Science.gov

Sample records for nuclear electric plant

  1. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  2. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... COMMISSION Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants AGENCY: Nuclear... Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power...

  3. 75 FR 3943 - Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... FR 13967). There will be no change to radioactive effluents that affect radiation exposures to plant... [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee... COMMISSION Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and...

  4. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    SciTech Connect

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  5. Commercial Nuclear Steam-Electric Power Plants, Part II

    ERIC Educational Resources Information Center

    Shore, Ferdinand J.

    1974-01-01

    Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)

  6. 75 FR 9622 - Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... exemption will not have a significant effect on the quality of the human environment 75 FR 3943; dated... COMMISSION Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2... Electric Generating Plant, Units 1 and 2 (VEGP). The licenses provide, among other things, that...

  7. 75 FR 75704 - Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of... Dr. Tianqing Cao, Senior Seismologist, Office of Nuclear Material Safety and Safeguards, has...

  8. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report

    SciTech Connect

    Toman, G.; Gazdzinski, R.; Schuler, K.

    1993-07-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  9. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  10. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Environmental qualification of electric equipment important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.49...

  11. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Environmental qualification of electric equipment important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.49...

  12. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Environmental qualification of electric equipment important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.49...

  13. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Environmental qualification of electric equipment important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.49...

  14. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Environmental qualification of electric equipment important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.49...

  15. An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant

    SciTech Connect

    Forsberg, Charles W

    2008-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

  16. Marginal cost of electricity 1980-1995: an approximation based on the cost of new coal and nuclear generating plants

    SciTech Connect

    Nieves, L.A.; Patton, W.P.; Harrer, B.J.; Emery, J.C.

    1980-07-01

    This report presents estimates of the costs of new coal and nuclear base-load generating capacity which is either currently under construction or planned by utilities to meet their load-growth expectations during the period from 1980 to 1995. These capacity cost estimates are used in conjunction with announced plant capacities and commercial-operation dates to develop state-level estimates of busbar costs of electricity. From these projected busbar costs, aggregated estimates of electricity costs at the retail level are developed for DOE Regions. The introductory chapter explains the rationale for using the cost of electricity from base-load plants to approximate the marginal cost of electricity. The next major section of the report outlines the methodology and major assumptions used. This is followed by a detailed description of the empirical analysis, including the equations used for each of the cost components. The fourth section presents the resultant marginal cost estimates.

  17. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    NASA Astrophysics Data System (ADS)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  18. Beloyarsk Nuclear Power Plant

    SciTech Connect

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  19. Nuclear power plant maintainability.

    PubMed

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants. PMID:15676441

  20. Participation of the Nuclear Power Plants in the New Brazilian Electric Energy Market

    SciTech Connect

    Mathias, S.G.

    2004-10-06

    A new regulation framework has been established for the Brazilian electric energy market by a law put into effect on March 15,2004. The main overall goals of this new regulation are: to allow the lowest possible tariffs for end users, while providing the necessary economic incentives for the operation of present installations (generating plants, transmission lines, distribution networks) and the expansion of the system; long-term planning of the extension of the installations required to meet the demand growth; separation of the generation, transmission and distribution activities by allocating them into different companies; new contracts between generating and distribution companies must result from bidding processes based on lowest-tariff criteria; and energy from new generating units required to meet the demand growth must be contracted by all distributing companies integrated to the National Interconnected Grid, in individual amounts proportional to their respective markets.

  1. Introduction and overall description of nuclear power plant. Volume I

    SciTech Connect

    Not Available

    1986-01-01

    Topics covered in this volume include content and purpose of booklets; how to study; producing electricity; the fossil fuel power plant; the nuclear power plant; the nuclear reactor; generating steam in a nuclear power plant; using the steam in a nuclear power plant; nuclear power station facilities; and special features of nuclear power plants.

  2. Nuclear Electric Propulsion mission operations.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Spera, R. J.

    1972-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration missions conducted by unmanned Nuclear Electric Propulsion (NEP) system employing in-core thermionic reactors for electric power generation. The selected reference mission are Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. Mission operations and options are defined from spacecraft assembly through mission completion. Pre-launch operations and related GSE requirements are identified. Shuttle launch and subsequent injection to earth escape by the Centaur d-1T are discussed, as well as power plant startup and heliocentric mission phases.

  3. HTR-100 industrial nuclear power plant for generation of heat and electricity

    SciTech Connect

    Brandes, S.; Kohl, W.

    1987-11-01

    Based on their proven high-temperature reactor (HTR) with pebble-bed core, Brown, Boveri and Cie/Hochtemperatur-Reaktorbau have developed an HTR-100 plant that combines favorable capital costs and high availability. Due to the high HTR-specific standards and passive safety features, this plant is especially well suited for siting near the end user. The safety concept permits further operation of the plant or decay heat removal via the operational heat sinks in the event of maloperation and design basis accidents having a higher probability of occurrence. In the event of hypothetical accidents, the decay heat is removed from the reactor pressure vessel by radiation, conduction, and convection to a concrete cooling system operating in natural convection. As an example of the new HTR-100 plant concept, a twin-block plant design for extraction of industrial steam is presented.

  4. Nuclear thermal/nuclear electric hybrids

    NASA Technical Reports Server (NTRS)

    Reid, B. D.

    1991-01-01

    A description is given of the nuclear thermal and nuclear electric hybrid. The specifications are described along with its mission performance. Next, the technical status, development requirements, and some cost estimates are provided.

  5. Nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.; Tubb, David J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  6. Nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Keaton, Paul W.; Tubb, David J.

    1986-05-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  7. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  8. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  9. 78 FR 36277 - Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... COMMISSION Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION..., and Acceptance Criteria (ITAAC) E.2.5.04.05.05.01, for the Vogtle Electric Generating Plant, Unit 3... Vogtle Electric Generating Plant, Unit 3 ] (ADAMS Accession No. ML13032A592). This ITAAC was approved...

  10. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  11. Failure modes and effects analysis (FMEA) of the ICS/NNI electric power distribution circuitry at the Oconee 1 Nuclear Plant. [Integrated control system/nonnuclear instrumentation

    SciTech Connect

    McBride, A.F.; Mayo, C.W.; Battle, R.E.

    1985-10-01

    The effects of nonnuclear instrumentation (NNI) and integrated control system (ICS) electric power supply failures have been analyzed for the Oconee Unit 1 nuclear plant. The instrument and control system power distribution circuits were analyzed to define a comprehensive set of 19 single-point failure modes. For each power supply failure, the failed and operating control system signal inputs were propagated through the partially energized control system circuits as well as the energized and deenergized output control devices to evaluate the initial plant response. In addition, the effects of the power supply failures on the principal control room parameter displays were combined with the initial plant response to the automatic control circuits to evaluate possible control room operator response. Plant responses to the defined power supply failures are described in detail.

  12. Shoreham Nuclear Power Plant

    SciTech Connect

    1992-12-31

    The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated on such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.

  13. The Next Generation Nuclear Plant

    SciTech Connect

    Dr. David A. Petti

    2009-01-01

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950°C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  14. Nuclear Plant Inspection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Engineers from the Power Authority of the State of New York use a Crack Growth Analysis Program supplied by COSMIC (Computer Software Management and Information Center) in one stage of nuclear plant inspection. Welds of the nuclear steam supply system are checked for cracks; radiographs, dye penetration and visual inspections are performed to locate cracks in the metal structure and welds. The software package includes three separate crack growth analysis models and enables necessary repairs to be planned before serious problems develop.

  15. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  16. Nuclear Plant Data Bank

    SciTech Connect

    Booker, C.P.; Turner, M.R.; Spore, J.W.

    1986-01-01

    The Nuclear Plant Data Bank (NPDB) is being developed at the Los Alamos National Laboratory to assist analysts in the rapid and accurate creation of input decks for reactor transient analysis. The NPDB will reduce the time and cost of the creation or modification of a typical input deck. This data bank will be an invaluable tool in the timely investigation of recent and ongoing nuclear reactor safety analysis. This paper discusses the status and plans for the NPDB development and describes its anticipated structure and capabilities.

  17. Nuclear electric propulsion systems overview

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda.

  18. The electrical response of plants under radiation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Xi, Wenze; Feng, David J. Y.; Choa, Fow-Sen

    2014-05-01

    Plant electricity was discovered about 100 years ago. Until recent two decades, researchers started to notice that the electricity play a key role for plant's communications and defense. Recently, we have demonstrated a wound-generated electrical signal, up to a few hundred mV, can be produced and propagate through the whole plant. As plants defense reactions the wound signal will activate genes and induce subsequent molecular biology responses. In this study, we further investigate the electrical response of plants when they are under nuclear radiation. We discovered nuclear radiation could produce internal voltage gradient in living trees, resulting in measureable voltage and current signals. The results was measured by attaching one of electrodes to a lower branch, close to the roots and attaching the other one to an upper branch. During irradiating, trees were set up at 1-meter far from a NIST-certified 241AmBe neutron source (30 mCi). It will produce a neutron field of about 13 mrem/h, corresponding to an actual absorbed dose of ~ 1 mrad/h by assuming the tissue is primarily water content. Once the radioactive source is pulled up from a shielded container below the tree, the system potential starts to drop and in about 6-7 hours it drops down to -220mV, eventually stabilizing at around -250mV after 10 hours of radiation. We have further observed plant electricity changes caused by x-ray, gamma-ray, and beta-ray radiations. After the sources were removed, the terminal voltage recovered and eventually returned to the original value.

  19. Reactors for nuclear electric propulsion

    SciTech Connect

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  20. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  1. Nuclear Electricity. 5th Edition.

    ERIC Educational Resources Information Center

    Hore-Lacy, Ian

    Educators must address the need for young people to be informed about both the scientific concepts and the reasons for controversy when dealing with controversial issues. Young people must be given the opportunity to form their own opinions when presented with evidence for conflicting arguments. Previous editions of "Nuclear Electricity" have…

  2. Nuclear Electric Dipole Moment Calculations

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2010-11-01

    One of the most important constraints on CP violation in the nucleon and NN interaction is provided by electric dipole moment (EDM) limits for neutral diamagnetic atoms, particularly 199Hg. To extract CP-violating couplings from experiment, one must relate the atomic EDM to the underlying nuclear CP-odd moments, a task complicated by the atomic response, which largely shields the nucleus from the applied external electric field. The residual response -- the Schiff moment -- depends on corrections such as the finite size of the nucleus. Conventional Schiff-moment calculations have largely ignored one consequence of the screening: the cancellation between direct and polarization diagrams, which yields an answer that is suppressed by two powers of RN/RA, where RN and RA are the nuclear and atomic sizes, requires one to identify all other terms that contribute to the same order in the RN/RA power counting. We show that such terms arise from nuclear excitations associated with the dipole charge and transverse electric multipole operators, and discuss the consequences. We also describe higher T-odd moments that contribute up to the same order in the counting, and point out interesting nuclear structure and experimental consequences.

  3. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  4. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  5. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  6. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    SciTech Connect

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  7. Carbon pricing, nuclear power and electricity markets

    SciTech Connect

    Cameron, R.; Keppler, J. H.

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  8. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  9. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... FR 26294). TSTF-493-A revises the Improved Standard TS to address Nuclear Regulatory Commission... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit...\\ Requestors should note that the filing requirements of the NRC's E-Filing Rule (72 FR 49139; August 28,...

  10. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  11. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  12. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  13. Nuclear power plants in China's coastal zone: risk and safety

    NASA Astrophysics Data System (ADS)

    Lu, Qingshui; Gao, Zhiqiang; Ning, Jicai; Bi, Xiaoli; Gao, Wei

    2014-10-01

    Nuclear power plants are used as an option to meet the demands for electricity due to the low emission of CO2 and other contaminants. The accident at the Fukushima nuclear power plant in 2011 has forced the Chinese government to adjust its original plans for nuclear power. The construction of inland nuclear power plants was stopped, and construction is currently only permitted in coastal zones. However, one obstacle of those plants is that the elevation of those plants is notably low, ranging from 2 to 9 meters and a number of the nuclear power plants are located in or near geological fault zones. In addition, the population density is very high in the coastal zones of China. To reduce those risks of nuclear power plants, central government should close the nuclear power plants within the fault zones, evaluate the combined effects of storm surges, inland floods and tidal waves on nuclear power plants and build closed dams around nuclear power plants to prevent damage from storm surges and tidal waves. The areas without fault zones and with low elevation should be considered to be possible sites for future nuclear power plants if the elevation can be increased using soil or civil materials.

  14. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (ESTSC)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  15. ALARA at nuclear power plants

    SciTech Connect

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  16. Vogtle Electric Generating Plant ETE Analysis Review

    SciTech Connect

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  17. FIREDATA. Nuclear Power Plant Fire Database

    SciTech Connect

    Wheelis, W.T.

    1986-08-01

    FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean `and` or `or` logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name or calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information.

  18. Scoping Calculations of Power Sources for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1994-01-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.

  19. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect

    Difilippo, F.C.

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  20. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  1. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  2. Global nuclear radiation monitoring using plants

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Romero-Talamas, Carlos; Kostov, Dan; Wang, Wanpeng; Liu, Zhongchi; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.; Gu, Jerry; Choa, Fow-Sen

    2005-05-01

    Plants exhibit complex responses to changes in environmental conditions such as radiant heat flux, water quality, airborne pollutants, soil contents. We seek to utilize the natural chemical and electrophysiological response of plants to develop novel plant-based sensor networks. Our present work focuses on plant responses to high-energy radiation - with the goal of monitoring natural plant responses for use as benchmarks for detection and dosimetry. For our study, we selected a plants cactus, Arabidopsis, Dwarf mango (pine), Euymus and Azela. We demonstrated that the ratio of Chlorophyll a to Chlorophyll b of the leaves has changed due to the exposure gradually come back to the normal stage after the radiation die. We used blue laser-induced blue fluorescence-emission spectra to characterize the pigment status of the trees. Upon blue laser excitation (400 nm) leaves show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm). Sample tree subjects were placed at a distance of 1m from NIST-certified 241AmBe neutron source (30 mCi), capable of producing a neutron field of about 13 mrem/h. This corresponds to an actual absorbed dose of ~ 1 mrad/h. Our results shows that all plants are sensitive to nuclear radiation and some take longer time to recover and take less. We can use their characteristics to do differential detection and extract nuclear activity information out of measurement results avoid false alarms produced environmental changes. Certainly the ultimate verification can be obtained from genetic information, which only need to be done when we have seen noticeable changes on plant optical spectra, mechanical strength and electrical characteristics.

  3. Balance of Plant Requirements for a Nuclear Hydrogen Plant

    SciTech Connect

    Bradley Ward

    2006-04-01

    This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

  4. Sabotage at Nuclear Power Plants

    SciTech Connect

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  5. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  6. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740

  7. The renewable electric plant information system

    SciTech Connect

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  8. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  9. 34. SOUTH PLANT NORTHCENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT (BUILDING 325) AT LEFT AND CELL BUILDING (BUILDING 242) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  10. Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches

    SciTech Connect

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

  11. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... COMMISSION Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4... acceptance criteria (ITAAC) completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has... acceptance criteria are met for ITAAC E.2.5.04.05.05.02, for the Vogtle Electric Generating Plant, Unit...

  12. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... COMMISSION Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3... acceptance criteria (ITAAC) completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has... acceptance criteria are met for ITAAC E.2.5.04.05.05.02, for the Vogtle Electric Generating Plant, Unit...

  13. Electromagnetic compatibility of nuclear power plants

    SciTech Connect

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  14. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed. PMID:24806277

  15. The Birth of Nuclear-Generated Electricity

    DOE R&D Accomplishments Database

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  16. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  17. World electric power plants database

    SciTech Connect

    2006-06-15

    This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

  18. 78 FR 66785 - Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... COMMISSION Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation AGENCY: Nuclear... APR1400 Standard Plant Design submitted by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) and Korea... documents at the NRC's PDR, Room O1-F21, One White Flint North, 11555 Rockville Pike, Rockville,...

  19. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  20. Nuclear Electric Propulsion for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  1. Nuclear Electric Vehicle Optimization Toolset (NEVOT)

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Kos, Larry D.; Qualls, A. Lou; Greene, Sherrell

    2004-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major nuclear electric propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a genetic algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be considered through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  2. Plant nuclear proteomics for unraveling physiological function.

    PubMed

    Yin, Xiaojian; Komatsu, Setsuko

    2016-09-25

    The nucleus is the subcellular organelle that functions as the regulatory hub of the cell and is responsible for regulating several critical cellular functions, including cell proliferation, gene expression, and cell survival. Nuclear proteomics is a useful approach for investigating the mechanisms underlying plant responses to abiotic stresses, including protein-protein interactions, enzyme activities, and post-translational modifications. Among abiotic stresses, flooding is a major limiting factor for plant growth and yields, particularly for soybean. In this review, plant nuclei purification methods, modifications of plant nuclear proteins, and recent contributions to the field of plant nuclear proteomics are summarized. In addition, to reveal the upstream regulating mechanisms controlling soybean responses to flooding stress, the functions of flooding-responsive nuclear proteins are reviewed based on the results of nuclear proteomic analysis of soybean in the early stages of flooding stress. PMID:27004615

  3. Performance evaluation of fiber optic components in nuclear plant environments

    SciTech Connect

    Hastings, M.C.; Miller, D.W.; James, R.W.

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  4. DOE`s nuclear energy plant optimization program

    SciTech Connect

    Harrison, D.; Savage, C.D.; Singh, B.P.

    1999-09-01

    In December 1997, the United States agreed to the Kyoto Protocol on Climate Change that outlines specific greenhouse gas emissions reduction requirements. A key element of this protocol is binding emissions targets and timetables. The Protocol calls for the United States to reach emissions targets 7% below 1990 emissions levels over the 5-yr period from 2008 to 2012. A key element to achieving this goal will be the continued safe and economic operation of the Nation`s 104 nuclear power plants. These plants provide >20% of the Nation`s electricity, and nearly one-half of the 50 states receive >25% of their electricity from nuclear power. DOE`s current Strategic Plan specifies that the United States maintain its nuclear energy option and improve the efficiency of existing plants as part of its energy portfolio, in the interest of national security. As a result, DOE proposed two new nuclear energy R and D programs for fiscal year (FY) 1999: the Nuclear Energy Research Initiative (NERI), a peer-reviewed, competitively selected R and D program in advanced concepts, and the Nuclear Energy Plant Optimization Program (NEPO). NERI was authorized and received initial funding of $19 million for its first year. NEPO was not funded in 1999 but has been reintroduced in the FY 2000 budget request. NEPO will be a jointly funded R and D program with industry through the Electric Power Research Institute (EPRI) and will address those issues that could hinder continued safe operation of the Nation`s operating nuclear power plants. The FY 2000 funding request to Congress for NEPO is $5 million.

  5. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  6. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  7. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  8. Nanosecond electric pulses trigger actin responses in plant cells

    SciTech Connect

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  9. Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants

    SciTech Connect

    Faibish, R.S.; Konishi, T.; Gasparini, M.

    2002-07-01

    Nuclear energy is playing an important role in electricity generation, producing 16% of the world's electricity. However, most of the world's energy consumption is in the form of heat, in which case nuclear energy could also play an important role. In particular, process heat for seawater desalination using nuclear energy has been of growing interest to some Member States of the International Atomic Energy Agency over the past two decades. This growing interest stems from increasingly acute freshwater shortages in many arid and semi-arid zones around the world. Indeed, several national and international nuclear desalination demonstration programs are already under way or being planned. Of particular interest are projects for seawater nuclear desalination plants in coastal regions, where saline feed water can serve the dual purpose of cooling water for the nuclear reactor and as feed water for the desalination plant. In principle any nuclear reactor can provide energy (low-grade heat and/or electricity), as required by desalination processes. However, there are some additional requirements to be met under specific conditions in order to introduce nuclear desalination. Technical issues include meeting more stringent safety requirements (nuclear reactors themselves and nuclear-desalination integrated complexes in particular), and performance improvement of the integrated systems. Economic competitiveness is another important factor to be considered for a broader deployment of nuclear desalination. For technical robustness and economic competitiveness a number of design variants of coupling configurations of nuclear desalination integrated plant concepts are being evaluated. This paper identifies and discusses various factors, which support the attractiveness of nuclear desalination. It further summarizes some of the key approaches recommended for nuclear desalination complex design and gives an overview of various design concepts of nuclear desalination plants, which

  10. Electrical system for a large cogeneration plant

    SciTech Connect

    Arvay, G.J. ); Smith, R.T. )

    1992-01-01

    The electrical system, interface, commissioning, and operations requirements of a major multiunit cogeneration plant interconnected with a large utility system through a 230-kV sulfur hexafluoride (SF{sub 6}) gas-insulated substation (GIS) are complex and demanding. This paper describes the electrical requirements, including utility interfaces, engineering, and on-site testing, as applied to the execution of a large, multiunit turnkey cogeneration project in California. The benefits of careful engineering efforts are shown to result in timely and cost effective completion of engineering, manufacturing, installation, testing, and commercial operation.

  11. Occupational exposures and practices in nuclear power plants

    SciTech Connect

    Baum, J.W.

    1989-01-01

    As the first generation of commercial nuclear power comes to a close, it is timely to consider the status of occupational exposure in the power generation industry, that is, the collective occupational radiation doses received by workers in nuclear power plants. The picture is surprising. One might have thought that as newer, larger, and more modern plants came on line, there would be a significant decrease in exposure per unit of electricity generated. There is some indication that this is now happening. One might also have thought that the United States, being a leader in the development of nuclear power, and in the knowledge, experience and technology of nuclear radiation protection, would have the greatest success in controlling exposure. This expectation has not been fulfilled. 32 refs., 4 figs., 5 tabs.

  12. Electric thruster models for multimegawatt nuclear electric propulsion mission design

    SciTech Connect

    Leifer, S.D.; Blandino, J.J.; Sercel, J.C. )

    1991-01-05

    Three types of electric thrusters currently under development at JPL have potential to support future missions which utilize multimegawatt nuclear electric propulsion. These electric thrusters are the electron bombardment ion thruster, the magnetoplasmadynamic (MPD) thruster, and the electron-cyclotron-resonance (ECR) thruster. The electron bombardment ion thruster is a relatively mature technology which has been developed for operation at kilowatt power levels but will require new development for application in the multimegawatt regime. The MPD engine represents a technology which may be very well suited to steady-state multimegawatt applications but which has been limited to sub-scale (100's of kW) and pulsed (MW) testing thus far. The ECR plasma engine represents a class of very promising new concepts which are still in the basic research phase of development, but which may possess important fundamental advantages over other electric thruster technologies. In this paper, models of these thrusters are described and used to make projections of thruster specific mass, efficiency, and power handling capacity for operation in the multimegawatt regime.

  13. Electric thruster models for multimegawatt nuclear electric propulsion mission design

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Blandino, John J.; Sercel, Joel C.

    1991-01-01

    Three types of electric thrusters currently under development at JPL have potential to support future missions which utilize multimegawatt nuclear electric propulsion. These electric thrusters are the electron bombardment ion thruster, the magnetoplasmadynamic (MPD) thruster, and the electron-cyclotron-resonance (ECR) thruster. The electron bombardment ion thruster is a relatively mature technology which has been developed for operation at kilowatt power levels but will require new development for application in the multimegawatt regime. The MPD engine represents a technology which may be very well suited to steady-state multimegawatt applications but which has been limited to sub-scale (100's of kW) and pulsed (MW) testing thus far. The ECR plasma engine represents a class of very promising new concepts which are still in the basic research phase of development, but which may possess important fundamental advantages over other electric thruster technologies. Models of these thrusters are described and used to make projections of thrusters specific mass, efficiency, and power handling capacity for operation in the multimegawatt regime.

  14. 1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. Space nuclear power system and the design of the nuclear electric propulsion OTV

    NASA Technical Reports Server (NTRS)

    Buden, D.; Garrison, P. W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kWe to 1 MWe output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  16. Space nuclear power system and the design of the nuclear electric propulsion OTV

    SciTech Connect

    Buden, D.; Garrison, P.W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  17. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory...

  18. Fighting the Epidemic of Nuclear Plant Leaks.

    ERIC Educational Resources Information Center

    Udell, Richard A.

    1983-01-01

    The current epidemic of steam generator tube leaks alone should put to rest the rosy future once envisioned for nuclear power. It is impossible to regulate quality into a nuclear plant; it must be built and designed that way. The economic impact of the leaks is discussed. (RM)

  19. Questions and Answers About Nuclear Power Plants.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  20. Nuclear power plant security assessment technical manual.

    SciTech Connect

    O'Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  1. 77 FR 11171 - License Renewal Application for Callaway Plant, Unit 1, Union Electric Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... COMMISSION License Renewal Application for Callaway Plant, Unit 1, Union Electric Company AGENCY: Nuclear.... SUMMARY: Union Electric Company, a subsidiary of Ameren Corporation and doing business as Ameren Missouri... (Callaway). Callaway is located in Callaway County, MO. The current operating license for Callaway...

  2. 76 FR 28481 - Carolina Power & Light Company; Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light Company; Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to Title...

  3. Improvements in plant performance [Sequoyah Nuclear Plant

    SciTech Connect

    Lorek, M.J.

    1999-11-01

    The improvements in plant reliability and performance at Sequoyah in the last two years can be directly attributed to ten key ingredients; teamwork, management stability, a management team that believes in teamwork, clear direction from the top, a strong focus on human performance, the company wide STAR 7 initiative, strong succession planning, a very seasoned and effective outage management organization, an infrastructure that ensures that the station is focused on the right hardware priorities, and a very strong line organization owned self-assessment program. Continued focus on these key ingredients and realization on a daily basis that good performance can lead to complacency will ensure that performance at Sequoyah will remain at a very high level well into the 21st century.

  4. Electric heater for nuclear fuel rod simulators

    DOEpatents

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  5. Evolutionary use of nuclear electric propulsion

    SciTech Connect

    Hack, K.J.; George, J.A.; Riehl, J.P.; Gilland, J.H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed. 26 refs.

  6. Evolutionary use of nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Riehl, J. P.; Gilland, J. H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.

  7. Radiation protection performance indicators at the Nuclear Power Plant Krsko.

    PubMed

    Janzekovic, Helena

    2006-06-01

    Nuclear power plant safety performance indicators are developed "by nuclear operating organisations to monitor their own performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on performance relative to that of other plants". In addition, performance indicators are widely used by regulatory authorities although the use is not harmonised. Two basic performance indicators related to good radiation protection practice are collective radiation exposure and volume of low-level radioactive waste. In 2000, Nuclear Power Plant Krsko, a Westinghouse pressurised water reactor with electrical output 700 MW, finished an extensive modernisation including the replacement of both steam generators. While the annual volume of low-level radioactive waste does not show a specific trend related to modernisation, the annual collective dose reached maximum, i.e. 2.60 man Sv, and dropped to 1.13 man Sv in 2001. During the replacement of the steam generators in 2000, the dose associated with this activity was 1.48 man Sv. The annual doses in 2002 and 2003 were 0.53 and 0.80 man Sv, respectively, nearing thus the goal set by the US Institute of Nuclear Power Operators, which is 0.65 man Sv. Therefore, inasmuch as collective dose as the radiation protection performance indicator are concerned, the modernisation of the Krsko nuclear power plant was a success. PMID:16832974

  8. Fukushima nuclear power plant accident was preventable

    NASA Astrophysics Data System (ADS)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  9. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    ERIC Educational Resources Information Center

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  10. Multimegawatt nuclear power systems for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  11. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  12. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  13. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  14. Thermionic topping of electric power plants

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. O.; Rasor, N. S.

    1975-01-01

    The most likely use of thermionic conversion is in the form of a topping cycle combined with a steam-turbogenerator plant. A specific reference system is chosen in which the thermionic topping cycle occurs in thermionic heat exchangers referred to as large, modular thermionic units to which heat is transferred from a separate heat source and which reject their heat to a conventional steam turboelectric system. Results of analysis show that the performance and cost criteria for practical thermionic topping of large electric power plants are well within the reach of demonstrated and foreseeable converter capabilities. Thermionic topping has many significant advantages over unconventional cycles proposed for topping applications, including level of demonstrated and projected performance and lifetime, development time, and design simplicity.

  15. Recommendations for managing equipment aging in nuclear power plants

    SciTech Connect

    Gunther, W.E.; Subudhi, M.; Aggarwal, S.K.

    1992-12-01

    Research conducted under the auspices of the US NRC`s Nuclear Plant Aging Research (NPAR) Program has resulted in a large database of component and system operating, maintenance, and testing information. This database has been used to determine the susceptibility to aging of selected components, and the potential for equipment aging to impact plant safety and availability. it has also identified methods for detecting and mitigating component and system aging. This paper describes the research recommendations on electrical components which could be applied to maintenance, testing, and inspection activities to detect and mitigate the effects of aging prior to equipment failures.

  16. Recommendations for managing equipment aging in nuclear power plants

    SciTech Connect

    Gunther, W.E.; Subudhi, M. ); Aggarwal, S.K. )

    1992-01-01

    Research conducted under the auspices of the US NRC's Nuclear Plant Aging Research (NPAR) Program has resulted in a large database of component and system operating, maintenance, and testing information. This database has been used to determine the susceptibility to aging of selected components, and the potential for equipment aging to impact plant safety and availability. it has also identified methods for detecting and mitigating component and system aging. This paper describes the research recommendations on electrical components which could be applied to maintenance, testing, and inspection activities to detect and mitigate the effects of aging prior to equipment failures.

  17. Video camera use at nuclear power plants

    SciTech Connect

    Estabrook, M.L.; Langan, M.O.; Owen, D.E. )

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

  18. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  19. Theory of nuclear electric shielding in molecules

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Zanasi, R.

    1981-10-01

    In order to rationalize the effects of an external uniform electric field on a perturbed molecule, we introduce the concept of electric shielding as a tensor which determines the effective field at an arbitrary point in the molecular space. The fundamental properties of the nuclear shielding tensor are analyzed in the case of heteronuclear diatomics HF, HCl, and HBr. It is shown that this quantity is essential in accounting for the deformation of the molecular geometry induced by the external field. Uncoupled and coupled Hartree-Fock perturbation theory is applied in order to obtain quantitative estimates of the shieldings and their derivatives with respect to the interatomic distance in HF, HCl, HBr, H2O, NH3, and CH4 molecules. Accurate linear combination of atomic orbitals wave functions are prepared for the diatomics, and their quality is tested by evaluating a series of first- and second-order electric properties, giving fair agreement with corresponding experimental data. The reliability of the computed shielding is examined to obtain information on the vibrational contribution to the property and the role of the electronic correlation.

  20. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  1. Nuclear plant emergency preparedness in Russia.

    PubMed

    Sullivan, Randolph L

    2009-11-01

    An international team of experts conducted a detailed operational review at the Volgodonsk nuclear power plant. The review was the first mission by an International Atomic Energy Agency Operational Safety Review Team to Russia in over a decade. The author reviewed the emergency preparedness program in detail. Emergency preparedness professionals in the West are largely unfamiliar with Russian nuclear plant emergency preparedness programs, and the legacy of Chernobyl may leave some doubt as to their efficacy. This article describes the program in some detail and compares some elements to programs in the United States. The author was favorably impressed with the state of nuclear plant emergency preparedness in the Russian Federation and identified program elements that should be considered for implementation elsewhere. PMID:19820472

  2. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft section revision; request for comment. SUMMARY: The U.S. Nuclear...

  3. 7 CFR 1767.16 - Electric plant instructions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Electric plant instructions. 1767.16 Section 1767.16 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.16 Electric plant instructions....

  4. 7 CFR 1767.16 - Electric plant instructions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Electric plant instructions. 1767.16 Section 1767.16 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.16 Electric plant instructions....

  5. 7 CFR 1767.16 - Electric plant instructions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Electric plant instructions. 1767.16 Section 1767.16 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.16 Electric plant instructions....

  6. 7 CFR 1767.16 - Electric plant instructions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Electric plant instructions. 1767.16 Section 1767.16 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.16 Electric plant instructions....

  7. 7 CFR 1767.16 - Electric plant instructions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Electric plant instructions. 1767.16 Section 1767.16 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.16 Electric plant instructions....

  8. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    SciTech Connect

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  9. Optimization of nuclear plant preventive maintenance

    SciTech Connect

    McClymonds, S.L.; Winge, D.E.

    1987-01-01

    It is generally accepted that preventive maintenance can achieve greater equipment reliability. Most would also agree that the taking of precautions and checking reduces the need to perform corrective maintenance. In the nuclear industry, however, preventive maintenance has not been completely successful in sustaining equipment reliability levels. This paper presents methods for developing an optimum preventive maintenance program for nuclear power plants, one which will contribute to high plant availability by concentrating resources on those maintenance tasks that are directly applicable to equipment reliability.

  10. Virtual environments for nuclear power plant design

    SciTech Connect

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  11. Peach Bottom and Vermont Yankee Nuclear Power Plants

    SciTech Connect

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

  12. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  13. Active Faults and Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Chapman, Neil; Berryman, Kelvin; Villamor, Pilar; Epstein, Woody; Cluff, Lloyd; Kawamura, Hideki

    2014-01-01

    The destruction of the Fukushima Daiichi Nuclear Power Plant (NPP) following the March 2011 Tohoku earthquake and tsunami brought into sharp focus the susceptibility of NPPs to natural hazards. This is not a new issue—seismic hazard has affected the development of plants in the United States, and volcanic hazard was among the reasons for not commissioning the Bataan NPP in the Philippines [Connor et al., 2009].

  14. Modeling Tritium Life cycle in Nuclear Plants

    SciTech Connect

    Hussey, D.; Saunders, P.; Morey, D.; Pitt, N.; Wilson, J.; Claes, B.

    2006-07-01

    The mathematical development of a tritium model for nuclear power plants is presented. The model requires that the water and tritium material balance be satisfied throughout normal operations and shutdown. The model results obtained at the time of publishing include the system definitions and comparison of the model predictions of tritium generations compared to the observed plant data of the Braidwood station. A scenario that models using ion exchange resin to remove coolant boron demonstrates the tritium concentration levels are manageable. (authors)

  15. Holdup measurement for nuclear fuel manufacturing plants

    SciTech Connect

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  16. Nuclear electric propulsion stage requirements and description

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Peelgren, M. L.; Nakashima, A. M.; Nsieh, T. M.; Phillips, W. M.; Kikin, G. M.

    1974-01-01

    The application of a nuclear electric propulsion (NEP) stage in the exploration of near-earth, cometary, and planetary space was discussed. The NEP stage is powered by a liquid-metal-cooled, fast spectrum thermionic reactor capable of providing 120 kWe for 20,000 hours. This power is used to drive a number of mercury ion bombardment thrusters with specific impulse in the range of 4000-5000 seconds. The NEP description, characteristics, and functional requirements are discussed. These requirements are based on a set of five coordinate missions, which are described in detail. These five missions are a representative part of a larger set of missions used as a basic for an advanced propulsion comparison study. Additionally, the NEP stage development plan and test program is outlined and a schedule presented.

  17. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  18. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    SciTech Connect

    Redding, J.R.

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  19. NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE

    EPA Science Inventory

    The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...

  20. Modesty garment use at nuclear power plants

    SciTech Connect

    Owen, D.E. ); Johnstone, G. )

    1990-02-01

    This article presents the results of a telephone survey of modesty garment use at U.S. nuclear power plants. Modesty garments are launderable or disposable lightweight garments worn in radiological areas under cloth protective clothing (PCs). The types of modesty garments used, the benefits they provide, and other issues related to their used are discussed.

  1. Finding the flaws in nuclear power plants

    SciTech Connect

    Herbert, E.

    1982-09-01

    Describes how nondestructive, remote testing techniques are being devised to improve the operational safety of nuclear plants. Nondestructive evaluation (NDE) techniques developed by the EPRI include high-energy, portable X-ray systems; ultrasonic methods; advanced eddy-current inspection; and automated inspection. References for further information on NDE are given.

  2. Nuclear modules for space electric propulsion

    NASA Astrophysics Data System (ADS)

    Difilippo, F. C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  3. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69...

  4. Deployment of the Topaz-II space nuclear power plant

    SciTech Connect

    Standley, V.H.; Wyant, F.J.; Polansky, G.F. )

    1993-01-01

    The Topaz-II is a 5-kW(electric) Russian space nuclear power plant. The power plant resembles a shuttlecock standing 3.9 m high and is 1.4 m in diameter at the base. The reactor is at the top, the radiation shield is in the middle, and the radiator is at the bottom. The whole system weighs 1 tonne. The reactor core is 37.5 cm long and 26 cm in diameter. It contains 37 core-length, single-cell thermionic fuel elements embedded in a ZrH moderator. Each thermionic fuel cell is a cylindrical emitter inside a cylindrical collector. Nuclear fuel inside the emitter raises the emitter's temperature.

  5. Cost and quality of fuels for electric plants 1993

    SciTech Connect

    Not Available

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  6. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  7. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  8. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  9. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect

    M. Patterson; C. Park

    2008-03-01

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  10. System engineering of a nuclear electric propulsion testbed spacecraft

    NASA Astrophysics Data System (ADS)

    Cameron, G. E.; Herbert, G. A.

    1993-06-01

    A mission concept aimed at evaluating performance of a Russian Space Nuclear Power System (SNPS) and electric thrusters to be consistent with U.S. safety standards is discussed. Solutions of unique nuclear electric propulsion (NEP) problems optimized for the Nuclear Electric Propulsion Test Program (NEPSTP) are considered. The problems include radiation, thermal management, safety, ground processing concerns of a nuclear payload, the launch of an NEP payload, orbital operations, electromagnetic compatibility, contamination, guidance and control, and a power system. Attention is also given to preliminary spacecraft and mission design developed taking into account all aforementioned problems.

  11. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revised regulatory guide (RG), revision 1 of RG 1.173, ``Developing Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' This RG endorses the Institute of Electrical and Electronic Engineers (IEEE) Standard (Std.) 1074-2006, ``IEEE Standard for Developing a Software Project Life......

  12. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  13. Nuclear Electric Propulsion for Outer Space Missions

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  14. Public health hazards from electricity-producing plants.

    PubMed

    Neyman, J

    1977-02-25

    When a new electricity-producing plant is to be built in a given locality it is natural to take into account the public health consequences of the normal operation of each type of plant contemplated. Here, the fossil-burning plants and nuclear facilities come under consideration. I have attempted to show that, in spite of the many important studies performed, there is currently no reliable methodology to estimate how many more cancer cases, and how many more heart attacks and other diseases have to be anticipated as a consequence of the normal operation of this or that type of electric generator. In part, this is because the currently available estimates of radiation effects on humans are based on extrapolations from studies of two kinds. Those of one kind may be exemplified by studies of atomic bomb casualties in Hiroshima and Nagasaki. The other kind are laboratory experiments with lower animals, frequently mice. The unreliability of both kinds of extrapolations is connected with the following circumstances: (i) The omnipresent troublesome phenomenon of competing risks. (ii) The dependence of health effects of a given noxious agent on the preexisting local pollution. (iii) The dependence of health effects not only on the "dose" of an agent, but also on the rate at which the agent is administered. (iv) The noted difficulties of making extrapolations from one mammal to another. Our obtaining reliable estimates of the public health effects of extra pollution from new industrial plants would seem to depend on a large multipollutant and multilocality epidemiological study being conducted--one requiring the cooperative effort of several governmental agencies. However, a much easier study of certain developments in the vicinity of Rocky Flats, Colorado, might provide important direct information on health phenomena as they occur in real life. PMID:836584

  15. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  16. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  17. Nuclear power and nuclear weapons

    SciTech Connect

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

  18. PEGASUS: a multi-megawatt nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements.

  19. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  20. Nuclear Electric Dipole Moment of 3He

    SciTech Connect

    Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C; Navratil, P

    2008-04-08

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {pi}-, {rho}-, and {omega}-exchanges, we find that the pion-exchange contribution dominates. Finally, our results suggest that a measurement of the {sup 3}He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  1. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  2. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-11-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  3. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, Dale; Thomassen, Keith; Sovey, Jim; Fontana, Mario

    1992-01-01

    This paper summarizes the findings of a Tri-Agency panel; consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD); charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1 thruster developmental testing facility, (2 thruster lifetime testing facility, (3 dynamic energy conversion development and demonstration facility, and (4 advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualification and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000s.

  4. Nuclear Electric Dipole Moment of ^{3}_He

    SciTech Connect

    Stetcu, I.; Liu, C.-P.; Friar, J. L.; Hayes, A. C.; Navratil, P.

    2008-01-01

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of ^{3}_He and the expected sensitivity of such a measurement to the underlyng CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {\\pi}-, {\\rho}-, and {\\omega}-exchanges, we find that the pion-exchange contribution dominates. Our results suggest that a measurement of the ^{3}_He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  5. Safety in nuclear power plants in India

    PubMed Central

    Deolalikar, R.

    2008-01-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  6. Safety in nuclear power plants in India.

    PubMed

    Deolalikar, R

    2008-12-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  7. Autonomous Control of Nuclear Power Plants

    SciTech Connect

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  8. Taxonomy of the nuclear plant operator's role

    SciTech Connect

    Kisner, R.A.; Fullerton, A.M.; Frey, P.R.; Dougherty, E.M.

    1981-01-01

    A program is presently under way at the Oak Ridge National Laboratory (ORNL) to define the functional design requirements of operational aids for nuclear power plant operators. A first and important step in defining these requirements is to develop an understanding of the operator's role or function. This paper describes a taxonomy of operator functions that applies during all operational modes and conditions of the plant. Other topics such as the influence of automation, role acceptance, and the operator's role during emergencies are also discussed. This systematic approach has revealed several areas which have potential for improving the operator's ability to perform his role.

  9. Qualification of active mechanical components for nuclear power plants

    SciTech Connect

    Allen, R.D.; Mollerus, F.J.

    1983-11-01

    The Electric Power Research Institute has undertaken a study of active safety related mechanical components in domestic nuclear plants to determine what qualification information exists and to establish a plan for qualification of those components. Active safety related mechanical components are those which undergo mechanical motion to perform a safety function. The overall objective of the study is to recommend appropriate methods and realistic criteria for the environmental, seismic and dynamic qualification of active mechanical components. This paper presents the results of progress in this project through May 1983.

  10. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  11. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    SciTech Connect

    Basu, A.

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company`s Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  12. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    SciTech Connect

    Basu, A.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company's Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  13. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power Plant...

  14. Polyphophoinositides components of plant nuclear membranes

    SciTech Connect

    Hendrix, K.W.; Boss, W.F.

    1987-04-01

    The polyphosphoinositides, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/), have been shown to be important components in signal transduction in many animal cells. Recently, these lipids have been found to be associated with plasma membrane but not microsomal membrane isolated from fusogenic wild carrot cells; however, in that study the lipids of the nuclear membrane were not analyzed. Since polyphosphoinositides had been shown to be associated with the nuclear membranes as well as the plasma membrane in some animal cells, it was important to determine whether they were associated with plant nuclear membranes as well. Cells were labeled for 18h with (/sup 3/H) inositol and the nuclei were isolated by a modification of the procedure of Saxena et al. Preliminary lipid analyses indicate lower amount of PIP and PIP/sub 2/ in nuclear membranes compared to whole protoplasts. This suggests that the nuclear membranes of carrot cells are not enriched in PIP and PIP/sub 2/; however, the Triton X-100 used during the nuclear isolation procedure may have affected the recovery of the lipids. Experiments are in progress to determine the effects of Triton X-100 on lipid extraction.

  15. Nuclear-electric propulsion - Manned Mars propulsion options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Brophy, John; King, David

    1989-01-01

    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  16. Nuclear electric ion propulsion for three deep space missions

    NASA Astrophysics Data System (ADS)

    Chiravalle, Vincent P.

    2008-03-01

    Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500 km low Earth orbit encompassing the transfer of a 100 MT payload into a 1500 km orbit around Mars, the rendezvous of a 10 MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space nuclear reactor technology are assumed. It is shown that nuclear electric ion propulsion offers more than twice the payload for the Mars mission relative to the case when a nuclear thermal rocket is used for the trans-Mars injection maneuver at Earth, and about the same payload advantage relative to the case when solar electric propulsion is used for the Mars heliocentric transfer. For missions to the outer planets nuclear electric ion propulsion increases the payload mass fraction by a factor of two or more compared with high thrust systems that utilize gravity assist trajectories.

  17. Comprehensive evaluation of cost effectiveness of solar electric power plants

    NASA Astrophysics Data System (ADS)

    Ibragimov, D. Y.; Filatov, A. I.

    1984-02-01

    The cost effectiveness of constructing a solar heating and electric power plant is evaluated on the basis of a compatibility analysis of its combination with a thermal electric power plant and a boiler-type heating plant, taking into account comprehensively economic factors as well as power requirements. Two variants of such a combination are considered and compared, assuming equal heating power and equal electric power respectively. Equations are set up for each variant covering fixed and variable costs of generating electric power and generating heat, as basis for comparing the two variants and optimizing them with respect to normalized annual total cost. Nomograms plotted for convenient numerical calculation of maximum economically worthwhile capital investment in a solar heating and electric power plant, depending on changes in various operating parameters, reveal that, as the time for constructing such a plant becomes longer, this maximum worthwhile investment in it increases for variant 1 and decreases for variant 2.

  18. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...The U.S. Nuclear Regulatory Commission (NRC) staff has determined that the inspections, tests, and analyses have been successfully completed, and that the specified acceptance criteria are met for Inspections, Tests, Analyses, and Acceptance Criteria (ITAAC), 2.1.03.11 for the Vogtle Electric Generating Plant, Unit...

  19. Improved Economics of Nuclear Plant Life Management

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Jarrell, Donald B.; Bond, Joseph W D.

    2007-07-31

    The adoption of new on-line monitoring, diagnostic and eventually prognostics technologies has the potential to impact the economics of the existing nuclear power plant fleet, new plants and future advanced designs. To move from periodic inspection to on-line monitoring for condition based maintenance and eventually prognostics will require advances in sensors, better understanding of what and how to measure within the plant; enhanced data interrogation, communication and integration; new predictive models for damage/aging evolution; system integration for real world deployments; quantification of uncertainties in what are inherently ill-posed problems and integration of enhanced condition based maintenance/prognostics philosophies into new plant designs, operation and O&M approaches. The move to digital systems in petrochemical, process and fossil fuel power plants is enabling major advances to occur in the instrumentation, controls and monitoring systems and approaches employed. The adoption within the nuclear power community of advanced on-line monitoring and advanced diagnostics has the potential for the reduction in costly periodic surveillance that requires plant shut-down , more accurate cost-benefit analysis, “just-in-time” maintenance, pre-staging of maintenance tasks, move towards true “operation without failures” and a jump start on advanced technologies for new plant concepts, such as those under the International Gen IV Program. There are significant opportunities to adopt condition-based maintenance when upgrades are implemented at existing facilities. The economic benefit from a predictive maintenance program based upon advanced on-line monitoring and advanced diagnostics can be demonstrated from a cost/benefit analysis. An analysis of the 104 US legacy systems has indicated potential savings at over $1B per year when applied to all key equipment; a summary of the supporting analysis is provided in this paper.

  20. 75 FR 16869 - Entergy Nuclear Operations, LLC; Palisades Nuclear Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, LLC; Palisades Nuclear Plant; Exemption 1.0 Background Entergy Nuclear... operation of Palisades Nuclear Plant (PNP). The license provides, among other things, that the facility...

  1. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  2. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  3. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  4. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Consideration (73 FR 17148; March 31, 2008), states that ``Plant emergencies are extraordinary circumstances... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and...

  5. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP),...

  6. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  7. MARS, 600 MWth NUCLEAR POWER PLANT

    SciTech Connect

    Cumo, M.; Naviglio, A.; Sorabella, L.

    2004-10-06

    MARS (Multipurpose Advanced Reactor, inherently Safe) is a 600 MWth, single loop, pressurized light water reactor (PWR), developed at the Dept. of Nuclear Engineering and Energy Conversion of the University of Rome ''La Sapienza''. The design was focused to a multipurpose reactor to be used in high population density areas also for industrial heat production and, in particular, for water desalting. Using the well-proven technology and the operation experience of PWRs, the project introduces a lot of innovative features hugely improving the safety performance while keeping the cost of KWh competitive with traditional large power plants. Extensive use of passive safety, in depth plant simplification and decommissioning oriented design were the guidelines along the design development. The latest development in the plant design, in the decommissioning aspects and in the experimental activities supporting the project are shown in this paper.

  8. Orbital transfer of large space structures with nuclear electric rockets

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.

  9. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  10. Electricity: From Tabletop to Power Plant

    ERIC Educational Resources Information Center

    Moran, Timothy

    2009-01-01

    While electricity is central to our daily lives, it remains "black box" technology to most students. They know that electricity is produced somewhere and that it costs money, but they do not have personal experience with the operation and scale of the machines that provide it. Fortunately, electricity generation can be added to the more basic…

  11. THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM

    SciTech Connect

    William E. Windes; Timothy D. Burchell; Robert L. Bratton

    2008-09-01

    Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

  12. The Next Generation Nuclear Plant (NGNP) Project

    SciTech Connect

    F. H. Southworth; P. E. MacDonald

    2003-11-01

    The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10

  13. [Accidents of the Fukushima Daiichi Nuclear Power Plants and future].

    PubMed

    Hoshi, Masaharu

    2012-01-01

    A massive earthquake of magnitude 9 terribly happened far out at sea of Tohoku area on 11 March, 2011. After this earthquake the hugest tsunami in the history came to the hundreds km of the seashore of Tohoku area. Due to this tsunami all of the four nuclear power plants of Fukushima Daiichi lost every electric power and, soon after this, loss nuclear fuels from number 1 to 3 reactors melt through their power containers. According to this phenomena, large amount of the radio-activities have been released in the air. There were some releases but major contaminations happened at the time of the two releases in the morning of 15 March, 2011. Due to this, to the direction of the northwest until the Iitate Village over 30km zone was contaminated. In this paper I explain the time course of the accidents and that how contaminated. PMID:24568025

  14. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  16. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  17. Analysis of nuclear power plant construction costs

    SciTech Connect

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  18. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  19. Net energy payback and carbon dioxide emissions from helium-3 fusion and wind electrical power plants

    NASA Astrophysics Data System (ADS)

    White, Scott William

    1998-12-01

    A net energy analysis and life cycle CO2 emission analysis is performed on a D3He- fusion power plant using lunar helium-3 and five other electricity-generating power plant technologies, including a wind, conventional coal, PWR and two DT- fusion tokamak (UWMAK-I and ARIES-RS) power plants. The energy payback ratio is the amount of electrical energy produced over the lifetime of the power plant divided by the total amount of energy required to procure the fuel, build, operate, and decommission the power plants. The analysis focused on D3He-fusion and particularly the acquisition of the helium-3 fuel from the Moon. The energy payback ratio varies widely for the six power plants with a low of 11 for a conventional coal plant to a high of 31 for a D3 He-fusion power plant. Energy payback ratios for wind (23), nuclear fission (16), ARIES-RS DT-fusion (24) and UWMAK-I DT- fusion (27) power plants all fall in between. The CO2 emissions for each power plant were calculated from the life-cycle energy' requirements data. The coal plant was responsible for the greatest emissions with 974 tonnes CO2/GWeh, followed by fission and wind (15), ARIES-RS DT-fusion (11), ARIES- 111 D3He-fusion (10) and UWMAK-I DT-fusion power plant (9).

  20. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect

    Bovell, C.R.; Beck, M.G.; Carter, R.J.

    1998-07-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  1. Analysis of failed nuclear plant components

    NASA Astrophysics Data System (ADS)

    Diercks, D. R.

    1993-12-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.

  2. Cesium Removal at Fukushima Nuclear Plant - 13215

    SciTech Connect

    Braun, James L.; Barker, Tracy A.

    2013-07-01

    The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

  3. Use of plant woody species electrical potential for irrigation scheduling.

    PubMed

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  4. Use of plant woody species electrical potential for irrigation scheduling

    PubMed Central

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  5. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  6. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Settle, Frank A.

    2009-03-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry dominates all other aspects of the nuclear fuel cycle. An understanding of this chemistry is necessary to address the economic, environmental, safety, and proliferation issues that are essential to any substantive evaluation of nuclear power's contribution to the global energy portfolio. This article describes the role of chemistry in each component of the cycle from the metallurgy of uranium to the disposition of spent reactor fuel. It also addresses the economics of the components of the cycle and the costs of nuclear power relative to other sources of energy.

  7. Nuclear power-plant safety functions

    SciTech Connect

    Corcoran, W.R.; Finnicum, D.J.; Hubbard, F.R. III; Musick, C.R.; Walzer, P.F.

    1981-03-01

    The concept of safety functions is discussed. Ten critical safety functions and the multiple success paths available for accomplishing them are described. Use of the safety function concept in the development of emergency procedures, operator training, and control-room displays provides a systematic approach and a hierarchy of protection that an operator can use to mitigate the consequences of an event. The safety function concept can also be applied to the design and analysis of nuclear plant systems and to the evaluation of past expierience.

  8. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. PMID:21977961

  9. Just In-Time Maintenance of Nuclear Power Plants

    SciTech Connect

    DR. Alexander G. Parlos

    2002-01-22

    The goal of this project has been to develop and demonstrate the feasibility of a new technology for maintenance engineering: a Just-In-Time Maintenance (JITM) system for rotating machines. The JITM system is based on several key developments at Texas A and M over the past ten years in emerging intelligent information technologies, which if integrated into a single system could provide a revolutionary approach in the way maintenance is performed. Rotating machines, such as induction motors, range from a few horse power (hp) to several thousand hp in size, and they are widely used in nuclear power plants and in other industries. Forced outages caused by induction motor failures are the reason for as much as 15% - 40% of production costs to be attributable to maintenance, whereas plant shutdowns caused by induction motor failures result in daily financial losses to the utility and process industries of $1 M or more. The basic components of the JITM system are the available machine sensors, that is electric current sensors and accelerometers, and the computational algorithms used in the analysis and interpretation of the occurring incipient failures. The JITM system can reduce the costs attributable to maintenance by about 40% and it can lower the maintenance budgets of power and process plants by about 35%, while requiring no additional sensor installation. As a result, the JITM system can improve the competitiveness of US nuclear utilities at minimal additional cost.

  10. Recent Trends in the Adequacy of Nuclear Plant Decommissioning Funding

    SciTech Connect

    Williams, D. G.

    2002-02-26

    Concerned about the potential cost and sufficiency of funds to decommission the nation's nuclear power plants, the Congress asked the U.S. General Accounting Office (GAO) to assess the adequacy, as of December 31, 1997, of electric utilities'; funds to eventually decommission their plants. GAO's report (GAO/RCED-99-75) on this issue addressed three alternative assumption scenarios--baseline (most likely), optimistic, and pessimistic; and was issued in May 1999. This paper updates GAO's baseline assessment of fund adequacy in 1997, and extends the analysis through 2000. In 2000, we estimate that the present value cost to decommission the nation's nuclear plants is about $35 billion; utility fund balances are about $29 billion. Both our two measures of funding adequacy for utilities are on average not only much above ideal levels, but also overall have greatly improved since 1997. However, certain utilities still show less than ideal fund balances and annual contributions. We suggest that the range of these results among the individual utilities is a more important policy measure to assess the adequacy of decommissioning funding than is the funding adequacy for the industry as a whole.

  11. BN-800 advanced nuclear power plant with fast reactor

    SciTech Connect

    Shishkin, A.N.; Kuzavkov, N.G.; Sobolev, V.A.; Shestakov, G.V.; Bagdasarov, Yu.E.; Kochetkov, L.A.; Matveyev, V.I.; Poplavsky, V.M.

    1993-12-31

    Bn-800 reactor plant with fast reactor and sodium coolant in the primary and secondary circuits is designed for operation as part of the power units in the Yuzhno-Uralskaya nuclear power plant scheduled to be constructed in Chelyabinsk region and as part unit 4 in the Beloyarskaya nuclear power plant. Reactor operations are described.

  12. Main electrical switch banks, plant switch house, looking to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main electrical switch banks, plant switch house, looking to the North - Bureau of Mines Metallurgical Research Laboratory, Original Building, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  13. Proposal of Space Reactor for Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Nagata, Hidetaka; Nishiyama, Takaaki; Nakashima, Hideki

    Currently, the solar battery, the chemical cell, and the RI battery are used for the energy source in space. However, it is difficult for them to satisfy requirements for deep space explorations. Therefore, other electric power sources which can stably produce high electric energy output, regardless of distance from the sun, are necessary to execute such missions. Then, we here propose small nuclear reactors as power sources for deep space exploration, and consider a conceptual design of a small nuclear reactor for Nuclear Electric Propulsion System. It is found from nuclear analyses that the Gas-Cooled reactor could not meet the design requirement imposed on the core mass. On the other hand, a light water reactor is found to be a promising alternative to the Gas-Cooled reactor.

  14. Condenser performance recovery in nuclear power plants

    SciTech Connect

    Saxon, G. Jr.; Putman, R.E.

    1996-12-31

    Fouling of the tubes in the main condenser can have a significant impact on nuclear plant performance. Recent experiences suggest that the effects of fouling have been underestimated and that the results of an effective tube cleaning can be measured in improved unit capacity. In particular two nuclear power plants have reported recovery of 20 and 25 MW respectively. While the types of deposition often vary as they did in these two cases, the deposit elements were accurately identified, the deposits` impact on heat transfer was evaluated and an effective cleaning methodology was developed for successful deposit removal. These experiences have prompted the development of a number of diagnostic monitoring and inspection methods which can be utilized in the field or in the laboratory; to detect, identify and quantify the presence of fouling and its impact on heat transfer, to determine the relative effectiveness of a cleaning method and to evaluate condenser performance as related to MW capacity for both single and multiple compartment condensers.

  15. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  16. Electromagnetic Compatibility in Nuclear Power Plants

    SciTech Connect

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  17. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal

  18. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  19. Comparison of Options for a Pilot Plant Fusion Nuclear Mission

    SciTech Connect

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P; Zarnstorff, M

    2012-08-27

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

  20. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  1. Standard technical specifications General Electric plants, BWR/6. Volume 1, Revision 1

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS.

  2. Standard technical specifications: General Electric plants, BWR/4. Volume 1, Revision 1: Specifications

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS.

  3. Aging of concrete components and its significance relative to life extension of nuclear power plants

    SciTech Connect

    Naus, D.J.

    1987-01-01

    Nuclear power currently supplies about 16% of the US electricity requirements, with the percentage expected to rise to 20% by 1990. Despite the increasing role of nuclear power in energy production, cessation of orders for new nuclear plants in combination with expiration of operating licenses for several plants in the next 15 to 20 years results in a potential loss of electrical generating capacity of 50 to 60 gigawatts during the time period 2005 to 2020. A potential timely and cost-effective solution to the problem of meeting future energy demand is available through extension of the service life of existing nuclear plants. Any consideration of plant life extension, however, must consider the concrete components in these plants, since they play a vital safety role. Under the USNRC Nuclear Plant Aging Research (NPAR) Program, a study was conducted to review operating experience and to provide background that will lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based structures. The approach followed was in conformance with the NPAR strategy.

  4. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  5. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  6. Calculations of nuclear electric shielding in molecules

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Zanasi, R.

    1980-05-01

    The electric shielding tensor at nuclei in the molecules H 2O, NH 3, CH 4 and CO has been evaluated via coupled Hartree-Fock perturbation theory. The average trace of the shielding tensor is linearly dependent on atomic electronegativities in the isoelectronic series H 2O, NH 3, CH 4.

  7. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  8. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  9. Nuclear power: Fourth edition

    SciTech Connect

    Deutsch, R.W.

    1986-01-01

    This book describes the basics of nuclear power generation, explaining both the benefits and the real and imagined risks of nuclear power. It includes a discussion of the Three Mile Island accident and its effects. Nuclear Power has been used in the public information programs of more than 100 utilities. The contents discussed are: Nuclear Power and People; Why Nuclear Power. Electricity produced by coal; Electricity produced by nuclear fuel; Nuclear plant sites in the United States; Short History of Commercial Nuclear Power; U.S. nuclear submarines, Regulation of Nuclear Power Plants; Licensing process, Nuclear Power Plant Operator Training; Nuclear power plant simulator, Are Nuclear Plants Safe.; Containment structure, Nuclear Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is Nuclear Fuel.; Fuel cycle for commercial nuclear power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; Nuclear Opposition; and Nuclear Power in the Future.

  10. Trial application of guidelines for nuclear plant response to an earthquake. Final report

    SciTech Connect

    Schmidt, W.; Oliver, R.; O`Connor, W.

    1993-09-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. These guidelines are published in EPRI report NP-6695, ``Guidelines for Nuclear Plant Response to an Earthquake,`` dated December 1989. This report includes two sets of nuclear plant procedures which were prepared to implement the guidelines of EPRI report NP-6695. The first set were developed by the Toledo Edison Company Davis-Besse plant. Davis-Besse is a pressurized water reactor (PWR) and contains relatively standard seismic monitoring instrumentation typical of many domestic nuclear plants. The second set of procedures were prepared by Yankee Atomic Electric Company for the Vermont Yankee facility. This plant is a boiling water reactor (BWR) with state-of-the-art seismic monitoring and PC-based data processing equipment, software developed specifically to implement the OBE Exceedance Criterion presented in EPRI report NP-5930, ``A Criterion for Determining Exceedance of the operating Basis Earthquake.`` The two sets of procedures are intended to demonstrate how two different nuclear utilities have interpreted and applied the EPRI guidance given in report NP-6695.

  11. Future electricity production methods. Part 1: Nuclear energy

    NASA Astrophysics Data System (ADS)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  12. Growing the Space Station's electrical power plant

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    For over a decade NASA LeRC has been defining, demonstrating, and evaluating power electronic components and multi-kilowatt, multiply redundant, electrical power systems as part of OAST charter. Whether one considers aircraft (commercial transport/military), Space Station Freedom, growth station, launch vehicles, or the new Human Exploration Initiative, the conclusions remain the same: high frequency AC power distribution and control is superior to all other approaches for achieving a fast, smart, safe, versatile, and growable electrical power system that will meet a wide range of mission options. To meet the cost and operability goals of future aerospace missions that require significantly higher electrical power and longer durations, we must learn to integrate multiple technologies in ways that enhance overall system synergisms. The way NASA is doing business in space electric power is challenged and some approaches for evolving large space vehicles and platforms in well constructed steps to provide safe, ground testable, growable, smart systems that provide simple, replicative logic structures, which enable hardware and software verification, validation, and implementation are proposed. Viewgraphs are included.

  13. Satellite Surveillance of Nuclear Plant, Assisting IAEA Control

    NASA Astrophysics Data System (ADS)

    Mileikowsky, Curt

    1997-01-01

    One of the great problems for world society today is what to do with the 100 000 tons of spent fuel — produced by 400 power reactors in over 30 nations — that contain 1000 tons of civilian plutonium and that will double in volume over the next 10 to 15 years. That future amount of civilian plutonium represents material for 400 000 nuclear bombs: simple ones, relatively easily made, ideal for terrorists, of the strength of 10-70% of the Hiroshima bomb. Because of this risk, spent fuel has to be safeguarded for 10 000 years. The most straightforward way to eliminate the need for safeguarding spent fuel would be to burn it. That could best be done with an accelerator-driven subcritical reactor, i.e. one that cannot function without the assistance of a 1-2.5 GeV proton accelerator supplying the lacking neutrons and which therefore makes for an extremely safe plant that cannot run amok (as Chernobyl did for example). 100 of such plant could burn all the plutonium produced by the 400 present-type reactors in the world and simultaneously produce profitable electric power. But such a scheme requires proof that the accelerators could not themselves be used for producing nuclear bomb material. That utterly important task for world society could be significantly supported by the new commercial high resolution observation satellites.

  14. Nuclear power plant Generic Aging Lessons Learned (GALL). Appendix B

    SciTech Connect

    Kasza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U.

    1996-12-01

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This report consists of Volume 2, which consists of the GALL literature review tables for the NUMARC Industry Reports reviewed for the report.

  15. Storage of mixed waste at nuclear plants

    SciTech Connect

    Bodine, D.

    1995-05-01

    The problems posed by waste that is both radioactive and classified as hazardous by 40CFR261 include storage, proper treatment and disposal. An Enforcement Action issued by the State of Tennessee required that Sequoyah Nuclear Plant (SQN) either find a means to remove its mixed waste from onsite storage or obtain Part B Hazardous Waste Treatment, Storage and Disposal Facility by March 1, 1994. Generators of hazardous waste cannot store the material for longer than 90 days without obtaining a Hazardous Waste Treatment, Storage, and Disposal Facility (TSDF) permit. To complicate this regulation, there are very few permitted TSDFs that can receive radioactive waste. Those facilities that can receive the waste have only one year to store it before treatment. Limited treatment is available for mixed waste that will meet the Land Ban requirements.

  16. Seismic analysis of nuclear power plant structures

    NASA Technical Reports Server (NTRS)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  17. Overview of United States Department of Energy activities to support life extension of nuclear power plants

    SciTech Connect

    Harrison, D.L.; Rosinski, S.T.

    1993-11-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US The operating license of the first of these plants will expire in the year 2000; one-third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: establishment of regulations, technical standards, and procedures for the preparation and review of a license renewal application; development, verification, and validation of technical criteria and bases for monitoring, refurbishing, and/or replacing plant equipment; and demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues in the principal areas of reactor pressure vessel (RPV) integrity, fatigue, and environmental qualification (EQ).

  18. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  19. Emotional consequences of nuclear power plant disasters.

    PubMed

    Bromet, Evelyn J

    2014-02-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and overuse of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics.Introduction of Emotional Consequences of Nuclear Power Plant Disasters (Video 2:15, http://links.lww.com/HP/A34). PMID:24378494

  20. High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

  1. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  2. Edwin I. Hatch nuclear plant implementation of improved technical specifications

    SciTech Connect

    Mahler, S.R.; Pendry, D.

    1994-12-31

    Edwin I. Hatch nuclear plant consists of two General Electric boiling water reactor/4 units, with a common control room and a common refueling floor. In March 1993, Hatch began conversion of both units` technical specifications utilizing NUREG 1433. The technical specifications amendment request was submitted February 25, 1994. Issuance is scheduled for October 21, 1994, with implementation on March 15, 1994. The current unit-1 technical specifications are in the {open_quotes}custom{close_quotes} format, and the unit-2 technical specifications are in the old standard format. Hatch previously relocated the fire protection and radiological technical specifications requirements. The Hatch conversion will provide consistency between the two units, to the extent practicable.

  3. Seismic fragility levels of nuclear power plant equipment

    SciTech Connect

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided.

  4. Multimission nuclear electric propulsion system for outer planet exploration missions

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.

    1981-01-01

    The conceptual design configuration of a nuclear electric propulsion system (NEP) with a multimission capability for both earth orbital and electric propulsion missions is discussed. Two basic types of space reactor power system concepts are analyzed emphasizing conduction coupled and radiation coupled systems, and a radiation coupled thermoelectric panel concept is schematically represented and described in detail. A nuclear-powered 100-kWe surveillance spacecraft concept is presented and the developmental phases are given including cost estimates. In addition, a system is described that seems to have the capability to perform all the outer planet missions.

  5. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  6. Development costs for a nuclear electric propulsion stage.

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Prickett, W. Z.

    1973-01-01

    Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.

  7. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  8. Electric power plant emissions and public health

    SciTech Connect

    O'Connor, A.B.; Roy, C.

    2008-02-15

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels.

  9. NASA-OAST/JPL high efficiency thermionic conversion studies. [nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Efforts were made to develop a thermionic energy conversion TEC technology appropriate for nuclear electric propulsion missions. This space TEC effort was complementary to the terrestrial TEC studies sponsored by the Department of Energy which had the goal of topping fossil fuel power plants. Thermionic energy conversion was a primary conversion option for space reactors because of its: (1) high operating temperature; (2) lack of moving parts; (3) modularity; (4) established technology; and (5) development potential.

  10. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  11. NRC (Nuclear Regulatory Commission) staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    SciTech Connect

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved.

  12. Space nuclear power applied to electric propulsion

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.

    1989-01-01

    Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.

  13. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  14. Reactor design for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.

    1979-01-01

    The paper analyzes the consequences of heat pipe failures, that resulted in modifications to the basic design of a heat-pipe cooled, fast spectrum nuclear reactor and led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO2 and molybdenum sheets that span the diameter of the core. Design characteristics are presented and compared for two reactors. A conceptual design for a heat exchanger between the core and the thermionic converter assembly is described. This heat exchanger would provide design and fabrication decoupling of these two assemblies.

  15. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    SciTech Connect

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants.

  16. Pulverizer tramp iron problems affect coal switching at Union Electric`s Labadie Plant

    SciTech Connect

    Fife, P.A.; Mahr, D.

    1997-07-01

    Union Electric`s Labadie Plant, is a 2400 MWe (4 x 600) coal-fired power generating plant. It is located 35 miles west of St. Louis. The four units were commissioned between 1970 and 1973. Major plant equipment is summarized. Coal is delivered via unit-trains and stacked by two tower style, radial stackers. The plant annually consumes approximately six million tons of coal. In 1981, a coal blending system was retrofitted to the plant. This system features a traveling stacker on an elevated berm and rotary plow reclaimers. The coal blending system feeds all four units. Bins weigh feeders, and belt scales precisely control blending proportions. The blending system has served the plant, increasing fuel flexibility in the types and blends of coal that can be used.

  17. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  18. Electric power plant emissions and public health.

    PubMed

    O'Connor, Alane B; Roy, Callista

    2008-02-01

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels. PMID:18227677

  19. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    PubMed

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power. PMID:22514916

  20. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  1. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  2. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... have a significant effect on the quality of the human environment (75 FR 14637; dated March 26, 2010... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations,...

  3. Some aspects of the decommissioning of nuclear power plants

    SciTech Connect

    Khvostova, M. S.

    2012-03-15

    The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

  4. The comparative effectiveness of serving peak loads in the variants of providing nuclear power plants with a base load

    NASA Astrophysics Data System (ADS)

    Batenin, V. M.; Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2012-07-01

    The present paper reports the results of an investigation into the effectiveness of serving peak loads in the variants of providing nuclear power plants with a base load through unloading condensing power plants, combined heat and power (CHP) plants, combined-cycle thermal power plants during night-time off-peak hours, the use of the off-peak electric power for power and heat supply, and water electrolysis with the use of hydrogen and oxygen for production of the peak electric power, as compared with the variant of the development of pumped storage hydropower plants.

  5. Nuclear electric dipole moment of 3He

    SciTech Connect

    Stetcu, Ionel; Friar, J L; Hayes, A C; Liu, C P; Navratil, P

    2008-01-01

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  6. Nuclear-electric power in space

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Davis, H. S.

    1984-01-01

    Prospective missions requiring large power supplies that might be satisfied with space nuclear reactors (SNR) are discussed, along with design concepts and problems and other potential high-power space systems. Having a minimum economic output of 10 kWe, SNR seem well-suited as the power sources for DBS systems, space-based ATC systems manned planetary missions, an expanding Space Station, materials processing, and outer planets missions. SNR avoid the large area problems of solar cell arrays, short lifetimes of thermionic converters, and vibration and heat control in Stirling engines. Design problems exist for SNR in the heat transfer and rejection systems, radioactive emissions and degradation of reactor materials, and size. The latter is a function of Shuttle payload constaints and raises the possibility of having to load the fuel while in orbit. The earliest operational date of SNRs is projected for the early 1990s, if progress is good in the current SP-100 program.

  7. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  8. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  9. The Environmental Impact of Electrical Generation: Nuclear vs. Conventional.

    ERIC Educational Resources Information Center

    McDermott, John J., Ed.

    This minicourse, partially supported by the Division of Nuclear Education and Training of the U.S. Atomic Energy Commission, is an effort to describe the benefit-to-risk ratio of various methods of generating electrical power. It attempts to present an unbiased, straightforward, and objective view of the advantages and disadvantages of nuclear…

  10. The Harnessed Atom. Nuclear Energy & Electricity. Teacher Guide.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, filmstrip, review exercises, activities for the students, and this teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and…

  11. Using a Genetic Algorithm to Design Nuclear Electric Spacecraft

    NASA Technical Reports Server (NTRS)

    Pannell, William P.

    2003-01-01

    The basic approach to to design nuclear electric spacecraft is to generate a group of candidate designs, see how "fit" the design are, and carry best design forward to the next generation. Some designs eliminated, some randomly modified and carried forward.

  12. Rapid, Long-Distance Electrical and Calcium Signaling in Plants.

    PubMed

    Choi, Won-Gyu; Hilleary, Richard; Swanson, Sarah J; Kim, Su-Hwa; Gilroy, Simon

    2016-04-29

    Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant. PMID:27023742

  13. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent.... Ginna Nuclear Power Plant (Ginna), currently held by R.E. Ginna Nuclear Power Plant, LLC as owner...

  14. High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  15. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  16. Thermodynamics of combined-cycle electric power plants

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.

    2012-06-01

    Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology, modern gas and steam turbines can be coupled, to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

  17. Application of PSA to review and define technical specifications for advanced nuclear power plants

    SciTech Connect

    Kim, I.S.; Samanta, P.K.; Reinhart, F.M.; Wohl, M.L.

    1995-11-01

    As part of the design certification process, probabilistic safety assessments (PSAS) are performed at the design stage for each advanced nuclear power plant. Among other usages, these PSAs are important inputs in defining the Technical Specifications (TSs) for these plants. Knowledge gained from their use in improving the TSs for operating nuclear power plants is providing methods and insights for using PSAs at this early stage. Evaluating the safety or the risk significance of the TSs to be defined for an advanced plant encompasses diverse aspects: (a) determining the basic limiting condition for operation (LCO); (b) structuring conditions associated with the LCO; (c) defining completion times (equivalent to allowed outage times in the TS for conventional plants); and, (d) prescribing required actions to be taken within the specified completion times. In this paper, we consider the use of PSA in defining the TSs for an advanced nuclear plant, namely General Electric`s Advanced Boiling Water Reactor (ABWR). Similar approaches are being taken for ABB-CE`s System 80+ and Westinghouse`s AP-600. We discuss the general features of an advanced reactor`s TS, how PSA is being used in reviewing the TSs, and we give an example where the TS submittal was reviewed using a PSA-based analysis to arrive at the requirements for the plant.

  18. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect

    Uhrig, R.E. . Dept. of Nuclear Engineering Oak Ridge National Lab., TN )

    1989-01-01

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  19. Nuclear electric power for multimegawatt orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Casagrande, R. D.

    1987-01-01

    Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime, and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.

  20. Nuclear thiol redox systems in plants.

    PubMed

    Delorme-Hinoux, Valérie; Bangash, Sajid A K; Meyer, Andreas J; Reichheld, Jean-Philippe

    2016-02-01

    Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling. PMID:26795153

  1. Macrofouling control in nuclear power plants

    SciTech Connect

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-11-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofouling organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.

  2. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  3. Nuclear plant-aging research on reactor protection systems

    SciTech Connect

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  4. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins

    PubMed Central

    Zhou, Xiao; Meier, Iris

    2014-01-01

    Increasing evidence suggests that nuclear migration is important for eukaryotic development. Although nuclear migration is conserved in plants, its importance for plant development has not yet been established. The most extraordinary plant nuclear migration events involve plant fertilization, which is starkly different from that of animals. Instead of evolving self-propelled sperm cells (SCs), plants use pollen tubes to deliver SCs, in which the pollen vegetative nucleus (VN) and the SCs migrate as a unit toward the ovules, a fundamental but barely understood process. Here, we report that WPP domain-interacting proteins (WIPs) and their binding partners the WPP domain-interacting tail-anchored proteins (WITs) are essential for pollen nuclear migration. Loss-of-function mutations in WIT and/or WIP gene families resulted in impaired VN movement, inefficient SC delivery, and defects in pollen tube reception. WIPs are Klarsicht/ANC-1/Syne-1 Homology (KASH) analogs in plants. KASH proteins are key players in animal nuclear migration. Thus, this study not only reveals an important nuclear migration mechanism in plant fertilization but also, suggests that similar nuclear migration machinery is conserved between plants and animals. PMID:25074908

  5. Mesoscale to plant-scale models of nuclear waste reprocessing.

    SciTech Connect

    Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

    2010-09-01

    Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

  6. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP.

  7. Seismic response for qualification of valves at nuclear plants

    SciTech Connect

    Bhargava, D.

    1996-12-01

    Power-operated valves constitute about a quarter to one-third of all safety-related components at a typical US nuclear plant. While extensive work has been done in the industry to quantify amplification factors for components such as electrical cabinets, little guidance is available to estimate amplification factors that can be applied to floor or piping anchor seismic response spectra to obtain valve responses. This paper establishes bounding amplification factors from which amplified response spectra and peak acceleration values can be obtained for the seismic qualification of valves. Parametric analyses of three representative nuclear piping systems consisting of different pipe sizes and support configurations are performed by the time-history method. Parameters such as the shape, frequency and energy content of the floor seismic spectra, peak shifting, size, weight and natural frequencies of the valves, support locations, and modal and spectral damping values are varied. Based on this study, amplified response spectra at the valve location for a variety of conditions are developed for each system. Amplification factors are then obtained by comparing spectra at the valve with the floor spectra. The peak seismic accelerations, which can be used in a valve`s static analysis, are automatically obtained form these results. They are, by definition, the zero period accelerations of the amplified response spectra at the valve.

  8. Countries: General, Electricity, Geography, Health, Literature: Children's, Plants.

    ERIC Educational Resources Information Center

    Web Feet, 2002

    2002-01-01

    Presents an annotated list of Web site educational resources kindergarten through eighth grade. The Web sites this month cover the following subjects: countries (general); electricity; geography; health; children's literature; and plants. Includes a list of "Calendar Connections" to Web site sources of information on Earth Day in April and other…

  9. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  10. Seismic fragility of nuclear power plant components. Phase I

    SciTech Connect

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1986-06-01

    As part of the Component Fragility Research Program, sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment by identifying, collecting and analyzing existing test data from various sources. In Phase I of this program, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical devices of various manufacturers and models. This report provides an assessment and evaluation of the data collected in Phase I. The fragility data for medium voltage and low voltage switchgears and motor control centers are analyzed using the test response spectra (TRS) as a measure of the fragility level. The analysis reveals that fragility levels can best be described by a group of TRS curves corresponding to various failure modes. The lower-bound curve indicates the initiation of malfunctioning or structural damage; whereas, the upper-bound curve corresponds to overall failure of the equipment based on known failure modes. High level test data for some components are included in the report. These data indicate that some components are inherently strong and do not exhibit any failure mode even when tested at the vibration limit of a shake table. The common failure modes are identified in the report. The fragility levels determined in this report have been compared with those used in the PRA and Seismic Margin Studies. It appears that the BNL data better correlate with the HCLPF (High Confidence of a Low Probability of Failure) level used in Seismic Margin Studies and can improve this level as high as 60% for certain applications. Specific recommendations are provided for proper application of BNL fragility data to other studies.

  11. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  12. Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario

    SciTech Connect

    Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

    2004-10-06

    In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

  13. EMOTIONAL CONSEQUENCES OF NUCLEAR POWER PLANT DISASTERS

    PubMed Central

    Bromet, Evelyn J.

    2014-01-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and over-utilization of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that nonmental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics. PMID:24378494

  14. An electric heating control system for a nuclear power unit equipped with a fast-neutron reactor

    NASA Astrophysics Data System (ADS)

    Shmuel'Zon, M. B.; Barskii, L. A.

    2007-10-01

    An electric heating control system for a nuclear power unit equipped with a fast-neutron reactor is considered, which allows the required temperatures in the heat zones to be maintained when they are heated up and stabilized. The specific features of the controlled plant and the control equipment employed are taken into account.

  15. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    SciTech Connect

    Madron, F.; Papuga, J.; Pliska, J.

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation are

  16. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... COMMISSION Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental..., ``Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors,'' and 10 CFR... Facility Operating License No. DPR-23, issued to Carolina Power & Light Company (the licensee),...

  17. 76 FR 54261 - Carolina Power & Light; H.B. Robinson Steam Electric Plant, Unit No. 2; HBRSEP Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light; H.B. Robinson Steam Electric Plant, Unit No. 2; HBRSEP Independent Spent Fuel Storage Installations; Notice of Consideration of Approval of Application for Indirect License Transfer Resulting From the Proposed Merger...

  18. 76 FR 53970 - Carolina Power & Light; Brunswick Steam Electric Plant, Units 1 and 2; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Carolina Power & Light; Brunswick Steam Electric Plant, Units 1 and 2; Independent Spent Fuel Storage Installation; Notice of Consideration of Approval of Application for Indirect License Transfers Resulting From the Proposed Merger...

  19. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  20. Knowledge elicitation techniques and application to nuclear plant maintenance

    NASA Astrophysics Data System (ADS)

    Doyle, E. Kevin

    The new millennium has brought with it the opportunity of global trade which in turn requires the utmost in efficiency from each individual industry. This includes the nuclear power industry, a point which was emphasized when the electrical generation industry began to be de regulated across North America the late 1990s and re-emphasized when the northeast power grid of North America collapsed in the summer of 2003. This dissertation deals with reducing the cost of the maintenance function of Candu nuclear power plants and initiating a strong link between universities and the Canadian nuclear industry. Various forms of RCM (reliability-centred maintenance) have been the tools of choice in industry for improving the maintenance function during the last 20 years. In this project, pilot studies, conducted at Bruce Power between 1999 and 2005, and reported on in this dissertation, lay out a path to implement statistical improvements as the next step after RCM in reducing the cost of the maintenance. Elicitation protocols, designed for the age group being elicited, address the much-documented issue of a lack of data. Clear, graphical, inferential statistical interfaces are accentuated and developed to aid in building the teams required to implement the various methodologies and to help in achieving funding targets. Graphical analysis and Crow/AMSAA (army materials systems analysis activity) plots are developed and demonstrated from the point of view of justifying the expenditures of cost reduction efforts. This dissertation ultimately speaks to the great opportunity being presented by this approach at this time: of capturing the baby-boom generation's huge pool of knowledge before those people retire. It is expected that the protocols and procedures referenced here will have applicability across the many disciplines where collecting expert information from a similar age group is required.

  1. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  2. Multi-mission nuclear electric propulsion stage design.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Stearns, J. W.

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions. Critical technologies assessed are associated with the development of nuclear electric propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, and technology requirements for NEP stage development. A multimission NEP stage can be developed to perform both multiple geocentric and interplanetary missions for a 1983 launch. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrustors and thermionic reactor and the development of related power conditioning. The resulting NEP stage design provides both inherent reliability and high payload mass capability.

  3. Robotic planetary mission benefits from nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Kelley, James H.; Yen, Chen-Wan

    1992-01-01

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto). Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, an Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis.

  4. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  5. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... January 1998 (63 FR 2426; January 15, 1998), because the underlying basis standard, ANSI N15.8-1974... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY:...

  6. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... have a significant effect on the quality of the human environment (75 FR 14638). This exemption is... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background...

  7. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Information DG-5028, was published in the Federal Register on May 14, 2012 (77 FR 28407), for a 60-day public... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY:...

  8. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  9. Hierarchical structure for risk criteria applicable to nuclear power plants

    SciTech Connect

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs.

  10. Radiological impact of power plants: coal vs nuclear

    SciTech Connect

    Styron, C.E.

    1981-12-23

    A definitive comparison of the radiological impact of coal power plants with that of (normally operating) nuclear power plants is quite difficult because of (1) insufficient data on both types of plants; (2) the diversity in design and performance of coal-fired plants and emission control systems; and (3) the relatively low concentrations of radionuclides to be measured. Radiation doses to the public estimated for coal and normally operating nuclear power plants are quite small when compared to natural background, and the level of uncertainty associated with estimates of radiological impact is so large that it is not possible at this time to demonstrate a significant difference between radiological risks of coal and nuclear power.

  11. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  12. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    SciTech Connect

    Gavor, J.; Stary, O.; Vasicek, J.

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  13. PEGASUS: A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, Edmund P.; Cuta, Judith M.; Webb, Brent J.; King, David Q.; Patterson, Mike J.; Berkopec, Frank

    1986-01-01

    A propulsion system (PEGASUS) consisting of an electric thruster driven by a multimegawatt nuclear power system is proposed for a manned Mars mission. Magnetoplasmadynamic and mercury-ion thrusters are considered, based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Both thrusters are capable of meeting the mission parameters. Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The power for the PEGASUS system is supplied by a boiling liquid-metal fast reactor. The power system consists of the reactor, reactor shielding, power conditioning subsystems, and heat rejection subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, leaving 1.5 megawatts available for inflight mission applications.

  14. Major factors impacting costs of nuclear power plants

    SciTech Connect

    Tan, Z.A.; James, D.W.

    1985-11-01

    China is striving to complete construction of 10,000 MWe of nuclear power plants by the year 2000. The Chinese government is concerned about the costs and is interested in minimizing the economic risks. The paper discusses the problems of cost control in the US and the special problems expected as China begins its nuclear power development.

  15. Children's reactions to the threat of nuclear plant accidents.

    PubMed

    Schwebel, M; Schwebel, B

    1981-04-01

    In the wake of Three Mile Island nuclear plant accident, questionnaire and interview responses of children in elementary and secondary schools revealed their perceptions of the dangers entailed in the continued use of nuclear reactors. Results are compared with a parallel study conducted close to 20 years ago, and implications for mental health are examined. PMID:7223871

  16. Towards appropriate seismic margins in nuclear plant piping

    SciTech Connect

    Kennedy, R.P.; Chokshi, N.C.; Chen, W.P.

    1996-12-01

    Some results of ongoing research being conducted for the US Nuclear Regulatory Commission (NRC) at the Energy Technology Engineering Center (ETEC) are reported. These results include the development of a methodology for establishing and estimating appropriate seismic margins in nuclear plant piping.

  17. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide 5.66, ``Access Authorization Program for Nuclear Power Plants.'' This guide describes a method that NRC staff considers acceptable to implement the requirements related to an access authorization...

  18. A solar thermal electric power plant for small communities

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  19. Boron control system for a nuclear power plant

    SciTech Connect

    Brown, W.W.; Van der Schoot, M.R.

    1980-09-30

    Ion exchangers which reversibly store borate ions in a temperature dependent process are combined with evaporative boric acid recovery apparatus to provide a boron control system for controlling the reactivity of nuclear power plants. A plurality of ion exchangers are operated sequentially to provide varying amounts of boric acid to a nuclear reactor for load follow operations. Evaporative boric acid recovery apparatus is utilized for major changes in the boron concentration within the nuclear reactor.

  20. Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion

    SciTech Connect

    Carson, C.F.

    1996-12-31

    On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.

  1. Conceptual design study. Standard Floating Nuclear Power Plant on inshore site and Modified Floating Nuclear Power plant on upriver site

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Both plants/designs are technically feasible. Both compare favorably with conventional nuclear plants with respect to licensability, quality of construction, reliability of operation, and safety. Both offer considerable reductions in construction schedule over conventional nuclear plants. It was estimated that if project durations were reduced by three years the cost of a 1100 MWe nuclear unit could be decreased by $260 million to $450 million. The allowance for funds during construction (AFDC) was estimated to be $929 million for a 1260 MWe nuclear plant with a commercial operation date in 1992. Reducing the schedule from 12 to 9 years, a reduction of 25%, implies a savings in AFDC alone of approximately $230 million. .DLN : Killed, superseded by N85-21597 NASA patent

  2. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  3. Evaluation of high-performance space nuclear electric generators for electric propulsion application

    NASA Astrophysics Data System (ADS)

    Woodcock, Gordon

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concepts. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles arc compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered. .

  4. Early warning indicators for monitoring nuclear plant performance

    SciTech Connect

    Acosta, R.J.

    1997-12-01

    Florida Power & Light Company`s (FP&L`s) Nuclear Division has developed a set of early warning indicators that are used to provide precursor indications of future plant performance. These indicators are monitored by management and safety committees to enable early detection of negative performance so that corrective actions may be taken prior to experiencing a significant decline in plant performance.

  5. The Decommissioning of the Trino Nuclear Power Plant

    SciTech Connect

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of

  6. Nuclear hourglass technique: An approach that detects electrically open nuclear pores in Xenopus laevis oocyte

    PubMed Central

    Danker, T.; Schillers, H.; Storck, J.; Shahin, V.; Krämer, B.; Wilhelmi, M.; Oberleithner, H.

    1999-01-01

    Nuclear pore complexes (NPCs) mediate both active transport and passive diffusion across the nuclear envelope (NE). Determination of NE electrical conductance, however, has been confounded by the lack of an appropriate technical approach. The nuclear patch clamp technique is restricted to preparations with electrically closed NPCs, and microelectrode techniques fail to resolve the extremely low input resistance of large oocyte nuclei. To address the problem, we have developed an approach for measuring the NE electrical conductance of Xenopus laevis oocyte nuclei. The method uses a tapered glass tube, which narrows in its middle part to 2/3 of the diameter of the nucleus. The isolated nucleus is sucked into the narrow part of the capillary by gentle fluid movement, while the resulting change in electrical resistance is monitored. NE electrical conductance was unexpectedly large (7.9 ± 0.34 S/cm2). Evaluation of NPC density by atomic force microscopy showed that this conductance corresponded to 3.7 × 106 NPCs. In contrast to earlier conclusions drawn from nuclear patch clamp experiments, NPCs were in an electrically “open” state with a mean single NPC electrical conductance of 1.7 ± 0.07 nS. Enabling or blocking of active NPC transport (accomplished by the addition of cytosolic extracts or gp62-directed antibodies) revealed this large NPC conductance to be independent of the activation state of the transport machinery located in the center of NPCs. We conclude that peripheral channels, which are presumed to reside in the NPC subunits, establish a high ionic permeability that is virtually independent of the active protein transport mechanism. PMID:10557355

  7. Effects of knowledge and persuasion on high-school students' attitudes toward nuclear power plants

    NASA Astrophysics Data System (ADS)

    Showers, Dennis E.; Shrigley, Robert L.

    Researchers report finding correlational data to identify a positive relationship between nuclear knowledge and positive attitudes toward the use of nuclear energy. This study investigated the relationship between nuclear knowledge and nuclear attitudes and to the understanding of Science-Technology-Society attitudes involving technological attitude objects. This quasi-experimental study tested the causal relationship between knowledge about nuclear power plants and attitudes toward their use in electrical generation. Subjects were presented with systematically designed communications developed to change either their knowledge about or attitude toward nuclear plants. The Standard Events of Instruction was the basis of the knowledge instruction, whereas the Learning Theory Approach and the Theory of Reasoned Action were the theoretical bases of the persuasive communication. The principal finding was that nuclear knowledge and nuclear attitude each can be changed independently of the other. Although knowledge and attitudes are correlationally linked, this study shows no evidence of a cause-effect relationship.Received: 4 May 1994; Revised: 14 July 1994;

  8. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  9. Electrical Wiring and Long-Distance Plant Communication.

    PubMed

    Hedrich, Rainer; Salvador-Recatalà, Vicenta; Dreyer, Ingo

    2016-05-01

    Electrical signalling over long distances is an efficient way of achieving cell-to-cell communication in living organisms. In plants, the phloem can be considered as a 'green cable' that allows the transmission of action potentials (APs) induced by stimuli such as wounding and cold. Measuring phloem potential changes and separating them from secondary responses of surrounding tissues can be achieved using living aphids as bioelectrodes. Two glutamate receptor-like genes (GLR3.3 and 3.6) were identified as being involved in the propagation of electrical activity from the damaged to undamaged leaves. However, phloem APs are initiated and propagated independently of these glutamate receptors. Here, we propose new screening approaches to obtain further information on the components required for electrical signalling in phloem cables. PMID:26880317

  10. Cycle Configurations for a PBMR Steam and Electricity Production Plant

    SciTech Connect

    Matzner, Dieter; Kriel, Willem; Correia, Michael; Greyvenstein, Renee

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite moderated High Temperature Gas-cooled Reactor (HTGR) that is capable of multiple missions. The petrochemical industry requires the use of high temperature steam and electricity for their processes. Currently coal or natural gas is utilised for the generation of high temperature steam and electricity, which under-utilises natural resources and in the process emits CO{sub 2} into the atmosphere. This paper provides an overview of the PBMR product development path and discusses how steam production forms part of the future possibilities of the PBMR technology. Suitable cycle configurations for both process steam and electricity generation as required by petrochemical plants are discussed. (authors)

  11. Development of an Integrity Evaluation System for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jin; Choi, Jae-Boong; Lee, Joon-Seong; Jun, Hyun-Kyu; Park, Youn-Won

    This paper describes the structure and development strategy for integrity evaluation system for nuclear power plants called NPP-KINS/SAFE. NPP-KINS/SAFE consists of three different programs covering the integrity assessment of reactor pressure vessel, pipings, and pressure tubes, respectively. The system has been developed based on currently available codes and standards, and includes a number of databases, expert systems, and numerical analysis schemes. NPP-KINS/SAFE is applicable for various types of nuclear power plants constructed in Korea with the aid of attached database systems including plant specific data. Case studies for the developed system are also provided.

  12. Instrumentation and control upgrade plan for Browns Ferry nuclear plant

    SciTech Connect

    Belew, M.R.; Langley, D.T. ); Torok, R.C.; Wilkinson, C.D. ); Stanley, L. )

    1992-01-01

    A comprehensive upgrade of the instrumentation and control (I C) systems at a power plant represents a formidable project for any utility. For a nuclear plant, the extra safety and reliability requirements along with regulatory constraints add further complications and cost. The need for the upgrade must, therefore, be very compelling, and the process must be well planned from the start. This paper describes the steps taken to initiate the I C upgrade process for Tennessee Valley Authority's (TVA's) Browns Ferry 2 nuclear plant. It explains the impetus for the upgrade, the expected benefits, and the process by which system upgrades will be selected and implemented.

  13. Analysis of valve failure data for LWR nuclear power plants

    SciTech Connect

    Schmidt, W. H.

    1980-01-01

    A computer analysis of the Nuclear Regulatory Commission (NRC) data file, compiled from Licensee Event Report (LER) data sheets, has been performed to characterize and highlight valve failures in light water reactor (LWR) nuclear power plants and provide guidance for valve improvement programs. The analysis is based on data from 1975 through 1978. Over this period, 889 valve citations were reported for pressurized water reactor (PWR) plants and 891 for boiling water reactor (BWR) plants. This report presents the pertinent LER data in a manner which indicates valve performance areas toward which improvement efforts may be directed.

  14. Analysis of nuclear power plant component failures

    SciTech Connect

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  15. Aging assessment of surge protective devices in nuclear power plants

    SciTech Connect

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

  16. A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants

    SciTech Connect

    Kercel, S.W.

    1995-02-01

    The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants while it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.

  17. A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants

    SciTech Connect

    Kercel, S.W.

    1995-04-01

    The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants. While it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.

  18. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... COMMISSION Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability; request for public comment.../CR-7135, ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire...

  19. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  20. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  1. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  2. Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports

    SciTech Connect

    Fresco, A.; Subudhi, M.; Gunther, W.; Grove, E.; Taylor, J.

    1993-12-01

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.

  3. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  4. Comparison: Direct thrust nuclear engine, nuclear electric engine, and a chemical engine for future space missions

    SciTech Connect

    Ramsthaler, J.H.; Sulmeisters, T.K.

    1988-01-01

    The need for an advanced direct thrust nuclear rocket propulsion engine has been identified in Project Forecast 2, Air Force Systems Command report which looks into future Air Force needs. The Air Force Astronautical Laboratory (AFAL) has been assigned responsibility for developing the nuclear engine, and they in turn have requested support from teams of contractors who have the full capability to assist in the development of the nuclear engine. The Idaho National Engineering Laboratory (INEL) has formed a team of experts with Martin Marietta for mission analysis. Science Applications International (SAIC) for flight safety analysis, Westinghouse for the nuclear subsystem, and Rocketdyne for the engine system. INEL is the overall program manager and manager for test facility design, construction and operation. The INEL team has produced plans for both the engine system and the ground test facility. AFAL has funded the INEL team to perform mission analyses to evaluate the cost, performance and operational advantages for a nuclear rocket engine in performing Air Force Space Missions. For those studies, the Advanced Nuclear Rocket Engine (ANRE), a scaled down NERVA derivative, was used as the baseline nuclear engine to compare against chemical engines and nuclear electric engines for performance of orbital transfer and maneuvering missions. 3 tabs.

  5. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    SciTech Connect

    Wong, S.M.; Boccio, J.L.; Karimian, S.; Azarm, M.A.; Carbonaro, J.; DeMoss, G.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.

  6. PEGASUS: A multi-megawatt nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; King, D.Q.; Cuta, J.M.; Webb, B.J.

    1986-01-01

    A propulsion system (The PEGASUS Drive) consisting of a magnetoplasmadynamic (MPD) thruster driven by a multimegawatt nuclear power system is proposed as the propulsion system for a manned Mars mission. The propulsion system described is based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The thermal power for the PEGASUS Drive is supplied by a boiling liquid-metal fast reactor. The system consists of the reactor, reactor shielding, power conditioning, heat rejection, and MPD thruster subsystems. It is capable of providing a maximum of 8,5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, 1.5 megawatts is available for spacecraft system operations and inflight mission applications, leaving the balance for power system operation.

  7. PEGASUS - A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, E. P.; Cuta, J. M.; Webb, B. J.; King, D. Q.

    1986-01-01

    A propulsion system (The PEGASUS Drive) consisting of a magnetoplasmadynamic (MPD) thruster driven by a multimegawatt nuclear power system is proposed as the propulsion system for a manned Mars mission. The propulsion system described is based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The thermal power for the PEGASUS Drive is supplied by a boiling liquid-metal fast reactor. The system consists of the reactor, reactor shielding, power conditioning, heat rejection, and MPD thruster subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, 1.5 megawatts is available for spacecraft system operations and inflight mission applications, leaving the balance for power system operation.

  8. Reactor design and integration into a nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Koenig, D. R.

    1978-01-01

    One of the well-defined applications for nuclear power in space is nuclear electric propulsion (NEP). Mission studies have identified the optimum power level (400 kWe). A single Shuttle launch requirement and science-package integration have added additional constraints to the design. A reactor design which will meet these constraints has been studied. The reactor employs 90 fuel elements, each heat pipe cooled. Reactor control is obtained with BeO/B4C drums in a BeO reflector. The balance of the spacecraft is shielded from the reactor with LiH. Power conditioning and reactor control drum drives are located behind the LiH with the power conditioning. Launch safety, mechanical design and integration with the power conversion subsystem are discussed.

  9. Nuclear Electric Propulsion for the Exploration of the Outer Planets

    NASA Astrophysics Data System (ADS)

    Noca, M.; Polk, J. E.; Lenard, R.

    2001-01-01

    New power and propulsion technology efforts such as the DS-1 ion propulsion system demonstration and renewed interest in space nuclear power sources call for a reassessment of the mission benefits of Nuclear Electric Propulsion (NEP). In this study, a large emphasis has been placed in defining the NEP vehicle configuration and corresponding subsystem elements in order to produce an estimate of the vehicle's payload delivery capability which is as credible as possible. Both a 100 kWe and a 1 MWe system are defined. Various Outer Planet missions are evaluated using NEP, such as a Pluto Orbiter, a Europa Lander and Sample Return, attain/Saturn Sample Return and a Neptune Orbiter. Additional information is contained in the original extended abstract.

  10. A potassium Rankine multimegawatt nuclear electric propulsion concept

    NASA Technical Reports Server (NTRS)

    Baumeister, E.; Rovang, R.; Mills, J.; Sercel, J.; Frisbee, R.

    1990-01-01

    Multimegawatt nuclear electric propulsion (NEP) has been identified as a potentially attractive option for future space exploratory missions. A liquid-metal-cooled reactor, potassium Rankine power system that is being developed is suited to fulfill this application. The key features of the nuclear power system are described, and system characteristics are provided for various potential NEP power ranges and operational lifetimes. The results of recent mission studies are presented to illustrate some of the potential benefits to future space exploration to be gained from high-power NEP. Specifically, mission analyses have been performed to assess the mass and trip time performance of advanced NEP for both cargo and piloted missions to Mars.

  11. Nuclear Power Plant NDE Challenges - Past, Present, and Future

    SciTech Connect

    Doctor, S. R.

    2007-03-21

    The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

  12. A nuclear electric propulsion vehicle for planetary exploration

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Phillips, W. M.

    1976-01-01

    A study is currently underway at JPL to design a nuclear electric-propulsion vehicle capable of performing detailed exploration of the outer planets. Evaluation of the design indicates that it is also applicable to orbit raising. Primary emphasis is on the power subsystem. Work on the design of the power system, the mission rationale, and preliminary spacecraft design are summarized. A propulsion system at a 400-kWe power level with a specific weight goal of no more than 25-kg/kW was selected for this study. The results indicate that this goal can be realized along with compatibility with the shuttle launch-vehicle constraints.

  13. Nuclear Electric Propulsion - A concept for solar system exploration

    NASA Technical Reports Server (NTRS)

    Nagorski, R. P.

    1981-01-01

    The potential of Nuclear Electric Propulsion (NEP) to meet the increasing demands of our planetary space exploration program is examined and evaluated. Based on an assumption of a modest growth beyond current technology, an NEP system is described that provides performance advantage over all competitive technologies. Flight times and available payload mass - as indicators of mission performance - are compared for several mission opportunities of interest. NEP is shown to have a unique capacity for substantial reductions in mission flight times in terms of payloads consistent with the needs of planetary exploration.

  14. Nuclear electric propulsion mission performance for fast piloted Mars missions

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Dudzinski, L. A.

    1991-01-01

    A mission study aimed at minimizing the time humans would spend in the space environment is presented. The use of nuclear electric propulsion (NEP), when combined with a suitable mission profile, can reduce the trip time to durations competitive with other propulsion systems. Specifically, a split mission profile utilizing an earth crew capture vehicle accounts for a significant portion of the trip time reduction compared to previous studies. NEP is shown to be capable of performing fast piloted missions to Mars at low power levels using near-term technology and is considered to be a viable candidate for these missions.

  15. Nuclear electric propulsion options for piloted Mars missions

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1993-01-01

    Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.

  16. Externally imposed electric field enhances plant root tip regeneration.

    PubMed

    Kral, Nicolas; Hanna Ougolnikova, Alexandra; Sena, Giovanni

    2016-06-01

    In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis. Crucially, we explored both spatial and temporal competences of the stump to respond to electrical stimulation, by varying respectively the position of the cut and the time interval between excision and stimulation. Our data indicate that a brief pulse of an electric field parallel to the root is sufficient to increase by up to two-fold the probability of its regeneration, and to perturb the local distribution of the hormone auxin, as well as cell division regulation. Remarkably, the orientation of the root towards the anode or the cathode is shown to play a role. PMID:27606066

  17. Externally imposed electric field enhances plant root tip regeneration

    PubMed Central

    Kral, Nicolas; Hanna Ougolnikova, Alexandra

    2016-01-01

    Abstract In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis. Crucially, we explored both spatial and temporal competences of the stump to respond to electrical stimulation, by varying respectively the position of the cut and the time interval between excision and stimulation. Our data indicate that a brief pulse of an electric field parallel to the root is sufficient to increase by up to two‐fold the probability of its regeneration, and to perturb the local distribution of the hormone auxin, as well as cell division regulation. Remarkably, the orientation of the root towards the anode or the cathode is shown to play a role. PMID:27606066

  18. Electromagnetic compatibility in nuclear power plants

    SciTech Connect

    Cirillo, J.; Prussel, M.

    1986-02-01

    EMC (electromagnetic compatibility) is being largely ignored in the design of nuclear power instrumentation and control systems. As a result, EMI (electromagnetic interference) is causing costly startup delays and spurious reactor trips. This paper describes existing problems, basic causes, and approaches to their solutions.

  19. Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis

    SciTech Connect

    Bednarczyk, A.A.

    1989-05-01

    The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.

  20. Nuclear Power Plant Containment Pressure Boundary Research

    SciTech Connect

    Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

    1999-09-15

    Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

  1. 75 FR 61779 - R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering changes to the Emergency Plan, pursuant to 10 CFR 50.54,...

  2. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  3. Dynamic testing of nuclear power plant structures: an evaluation

    SciTech Connect

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants.

  4. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  5. Safety system augmentation at Russian nuclear power plants

    SciTech Connect

    Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.; Reister, R.A. |

    1996-12-31

    This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC power supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.

  6. [Measurement of chemical agents in metallurgy field: electric steel plant].

    PubMed

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). PMID:23213795

  7. Evaluation of site characteristics for Guangdong nuclear power plant

    SciTech Connect

    Ruming, Z.; Dizhong, W.; Zhongmin, Y.

    1988-01-01

    This paper gives an account of the features of the site of Guangdong Nuclear Power Plant in general and in particular evaluates the outstanding site characteristics related to nuclear safety and public health. It is composed of two parts: the first part describes the seismo-geologic conditions of the site and the other treats the atmospheric dispersion conditions. It also contains the discussion why the possibility of inhabitancy within 5km from the exclusion area boundary would not be affected.

  8. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  9. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  10. Heterogonous Nanofluids for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Alammar, Khalid

    2014-09-01

    Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.

  11. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  12. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  13. A methodology for evaluating ``new`` technologies in nuclear power plants

    SciTech Connect

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  14. St. Lucie nuclear plant's instrument setpoint control program

    SciTech Connect

    Woodruff, B.A. )

    1991-01-01

    In the past several years, instrument setpoint control has become an issue of significant utility focus and concern. Various nuclear industry initiatives have contributed to shaping the current environment. Florida Power and Light Company's St. Lucie nuclear plant maintains a proactive approach to implementing an instrument setpoint control program. St. Lucie's timely response to prevailing setpoint issues ensures that an effective setpoint program is the end result. Florida Power and Light (FP and L) initiated a setpoint control program at St. Lucie, a two-unit Combustion Engineering plant, in 1985. The plan's development was the result of obsolete equipment modifications, setpoint changes, and regulatory inquiries.

  15. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect

    Berry, D. L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  16. Nuclear power plant alarm systems: Problems and issues

    SciTech Connect

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  17. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect

    Reifman, J.

    1997-10-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  18. Protective clothing laundering and monitoring at nuclear power plants

    SciTech Connect

    Hylko, J.M. . Dept. of Nuclear Engineering); Miller, M.L. , Inc., Albuquerque, NM ); Brehm, L.E.; Peterson, S.K. )

    1988-02-01

    This paper reports that a small but significant number of skin contamination incidents at Northern States Power Company's Monticello Nuclear Generating Plant were believed to have been caused by residual contamination in laundered, clean protective clothing. Since very little information was available on this mode of skin contamination, a two-part study was undertaken to evaluate it more fully. The first part of this study consisted of a survey of protective clothing laundering and monitoring practices at 24 nuclear power plants. The second part of the study was a simple experiment to evaluate the effect of perspiration on the transfer of residual contamination from laundered clothing.

  19. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  20. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    SciTech Connect

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  1. Ground-based testing of space nuclear power plants

    SciTech Connect

    McDonald, T.G.

    1990-10-22

    Small nuclear power plants for space applications are evaluated according to their testability in this two part report. The first part introduces the issues involved in testing these power plants. Some of the concerns include oxygen embrittlement of critical components, the test environment, the effects of a vacuum environment on materials, the practically of racing an activated test chamber, and possible testing alternative the SEHPTR, king develop at the Idaho National Engineering Laboratory. 10 refs., 6 figs., 1 tab.

  2. 76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to... Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that are acceptable to the...

  3. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  4. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... COMMISSION License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's AGENCY: Nuclear Regulatory... Cliffs Nuclear Power Plant site near Lusby, Maryland. The NRC has prepared an Environmental Assessment... dated September 17, 2010, Calvert Cliffs Nuclear Power Plant, LLC (CCNPP) submitted an application...

  5. Standard Technical Specifications General Electric plants, BWR/4: Bases (Sections 2.0-3.3). Volume 2, Revision 1

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved ST or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume I contains the Specifications for all chapters and sections of the improved STS. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1-3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4-3.10 of the improved STS.

  6. Relay behavior at the Perry Nuclear Power Plant during the 1986 earthquake in Leroy, Ohio

    SciTech Connect

    Skreiner, K.M.; Stevenson, J.D.; Wilson, P.R.; Stevenson and Associates, Cleveland, OH )

    1989-09-01

    The behavior of safety-related relays at the Perry Nuclear Power Plant during the January 31, 1986 magnitude 5.0 Leroy, Ohio earthquake and the seismic response levels to which they were subjected was investigated and documented for further study. The seismic performance of relays is an issue of current interest in the resolution of Unresolved Safety Issue A-46, Seismic Qualification of Equipment in Operating Nuclear Power Plants.'' Relays are a class of equipment, important to the seismic performance of nuclear plants, whose seismic behavior and ruggedness is difficult to quantify. Relays do not have to fail structurally but may operate spuriously by the chatter of their contacts to jeopardize the safety function. The data for this study were provided by the detailed post-earthquake engineering study performed by the Cleveland Electric Illuminating Company and additional investigations performed by the Electric Power Research Institute. All of the energized safety-related systems continued to operate through the event, and none of the safety-related systems in the standby mode experienced any spurious operation. While the Leroy earthquake 2% damped floor response spectra exceeded the safe shutdown earthquake (SSE) design spectra in the frequency range of 18Hz to 30Hz by as much as a factor of around three, safety-related relays worked satisfactorily. This was due to the fact that they were seismically qualified at considerably higher levels than the Leroy earthquake. 27 refs., 26 figs., 10 tabs.

  7. Seismic risk management solution for nuclear power plants

    DOE PAGESBeta

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  8. Seismic risk management solution for nuclear power plants

    SciTech Connect

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.

  9. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows

  10. Safety/security interface assessments at commercial nuclear power plants

    SciTech Connect

    Byers, K.R.; Brown, P.J.; Norderhaug, L.R.

    1985-07-01

    The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions during scheduled emergency preparedness exercises, examining security and operational response procedures, and interviewing plant personnel, the team has identified instances where safety/security conflicts can occur. 2 refs.

  11. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  12. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  13. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear...

  14. Robotic applications in PSE and G's nuclear and fossil power plants

    SciTech Connect

    Roman, H.T. )

    1993-09-01

    Robots are rapidly becoming a strategic technology in the electric utility industry. Since 1983, over 200 applications of these devices have been documented, often resulting in significant time and manpower savings. In nuclear plants, these devices have reduced radiation exposure to human workers and also reduced radiation exposure to human workers and also reduced plant downtime. Public Service Electric and Gas (PSE and G) Company is a nationally recognized leader in this technology. Since 1987, the company has spent $1.6 million on robotic hardware and development projects for use at its Salem (2 PWRS) and Hope Creek (1 BWR) nuclear plants. Savings to date from these investments has exceeded $5 million. Recently, PSE and G has expanded its robotic application efforts to include fossil plants, with many exciting new concepts. This paper will discuss the state-of-the-art mobile robots in the utility industry, and use of PSE and G's pioneering work in this area as a case study; discussing the cost, performance and benefits of specific applications.

  15. Is natural background or radiation from nuclear power plants leukemogenic

    SciTech Connect

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.

  16. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  17. Assessment of control rooms of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Norros, L.; Ranta, J.; Wahlstroem, B.

    1983-05-01

    The NUREG 0700 recommendations were assessed for implementation in the control rooms of Finnish nuclear power plants. Direct conclusions drawn from the American situation are misleading, because of differences in, for example, procurement of instruments or personnel training. If the review is limited to control room details, the NRC program (checklist) is successful. It can also be used during planning to observe small discrepancies.

  18. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  19. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  20. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  1. Aging of nuclear power plant safety cables

    SciTech Connect

    Gillen, K.T.; Salazar, E.A.

    1986-01-01

    Results from an extensive aging program on polymeric materials stripped from unused nuclear reactor safety cables are described. Mechanical damage was monitored after room temperature aging in a Co-60 gamma radiation source at various humidities and radiation dose rates ranging from 1.2 Mrad/h to 2 krad/h. For chloroprene, chlorosulfonated polyethylene, and silicone materials, the mechanical degradation was found to depend only on the total integrated radiation dose, implying that radiation dose rate effects are small. On the other hand, strong evidence for radiation dose rate effects were found for an ethylene propylene rubber material and a cross-linked polyolefin material. Humidity effects were determined to be insignificant for all the materials studied.

  2. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    NASA Astrophysics Data System (ADS)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-06-01

    THE ACCEPTANCE STRATEGY FOR NUCLEAR POWER PLANT IN INDONESIA. Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R&D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.

  3. LANDSAT-4 image data quality analysis for energy related applications. [nuclear power plant sites

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E. (Principal Investigator)

    1983-01-01

    No useable LANDSAT 4 TM data were obtained for the Hanford site in the Columbia Plateau region, but TM simulator data for a Virginia Electric Company nuclear power plant was used to test image processing algorithms. Principal component analyses of this data set clearly indicated that thermal plumes in surface waters used for reactor cooling would be discrenible. Image processing and analysis programs were successfully testing using the 7 band Arkansas test scene and preliminary analysis of TM data for the Savanah River Plant shows that current interactive, image enhancement, analysis and integration techniques can be effectively used for LANDSAT 4 data. Thermal band data appear adequate for gross estimates of thermal changes occurring near operating nuclear facilities especially in surface water bodies being used for reactor cooling purposes. Additional image processing software was written and tested which provides for more rapid and effective analysis of the 7 band TM data.

  4. Risk perception of nuclear power plants among university students in Northeast Asia after the Fukushima nuclear disaster.

    PubMed

    Ieong, Marco Chi Fong; Ho, Jung-Chun; Lee, Patricia Chiao-Tze; Hokama, Tomiko; Gima, Tsugiko; Luo, Lingling; Sohn, Myongsei; Kim, So Yoon; Kao, Shu-Fen; Hsieh, Wanhwa Annie; Chang, Hung-Lun; Chang, Peter Wu-Shou

    2014-11-01

    To examine the perception of nuclear energy risks among Asian university students following the Fukushima nuclear disaster, a standardized questionnaire survey was conducted since July 2011 after the Fukushima disaster. A total of 1814 respondents from 18 universities in China, Japan, Korea, and Taiwan participated in this survey. It showed that students with the following characteristics had a higher preference for "a clear schedule to phase out nuclear power plant (NPP)": females (adjusted odds ratio [aOR] = 1.84, 95% confidence interval [CI] = 1.44-2.34), in Japan (aOR = 2.81, 95% CI = 2.02-3.90), in China (aOR = 1.48, 95% CI = 1.04-2.09), and with perceived relative risks of cancer incidence greaterthan 1 (aOR = 1.42, 95% CI = 1.07-1.88). "If nuclear energy were phased out," the opinions on potential electricity shortage were as follows: Japan, aOR = 0.53, 95% CI = 0.40-0.69; China, aOR = 2.46, 95% CI = 1.75-3.45; and associated with academic majors (science/technology, aOR = 0.43, 95% CI = 0.31-0.59; medicine/health science, aOR = 0.64, 95% CI = 0.49-0.84). The results carried essential messages for nuclear energy policy in East Asia. PMID:24789816

  5. European standards and approaches to EMC in nuclear power plants

    SciTech Connect

    Bardsley, D.J.; Dillingham, S.R.; McMinn, K.

    1995-04-01

    Electromagnetic Interference (EMI) arising from a wide range of sources can threaten nuclear power plant operation. The need for measures to mitigate its effects have long been recognised although there are difference in approaches worldwide. The US industry approaches the problem by comprehensive site surveys defining an envelope of emissions for the environmental whilst the UK nuclear industry defined many years ago generic levels which cover power station environments. Moves to standardisation within the European community have led to slight changes in UK approach, in particular how large systems can be tested. The tests undertaken on UK nuclear plant include tests for immunity to conducted as well as radiated interference. Similar tests are also performed elsewhere in Europe but are not, to the authors` knowledge, commonly undertaken in the USA. Currently work is proceeding on draft international standards under the auspices of the IEC.

  6. Assessment of next generation nuclear plant intermediate heat exchanger design.

    SciTech Connect

    Majumdar, S.; Moisseytsev, A.; Natesan, K.; Nuclear Engineering Division

    2008-10-17

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made an assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. A detailed thermal hydraulic analysis, using models developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop. Two IHX designs namely, shell and straight tube and compact heat exchangers were considered in an earlier assessment. Helical coil heat exchangers were analyzed in the current report and the results were compared with the performance features of designs from industry. In addition, a comparative analysis is presented between the shell and straight tube, helical, and printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and secondary sides pressure drop, and number of tubes. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses were performed for the helical heat exchanger design and the results were compared with earlier-developed results on

  7. Nuclear power plant safety related pump issues

    SciTech Connect

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  8. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect

    Gray, L.W.

    1986-10-04

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  9. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  10. Calibration of radiation monitors at nuclear power plants. Final report

    SciTech Connect

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment.

  11. Applications of nuclear reactor power systems to electric propulsion missions.

    NASA Technical Reports Server (NTRS)

    Schaupp, R. W.; Sawyer, C. D.

    1971-01-01

    The performance of nuclear electric propulsion systems (NEP) has been evaluated for a wide variety of missions in an attempt to establish the commonality of NEP system requirements. Emphasis was given to those requirements and system characteristics that serve as guidelines for current technology development programs. Various interactions and tradeoffs between NEP system and mission parameters are described. The results show that the most significant factors in selecting NEP system size are launch mode (direct or spiral escape) and, to a weaker extent, launch vehicle capability. Other factors such as mission, payload, and thrust time constraints, have little influence, thus allowing one NEP system to be used for many missions. The results indicated that a 100 kWe NEP would be suitable for most direct escape missions and a 250 kWe NEP system would be suitable for more demanding missions that use the spiral escape mode.

  12. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  13. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  14. Study of reactor Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  15. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  16. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  17. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  18. Operating nuclear plant feedback to ASME and French codes

    SciTech Connect

    Journet, J.; O`Donnell, W.J.

    1996-12-01

    The French have an advantage in nuclear plant operating experience feedback due to the highly centralized nature of their nuclear industry. There is only one utility in charge of design as well as operations (EDF) and only one reactor vendor (Framatome). The ASME Code has played a key role in resolving technical issues in the design and operation of nuclear plants since the inception of nuclear power. The committee structure of the Code brings an ideal combination of senior technical people with both broad and specialized experience to bear on complex how safe is safe enough technical issues. The authors now see an even greater role for the ASME Code in a proposed new regulatory era for the US nuclear industry. The current legalistic confrontational regulatory era has been quite destructive. There now appears to be a real opportunity to begin a new era of technical consensus as the primary means for resolving safety issues. This change can quickly be brought about by having the industry take operating plant problems and regulatory technical issues directly to the ASME Code for timely resolution. Surprisingly, there is no institution in the US nuclear industry with such a mandate. In fact, the industry is organized to feedback through the Nuclear Regulatory Commission issues which could be far better resolved through the ASME Code. Major regulatory benefits can be achieved by closing this loop and providing systematic interaction with the ASME Code. The essential elements of a new regulatory era and ideas for organizing US institutional industry responsibilities, taken from the French experience, are described in this paper.

  19. Summary of the financial and ratepayer impacts of nuclear power plant regulatory reform

    SciTech Connect

    Turpin, A.Y.

    1985-05-01

    This report estimates the financial impact on utilities and ratepayers of nuclear power plant regulatory reforms. Three situations are investigated: (1) no reform, (2) combined early-site-permit and preapproval-of-design reforms, and (3) total reform. Also, two types of capacity additions are evaluated using two utility companies as case studies: (1) nuclear plus generic capacity, and (2) all-nuclear capacity. Results indicate that both the shorter construction lead-time afforded by nuclear regulatory reform and the timing of new capacity additions are extremely important in enabling a utility to remain in a healthy financial position while adding capacity to meet future demand and at the same time reducing the price of electricity to the ratepayers. The lower added capital costs and fuel cost savings obtained from reformed nuclear units allow a utility dependent on oil and gas steam generation to experience price decreases as these new units begin commercial operation. The study also points out that in simulations excluding the shorter lead-time generic capacity, price increases were greater and financial performance was worse for both utilities. These facts indicate the importance of shortening the construction lead-time through nuclear regulatory reform so that nuclear power will be more competitive with coal. 19 refs., 4 figs., 3 tabs.

  20. Licensing retrofit incinerators at commercial nuclear power plants

    SciTech Connect

    Dodge, R.L.; Edwards, C.W.; Wilson, B.

    1983-01-01

    In order to determine whether or not a backfit incinerator could be licensed under the provisions of 10 CFR Part 50.59, Gilbert Associates, Inc., with support from the Department of Energy, prepared, on a generic basis, typical engineering design information, accident analysis data and other documentation necessary to apply to the Nuclear Regulatory Commission for a license to backfit a low-level radioactive waste incinerator in an operating nuclear power plant. The Department of Energy, serving in the role of a typical utility organization, submitted this generic report to the Nuclear Regulatory Commission for review and comment in a mock demonstration of the licensing process. The ultimate goal of this effort is to identify and resolve any safety issues associated with backfit incinerators so that a sufficient level of confidence in the licensability of backfit incinerators can be installed in nuclear utility management, and to encourage the industry to actually proceed with plans to install incinerators on a retrofit basis.

  1. Ecological aspects of the chernobyl nuclear plant disaster.

    PubMed

    Medvedev, Z A

    1986-07-01

    The partial meltdown of the 1000MW reactor in Chernobyl and the massive release of radionuclides into the environment is the first large-scale contamination of a geographically significant area by a power-generating civilian nuclear plant. It will have a long term effect on the human population, agriculture and the environment. Previous cases of accidental contamination of the environment on such a scale were connected with the disposal of reprocessed nuclear waste or the release of radioactivity from atmospheric and underground tests of nuclear weapons. One such contamination, which provides important lessons in the wake of the Chernobyl disaster, was linked with the explosion of the nuclear waste storage facility near Kyshtym in the Cheliabinsk region of the Soviet Union in 1958. It resulted in the creation of a special 'exclusion zone', resettlement of local populations and special construction projects designed to prevent the distribution of radioactivity over even larger areas. PMID:21227774

  2. Benefits of Nuclear Electric Propulsion for Outer Planet Exploration

    NASA Technical Reports Server (NTRS)

    Kos, Larry; Johnson, Les; Jones, Jonathan; Trausch, Ann; Eberle, Bill; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) offers significant benefits to missions for outer planet exploration. Reaching outer planet destinations, especially beyond Jupiter, is a struggle against time and distance. For relatively near missions, such as a Europa lander, conventional chemical propulsion and NEP offer similar performance and capabilities. For challenging missions such as a Pluto orbiter, neither chemical nor solar electric propulsion are capable while NEP offers acceptable performance. Three missions are compared in this paper: Europa lander, Pluto orbiter, and Titan sample return, illustrating how performance of conventional and advanced propulsion systems vary with increasing difficulty. The paper presents parametric trajectory performance data for NEP. Preliminary mass/performance estimates are provided for a Europa lander and a Titan sample return system, to derive net payloads for NEP. The NEP system delivers payloads and ascent/descent spacecraft to orbit around the target body, and for sample return, delivers the sample carrier system from Titan orbit to an Earth transfer trajectory. A representative scientific payload 500 kg was assumed, typical for a robotic mission. The resulting NEP systems are 100-kWe class, with specific impulse from 6000 to 9000 seconds.

  3. SP-100 nuclear electric propulsion for Mars cargo missions

    NASA Astrophysics Data System (ADS)

    Frisbee, Robert H.; Hoffman, Nathan J.

    1993-06-01

    This paper summarizes an evaluation of mission performance (in terms of vehicle mass and trip time) of the use of the near-term SP-100 reactor technology for nuclear electric propulsion for Mars cargo missions, and of the technology requirements for the propulsion and dynamic power conversion systems of the vehicle. The reactor power system uses dynamic power conversion (Rankine), and the propulsion system uses lithium-propellant magnetoplasmadynamic (MPD) thrusters. Three reactor power modules are used to give a total 'bus' power of 1.7 MWe. The total power, power conditioning, and propulsion systems specific mass is 24.8 kg/kWe; the propellant tankage factor is 2.8 percent. The power conditioning system has an efficiency of 90.2 percent and the MPD thrusters an efficiency (electric-to-jet) of 60 percent at a nominal specific impulse of 5000 lb(f)-s/lb(m). Rankine, Brayton, and Stirling dynamic power conversion systems were compared, and the Rankine was found to give the best performance in terms of smallest specific mass and volume; however, it has the longest development time requirement.

  4. Investigation of nuclear electric powered interstellar precursor missions

    NASA Astrophysics Data System (ADS)

    Simone, Domenico; Bruno, Claudio; Czysz, Paul A.

    2011-04-01

    Nuclear Electric Propulsion (NEP) is a technology conceptually proposed since the 1940s by E. Stuhlinger in Germany. The JIMO mission originally planned by NASA in the early 2000s produced at least two designs of ion thrusters fed by a 20-30 kW nuclear powerplant. When compared to conventional (chemical) propulsion, the major advantage of NEP in the JIMO context was recognized to be the much higher Isp (lab-tested at up to 15,000 s) and the capability for sustained power generation, up to 8-10 years when derated to Isp about 8000 s. The goal of this paper is to show that current or near term NEP technology enables missions far beyond our immediate interplanetary backyard. In fact, by extending the semi-analytical approach used by Stuhlinger, with reasonable ratios α≡power/mass of the propulsion system (i.e., 0.1- 0.4 kW/kg), missions to the Kuiper Belt (40 AU and beyond) and even the so-called FOCAL mission (at 540 AU) become feasible with an attractive payload fraction and in times of order 10-15 years. Further results regarding missions to Sedna's perihelion/aphelion, and to Oort's cloud will also be presented, showing the constraints affecting their feasibility and mass budget.

  5. In situ monitoring with Tradescantia around nuclear power plants.

    PubMed Central

    Ichikawa, S

    1981-01-01

    Highly sensitive mutational responses of the stamen-hair system of some Tradescantia clones heterozygous for flower color (blue/pink, the blue being dominant) to low-level radiation and chemical mutagens, as demonstrated in the last decade, seem to endorse this system to be the most promising biological tester for detecting the genetic effects of mutagens at low levels. Two triploid (thus sterile) clones, KU 7 and KU 9, have been established as those suitable for in situ monitoring of environmental mutagens. In situ monitoring with such Tradescantia clones was first tried in 1974 around a nuclear power plant in Japan, then has been repeated until 1979 around more nuclear plants. About 260,000 to 1,570,000 stamen hairs were observed per year per nuclear plant (about 12-million hairs in total), and the data of pink mutation frequency were analyzed statistically. Significantly increased mutation frequencies were observed and were correlated to the operation periods of the nuclear facilities and to predominant wind direction, but not to other environmental factors. Considering physical monitoring data of radiation dose in the air, internal exposure due to incorporation and concentration of man-made radioactive nuclides seems to be of a greater importance in increasing mutation incidence. PMID:7460878

  6. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  7. Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors

    DOEpatents

    Powell, J. G.

    1991-01-01

    A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

  8. Revised seismic and geologic siting regulations for nuclear power plants

    SciTech Connect

    Murphy, A.J.; Chokshi, N.C.

    1997-02-01

    The primary regulatory basis governing the seismic design of nuclear power plants is contained in Appendix A to Part 50, General Design Criteria for Nuclear Power Plants, of Title 10 of the Code of Federal Regulations (CFR). General Design Criteria (GDC) 2 defines requirements for design bases for protection against natural phenomena. GDC 2 states the performance criterion that {open_quotes}Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, . . . without loss of capability to perform their safety functions. . .{close_quotes}. Appendix A to Part 100, Seismic and Geologic Siting Criteria for Nuclear Power Plants, has been the principal document which provided detailed criteria to evaluate the suitability of proposed sites and suitability of the plant design basis established in consideration of the seismic and geologic characteristics of the proposed sites. Appendix A defines required seismological and geological investigations and requirements for other design conditions such as soil stability, slope stability, and seismically induced floods and water waves, and requirements for seismic instrumentation. The NRC staff is in the process of revising Appendix A. The NRC has recently revised seismic siting and design regulations for future applications. These revisions are discussed in detail in this paper.

  9. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  10. Robots in PSE G's nuclear plants - experience and future projections

    SciTech Connect

    Roman, H.T. )

    1992-01-01

    Since the cleanup at Three Mile Island Unit 2 utilities have used robots, specifically teleoperated devices, to save significant human exposure, reduce plant downtime, and improve plant operations. Early work has centered on plant inspection, surveillance, and monitoring tasks, with future efforts likely to be directed toward operation and maintenance tasks. Public Service Electric Gas (PSE G) Company has been a pioneer in the application of this technology, gaining worldwide recognition for its work. PSE G's leadership role in this technology and their nationally recognized Applied Robotics Technology (ART) Facility has served as a model for the national and international utility industries. This paper very briefly explores the growth in utility robotic applications; discusses in detail PSE G's use of robotic devices; examines the role of the ART Facility in PSE G's success; and projects the potential role of robots in the power plant of the future.

  11. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    SciTech Connect

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  12. Educators benefit from energy information centers at nuclear plant sites

    SciTech Connect

    Krcma-Olson, L.

    1994-12-31

    While issues like dry storage, low-level waste storage, radiation, and license extension are projects with a technical perspective that need to be planned and executed at nuclear power plants, more difficult is the political perspective-gaining public acceptance to allow these projects to proceed. And public perception is predicated on the way plant neighbors and community members understand, accept, and trust the plants. Community educators are a key audience. Annually, U.S. information centers host about one million visitors; roughly half of them are school children who will soon join the ranks of voters, taxpayers, utility customers, and employees. Programs for educators and their classes vary from tours of centers that include computer games and video programs on energy-related topics to audio-visual presentations by center personnel. Some facilities have environmental activities such as hatcheries or nature trails, while others offer plant tours to specific age groups.

  13. Review of maintenance personnel practices at nuclear power plants

    SciTech Connect

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  14. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  15. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  16. Nuclear power plant control room operators' performance research

    SciTech Connect

    Gray, L.H.; Haas, P.M.

    1984-01-01

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis.

  17. Application of AI technology to nuclear plant operations

    SciTech Connect

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives.

  18. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  19. Microbial-induced corrosion in nuclear power plant materials

    NASA Astrophysics Data System (ADS)

    Licina, George J.; Cubicciotti, Daniel

    1989-12-01

    The long construction times associated with nuclear plants and the large number of redundant or standby systems where water is allowed to remain stagnant for long periods of time produce conditions under which microbial-induced corrosion (MIC) can occur. Carbon and low-alloy steels, stainless steels and copper alloys are all susceptible to MIC in raw-water applications. Visual examination is particularly useful in performing preliminary assessments of MIC. If properly diagnosed, MIC can be effectively treated during plant construction, operation and temporary shutdowns.

  20. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position...

  1. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position...

  2. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... COMMISSION 10 CFR Parts 50 and 52 Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... Hurricane and Hurricane Missiles for Nuclear Power Plants.'' This regulatory guide provides licensees and...- basis hurricane and design-basis hurricane-generated missiles that a nuclear power plant should...

  3. 78 FR 46255 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... COMMISSION 10 CFR Part 51 RIN 3150-AI42 Revisions to Environmental Review for Renewal of Nuclear Power Plant... environmental effect of renewing the operating license of a nuclear power plant. Compliance with the provisions... nuclear power plant. This document is necessary to clarify and correct the revisions made to the...

  4. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Mars Missions

    NASA Astrophysics Data System (ADS)

    Koppel, Christophe R.; Valentian, Dominique; Latham, Paul; Fearn, David; Bruno, Claudio; Nicolini, David; Roux, Jean-Pierre; Paganucci, F.; Saverdi, Massimo

    2004-02-01

    Recent US and European initiatives in Nuclear Propulsion lend themselves naturally to raising the question of comparing various options and particularly Nuclear Electric Propulsion (NEP) with Solar Electric Propulsion (SEP). SEP is in fact mentioned in one of the latest versions of the NASA Mars Manned Mission as a possible candidate. The purpose of this paper is to compare NEP, for instance, using high power MPD, Ion or Plasma thrusters, with SEP systems. The same payload is assumed in both cases. The task remains to find the final mass ratios and cost estimates and to determine the particular features of each technology. Each technology has its own virtues and vices: NEP implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes compatible with Ariane 5 or the Space Shuttle bay. Issues of safety and launch risks are especially important to public opinion, which is a factor to be reckoned with. Power conversion in space, including thermal cycle efficiency and radiators, is a technical issue in need of attention if power is large, i.e., of order 0.1 MW and above, and so is power conditioning and other ancillary systems. Type of mission, Isp and thrust will ultimately determine a large fraction of the mass to be orbited, as they drive propellant mass. For manned missions, the trade-off also involves consumables and travel time because of exposure to Solar wind and cosmic radiation. Future manned NEP missions will probably need superconducting coils, entailing cryostat technology. The on-board presence of cryogenic propellant (e.g., LH2) may reassure the feasibility of this technology, implying, however, a trade-off between propellant volume to be orbited and reduced thruster mass. SEP is attractive right now in the mind of the public, but also of scientists involved in Solar system exploration. Some of the appeal derives from the hope of reducing propellant mass because

  5. Impact of power conditioning on the life of nuclear plant auxiliary system equipment

    SciTech Connect

    Hussain, B.; Behera, A.K.; Beck, C.E.; Alsammarae, A.J.

    1996-06-01

    A program is presented for prolonging the useful life of major equipment used in the auxiliary distribution systems of nuclear generating plants, with a focus on power quality and power conditioning. Both reactive power compensation and control of power quality have a significant impact on the life of electrical equipment. Improvements result from reduced operating temperatures, from systematic load reduction in the distribution system, and from reductions in phase imbalances and harmonics. This paper focuses on the impact of power conditioning on the life of transformers, cables, breakers, motors, and solenoids.

  6. Supporting Our Nation's Nuclear Industry

    ScienceCinema

    Lyons, Peter

    2013-05-29

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  7. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... COMMISSION Review of Safety Analysis Reports for Nuclear Power Plants, Introduction AGENCY: Nuclear... subsection to NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power..., Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants:...

  8. 75 FR 11575 - James A. Fitzpatrick Nuclear Power Plant Environmental Assessment and Finding of No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... COMMISSION James A. Fitzpatrick Nuclear Power Plant Environmental Assessment and Finding of No Significant... Program for Nuclear Power Facilities Operating Prior to January 1, 1979,'' issued to Entergy Nuclear Operations, Inc. (the licensee), for the operation of the James A. FitzPatrick Nuclear Power Plant...

  9. Expert systems and their use in nuclear power plants

    SciTech Connect

    Uhrig, R.E. |

    1990-12-31

    In the operation of a nuclear power plant, great quantities of numeric, symbolic, and quantitative information are handled by the reactor operators even during routine operation. The sheer magnitude of the number of process parameters and systems interactions poses difficulties for the operators, particularly during abnormal or emergency situations. Recovery from an upset situation depends upon the facility with which available raw data can be converted into, and assimilated as, meaningful knowledge. In operating a nuclear power plant, people are sometimes affected by fatigue, stress, emotion, and environmental factors that may have varying degrees of influence on their performance. Expert systems provide a method of removing some of the uncertainty from operator decisions by providing expert advice and rapid access to a large information base. 74 refs., 2 tabs.

  10. The impossible dream? How Nuclear Electric, Ltd. pulled itself out of the ashes of government ownership and became highly competitive in a privatized and deregulating British power market

    SciTech Connect

    Maycock, P.

    1998-12-31

    The day was dark for Nuclear Electric plc. when the British government decided it would privatize and deregulate the electric utility industry. For years, Nuclear Electric and other UK-based fossil power producers had been operating in a regulated market where the state set and guaranteed the price of electricity. All that was changing in Britain as the government introduced competition and as customers looked forward to purchasing power from the lowest bidder. Essentially the situation in England was much the same as it is now in the US: there was major momentum toward deregulation. The reality of competition in Britain came as good news to many power producers--in particular those who kept the lights on cost effectively. Others, However, weren`t so optimistic, especially nuclear plants that traditionally bear higher safety and maintenance costs than their fossil counterparts. Taking its cues from the City (Britain`s Wall Street), the British government simply considered nuclear generators to be unreliable, high cost, unprofitable organizations incapable of surviving in a privatized environment. It therefore left its nuclear power plants off the docket when selling (privatizing) its generating capacity. This paper describes how Nuclear Electric Ltd. became competitive in a deregulated environment.

  11. 78 FR 28245 - In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION [NRC-2013-0093; Docket No.: 50-348, 50-364; License No.: NPF-2, NPF-8; EA-12-145] In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2; Confirmatory Order I Southern Nuclear Operating Company (SNC or Licensee)...

  12. Effects of 60-Hz electric fields on living plants exposed for extended periods. Final report

    SciTech Connect

    Not Available

    1985-07-01

    The effects of intense 60-Hz electric fields were studied by exposing plants of five kinds (crops) for extended periods in a special greenhouse where cultural and environmental factors could be controlled. Plant populations and densities simulated field conditions. While exposed, plants of all crops germinated satisfactorily, and plants of sweet corn and wheat completed their life cycles and produced viable seed. Plants of alfalfa and tall fescue were at the early bloom stage when harvested. Exposure of plants of five kinds to electric fields had no statistically significant effects on seed germination, seedling growth, plant growth, phenology, flowering, seed set, biomass production, plant height, leaf area, plant survival, and nodulation. Exposure to 60-Hz electric fields resulted in very limited damage to terminal leaf tips, awns, and corn tassels, particularly at fields of 30 kV/m or greater. 47 refs., 36 figs., 44 tabs.

  13. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  14. New Generation Nuclear Plant (NGNP) Project, Preliminary Point Design

    SciTech Connect

    F. H. Southworth; P. E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-03-01

    This paper provides a preliminary assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebblebed fuel helium gas reactor. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors.

  15. Incidents at nuclear power plants caused by the human factor

    SciTech Connect

    Mashin, V. A.

    2012-09-15

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report 'Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.' The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  16. Decommissioning nuclear power plants - the wave of the future

    SciTech Connect

    Griggs, F.S. Jr.

    1994-12-31

    The paper discusses the project controls developed in the decommissioning of a nuclear power plant. Considerations are given to the contaminated piping and equipment that have to be removed and the spent and used fuel that has to be disposed of. The storage issue is of primary concern here. The cost control aspects and the dynamics of decommissioning are discussed. The effects of decommissioning laws on the construction and engineering firms are mentioned. 5 refs.

  17. A Neptune Vision Mission using Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Bienstock, B.; Baines, K. H.; Mahaffey, P.; Steffes, P.; Atreya, S.; Stern, A.; Wright, M.; Boeing; Ball Aerospace

    2004-11-01

    The giant planets of the outer solar system divide into two distinct classes: the ``gas giants" Jupiter and Saturn, primarily comprising hydrogen and helium; and the ``ice giants" Uranus and Neptune that are believed to contain significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, extrasolar systems. By 2012, Pioneer, Voyager, Galileo, Cassini, and possibly a New Frontiers Jupiter mission will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune mission would deliver the corresponding key data for an ice giant planet. A Neptune Orbiter with Probes mission utilizing nuclear electric propulsion (NEP) to study the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars is being examined. Additional targets include Neptune's enigmatic ring system, Triton, Nereid, and the other icy satellites of Neptune. Power and propulsion would be provided using nuclear electric technologies. Such an ambitious mission requires a number of technical issues be investigated and resolved, including: (1) giant-planet atmospheric probe thermal protection system (TPS) design, (2) descent probe design including seals, windows, penetrations and inlets, and pressure vessel, (3) probe telecommunications through the dense and absorbing Neptunian atmosphere, (4) developing a realizable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for detailed measurements of Triton and the other icy satellites as well as ring science, (5) and, within NEP mass and power constraints, defining an appropriate suite of science instruments to explore the depths of the Neptune atmosphere, magnetic field, Triton, and

  18. A Neptune/Triton Vision Mission Using Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Steffes, P.; Bienstock, B.; Atkinson, D. H.; Baines, K.; Mahaffey, P.; Atreya, S.; Stern, A.; Wright, M.

    2004-12-01

    The giant planets of the outer solar system divide into two distinct classes: the `gas giants' Jupiter and Saturn, primarily comprising hydrogen and helium; and the `ice giants' Uranus and Neptune that are believed to contain significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, extrasolar systems. By 2012, Pioneer, Voyager, Galileo, Cassini, and possibly a New Frontiers Jupiter mission will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune mission would deliver the corresponding key data for an ice giant planet. A Neptune Orbiter with Probes mission utilizing nuclear electric propulsion (NEP) to study Triton, Nereid, the other icy satellites of Neptune, Neptune's system of rings, and the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars is being examined. Power and propulsion would be provided using nuclear electric technologies. Such an ambitious mission requires a number of technical issues be investigated and resolved, including: (1) developing a realizable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for detailed measurements of Triton, the other icy satellites and ring science, (2) giant-planet atmospheric probe thermal protection system (TPS) design, (3) descent probe design including seals, windows, penetrations and inlets, and pressure vessel, (4) probe telecommunications through the dense and absorbing Neptunian atmosphere, and (5) within NEP mass and power constraints, defining an appropriate suite of science instruments to explore the depths of the Neptune atmosphere, magnetic field, Triton, and the icy satellites. Another driving factor in

  19. Understanding the nature of nuclear power plant risk

    SciTech Connect

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  20. Epidemiological Evidence of Childhood Leukaemia Around Nuclear Power Plants

    PubMed Central

    Janiak, Marek K.

    2014-01-01

    A few reports of increased numbers of leukaemia cases (clusters) in children living in the vicinity of nuclear power plants (NPP) and other nuclear installations have triggered a heated debate over the possible causes of the disease. In this review the most important cases of childhood leukaemia clusters around NPPs are described and analyzed with special emphasis on the relationship between the environmental exposure to ionizing radiation and the risk of leukaemia. Since, as indicated, a lifetime residency in the proximity of an NPP does not pose any specific health risk to people and the emitted ionizing radiation is too small to cause cancer, a number of hypotheses have been proposed to explain the childhood leukaemia clusters. The most likely explanation for the clusters is ‘population mixing’, i.e., the influx of outside workers to rural regions where nuclear installations are being set up and where local people are not immune to pathogens brought along with the incomers. PMID:25249830

  1. Understanding seismic design criteria for Japanese Nuclear Power Plants

    SciTech Connect

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1995-04-01

    This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non-nuclear structures have been reviewed and summarized. Some key documents for understanding Japanese seismic design criteria are also listed with brief descriptions. The paper highlights the design criteria to determine the seismic demand and component capacity in comparison with U.S. criteria, the background studies which have led to the current Japanese design criteria, and a survey of current research activities. More detailed technical descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  2. Regulation of nuclear shape and size in plants.

    PubMed

    Meier, Iris; Griffis, Anna Hn; Groves, Norman R; Wagner, Alecia

    2016-06-01

    Nuclear shape and size changes have long been used by cytopathologists to diagnose, stage, and prognose cancer. However, the underlying causalities and molecular mechanisms are largely unknown. The current eukaryotic tree of life groups eukaryotes into five supergroups, with all organisms between humans and yeast falling into the supergroup Opisthokonta. The emergence of model organisms with strong molecular genetic methodology in the other supergroups has recently facilitated a broader evolutionary approach to pressing biological questions. Here, we review what is known about the control of nuclear shape and size in the Archaeplastidae, the supergroup containing the higher plants. We discuss common themes as well as differences toward a more generalized model of how eukaryotic organisms regulate nuclear morphology. PMID:27030912

  3. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  4. Safety Second: the NRC and America's nuclear power plants

    SciTech Connect

    Adato, M.; MacKenzie, J.; Pollard, R.; Weiss, E.

    1987-01-01

    In 1975, Congress created the Nuclear Regulatory Commission (NRC). Its primary responsibility was to be the regulation of the nuclear power industry in order to maintain public health and safety. On March 28, 1979, in the worst commercial nuclear accident in US history, the plant at Three Mile Island began to leak radioactive material. How was Three Mile Island possible. Where was the NRC. This analysis by the Union of Concerned Scientists (UCS) of the NRC's first decade, points specifically to the factors that contributed to the accident at Three Mile Island. The NRC, created as a watchdog of the nuclear power industry, suffers from problems of mindset, says the UCS. The commission's problems are political, not technical; it repeatedly ranks special interests above the interest of public safety. This book critiques the NRC's performance in four specific areas. It charges that the agency has avoided tackling the most pervasive safety issues; has limited public participation in decision making and power plant licensing; has failed to enforce safety standards or conduct adequate regulation investigations; and, finally, has maintained a fraternal relationship with the industry it was created to regulate, serving as its advocate rather than it adversary. The final chapter offers recommendations for agency improvement that must be met if the NRC is to fulfill its responsibility for safety first.

  5. Role of electrical problems in the failure of Narora power plant

    SciTech Connect

    Rao, J.S.

    1995-12-31

    In the early morning hours on March 31, 1993, a major accident took place in a nuclear power plant located at Narora in Northern India. A huge fire with bright yellow-red flame was seen at both ends of the generator. Extensive damage to the power and control cables and bus ducts took place during this accident. The vertical aluminum ducting above the neutral transformer was completely melted. The ducts ending near the excitation panels had been shattered. All the panels of AVR, Field Breaker and thyristor cubicles were completely damaged in the fire. Mechanical failures include fatigue fracture of Blade No. 52 of the last stage, Bearings No. 4 and No. 5, Generator seals. This paper describes the role of electrical systems in this accident.

  6. Validation of seismic probabilistic risk assessments of nuclear power plants

    SciTech Connect

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves.

  7. Proactive Management of Materials Degradation for Nuclear Power Plant Systems

    SciTech Connect

    Bond, Leonard J.; Taylor, Theodore T.; Doctor, Steven R.; Hull, Amy; Malik, Shah

    2008-09-01

    There are approximately 440 operating reactors in the global nuclear power plant (NPP) fleet, and these have an average age greater than 20 years. These NPPs had design lives of 30 or 40 years. The United States is currently implementing license extensions of 20 years on many plants and consideration is now being given to the concept of “life-beyond-60,” a further period of license extension from 60 to 80 years, and potentially longer. In almost all countries with NPPs, authorities are looking at some form of license renewal program. There is a growing urgency as a number of plants face either approvals for license extension or shut down, which will require deployment of new power plants. In support of NPP license extension over the past decade, various national and international programs have been initiated. This paper reports part of the work performed in support of the U.S. Nuclear Regulatory Commission’s (NRC’s) Proactive Management of Materials Degradation (PMMD) program. The paper concisely explains the basic principles of PMMD, its relationship to advanced diagnostics and prognostics and provides an assessment of some the technical gaps in PMMD and prognostics that need to be addressed.

  8. The Meteorological Monitoring program at a former nuclear weapons plant

    SciTech Connect

    Maxwell, D.R.; Bowen, B.M.

    1994-02-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

  9. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  10. Work practices, fatigue, and nuclear power plant safety performance.

    PubMed

    Baker, K; Olson, J; Morisseau, D

    1994-06-01

    This paper focuses on work practices that may contribute to fatigue-induced performance decrements in the commercial nuclear power industry. Specifically, the amount of overtime worked by operations, technical, and maintenance personnel and the 12-h operator shift schedule are studied. Although overtime for all three job categories was fairly high at a number of plants, the analyses detected a clear statistical relationship only between operations overtime and plant safety performance. The results for the 12-h operator shift schedule were ambiguous. Although the 12-h operator shift schedule was correlated with operator error, it was not significantly related to the other five safety indicators. This research suggests that at least one of the existing work practices--the amount of operator overtime worked at some plants--represents a safety concern in this industry; however, further research is required before any definitive conclusions can be drawn. PMID:8070790

  11. Power conditioning system modelling for nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Metcalf, Kenneth J.

    1993-11-01

    NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.

  12. Power Conditioning System Modelling for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    1993-01-01

    NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.

  13. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  14. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type

  15. US central station nuclear electric generating units: significant milestones (status as of July 1, 1980)

    SciTech Connect

    Not Available

    1980-09-01

    The status of 189 US nuclear power plants is reported in a table which gives the name, owner, capacity, type, NSSS architect and contractor and data of public announcement, NSSS order, licensing, and initial operation. The plants are also indexed according to state, region, utility, and alphabetical name. The utility nuclear steam supply system orders are also listed. (DLC)

  16. Routine hand doses vs monitoring regulations at a nuclear power plant.

    PubMed

    Huggins, T R; Watson, J E

    1984-04-01

    Hand radiation doses to workers at a nuclear power plant were monitored in this study to evaluate compliance with dose limits and to determine whether hand monitoring on a routine basis is necessary. Two hundred in-plant workers at Carolina Power and Light Co.'s H.B. Robinson Steam Electric Generating Plant were monitored with a ring TLD dosimeter on each hand for four months during routine plant operations. Study participants included plant operators, electricians, mechanics, health physics technicians and decontamination personnel. Ring dosimeters were worn, in addition to whole-body TLD dosimeters, at all times workers were in radiation control areas. Hand dosimeters were read on the same monthly schedule as the whole-body dosimeters to ensure correlation of exposure periods. The results of the analysis of hand-dose data obtained for these workers are summarized as follows: (1) No worker's hand dose exceeded 25% of the allowable quarterly dose. (2) Ninety-nine percent of hand doses were less than 600 mrem/month. (3) The highest hand dose observed in any month was 1074 mrem which if received for three months, is below regulatory dose limits and below the dose value where monitoring is required. The highest actual hand dose observed in the last quarter of 1981 was 1335 mrem. (4) Examination of hand dose to whole-body dose ratios revealed that if the whole-body dose limit is approached, hand doses are still below the dose level where monitoring is required. (5) A linear-regression analysis of hand and whole-body dose data provides the ability to predict hand doses from the whole-body doses. From these results, it is concluded that routine monitoring of hand doses is not required at the H.B. Robinson plant. This conclusion should also be applicable to routine operations at other similar nuclear plants. PMID:6706587

  17. [Complexities of the stress experienced by employees of the Fukushima nuclear plants].

    PubMed

    Sano, Shin-Ya; Tanigawa, Takeshi; Shigemura, Jun; Satoh, Yutaka; Yoshino, Aihide; Fujii, Chiyo; Tatsuzawa, Yasutaka; Kuwahara, Tatsuro; Tachibana, Shoichi; Nomura, Soichiro

    2012-01-01

    Fukushima Daiichi Nuclear Power Plants suffered serious damage by the Great East Japan Earthquake and Tsunami. The employees of the plant worked very hard to stabilize the nuclear reactor and to prevent any secondary accidents. They were in one of the most severe situations in this disaster, but they were the people who hesitated most to request help for themselves. We started visiting the Fukushima Daini Plant office that was used as the frontline base for Daiichi Plant workers since July, 2011. These visits were held once or twice a month and we offered mental health support to the employees. We have completed interview with the total number of 339 plant workers by April, 2012. We offered several ways of mental support including clinical treatment, continuous counseling, or one time advice, depending on mental condition of each interviewee. Complexity of huge disaster and individuality of suffering from it were discussed in this article. Like local residents, many plant workers also experienced death/missing of family, loss of housing, refuge life, and dispersion of family. Furthermore, they have been suffering from various kinds of criticism and slander against Tokyo Electric Power Company. Many workers, even though they were not in management positions, seemed to have guilty conscience and sense of responsibility that forced them to stay in the risky working site. We could find some struggling coexistence of sense of guilt (as a causer of disaster) and sense of victim in their mind. It was suggested that continuous effort to listen and pay attention to their talk is important in order to support their mission to stabilize the power plant and to prevent them from over-stress and burnout. PMID:23367837

  18. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted

  19. Instrumentation Requirements for the Engineering Evaluation of Nuclear-Electric Spacecraft

    NASA Technical Reports Server (NTRS)

    Apel, W. C.

    1961-01-01

    Spacecraft employing nuclear-electric propulsion are being proposed for missions to Venus and distances beyond. These spacecraft utilize a nuclear reactor to provide thermal energy to a turboalternator which generates electric power for an ion motor and the other spacecraft systems. This Report discusses the instrumentation and communications system needed to evaluate a nuclear-electric spacecraft in flight, along with the problems expected. A representative spacecraft design is presented, which leads to a discussion of the instrumentation needed to evaluate such a spacecraft. A basic communications system is considered for transmitting the spacecraft data to Earth. The instrumentation and communications system, as well as all electronic systems on a nuclear-electric spacecraft, will be operating in high temperature and nuclear-radiation environments. The problems caused by these environments are discussed, and possible solutions are offered.

  20. Progress in developing tidal electric power plants reported

    NASA Astrophysics Data System (ADS)

    Blokhnin, A.

    1984-12-01

    The natural energy potential of tides on the shores of the U.S.S.R. is equal to about a third of the world's total. The Achilles heel of tidal power plants is their pulsating operation. One solution to this problem was to build a hydroelectric power plant for use in tandem with the tidal power plant. During lulls in the tidal plant, the hydraulic power plant switches on at full power. Possible sites for dual plants were discussed.

  1. Industrial Electricity. In-Plant Distribution. Vocational Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Teague, Cash; Pewewardy, Garner

    This curriculum guide, part of a series of industrial electricity curriculum guides, consists of materials for use in teaching a course on the in-plant distribution of electricity. Discussed in the introductory lessons are the National Electrical Code, power equipment, and blueprint reading. The next section, a series of units on branch-circuit…

  2. Paradigm for expert display systems in nuclear plant and elsewhere

    SciTech Connect

    Gabriel, J.R.

    1986-02-01

    Display of relevant data concerning plant operation has been a concern of the nuclear industry from its beginnings. Since the incident at Three Mile Island, this matter has had much careful scrutiny. L. Beltracchi, in particular, has originated a sequence of important steps to improve the operator's ability to recognize plant states and their changes. In the early 1980's, Beltracchi (1983, 1984) proposed a display based on the Rankine cycle for light water reactors. More recently, in an unpublished work (1986b), he described an extension that includes a small, rule-based system in the display program, drawing inferences about plant operation from sensor readings, and displaying those inferences on the Rankine display. Our paper examines Beltracchi's rule-based display from the perspective of knowledge bases. Earlier (Gabriel, 1983) we noted that analytical models of system behavior are just as much a knowledge base as are the rules of a conventional expert system. The problem of finding useful displays for a complex plant is discussed from this perspective. We then present a paradigm for developing designs with properties similar to those in Beltracchi's Rankine cycle display. Finally, to clarify the issue, we give a small example from an imaginary plant.

  3. Overview of nuclear MHD power conversion for multi-megawatt electric propulsion

    NASA Astrophysics Data System (ADS)

    Smith, Blair M.; Knight, Travis W.; Anghaie, Samim

    2001-02-01

    An overview of recent research findings on space applications of nuclear magnetohydrodynamic (MHD) power for generation of multi klbf electric thrust at thousands of seconds of specific impulse is presented. The high operating temperatures of the nuclear MHD system and potential for direct coupling of the output power to the electric thruster system are characterizing features that allow for design of ultracompact and ultralight nuclear electric propulsion systems. Order of magnitude figures for some mission-critical parameters are collated from various engineering analyses. Specific mass and specific impulse values highlight the inherent benefits of further research and development investment in MHD power. .

  4. Simplified tornado depressurization design methods for nuclear power plants

    SciTech Connect

    Howard, N.M.; Krasnopoler, M.I.

    1983-05-01

    A simplified approach for the calculation of tornado depressurization effects on nuclear power plant structures and components is based on a generic computer depressurization analysis for an arbitrary single volume V connected to the atmosphere by an effective vent area A. For a given tornado depressurization transient, the maximum depressurization ..delta..P of the volume was found to depend on the parameter V/A. The relation between ..delta..P and V/A can be represented by a single monotonically increasing curve for each of the three design-basis tornadoes described in the U.S. Nuclear Regulatory Commission's Regulatory Guide 1.76. These curves can be applied to most multiple-volume nuclear power plant structures by considering each volume and its controlling vent area. Where several possible flow areas could be controlling, the maximum value of V/A can be used to estimate a conservative value for ..delta..P. This simplified approach was shown to yield reasonably conservative results when compared to detailed computer calculations of moderately complex geometries. Treatment of severely complicated geometries, heating and ventilation systems, and multiple blowout panel arrangements were found to be beyond the limitations of the simplified analysis.

  5. Tracing airborne particles after Japan's nuclear plant explosion

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Nakamura, Hisashi; Nakajima, Teruyuki

    2011-11-01

    The powerful Tohoku earthquake and consequent tsunami that occurred off the east coast of Japan on 11 March 2011 devastated dozens of coastal cities and towns, causing the loss of more than 15,000 lives and leaving close to 4000 people still missing. Although nuclear reactors at the Fukushima Daiichi Nuclear Power Plant, located on the Pacific coast, stopped their operation automatically upon the occurrence of the Mw 9.0 quake [Showstack, 2011], the cooling system for nuclear fuel broke down. From 12 to 16 March, vapor and hydrogen blasts destroyed the buildings that had contained the reactors, resulting in the release into the atmosphere of radioactive materials such as sulfur-35, iodine-131, cesium-134, and cesium-137, which collectively can cause harmful health effects such as tissue damage and increased risk of cancer (particularly in children), depending on dose. Most of those materials emitted from the power plant rained out onto the grounds within its vicinity and forced tens of thousands within a 20-kilometer radius to evacuate (residents to the northwest of the site within about 40 kilometers also were moved from their homes). Some of the radioactive materials were transported and then detected at such distant locations as North America and Europe, although the level of radiation dose was sufficiently low not to affect human health in any significant manner.

  6. Remote monitoring of nuclear power plants in Baden-Wuerttemberg.

    PubMed

    Neff, U; Müller, U; Mandel, C; Coutinho, P; Aures, R; Grimm, C; Hagmann, M; Wilbois, T; Ren, Y

    2014-08-01

    As part of its responsibilities as nuclear supervisory authority, the Ministry of the Environment, Climate Protection and the Energy Sector Baden-Wuerttemberg (UM) operates a computer-based system for remote monitoring of nuclear power plants (NPPs) (KFUe, Kernreaktor-Fernüberwachung). In addition to the Baden-Wuerttemberg NPPs located at Philippsburg, Neckarwestheim and the disused Obrigheim, those in foreign locations close to the border area, i.e. Fessenheim in France, and Leibstadt and Beznau in Switzerland, are monitored. The KFUe system provides several methods to evaluate and present the measured data as well as to ensure compliance of threshold limits and safety objectives. For the UM, it serves as an instrument of the nuclear supervision. In case of a radioactive release, the authorities responsible for civil protection can use dispersion calculations in order to identify potentially affected areas and to initiate protective measures for the population. Beyond the data collected at the plant sites, various international radiation and meteorological measuring networks are integrated in the KFUe. The State Institute for Environment, Measurements and Nature Protection (LUBW), the technical operator of the KFUe, runs its own special monitoring network for ambient gamma dose rate and nuclide specific activity concentration measurements in the vicinity of each NPP. This article gives an overview of the solution to combine data of different sources on a single screen: dose rate networks, dose rate traces measured by car, airborne gamma spectra of helicopters, mobile dose rate probes, grid data of weather forecasts, dispersion calculations, etc. PMID:24525946

  7. Engineering development of a digital replacement protection system at an operating US PWR nuclear power plant: Installation and operational experiences

    SciTech Connect

    Miller, M.H.

    1995-04-01

    The existing Reactor Protection Systems (RPSs) at most US PWRs are systems which reflect 25 to 30 year-old designs, components and manufacturing techniques. Technological improvements, especially in relation to modern digital systems, offer improvements in functionality, performance, and reliability, as well as reductions in maintenance and operational burden. The Nuclear power industry and the US nuclear regulators are poised to move forward with the issues that have slowed the transition to modern digital replacements for nuclear power plant safety systems. The electric utility industry is now more than ever being driven by cost versus benefit decisions. Properly designed, engineered, and installed digital systems can provide adequate cost-benefit and allow continued nuclear generated electricity. This paper describes various issues and areas related to an ongoing RPS replacement demonstration project which are pertinant for a typical US nuclear plant to consider cost-effective replacement of an aging analog RPS with a modern digital RPS. The following subject areas relative to the Oconee Nuclear Station ISAT{trademark} Demonstrator project are discussed: Operator Interface Development; Equipment Qualification; Validation and Verification of Software; Factory Testing; Field Changes and Verification Testing; Utility Operational, Engineering and Maintenance; Experiences with Demonstration System; and Ability to operate in parallel with the existing Analog RPS.

  8. Consequences of the nuclear power plant accident at Chernobyl

    SciTech Connect

    Ginzburg, H.M.; Reis, E. )

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion.

  9. Consequences of the nuclear power plant accident at Chernobyl.

    PubMed Central

    Ginzburg, H M; Reis, E

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion. Images p38-a p38-b PMID:1899937

  10. Inventory of Electric Utility Power Plants in the United States

    EIA Publications

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  11. A NEPtune/Triton Vision Mission Using Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Bienstock, B.; Atkinson, D. H.; Baines, K.; Mahaffy, P.; Atreya, S.; Stern, A.; Steffes, P.; Wright, M.; Ball Collaboration; Boeing Collaboration

    2005-08-01

    The giant planets of the outer solar system divide into two distinct classes: the ``Gas Giants" Jupiter and Saturn, and the ``Ice Giants" Uranus and Neptune. While the Gas Giants primarily comprise hydrogen and helium, the Ice Giants appear fundamentally different, containing significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Comparisons of the internal structure and overall composition of the Gas and Ice Giants will yield valuable insights into the processes that formed our solar system and possibly extrasolar systems. By 2012 detailed studies of the chemical and physical properties of Jupiter and Saturn will have been completed by the Pioneer, Voyager, Galileo, Cassini, and Juno missions. A Neptune Orbiter with Probes mission would deliver the corresponding key data for an Ice Giant. Such a mission to study Triton, Nereid, the other icy satellites of Neptune, Neptune's system of rings, and the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars has been studied. Power and propulsion would be provided using nuclear electric propulsion (NEP) technologies. This ambitious mission requires a number of technical issues be investigated and resolved, including: (1) developing a reasonable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for Triton, small icy satellite, and ring science, (2) giant-planet atmospheric probe thermal protection system (TPS) design, (3) deep probe design including pressure vessel, seals, windows, penetrations and inlets, (4) deep probe telecommunications through Neptune's dense and absorbing atmosphere, 5) Triton lander design to conduct extended surface science, and (6) defining an appropriate suite of science instruments for the Orbiter, Probes and Landers to explore the depths of the Neptune atmosphere, magnetic field, Triton, and the icy satellites utilizing the ample mass and power

  12. Energy choices and risk beliefs: is it just global warming and fear of a nuclear power plant accident?

    PubMed

    Greenberg, Michael; Truelove, Heather Barnes

    2011-05-01

    A survey of 3,200 U.S. residents focused on two issues associated with the use of nuclear and coal fuels to produce electrical energy. The first was the association between risk beliefs and preferences for coal and nuclear energy. As expected, concern about nuclear power plant accidents led to decreased support for nuclear power, and those who believed that coal causes global warming preferred less coal use. Yet other risk beliefs about the coal and nuclear energy fuel cycles were stronger or equal correlates of public preferences. The second issue is the existence of what we call acknowledged risk takers, respondents who favored increased reliance on nuclear energy, although also noting that there could be a serious nuclear plant accident, and those who favored greater coal use, despite acknowledging a link to global warming. The pro-nuclear group disproportionately was affluent educated white males, and the pro-coal group was relatively poor less educated African-American and Latino females. Yet both shared four similarities: older age, trust in management, belief that the energy facilities help the local economy, and individualistic personal values. These findings show that there is no single public with regard to energy preferences and risk beliefs. Rather, there are multiple populations with different viewpoints that surely would benefit by hearing a clear and comprehensive national energy life cycle policy from the national government. PMID:21143259

  13. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    SciTech Connect

    Mays, Gary T; Belles, Randy; Cetiner, Sacit M; Howard, Rob L; Liu, Cheng; Mueller, Don; Omitaomu, Olufemi A; Peterson, Steven K; Scaglione, John M

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  14. Guidelines for inservice testing at nuclear power plants

    SciTech Connect

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  15. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  16. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  17. A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant

    SciTech Connect

    Edward J. Gorski; Charles V. Park; Finis H. Southworth

    2004-06-01

    Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the President’s Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project.

  18. Improved tritium monitoring at the Pantex Nuclear Weapons Plant

    SciTech Connect

    Brain, W.F.; Click, C.N.; Griffis, D.W.

    1995-12-31

    This paper describes the development of a system capable of sampling ambient levels of both elemental and oxidized tritium in ambient air at the US Department of Energy`s Pantex Nuclear Weapons Plant. The system of monitors uses a combination of commercial laboratory equipment and custom fabricated components. Problems inherent in tritium sampling, and those specific to weather extremes in Texas, were identified and researched. Experience with the sampling network is still limited, but concentrations of oxidized tritium are presently comparable to the original sampling network.

  19. Radiation fields and dose assessments in Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young; Jeong, Woo Tae; Kim, Seok Tae

    2011-07-01

    In the primary systems of nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water chemistry conditions. In particular, (3)H, (14)C, (58)Co, (60)Co, (137)Cs, and (131)I are important or potential radionuclides with respect to dose assessment for workers and the management of radioactive effluents or dose assessment for the public. In this paper, the dominant contributors to the dose for workers and the public were reviewed and the process of dose assessment attributable to those contributors was investigated. Furthermore, an analysis was carried out on some examples of dose to workers during NPP operation. PMID:21498858

  20. Fiber optic sensors for nuclear power plant applications

    SciTech Connect

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana

    2012-05-17

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.