one∼two orders of magnitude higher compared with commercial reverse osmosis membranes. Due to a larger aperture size da, ZIF-25, -71, and -96 exhibit a much higher water flux than ZIF-93 and -97; however, the flux in ZIF-25, -71, and -96 is governed by the polarity of functional group rather than da. With the hydrophobic CH3 group, ZIF-25 has the highest flux despite the smallest da among ZIF-25, -71, and -96. The lifetime of hydrogen bonding in ZIF-25 is shorter than that in ZIF-71 and -96. Furthermore, water molecules undergo a fast flushing motion in ZIF-25, but frequent jumping in ZIF-96 and particularly in ZIF-97. An Arrhenius-type relationship is found between water flux in ZIF-25 and temperature, and the activation energy is predicted to be 6.5 kJ/mol. This simulation study provides a microscopic insight into water <span class="hlt">desalination</span> in a series of ZIFs, reveals the key factors (aperture size and polarity of functional group) governing water flux, and suggests that ZIF-25 might be an interesting reverse osmosis membrane for high-performance water <span class="hlt">desalination</span>. PMID:26588699</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H21C0868M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H21C0868M"><span id="translatedtitle"><span class="hlt">Desalination</span> of Ground Water Minerals (Case Study: Kashan Desert in Iran)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahani, S. E.; Esmaeli Mahani, M.; Siavoshi, F.; Jafari, M.</p> <p>2009-12-01</p> <p>The present study focuses on testing quality and <span class="hlt">desalination</span> of minerals from ground water that is used as the only source of water supply particularly for drinking in the Kashan Desert in Iran. About 14.2 cubic meter water/year from 59 wells, with the average depth of 120 meter, are used for drinking and personal usage in the selected study area. To test the quality of ground water, in general, salinity of minerals such as: chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), as well as PH, Total Dissolved Solids (TDS), Electric Conductivity (EC), and Temperature (T) are measured. EC and TDS in the deserts and arid areas are usually very high because of lack of rainfall, higher temperature, and high rate of evaporation. If the TDS is greater than 1000 mg/l, ground water needs to be <span class="hlt">desalinated</span>. The TDS of ground water samples in Kashan Desert is greater than 2500 mg/l, which is higher than international World Health Organization (WHO) and Environmental Protection Agency (EPA) standard values. Conventional treatment can not be the only solution for making Kashan Desert ground water that much pure that can be used as fresh water for drinking because EC, Mg, Na, Cl, and SO4 are also higher than standard values. Various techniques such as: Ion Exchange (IX), Microfiltration (MF), Ultra Filtration (UF), Nano Filtration (NF), Electro Dialysis (ED), and Reserve Osmosis (RO) are examined to <span class="hlt">desalinate</span> above mentioned minerals. Based on molecular weight and diameter of chemical particles which should be removed, in addition to experiences of operational groups in Iran, the RO technique has been selected as the best methodology. The results show that the RO technique could improve the quality of Kashan Desert ground water by comparison with the standard fresh water up to 95% to 99%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........77T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........77T"><span id="translatedtitle">Analysis and optimization of a solar thermal power generation and <span class="hlt">desalination</span> system using a novel approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres, Leovigildo</p> <p></p> <p>Using a novel approach for a Photovoltaic-Thermal (PV-T) panel system, analytical and optimization analyses were performed for electricity generation as well as <span class="hlt">desalinated</span> water production. The PV-T panel was design with a channel under it where seawater would be housed at a constant pressure of 2.89 psia and ambient temperature of 520°R. The surface of the PV panel was modeled by a high absorption black chrome surface. Irradiation flux on the surface and the heat addition on the saltwater were calculated hourly between 9:00am and 6:00pm. At steady state conditions, the saturation temperature of 600°R was limited at PV tank-channel outlet and the evaporation rate was measured to be 2.53 lbm/hr-ft2. The desorbed air then passed through a turbine, where it generated electrical power at 0.84 Btu/hr, condensing into <span class="hlt">desalinated</span> water at the outlet. Optimization was performed for max capacity yield based on available temperature distribution of 600°R to 1050°R at PV tank-channel outlet. This gave an energy generation range for the turbine of 0.84 Btu/hr to 3.84 Btu/hr, while the <span class="hlt">desalinated</span> water production range was 2.53 lbm/hr-ft2 to 10.65 lbm/hr-ft2. System efficiency was found to be between 7.5% to 24.3%. Water production efficiency was found to be 40% to 43%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22275822','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22275822"><span id="translatedtitle">Exceptional ion rejection ability of directional solvent for non-membrane <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Rish, Daniel; Luo, Shirui; Kurtz, Brien; Luo, Tengfei</p> <p>2014-01-13</p> <p>The recently demonstrated directional solvent extraction (DSE) is promising for very low temperature, membrane-free water <span class="hlt">desalination</span>. In this paper, we combine atomistic simulations and experimental validation to demonstrate that the currently used directional solvent, decanoic acid, can reject all major salt ions in seawater, with very high rejection rates. The salinities of the DSE recovered water show that ion rejection rates are ∼98%–99%—similar to those of the best reverse osmosis membranes. Our test also shows that the DSE process can desalt seawater to produce fresh water that meets drinking water standards.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948477','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948477"><span id="translatedtitle">Operational Optimization of Large-Scale Parallel-Unit SWRO <span class="hlt">Desalination</span> Plant Using Differential Evolution Algorithm</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping</p> <p>2014-01-01</p> <p>A large-scale parallel-unit seawater reverse osmosis <span class="hlt">desalination</span> plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SRL....2030003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SRL....2030003H"><span id="translatedtitle"><span class="hlt">Desalination</span> by Capacitive Deionization with Carbon-Based Materials as Electrode: a Review</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Wei; Zhang, Yimin; Bao, Shenxu; Song, Shaoxian</p> <p>2013-12-01</p> <p>Capacitive deionization (CDI) is a recently developed electrosorption technology for deionization using porous electrodes. The electrode materials play an important role in the efficiency. This paper highlights the current research status of carbon-based materials as the electrode and the adsorption models in the CDI. It includes the types and performances of carbon-based materials and the main influencing factors of the <span class="hlt">desalination</span> characteristics. Also, operating parameters such as charging voltage, flow rate, concentration of feed solution, treating time and temperature are summarized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24701180','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24701180"><span id="translatedtitle">Operational optimization of large-scale parallel-unit SWRO <span class="hlt">desalination</span> plant using differential evolution algorithm.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jian; Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping</p> <p>2014-01-01</p> <p>A large-scale parallel-unit seawater reverse osmosis <span class="hlt">desalination</span> plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/3732','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/3732"><span id="translatedtitle">Use of the Modified Light Duty <span class="hlt">Utility</span> Arm to Perform <span class="hlt">Nuclear</span> Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.</p> <p>1999-04-01</p> <p>The Modified Light Duty <span class="hlt">Utility</span> Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The <span class="hlt">utility</span> arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the <span class="hlt">utility</span> arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the <span class="hlt">utility</span> arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The <span class="hlt">utility</span> arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5478446','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5478446"><span id="translatedtitle"><span class="hlt">Desalination</span>/power cycles with the biphase rotary separator and turbine. Final report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Limburg, P.L.</p> <p>1980-09-01</p> <p>The Biphase Rotary Separator Turbine (RST) generates fresh water and power when using salt water as a working fluid. Cycle studies of single- and two-stage RST cycles determined water-production rates to be 0.6 to 1.8 pounds per thousand Btus of heat input and net power-production efficiencies of 2 to 10 percent, depending on cycle configuration and the maximum saltwater temperature. The Biphase RST can be beneficially integrated with conventional <span class="hlt">desalination</span> processes. Cycles studied include a topping cycle for distillation plants, shaft-power-source cycle for reverse osmosis and vapor-compression plants, and a reverse-osmosis cycle recovering the reject-brine pressure energy. Short duration tests of a Biphase RST showed that fresh water production (30 ppM TDS) from seawater is feasible. Conceptual design studies were made of a single-stage <span class="hlt">desalination</span>/power system suitable for a first demonstration plant. The system produces 9000 gallons per day and 90 horsepower from the exhaust-gas energy of a 2125 horsepower diesel engine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25839209','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25839209"><span id="translatedtitle">Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Ryan C; SenGupta, Arup K</p> <p>2015-05-01</p> <p>For inland brackish water <span class="hlt">desalination</span> by reverse osmosis or RO, concentrate or reject disposal poses a major challenge. However, enhanced recovery and consequent reduction in the reject volume using RO processes is limited by the solubility of ions present in the feedwater. One of the most common and stubborn precipitate formed during <span class="hlt">desalination</span> is calcium sulfate. Reducing or eliminating the presence of sulfate would allow the process to operate at higher recoveries without threat to membrane scaling. In this research, this goal is accomplished by using an appropriate mixture of self-regenerating anion exchange resins that selectively remove and replace sulfate by chloride prior to the RO unit. Most importantly, the mixed bed of anion exchange resins is self-regenerated with the reject brine from the RO process, thus requiring no addition of external chemicals. The current work demonstrates the reversibility of the hybrid ion exchange and RO (HIX-RO) process with 80% recovery for a brackish water composition representative of groundwater in San Joaquin Valley in California containing approximately 5200 mg/L of total dissolved solids or TDS. Consequently, the reject volume can be reduced by 50% without the threat of sulfate scaling and use of antiscaling chemicals can be eliminated altogether. By appropriately designing or tuning the mixed bed of anion exchange resins, the process can be extended to nearly any composition of brackish water for enhanced recovery and consequent reduction in the reject volume. PMID:25839209</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24726967','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24726967"><span id="translatedtitle"><span class="hlt">Desalination</span> feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghyselbrecht, Karel; Silva, Ana; Van der Bruggen, Bart; Boussu, Katleen; Meesschaert, Boudewijn; Pinoy, Luc</p> <p>2014-07-01</p> <p>The industrial implementation of alternative technologies in the processing of saline effluent streams is a topic of growing importance. In this technical feasibility study, the <span class="hlt">desalination</span> of an industrial saline stream containing about 75 g L(-1) NaCl contaminated with some organic matter using bipolar membrane electrodialysis (EDBM) was investigated on lab-scale. Bipolar membranes of two different manufacturers (PCA - PolymerChemie Altmeier GmbH and FuMA-Tech GmbH) were tested and compared in terms of electrical resistance, current efficiency and purity of the produced acid and base stream. In both cases, almost complete <span class="hlt">desalination</span> (>99%) was achieved and simultaneously HCl and NaOH were produced with a concentration between 1.5 and 2 M with a relatively good purity. The Fumasep bipolar membranes scored slightly better for electrical resistance and current efficiency. On the other hand, slightly higher current densities were achieved with PCA bipolar membranes. Simultaneously, some information was obtained on the transport behavior of the organic matter present in the saline stream. It was observed that a transport competition occurred between the organic matter and the accompanying chlorides. From this lab-scale study it was concluded that EDBM is a promising and attractive technology in the area of saline effluent reclamation and reuse. PMID:24726967</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25585871','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25585871"><span id="translatedtitle">Activated carbon electrodes: electrochemical oxidation coupled with <span class="hlt">desalination</span> for wastewater treatment.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi</p> <p>2015-04-01</p> <p>The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and <span class="hlt">desalination</span>. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. <span class="hlt">Desalination</span> was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. PMID:25585871</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24804655','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24804655"><span id="translatedtitle">HybridICE® filter: ice separation in freeze <span class="hlt">desalination</span> of mine waste waters.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M</p> <p>2014-01-01</p> <p>Freeze <span class="hlt">desalination</span> is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze <span class="hlt">desalination</span> process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow. PMID:24804655</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24632437','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24632437"><span id="translatedtitle">Microbial electrolysis <span class="hlt">desalination</span> and chemical-production cell for CO2 sequestration.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Xiuping; Logan, Bruce E</p> <p>2014-05-01</p> <p>Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis <span class="hlt">desalination</span> and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg(2+) and Ca(2+) dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24 mg of CO2 was absorbed into the alkaline solution and 13 mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822 mg/L) and achieved 22% <span class="hlt">desalination</span> (initially 35 g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. PMID:24632437</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015WRR....51..450S&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015WRR....51..450S&link_type=ABSTRACT"><span id="translatedtitle">Irrigation with <span class="hlt">desalinated</span> water: A step toward increasing water saving and crop yields</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silber, Avner; Israeli, Yair; Elingold, Idan; Levi, Menashe; Levkovitch, Irit; Russo, David; Assouline, Shmuel</p> <p>2015-01-01</p> <p>We examined the impact of two different approaches to managing irrigation water salinity: salt leaching from the field ("conventional" management) and water <span class="hlt">desalination</span> before field application ("alternative" management). Freshwater commonly used for irrigation (FW) and <span class="hlt">desalinated</span> water (DS) were applied to the high-water-demanding crop banana at four different rates. Both irrigation rate and water salinity significantly affected yield. DS application consistently produced higher yields than FW, independently of irrigation rate. The highest yield for FW-irrigation was achieved with the highest irrigation rate, whereas the same yield was obtained in the case of DS-irrigation with practically half the amount of water. Yield decreased with FW-irrigation, even when the water salinity, ECi, was lower than the limit considered safe for soil and crops. Irrigating with FW provided a massive amount of salt which accumulated in the rhizosphere, inducing increased osmotic potential of the soil solution and impairing plant water uptake. Furthermore, applying the "conventional" management, a significant amount of salt is leached from the rhizosphere, accumulating in deeper soil layers, and eventually reaching groundwater reservoirs, thus contributing to the deterioration of both soil and water quality. Removal of salt excess from the water before it reaches the field by means of DS-irrigation may save significant amounts of irrigation water by reducing the salt leaching requirements while increasing yield and improving fruit quality, and decreasing salt load in the groundwater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26451495','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26451495"><span id="translatedtitle">Molecular Dynamics Investigation of Ion Sorption and Permeation in <span class="hlt">Desalination</span> Membranes.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kolev, Vesselin; Freger, Viatcheslav</p> <p>2015-11-01</p> <p>With the purpose of gaining insights into the mechanisms of ion uptake and permeation in <span class="hlt">desalination</span> membranes, MD investigation of a model polyamide membrane was carried out. A relatively large membrane (45K atoms) was assembled, which closely matched real <span class="hlt">desalination</span> membrane in terms of chemistry and water permeability. Simulations demonstrate that the mechanism of ion uptake distinctly differs from mean-field approaches assuming a smeared excluding Donnan potential. Ion sorption on charged sites in the membrane phase appears to be highly localized, due to electrostatic forces dominating over translational entropy. Moreover, sorption on partial atomic charges becomes possible as well, which greatly enhances salt (co-ion) uptake and weakens the effect of fixed charges on salt exclusion. This could explain high ion uptake measured in polyamide membranes for both co- and counterions and variations of ion sorption and permeation at low salt concentrations. On the other hand, present simulations greatly overestimate ion permeability, which could be explained by a more open structure than in real membranes, in which dense polyamide fragments may efficiently block ion permeation. Unfortunately, MD cannot analyze ion uptake and permeation in dense fragments containing too few ions, which calls for new approaches to studying barrier properties of polyamide. PMID:26451495</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27295409','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27295409"><span id="translatedtitle">Health effects of <span class="hlt">desalinated</span> water: Role of electrolyte disturbance in cancer development.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nriagu, Jerome; Darroudi, Firouz; Shomar, Basem</p> <p>2016-10-01</p> <p>This review contends that "healthy" water in terms of electrolyte balance is as important as "pure" water in promoting public health. It considers the growing use of <span class="hlt">desalination</span> (demineralization) technologies in drinking water treatment which often results in tap water with very low concentrations of sodium, potassium, magnesium and calcium. Ingestion of such water can lead to electrolyte abnormalities marked by hyponatremia, hypokalemia, hypomagnesemia and hypocalcemia which are among the most common and recognizable features in cancer patients. The causal relationships between exposure to demineralized water and malignancies are poorly understood. This review highlights some of the epidemiological and in vivo evidence that link dysregulated electrolyte metabolism with carcinogenesis and the development of cancer hallmarks. It discusses how ingestion of demineralized water can have a procarcinogenic effect through mediating some of the critical pathways and processes in the cancer microenvironment such as angiogenesis, genomic instability, resistance to programmed cell death, sustained proliferative signaling, cell immortalization and tumorigenic inflammation. Evidence that hypoosmotic stress-response processes can upregulate a number of potential oncogenes is well supported by a number studies. In view of the rising production and consumption of demineralized water in most parts of the world, there is a strong need for further research on the biological importance and protean roles of electrolyte abnormalities in promoting, antagonizing or otherwise enabling the development of cancer. The countries of the Gulf Cooperative Council (GCC) where most people consume <span class="hlt">desalinated</span> water would be a logical place to start this research. PMID:27295409</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052924','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052924"><span id="translatedtitle">Electroadsorption <span class="hlt">Desalination</span> with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Yang; Zhou, Junbo</p> <p>2014-01-01</p> <p>The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption <span class="hlt">desalination</span> performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better <span class="hlt">desalination</span> effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24668882','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24668882"><span id="translatedtitle">Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric <span class="hlt">desalination</span> membranes.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Hee Dae; Kim, Hyo Won; Cho, Young Hoon; Park, Ho Bum</p> <p>2014-07-01</p> <p>As water molecules permeate ultrafast through carbon nanotubes (CNTs), many studies have prepared CNTs-based membranes for water purification as well as <span class="hlt">desalination</span>, particularly focusing on high flux membranes. Among them, vertically aligned CNTs membranes with ultrahigh water flux have been successfully demonstrated for fundamental studies, but they lack scalability for bulk production and sufficiently high salt rejection. CNTs embedded in polymeric <span class="hlt">desalination</span> membranes, i.e., polyamide thin-film composite (TFC) membranes, can improve water flux without any loss of salt rejection. This improved flux is achieved by enhancing the dispersion properties of CNTs in diamine aqueous solution and also by using cap-opened CNTs. Hydrophilic CNTs were prepared by wrapping CNT walls via bio-inspired surface modification using dopamine solution. Cap-opening of pristine CNTs is performed by using a thermo-oxidative process. As a result, hydrophilic, cap-opened CNTs-embedded polyamide TFC membranes are successfully prepared, which show much higher water flux than pristine polyamide TFC membrane. On the other hand, less-disperse, less cap-opened CNTs-embedded TFC membranes do not show any flux improvement and rather lead to lower salt rejection properties. PMID:24668882</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27055090','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27055090"><span id="translatedtitle">Thermoresponsive Acidic Microgels as Functional Draw Agents for Forward Osmosis <span class="hlt">Desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartanto, Yusak; Zargar, Masoumeh; Wang, Haihui; Jin, Bo; Dai, Sheng</p> <p>2016-04-19</p> <p>Thermoresponsive microgels with carboxylic acid functionalization have been recently introduced as an attractive draw agent for forward osmosis (FO) <span class="hlt">desalination</span>, where the microgels showed promising water flux and water recovery performance. In this study, various comonomers containing different carboxylic acid and sulfonic acid functional groups were copolymerized with N-isopropylacrylamide (NP) to yield a series of functionalized thermoresponsive microgels possessing different acidic groups and hydrophobicities. The purified microgels were examined as the draw agents for FO application, and the results show the response of water flux and water recovery was significantly affected by various acidic comonomers. The thermoresponsive microgel with itaconic acid shows the best overall performance with an initial water flux of 44.8 LMH, water recovery up to 47.2% and apparent water flux of 3.1 LMH. This study shows that the incorporation of hydrophilic dicarboxylic acid functional groups into the microgels leads to the enhancement on water adsorption and overall performance. Our work elucidates in detail on the structure-property relationship of thermoresponsive microgels in their applications as FO draw agents and would be beneficial for future design and development of high performance FO <span class="hlt">desalination</span>. PMID:27055090</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Nanot..24X5720X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Nanot..24X5720X"><span id="translatedtitle">Exceptionally fast water <span class="hlt">desalination</span> at complete salt rejection by pristine graphyne monolayers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Minmin; Qiu, Hu; Guo, Wanlin</p> <p>2013-12-01</p> <p><span class="hlt">Desalination</span> that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional <span class="hlt">desalination</span> technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na+, Cl-, Mg2+, K+ and Ca2+, at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ˜98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23879562','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23879562"><span id="translatedtitle">Molecular characterization of dissolved organic matter through a <span class="hlt">desalination</span> process by high resolution mass spectrometry.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cortés-Francisco, Nuria; Caixach, Josep</p> <p>2013-09-01</p> <p>The effect of different water treatments such as ultrafiltration (UF) and reverse osmosis (RO) on dissolved organic matter (DOM) is still unknown. Electrospray ionization Fourier transform orbitrap mass spectrometry has been used to provide valuable information of marine DOM evolution through a <span class="hlt">desalination</span> process on a molecular scale. In the present manuscript, the characterization of four real composite water samples from a <span class="hlt">desalination</span> pilot plant installed in the coast of Barcelona (Spain) has been carried out. The sampling was performed on each point of the pilot plant: raw seawater (RSW), UF effluent, brine RO and permeate RO. The mass spectra of the different samples show several thousand peaks, however for the present screening study, only the mass range m/z 200-500 and the main signals in this mass range (relative intensities ≥1%) have been considered. The analysis of RSW and UF samples reveal that there is little effect on DOM by the UF pilot. However, when the water is treated on the RO an important change on DOM has been observed. The recurring periodical patterns found in RSW and UF are lost in Permeate RO sample. Compounds with more aliphatic character, with higher H/C ratio (H/Cav 1.72) are present in the Permeate and some of them have been tentatively identified as fatty acids. PMID:23879562</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24285308','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24285308"><span id="translatedtitle">Exceptionally fast water <span class="hlt">desalination</span> at complete salt rejection by pristine graphyne monolayers.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xue, Minmin; Qiu, Hu; Guo, Wanlin</p> <p>2013-12-20</p> <p><span class="hlt">Desalination</span> that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional <span class="hlt">desalination</span> technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems. PMID:24285308</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24963504','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24963504"><span id="translatedtitle">Electroadsorption <span class="hlt">desalination</span> with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Yang; Zhou, Junbo</p> <p>2014-01-01</p> <p>The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption <span class="hlt">desalination</span> performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better <span class="hlt">desalination</span> effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/919133','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/919133"><span id="translatedtitle"><span class="hlt">Desalination</span> of brackish ground waters and produced waters using in-situ precipitation.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard</p> <p>2004-08-01</p> <p>The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for <span class="hlt">desalination</span> of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for <span class="hlt">desalinating</span> inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/1127501','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/1127501"><span id="translatedtitle">Increasing Gas Hydrate Formation Temperature for <span class="hlt">Desalination</span> of High Salinity Produced Water with Secondary Guests</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Cha, Jong-Ho; Seol, Yongkoo</p> <p>2013-10-07</p> <p>We suggest a new gas hydrate-based <span class="hlt">desalination</span> process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the <span class="hlt">desalination</span> process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27065300','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27065300"><span id="translatedtitle">Development of Omniphobic <span class="hlt">Desalination</span> Membranes Using a Charged Electrospun Nanofiber Scaffold.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jongho; Boo, Chanhee; Ryu, Won-Hee; Taylor, André D; Elimelech, Menachem</p> <p>2016-05-01</p> <p>In this study, we present a facile and scalable approach to fabricate omniphobic nanofiber membranes by constructing multilevel re-entrant structures with low surface energy. We first prepared positively charged nanofiber mats by electrospinning a blend polymer-surfactant solution of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and cationic surfactant (benzyltriethylammonium). Negatively charged silica nanoparticles (SiNPs) were grafted on the positively charged electrospun nanofibers via dip-coating to achieve multilevel re-entrant structures. Grafted SiNPs were then coated with fluoroalkylsilane to lower the surface energy of the membrane. The fabricated membrane showed excellent omniphobicity, as demonstrated by its wetting resistance to various low surface tension liquids, including ethanol with a surface tension of 22.1 mN/m. As a promising application, the prepared omniphobic membrane was tested in direct contact membrane distillation to extract water from highly saline feed solutions containing low surface tension substances, mimicking emerging industrial wastewaters (e.g., from shale gas production). While a control hydrophobic PVDF-HFP nanofiber membrane failed in the <span class="hlt">desalination</span>/separation process due to low wetting resistance, our fabricated omniphobic membrane exhibited a stable <span class="hlt">desalination</span> performance for 8 h of operation, successfully demonstrating clean water production from the low surface tension feedwater. PMID:27065300</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27120634','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27120634"><span id="translatedtitle">Application of forward osmosis membrane technology for oil sands process-affected water <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Yaxin; Liang, Jiaming; Liu, Yang</p> <p>2016-01-01</p> <p>The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging <span class="hlt">desalination</span> technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW <span class="hlt">desalination</span> and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing. PMID:27120634</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/7247801','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/7247801"><span id="translatedtitle">Design of stand-alone brackish water <span class="hlt">desalination</span> wind energy system for Jordan</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Habali, S.M.; Saleh, I.A.</p> <p>1994-06-01</p> <p>More than 100 underground water wells drilled in Jordan are known to have brackish water with total desolved solids (TDS) over 1500 ppm but not greater than 4000 ppm. The world standard for potable water limits the TDS count to 500 ppm in addition to being free from live microorganisms or dangerous mineral and organic substances. A reverse osmosis <span class="hlt">desalination</span> scheme powered by a stand-alone wind energy converter (WEC) is proposed to produce fresh water water from wells located in potentially high-wind sites. The purpose of this study if to present the main design parameters and economic estimates of a wind-assisted RO system using a diesel engine as the baseline energy source and an electric wind turbine for the wind energy source. It is found that brackish water pumping and <span class="hlt">desalinating</span> using WECs costs 0.67 to 1.16 JD/m[sup 3] (JD = Jordanian Dinar, 1US$ = 0.68 JD), which is less than using conventional diesel engines especially in remote areas. In addition, the wind-reverse osmosis system becomes more economically feasible for higher annual production rates or in good wind regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=nuclear+AND+weapons&pg=5&id=EJ121571','ERIC'); return false;" href="http://eric.ed.gov/?q=nuclear+AND+weapons&pg=5&id=EJ121571"><span id="translatedtitle">Terrorists and <span class="hlt">Nuclear</span> Technology</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Krieger, David</p> <p>1975-01-01</p> <p>This essay explores the ways terrorist groups may gain possession of <span class="hlt">nuclear</span> materials; the way in which they may use <span class="hlt">nuclear</span> weapons and other <span class="hlt">nuclear</span> technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists <span class="hlt">utilizing</span> <span class="hlt">nuclear</span> technology to their benefit and society's detriment. (BT)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5548388','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5548388"><span id="translatedtitle"><span class="hlt">Desalination</span> of water. June, 1970-December, 1981 (citations from the Engineering Index Data Base). Report for Jun 70-Dec 81</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Not Available</p> <p>1981-12-01</p> <p>The industrial <span class="hlt">desalination</span> of water is discussed with particular reference to large scale plants in the Middle East. Methods include electrodialysis, reverse osmosis, and ion exchange. Problems associated with corrosion and scale formation are also discussed. (This updated bibliography contains 268 citations, 68 of which are new entries to the previous edition.)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24870226','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24870226"><span id="translatedtitle">Na⁺-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Chun Xian; Zhao, Dieling; Zhao, Qipeng; Wang, Peng; Lu, Xianmao</p> <p>2014-07-14</p> <p>A new type of biocompatible draw solute, Na(+)-functionalized carbon quantum dots (Na_CQDs) with ultra-small size and rich ionic species, in forward osmosis (FO) is developed for seawater <span class="hlt">desalination</span>. The aqueous dispersion of Na_CQDs demonstrates a high osmotic pressure, which allows high FO water flux and negligible reverse solute permeation. PMID:24870226</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27176649','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27176649"><span id="translatedtitle">A novel integrated thermal-/membrane-based solar energy-driven hybrid <span class="hlt">desalination</span> system: Concept description and simulation results.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine</p> <p>2016-09-01</p> <p>In this paper, a hybrid <span class="hlt">desalination</span> system consisting of vacuum membrane distillation (VMD) and adsorption <span class="hlt">desalination</span> (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid <span class="hlt">desalination</span> system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD <span class="hlt">desalination</span> system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. PMID:27176649</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24984034','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24984034"><span id="translatedtitle">Secondary structure analyses of the <span class="hlt">nuclear</span> rRNA internal transcribed spacers and assessment of its phylogenetic <span class="hlt">utility</span> across the Brassicaceae (mustards).</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edger, Patrick P; Tang, Michelle; Bird, Kevin A; Mayfield, Dustin R; Conant, Gavin; Mummenhoff, Klaus; Koch, Marcus A; Pires, J Chris</p> <p>2014-01-01</p> <p>The internal transcribed spacers of the <span class="hlt">nuclear</span> ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used <span class="hlt">nuclear</span> markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1.) Ease of amplification due to high copy number of the gene clusters, 2.) Available cost-effective methods and highly conserved primers, 3.) Rapidly evolving markers (i.e. variable between closely related species), and 4.) The assumption (and/or treatment) that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC) content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships. PMID:24984034</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/16340608','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/16340608"><span id="translatedtitle">Calculation of dose coefficients for radionuclides produced in a spallation neutron source <span class="hlt">utilizing</span> NUBASE and the evaluated <span class="hlt">nuclear</span> structure data file databases.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shanahan, J; Eckerman, K; Arndt, A; Gold, C; Patton, P; Rudin, M; Brey, R; Gesell, T; Rusetski, V; Pagava, S</p> <p>2006-01-01</p> <p>Based on a mercury spallation neutron source target, the UNLV Transmutation Research Program has identified 72 radionuclides with a half-life greater than or equal to a minute as lacking an appropriate reference for a published dose coefficient according to existing radiation safety dose coefficient databases. A method was developed to compare the <span class="hlt">nuclear</span> data presented in the ENSDF and NUBASE databases for these 72 radionuclides. Due to conflicting or lacking <span class="hlt">nuclear</span> data in one or more of the databases, internal and external dose coefficient values have been calculated for only 14 radionuclides, which are not currently presented in Federal Guidance Reports Nos. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 microm and 5 microm AMAD particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 microm AMAD particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented. PMID:16340608</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24129795','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24129795"><span id="translatedtitle">Circulatory osmotic <span class="hlt">desalination</span> driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mok, Yeongbong; Nakayama, Daichi; Noh, Minwoo; Jang, Sangmok; Kim, Taeho; Lee, Yan</p> <p>2013-11-28</p> <p>Abrupt changes in effective concentration and osmotic pressure of lower critical solution temperature (LCST) mixtures facilitate the design of a continuous <span class="hlt">desalination</span> method driven by a mild temperature gradient. We propose a prototype <span class="hlt">desalination</span> system by circulating LCST mixtures between low and high temperature (low T and high T) units. Water molecules could be drawn from a high-salt solution to the LCST mixture through a semipermeable membrane at a temperature lower than the phase transition temperature, at which the effective osmotic pressure of the LCST mixture is higher than the high-salt solution. After transfer of water to the high T unit where the LCST mixture is phase-separated, the water-rich phase could release the drawn water into a well-diluted solution through the second membrane due to the significant decrease in effective concentration. The solute-rich phase could be recovered in the low T unit via a circulation process. The molar mass, phase transition temperature, and aqueous solubility of the LCST solute could be tuneable for the circulatory osmotic <span class="hlt">desalination</span> system in which drawing, transfer, release of water, and the separation and recovery of the solutes could proceed simultaneously. Development of a practical <span class="hlt">desalination</span> system that draws water molecules directly from seawater and produces low-salt water with high purity by mild temperature gradients, possibly induced by sunlight or waste heat, could be attainable by a careful design of the molecular structure and combination of the circulatory <span class="hlt">desalination</span> systems based on low- and high-molar-mass LCST draw solutes. PMID:24129795</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6664808','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6664808"><span id="translatedtitle">Materials selection guidelines for geothermal energy <span class="hlt">utilization</span> systems</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ellis, P.F. II; Conover, M.F.</p> <p>1981-01-01</p> <p>This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The <span class="hlt">utilization</span> modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater <span class="hlt">desalination</span> plants, worldwide geothermal power production, DOE-sponsored <span class="hlt">utilization</span> projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21016454','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21016454"><span id="translatedtitle">Proceedings of the 2006 international congress on advances in <span class="hlt">nuclear</span> power plants - ICAPP'06</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p></p> <p>2006-07-01</p> <p>Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in <span class="hlt">Nuclear</span> Power Plants brought together international experts of the <span class="hlt">nuclear</span> industry involved in the operation, development, building, regulation and research related to <span class="hlt">Nuclear</span> Power Plants. The program covers the full spectrum of <span class="hlt">Nuclear</span> Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term <span class="hlt">utility</span> needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource <span class="hlt">utilization</span>, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56570&keyword=Biomass+AND+gasification&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=72741161&CFTOKEN=62360670','EPA-EIMS'); return false;" href="http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56570&keyword=Biomass+AND+gasification&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=72741161&CFTOKEN=62360670"><span id="translatedtitle">BIOMASS <span class="hlt">UTILIZATION</span></span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The biomass <span class="hlt">utilization</span> task consists of the evaluation of a biomass conversion technology including research and development initiatives. The project is expected to provide information on co-control of pollutants, as well as, to prove the feasibility of biomass conversion techn...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=light+AND+bulb&pg=7&id=ED205796','ERIC'); return false;" href="http://eric.ed.gov/?q=light+AND+bulb&pg=7&id=ED205796"><span id="translatedtitle">Lighting <span class="hlt">Utilization</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Crank, Ron</p> <p></p> <p>This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with lighting <span class="hlt">utilization</span>. Its objective is for the student to be able to outline the development of lighting use and conservation and identify major types and operating characteristics of lamps used in electric lighting. Some topics…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23582697','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23582697"><span id="translatedtitle">An examination of the <span class="hlt">utility</span> of a <span class="hlt">nuclear</span> DNA/mitochondrial DNA duplex qPCR assay to assess surface decontamination of hair.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Date-Chong, Mavis; Buoncristiani, Martin R; Aceves, Margaret; Orrego, Cristián</p> <p>2013-05-01</p> <p>The goal of this study was to compare two commonly used methods for the surface decontamination of human hair shafts, and to evaluate the use of a duplex real-time qPCR assay to assess decontamination effectiveness for the purpose of mitochondrial DNA typing. Hair shafts of known mitochondrial DNA haplotype were coated with undiluted saliva, semen or blood, each of known mitochondrial haplotype distinct from the test hair. Surface decontamination was conducted by enzymatic treatment with Terg-a-zyme™ and by chemical treatment with dilutions of sodium hypochlorite (NaClO, bleach). Following DNA extraction, a duplex (<span class="hlt">nuclear</span> and mitochondrial DNA) real-time qPCR assay was used to quantify mitochondrial DNA and to test for surface contamination by quantifying the exogenous <span class="hlt">nuclear</span> DNA not removed from the hair shaft. The NaClO treatment was found to be more effective for removing surface contamination than the Terg-a-zyme™ treatment, and it was procedurally simpler to implement, resulting in a significant savings of sample processing time. Exposure to 3% NaClO for up to two minutes had no detrimental effect on quantity or typing of the mitochondrial DNA belonging to the hair. In addition, we demonstrated that the duplex real-time PCR assay is a convenient early-warning diagnostic method for the detection of the presence of external DNA contamination, providing an assessment of the purity of the sample prior to embarking on further analysis by more laborious mitochondrial DNA typing methods. PMID:23582697</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24231030','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24231030"><span id="translatedtitle">Biofouling of reverse-osmosis membranes during tertiary wastewater <span class="hlt">desalination</span>: microbial community composition.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat</p> <p>2014-03-01</p> <p>Reverse-osmosis (RO) <span class="hlt">desalination</span> is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO <span class="hlt">desalination</span> process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO <span class="hlt">desalination</span> plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community. PMID:24231030</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..MAR.C1072S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..MAR.C1072S"><span id="translatedtitle">From blood dialysis to <span class="hlt">desalination</span>: A one-size fits all block copolymer based membrane system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanna Kotrappanavar, Nataraj; Zavala-Rivera, Paul; Chonnon, Kevin; Almuhtaseb, Shaheen S. A.; Sivaniah, Easan; University of Cambridge Team; Qatar University Collaboration</p> <p>2011-03-01</p> <p>Asymmetric membrane with ultrahigh selective self-assembled nanoporous block copolymer layer were developed successfully on polyimide (PI) support, which demonstrated excellent thermal, chemical and mechanical stability. Membranes with specific nano- structural architectures and optimized cascades of block assemblies on the top selective skin have been used largely for separation of colour from aqueous streams, wastewater treatment, <span class="hlt">desalination</span>, blood filtration and gas separation with dense layer transformation. A consistent and reliable method of membrane preparation and measuring separation performance has been adopted. A homologous series of ethylene oxide oligomers covering a large range was used to characterise MWCO of Membrane and were able to provide many points to give a comprehensive description of the membrane performance in the nanofiltration range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22372914','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22372914"><span id="translatedtitle">Relation between the charge efficiency of activated carbon fiber and its <span class="hlt">desalination</span> performance.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Zheng-Hong; Wang, Ming; Wang, Lei; Kang, Feiyu</p> <p>2012-03-20</p> <p>Four types of activated carbon fibers (ACFs) with different specific surface areas (SSA) were used as electrode materials for water <span class="hlt">desalination</span> using capacitive deionization (CDI). The carbon fibers were characterized by scanning electron microscopy and N(2) adsorption at 77 K, and the CDI process was investigated by studying the salt adsorption, charge transfer, and also the charge efficiency of the electric double layers that are formed within the micropores inside the carbon electrodes. It is found that the physical adsorption capacity of NaCl by the ACFs increases with increasing Brunauer-Emmett-Teller (BET) surface area of the fibers. However, the two ACF materials with the highest BET surface area have the lowest electrosorptive capability. Experiments indicate that the charge efficiency of the double layers is a key property of the ACF-based electrodes because the ACF material which has the maximum charge efficiency also shows the highest salt adsorption capacity for CDI. PMID:22372914</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25615396','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25615396"><span id="translatedtitle">Boosting capacitive blue-energy and <span class="hlt">desalination</span> devices with waste heat.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Janssen, Mathijs; Härtel, Andreas; van Roij, René</p> <p>2014-12-31</p> <p>We show that sustainably harvesting "blue" energy from the spontaneous mixing process of fresh and salty water can be boosted by varying the water temperature during a capacitive mixing process. Our modified Poisson-Boltzmann calculations predict a strong temperature dependence of the electrostatic potential of a charged electrode in contact with an adjacent aqueous 1:1 electrolyte. We propose to exploit this dependence to boost the efficiency of capacitive blue engines, which are based on cyclically charging and discharging nanoporous supercapacitors immersed in salty and fresh water, respectively [D. Brogioli, Phys. Rev. Lett. 103, 058501 (2009)]. We show that the energy output of blue engines can be increased by a factor of order 2 if warm (waste-heated) fresh water is mixed with cold sea water. Moreover, the underlying physics can also be used to optimize the reverse process of capacitive <span class="hlt">desalination</span> of water. PMID:25615396</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26465062','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26465062"><span id="translatedtitle">Water <span class="hlt">desalination</span> with a single-layer MoS2 nanopore.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R</p> <p>2015-01-01</p> <p>Efficient <span class="hlt">desalination</span> of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å(2). Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼ 70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores. PMID:26465062</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810022015','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810022015"><span id="translatedtitle">Solar energy water <span class="hlt">desalination</span> in the United States and Saudi Arabia</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Luft, W.; William, J.</p> <p>1981-01-01</p> <p>Five solar energy water <span class="hlt">desalination</span> systems were designed to deliver 6000 cubic m/day of desalted water from either seawater or brackish water. Two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 100 to 400 m/day. Goals of the Project Agreement for Cooperation in the Field of Solar Energy, under the auspices of the United States-Saudi Arabian Joint Commission on Economic Cooperation, are to: (1) cooperate in the field of solar energy technology for the mutual benefit of the two countries, including the development and stimulation of solar industries within the two countries; (2) advance the development of solar energy technology in the two countries; and (3) facilitate the transfer between the two countries of technology developed under this agreement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvL.113z8501J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvL.113z8501J"><span id="translatedtitle">Boosting Capacitive Blue-Energy and <span class="hlt">Desalination</span> Devices with Waste Heat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janssen, Mathijs; Härtel, Andreas; van Roij, René</p> <p>2014-12-01</p> <p>We show that sustainably harvesting "blue" energy from the spontaneous mixing process of fresh and salty water can be boosted by varying the water temperature during a capacitive mixing process. Our modified Poisson-Boltzmann calculations predict a strong temperature dependence of the electrostatic potential of a charged electrode in contact with an adjacent aqueous 1 :1 electrolyte. We propose to exploit this dependence to boost the efficiency of capacitive blue engines, which are based on cyclically charging and discharging nanoporous supercapacitors immersed in salty and fresh water, respectively [D. Brogioli, Phys. Rev. Lett. 103, 058501 (2009)]. We show that the energy output of blue engines can be increased by a factor of order 2 if warm (waste-heated) fresh water is mixed with cold sea water. Moreover, the underlying physics can also be used to optimize the reverse process of capacitive <span class="hlt">desalination</span> of water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19341278','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19341278"><span id="translatedtitle">Superhydrophobic membranes with ordered arrays of nanospiked microchannels for water <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Zeyu; Hong, Yan; Ma, Liyuan; Su, Ming</p> <p>2009-05-19</p> <p>Membrane distillation can <span class="hlt">desalinate</span> seawater using low-grade heat energy or solar heat, but it has limited mass fluxes and membrane fouling issues. Glass membranes with integrated arrays of nanospiked microchannels and a narrow pore size distribution are made through a process that involves glass fiber drawing, dissolving template material from microchannels and differential chemical etching. After surface modification, superhydrophobic glass membranes with water contact angles of over 160 degrees are produced because of the formations of ordered arrays of spiked nanostructures. The superhydrophobic membrane has shown better antifouling ability and higher flux than those of existing polymer membranes, especially at high salt concentration, owing to its large pore diameter, straight pore shape, narrow pore size distribution, high chemical and thermal stabilities, and water-repelling ability. PMID:19341278</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25145166','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25145166"><span id="translatedtitle">Evaluation method of membrane performance in membrane distillation process for seawater <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chung, Seungjoon; Seo, Chang Duck; Choi, Jae-Hoon; Chung, Jinwook</p> <p>2014-01-01</p> <p>Membrane distillation (MD) is an emerging <span class="hlt">desalination</span> technology as an energy-saving alternative to conventional distillation and reverse osmosis method. The selection of appropriate membrane is a prerequisite for the design of an optimized MD process. We proposed a simple approximation method to evaluate the performance of membranes for MD process. Three hollow fibre-type commercial membranes with different thicknesses and pore sizes were tested. Experimental results showed that one membrane was advantageous due to the highest flux, whereas another membrane was due to the lowest feed temperature drop. Regression analyses and multi-stage calculations were used to account for the trade-offeffects of flux and feed temperature drop. The most desirable membrane was selected from tested membranes in terms of the mean flux in a multi-stage process. This method would be useful for the selection of the membranes without complicated simulation techniques. PMID:25145166</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016E%26ES...36a2032R&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016E%26ES...36a2032R&link_type=ABSTRACT"><span id="translatedtitle">Water <span class="hlt">desalination</span> by air-gap membrane distillation using meltblown polypropylene nanofiber membrane</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosalam, S.; Chiam, C. K.; Widyaparamitha, S.; Chang, Y. W.; Lee, C. A.</p> <p>2016-06-01</p> <p>This paper presents a study of air gap membrane distillation (AGMD) using meltblown polypropylene (PP) nanofiber membrane to produce fresh water via <span class="hlt">desalination</span> process. PP nanofiber membranes with the effective area 0.17 m2 are tested with NaCl solutions (0.5 - 4.0 wt.%) and seawater as the feed solutions (9400 - 64800 μS/cm) in a tubular membrane module. Results show that the flux decreases with increasing the membrane thickness from 547 to 784 μm. The flux increases with the feed flow rate and temperature difference across the membrane. The feed concentration affects the flux insignificantly. The AGMD system can reject the salts at least 96%. Water vapor permeation rate is relatively higher than solute permeation rate resulting in the conductivity value of permeate decreases when the corresponding flux increases. The AGMD system produces the fresh water (200 - 1520 μS/cm) that is suitable for drinking, fisheries or irrigation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27387851','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27387851"><span id="translatedtitle">A Bilayered Structure Comprised of Functionalized Carbon Nanotubes for <span class="hlt">Desalination</span> by Membrane Distillation.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bhadra, Madhuleena; Roy, Sagar; Mitra, Somenath</p> <p>2016-08-01</p> <p>The development of a novel carbon nanotube (CNT) immobilized membrane comprised of a double-layer structure is presented for water <span class="hlt">desalination</span> by membrane distillation. The bilayered structure is comprised of CNTs functionalized with a hydrophobic octadecyl amine group on the feed side and carboxylated CNTs on the permeate side. The latter is more hydrophilic. The hydrophobic CNTs provide higher water vapor permeation, while the hydrophilic CNTs facilitate the condensation of water vapor. Together, these led to superior performance, and flux in a direct contact membrane distillation mode was found to be as high as 121 kg/m(2)h at 80 °C. The bilayered membrane represented an enhancement of 70% over the unmodified membrane and 37% over a membrane which had a monolayered structure where only the feed side was CNT-modified. PMID:27387851</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......315C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......315C"><span id="translatedtitle">An arduino based control system for a brackish water <span class="hlt">desalination</span> plant</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caraballo, Ginna</p> <p></p> <p>Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish <span class="hlt">desalination</span> plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26318921','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26318921"><span id="translatedtitle">Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in <span class="hlt">desalination</span> concentrate.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matos, Ângelo Paggi; Feller, Rafael; Moecke, Elisa Helena Siegel; Sant'Anna, Ernani Sebastião</p> <p>2015-12-01</p> <p>In this study the feasibility of growing marine Nannochloropsis gaditana in <span class="hlt">desalination</span> concentrate (DC) was explored and the influence of the DC concentration on the biomass growth, lipid productivities and fatty acids composition was assessed. The reuse of the medium with the optimum DC concentration in successive algal cultivation cycles and the additional of a carbon source to the optimized medium were also evaluated. On varying the DC concentration, the maximum biomass concentration (0.96gL(-1)) and lipid content (12.6%) were obtained for N. gaditana in the medium with the optimum DC concentration (75%). Over the course of the reuse of the optimum DC medium, three cultivation cycles were performed, observing that the biomass productivity is directly correlated to lipid productivity. Palmitic acid was the major fatty acid found in N. gaditana cells. The saturated fatty acids content of the algae enhanced significantly on increasing the DC concentration. PMID:26318921</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IJMPB..20.3704Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IJMPB..20.3704Y"><span id="translatedtitle">Application of <span class="hlt">Desalination</span> with CFRP Composite Electrode to Concrete Deteriorated by Chloride Attack</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaguchi, Keisuke; Ueda, Takao; Nanasawa, Akira</p> <p></p> <p>As a new rehabilitation technique for recovery both of loading ability and durability of concrete structures deteriorated by chloride attack, <span class="hlt">desalination</span> (electrochemical chloride removal technique from concrete) using CFRP composite electrode bonding to concrete has been developed. In this study, basic application was tried using small RC specimens, and also application to the large-scale RC beams deteriorated by the chloride attack through the long-term exposure in the outdoors was investigated. As the result of bending test of treated specimens, the decrease of strengthening effect with the electrochemical treatment was observed in the case of small specimens using low absorption rate resin for bonding, on the other hand, in the case of large-scale RC beam using 20% absorption rate resin for bonding CFRP composite electrode, enough strengthening effect was obtained by the bending failure of RC beam with the fracture of CFRP board.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25882144','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25882144"><span id="translatedtitle">A rare case of a scuba diver's death due to propeller injuries of a <span class="hlt">desalination</span> pump.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perilli, G; Di Battista, B; Montana, A; Pavia, J; Cauchi, S; Zerafa, N M; Pomara, C</p> <p>2015-05-01</p> <p>Water skiing, boat racing, skin and scuba diving, as well as pleasure boat cruising are becoming increasingly popular hobbies. As a result, the incidence of injuries secondary to motor propellers is becoming more frequent. Injuries by propellers, amputation, death by drowning, and bleeding are rare reported events in forensic literature. The most common circumstances surrounding boat-propeller-related injuries are concerned with getting into or out of the boat, personal watercraft use or water skiing, and falling or being thrown from the boat. A case of a scuba diver's death that occurred during an illegal scuba fishing trip around a <span class="hlt">desalination</span> plant is presented. A complete autopsy and histological study of all organs and surfaces of dismembered cadaveric sections, performed in order to determine the phases of death, are reported. An underwater scene investigation was conducted by an engineering team studying the mouth of the pump and the dynamic characteristic of rotating propeller blades. PMID:25882144</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634321','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634321"><span id="translatedtitle">Water <span class="hlt">desalination</span> with a single-layer MoS2 nanopore</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.</p> <p>2015-01-01</p> <p>Efficient <span class="hlt">desalination</span> of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores. PMID:26465062</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012APS..MAR.C1136S&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012APS..MAR.C1136S&link_type=ABSTRACT"><span id="translatedtitle"><span class="hlt">Desalination</span> membranes from functional block copolymer via non-solvent induced phase inversion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sung, Hyemin; Poelma, Justin; Leibfarth, Frank; Hawker, Craig; Bang, Joona</p> <p>2012-02-01</p> <p>Commercially available reverse osmosis (RO) and forward osmosis (FO) membranes are most commonly derived from materials such as polysulfone, polyimide, and cellulose acetate. While these membranes have improved the efficiency of the <span class="hlt">desalination</span> process, they suffer from mechanical and chemical stability, fouling issues, and low fluxes. In this study, we combine a well-established membrane formation method, non-solvent-induced phase separation, with the self-assembly of a functional amphiphilic block copolymersAn amine and acid functional polystyrene-block-poly(ethylene oxide-co-allyl glycidyl ether) were chosen for the membranes. Membranes were formed by casting a concentrated polymer solution (12 to 25 wt% polymer) on PET fabric followed by immersion in a non-solvent bath. Scanning electron microscopy revealed an asymmetric porous structure consisting of a dense skin layer on top of a highly porous layer. Membrane performance was investigating using an FO test cell under the seawater condition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25752796','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25752796"><span id="translatedtitle"><span class="hlt">Utilization</span> of human <span class="hlt">nuclear</span> receptors as an early counter screen for off-target activity: a case study with a compendium of 615 known drugs.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Fan; Hu, Rong; Munzli, Anke; Chen, Yuan; Dunn, Robert T; Weikl, Kerstin; Strauch, Simone; Schwandner, Ralf; Afshari, Cynthia A; Hamadeh, Hisham; Nioi, Paul</p> <p>2015-06-01</p> <p>Off-target effects of drugs on <span class="hlt">nuclear</span> hormone receptors (NHRs) may result in adverse effects in multiple organs/physiological processes. Reliable assessments of the NHR activities for drug candidates are therefore crucial for drug development. However, the highly permissive structures of NHRs for vastly different ligands make it challenging to predict interactions by examining the chemical structures of the ligands. Here, we report a detailed investigation on the agonistic and antagonistic activities of 615 known drugs or drug candidates against a panel of 6 NHRs: androgen, progesterone, estrogen α/β, and thyroid hormone α/β receptors. Our study revealed that 4.7 and 12.4% compounds have agonistic and antagonistic activities, respectively, against this panel of NHRs. Nonetheless, potent, unintended NHR hits are relatively rare among the known drugs, indicating that such interactions are perhaps not tolerated during drug development. However, we uncovered examples of compounds that unintentionally agonize or antagonize NHRs. In addition, a number of compounds showed multi-NHR activities, suggesting that the cross-talk between multiple NHRs co-operate to elicit in vivo effects. These data highlight the merits of counter screening drug candidate against NHRs during drug discovery/development. PMID:25752796</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26630042','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26630042"><span id="translatedtitle">Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: A membrane for sustainable <span class="hlt">desalination</span> through MD.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Efome, Johnson E; Rana, Dipak; Matsuura, Takeshi; Lan, Christopher Q</p> <p>2016-02-01</p> <p>Membrane distillation (MD) is a promising separation technique capable of being used in the <span class="hlt">desalination</span> of marine and brackish water. Poly(vinylidene fluoride) (PVDF) flat sheet nano-composite membranes were surface modified by coating with electro-spun PVDF nano-fibres to increase the surface hydrophobicity. For this purpose, the nano-composite membrane containing 7 wt.% superhydrophobic SiO2 nano-particles, which showed the highest flux in our previous work, was first subjected to pore size augmentation by increasing the concentration of the pore forming agent (Di-ionized water). Then, the prepared flat sheet membranes were subjected to nanofibres coating by electro-spinning. The uncoated and coated composite fabricated membranes were characterized using contact angle, liquid entry pressure of water, and scanning electron microscopy. The membranes were further tested for 6 h <span class="hlt">desalination</span> by direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD), with a 3.5 wt.% synthetic NaClaq as the feed. In DCMD the feed liquid and permeate side temperature were maintained at 27.5 °C and 15 °C, respectively. For VMD, the feed liquid temperature was 27 °C and a vacuum of 94.8 kPa was applied on the permeate side. The maximum permeate flux achieved was 3.2 kg/m(2).h for VMD and 6.5 kg/m(2).h for DCMD. The salt rejection obtained was higher than 99.98%. The coated membranes showed a more stable flux than the uncoated membranes indicating that the double layered membranes have great potential in solving the pore wetting problem in MD. PMID:26630042</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/634715','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/634715"><span id="translatedtitle">Efficient design of <span class="hlt">desalination</span> system using photovoltaic and packed bed systems</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Fahmy, F.H.; Abdel-Rehim, Z.S.</p> <p>1998-08-01</p> <p>This work presents a new way to realize continuous operation of a solar <span class="hlt">desalination</span> system to produce fresh water using solar energy for a dual purpose. Here, solar energy is used directly as heat energy through solar radiation incident on an inverse V-shape still cover during sunlight hours. At the same time, the solar energy can be converted through a photovoltaic (PV) array into electric energy, which is stored in the battery system during sunlight hours. To realize the continuity of still operation daily and overnight, the batteries are discharged during the night at a suitable rate to feed an electric heater. The electric heater is designed to generate the required heat for <span class="hlt">desalination</span> during the night. The heat is equivalent to that which can be absorbed during the day and that gives the temperature difference to gain evaporation and fresh water (productivity). This modified still is provided with a packed bed layer installed in the bottom of the basin to assist the system during the day and at night, i.e., this modified still will be more efficient. The quantity of heat energy during the night is adjusted to give a saline water temperature in the range that occurs in the actual solar still during sunlight hours. The performance of all components of the present still are discussed. The use of PV and backed bed systems means higher efficiency than the passive still, as the modified still produces large quantities of fresh water in August for a saline water depth of 0.01 m by using glass wool insulation 0.05 m thick and glass spheres as a packed bed with 0.0213 m bed length.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5350546','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5350546"><span id="translatedtitle">Feasibility study of a solar and wind powered <span class="hlt">desalinization</span> device (SOWIDE). Final report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Garstang, M.; David, D.C.; Snow, J.W.</p> <p>1980-06-01</p> <p>The scope, need and feasibility of a solar-wind <span class="hlt">desalinization</span> (SOWIDE) system is examined. A climatological study shows the scope and need where a water deficit, a saline source and solar and wind power coincide. Representative stations around the globe serve as examples. When climatological data are used, relatively few locations meet all requirements. Optimization of wind and solar energy through careful site selection would, however, greatly extend the use of an alternate energy powered <span class="hlt">desalinization</span> system such as SOWIDE. The technical feasibility of SOWIDE is described in terms of the conceptual design which uses solar energy to heat impounded water, saturating a volume of air above the impoundment at the temperature of the water. The water vapor is extracted by condensation through a wind powered refrigerator. Latent heat is returned to the impoundment by the refrigerator fluid with additional heat provided by a pre-heater using heat from the brine discharge and by a resistance heater or stirrer driven by the wind generator. The important considerations of the design include the joint use of solar and wind power, optimization of the heat balance and the fact that the system operates at a low temperature which inhibits scaling and efficiency losses. Results show that the system will deliver 1 m/sup 3/ d/sup -1/ of fresh water at operating temperatures of 42 to 70/sup 0/C. At an operating temperature of 60/sup 0/C, the total power required is about 8 kW, equally partitioned between the solar and wind inputs. The operating temperatures and power requirements suggest that the SOWIDE system is technically feasible. Application of the system must await the testing of a prototype and an economic study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5086606','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5086606"><span id="translatedtitle">Feasibility study of a solar-and-wind-powered <span class="hlt">desalinization</span> device (SOWIDE). Final report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Garstang, M.; David, D.C.; Snow, J.W.</p> <p>1980-06-01</p> <p>The scope, need and feasibility of a solar-wind <span class="hlt">desalinization</span> (SOWIDE) system is examined. A climatological study shows the scope and need where a water deficit, a saline source and solar and wind power coincide. Representative stations around the globe serve as examples. When climatological data are used, relatively few locations meet all requirements. Optimization of wind and solar energy through careful site selection would, however, greatly extend the use of an alternate energy powered <span class="hlt">desalinization</span> system such as SOWIDE. The technical feasibility of SOWIDE is described in terms of the conceptual design which uses solar energy to heat impounded water, saturating a volume of air above the impoundment at the temperature of the water. The water vapor is extracted by condensation through a wind powered refrigerator. Latent heat is returned to the impoundment by the refrigerator fluid with additional heat provided by a pre-heater using heat from the brine discharge and by a resistance heater or stirrer driven by the wind generator. The important considerations of the design include the joint use of solar and wind power, optimization of the heat balance and the fact that the system operates at a low temperature which inhibits scaling and efficiency losses. Results show that the system will deliver 1 m/sup 3/ d/sup -1/ of fresh water at operating temperatures of 42 to 70/sup 0/C. At an operating temperature of 60/sup 0/C, the total power required is about 8 kW, equally partitioned between the solar and wind inputs. The operating temperatures and power requirements suggest that the SOWIDE system is technically feasible. Application of the system must await the testing of a prototype and an economic study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23705642','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23705642"><span id="translatedtitle">Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Wai-Fong; Chen, Hang-yan; Surapathi, Anil; Taylor, Michael G; Shao, Xiaohong; Marand, Eva; Johnson, J Karl</p> <p>2013-06-25</p> <p>We have shown from both simulations and experiments that zwitterion functionalized carbon nanotubes (CNTs) can be used to construct highly efficient <span class="hlt">desalination</span> membranes. Our simulations predicted that zwitterion functional groups at the ends of CNTs allow a high flux of water, while rejecting essentially all ions. We have synthesized zwitterion functionalized CNT/polyamide nanocomposite membranes with varying loadings of CNTs and assessed these membranes for water <span class="hlt">desalination</span>. The CNTs within the polyamide layer were partially aligned through a high-vacuum filtration step during membrane synthesis. Addition of zwitterion functionalized CNTs into a polyamide membrane increased both the flux of water and the salt rejection ratio. The flux of water was found to increase by more than a factor of 4, from 6.8 to 28.7 GFD (gallons per square foot per day), as the fraction of CNTs was increased from 0 to 20 wt %. Importantly, the ion rejection ratio increased slightly from 97.6% to 98.6%. Thus, the nanotubes imparted an additional transport mechanism to the polyamide membrane, having higher flow rate and the same or slightly better selectivity. Simulations show that when two zwitterions are attached to each end of CNTs having diameters of about 15 Å, the ion rejection ratio is essentially 100%. In contrast, the rejection ratio for nonfunctionalized CNTs is about 0%, and roughly 20% for CNTs having five carboxylic acid groups per end. The increase in ion rejection for the zwitterion functionalized CNTs is due to a combination of steric hindrance from the functional groups partially blocking the tube ends and electrostatic repulsion between functional groups and ions, with steric effects dominating. Theoretical predictions indicate that an ideal CNT/polymer membrane having a loading of 20 wt % CNTs would have a maximum flux of about 20000 GFD at the conditions of our experiments. PMID:23705642</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23615335','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23615335"><span id="translatedtitle">The influence of antiscalants on biofouling of RO membranes in seawater <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sweity, Amer; Oren, Yoram; Ronen, Zeev; Herzberg, Moshe</p> <p>2013-06-15</p> <p>Antiscalants are surface active polyelectrolyte compounds commonly used in reverse osmosis (RO) <span class="hlt">desalination</span> processes to avoid membrane scaling. In spite of the significant roles of antiscalants in preventing membrane scaling, they are prone to enhance biofilm growth on RO membranes by either altering membrane surface properties or by serving as nutritional source for microorganisms. In this study, the contribution of antiscalants to membrane biofouling in seawater <span class="hlt">desalination</span> was investigated. The effects of two commonly used antiscalants, polyphosphonate- and polyacrylate-based, were tested. The effects of RO membrane (DOW-Filmtec SW30 HRLE-400) exposure to antiscalants on its physico-chemical properties were studied, including the consequent effects on initial deposition and growth of the sessile microorganisms on the RO membrane surface. The effects of antiscalants on membrane physico-chemical properties were investigated by filtration of seawater supplemented with the antiscalants through flat-sheet RO membrane and changes in surface zeta potential and hydrophobicity were delineated. Adsorption of antiscalants to polyamide surfaces simulating RO membrane's polyamide layer and their effects on the consequent bacterial adhesion was tested using a quartz crystal microbalance with dissipation monitoring technology (QCM-D) and direct fluorescent microscopy. A significant increase in biofilm formation rate on RO membranes surface was observed in the presence of both types of antiscalants. Polyacrylate-based antiscalant was shown to enhance initial cell attachment as observed with the QCM-D and a parallel plate flow cell, due to rendering the polyamide surface more hydrophobic. Polyphosphonate-based antiscalants also increased biofilm formation rate, most likely by serving as an additional source of phosphorous to the seawater microbial population. A thicker biofilm layer was formed on the RO membrane when the polyacrylate-based antiscalant was used. Following</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23663180','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23663180"><span id="translatedtitle">Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Razmjou, Amir; Barati, Mohammad Reza; Simon, George P; Suzuki, Kiyonori; Wang, Huanting</p> <p>2013-06-18</p> <p>Freshwater shortage is one of the most pressing global issues. Forward osmosis (FO) <span class="hlt">desalination</span> technology is emerging for freshwater production from saline water, which is potentially more energy-efficient than the current reverse osmosis process. However, the lack of a suitable draw solute is the major hurdle for commercial implementation of the FO <span class="hlt">desalination</span> technology. We have previously reported that thermoresponsive hydrogels can be used as the draw agent for a FO process, and this new hydrogel-driven FO process holds promise for further development for practical application. In the present work, magnetic field-induced heating is explored for the purpose of developing a more effective way to recover water from swollen hydrogel draw agents. The composite hydrogel particles are prepared by copolymerization of sodium acrylate and N-isopropylacrylamide in the presence of magnetic nanoparticles (γ-Fe2O3, <50 nm). The results indicate that the magnetic heating is an effective and rapid method for dewatering of hydrogels by generating the heat more uniformly throughout the draw agent particles, and thus, a dense skin layer commonly formed via conventional heating from the outside of the particle is minimized. The FO dewatering performance is affected by the loading of magnetic nanoparticles and magnetic field intensity. Significantly enhanced liquid water recovery (53%) is achieved under magnetic heating, as opposed to only around 7% liquid water recovery obtained via convection heating. Our study shows that the magnetic heating is an attractive alternative stimulus for the extraction of highly desirable liquid water from the draw agent in the polymer hydrogel-driven forward osmosis process. PMID:23663180</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22949250','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22949250"><span id="translatedtitle">Survey on production quality of electrodialysis reversal and reverse osmosis on municipal wastewater <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, Yi-Che; Huang, Hsin-Hsu; Huang, Yu-De; Chu, Ching-Ping; Chung, Yu-Jen; Huang, Yong-Tang</p> <p>2012-01-01</p> <p>Water shortage has become an emerging environmental issue. Reclamation of the effluent from municipal wastewater treatment plant (WWTP) is feasible for meeting the growth of water requirement from industries. In this study, the results of a pilot-plant setting in Futian wastewater treatment plant (Taichung, Taiwan) were presented. Two processes, sand filter - ultrafiltration - reverse osmosis (SF-UF-RO) and sand filter - electrodialysis reversal (SF-EDR), were operated in parallel to evaluate their stability and filtrate quality. It has been noticed that EDR could accept inflow with worse quality and thus required less pretreatment compared with RO. During the operation, EDR required more frequent chemical cleaning (every 3 weeks) than RO did (every 3 months). For the filtrate quality, the <span class="hlt">desalination</span> efficiency of SF-EDR ranged from 75 to 80% in continuous operation mode, while the conductivity ranged from 100 to 120 μS/cm, with turbidity at 0.8 NTU and total organic carbon at 1.3 mg/L. SF-EDR was less efficient in <span class="hlt">desalinating</span> the multivalent ions than SF-UF-RO was. However for the monovalent ions, the performances of the two processes were similar to each other. Noticeably, total trihalomethanes in SF-EDR filtrate was lower than that of SF-UF-RO, probably because the polarization effects formed on the concentrated side of the EDR membrane were not significant. At the end of this study, cost analysis was also conducted to compare the capital requirement of building a full-scale wastewater reclamation plant using the two processes. The results showed that using SF-EDR may cost less than using SF-UF-RO, if the users were to accept the filtrate quality of SF-EDR. PMID:22949250</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26086612','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26086612"><span id="translatedtitle">A bubble column evaporator with basic flat-plate condenser for brackish and seawater <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmack, Mario; Ho, Goen; Anda, Martin</p> <p>2016-01-01</p> <p>This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale <span class="hlt">desalination</span> of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble <span class="hlt">desalination</span> system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length. PMID:26086612</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ThApC.121..685L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ThApC.121..685L"><span id="translatedtitle">Atmospheric parameters affecting sea ice losses in the context of gravity <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Ying; Gu, Wei; Chao, Jinlong; Li, Lantao; Liu, Chengyu; Xu, Yinjun; Chang, Zhiyun; Wu, Linhong; Chen, Jie</p> <p>2015-08-01</p> <p>Gravity <span class="hlt">desalination</span> is an important method for obtaining fresh water from sea ice; however, the large amount of ice that is exposed to air for long periods of time sublimates and evaporates, which results in a reduction of the freshwater resource. This paper describes a study of sea ice sublimation and evaporation performed during the winter of 2013 at the western shore of Bohai Bay, China, to determine the relationship between the amount of sublimation and evaporation and the atmospheric parameters. Substantial amounts of the Bohai sea ice sublimated and evaporated, ranging from 15 to 35 % of the total. The sublimation and evaporation amount was significantly different between the day and night and was greater in the daytime because of the relative humidity difference. Sublimation and evaporation is primarily affected by atmospheric parameters, and the amount of sublimation and evaporation exhibits a good linear relationship with the relative humidity and the wind speed; a comprehensive parameters formula was determined for the Bohai Rim in China. A 10 % increase of daily relative humidity will reduce approximately 1.5 kg/m2/day of the sublimation and evaporation, and the amount of sublimation and evaporation increases by 1.76 kg/m2/day when the daily wind speed increases by 1 m/s. To reduce the sublimation and evaporation and maximize the amount of this freshwater resource, gravity <span class="hlt">desalination</span> sites should be selected where the wind speed is low and the relative humidity is high, i.e., the sea ice should be configured to reduce the adverse effects of sunlight, low humidity, and air turbulence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22249180','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22249180"><span id="translatedtitle">The Drosophila juvenile hormone receptor candidates methoprene-tolerant (MET) and germ cell-expressed (GCE) <span class="hlt">utilize</span> a conserved LIXXL motif to bind the FTZ-F1 <span class="hlt">nuclear</span> receptor.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bernardo, Travis J; Dubrovsky, Edward B</p> <p>2012-03-01</p> <p>Juvenile hormone (JH) has been implicated in many developmental processes in holometabolous insects, but its mechanism of signaling remains controversial. We previously found that in Drosophila Schneider 2 cells, the <span class="hlt">nuclear</span> receptor FTZ-F1 is required for activation of the E75A gene by JH. Here, we <span class="hlt">utilized</span> insect two-hybrid assays to show that FTZ-F1 interacts with two JH receptor candidates, the bHLH-PAS paralogs MET and GCE, in a JH-dependent manner. These interactions are severely reduced when helix 12 of the FTZ-F1 activation function 2 (AF2) is removed, implicating AF2 as an interacting site. Through homology modeling, we found that MET and GCE possess a C-terminal α-helix featuring a conserved motif LIXXL that represents a novel <span class="hlt">nuclear</span> receptor (NR) box. Docking simulations supported by two-hybrid experiments revealed that FTZ-F1·MET and FTZ-F1·GCE heterodimer formation involves a typical NR box-AF2 interaction but does not require the canonical charge clamp residues of FTZ-F1 and relies primarily on hydrophobic contacts, including a unique interaction with helix 4. Moreover, we identified paralog-specific features, including a secondary interaction site found only in MET. Our findings suggest that a novel NR box enables MET and GCE to interact JH-dependently with the AF2 of FTZ-F1. PMID:22249180</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/12514001','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/12514001"><span id="translatedtitle">Metabolic pathway for propionate <span class="hlt">utilization</span> by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo <span class="hlt">nuclear</span> magnetic resonance.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lemos, Paulo C; Serafim, Luísa S; Santos, Margarida M; Reis, Maria A M; Santos, Helena</p> <p>2003-01-01</p> <p>In vivo 13C and 31P <span class="hlt">nuclear</span> magnetic resonance techniques were used to study propionate metabolism by activated sludge in enhanced biological phosphorus removal systems. The fate of label supplied in [3-13C]propionate was monitored in living cells subjected to anaerobic/aerobic cycles. During the anaerobic phase, propionate was converted to polyhydroxyalkanoates (PHA) with the following monomer composition: hydroxyvalerate, 74.2%; hydroxymethylvalerate, 16.9%; hydroxymethylbutyrate, 8.6%; and hydroxybutyrate, 0.3%. The isotopic enrichment in the different carbon atoms of hydroxyvalerate (HV) produced during the first anaerobic stage was determined: HV5, 59%; HV4, 5.0%; HV3, 1.1%; HV2, 3.5%; and HV1, 2.8%. A large proportion of the supplied label ended up on carbon C-5 of HV, directly derived from the pool of propionyl-coenzyme A (CoA), which is primarily labeled on C-3; useful information on the nature of operating metabolic pathways was provided by the extent of labeling on C-1, C-2, and C-4. The labeling pattern on C-1 and C-2 was explained by the conversion of propionyl-CoA to acetyl-CoA via succinyl-CoA and the left branch of the tricarboxylic acid cycle, which involves scrambling of label between the inner carbons of succinate. This constitutes solid evidence for the operation of succinate dehydrogenase under anaerobic conditions. The labeling in HV4 is explained by backflux from succinate to propionyl-CoA. The involvement of glycogen in the metabolism of propionate was also demonstrated; moreover, it was shown that the acetyl moiety to the synthesis of PHA was derived preferentially from glycogen. According to the proposed metabolic scheme, the decarboxylation of pyruvate is coupled to the production of hydrogen, and the missing reducing equivalents should be derived from a source other than glycogen metabolism. PMID:12514001</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/10111097','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/10111097"><span id="translatedtitle"><span class="hlt">Nuclear</span> economics: Issues and facts</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hudson, C.R.</p> <p>1993-12-31</p> <p><span class="hlt">Nuclear</span> economics has become on the more prominent topics related to <span class="hlt">nuclear</span> power. Beyond the subjects of <span class="hlt">nuclear</span> safety and waste disposal, questions and concerns of <span class="hlt">nuclear</span> power economics have emerged with growing frequency in <span class="hlt">utility</span> board rooms, in state and federal regulatory proceedings, and in the media. What has caused <span class="hlt">nuclear</span> power economics to become such a popular topic? This paper addresses issues and facts related to historical <span class="hlt">nuclear</span> plant costs, new <span class="hlt">nuclear</span> plant projections, and warning signals for future plants.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1009139','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1009139"><span id="translatedtitle"><span class="hlt">Nuclear</span> Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>David Petti; J. Stephen Herring</p> <p>2010-03-01</p> <p>As described in the Department of Energy Office of <span class="hlt">Nuclear</span> Energy’s <span class="hlt">Nuclear</span> Energy R&D Roadmap, <span class="hlt">nuclear</span> energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways <span class="hlt">nuclear</span> energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the <span class="hlt">Nuclear</span> Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of <span class="hlt">nuclear</span> energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. <span class="hlt">Nuclear</span> energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by <span class="hlt">desalination</span> and promote wastewater treatment using low-grade <span class="hlt">nuclear</span> heat as a useful additional benefit. Opening new avenues for <span class="hlt">nuclear</span> energy will significantly enhance our nation’s energy</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1042637','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1042637"><span id="translatedtitle">Absolute <span class="hlt">nuclear</span> material assay</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.</p> <p>2012-05-15</p> <p>A method of absolute <span class="hlt">nuclear</span> material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute <span class="hlt">nuclear</span> material assay <span class="hlt">utilizing</span> a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute <span class="hlt">nuclear</span> material assay comprises <span class="hlt">utilizing</span> a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/993087','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/servlets/purl/993087"><span id="translatedtitle">Absolute <span class="hlt">nuclear</span> material assay</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.</p> <p>2010-07-13</p> <p>A method of absolute <span class="hlt">nuclear</span> material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute <span class="hlt">nuclear</span> material assay <span class="hlt">utilizing</span> a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute <span class="hlt">nuclear</span> material assay comprises <span class="hlt">utilizing</span> a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26925544','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26925544"><span id="translatedtitle">Bacterial community structure and variation in a full-scale seawater <span class="hlt">desalination</span> plant for drinking water production.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S</p> <p>2016-05-01</p> <p>Microbial processes inevitably play a role in membrane-based <span class="hlt">desalination</span> plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater <span class="hlt">desalination</span> plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater <span class="hlt">desalination</span> process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the <span class="hlt">desalination</span> plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27376337','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27376337"><span id="translatedtitle">Efficiently Combining Water Reuse and <span class="hlt">Desalination</span> through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blandin, Gaetan; Verliefde, Arne R D; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre</p> <p>2016-01-01</p> <p>Forward osmosis (FO) is a promising membrane technology to combine seawater <span class="hlt">desalination</span> and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower <span class="hlt">desalination</span> energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new <span class="hlt">desalination</span> facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and <span class="hlt">desalination</span> plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling. PMID:27376337</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27508234','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27508234"><span id="translatedtitle">Data on daily fluoride intake based on drinking water consumption prepared by household <span class="hlt">desalinators</span> working by reverse osmosis process.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karbasdehi, Vahid Noroozi; Dobaradaran, Sina; Esmaili, Abdolhamid; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji; Keshtkar, Mozhgan</p> <p>2016-09-01</p> <p>In this data article, we evaluated the daily fluoride contents in 20 household <span class="hlt">desalinators</span> working by reverse osmosis (RO) process in Bushehr, Iran. The concentration levels of fluoride in inlet and outlet waters were determined by the standard SPADNS method using a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK). The fluoride content in outlet waters were compared with EPA and WHO guidelines for drinking water. PMID:27508234</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1169226','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1169226"><span id="translatedtitle">EXTENDING <span class="hlt">NUCLEAR</span> ENERGY TO NON-ELECTRICAL APPLICATIONS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes</p> <p>2014-09-01</p> <p>Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial <span class="hlt">nuclear</span> power plants world-wide provide energy to non-electrical applications such as district heating and water <span class="hlt">desalination</span>, <span class="hlt">nuclear</span> energy has been largely relegated to base-load electricity production. A new generation of smaller-sized <span class="hlt">nuclear</span> power plants offers significant promise for extending <span class="hlt">nuclear</span> energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water <span class="hlt">desalination</span>, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean <span class="hlt">nuclear</span> energy to a broad range of non-electrical energy consumers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26360230','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26360230"><span id="translatedtitle">Enhanced <span class="hlt">desalination</span> performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia</p> <p>2015-11-15</p> <p>A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) <span class="hlt">desalination</span> rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior <span class="hlt">desalination</span> performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's <span class="hlt">desalination</span> rate. PMID:26360230</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19896691','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19896691"><span id="translatedtitle">Improvement of <span class="hlt">desalination</span> efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Yu-Jin; Choi, Jae-Hwan</p> <p>2010-02-01</p> <p>A composite carbon electrode coated with a cation-exchange polymer, crosslinked poly(vinyl alcohol) with sulfosuccinic acid, was fabricated to enhance the <span class="hlt">desalination</span> performance of a capacitive deionization (CDI) system. The electrochemical properties of the prepared electrode were characterized by impedance spectroscopy, and <span class="hlt">desalination</span> experiments were carried out at various operating conditions using a CDI cell with carbon electrodes only, and a membrane-capacitive-deionization (MCDI) cell including a coated-carbon electrode, to evaluate the effect of the coated-carbon electrode on <span class="hlt">desalination</span> performance. The electrical resistance of the coated electrode was increased by a small amount over the uncoated electrode, but the capacitance was improved by the coating. In the CDI cell, the salt-removal efficiencies were in the range of 50-67%, while the efficiencies increased to 75-85% for the MCDI cell. Depending on the operating conditions, the salt-removal and current efficiencies of the MCDI cell were enhanced by 27-56% and 69-95%, respectively, compared to the CDI cell. The enhanced efficiency for the MCDI cell was attributed to the selective transport of cations between the electrode surface and bulk solution due to the cation-exchange coating layer. PMID:19896691</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26712639','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26712639"><span id="translatedtitle">A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomas, Michael; Corry, Ben</p> <p>2016-02-13</p> <p>Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and <span class="hlt">desalination</span>, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for <span class="hlt">desalination</span> applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in <span class="hlt">desalination</span> by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4696073','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4696073"><span id="translatedtitle">A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thomas, Michael; Corry, Ben</p> <p>2016-01-01</p> <p>Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and <span class="hlt">desalination</span>, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for <span class="hlt">desalination</span> applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in <span class="hlt">desalination</span> by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19670000339','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19670000339"><span id="translatedtitle">Vibration analysis <span class="hlt">utilizing</span> Mossbauer effect</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roughton, N. A.</p> <p>1967-01-01</p> <p>Measuring instrument analyzes mechanical vibrations in transducers at amplitudes in the range of a few to 100 angstroms. This instrument <span class="hlt">utilizes</span> the Mossbauer effect, the phenomenon of the recoil-free emission and resonant absorption of <span class="hlt">nuclear</span> gamma rays in solids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5287136','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5287136"><span id="translatedtitle"><span class="hlt">Nuclear</span> waste</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Not Available</p> <p>1991-09-01</p> <p>Radioactive waste is mounting at U.S. <span class="hlt">nuclear</span> power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with <span class="hlt">nuclear</span> <span class="hlt">utilities</span>. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review the alternatives of continued storage at <span class="hlt">utilities</span>' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the <span class="hlt">Nuclear</span> Waste Fund-from which DOE's waste program costs are paid-to pay <span class="hlt">utilities</span> for on-site storage capacity added after 1998, ability of <span class="hlt">utilities</span> to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JHyd..365..275A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JHyd..365..275A"><span id="translatedtitle">Reducing the impact of a <span class="hlt">desalination</span> plant using stochastic modeling and optimization techniques</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alcolea, Andres; Renard, Philippe; Mariethoz, Gregoire; Bertone, François</p> <p>2009-02-01</p> <p>SummaryWater is critical for economic growth in coastal areas. In this context, <span class="hlt">desalination</span> has become an increasingly important technology over the last five decades. It often has environmental side effects, especially when the input water is pumped directly from the sea via intake pipelines. However, it is generally more efficient and cheaper to desalt brackish groundwater from beach wells rather than desalting seawater. Natural attenuation is also gained and hazards due to anthropogenic pollution of seawater are reduced. In order to minimize allocation and operational costs and impacts on groundwater resources, an optimum pumping network is required. Optimization techniques are often applied to this end. Because of aquifer heterogeneity, designing the optimum pumping network demands reliable characterizations of aquifer parameters. An optimum pumping network in a coastal aquifer in Oman, where a <span class="hlt">desalination</span> plant currently pumps brackish groundwater at a rate of 1200 m 3/h for a freshwater production of 504 m 3/h (insufficient to satisfy the growing demand in the area) was designed using stochastic inverse modeling together with optimization techniques. The Monte Carlo analysis of 200 simulations of transmissivity and storage coefficient fields conditioned to the response to stresses of tidal fluctuation and three long term pumping tests was performed. These simulations are physically plausible and fit the available data well. Simulated transmissivity fields are used to design the optimum pumping configuration required to increase the current pumping rate to 9000 m 3/h, for a freshwater production of 3346 m 3/h (more than six times larger than the existing one). For this task, new pumping wells need to be sited and their pumping rates defined. These unknowns are determined by a genetic algorithm that minimizes a function accounting for: (1) drilling, operational and maintenance costs, (2) target discharge and minimum drawdown (i.e., minimum aquifer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/6764841','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/6764841"><span id="translatedtitle"><span class="hlt">Nuclear</span> risk</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Levenson, M.</p> <p>1989-01-01</p> <p>The title of our session, <span class="hlt">Nuclear</span> Risk Versus Other Power Options, is provocative. It is also a title with different meanings to different people. To the <span class="hlt">utility</span> chief executive officer, <span class="hlt">nuclear</span> power is a high-risk financial undertaking because of political and economic barriers to cost recovery. To the <span class="hlt">utility</span> dispatcher, it is a high-risk future power source since plant completion and start-up dates can be delayed for very long times due to uncertain legal and political issues. To the environmentalist, concerned about global effects such as greenhouse and acid rain, <span class="hlt">nuclear</span> power is a relatively low risk energy source. To the financial people, <span class="hlt">nuclear</span> power is a cash cow turned sour because of uncertainties as to what new plants will cost and whether they will even be allowed to operate. The statistics on risk are known and the results of probability risk assessment calculations of risks are known. The challenge is not to make <span class="hlt">nuclear</span> power safer, it is already one of the safest, if not the safest, source of power currently available. The challenge is to find a way to communicate this to the public.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/229813','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/229813"><span id="translatedtitle">One <span class="hlt">utility`s</span> approach to radwaste</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>O`Brian, G.</p> <p>1995-11-01</p> <p>Recently, the Northern States Power Company (NSP) has taken a {open_quotes}very active{close_quotes} role in the High-Level Waste (HLW) issue. This decision was not an easy one for NSP which has traditionally been satisfied with remaining silent politically and active technically. However, all of the excellent technical efforts could go for naught based on a single political decision. In as much as the HLW and Low-Level Waste (LLW) issues are being decided in the political arena, I believe the industry can learn from our experience with the HLW issue. Therefore, I will explain the scenario of events and NSP`s reactions surrounding dry cask storage at NSP`s Prairie Island <span class="hlt">Nuclear</span> Generating Plant, and how these reactions have helped us deal with the LLW issue. During the Plant Life EXtension (PLEX) project at the Monticello <span class="hlt">Nuclear</span> Generating Plant, four critical issues were identified as requiring resolution prior to NSP committing additional resources toward the PLEX project. The HLW and LLW issues were among the list. Although the importance of the two issues had been realized prior to 1990, NSP did not make any appreciable changes to address either of these issues until an amendment was made in the 1992 Minnesota legislative session which would have removed the decision to approve the Prairie Island dry cask storage project from the jurisdiction of the Public <span class="hlt">Utilities</span> Commission (PUC) and shifted it to the state legislature. Several plant employees met at the state capitol throughout the week to lobby against the amendment. Ultimately, the amendment was debated on the Senate floor and failed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/5123093','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/5123093"><span id="translatedtitle">Guidelines and workbook for of organization and administration of <span class="hlt">utilities</span> seeking operating license for a <span class="hlt">nuclear</span> power plant. Workbook for assessment of organization and management. Volume, 2, Revision 1</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Thurber, J.A.; Olson, J.; Osborn, R.N.; Sommers, P.; Widrig, R.D.</p> <p>1986-09-01</p> <p>This report is a partial response to the requirements of Item I.B.1.1 of the ''NRC Action Plan Developed as a Result of the TMI-2 Accident,'' NUREG-0660, and is designed to serve as a basis for replacing the earlier NUREG-0731, ''Guidelines for <span class="hlt">Utility</span> Management Structure and Technical Resources.'' The Guidelines are intended to provide guidance to the user in preparing a written plan for a proposed <span class="hlt">nuclear</span> organization and administration. The purpose of the Workbook is to guide the NRC reviewer through a systematic review and assessment of a proposed organization and administration. It is the NRC's intention to incorporate these Guidelines and Workbook into a future revision of the Standard Review Plan (SRP), NUREG-0800. However, at this time the report is being published so that the material may be used on a voluntary basis by industry to systematically prepare or evaluate their organization or administration plans. Use of the report by the NRC would not occur until after it has been incorporated in the SRP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26845113','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26845113"><span id="translatedtitle">Membrane <span class="hlt">Desalination</span>: Where Are We, and What Can We Learn from Fundamentals?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Imbrogno, Joseph; Belfort, Georges</p> <p>2016-06-01</p> <p>Although thermal <span class="hlt">desalination</span> technology provides potable water in arid regions (e.g., Israel and the Gulf), its relatively high cost has limited application to less arid regions with large populations (e.g., California). Energy-intensive distillation is currently being replaced with less costly pressure- and electrically driven membrane-based processes. Reverse osmosis (RO) is a preferred membrane technology owing to process and pre- and posttreatment improvements that have significantly reduced energy requirements and cost. Further technical advances will require a deeper understanding of the fundamental science underlying RO. This includes determining the mechanism for water selectivity; elucidating the behavior of molecular water near polar and apolar surfaces, as well as the advantages and limitations of hydrophobic versus hydrophilic pores; learning the rules of selective water transport from nature; and designing synthetic analogs for selective water transport. Molecular dynamics simulations supporting experiments will play an important role in advancing these efforts. Finally, future improvements in RO are limited by inherent technical mass transfer limitations. PMID:26845113</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25622050','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25622050"><span id="translatedtitle">Use of drinking water treatment solids for arsenate removal from <span class="hlt">desalination</span> concentrate.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Xuesong; Lin, Lu; Papelis, Charalambos; Myint, Maung; Cath, Tzahi Y; Xu, Pei</p> <p>2015-05-01</p> <p><span class="hlt">Desalination</span> of impaired water can be hindered by the limited options for concentrate disposal. Selective removal of specific contaminants using inexpensive adsorbents is an attractive option to address the challenges of concentrate management. In this study, two types of ferric-based drinking water treatment solids (DWTS) were examined for arsenate removal from reverse osmosis concentrate during continuous-flow once-through column experiments. Arsenate sorption was investigated under different operating conditions including pH, arsenate concentration, hydraulic retention time, loading rate, temperature, and moisture content of the DWTS. Arsenate removal by the DWTS was affected primarily by surface complexation, electrostatic interactions, and arsenate speciation. Results indicated that arsenate sorption was highly dependent on initial pH and initial arsenate concentration. Acidic conditions enhanced arsenate sorption as a result of weaker electrostatic repulsion between predominantly monovalent H2AsO4(-) and negatively charged particles in the DWTS. High initial arsenate concentration increased the driving force for arsenate sorption to the DWTS surface. Tests revealed that the potential risks associated with the use of DWTS include the leaching of organic contaminants and ammonia, which can be alleviated by using wet DWTS or discarding the initially treated effluent that contains high organic concentration. PMID:25622050</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001RaPC...60..503C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001RaPC...60..503C"><span id="translatedtitle"><span class="hlt">Desalination</span> by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Seong-Ho; Han Jeong, Young; Jeong Ryoo, Jae; Lee, Kwang-Pill</p> <p>2001-01-01</p> <p>Ion-exchange membranes modified with the triethylamine [-N(CH 2CH 3) 3] and phosphoric acid (-PO 3 H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto the polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly(GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM, XPS, TGA, and DSC. Furthermore, electrochemical properties such as specific electric resistance, transport number of K +, and <span class="hlt">desalination</span> were examined. The grafting yield increased with increasing reaction time and reaction temperature. The maximum grafting yield was obtained with 40% (vol.%) monomer concentration in dioxane at 60°C. The content of the cation- and anion-exchange group increased with increasing grafting yield. Electrical resistance of the PNF modified with TEA and -PO 3 H group decreased, while the water uptake (%) increased with increasing ion-exchange group capacities. Transport number of the PNF modified with ion-exchange group were the range of ca. 0.82-0.92. The graft-type ion-exchange membranes prepared by radiation-induced graft copolymerization were successfully applied as separators for electrodialysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25835769','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25835769"><span id="translatedtitle"><span class="hlt">Desalination</span> by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Fei; Servi, Amelia; Liu, Andong; Gleason, Karen K; Rutledge, Gregory C</p> <p>2015-04-22</p> <p>Fibrous membranes of poly(trimethyl hexamethylene terephthalamide) (PA6(3)T) were fabricated by electrospinning and rendered hydrophobic by applying a conformal coating of poly(1H,1H,2H,2H-perfluorodecyl acrylate) (PPFDA) using initiated chemical vapor deposition (iCVD). A set of iCVD-treated electrospun PA6(3)T fiber membranes with fiber diameters ranging from 0.25 to 1.8 μm were tested for <span class="hlt">desalination</span> using the air gap membrane distillation configuration. Permeate fluxes of 2-11 kg/m2/h were observed for temperature differentials of 20-45 °C between the feed stream and condenser plate, with rejections in excess of 99.98%. The liquid entry pressure was observed to increase dramatically, from 15 to 373 kPa with reduction in fiber diameter. Contrary to expectation, for a given feed temperature the permeate flux was observed to increase for membranes of decreasing fiber diameter. The results for permeate flux and salt rejection show that it is possible to construct membranes for membrane distillation even from intrinsically hydrophilic materials after surface modification by iCVD and that the fiber diameter is shown to play an important role on the membrane distillation performance in terms of permeate flux, salt rejection, and liquid entry pressure. PMID:25835769</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26699869','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26699869"><span id="translatedtitle">The Earthworm Eisenia fetida Can Help <span class="hlt">Desalinate</span> a Coastal Saline Soil in Tianjin, North China.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Tao; Li, Suyan; Sun, Xiangyang; Zhang, Yang; Gong, Xiaoqiang; Fu, Ying; Jia, Liming</p> <p>2015-01-01</p> <p>A laboratory microcosm experiment was conducted to determine whether the earthworm Eisenia fetida could survive in a saline soil from a field site in North China, and an experiment using response surface methodology was conducted at that field site to quantify the effects of E. fetida and green waste compost (GWC) on the salt content of the soil. The microcosm results showed that E. fetida survived in GWC-amended saline soil and increased the contents of humic acid, available N, and available P in the GWC-amended soil. The data from the field experiment were described by the following second-order model: [Formula in text], where y is the decrease in soil salinity (g of salt per kg of dry soil) relative to the untreated control, x1 is the number of E. fetida added per m2, and x2 is the quantity of GWC added in kg per m2. The model predicted that the total salt content of the saline soil would decrease by > 2 g kg(-1) (p<0.05) when 29-90 individuals m-2 of E. fetida and 6.1-15.0 kg m(-2) of GWC were applied. We conclude that the use of E. fetida for soil <span class="hlt">desalination</span> is promising and warrants additional investigation. PMID:26699869</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23331042','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23331042"><span id="translatedtitle">Thermodynamic analysis of osmotic energy recovery at a reverse osmosis <span class="hlt">desalination</span> plant.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feinberg, Benjamin J; Ramon, Guy Z; Hoek, Eric M V</p> <p>2013-03-19</p> <p>Recent years have seen a substantial reduction of the specific energy consumption (SEC) in seawater reverse osmosis (RO) <span class="hlt">desalination</span> due to improvements made in hydraulic energy recovery (HER) as well as RO membranes and related process technologies. Theoretically, significant potential for further reduction in energy consumption may lie in harvesting the high chemical potential contained in RO concentrate using salinity gradient power technologies. Herein, "osmotic energy recovery" (OER) is evaluated in a seawater RO plant that includes state-of-the-art RO membranes, plant designs, operating conditions, and HER technology. Here we assume the use of treated wastewater effluent as the OER dilute feed, which may not be available in suitable quality or quantity to allow operation of the coupled process. A two-stage OER configuration could reduce the SEC of seawater RO plants to well below the theoretical minimum work of separation for state-of-the-art RO-HER configurations with a breakeven OER CAPEX equivalent to 42% of typical RO-HER plant cost suggesting significant cost savings may also be realized. At present, there is no commercially viable OER technology; hence, the feasibility of using OER at seawater RO plants remains speculative, however attractive. PMID:23331042</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22404621','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22404621"><span id="translatedtitle">Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phuntsho, Sherub; Shon, Ho Kyong; Majeed, Tahir; El Saliby, Ibrahim; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Hong, Seungkwan; Lee, Sangyoup</p> <p>2012-04-17</p> <p>In fertilizer-drawn forward osmosis (FDFO) <span class="hlt">desalination</span>, the final nutrient concentration (nitrogen, phosphorus, potassium (NPK)) in the product water is essential for direct fertigation and to avoid over fertilization. Our study with 11 selected fertilizers indicate that blending of two or more single fertilizers as draw solution (DS) can achieve significantly lower nutrient concentration in the FDFO product water rather than using single fertilizer alone. For example, blending KCl and NH(4)H(2)PO(4) as DS can result in 0.61/1.35/1.70 g/L of N/P/K, which is comparatively lower than using them individually as DS. The nutrient composition and concentration in the final FDFO product water can also be adjusted by selecting low nutrient fertilizers containing complementary nutrients and in different ratios to produce prescription mixtures. However, blending fertilizers generally resulted in slightly reduced bulk osmotic pressure and water flux in comparison to the sum of the osmotic pressures and water fluxes of the two individual DSs as used alone. The performance ratio or PR (ratio of actual water flux to theoretical water flux) of blended fertilizer DS was observed to be between the PR of the two fertilizer solutions tested individually. In some cases, such as urea, blending also resulted in significant reduction in N nutrient loss by reverse diffusion in presence of other fertilizer species. PMID:22404621</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011ApWS....1...11K&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011ApWS....1...11K&link_type=ABSTRACT"><span id="translatedtitle">An ambitious step to the future <span class="hlt">desalination</span> technology: SEAHERO R&D program (2007-2012)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Suhan; Oh, Byung Soo; Hwang, Moon-Hyun; Hong, Seungkwan; Kim, Joon Ha; Lee, Sangho; Kim, In S.</p> <p>2011-09-01</p> <p>In Republic of Korea, seawater engineering and architecture of high efficiency reverse osmosis (SEAHERO) research and development (R&D) program started from 2007 to lead the top seawater reverse osmosis (SWRO) plant technologies for <span class="hlt">desalination</span> with the fund of US 165 million for 6 years including test-bed plant construction. There are three technical strategies for SEAHERO R&D program called 3L, which represents large scale, low fouling, and low energy, respectively. Large scale means design, construction, and operation of the largest unit SWRO train [daily water production rate = 8 MIGD (36,000 m3/day)] in the world. Low-fouling strategy targets the decrease of RO membrane fouling by 50%. The specific target for low energy is total energy consumption of whole SWRO plant (including intake, pretreatment, SWRO systems, and so on) less than 4 kWh/m3. The core parts for SWRO plant, such as 16 in. diameter RO membrane and energy recovery device, were developed and will soon be introduced to a test-bed including the largest unit SWRO train. The next step of SEAHERO is real field scale test-bed application of the unit technologies developed for the past 4 years (2007-2010) such as strategic pretreatment, energy-saving technology, and reliable system monitoring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21108068','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21108068"><span id="translatedtitle">Dynamic bacterial communities on reverse-osmosis membranes in a full-scale <span class="hlt">desalination</span> plant.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manes, C-L de O; West, N; Rapenne, S; Lebaron, P</p> <p>2011-01-01</p> <p>To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale <span class="hlt">desalination</span> plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species. PMID:21108068</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25620722','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25620722"><span id="translatedtitle">Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial <span class="hlt">desalination</span> cell.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yifeng; Angelidaki, Irini</p> <p>2015-07-01</p> <p>Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial <span class="hlt">desalination</span> cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues. PMID:25620722</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/15082392','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/15082392"><span id="translatedtitle">Preparation of alpha-alumina-supported mesoporous bentonite membranes for reverse osmosis <span class="hlt">desalination</span> of aqueous solutions.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Liangxiong; Dong, Junhang; Lee, Robert</p> <p>2004-05-15</p> <p>In this study, mesoporous bentonite clay membranes approximately 2 microm thick were prepared on porous alpha-alumina substrates by a sol-gel method. Nanosized clay particles were obtained from commercial Na-bentonite powders (Wyoming) by a process of sedimentation, washing, and freeze-drying. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption were employed for membrane characterization. It was found that the content of solids, concentration of polymer binder, and pH value of the clay colloidal suspension had critical influences on membrane formation during the dip-coating process. The membranes were tested for reverse osmosis separation of a 0.1 M NaCl solution. Both water permeability and Na(+) rejection rate of the supported membranes were comparable to those of the compacted thick membranes reported in the literature. However, due to the drastically reduced membrane thickness, water permeance and flux of the supported membranes were significantly higher than those of the compacted thick membranes. It was also observed that the calcination temperature played a critical role in determining structural stability in water and <span class="hlt">desalination</span> performance of the clay membrane. PMID:15082392</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/563143','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/563143"><span id="translatedtitle">The application of carbon aerogel electrodes to <span class="hlt">desalination</span> {ampersand} waste treatment</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Farmer, J.C., Tran, T.D., Richardson, J.H., Fix, D.V., May, S.C., Thomson, S.L.</p> <p>1997-08-01</p> <p>An electrically-regenerated electrosorption process known as carbon aerogel capacitive deionization (CDI) has been developed by Lawrence Livermore National Laboratory (LLNL) for continuously removing ionic impurities from aqueous streams. A salt solution flows through an unobstructed channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high Brunauer-Emmet-Teller (BET) surface area (2.0-5.4 x 1O{sup 6} ft{sup 2} lb{sup -1} or 400-1100) and very low electrical resistivity (< 40 m{omega} cm). Surface areas of 1.3 x 10{sup 7} ft{sup 2} lb{sup -1} (2600 m{sup 2} g{sup -1}) have been achieved activation. After polarization, anions and cations are removed from the electrolyte by the imposed electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, concentrate and purified water. Based upon this analysis, it is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for the <span class="hlt">desalination</span> of brackish water (< 5000 ppm), provided that cell geometries and aerogel properties are carefully tailored for such applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/10142350','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/10142350"><span id="translatedtitle">Improved solvents for seawater <span class="hlt">desalination</span> (the Puraq process). Final report, June 7, 1988--June 6, 1991</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Not Available</p> <p>1991-12-31</p> <p>The Puraq process for <span class="hlt">desalinating</span> seawater is based on solven extraction of fresh water from seawater using specially tailored liquid polymers with molecular weights of 3000 or less. This polymeric solvent insures that the solubility of solvent in the coexistent aqueous phases within the process will be essentially zero. Although it was indicated earlier that the upper limit of polymer content in recycle solvent stream could not exceed 92%, this restrictive upper limit could be exceeded by broadening the field of possible polymer compositions used in choosing a particular sample. This would further decrease the projected cost of product water from $2.03 to $1.08 per thousand gallons. Presence in the polymer of water-soluble components prevented the separation of water droplets when determining the cloud point with small amounts of water in the sample. A number of measurements of ``true`` phase points indicated that for most samples, the difference in temperatures of phase separation between compositions of 80 and 98% was 15 C or less.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689387','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689387"><span id="translatedtitle">The Earthworm Eisenia fetida Can Help <span class="hlt">Desalinate</span> a Coastal Saline Soil in Tianjin, North China</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Tao; Li, Suyan; Sun, Xiangyang; Zhang, Yang; Gong, Xiaoqiang; Fu, Ying; Jia, Liming</p> <p>2015-01-01</p> <p>A laboratory microcosm experiment was conducted to determine whether the earthworm Eisenia fetida could survive in a saline soil from a field site in North China, and an experiment using response surface methodology was conducted at that field site to quantify the effects of E. fetida and green waste compost (GWC) on the salt content of the soil. The microcosm results showed that E. fetida survived in GWC-amended saline soil and increased the contents of humic acid, available N, and available P in the GWC-amended soil. The data from the field experiment were described by the following second-order model:y^ =-1.76+0.091x1+0.48x2-0.00083x1x2-0.00078x12-0.022x22, where y is the decrease in soil salinity (g of salt per kg of dry soil) relative to the untreated control, x1 is the number of E. fetida added per m2, and x2 is the quantity of GWC added in kg per m2. The model predicted that the total salt content of the saline soil would decrease by > 2 g kg-1 (p<0.05) when 29–90 individuals m-2 of E. fetida and 6.1–15.0 kg m-2 of GWC were applied. We conclude that the use of E. fetida for soil <span class="hlt">desalination</span> is promising and warrants additional investigation. PMID:26699869</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/6912563','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/6912563"><span id="translatedtitle">Internet - a resource for <span class="hlt">nuclear</span> <span class="hlt">utilities</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Slone, B.J. III; Richardson, C.E. )</p> <p>1993-01-01</p> <p>Internet is the name of the largest computer network in the world. It is actually a collection of many networks all running the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite, connected through gateways and sharing common names and address spaces. Its purpose is to facilitate sharing of resources at participating organizations, which include government agencies, educational institutions, and private corporations. The Internet roots begin with the creation of the Advanced Research Projects Agency (ARPA) within the U.S. Department of Defense (DOD) in 1958. In 1969, the DOD formed a computer network for ARPA and gave it the name ARPANET. It was designed to help government scientists communicate and share information by allowing remote computer log-in and program execution, but it quickly became a tool for sharing information through file transfer, electronic mail, and interest-group mailing lists. In 1970, ARPA became the Defense Advanced Research Projects Agency (DARPA) and ARPANET became DARPANET. By 1980, the DARPANET had grown in size, and other connecting networks were being developed. To support system growth and performance, it was recognized that a new communication protocol was required. In 1983, DARPANET split into DARPANET and MILNET (Military Network), and the Internet was formed when the Defense Communications Agency, which managed both networks, mandated the use of TCP/IP for connected hosts. In 1986, the National Science Foundation (NSF) joined Internet. The NSF created NSFNET to link several national supercomputer centers to support scholarly research. It now comprises 17 networks, connecting to 23 midlevel wide-area networks across the continent. In turn, the midlevel networks link computers in more than 1000 university, government, and commercial research organizations throughout the world.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/20995655','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/20995655"><span id="translatedtitle">A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of Rejected Thermal Energy From <span class="hlt">Nuclear</span> Power Plants</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Khalil, Yehia F.; Elimelech, Menachem</p> <p>2006-07-01</p> <p>In this work, we describe a novel design that <span class="hlt">utilizes</span> seawater and a portion of rejected heat from a <span class="hlt">nuclear</span> plant's steam cycle to operate a water <span class="hlt">desalination</span> system using forward osmosis technology. Water produced from this process is of sufficient quality to be readily used to supply plant demands for continuous makeup water. The proposed process minimizes the environmental concerns associated with thermal pollution of public waters and the resulting adverse impact on marine ecology. To demonstrate the technical feasibility of this conceptual design of a water treatment process, we discuss a case study as an example to describe how the proposed design can be implemented in a <span class="hlt">nuclear</span> power station with a once--through cooling system that discharges rejected heat to an open sound seawater as its ultimate heat sink. In this case study, the station uses a leased (vendor owned and operated) onsite water treatment system that demineralizes and polishes up to 500-gpm of city water (at 100 ppm TDS) to supply high-quality makeup water (< 0.01 ppm TDS) to the plant steam system. The objectives of implementing the new design are three fold: 1) forego current practice of using city water as the source of plant makeup water, thereby reducing the <span class="hlt">nuclear</span> station's impact on the region's potable water supply by roughly 100 million gallons/year, 2) minimize the adverse impact of discharging rejected heat into the open sound seawater and, hence, protect the marine ecology, and 3) eliminate the reliance on external vendor that owns and operates the onsite water treatment system, thereby saving an annual fixed cost of $600 K plus 6 cents per 1,000 gallons of pure water. The design will also eliminate the need for using two double-path reverse osmosis (RO) units that consume 425 kW/h of electric power to operate two RO pumps (480 V, 281.6 HP, and 317.4 amps). (authors)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/863002','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/servlets/purl/863002"><span id="translatedtitle"><span class="hlt">Nuclear</span> reactor apparatus</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Wade, Elman E.</p> <p>1978-01-01</p> <p>A lifting, rotating and sealing apparatus for <span class="hlt">nuclear</span> reactors <span class="hlt">utilizing</span> rotating plugs above the <span class="hlt">nuclear</span> reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a <span class="hlt">nuclear</span> core. It also provides a means by which positive top core holddown can be <span class="hlt">utilized</span>. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the <span class="hlt">nuclear</span> core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title10-vol1/pdf/CFR-2010-title10-vol1-sec34-71.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title10-vol1/pdf/CFR-2010-title10-vol1-sec34-71.pdf"><span id="translatedtitle">10 CFR 34.71 - <span class="hlt">Utilization</span> logs.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 10 Energy 1 2010-01-01 2010-01-01 false <span class="hlt">Utilization</span> logs. 34.71 Section 34.71 Energy <span class="hlt">NUCLEAR</span> REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 <span class="hlt">Utilization</span> logs. (a) Each licensee shall...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23701483','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23701483"><span id="translatedtitle">Effects of biological molecules on calcium mineral formation associated with wastewater <span class="hlt">desalination</span> as assessed using small-angle neutron scattering.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pipich, Vitaliy; Dahdal, Yara; Rapaport, Hanna; Kasher, Roni; Oren, Yoram; Schwahn, Dietmar</p> <p>2013-06-25</p> <p>Calcium phosphate scale formation on reverse osmosis (RO) membranes is one of the main limitations on cost-effective <span class="hlt">desalination</span> of domestic wastewater worldwide. It has been shown that organic agents affect mineralization. In this study, we explored mineralization in the presence of two biofilm-relevant organic compounds, the proteins bovine serum albumin (BSA) and lysozyme, in a simulated secondary effluent (SSE) solution using small-angle neutron scattering (SANS), and applied the results to analyses of mineral precipitation in RO <span class="hlt">desalination</span> of secondary effluents of wastewater. The two proteins are prominent members of bacterial extracellular polymeric substances (EPSs), forming biofilms that are frequently associated with RO-membrane fouling during wastewater <span class="hlt">desalination</span>. Laboratory experiments showed that both proteins in SSE solution are involved in complex mineralization processes. Only small portions of both protein fractions are involved in mineralization processes, whereas most of the protein fractions remain as monomers in solution. Contrast variation showed that composite particles of mineral and protein are formed instantaneously to a radius of gyration of about 300 Å, coexisting with particles of about μm size. After about one day, these large particles start to grow again at the expense of the 300 Å particles. The volume fraction of the 300 Å particles is of the order of 2 × 10(-4), which is too large to represent calcium phosphate such as hydroxyapatite as the only mineral present. Considering the data of mineral volume fraction obtained here as well as the solubility product of possible mineral polymorphs in the SSE solution, we suggest the formation of protein-mineral particles of hydroxyapatite and calcium carbonate during scale formation. PMID:23701483</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23079130','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23079130"><span id="translatedtitle">Algal toxins and reverse osmosis <span class="hlt">desalination</span> operations: laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seubert, Erica L; Trussell, Shane; Eagleton, John; Schnetzer, Astrid; Cetinić, Ivona; Lauri, Phil; Jones, Burton H; Caron, David A</p> <p>2012-12-01</p> <p>The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater <span class="hlt">desalination</span> facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) <span class="hlt">desalination</span> process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the <span class="hlt">desalination</span> product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the <span class="hlt">desalinated</span> product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and <span class="hlt">desalinated</span> water from a pilot RO <span class="hlt">desalination</span> plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the <span class="hlt">desalinated</span> water. PbTx and OA were not detected in either the intake or <span class="hlt">desalinated</span> water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980mtse.rept.....W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980mtse.rept.....W"><span id="translatedtitle">A 25 kW solar photovoltaic flat panel power supply for an electrodialysis water <span class="hlt">desalination</span> unit in New Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, J. R.; Crutcher, J. L.</p> <p>1980-06-01</p> <p>The stand-alone system consists of a flat panel array employing silicon ribbon solar cells, used in conjunction with a lead-acid battery bank. Electrodialysis is an energy-conservative process for the <span class="hlt">desalination</span> of water, in which ions are transferred from one solution through a membrane into another solution by imposition of a direct electrical current. The system design is intended to be prototypical of part of the drinking water supply for a remote village. The specific task of this system is to aid in the restoration of an aquifer following a uranium leaching operation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/924713','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/924713"><span id="translatedtitle">Recovery of Fresh Water Resources from <span class="hlt">Desalination</span> of Brine Produced During Oil and Gas Production Operations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>David B. Burnett; Mustafa Siddiqui</p> <p>2006-12-29</p> <p> removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using <span class="hlt">desalination</span> membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the <span class="hlt">desalination</span> process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26298255','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26298255"><span id="translatedtitle">A new class of draw solutions for minimizing reverse salt flux to improve forward osmosis <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nguyen, Hau Thi; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Li, Chi-Wang</p> <p>2015-12-15</p> <p>The applications of forward osmosis (FO) have been hindered because of the lack of an optimal draw solution. The reverse salt flux from the draw solution not only reduces the water flux but also increases the cost of draw solute replenishment. Therefore, in this study, Tergitol NP7 and NP9 with a long straight carbon chain and low critical micelle concentration (CMC) were coupled with highly charged ethylenediaminetetraacetic acid (EDTA) as an innovative draw solution to minimize reverse salt diffusion in FO for the first time. The results showed that the lowest reverse salt flux of 0.067 GMH was observed when 0.1M EDTA-2Na coupled with 15mM NP7 was used as a draw solution and deionized water was used as a feed solution in FO mode (active layer facing with the feed solution). This is due to the hydrophobic interaction between the tails of NP7 and the FO membrane, thus creating layers on the membrane surface and constricting the FO membrane pores. Moreover, 1M EDTA-2Na coupled with 15mM NP7 is promising as an optimal draw solution for brackish water and sea water <span class="hlt">desalination</span>. Average water fluxes of 7.68, 6.78, and 5.95 LMH were achieved when brackish water was used as a feed solution (5, 10, and 20g/L NaCl), and an average water flux of 3.81 LMH was achieved when sea water was used as a feed solution (35g/L NaCl). The diluted draw solution was recovered using a nanofiltration (NF-TS80) membrane with a high efficiency of 95% because of the high charge and large size of the draw solution. PMID:26298255</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23508142','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23508142"><span id="translatedtitle">Linking near- and far-field hydrodynamic models for simulation of <span class="hlt">desalination</span> plant brine discharges.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Botelho, D A; Barry, M E; Collecutt, G C; Brook, J; Wiltshire, D</p> <p>2013-01-01</p> <p>A <span class="hlt">desalination</span> plant is proposed to be the major water supply to the Olympic Dam Expansion Mining project. Located in the Upper Spencer Gulf, South Australia, the site was chosen due to the existence of strong currents and their likely advantages in terms of mixing and dilution of discharged return water. A high-resolution hydrodynamic model (Estuary, Lake and Coastal Ocean Model, ELCOM) was constructed and, through a rigorous review process, was shown to reproduce the intricate details of the Spencer Gulf dynamics, including those characterising the discharge site. Notwithstanding this, it was found that deploying typically adopted 'direct insertion' techniques to simulate the brine discharge within the hydrodynamic model was problematic. Specifically, it was found that in this study the direct insertion technique delivered highly conservative brine dilution predictions in and around the proposed site, and that these were grid and time-step dependent. To improve the predictive capability, a strategy to link validated computational fluid dynamics (CFD) predictions to hydrodynamic simulations was devised. In this strategy, environmental conditions from ELCOM were used to produce boundary conditions for execution of a suite of CFD simulations. In turn, the CFD simulations provided the brine dilutions and flow rates to be applied in ELCOM. In order to conserve mass in a system-wide sense, artificial salt sinks were introduced to the ELCOM model such that salt quantities were conserved. As a result of this process, ELCOM predictions were naturally very similar to CFD predictions near the diffuser, whilst at the same time they produced an area of influence (further afield) comparable to direct insertion methods. It was concluded that the linkage of the models, in comparison to direct insertion methods, constituted a more realistic and defensible alternative to predict the far-field dispersion of outfall discharges, particularly with regards to the estimation of brine</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021940','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021940"><span id="translatedtitle">Performance and Long Term Stability of Mesoporous Silica Membranes for <span class="hlt">Desalination</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Elma, Muthia; Yacou, Christelle; Diniz da Costa, João C.; Wang, David K.</p> <p>2013-01-01</p> <p>This work shows the preparation of silica membranes by a two-step sol-gel method using tetraethyl orthosilicate in ethanolic solution by employing nitric acid and ammonia as co-catalysts. The sols prepared in pH 6 resulted in the lowest concentration of silanol (Si–OH) species to improve hydrostability and the optimized conditions for film coating. The membrane was tested to <span class="hlt">desalinate</span> 0.3–15 wt % synthetic sodium chloride (NaCl) solutions at a feed temperature of 22 °C followed by long term membrane performance of up to 250 h in 3.5 wt % NaCl solution. Results show that the water flux (and salt rejection) decrease with increasing salt concentration delivering an average value of 9.5 kg m–2 h–1 (99.6%) and 1.55 kg m–2 h–1 (89.2%) from the 0.3 and 15 wt % saline feed solutions, respectively. Furthermore, the permeate salt concentration was measured to be less than 600 ppm for testing conditions up to 5 wt % saline feed solutions, achieving below the recommended standard for potable water. Long term stability shows that the membrane performance in water flux was stable for up to 150 h, and slightly reduced from thereon, possibly due to the blockage of large hydrated ions in the micropore constrictions of the silica matrix. However, the integrity of the silica matrix was not affected by the long term testing as excellent salt rejection of >99% was maintained for over 250 h. PMID:24956942</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992nerr.book.....R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992nerr.book.....R"><span id="translatedtitle"><span class="hlt">Nuclear</span> energy related research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rintamaa, R.</p> <p>1992-05-01</p> <p>The annual Research Program Plan describes publicly funded <span class="hlt">nuclear</span> energy related research to be carried out mainly at the Technical Research Center of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Center for Radiation and <span class="hlt">Nuclear</span> Safety (STUK), and VTT itself. Other research institutes, <span class="hlt">utilities</span>, and industry also contribute to many projects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/10110309','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/10110309"><span id="translatedtitle"><span class="hlt">Nuclear</span> disarmament verification</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>DeVolpi, A.</p> <p>1993-12-31</p> <p>Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing <span class="hlt">nuclear</span> weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, <span class="hlt">nuclear</span> disarmament has been divided into five topical subareas: Converting <span class="hlt">nuclear</span>-weapons production complexes, Eliminating and monitoring <span class="hlt">nuclear</span>-weapons delivery systems, Disabling and destroying <span class="hlt">nuclear</span> warheads, Demilitarizing or non-military <span class="hlt">utilization</span> of special <span class="hlt">nuclear</span> materials, and Inhibiting <span class="hlt">nuclear</span> arms in non-<span class="hlt">nuclear</span>-weapons states. This paper concludes with an overview of potential methods for verification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3768348','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3768348"><span id="translatedtitle">Cultivation of Arthrospira (spirulina) platensis in <span class="hlt">desalinator</span> wastewater and salinated synthetic medium: protein content and amino-acid profile</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Volkmann, Harriet; Imianovsky, Ulisses; Oliveira, Jorge L.B.; Sant’Anna, Ernani S.</p> <p>2008-01-01</p> <p>Arthrospira (Spirulina) platensis was cultivated in laboratory under controlled conditions (30°C, photoperiod of 12 hours light/dark provided by fluorescent lamps at a light intensity of 140 μmol photons.m-2.s-1 and constant bubbling air) in three different culture media: (1) Paoletti medium (control), (2) Paoletti supplemented with 1 g.L-1 NaCl (salinated water) and (3) Paoletti medium prepared with <span class="hlt">desalinator</span> wastewater. The effects of these treatments on growth, protein content and amino acid profile were measured. Maximum cell concentrations observed in Paoletti medium, Paoletti supplemented with salinated water or with <span class="hlt">desalinator</span> wastewater were 2.587, 3.545 and 4.954 g.L-1, respectively. Biomass in medium 3 presented the highest protein content (56.17%), while biomass in medium 2 presented 48.59% protein. All essential amino acids, except lysine and tryptophan, were found in concentrations higher than those requiried by FAO. PMID:24031187</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25923717','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25923717"><span id="translatedtitle">Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Härtel, Andreas; Janssen, Mathijs; Samin, Sela; van Roij, René</p> <p>2015-05-20</p> <p>Capacitive mixing (CAPMIX) and capacitive deionization (CDI) are promising candidates for harvesting clean, renewable energy and for the energy efficient production of potable water, respectively. Both CAPMIX and CDI involve water-immersed porous carbon (supercapacitors) electrodes at voltages of the order of hundreds of millivolts, such that counter-ionic packing is important for the electric double layer (EDL) which forms near the surfaces of these porous materials. Thus, we propose a density functional theory (DFT) to model the EDL, where the White-Bear mark II fundamental measure theory functional is combined with a mean-field Coulombic and a mean spherical approximation-type correction to describe the interplay between dense packing and electrostatics, in good agreement with molecular dynamics simulations. We discuss the concentration-dependent potential rise due to changes in the chemical potential in capacitors in the context of an over-ideal theoretical description and its impact on energy harvesting and water <span class="hlt">desalination</span>. Compared to less elaborate mean-field models our DFT calculations reveal a higher work output for blue-energy cycles and a higher energy demand for <span class="hlt">desalination</span> cycles. PMID:25923717</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26596826','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26596826"><span id="translatedtitle">Analysis of long-term performance and microbial community structure in bio-cathode microbial <span class="hlt">desalination</span> cells.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Huichao; Wen, Qinxue; An, Zhongyi; Chen, Zhiqiang; Nan, Jun</p> <p>2016-03-01</p> <p>A microbial <span class="hlt">desalination</span> cell (MDC) could <span class="hlt">desalinate</span> salt water without energy consumption and simultaneously generate bioenergy. Compared with an abiotic cathode MDC, an aerobic bio-cathode MDC is more sustainable and is less expensive to operate. In this study, the long-term operation (5500 h) performance of a bio-cathode MDC was investigated in which the power density, Coulombic efficiency, and salt removal rate were decreased by 71, 44, and 27 %, respectively. The primary reason for the system performance decrease was biofouling on the membranes, which increased internal resistance and reduced the ionic transfer and energy conversion efficiency. Changing membranes was an effective method to recover the MDC performance. The microbial community diversity in the MDC anode was low compared with that of the reported microbial fuel cell (MFC), while the abundance of Proteobacteria was 30 % higher. The content of Planctomycetes in the cathode biofilm sample was much higher than that in biofouling on the cation exchange membrane (CEM), indicating that Planctomycetes were relevant to cathode oxygen reduction. PMID:26596826</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016IJMPS..4260172S&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016IJMPS..4260172S&link_type=ABSTRACT"><span id="translatedtitle">Future Energy Benchmark for <span class="hlt">Desalination</span>: is it Better to have a Power (electricity) Plant with ro or Med/msf?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw</p> <p>2016-06-01</p> <p>Power and <span class="hlt">desalination</span> cogeneration plants are common in many water scared courtiers. Designers and planners for cogeneration face tough challenges in deciding the options:- Is it better to operate a power plant (PP) with the reverse osmosis (i.e., PP+RO) or the thermally-driven multi-effect distillation/multi-stage flashed (PP+MED/MSF) methods. From literature, the RO methods are known to be energy efficient whilst the MED/MSF are known to have excellent thermodynamic synergies as only low pressure and temperature steam are used. Not with-standing the challenges of severe feed seawater of the Gulf, such as the frequent harmful algae blooms (HABs) and high silt contents, this presentation presents a quantitative analyses using the exergy and energetic approaches in evaluating the performances of a real cogeneration plant that was recently proposed in the eastern part of Saudi Arabia. We demonstrate that the process choice of PP+RO versus PP+MED depends on the inherent efficiencies of individual process method which is closely related to innovative process design. In this connection, a method of primary fuel cost apportionment for a co-generation plant with a MED <span class="hlt">desalination</span> is presented. We show that an energy approach, that captures the quality of expanding steam, is a better method over the conventional work output (energetic) and the energy method seems to be over-penalizing a thermally-driven MED by as much as 22% in the operating cost of water.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPCM...27s4129H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPCM...27s4129H"><span id="translatedtitle">Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water <span class="hlt">desalination</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Härtel, Andreas; Janssen, Mathijs; Samin, Sela; van Roij, René</p> <p>2015-05-01</p> <p>Capacitive mixing (CAPMIX) and capacitive deionization (CDI) are promising candidates for harvesting clean, renewable energy and for the energy efficient production of potable water, respectively. Both CAPMIX and CDI involve water-immersed porous carbon (supercapacitors) electrodes at voltages of the order of hundreds of millivolts, such that counter-ionic packing is important for the electric double layer (EDL) which forms near the surfaces of these porous materials. Thus, we propose a density functional theory (DFT) to model the EDL, where the White-Bear mark II fundamental measure theory functional is combined with a mean-field Coulombic and a mean spherical approximation-type correction to describe the interplay between dense packing and electrostatics, in good agreement with molecular dynamics simulations. We discuss the concentration-dependent potential rise due to changes in the chemical potential in capacitors in the context of an over-ideal theoretical description and its impact on energy harvesting and water <span class="hlt">desalination</span>. Compared to less elaborate mean-field models our DFT calculations reveal a higher work output for blue-energy cycles and a higher energy demand for <span class="hlt">desalination</span> cycles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/970883','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/970883"><span id="translatedtitle">Simulated Verification of Fuel Element Inventory in a Small Reactor Core Using the <span class="hlt">Nuclear</span> Materials Identification System (NMIS)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Grogan, Brandon R; Mihalczo, John T</p> <p>2009-01-01</p> <p>The International Panel on Climate Change projects that by 2050 the world energy demand may double. Although the primary focus for new <span class="hlt">nuclear</span> power plants in industrialized nations is on large plants in the 1000-1600 MWe range, there is an increasing demand for small and medium reactors (SMRs). About half of the innovative SMR concepts are for small (<300 MWe) reactors with a 5-30 year life without on-site refueling. This type of reactor is also known as a battery-type reactor. These reactors are particularly attractive to countries with small power grids and for non-electrical purposes such as heating, hydrogen production, and seawater <span class="hlt">desalination</span>. Traditionally, this type of reactor has been used in a nautical propulsion role. This type of reactor is designed as a permanently sealed unit to prevent the diversion of the uranium in the core by the user. However, after initial fabrication it will be necessary to verify that the newly fabricated reactor core contains the quantity of uranium that initially entered the fuel fabrication plant. In most instances, traditional inspection techniques can be used to perform this verification, but in certain situations the core design will be considered sensitive. Non-intrusive verification techniques must be <span class="hlt">utilized</span> in these situations. The <span class="hlt">Nuclear</span> Materials Identification System (NMIS) with imaging uses active interrogation and a fast time correlation processor to characterize fissile material. The MCNP-PoliMi computer code was used to simulate NMIS measurements of a small, sealed reactor core. Because most battery-type reactor designs are still in the early design phase, a more traditional design based on a Russian icebreaker core was used in the simulations. These simulations show how the radiography capabilities of the NMIS could be used to detect the diversion of fissile material by detecting void areas in the assembled core where fuel elements have been removed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/990998','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/990998"><span id="translatedtitle">Polyamide <span class="hlt">desalination</span> membrane characterization and surface modification to enhance fouling resistance.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Sharma, Mukul M.; Freeman, Benny D.; Van Wagner, Elizabeth M.; Hickner, Michael A.; Altman, Susan Jeanne</p> <p>2010-08-01</p> <p>The market for polyamide <span class="hlt">desalination</span> membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterization of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23566330','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23566330"><span id="translatedtitle">Bioflocculation: chemical free, pre-treatment technology for the <span class="hlt">desalination</span> industry.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bar-Zeev, Edo; Belkin, Natalia; Liberman, Boris; Berman-Frank, Ilana; Berman, Tom</p> <p>2013-06-01</p> <p>Rapid sand filtration (RSF), proceeded by chemical coagulation and flocculation, is a commonly used, effective pretreatment in the <span class="hlt">desalination</span> industry. We designed and tested a novel, large pilot-scale, two-stage granular Rapid Bioflocculation Filter (RBF) based on a first-stage Bioflocculator (BF) unit followed by a mixed-media bed filter (MBF). The BF filter bed consisted of an extremely porous volcanic Tuff granular medium which provided an enlarged surface area for microbial development and biofilm proliferation. We compared the efficiency of the pilot RBF to that of a full-scale RSF, operating with upstream chemical coagulation, by measuring the removal from the same untreated seawater feed of key factors related to membrane clogging: SDI, turbidity, chlorophyll a (Chl a) and transparent exopolymer particles (TEP). After 2 weeks of operation, the Tuff grains were colonized extensively by coccoid bacteria that formed biofilm along the entire BF. With bacterial colonization and biofilm development, numerous aggregates of bacteria and some algal cells embedded in an amorphous organic matrix were formed on and within the Tuff grains. By 1-3 months, the biotic diversity within the Tuff filter bed had increased to include filamentous bacteria, cyanobacteria, fungi, protista and even crustaceans and marine worms. During and for ≈ 24 h after each cleaning cycle (carried out every 5 to 7 days by upward flushing with air and water), large numbers of floc-like particles, from ≈ 15 μm to ≈ 2 mm in size were observed in the filtrate of the BF unit. Microscopic examination of these flocs (stained with Alcian Blue and SYTO(R) 9) showed that they were aggregates of many smaller particles with associated bacteria and algae within a polysaccharide gel-like matrix. These biogenic flocs (bioflocs) were observed to form during normal operation of the RBF, accumulating as aggregates of inorganic and organic material on the Tuff surfaces. With each flush cleaning cycle</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21371444','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21371444"><span id="translatedtitle">Technological Transfer from Research <span class="hlt">Nuclear</span> Reactors to New Generation <span class="hlt">Nuclear</span> Power Reactors</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Radulescu, Laura; Pavelescu, Margarit</p> <p>2010-01-21</p> <p>The goal of this paper is the analysis of the technological transfer role in the <span class="hlt">nuclear</span> field, with particular emphasis on <span class="hlt">nuclear</span> reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first <span class="hlt">nuclear</span> systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation <span class="hlt">Nuclear</span> Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the <span class="hlt">nuclear</span> energy could play an important role, being essentially an unlimited source of energy. However, the <span class="hlt">nuclear</span> option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of <span class="hlt">nuclear</span> power reactors. The experience gained is a strong basis for further improvements. Actually, the <span class="hlt">nuclear</span> programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about <span class="hlt">nuclear</span> power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, <span class="hlt">desalination</span> and for process heat.The paper gives historical examples that illustrate the steps pursued from first research <span class="hlt">nuclear</span> reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the <span class="hlt">nuclear</span> scientists using the technological transfer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/6001387','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/6001387"><span id="translatedtitle"><span class="hlt">Nuclear</span> power attitude trends</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Nealey, S.M.</p> <p>1981-11-01</p> <p>The increasing vulnerability of <span class="hlt">nuclear</span> power to political pressures fueled by public concerns, particularly about <span class="hlt">nuclear</span> plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, <span class="hlt">utility</span> and government plans have centered on expansion of <span class="hlt">nuclear</span> power generating capability. While supporters have outnumbered opponents of <span class="hlt">nuclear</span> power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=invoice&pg=2&id=EJ323628','ERIC'); return false;" href="http://eric.ed.gov/?q=invoice&pg=2&id=EJ323628"><span id="translatedtitle">Controlling Your <span class="hlt">Utility</span> Rates.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lucht, Ray; Dembowski, Frederick L.</p> <p>1985-01-01</p> <p>A cost-effective alternative to high <span class="hlt">utility</span> bills for middle-sized and smaller <span class="hlt">utility</span> users is the service of <span class="hlt">utility</span> rate consultants. The consultants analyze <span class="hlt">utility</span> invoices for the previous 12 months to locate available refunds or credits. (MLF)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23164217','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23164217"><span id="translatedtitle">Source water quality shaping different fouling scenarios in a full-scale <span class="hlt">desalination</span> plant at the Red Sea.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khan, Muhammad Tariq; Manes, Carmem-Lara de O; Aubry, Cyril; Croué, Jean-Philippe</p> <p>2013-02-01</p> <p>The complexity of Reverse Osmosis (RO) membrane fouling phenomenon has been widely studied and several factors influencing it have been reported by many researchers. This original study involves the investigation of two different fouling profiles produced at a seawater RO <span class="hlt">desalination</span> plant installed on a floating mobile barge. The plant was moved along the coastline of the Red Sea in Saudi Arabia. The two locations where the barge was anchored showed different water quality. At the second location, two modules were harvested. One of the modules was pre-fouled by inorganics during plant operation at the previous site while the other was installed at the second site. Fouled membranes were subjected to a wide range of chemical and microbiological characterization procedures. Drastically different fouling patterns were observed in the two membranes which indicates the influence of source water quality on membrane surface modification and on fouling of RO membranes. PMID:23164217</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24745896','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24745896"><span id="translatedtitle">Long-term effect on membrane fouling in a new membrane bioreactor as a pretreatment to seawater <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jeong, Sanghyun; Rice, Scott A; Vigneswaran, Saravanamuthu</p> <p>2014-08-01</p> <p>Submerged membrane adsorption bio-reactors (SMABR) were investigated as a new pretreatment for seawater reverse osmosis (SWRO) <span class="hlt">desalination</span>. They were tested with different doses of powder activated carbon (PAC) on-site for a long-term. The biofouling on the membrane was assessed in terms of DNA (cells) and polysaccharide distribution. MBR without PAC addition resulted in severe fouling on membrane. When PAC is added in the MBR, PAC could reduce the organic fouling. Hence the biofilm formation on membrane was reduced without any membrane damage. PAC also helped to remove low molecular weight (LMW) organics responsible for biofouling of RO membrane. A linear correlation between assimilable organic carbon (AOC) and LMW organics was observed. A small amount of PAC (2.4-8.0g of PAC/m(3) of seawater) was sufficient to reduce biofouling. It indicated that SMABR is an environmentally-friendly biological pretreatment to reduce biofouling for SWRO. PMID:24745896</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.nibib.nih.gov/science-education/science-topics/nuclear-medicine','NIH-MEDLINEPLUS'); return false;" href="https://www.nibib.nih.gov/science-education/science-topics/nuclear-medicine"><span id="translatedtitle"><span class="hlt">Nuclear</span> Medicine</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Parents/Teachers Resource Links for Students Glossary <span class="hlt">Nuclear</span> Medicine What is <span class="hlt">nuclear</span> medicine? What are radioactive tracers? ... funded researchers advancing <span class="hlt">nuclear</span> medicine? What is <span class="hlt">nuclear</span> medicine? <span class="hlt">Nuclear</span> medicine is a medical specialty that uses ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/5625218','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/5625218"><span id="translatedtitle">Management of National <span class="hlt">Nuclear</span> Power Programs for assured safety</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Connolly, T.J.</p> <p>1985-01-01</p> <p>Topics discussed in this report include: <span class="hlt">nuclear</span> <span class="hlt">utility</span> organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; <span class="hlt">nuclear</span> reliability improvement and safety operations; <span class="hlt">nuclear</span> <span class="hlt">utility</span> management; training of <span class="hlt">nuclear</span> facility personnel; US experience in key areas of <span class="hlt">nuclear</span> safety; the US <span class="hlt">Nuclear</span> Regulatory Commission - function and process; regulatory considerations of the risk of <span class="hlt">nuclear</span> power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful <span class="hlt">nuclear</span> uses; the role of the Institute of <span class="hlt">Nuclear</span> Power Operations (INPO); and <span class="hlt">nuclear</span> safety activities of the International Atomic Energy Agency (IAEA).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/17618670','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/17618670"><span id="translatedtitle">A new post-treatment process for attaining Ca2+, Mg2+, SO42- and alkalinity criteria in <span class="hlt">desalinated</span> water.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Birnhack, Liat; Lahav, Ori</p> <p>2007-09-01</p> <p>A novel post-treatment approach for <span class="hlt">desalinated</span> water, aimed at supplying a balanced concentration of alkalinity, Ca(2+), Mg(2+) and SO(4)(2-), is introduced. The process is based on replacing excess Ca(2+) ions generated in the common H(2)SO(4)-based calcite dissolution post-treatment process with Mg(2+) ions originating from seawater. In the first step, Mg(2+) ions are separated from seawater by means of a specific ion exchange resin that has high affinity toward divalent cations (Mg(2+) and Ca(2+)) and an extremely low affinity toward monovalent cations (namely Na(+) and K(+)). In the second step, the Mg(2+)-loaded resin is contacted with the effluent of the calcite dissolution reactor and Mg(2+) and Ca(2+) are exchanged. Consequently, the excess Ca(2+) concentration in the water decreases while the Mg(2+) concentration increases. The process is stopped at a predetermined Ca(2+) to Mg(2+) ratio. All water streams used in the process are internal and form a part of the <span class="hlt">desalination</span> plant sequence, regardless of the additional ion exchange component. The proposed process allows for the supply of cheap Mg(2+) ions, while at the same time enables the application of the cheap H(2)SO(4)-based calcite dissolution process, thus resulting in higher quality water at a cost-effective price. A case study is presented in which additional cost of supplying a Mg(2+) concentration of 12mg/L using the process is estimated at $0.004/m(3) product water. PMID:17618670</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24548910','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24548910"><span id="translatedtitle">Esophageal <span class="hlt">desalination</span> is mediated by Na⁺, H⁺ exchanger-2 in the gulf toadfish (Opsanus beta).</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Esbaugh, Andrew J; Grosell, Martin</p> <p>2014-05-01</p> <p>Esophageal <span class="hlt">desalination</span> is a crucial step in the gastrointestinal water absorption pathway, as this pre-intestinal processing establishes the osmotic conditions necessary for water absorption. Previous work has shown that esophageal Na(+) absorption is amiloride sensitive; however, it is as yet unclear if Na(+), H(+) exchangers (NHE) or Na(+) channels (ENaC) are responsible. The purpose of the current study was therefore to investigate the roles that NHE isoforms may play in this process in a marine teleost, the gulf toadfish (Opsanus beta), as well as what role NHE isoforms may play in the downstream intestinal Na(+) transport. A combination of symmetrical current clamp and asymmetrical voltage clamp experiments showed the esophagus to contain both an ion absorptive current (I(sc)=0.83±0.68) and serosal side negative transepithelial potential (TEP=-4.9±0.6). (22)Na uptake (J(Na)(m→s)) was inhibited by 0.5 mM EIPA, with no effect of 0.1 mM amiloride, 1 mM furosemide or 1 mM thiazide. A Cl(-) free saline reduced J(Na)(m→s) by 40% while also reducing conductance and reversing TEP. These results suggest that both transcellular and paracellular components contribute to esophageal Na(+) transport, with transcellular transport mediated by NHE. The NHE1, NHE2 and NHE3 genes were amplified and tissue distribution analysis by real-time PCR showed high NHE2 expression levels in the esophagus and stomach. Little NHE3 expression was observed throughout the gastrointestinal tract, and NHE2 expression was absent from the intestine. Hypersalinity (60 ppt) had no effect on the expression profile of NHE2, slc4a2, scl26a6, CAc or V-type ATPase (β-subunit), suggesting that esophageal <span class="hlt">desalination</span> is less flexible in response to osmotic stress than the intestine. PMID:24548910</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25262553','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25262553"><span id="translatedtitle">Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater <span class="hlt">desalination</span>: microbial community composition.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al Ashhab, Ashraf; Gillor, Osnat; Herzberg, Moshe</p> <p>2014-12-15</p> <p>We investigated the influence of feed-water shear rate during reverse-osmosis (RO) <span class="hlt">desalination</span> on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during <span class="hlt">desalination</span> of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes. PMID:25262553</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/565366','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/565366"><span id="translatedtitle"><span class="hlt">Nuclear</span> weapon detection categorization analysis</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p></p> <p>1997-12-01</p> <p>This statement of work is for the Proof of Concept for <span class="hlt">nuclear</span> weapon categories <span class="hlt">utility</span> in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of <span class="hlt">nuclear</span> weapons. The project will support START III negotiations by identifying categories of <span class="hlt">nuclear</span> weapons. The categories could be used to clarify sub-limits on the total number of <span class="hlt">nuclear</span> weapons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H23F1448E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H23F1448E"><span id="translatedtitle"><span class="hlt">Desalination</span> as Groundwater Conservation: The Cost of Protecting Cultural and Environmental Resources in Chile's Region II</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, E. C.; Cristi, O.; Libecap, G. D.</p> <p>2012-12-01</p> <p>There is a substantial body of evidence that groundwater overdraft is occurring worldwide. Economists argue that the cause of this overdraft is the open-access nature of the resource, which results in a "tragedy of the commons." Sustainable water management requires that some institution control the resource to limit this overdraft by reducing water extraction. This reduction creates scarcity and requires a method of rationing. The economically efficient outcome occurs when the lowest value uses of water are eliminated. This allocation, though, may have undesirable social consequences, such as the loss of small-scale farming, and political ramifications that make such an allocation unpopular to implement. This paper explores the economic cost of leaving water in low-value uses. The policy we explore is a moratorium on voluntary water sales to mining firms to protect the groundwater resource in northern Chile. This policy has accelerated the use of expensive <span class="hlt">desalinated</span> water, whose cost is primarily driven by its heavy use of carbon-based electricity. Chile has a strong system of water property rights that economists argue ration water in a way that leads to the efficient allocation through water markets. This paper first explores the potential inefficiency of a water market when groundwater and surface water are linked, as well as when different users vary in their intensity of use. This theoretical background provides a framework for determining the economically efficient allocation of water and the losses associated with the moratorium in northern Chile. The policy does protect some environmental and cultural public goods, which potentially offset some or all of this cost. We provide a perspective on the magnitude of these public goods but do not attempt to value them explicitly. Instead, we demonstrate what their value must be so that the moratorium policy has a cost-to-benefit ratio of one. While the estimate of lost income from inefficiency is the main focus</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5512090','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5512090"><span id="translatedtitle"><span class="hlt">Nuclear</span> industry will be short of engineers</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Yates, M.</p> <p>1990-09-13</p> <p>This article discusses the potential shortage of <span class="hlt">nuclear</span> engineers due to reduction of educational and training facilities and difficulty in attracting minorities into <span class="hlt">nuclear</span> engineering. The article reports on recommendations from the National Research Council <span class="hlt">Nuclear</span> Education Study Committee on attracting minorities to <span class="hlt">nuclear</span> engineering, increasing DOE fellowships, funding for research and development, involvement of <span class="hlt">utilities</span> and vendors, and support of the American <span class="hlt">Nuclear</span> Society's advocacy of <span class="hlt">nuclear</span> engineering education.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1424K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1424K"><span id="translatedtitle"><span class="hlt">Utilization</span> of the terrestrial cyanobacteria</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yokoshima, Mika; Yamaguchi, Yuji; Takenaka, Hiroyuki</p> <p></p> <p>The terrestrial, N _{2}-fixing cyanobacterium, Nostoc commune has expected to <span class="hlt">utilize</span> for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. Previously, the first author indicated that desiccation related genes were analyzed and the suggested that the genes were related to nitrogen fixation and metabolisms. In this report, we suggest possibility of agriculture, using the cyanobacterium. Further, we also found radioactive compounds accumulated N. commune (cyanobacterium) in Fukushima, Japan after <span class="hlt">nuclear</span> accident. Thus, it is investigated to decontaminate radioactive compounds from the surface soil by the cyanobacterium and showed to accumulate radioactive compounds using the cyanobacterium. We will discuss <span class="hlt">utilization</span> of terrestrial cyanobacteria under closed environment. Keyword: Desiccation, terrestrial cyanobacteria, bioremediation, agriculture</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/4202847','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/biblio/4202847"><span id="translatedtitle"><span class="hlt">NUCLEAR</span> REACTOR</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Grebe, J.J.</p> <p>1959-07-14</p> <p>High temperature reactors which are uniquely adapted to serve as the heat source for <span class="hlt">nuclear</span> pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section <span class="hlt">utilizing</span> materials of construction which are most advantageous from a <span class="hlt">nuclear</span> standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a <span class="hlt">nuclear</span> reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6683588','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6683588"><span id="translatedtitle"><span class="hlt">Utility</span> guidelines for reactor noise analysis: Final report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Sweeney, F.J.</p> <p>1987-02-01</p> <p>Noise analysis techniques have been extensively <span class="hlt">utilized</span> to monitor the health and performance of <span class="hlt">nuclear</span> power plant systems. However, few <span class="hlt">utilities</span> have adequate programs to effectively <span class="hlt">utilize</span> these techniques. These programs usually provide low-quality data, which can lead to misinterpretation and false alarms. The objective of this work is to provide <span class="hlt">utilities</span> and noise analysts with guidelines for data acquisition, data analysis, and interpretation of noise analysis results for surveillance and diagnosis of reactor systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24495930','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24495930"><span id="translatedtitle">Assessment of the abiotic and biotic effects of sodium metabisulphite pulses discharged from <span class="hlt">desalination</span> plant chemical treatments on seagrass (Cymodocea nodosa) habitats in the Canary Islands.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Portillo, E; Ruiz de la Rosa, M; Louzara, G; Ruiz, J M; Marín-Guirao, L; Quesada, J; González, J C; Roque, F; González, N; Mendoza, H</p> <p>2014-03-15</p> <p>Reverse osmosis membranes at many <span class="hlt">desalination</span> plants are disinfected by periodic shock treatments with sodium metabisulphite, which have potentially toxic effects to the environment for marine life, although no empirical and experimental evidence for this is yet available. The aim of this study was to characterise for the first time, the physico-chemical modification of the marine environment and its biological effects, caused by hypersaline plumes during these membrane cleaning treatments. The case study was the Maspalomas II <span class="hlt">desalination</span> plant, located in the south of Gran Canaria (Canary Islands, Spain). Toxicity bioassays were performed on marine species characteristic for the infralittoral soft bottoms influenced by the brine plume (Synodus synodus and Cymodocea nodosa), and revealed a high sensitivity to short-term exposure to low sodium metabisulphite concentrations. The corrective measure of incorporating a diffusion system with Venturi Eductors reduced nearly all the areas of influence, virtually eliminating the impact of the disinfectant. PMID:24495930</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23103058','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23103058"><span id="translatedtitle">Forward osmosis <span class="hlt">desalination</span> using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Dan; Zhang, Xinyi; Simon, George P; Wang, Huanting</p> <p>2013-01-01</p> <p>We have previously reported the use of hydrogel particles as the draw agent for forward osmosis <span class="hlt">desalination</span>. In the present work, the effects of draw agent, feed concentration and membrane on the process performance were systematically examined. Our results showed that the incorporation of carbon filler particles in polymer hydrogels led to enhanced swelling ratios of the draw agents and thus higher water fluxes in the FO process. The composite polymer hydrogel particles of sizes ranging from 100 μm to 200 μm as draw agents induced greater water fluxes in FO <span class="hlt">desalination</span> as compared with those with larger particle sizes (500-700 μm). Similar to other types of draw solutes, as the salt concentration in the feed increased, the water flux created by the polymer hydrogel draw agent decreased; the use of a cellulose triacetate forward osmosis membrane resulted in higher water flux compared with the use of a polyamide composite reverse osmosis membrane. PMID:23103058</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=control+AND+cost&pg=6&id=EJ639269','ERIC'); return false;" href="http://eric.ed.gov/?q=control+AND+cost&pg=6&id=EJ639269"><span id="translatedtitle"><span class="hlt">Utilities</span> Expense Report.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Moore, Deborah P.</p> <p>2001-01-01</p> <p>Examines how deregulation has affected school district <span class="hlt">utility</span> costs. Offers ideas that can help school districts save money and energy. Provides several examples of state-wide initiatives intended to help school districts control <span class="hlt">utility</span> costs. (GR)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1225569','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1225569"><span id="translatedtitle">Summary. “Materials Challenges in <span class="hlt">Nuclear</span> Energy,” S.J. Zinkle, 2013</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Pestovich, Kimberly Shay</p> <p>2015-11-05</p> <p><span class="hlt">Nuclear</span> energy continues to grow in abundance and importance. It offers a future electric grid based entirely off of green energy, and it has numerous applications. <span class="hlt">Nuclear</span> power has capabilities to <span class="hlt">desalinate</span> water, deliver process heat or steam, affordably crack hydrogen from water, and extract unconventional fossil fuel sources. Current light water reactors demonstrate high reliability under normal operating conditions. Researchers have shown significant interest and investigating how to extend reactor lifespans and into other possible reactor designs. Further understanding of mechanisms responsible for corrosion and stress corrosion cracking, radiation hardening and degradation, and <span class="hlt">nuclear</span> fuels innovations can lead to safer, more reliable, and cost-effective water-cooled <span class="hlt">nuclear</span> reactors for electricity production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985mri..reptS.....','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985mri..reptS....."><span id="translatedtitle">SOLERAS: Solar Energy Water <span class="hlt">Desalination</span> Project. Exxon Research and Engineering. Volume 3: Appendices pilot plan and design details and subsystem direct cost support</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>Details of the design of a water <span class="hlt">desalination</span> solar pilot plant in Yanbu, Saudi Arabia are presented. The major subsystems of the plant are defined, including solar energy collection and simulation, energy storage, energy delivery, reverse osmosis/multiple effect distillation, water storage, waste disposal, backup power generators, controls and instrumentation data acquisition, facilities and enclosures, and computers. A list of the plant equipment and a set of process flow diagrams are provided. A cost analysis of the pilot plant is included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H11F0919B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H11F0919B"><span id="translatedtitle">Reducing the Need for Accurate Stream Flow Forecasting for Water Supply Planning by Augmenting Reservoir Operations with Seawater <span class="hlt">Desalination</span> and Wastewater Recycling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhushan, R.; Ng, T. L.</p> <p>2014-12-01</p> <p>Accurate stream flow forecasts are critical for reservoir operations for water supply planning. As the world urban population increases, the demand for water in cities is also increasing, making accurate forecasts even more important. However, accurate forecasting of stream flows is difficult owing to short- and long-term weather variations. We propose to reduce this need for accurate stream flow forecasts by augmenting reservoir operations with seawater <span class="hlt">desalination</span> and wastewater recycling. We develop a robust operating policy for the joint operation of the three sources. With the joint model, we tap into the unlimited reserve of seawater through <span class="hlt">desalination</span>, and make use of local supplies of wastewater through recycling. However, both seawater <span class="hlt">desalination</span> and recycling are energy intensive and relatively expensive. Reservoir water on the other hand, is generally cheaper but is limited and variable in its availability, increasing the risk of water shortage during extreme climate events. We operate the joint system by optimizing it using a genetic algorithm to maximize water supply reliability and resilience while minimizing vulnerability subject to a budget constraint and for a given stream flow forecast. To compute the total cost of the system, we take into account the pumping cost of transporting reservoir water to its final destination, and the capital and operating costs of <span class="hlt">desalinating</span> seawater and recycling wastewater. We produce results for different hydro climatic regions based on artificial stream flows we generate using a simple hydrological model and an autoregressive time series model. The artificial flows are generated from precipitation and temperature data from the Canadian Regional Climate model for present and future scenarios. We observe that the joint operation is able to effectively minimize the negative effects of stream flow forecast uncertainty on system performance at an overall cost that is not significantly greater than the cost of a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED044035.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED044035.pdf"><span id="translatedtitle">Research <span class="hlt">Utilization</span> in Rehabilitation.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rogers, Everett M.</p> <p></p> <p>In terms of its attention to research <span class="hlt">utilization</span>, vocational rehabilitation today may be where agriculture was in 1913. One reason for this is an inadequate understanding of the process of research <span class="hlt">utilization</span>. Scattered studies of research <span class="hlt">utilization</span> have occurred, but suffer from a lack of integration. Among propositions that may be postulated…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=scott+AND+miller&pg=7&id=ED185874','ERIC'); return false;" href="http://eric.ed.gov/?q=scott+AND+miller&pg=7&id=ED185874"><span id="translatedtitle">Sourcebook on Research <span class="hlt">Utilization</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rubin, Allen, Ed.; Rosenblatt, Aaron, Ed.</p> <p></p> <p>Major papers presented at the Conference on Research <span class="hlt">Utilization</span> in Social Work Education are compiled in this sourcebook. The conference focused on six topics that reviewed the state of the art of research <span class="hlt">utilization</span> and suggested directions for the future. The papers included are: Understanding Research <span class="hlt">Utilization</span> in Social Work (Stuart A.…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24642429','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24642429"><span id="translatedtitle">Impact of elevated Ca(2+)/Mg(2+) concentrations of reverse osmosis membrane <span class="hlt">desalinated</span> seawater on the stability of water pipe materials.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Juan; Deng, Anqi; Xie, Rongjing; Gomez, Mylene; Hu, Jiangyong; Zhang, Jufang; Ong, Choon Nam; Adin, Avner</p> <p>2014-03-01</p> <p>Hardness and alkalinity are known factors influencing the chemical stability of <span class="hlt">desalinated</span> water. This study was carried out to investigate the effect of Ca(2+) and Mg(2+) on corrosion and/or scale formation on the surface of different water distribution pipe materials under tropical conditions. The corrosion rates of ductile iron, cast iron and cement-lined ductile iron coupons were examined in reverse osmosis (RO) membrane <span class="hlt">desalinated</span> seawater which was remineralised using different concentrations of Ca(2+) and Mg(2+). The changes in water characteristics and the coupon corrosion rates were studied before and after the post-treatment. The corrosion mechanisms and corrosion products were examined using scanning electron microscope and X-ray diffraction, respectively. We found that the combination of Ca(2+) and Mg(2+) (60/40 mg/L as CaCO3) resulted in lower corrosion rates than all other treatments for the three types of pipe materials, suggesting that Ca(2+)/Mg(2+) combination improves the chemical stability of <span class="hlt">desalinated</span> seawater rather than Ca(2+) only. PMID:24642429</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70030423','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70030423"><span id="translatedtitle">Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis <span class="hlt">desalination</span> - Examples from saline ground water in New Mexico, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huff, G.F.</p> <p>2006-01-01</p> <p><span class="hlt">Desalination</span> is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used <span class="hlt">desalination</span> technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in <span class="hlt">desalination</span>. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/793886','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/793886"><span id="translatedtitle">STAR - H2 : the secure transportable autonomous reactor for hydrogen production and <span class="hlt">desalinization</span>.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Wade, D.C.; Doctor, R.; Peddicord, K.L.</p> <p>2002-02-26</p> <p>The Secure Transportable Autonomous Reactor for Hydrogen production is a modular fast reactor intended for the mid 21st century energy market wherein electricity and hydrogen are employed as complementary energy carriers and <span class="hlt">nuclear</span> energy contributes to sustainable energy supply based on full transuranic recycle in a passively safe, environmentally friendly and proliferation-resistant manner suitable for widespread worldwide deployment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/229789','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/229789"><span id="translatedtitle"><span class="hlt">Nuclear</span> power cap opposed</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p></p> <p>1994-01-17</p> <p>This article is a review of litigation in Canada that challenges the country`s <span class="hlt">Nuclear</span> Liability Act. Both parties agree that repeal of this law would raise operating costs, lead to earlier closing of older units, and reduce the likelihood of future plant construction. The suit is brought by the city of Toronto and the Energy Probe watchdog group. Comments by the plaintiffs and several Canadian <span class="hlt">nuclear</span> <span class="hlt">utilities</span> are offered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21285659','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21285659"><span id="translatedtitle">Turbidity study of solar ponds <span class="hlt">utilizing</span> seawater as salt source</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Li, Nan; Sun, Wence; Shi, Yufeng; Yin, Fang; Zhang, Caihong</p> <p>2010-02-15</p> <p>A series of experiments were conducted to study the turbidity reduction in solar ponds <span class="hlt">utilizing</span> seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after <span class="hlt">desalination</span> can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23497976','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23497976"><span id="translatedtitle">Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater <span class="hlt">desalination</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Peng; Yuan, Lulu; Yang, Xufei; Zhou, Shaoji; Huang, Xia</p> <p>2013-05-01</p> <p>A capacitive deionization (CDI) cell was built with electrodes made of an inexpensive commercial activated carbon fiber (ACF), and then modified by incorporating ion-exchangers into the cell compartment. Three modified CDI designs were tested: MCDI - a CDI with electrodes covered by ion-exchange membranes (IEMs) of the same polarity, FCDI - a CDI with electrodes covered by ion-exchange felts (IEFs), and R-MCDI - an MCDI with cell chamber packed with ion-exchange resin (IER) granules. The cell was operated in the batch reactor mode with an initial salt concentration of 1000 mg/L NaCl, a typical level of domestic wastewater. The <span class="hlt">desalination</span> tests involved investigations of two consecutive operation stages of CDIs: electrical adsorption (at an applied voltage of 1.2 V) and desorption [including short circuit (SC) desorption and discharge (DC) desorption]. The R-MCDI showed the highest electric adsorption as measured in the present study by <span class="hlt">desalination</span> rate [670 ± 20 mg/(L h)] and salt removal efficiency (90 ± 1%) at 60 min, followed by the MCDI [440 ± 15 mg/(L h) and 60 ± 2%, respectively]. The superior <span class="hlt">desalination</span> performance of the R-MCDI over other designs was also affirmed by its highest charge efficiency (110 ± 7%) and fastest desorption rates at both the SC [1960 ± 15 mg/(L·h)] and DC [3000 ± 20 mg/(L·h)] modes. The <span class="hlt">desalination</span> rate and salt removal efficiency of the R-MCDI increased from ∼270 mg/(L h) and 83% to ∼650 mg/(L h) and 98% respectively when the applied voltage increased from 0.6 V to 1.4 V, while decreased slightly when lowering the salt water flow rate that fed into the cell. The packing of IER granules in the R-MCDI provided additional surface area for ions transfer; meanwhile, according to the results of electrochemical impedance spectroscopy (EIS) analysis, it substantially lower down the R-MCDI's ohmic resistance, resulting in improved <span class="hlt">desalination</span> performance. PMID:23497976</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/5757988','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/5757988"><span id="translatedtitle"><span class="hlt">Nuclear</span> power and <span class="hlt">nuclear</span> weapons</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Vaughen, V.C.A.</p> <p>1983-01-01</p> <p>The proliferation of <span class="hlt">nuclear</span> weapons and the expanded use of <span class="hlt">nuclear</span> energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with <span class="hlt">nuclear</span> weapons and <span class="hlt">nuclear</span> power plants are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5981512','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5981512"><span id="translatedtitle">Cogeneration and <span class="hlt">utility</span> diversification</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Duggan, M.M.</p> <p>1985-08-01</p> <p>Niagara Mohawk saw cogeneration and <span class="hlt">utility</span> diversification as an opportunity to break away from the traditional model of a public <span class="hlt">utility</span> and avoid the fate of the railroads. The author reviews how HYDRA-CO Enterprises evaluated the risks and opportunities of diversification and the steps it took to diversify, which included a joint venture cogeneration project. The company sees a future with ever expanding opportunities for <span class="hlt">utility</span> subsidiaries for those with courage and imagination.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/6081159','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/6081159"><span id="translatedtitle"><span class="hlt">Utilities</span> weather the storm</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Lihach, N.</p> <p>1984-11-01</p> <p><span class="hlt">Utilities</span> must restore power to storm-damaged transmission and distribution systems, even if it means going out in ice storms or during lightning and hurricane conditions. Weather forecasting helps <span class="hlt">utilities</span> plan for possible damage as well as alerting them to long-term trends. Storm planning includes having trained repair personnel available and adjusting the system so that less power imports are needed. Storm damage response requires teamwork and cooperation between <span class="hlt">utilities</span>. <span class="hlt">Utilities</span> can strengthen equipment in storm-prone or vulnerable areas, but good data are necessary to document the incidence of lighning strikes, hurricanes, etc. 2 references, 8 figures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760014430','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760014430"><span id="translatedtitle"><span class="hlt">Nuclear</span> pumped gas laser research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thom, K.</p> <p>1976-01-01</p> <p><span class="hlt">Nuclear</span> pumping of lasers by fission-fragments from <span class="hlt">nuclear</span> chain reactions is discussed. Application of the newly developed lasers to spacecraft propulsion or onboard power, to lunar bases for industrial processing, and to earth for <span class="hlt">utilization</span> of power without pollution and hazards is envisioned. Emphasis is placed on the process by which the fission-fragement kinetic energy is converted into laser light.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5053669','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5053669"><span id="translatedtitle"><span class="hlt">Nuclear</span> rights - <span class="hlt">nuclear</span> wrongs</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.</p> <p>1986-01-01</p> <p>This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; <span class="hlt">Nuclear</span> Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of <span class="hlt">Nuclear</span> Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of <span class="hlt">Nuclear</span> Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26557446','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26557446"><span id="translatedtitle">The Communication of Information Such as Evacuation Orders at the Time of a <span class="hlt">Nuclear</span> Power Station Accident: -Recommendations for responses by the national government and electric power <span class="hlt">utilities</span> to the "Information Disaster".</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hatanaka, Takashi; Yoshida, Sumito; Ojino, Mayo; Ishii, Masami</p> <p>2014-12-01</p> <p>This research was carried out from the perspective that the damage to the people of Fukushima and others from the Fukushima Daiichi <span class="hlt">Nuclear</span> Power Station (NPS) accident was an "information disaster." It evaluated the critical problems raised by and actual condition analysis on the process of events in the Fukushima Daiichi NPS disaster and responses of the governments and others, notification of the occurrence of the accident and evacuation order by the national and local governments and the evacuation of residents, and guidance for distribution and intake of stable iodine tablets. The research aimed to provide a basis for the implementation of effective distribution and intake of stable iodine tablets and responses to the "information disaster" in the <span class="hlt">nuclear</span> power disaster. On March 15 at the time that the most radioactive substances were dispersed, even when the average wind speed at the site area was 1.6 m/s, the radioactive substances had reached the outer boundary of Urgent Protective action planning Zone (UPZ, the region with a radius of 30 km) within about five hours. Because of this, every second counted in the provision of information about the accident and the issuance of evacuation orders. This study evaluated the actual condition of information provision by the national government and others from the perspective of this awareness of the importance of time. On the basis of the results of this kind of consideration, we come to the following recommendations: The <span class="hlt">Nuclear</span> Emergency Response Guidelines and the system for communication of information to medical providers should be revised. The national government should make preparations for the effective advance distribution and intake of stable iodine tablets. PMID:26557446</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="http://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="http://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.osti.gov/nle"><img src="http://www.osti.gov/images/footerimages/NLElogo31.png" alt="National Library of Energy" height="31" width="79"></a> <a href="http://www.science.gov"><img src="http://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="http://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> </body> </html>