Science.gov

Sample records for nuclear energy unit

  1. 76 FR 40754 - Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ..., 50-270, And 50-287] Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire... Reactor Licensing, Office of Nuclear Reactor Regulation. BILLING CODE 7590-01-P ... Commission) has granted the request by Duke Energy Carolinas, LLC (the licensee), to withdraw its...

  2. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear...

  3. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  4. INL Director Discusses the Future for Nuclear Energy in the United States

    SciTech Connect

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  5. Explaining nuclear energy pursuance: A comparison of the United States, Germany, and Japan

    NASA Astrophysics Data System (ADS)

    McKee, Lauren Emily

    Energy is critical to the functioning of the global economy and seriously impacts global security as well. What factors influence the extent to which countries will pursue nuclear energy in their overall mix of energy approaches? This dissertation explores this critical question by analyzing the nuclear energy policies of the United States, Germany and Japan. Rather than citizen opposition or proximity to nuclear disasters, it seems that a country's access to other resources through natural endowments or trading relationships offers the best explanation for nuclear energy pursuance.

  6. 77 FR 26318 - Duke Energy Carolinas, LLC., Oconee Nuclear Station, Units 1, 2, and 3 Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Duke Energy Carolinas, LLC., Oconee Nuclear Station, Units 1, 2, and 3 Exemption 1.0 Background Duke Energy Carolinas, LLC (the licensee) is the holder of Renewed Facility Operating Licenses DPR-38, DPR-47, and DPR-55, which authorize operation...

  7. 75 FR 24997 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... COMMISSION FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment... Energy Point Beach, LLC (the licensee), for operation of the Point Beach Nuclear Plant, Units 1 and 2... Licensee and Owner from ``FPL Energy Point Beach, LLC'' to ``NextEra Energy Point Beach, LLC.''...

  8. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  9. 75 FR 16201 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... COMMISSION FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Exemption 1.0 Background FPL Energy Point Beach, LLC (FPLE, the licensee) is the holder of Renewed Facility Operating License Nos. DPR-24 and DPR-27, which authorize operation of the Point Beach Nuclear Plant, Units 1 and...

  10. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Register notice (FR) 76 FR 81994 (December 29, 2011). 2.0 Request/Action The regulations specified in 10... COMMISSION UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC...

  11. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... COMMISSION Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown... Documents Access and Management System (ADAMS) Accession No. ML13340A009), for the Crystal River Unit 3... PSDAR on Thursday, January 16, 2014, from 7 p.m. until 9 p.m., EST, at the Crystal River Nuclear...

  12. Can we Plan. The political economy of commercial nuclear energy policy in the United States

    SciTech Connect

    Campbell, J.L. Jr.

    1984-01-01

    The dissertation is an analysis of the commercial nuclear energy sector's decline in the United States. The research attempts to reconcile the debate between Weberian-institutional and Marxist political theory about the state's inability to successfully plan industrial development in advanced capitalist countries. Synthesizing these views, the central hypothesis guiding the research is that the greater the state's relative autonomy from political and economic constraints in an institutional sense, i.e., the greater its insulation from the contradictions of capitalism and democracy, the greater its planning capacity and the more successful it will be in directing industrial performance. The research examines one industrial sector, commercial nuclear energy, and draws two major comparison. First, the French and US nuclear industries are compared, since the state's relative autonomy is much greater in the former than in the latter. This comparison is developed to identify policy areas where nuclear planning has succeeded in France but failed in America. Four areas are identified: reactor standardization, waste management, reactor safety, and financing. Second, looking particularly at the US, the policy areas are compared to analyze the development of policy and its effects on the sector's performance and to determine the degree to which planning was undermined by the structural constraints characteristic of a state with low relative autonomy.

  13. 76 FR 22928 - Nextera Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Nextera Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact Related to the Proposed License Amendment To Increase the Maximum Reactor Power Level The U.S....

  14. 76 FR 30399 - Duke Energy Carolinas, LLC, Oconee Nuclear Station, Units 1, 2, and 3, Notice of Consideration of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Duke Energy Carolinas, LLC, Oconee Nuclear Station, Units 1, 2, and 3, Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a Hearing...

  15. 78 FR 13384 - In the Matter of FirstEnergy Nuclear Operating Co. (Beaver Valley Units 1 and 2); Confirmatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... accordance with NRC E-Filing rule (72 FR 49139; August 28, 2007). The E-Filing process requires participants... Matter of FirstEnergy Nuclear Operating Co. (Beaver Valley Units 1 and 2); Confirmatory Order Modifying... Utilization Facilities,'' on November 5, 2009. The licenses authorize the operation of the Beaver Valley...

  16. Overview of United States Department of Energy activities to support life extension of nuclear power plants

    SciTech Connect

    Harrison, D.L.; Rosinski, S.T.

    1993-11-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US The operating license of the first of these plants will expire in the year 2000; one-third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: establishment of regulations, technical standards, and procedures for the preparation and review of a license renewal application; development, verification, and validation of technical criteria and bases for monitoring, refurbishing, and/or replacing plant equipment; and demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues in the principal areas of reactor pressure vessel (RPV) integrity, fatigue, and environmental qualification (EQ).

  17. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened. PMID:20873683

  18. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    SciTech Connect

    Lehew, J.G.; Bradford, J.D.; Cabbil, C.C.

    2006-07-01

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  19. 76 FR 39913 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit...\\ Requestors should note that the filing requirements of the NRC's E-Filing Rule (72 FR 49139; August 28, 2007... amendment, the Commission will have made findings required by the Atomic Energy Act of 1954, as amended...

  20. Nuclear energy.

    PubMed

    Wilson, Peter D

    2010-01-01

    The technical principles and practices of the civil nuclear industry are described with particular reference to fission and its products, natural and artificial radioactivity elements principally concerned and their relationships, main types of reactor, safety issues, the fuel cycle, waste management, issues related to weapon proliferation, environmental considerations and possible future developments. PMID:21180342

  1. The United Kingdom Nuclear Science Forum

    NASA Astrophysics Data System (ADS)

    MacMahon, Desmond; Forrest, Robin; Judge, Steven

    2005-05-01

    The United Kingdom Nuclear Science Forum effectively acts as the United Kingdom's Nuclear Data Committee. As such it is the interface between the UK nuclear data community and international nuclear data centres. This paper outlines the Forum's terms of reference and describes some of its recent activities.

  2. Adiabatic representation in the Coulomb three-body problem in the united-atom limit: Nuclear widths of the energy levels of the muonic molecule ttµ

    NASA Astrophysics Data System (ADS)

    Melezhik, V. S.

    2016-01-01

    We study the asymptotic behavior of the wave function of the system of three Coulomb particles in the united-atom limit in the adiabatic representation of the three-body problem. This result is used to calculate the nuclear widths of muonic-molecule energy levels. We discuss features of the approach with regard to excited states of the muonic molecule ttµ with a nonzero orbital angular momentum.

  3. Dennis Kovar and Low-Energy Nuclear Science in the United States at the turn of the century

    NASA Astrophysics Data System (ADS)

    Janssens, Robert

    2011-10-01

    This presentation will retrace aspects of Dennis Kovar's research career as a staff member within the Physics Division at Argonne National Laboratory. Dennis led pioneering work on understanding how the total cross section in heavy-ion induced reactions is distributed into elastic and inelastic scattering, transfer, incomplete and complete fusion with a focus on the interaction between these different channels. It will also discuss the decisive role Dennis played in stewarding low energy nuclear science, once he joined the Office of Nuclear Physics at the Department of Energy. In particular, this presentation will review Dennis' role in helping making the case for physics with rare isotopes. Through his many valuable suggestions and probing questions he was instrumental in challenging and stimulating to community into an adventure that ultimately culminated in the proposal for the development of FRIB, the facility for Rare Isotope Beams. Work supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  4. United States Department of Energy National Nuclear Security Administration Sandia Field Office NESHAP Annual Report CY2014 for Sandia National Laboratories New Mexico

    SciTech Connect

    evelo, stacie; Miller, Mark L.

    2015-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2014, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES. A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  5. What can nuclear energy do for society.

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    Nuclear fuel is a compact and abundant source of energy. Its cost per unit of energy is less than that of fossil fuel. Disadvantages of nuclear fuel are connected with the high cost of capital equipment required for releasing nuclear energy and the heavy weight of the necessary shielding. In the case of commercial electric power production and marine propulsion the advantages have outweighed the disadvantages. It is pointed out that nuclear commercial submarines have certain advantages compared to surface ships. Nuclear powerplants might make air-cushion vehicles for transoceanic ranges feasible. The problems and advantages of a nuclear aircraft are discussed together with nuclear propulsion for interplanetary space voyages.

  6. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  7. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  8. Nuclear energy and security

    SciTech Connect

    BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.; BAKER,ARNOLD B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.

  9. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  10. United Campuses to Prevent Nuclear War: Nuclear War Course Summaries.

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 1983

    1983-01-01

    Briefly describes 46 courses on nuclear war available from United Campuses to Prevent Nuclear War (UCAM). These courses are currently being or have been taught at colleges/universities, addressing effects of nuclear war, arms race history, new weapons, and past arms control efforts. Syllabi (with assignments/reading lists) are available from UCAM.…

  11. Nuclear Energy and the Environment.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  12. Nuclear energy related research

    NASA Astrophysics Data System (ADS)

    Rintamaa, R.

    1992-05-01

    The annual Research Program Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Center of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Center for Radiation and Nuclear Safety (STUK), and VTT itself. Other research institutes, utilities, and industry also contribute to many projects.

  13. Desalting and Nuclear Energy

    ERIC Educational Resources Information Center

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  14. What can nuclear energy do for society.

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1972-01-01

    It is pointed out that the earth's crust holds 30,000 times as much energy in the form of fissionable atoms as fossil fuel. Moreover, nuclear fuel costs less per unit of energy than fossil fuel. Capital equipment used to release nuclear energy, on the other hand, is expensive. For commercial electric-power production and marine propulsion, advantages of nuclear power have outweighed disadvantages. As to nuclear submarines, applications other than military may prove feasible. The industry has proposed cargo submarines to haul oil from the Alaskan North Slope beneath the Arctic ice. Other possible applications for nuclear power are in air-cushion-vehicles, aircraft, and rockets.-

  15. Nuclear Energy's Renaissance

    NASA Astrophysics Data System (ADS)

    Kadak, Andrew C.

    2006-10-01

    Nuclear energy is about to enter its renaissance. After almost 30 years of new plant construction dormancy, utilities are seriously preparing for ordering new plants in the next two years. This resurgence in interest is based on improved plant performance, new Nuclear Regulatory Commission licensing processes, significant incentives introduced by Congress in the Energy Policy Act of 2005 to encourage new orders, and new technologies that are competitive, simpler to operate and safer. These new evolutionary light water reactors will pave the way to more advanced high temperature gas reactors such as the pebble bed or prismatic reactors that will provide improved efficiency and safety leading to more process heat applications in oil extraction or hydrogen production. The Next Generation Nuclear Plant (NGNP) also authorized by the Energy Policy act will provide the fundamental technical basis for the future of these technologies. Progress continues on the Yucca Mountain nuclear waste disposal site enabling this expansion. When coupled with the long term strategy of waste minimization through reprocessing and actinide destruction as proposed in the Global Nuclear Energy Partnership, the future of nuclear energy as part of this nation's energy mix appears to be assured.

  16. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    ERIC Educational Resources Information Center

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  17. Nuclear Proliferation: A Unit for Study.

    ERIC Educational Resources Information Center

    Fernekes, William R.

    1990-01-01

    Using Argentina as a sample case study, presents a classroom unit designed to explain the implications for world peace of nuclear weapons development. Employs a policy analysis model to make an indepth examination of the values underlying all government policy decisions. Includes unit topics and procedures for the exercise. (NL)

  18. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices Address Telephone (24 hour) E-Mail...

  19. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  20. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  1. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  2. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  3. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    SciTech Connect

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  4. 78 FR 41425 - In the Matter of Duke Energy Carolinas, LLC; (Oconee Nuclear Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... provide water to the steam generators of all three units sufficient to remove decay heat following... rule (72 FR 49139; August 28, 2007). The E-Filing process requires participants to submit and serve...

  5. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  6. 78 FR 40200 - Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... Nuclear Fuel to the list of approved spent fuel storage casks in 10 CFR 72.214 (59 FR 28496, June 2, 1994 (Proposed Rule); 59 FR 65920, December 22, 1994 (Final Rule)). The exemption proposed to Amendment No. 9 to... Radioactive Waste, and Reactor-Related Greater than Class C Waste.'' The applicant now seeks an exemption...

  7. Solar Renewable Energy. Teaching Unit.

    ERIC Educational Resources Information Center

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  8. 76 FR 74832 - Entergy Nuclear Indian Point Unit 2, LLC; Entergy Nuclear Indian Point Unit 3, LLC; Entergy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point Unit 2, LLC; Entergy Nuclear Indian Point Unit 3, LLC; Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Units Nos. 2 and 3; Environmental Assessment and Finding of No Significant Impact The U.S....

  9. Managing nuclear weapons in the United States

    SciTech Connect

    Miller, G.

    1993-03-16

    This report discusses the management and security of nuclear weapons in the post-cold war United States. The definition of what constitutes security is clearly changing in the US. It is now a much more integrated view that includes defense and the economy. The author tries to bring some semblance of order to these themes in this brief adaptation of a presentation.

  10. 75 FR 14206 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... revisions to 10 CFR Part 73 as discussed in a Federal Register notice dated March 27, 2009 (74 FR 13967... Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The NRC staff's safety evaluation will be provided in the... COMMISSION [Docket Nos. 50-266 And 50-301; NRC-2010-0123 FPL Energy Point Beach, LLC; Point Beach...

  11. A Career in Nuclear Energy

    ScienceCinema

    Lambregts, Marsha

    2013-05-28

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  12. A Career in Nuclear Energy

    SciTech Connect

    Lambregts, Marsha

    2009-01-01

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  13. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    SciTech Connect

    Ahern, Keith; Daming, Liu; Hanley, Tim; Livingston, Linwood; McAninch, Connie; McGinnis, Brent R; Ning, Shen; Qun, Yang; Roback, Jason William; Tuttle, Glenn; Xuemei, Gao; Galer, Regina; Peterson, Nancy; Jia, Jinlie

    2011-01-01

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducing CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China

  14. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  15. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and...

  16. 78 FR 35646 - Byron Nuclear Station, Units 1 and 2, and Braidwood Nuclear Station, Units 1 and 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Byron Nuclear Station, Units 1 and 2, and Braidwood Nuclear Station, Units 1 and 2 AGENCY: Nuclear... U.S. Nuclear Regulatory Commission (NRC) has received an application, dated May 29, 2013,...

  17. The Nuclear Renaissance in the United States

    SciTech Connect

    Buongiorno, Jacopo

    2008-07-30

    Nuclear power currently provides 20% of the electricity generation in the U.S. and about 16% worldwide. As a carbon-free energy source, nuclear is receiving a lot of attention by industry, lawmakers and environmental groups, as they attempt to resolve the issue of man-made climate change. For the first time in 30 years several U.S. electric utilities have applied for construction and operation licenses of new nuclear power plants. This talk will review the safety, operational and economic record of the existing U.S. commercial reactor fleet, will provide an overview of the reactor designs considered for the new wave of plant construction, and will discuss several research projects being conducted at the Massachusetts Institute of Technology to support the expansion of nuclear power in the U.S. and overseas.

  18. 78 FR 39018 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3 AGENCY: Nuclear Regulatory Commission. ACTION: Supplement to Final Supplement 38 to the Generic...

  19. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  20. Nuclear Energy Density Optimization

    SciTech Connect

    Kortelainen, Erno M; Lesinski, Thomas; More, J.; Nazarewicz, W.; Sarich, J.; Schunck, N.; Stoitsov, M. V.; Wild, S.

    2010-01-01

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  1. 76 FR 78252 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of... Management Secretariat, General Services Administration, notice is hereby given that the Nuclear...

  2. Common sense in nuclear energy

    SciTech Connect

    Hoyle, F.; Hoyle, G.

    1980-01-01

    Public concern about energy resource exhaustion is noted to have developed only after the means (nuclear power) for avoiding this disaster became available and the negative implications of a nuclear society became a focus for anxiety. Ironically, collapse of conventional energy supplies could lead to the nuclear confrontation which anti-nuclear forces claim as the inevitable outcome of nuclear power. A review of the risks, environmental impacts, and political implications of the major energy sources concludes that emotion, not common sense, has made nuclear energy an unpopular option. While the problems of proliferation, radiation protection, waste management, and accident prevention are far from trivial, they will respond to technological improvements and responsible control policies. An historical tradition of fearing new, poorly understood technologies is seen in the reaction to railroads during the early 19th Century. (DCK)

  3. Social Institutions and Nuclear Energy

    ERIC Educational Resources Information Center

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  4. Nuclear energy: basics, present, future

    NASA Astrophysics Data System (ADS)

    Ricotti, M. E.

    2013-06-01

    The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  5. NESST: A nuclear energy safety and security treaty-Separating nuclear energy from nuclear weapons

    NASA Astrophysics Data System (ADS)

    McNamara, Brendan

    2012-06-01

    Fission and Fusion energy is matched by the need to completely separate civilian energy programmes from the production of nuclear weapons. The Nuclear Proliferation Treaty (NPT, 1968) muddles these issues together. The case is presented here for making a new Nuclear Energy Security Treaty (NESST) which is rigorous, enforceable without violence, and separate from the political quagmire of nuclear weapons.

  6. 76 FR 69120 - Regulatory Changes To Implement the United States/Australian Agreement for Peaceful Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... of America Concerning Peaceful Uses of Nuclear Energy'' (the Agreement). The Agreement prohibits the... United States of America Concerning Peaceful Uses of Nuclear Energy, dated 2010, Australian-obligated... by the Commission on June 30, 1997, and published in the Federal Register on September 3, 1997 (62...

  7. 77 FR 40091 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3 AGENCY: Nuclear... statement for license renewal of nuclear plants; availability. SUMMARY: The U.S. Nuclear...

  8. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  9. United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995

    SciTech Connect

    1997-04-01

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

  10. Nuclear structure at intermediate energies

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  11. Dynamic Analysis of Nuclear Energy System Strategies

    SciTech Connect

    Den Durpel, Luc Van

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims at performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.

  12. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    SciTech Connect

    R.A. Wigeland

    2008-10-01

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  13. Nuclear Energy Present and Future

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2006-10-01

    Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.

  14. Nuclear Energy. Instructional Materials.

    ERIC Educational Resources Information Center

    Jordan, Kenneth; Thessing, Dan

    This document is one of five learning packets on alternative energy (see note) developed as part of a descriptive curriculum research project in Arkansas. The overall objectives of the learning packets are to improve the level of instruction in the alternative energies by vocational exploration teachers, and to facilitate the integration of new…

  15. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  16. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  17. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  18. Energy from the Atom. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…

  19. Criteria for Global Nuclear Energy Development

    SciTech Connect

    Lawrence, Michael J.

    2002-07-01

    Global energy consumption will at least double over the next fifty years due to population growth, increased consumption, and an urgent need to improve the standard of living in under-developed countries. Thirty percent of this growth will be for electricity. At the same time, carbon emissions must be significantly reduced to respond to concerns regarding global warming. The use of nuclear energy to meet this growing electricity demand without carbon emissions is an obvious solution to many observers, however real concerns over economics, safety, waste and proliferation must be adequately addressed. The issue is further complicated by the fact that developing countries, which have the most pressing need for additional electricity generation, have the least capability and infrastructure to deploy nuclear energy. Nevertheless, if the specific needs of developing countries are appropriately considered now as new generation reactors are being developed, and institutional arrangements based upon the fundamental principles of President Eisenhower's 1953 Atoms For Peace speech are followed, nuclear energy could be deployed in any country. From a technical perspective, reactor safety and accessibility of special nuclear material are primary concerns. Institutionally, plant and fuel ownership and waste management issues must be addressed. International safety and safeguards authority are prerequisites. While the IAEA's IMPRO program and the United States' Generation IV programs are focusing on technical solutions, institutional issues, particularly with regard to deployment in developing countries, are not receiving corresponding attention. Full-service, cradle-to-grave, nuclear electricity companies that retain custody and responsibility for the plant and materials, including waste, are one possible solution. Small modular reactors such as the Pebble Bed Modular Reactor could be ideal for such an arrangement. While waste disposal remains a major obstacle, this is already

  20. 78 FR 52987 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ...The U.S. Nuclear Regulatory Commission (NRC) has concluded that existing exemptions from its regulations, ``Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979,'' for Fire Areas ETN-4 and PAB-2, issued to Entergy Nuclear Operations, Inc. (the licensee), for operation of Indian Point Nuclear Generating Unit 3 (Indian Point 3), located in Westchester County,......

  1. Converting energy to medical progress [nuclear medicine

    SciTech Connect

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  2. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  3. Nuclear Waste Policy in the United States

    SciTech Connect

    Widder, Sarah H.; Calloway, Jr., Bond T.

    2010-07-01

    The current U.S. reactor fleet produces 2,100–2,400 ton/yr of spent nuclear fuel (SNF). After 50-plus years of nuclear power generation, 58,000 tons of SNF has accumulated in temporary storage at the reactor sites. How did we get where we are, and where do we go from here?

  4. 78 FR 70932 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  5. 77 FR 26274 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  6. 76 FR 67717 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  7. 75 FR 67351 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  8. 75 FR 13269 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  9. 78 FR 76599 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of... that the Nuclear Energy Advisory Committee (NEAC) will be renewed for a two-year period beginning...

  10. 77 FR 67809 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  11. 78 FR 29125 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  12. Nuclear propulsion in the United States.

    NASA Technical Reports Server (NTRS)

    Gabriel, D. S.

    1972-01-01

    The achievements of the Nuclear Propulsion Program over the past 15 years are reviewed. It is shown that the effort in basic and applied research and technological development resulted in a state of technology of nuclear rocket engines based on solid core reactors, which is suitable for the development of a space propulsion system. Current efforts aimed at achieving specific impulses on the order of 975 sec (3400 K) are noted. The characteristics of SNRE (Small Nuclear Rocket Engine), the ALPHA, BETA, and GAMMA engines are discussed. Attention is given to the design and principles of operation of the Rotating Fluidized Dust Bed Reactor.

  13. High energy nuclear collisions

    SciTech Connect

    Plasil, F.

    1998-01-01

    This presentation covers three broad topics: a brief introduction to the field of nucleus-nucleus collisions at relativistic energies; a discussion of several topics illustrating what`s been learned after more than a decade of fixed target experiments; and an indication of what the future may bring at the Relativistic Heavy Ion Collider (RHIC) under construction at the Brookhaven National Laboratory (BNL) and at the Large Hadron Collider (LHC) planned at CERN.

  14. Answers to Questions: Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Electricity is an increasingly important part of our everyday lives. Its versatility allows one to heat, cool, and light homes; cook meals; watch television; listen to music; power computers; make medical diagnosis and treatment; explore the vastness of space; and study the tiniest molecules. Nuclear energy, second to coal, surpasses natural gas,…

  15. United States nuclear tests, July 1945 through September 1992

    SciTech Connect

    Not Available

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  16. Choices: A Unit on Conflict and Nuclear War.

    ERIC Educational Resources Information Center

    Massachusetts Teachers Association, Boston.

    Ten lessons on the evolution of the nuclear arms race, the nature and consequences of using nuclear weapons, and new ways that conflicts among nations might be resolved are presented for the junior high school level. The unit contains age-appropriate materials to equip students with skills and knowledge to understand what choices can be made to…

  17. Integrating Geospatial Technologies in an Energy Unit

    ERIC Educational Resources Information Center

    Kulo, Violet A.; Bodzin, Alec M.

    2011-01-01

    This article presents a design-based research study of the implementation of an energy unit developed for middle school students. The unit utilized Google Earth and a geographic information system (GIS) to support student understanding of the world's energy resources and foster their spatial thinking skills. Findings from the prototype study…

  18. Nuclear unit operating experience: 1985-1986 update: Final report

    SciTech Connect

    LeShay, D.W.; Koppe, R.H.; Olson, E.A.J.

    1987-12-01

    This report presents results of a project conducted by the S.M. Stoller Corporation for EPRI. The purpose of the project was to analyze the operational experience of nuclear units within the United States during the calendar years 1985 through 1986 using the Operating Plant Evaluation Code (OPEC-2) System and other available sources of operational data. The report updates and supplements previous EPRI reports NP-1191, NP-2092, NP-3480, and NP-4368. The overall performances of US nuclear units and the availability and capacity factor losses for the constituent systems and components are presented. The problem areas which have impacted most significantly on nuclear unit performance during 1985 to 1986 are discussed in detail. Forced outage rates and scram rates are also investigated. The 92 domestic nuclear units which were considered in this report inlcude all units which are rated 400 MW(e) or greater. Three Mile Island 2 was excluded from all analyses of this report. The performances of BWRs and PWRs in the United States during 1985 through 1986 were compared with similar units operating in foreign countries.

  19. A Nuclear Arms Race Unit for Classroom Teachers.

    ERIC Educational Resources Information Center

    Totten, Sam

    1983-01-01

    This three- to eight-week unit encourages dialog among students concerning the myriad aspects of the nuclear weapons controversy. The unit is comprised of several areas: a preassessment quiz; a section on relevant vocabulary; an historical overview; a literary exploration; guest speakers; suggestions for personal involvement; and a major project.…

  20. Manufactured Doubt: The Campaign Against Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Rogers, N. L.

    2012-12-01

    Nuclear electricity is a CO2 free technology with a proven track record of large scale commercial deployment. For example, France generates 78% of its electrical power with nuclear plants. France has the lowest pre-tax cost of electricity in Europe at 4.75 eurocents per KWH and France is the world's largest exporter of electricity. There are large world reserves of uranium sufficient for hundreds of years, even without breeder technology. Additionally, thorium, another radioactive mineral is in even more plentiful supply. Although present-day nuclear technology has proven to be safe and reliable, waiting in the wings is new generation technology that promises great improvements in both safety and cost. Yet, there has been a calculated and sophisticated campaign in the later part of the 20th century to create doubt and fear concerning nuclear power. In the United States this campaign has essentially destroyed the nuclear industry. No new plants have been commissioned for decades. Leadership in the nuclear power field has been ceded to other countries. The great paradox is that the very organizations that express great alarm concerning CO2 emissions are the same organizations that led the campaign against nuclear power decades ago. Representatives of these organizations will say privately that they are taking a new look at nuclear power, but no major organization has reversed course and become a supporter of nuclear power. To do so would involve a loss of face and create doubts concerning the credibility of the organization. As recently as 2001 environmentalist lobbyists made great efforts to ensure that no credit could be given for nuclear power under the Kyoto accords and the associated clean development mechanism. They succeeded and nuclear power receives unfavorable treatment under the Kyoto accords even though it is a proven solution for reducing CO2 emissions. The technique used to destroy nuclear energy as a viable alternative in the United States had two

  1. Estimated United States Transportation Energy Use 2005

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  2. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    SciTech Connect

    Liu Min; Wang Ning; Li Zhuxia; Zhang Fengshou

    2010-12-15

    The symmetry energy coefficients for nuclei with mass number A=20-250 are extracted from more than 2000 measured nuclear masses. With the semiempirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of the symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  3. Nuclear methods in environmental and energy research

    SciTech Connect

    Vogt, J R

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  4. Dynamic Analysis of Nuclear Energy System Strategies

    Energy Science and Technology Software Center (ESTSC)

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims atmore » performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.« less

  5. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  6. Commercial Nuclear Reprocessing in the United States

    SciTech Connect

    Sherrill, Charles Leland; Balatsky, Galya Ivanovna

    2015-09-09

    The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.

  7. 77 FR 16278 - License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear Operations, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent...

  8. What can nuclear energy do for society?

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    The utilization of nuclear energy and the predicted impact of future uses of nuclear energy are discussed. Areas of application in electric power production and transportation methods are described. It is concluded that the need for many forms of nuclear energy will become critical as the requirements for power to supply an increasing population are met.

  9. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  10. Nuclear safety assistance to Russia, Ukraine, and Eastern Europe. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundred Third Congress, First Session, October 28, 1993

    SciTech Connect

    1994-12-31

    The hearing addresses United States nuclear safety assistance to Russia, Ukraine and the nations of eastern europe operating Soviet-built nuclear powerplants. The primary issue is that Soviet-designed nuclear reactors bore almost no relation to the reactors designed and operated in Western countries. The Soviet reactors were devoid of safety features such as fire protection and containment. The absence of a safety culture and standardized operating procedures were also of great concern. The role and status of assistance by the United States in the future is discussed. Statements of government and industry officials are included, along with documents submitted for the record.

  11. Teachers Environmental Resource Unit: Energy and Power.

    ERIC Educational Resources Information Center

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  12. Nuclear reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    2016-05-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  13. Energy metabolism in nuclear reprogramming.

    PubMed

    Folmes, Clifford D L; Nelson, Timothy J; Terzic, Andre

    2011-12-01

    Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate. PMID:22103608

  14. Energy metabolism in nuclear reprogramming

    PubMed Central

    Folmes, Clifford DL; Nelson, Timothy J; Terzic, Andre

    2012-01-01

    Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate. PMID:22103608

  15. A Strategy for Nuclear Energy Research and Development

    SciTech Connect

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

  16. The Harnessed Atom. Nuclear Energy & Electricity. Teacher Guide.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, filmstrip, review exercises, activities for the students, and this teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and…

  17. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability

  18. Materials Challenges in Nuclear Energy

    SciTech Connect

    Zinkle, Steven J; Was, Gary

    2013-01-01

    Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

  19. Energy-Environment Mini-Unit Guide.

    ERIC Educational Resources Information Center

    Smith, Stephen M., Ed.; And Others

    This unit is one part of a three-part National Science Teachers Association (NSTA) series on energy-environment. The goal of this NSTA project is to create a collection of mini-units that provide materials for science and social studies teachers in grades K-12. These materials are intended to make teaching more interdisciplinary and to stimulate…

  20. Impending United States energy crisis.

    PubMed

    Hirsch, R L

    1987-03-20

    The U.S. oil and gas industry has been dramatically weakened by the recent oil price collapse. Domestic drilling activity reached a new post-World War II low during the summer of 1986. Given a weak, unstable oil price outlook, U.S. capability will continue to deteriorate. In the last year U.S. imports of foreign oil have risen significantly, and if market forces alone dominate, U.S. dependence is expected to rise from 32% in 1983 to the 50 to 70% level in the not-too-distant future. The 1973 oil embargo and the subsequent attempts to improve U.S. energy security vividly demonstrated the huge costs and long periods of time required to change our energy system. These facts, coupled with the nation's generally short-term orientation, suggest a strong likelihood of a new U.S. energy crisis in the early to middle 1990s. PMID:17775008

  1. An example of a United States Nuclear Research Center

    SciTech Connect

    Bhattacharyya, S. K.

    1999-12-10

    Under the likely scenario in which public support for nuclear energy remains low and fossil fuels continue to be abundant and cheap, government supported nuclear research centers must adapt their missions to ensure that they tackle problems of current significance. It will be critical to be multidisciplinary, to generate economic value, and to apply nuclear competencies to current problems. Addressing problems in nuclear safety, D and D, nuclear waste management, nonproliferation, isotope production are a few examples of current needs in the nuclear arena. Argonne's original mission, to develop nuclear reactor technology, was a critical need for the U.S. in 1946. It would be wise to recognize that this mission was a special instance of a more general one--to apply unique human and physical capital to long term, high risk technology development in response to society's needs. International collaboration will enhance the collective chances for success as the world moves into the 21st century.

  2. Nuclear Energy, Nuclear Weapons Proliferation, and the Arms Race.

    ERIC Educational Resources Information Center

    Hollander, Jack, Ed.

    A symposium was organized to reexamine the realities of vertical proliferation between the United States and the Soviet Union and to place into perspective the horizontal proliferation of nuclear weapons throughout the world, including the possible role of commercial nuclear power in facilitating proliferation. The four invited symposium…

  3. Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  4. Basic Teaching Units, BTU's on Energy. Nebraska Energy Conservation Plan.

    ERIC Educational Resources Information Center

    Lay, Gary A., Ed.; McCurdy, Donald, Ed.

    This collection of 21 teaching units is designed for use in energy education within various disciplines of the secondary curriculum. Each unit is designed to stand alone. Suggested teaching times range from five to fifteen days. No particular order of presentation is implied. Each unit is organized as follows: abstract, recommended level, time…

  5. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... environment (February 15, 2012; 77 FR 8903). This exemption is effective upon issuance. Dated at Rockville... COMMISSION Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company, the licensee, doing business as Progress Energy Carolinas Inc.,...

  6. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... significant effect on the quality of the human environment (75 FR 3942, dated January 25, 2010). This... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the licensee), now doing business as Progress Energy...

  7. Nuclear Power and Government Structure: The Divergent Paths of the United States and France.

    ERIC Educational Resources Information Center

    Barkenbus, Jack N.

    1984-01-01

    Despite large-scale public opposition to civilian nuclear power in the United States and France, only in the former country has the opposition been successful in halting further commercialization of this energy technology. A major reason is that France's political structure provides relatively few access points for the expression of opposition.…

  8. Nuclear energy in Malaysia - closing the gaps

    NASA Astrophysics Data System (ADS)

    >Malaysian Nuclear Society (Mns,

    2013-06-01

    This article is prepared by the Malaysian Nuclear Society (MNS) to present the views of the Malaysian scientific community on the need for Malaysia to urgently upgrade its technical know-how and expertise to support the nuclear energy industry for future sustainable economic development of the country. It also present scientific views that nuclear energy will bring economic growth as well as technically sound industry, capable of supporting nuclear energy industry needs in the country, and recommend action items for timely technical upgrading of Malaysian expertise related to nuclear energy industry.

  9. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat. PMID:23949247

  10. On the perception and acceptability of nuclear energy in Korea

    SciTech Connect

    Kim, Jong Seok

    1997-12-01

    With the widespread recognition of the lack of indigenous energy supplies, there continues to be a general agreement that nuclear energy is necessary and will increase in importance as an energy source for Korea. In spite of that, we are faced with the difficulties of opening new sites and siting new units beside reactors on the existing sites. It is of no use to say that enhancing public understanding could be a prerequisite for implementing the related policies as well as nuclear energy supplies. This paper examines the relationships among the responses identified in opinion polls and tries to predict how attitudes could be changed.

  11. Perspectives of Nuclear Energy for Human Development

    SciTech Connect

    Rouyer, Jean-Loup

    2002-07-01

    In this period of expectation and short term viewing, everyone has difficulties to draw long term perspectives. A positive global world vision of sustainable development gives confidence in the preparation of energy future in a moving international context. This presentation proposes to share such a long term vision inside which energy scenarios for nuclear development take their right place. It is founded on a specific analysis of an index of countries global development which is representative of a country efficiency. Human Development Index (HDI) is a composite international index recommended and calculated every year since 1990 by the United Nations Development Program (UNDP). This index is still very dependent of GNP, which ignores the disparities of revenues inside the country. That is why a Country Efficiency Index (CEI) has been defined to better represent the capacity of a country to utilize its resources for welfare of its inhabitants. CEI is a ratio of health and education levels to the capacity of the country to satisfy this welfare. CEI has been calculated for the 70 more populated countries of the world for the year 1997. CEI calculation has been also performed for European Countries, the United States, China and India on the period from 1965 to 1997. It is observed a growth of CEI. for France from 0.6 to 0.78, and from 0.7 to 0.85 for USA. In 1997, CEI of China was 0.46, and 0.38 for India. This index is a good tool to measure the progression of development of the countries and the related energy needs. Comparison of the evolutions of CEI of these different countries shows a similar positive trend with some delay between OECD countries and China or India. A positive scenario for the future is based on a similar curve for these developing countries with learning effect which produces development with less energy consumption. This simulation results however in energy needs that exceed fossil fuel today available resources in 2070. Ultimate fossil

  12. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  13. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-08-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  14. A Nuclear Energy Renaissance in the U.S.?

    SciTech Connect

    Kessler, Carol E.; Mahy, Heidi A.; Ankrum, Al; Buelt, James L.; Branch, Kristi M.; Phillips, Jon R.

    2008-01-01

    Is it time for a nuclear energy renaissance? Among other things, nuclear power is a carbon neutral source of base load power. With the growth in energy use expected over the next 20 years and the growing negative impacts of global climate changes, the cost of oil and gas, energy security and diversity concerns, and progress on advanced reactor designs, it may be the right time for nuclear power to enter a new age of growth. Asia and Russia are both planning for a nuclear renaissance. In Europe, Finland and France have both taken steps to pursue new nuclear reactors. U.S. utilities are preparing for orders of new reactors; one submitted a request to the U.S. Nuclear Regulatory Commission (NRC) to review its request to construct a new reactor on an existing site. What has the industry been doing since nuclear energy was birthed in the 1960s? In those days a bold new industry boasted that nuclear power in the United States was going to be “too cheap to meter”, but as we all know this did not come about for many reasons. Eventually, it became clear that industry had neglected to do its homework. Critiques of the industry were made on safety, security, environment, economic competitiveness (without government support), and nonproliferation. All of these factors need to be effectively addressed to promote the confidence and support of the public – without which a nuclear power program is not feasible.

  15. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  16. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  17. Hadronic nuclear energy: An approach towards green energy

    SciTech Connect

    Das Sarma, Indrani B.

    2015-03-10

    Nuclear energy is undoubtedly the largest energy source capable of meeting the total energy requirements to a large extent in long terms. However the conventional nuclear energy involves production of high level of radioactive wastes which possesses threat, both to the environment and mankind. The modern day demand of clean, cheap and abundant energy gets fulfilled by the novel fuels that have been developed through hadronic mechanics/chemistry. In the present paper, a short review of Hadronic nuclear energy by intermediate controlled nuclear synthesis and particle type like stimulated neutron decay and double beta decay has been presented.

  18. International Energy Agency and global energy-security matters. Hearing before the Subcommittee on Energy, Nuclear Proliferation, and Government Processes of the Committee on Governmental Affairs, United States Senate, Ninety-Seventh Congress, First Session, July 14, 1981

    SciTech Connect

    Not Available

    1982-01-01

    Testimony on the role of the International Energy Agency and the value of the Emergency Preparedness Act of 1980, as well as other initiatives, reviewed the response of world oil markets in terms of global energy security. The testimony focused on the effects of the Iran-Iraq war, current oil glut, Windfall profit Tax, and pricing policies. The eight witnesses presented the views of several federal and international agencies and academic institutes. Additional material submitted for the record follows their testimony. (DCK)

  19. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    SciTech Connect

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  20. Current status of nuclear power in the United States and around the world.

    PubMed

    McKlveen, J W

    1990-09-01

    Nuclear energy's share of the world electricity market has been growing over the past 35 years. In 1989, eight generating units entered commercial operation abroad and three new units were licensed in the U.S. In early 1990, Mexico became the 26th country to produce electricity from nuclear power. Currently the 426 operating reactors supply one sixth of the world's total electrical capacity. Fourteen countries have now operated nuclear plants for 20 or more years. Since 1980, France has been the leader in the use of nuclear power and currently generates three quarters of its electricity from 54 nuclear plants. The U.S. has 112 nuclear plants, the largest number of any country in the world. These plants satisfy almost 20 percent of U.S. electrical energy requirements. Last year Three Mile Island, the would-be icon for everything that is wrong with the nuclear industry was rated as the most efficient nuclear plant in the world. The worldwide trend toward acceptance of nuclear is improving slightly, but many political and societal issues need to be resolved. Whereas recent polls indicate that a majority of the people realize nuclear must be a major contributor to the energy mix of the future, many are reluctant to support the technology until the issue of waste disposal has been resolved. Fears of another Chernobyl, lack of capital, and a new anti-nuclear campaign by Greenpeace will keep the nuclear debate alive in many countries. Additional stumbling blocks in the U.S. include the need to develop a new generation of improved reactor designs which emphasize passive safety features, standardized designs and a stream-lined federal licensing process. Nuclear power is really not dead. Even environmentalists are starting to give it another look. A nuclear renaissance will occur in the U.S. How soon or under what conditions remain to be seen. The next crisis in the U.S. will not be a shortage of energy, rather a shortage of electricity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID

  1. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  2. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ...-AA90) published in the Federal Register on April 26, 1991 (56 FR 18997); and (C) The Nuclear Energy... contrary to the rationale for rulemaking, as discussed in 56 FR 18997. On October 26 and December 2, 2009... Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of...

  3. State regulation of nuclear power and national energy policy

    SciTech Connect

    Moeller, J.W.

    1992-12-31

    In April 1983 and January 1984, the United States Supreme Court rendered two decisions that redefined the metes and bounds of federal preemption of commercial nuclear power plant regulation. In Pacific Gas & Electric Co. v. State Energy Resources Conservation and Development Commission (PG&E), the court decided that the Atomic Energy Act of 1954, as amended (the Act), did not preempt a California state law that established a moratorium on commercial nuclear power plant construction. In Silkwood v. Kerr-McGee Corporation, the Court also decided that the Act did not preempt a claim for damages under state tort law for radiological injuries suffered in a nuclear fuel facility regulated by the United States Nuclear Regulatory Commission (NRC). The two decisions redefined the extent of federal preemption, under the Act and other federal law, of nuclear plant regulation as well as the extend of state regulation of nuclear plants. In the eight years since PG&E and Silkwood, numerous other developments have eroded further the breadth of federal preemption of commercial nuclear power plant regulation. This Article explores the developments, since PG&E and Silkwood, that have expanded further the scope of state and local regulation of commercial nuclear power plants. Specifically, the Article first identifies the extent of state and local participation in nuclear power regulation provided by the Act and other federal loan relevant to commercial nuclear power. Second, it discusses in detail the PG&E and Silkwood decisions. The Article also considers the impact of seven specific developments on the legislative implementation of a national energy policy that contemplates a role for nuclear power.

  4. Nuclear material control and accounting safeguards in the United States

    SciTech Connect

    Woltermann, H.A.; Rudy, C.R.; Rakel, D.A.; DeVer, E.A.

    1982-07-01

    Material control and accounting (MC and A) of special nuclear material (SNM) must supplement physical security to protect SNM from unlawful use such as terrorist activities. This article reviews MC and A safeguards of SNM in the United States. The following topics are covered: a brief perspective and history of MC and A safeguards, current MC and A practices, measurement methods for SNM, historical MC and A performance, a description of near-real-time MC and A systems, and conclusions on the status of MC and A in the United States.

  5. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  6. Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants

    SciTech Connect

    Faibish, R.S.; Konishi, T.; Gasparini, M.

    2002-07-01

    Nuclear energy is playing an important role in electricity generation, producing 16% of the world's electricity. However, most of the world's energy consumption is in the form of heat, in which case nuclear energy could also play an important role. In particular, process heat for seawater desalination using nuclear energy has been of growing interest to some Member States of the International Atomic Energy Agency over the past two decades. This growing interest stems from increasingly acute freshwater shortages in many arid and semi-arid zones around the world. Indeed, several national and international nuclear desalination demonstration programs are already under way or being planned. Of particular interest are projects for seawater nuclear desalination plants in coastal regions, where saline feed water can serve the dual purpose of cooling water for the nuclear reactor and as feed water for the desalination plant. In principle any nuclear reactor can provide energy (low-grade heat and/or electricity), as required by desalination processes. However, there are some additional requirements to be met under specific conditions in order to introduce nuclear desalination. Technical issues include meeting more stringent safety requirements (nuclear reactors themselves and nuclear-desalination integrated complexes in particular), and performance improvement of the integrated systems. Economic competitiveness is another important factor to be considered for a broader deployment of nuclear desalination. For technical robustness and economic competitiveness a number of design variants of coupling configurations of nuclear desalination integrated plant concepts are being evaluated. This paper identifies and discusses various factors, which support the attractiveness of nuclear desalination. It further summarizes some of the key approaches recommended for nuclear desalination complex design and gives an overview of various design concepts of nuclear desalination plants, which

  7. DOE`s nuclear energy plant optimization program

    SciTech Connect

    Harrison, D.; Savage, C.D.; Singh, B.P.

    1999-09-01

    In December 1997, the United States agreed to the Kyoto Protocol on Climate Change that outlines specific greenhouse gas emissions reduction requirements. A key element of this protocol is binding emissions targets and timetables. The Protocol calls for the United States to reach emissions targets 7% below 1990 emissions levels over the 5-yr period from 2008 to 2012. A key element to achieving this goal will be the continued safe and economic operation of the Nation`s 104 nuclear power plants. These plants provide >20% of the Nation`s electricity, and nearly one-half of the 50 states receive >25% of their electricity from nuclear power. DOE`s current Strategic Plan specifies that the United States maintain its nuclear energy option and improve the efficiency of existing plants as part of its energy portfolio, in the interest of national security. As a result, DOE proposed two new nuclear energy R and D programs for fiscal year (FY) 1999: the Nuclear Energy Research Initiative (NERI), a peer-reviewed, competitively selected R and D program in advanced concepts, and the Nuclear Energy Plant Optimization Program (NEPO). NERI was authorized and received initial funding of $19 million for its first year. NEPO was not funded in 1999 but has been reintroduced in the FY 2000 budget request. NEPO will be a jointly funded R and D program with industry through the Electric Power Research Institute (EPRI) and will address those issues that could hinder continued safe operation of the Nation`s operating nuclear power plants. The FY 2000 funding request to Congress for NEPO is $5 million.

  8. Nuclear Energy Assessment Battery. Form C.

    ERIC Educational Resources Information Center

    Showers, Dennis Edward

    This publication consists of a nuclear energy assessment battery for secondary level students. The test contains 44 multiple choice items and is organized into four major sections. Parts include: (1) a knowledge scale; (2) attitudes toward nuclear energy; (3) a behaviors and intentions scale; and (4) an anxiety scale. Directions are provided for…

  9. Designing the Nuclear Energy Attitude Scale.

    ERIC Educational Resources Information Center

    Calhoun, Lawrence; And Others

    1988-01-01

    Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)

  10. Renewable energy atlas of the United States.

    SciTech Connect

    Kuiper, J.A.; Hlava, K.Greenwood, H.; Carr, A.

    2012-05-01

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. It is designed for the U.S. Department of Agriculture Forest Service (USFS) and other federal land management agencies to evaluate existing and proposed renewable energy projects. Much of the content of the Atlas was compiled at Argonne National Laboratory (Argonne) to support recent and current energy-related Environmental Impact Statements and studies, including the following projects: (1) West-wide Energy Corridor Programmatic Environmental Impact Statement (PEIS) (BLM 2008); (2) Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2010); (3) Supplement to the Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2011); (4) Upper Great Plains Wind Energy PEIS (WAPA/USFWS 2012, in progress); and (5) Energy Transport Corridors: The Potential Role of Federal Lands in States Identified by the Energy Policy Act of 2005, Section 368(b) (in progress). This report explains how to add the Atlas to your computer and install the associated software; describes each of the components of the Atlas; lists the Geographic Information System (GIS) database content and sources; and provides a brief introduction to the major renewable energy technologies.

  11. An Atlas of Nuclear Energy. A Non-Technical World Portrait of Commercial Nuclear Energy.

    ERIC Educational Resources Information Center

    Ball, John M.

    This atlas is a nontechnical presentation of the geography and history of world commercial nuclear power with particular emphasis on the United States. Neither pro- nor antinuclear, it presents commercial nuclear power data in a series of specially prepared, easily read maps, tables, and text. The first section (United States) includes information…

  12. Energy: A Guide to Organizations and Information Resources in the United States.

    ERIC Educational Resources Information Center

    Center for California Public Affairs, Claremont.

    A central source of information on the key organizations concerned with energy in the United States has been compiled. Chapter 2 covers organizations involved with broad questions of energy policy; Chapters 2-6 describe organizations having to do with sources of energy: oil, natural gas, coal, water power, nuclear fission, and alternate sources;…

  13. Before it's too late: a scientist's case for nuclear energy

    SciTech Connect

    Cohen, B.L.

    1983-01-01

    Up to now the truth about nuclear energy has been consistently distorted to the public. Here a scientist--unaffiliated with the nuclear industry or the government, and the 1981 recipient of the American Physical Society Bonner Prize for basic research in nuclear physics--explains to the layman how dangerous radiation from a nuclear reactor really is; what actually happened at Three Mile Island; how risks of different sources of energy compare with risks of everyday life; why nuclear waste is very much less hazardous than the waste from coal burning or solar energy; what scientists truly think about radiation hazards, as revealed by a new poll published for the first time; and how time is running out for an inexpensive nuclear program. What originated as a scientific question has turned into a political controversy steeped in propaganda. If nothing is done soon to promote a nuclear energy program, electricity in the United States will cost twice as much as it does in Europe.

  14. India's baseline plan for nuclear energy self-sufficiency.

    SciTech Connect

    Bucher, R .G.; Nuclear Engineering Division

    2009-01-01

    United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear

  15. History of United States Energy. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Intended as a supplement to the units "Oil: Fuel of the Past" and "Coal: Fuel of the Past, Hope of the Future," this 3-4 day unit contains three activities which briefly explain the chronological development of energy resources and the formation and development of the Organization of Petroleum Exporting Countries (OPEC). The first activity…

  16. 76 FR 39910 - Nine Mile Point Nuclear Station, LLC; Nine Mile Point Nuclear Station, Unit Nos. 1 and 2; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... COMMISSION Nine Mile Point Nuclear Station, LLC; Nine Mile Point Nuclear Station, Unit Nos. 1 and 2; Notice... Nos. DPR-63 and NPF-69 for the Nine Mile Point Nuclear Station, Unit Nos. 1 and 2 (NMP),...

  17. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP),...

  18. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... COMMISSION ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt... licensing basis requirements previously applicable to the nuclear power units and associated...

  19. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    SciTech Connect

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  20. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  1. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  2. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  3. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This book describes environmental, safety, and health problems throughout the nuclear weapons complex and what the Department of Energy is doing to address them. Because of the secrecy that until recently surrounded nuclear weapons, many citizens today are unaware of how and where nuclear weapons were made and the resulting problems. The intention of this book it to help foster better public understanding of some of the issues concerning the nuclear legacy of the Cold War so as to help hasten progress as the DOE moves ahead on resolving these problems. Chapter 1 is an overview and a summary, including a brief history of the Department's nuclear weapons complex. Chapter 2 describes nuclear warhead production for uranium mining to final assembly to give a sense of the scale and complexity of nuclear weapons production and to characterize the sources and varieties of wastes and contamination. Chapters 3 and 4 look at the wastes and the contamination left by the Cold War and the progress and plans for solving these problems. Chapter 5 provides and international perspective on the legacy of nuclear weapons production. Chapter 6 describes the engineering and institutional challenges faced by the DOE as it embarks on new missions. Chapter 7 presents some of the long-term issues our nation faces as we come to terms with the legacy of the Cold War. The book ends with a glossary of terms and a list of books and reports that provide additional information about the nuclear weapons complex and the Department's plans for its cleanup.

  4. Nuclear Energy: Benefits Versus Risks

    ERIC Educational Resources Information Center

    Jordan, Walter H.

    1970-01-01

    Discusses the benefits as well as the risks of nuclear-power plants. Suggests that critics who dwell on the risks to the public from nuclear-power plants should compare these risks with the present hazards that would be eliminated. Bibliography. (LC)

  5. Scintillation Efficiency of Liquid Xenon for Low Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Wongjirad, Taritree; Ni, Kaixuan; Manzur, Angel; Kastens, Louis; McKinsey, Daniel

    2008-04-01

    In early 2006, the XENON and ZEPLIN collaborations announced highly stringent upper limits on the WIMP-nucleon cross-section. However, the dominant systematic uncertainty in these limits is due to the uncertainty in the nuclear recoil scintillation efficiency (NRSE) for liquid xenon. The NRSE is defined as the amount of scintillation produced by nuclear recoils, divided by the amount of scintillation produced by electron recoils, per unit energy. Though the NRSE has been measured by several groups, its value at the low energies most important for the liquid xenon WIMP searches has a large uncertainty. Furthermore, the NRSE may vary with the strength of the electric field in the liquid xenon. In an attempt to reduce these uncertainties, we have measured the NRSE down to 5 keV nuclear recoil energy for various electric fields.

  6. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2; Notice of Availability of the Final Supplement 45 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Notice...

  7. 78 FR 28245 - In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION [NRC-2013-0093; Docket No.: 50-348, 50-364; License No.: NPF-2, NPF-8; EA-12-145] In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2; Confirmatory Order I Southern Nuclear Operating Company (SNC or Licensee)...

  8. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69...

  9. Medium energy nuclear physics research

    SciTech Connect

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T{sub 20} experiment, the UMass group was able to complete data acquisition on experiments involving 180{degrees} elastic magnetic scattering on {sup 117}Sn and {sup 41}Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e{prime}) measurements were made in November of 1987 on {sup 10}B in order to better determine the p{sub 3/2} wave function from the transition from the J{sup pi} = 3{sup +} ground state to the O{sup +} excited state at 1.74 MeV. In 1988, (e,e{prime}p) coincidence measurements on {sup 10}B were completed. The objective was to obtain information on the p{sub 3/2} wave function by another means.

  10. Recommendations for a Department of Energy nuclear energy R and D agenda

    SciTech Connect

    1997-12-01

    On January 14, 1997, the President requested that his Committee of Advisors on Science and Technology (PCAST) make ``recommendations ... by October 1, 1997 on how to ensure that the United States has a program that addresses its energy and environmental needs for the next century.`` In its report, Federal Energy Research and Development for the Challenges of the Twenty-First Century, the PCAST Panel stated that ``the United States faces major energy-related challenges as it enters the twenty-first century`` and links these challenges to national economic and environmental well-being as well as to national security. The Panel concluded that ``Fission belongs in the R and D portfolio.`` In conjunction with this activity, the DOE Office of Nuclear Energy, Science and Technology, together with seven of the national laboratories, undertook a study to recommend nuclear energy R and D responses to the challenges and recommendations identified by the PCAST Panel. This seven-laboratory study included an analysis of past and present nuclear energy policies, current R and D activities, key issues, and alternative scenarios for domestic and global nuclear energy R and D programs and policies. The results are summarized. Nuclear power makes important contributions to the nation`s well-being that can be neither ignored nor easily replaced without significant environmental and economic costs, particularly in an energy future dominated by global energy growth but marked by significant uncertainties and potential instabilities. Future reliance on these contributions requires continuing past progress on the issues confronting nuclear power today: safety, waste management, proliferation, and economics. A strong nuclear energy agenda will enable the U.S. government to meet its three primary energy responsibilities: (1) respond to current needs; (2) prepare the country for anticipated future developments; and (3) safeguard the country from unexpected future events.

  11. 75 FR 71152 - Southern California Edison; San Onofre Nuclear Generating Station, Unit 2 and Unit 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern California Edison; San Onofre Nuclear Generating Station, Unit 2 and Unit 3; Exemption 1.0 Background Southern California Edison (SCE, the licensee) is the holder of the Facility Operating License Nos. NPF-10 and NPF-15, which...

  12. 75 FR 14211 - Southern California Edison, San Onofre Nuclear Generating Station, Unit 2 and Unit 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern California Edison, San Onofre Nuclear Generating Station, Unit 2 and Unit 3; Exemption 1.0 Background Southern California Edison (SCE, the licensee) is the holder of the Facility Operating License Nos. NPF-10 and NPF-15, which...

  13. ALARA Overview System at Crystal River Unit 3 Nuclear Station.

    PubMed

    Kline, K B; Cope, W B

    1995-08-01

    During the Spring of 1994 the Health Physics Department at Florida Power Company used video and audio equipment to support remote health physics coverage for their Crystal River Unit 3 refueling outage (Refuel 9). The system consisted of eight cameras with audio interface linked to a control center located in a low-dose area. The system allowed health physics personnel to monitor steam generator and refueling activities with minimum exposure in high-dose areas, cutting by half the dose from the previous outage. B&W Nuclear Technologies provided complete setup, maintenance and tear-down, as well as assuming responsibilities for contaminated video and audio equipment. PMID:7622378

  14. The Future of Energy from Nuclear Fission

    SciTech Connect

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel

  15. Renewable Energy Atlas of the United States

    SciTech Connect

    Kuiper, J.; Hlava, K.; Greenwood, H.; Carr, A.

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  16. On the Role of Nuclear Energy

    ERIC Educational Resources Information Center

    Parsegian, V. Lawrence

    1974-01-01

    The author elaborates on the thesis that much of the confusion and argument about the role of nuclear energy in meeting the energy needs of the nation and the world is caused by failure to place the known facts in perspective with respect to time, to hazards that accompany the use of energy in any form, to economics, and to ultimate limitations in…

  17. Nuclear energy for the third millennium

    SciTech Connect

    Teller, E.

    1997-10-01

    The major energy sources of today are expected to last for only a small fraction of the millennium starting three years hence. In the plans of most people, nuclear energy has been ruled out for four separate reasons: 1. The danger of radioactivity from a reactor accident or from reactor products during a long period after reactor shutdown; 2. The proposed fuels, U-235 and also Pu-239, as obtained by presently available procedures will serve only for a limited duration; 3. Energy from nuclear reactors will be more expensive than costs of present alternatives; 4. The possibility of misusing the products for military purposes is an unacceptable danger. The development described below 1 attempts to meet all four objections. Specifically, we propose a structure as an example of future reactors that is deployed two hundred meters underground in loose and dry earth. The reactor is designed to function for thirty years, delivering electrical power on demand up to a level of thousand electrical megawatts. From the time that the reactor is started to the time of its shutdown thirty years later, the functioning is to be completely automatic. This is an obviously difficult condition to fulfill. The most important factor in making it possible is to design and operate the reactor without moving mechanical parts. At the start, the reactor functions on thermal neutrons within a structure containing uranium enriched in U-235 or having an addition of plutonium. That part of the reactor is to deliver energy for approximately one year after which a neighboring portion of the reactor containing thorium has been converted into Th-233 which rather rapidly decays into fissile U-233. This part of the assembly works on fission by fast neutrons. It will heat-up if insufficient thermal energy is withdrawn from the reactor`s core, under the negative feedback action of engineered-in thermostats. Indeed, these specifically designed thermostatic units absorb neutrons if excessive reactor core

  18. Nuclear Energy - A Fateful Choice for France

    ERIC Educational Resources Information Center

    Bauer, Etienne; And Others

    1976-01-01

    In France the public is only moderately interested in technological problems, and so the question of energy choices has not seeped deeply into the political consciousness. The situation could change as the country strengthens its nuclear commitment. (BT)

  19. Upgrade of Control and Protection System of the Ignalina Nuclear Power Plant Units 1 and 2

    SciTech Connect

    Wright, Ronald E.; Fletcher, Norman; Pearsall, Raymond; Sidnev, Victor; Bickel, John; Vianello, Aldo

    2003-08-01

    The Ignalina Nuclear Power Plant (NPP) Units 1 and 2 are Soviet-designed, RBMK (Reaktor Bolshoi Moschnosti Kipyashchiy), channelized, large power-type reactors. The original-design electrical capacity for each unit was 1500 Megawatts. Unit 1 began operating in 1983, and Unit 2 was started up in 1987. In 1994, the government of Lithuania agreed to accept grant support for the Ignalina NPP Safety Improvement Program with funding supplied by the Nuclear Safety Account of the European Bank for Reconstruction and Development (EBRD). As conditions for receiving this funding, Ignalina NPP agreed to prepare a comprehensive Safety Analysis Report that would undergo independent peer review after it was issued. The EBRD Safety Panel oversaw preparation and review of the report. In 1996, the Safety Analysis Report for Unit 1 was completed and delivered to the EBRD. Part of the analyses covered anticipated transients without scram (ATWS). The analysis showed that some ATWS scenarios could lead to unacceptable consequences in less than a minute. The EBRD Safety Panel recommended to the Government of Lithuania that Ignalina NPP develop and implement a Program of Compensatory Measures for the Control and Protection System before the unit would be allowed to return to operation following its 1998 maintenance outage. A compensatory control and protection system that would mitigate the unacceptable consequences was designed, procured, manufactured, tested, and installed. The project was funded by U.S. Department of Energy.

  20. Energy resources of the United States

    USGS Publications Warehouse

    Theobald, P.K.; Schweinfurth, Stanley P.; Duncan, Donald Cave

    1972-01-01

    Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. The estimates, compiled by specialists of the U.S. Geological Survey, are generally made on geologic projections of favorable rocks and on anticipated frequency of the energy resource in the favorable rocks. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total coal resource base in the United States is estimated to be about 3,200 billion tons, of which 200-390 billion tons can be considered in the category identified and recoverable. More than 70 percent of current production comes from the Appalachian basin where the resource base, better known than for the United States as a whole, is about 330 billion tons, of which 22 billion tons is identified and recoverable. Coals containing less than 1 percent sulfur are the premium coals. These are abundant in the western coal fields, but in the Appalachian basin the resource base for low-sulfur coal is estimated to be only a little more than 100 billion tons, of which 12 billion tons is identified and recoverable. Of the many estimates of petroleum liquids and natural-gas resources, those of the U.S. Geological Survey are the largest because, in general, our estimates include the largest proportion of favorable ground for exploration. We estimate the total resource base for petroleum liquids to be about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural

  1. Nuclear diffractive structure functions at high energies

    SciTech Connect

    Marquet,C.; Kowalski, H.; Lappi, T.; Venugopalan, R.

    2008-08-08

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F{sub 2,A}{sup D} is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  2. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  3. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    PubMed

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. PMID:21399406

  4. Influence of nuclear power unit on decreasing emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Stanek, Wojciech; Szargut, Jan; Kolenda, Zygmunt; Czarnowska, Lucyna

    2015-03-01

    The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.

  5. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  6. Intermediate-energy nuclear chemistry workshop

    SciTech Connect

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  7. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1 Environmental Assessment and Finding of No... Operating License No. DPR-9 issued to DTE Energy (DTE or the licensee), for the Enrico Fermi Atomic...

  8. Public Acceptance of Nuclear Energy in Mexico

    SciTech Connect

    Ramirez-Sanchez, Jose R.; Alonso, Gustavo; Palacios, H. Javier

    2006-07-01

    The nuclear energy is attracting renewed interest of public and policy makers due to his potential role in long term strategies aiming to reduce the risk of global warming and in a more general, to carry out sustainable policies, however, any project of nuclear nature arise concerns about the risks associated with the release of radioactivity during accident conditions, radioactive waste disposal and nuclear weapons proliferation. Then in light of the likeliness for a new nuclear project in Mexico, is necessary to design a strategy to improve the social acceptance of nuclear power. This concern is been boarding since the environmental and economic point of view. The information that can change the perception of nuclear energy towards increase public acceptance, should be an honest debate about the benefits of nuclear energy, of course there are questions and they have to be answered, but in a realistic and scientific way: So thinking in Mexico as a first step it is important to communicate to the government entities and political parties that nuclear energy is a proven asset that it is emission free and safe. Of course besides the guarantee of a proven technology, clean and safe relies the economic fact, and in Mexico this could be the most important aspect to communicate to key people in government. Based in the Laguna Verde survey it is clear that we have to find the adequate means to distribute the real information concerning nuclear technology to the public, because the results shows that Mexican people does not have complete information about nuclear energy, but public can support it when they have enough information. From the IAEA study we can say that in Mexico public acceptance of nuclear energy it s not so bad, is the highest percentage of acceptance of nuclear technology for health, considering benefits to the environment Mexican opposition to build new plants is the second less percentage, and generally speaking 60% of the people accept somehow nuclear

  9. A perfect match: Nuclear energy and the National Energy Strategy

    SciTech Connect

    Not Available

    1990-11-01

    In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs.

  10. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  11. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  12. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  13. [The Chinese nuclear test and 'atoms for peace' as a measure for preventing nuclear armament of Japan: the nuclear non-proliferation policy of the United States and the introduction of light water reactors into Japan, 1964-1968].

    PubMed

    Yamazaki, Masakatsu

    2014-07-01

    Japan and the United States signed in 1968 a new atomic energy agreement through which US light-water nuclear reactors, including those of the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, were to be introduced into Japan. This paper studies the history of negotiations for the 1968 agreement using documents declassified in the 1990s in the US and Japan. After the success of the Chinese nuclear test in October 1964, the United States became seriously concerned about nuclear armament of other countries in Asia including Japan. Expecting that Japan would not have its own nuclear weapons, the US offered to help the country to demonstrate its superiority in some fields of science including peaceful nuclear energy to counter the psychological effect of the Chinese nuclear armament. Driven by his own political agenda, the newly appointed Prime Minister Eisaku Sato responded to the US expectation favorably. When he met in January 1965 with President Johnson, Sato made it clear that Japan would not pursue nuclear weapons. Although the US continued its support after this visit, it nevertheless gave priority to the control of nuclear technology in Japan through the bilateral peaceful nuclear agreement. This paper argues that the 1968 agreement implicitly meant a strategic measure to prevent Japan from going nuclear and also a tactic to persuade Japan to join the Nuclear Non -Proliferation Treaty. PMID:25296517

  14. Nuclear Energy Encore in Sweden.

    ERIC Educational Resources Information Center

    Fishlock, David

    1991-01-01

    This article traces Sweden's decision to indefinitely delay their previous plan to phase out nuclear power generators which had been scheduled for 1995. Discussed as major factors in this delay are the excellent safety record of current reactors and the unacceptable economic, as well as environmental, consequences of switching to other power…

  15. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  16. A Nuclear Energy Elective for "Ungineers"

    ERIC Educational Resources Information Center

    Long, R. L.; And Others

    1975-01-01

    Describes a course in the technology of nuclear energy which responds to the immediate concerns of students in areas such as environmental effects, weapons effects, national energy needs, and medical and forensic applications. Includes a course outline and description of appropriate textbooks, (GS)

  17. Nuclear Energy for Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  18. A Technology Roadmap for Generation IV Nuclear Energy Systems Executive Summary

    SciTech Connect

    2003-03-01

    To meet future energy needs, ten countries--Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States--have agreed on a framework for international cooperation in research for an advanced generation of nuclear energy systems, known as Generation IV. These ten countries have joined together to form the Generation IV International Forum (GIF) to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste, proliferation, and public perception concerns. The objective for Generation IV nuclear energy systems is to be available for international deployment before the year 2030, when many of the world's currently operating nuclear power plants will be at or near the end of their operating licenses.

  19. Symmetry energy of warm nuclear systems

    NASA Astrophysics Data System (ADS)

    Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2014-02-01

    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

  20. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Consideration (73 FR 17148; March 31, 2008), states that ``Plant emergencies are extraordinary circumstances... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and...

  1. 75 FR 9620 - Southern Nuclear Operating Company, Inc.; Edwin I. Hatch Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... have a significant effect on the quality of the human environment (75 FR 3761; dated January 22, 2010... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company, Inc.; Edwin I. Hatch Nuclear Plant, Units 1 and 2; Exemption...

  2. 78 FR 37591 - Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point Unit 2, LLC, Issuance of Director...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point Unit 2, LLC, Issuance of Director's Decision Notice is hereby given that the Deputy Director, Reactor Safety Programs, Office of...

  3. 75 FR 76052 - Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... environment (75 FR 73135, dated November 29, 2010). This exemption is effective upon issuance. Dated at... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Units 1 and 2;...

  4. 78 FR 26662 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... notice appearing in the Federal Register on April 3, 2013 (78 FR 20144), by extending the original public... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of...

  5. Computational Study of Low Energy Nuclear Scattering

    NASA Astrophysics Data System (ADS)

    Salazar, Justin; Hira, Ajit; Brownrigg, Clifton; Pacheco, Jose

    2013-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms ( Z<=9 ) from Palladium and other metals. First, a FORTRAN computer program was developed to compute stopping cross sections and scattering angles in Pd and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 10 to 140kev. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  6. 76 FR 29279 - Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... COMMISSION NORTHERN STATES POWER COMPANY Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of... Nuclear Plants Regarding the License Renewal of Prairie Island Nuclear Generating Plants, Units 1 and 2... years of operation for Prairie Island Nuclear Generating Plant, Units 1 and Unit 2 (PINGP 1 and 2)....

  7. Nuclear structure at intermediate energies. Progress report

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1992-07-15

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS {bar p} experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance.

  8. 78 FR 75579 - License Renewal Application for Grand Gulf Nuclear Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Grand Gulf Nuclear Station, Unit 1 AGENCY: Nuclear Regulatory... request for comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment...

  9. A new, versatile Stirling energy conversion unit

    SciTech Connect

    Meijer, R.J.; Ziph, B.

    1982-08-01

    A new concept in Stirling engine technology is embodied in the ''Base Engine'' now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The Base Engine, rated at 40 kw at 2800 rpm, is a four cylinder, double acting, variable displacement Stirling engine. It incorporates remote-heating technology with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. It specifically emphasizes high efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost. This paper describes the Base Engine, its design philosophy and approach, its projected performance, and some of its more attractive applications.

  10. Nuclear Weapon Systems Today: A Unit Curriculum for Liberal Arts Students.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    1988-01-01

    Described is a unit of study on nuclear weapons from a course on nuclear technology. Provided are the elements of first strike attack designed for invoking students' interest and an explanation of each. (YP)

  11. Coal and nuclear power: Illinois' energy future

    SciTech Connect

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  12. Nuclear and gravitational energies in stars

    SciTech Connect

    Meynet, Georges; Ekström, Sylvia; Courvoisier, Thierry

    2014-05-09

    The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ⊙}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ⊙}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

  13. Energy R&D in the United States

    SciTech Connect

    J.J. Dooley

    1999-08-09

    In 1997, the US public and private sectors invested $205.7 billion in R&D. Private sector investments in R&D increased 34% between 1990 and 1997; over the same period the federal government decreased its expenditures by 15% in real terms. Projections of outyear federal budgets indicate the federal government will continue to reduce its investments in R&D for the foreseeable future. Defense R&D continues to be the largest area of concentration for federal government's R&D investments, with defense R&D accounting for 54% of all federal R&D outlays in 1998. Defense R&D is funded at a level which is there times higher than health R&D. Health R&D has experienced the largest inflation-adjusted increases of any federal R&D program, up 21% in real terms since 1990. US national (i.e., public and private) investments in energy R&D currently stand at a 23-year low of $4.4 billion in 1996. Federal support for energy R&D has declined 22% in real terms between 1990 and 1996. Federal energy R&D investments are also undergoing changes in priority. Fossil energy R&D programs are at the beginning of a potentially significant change away from ''clean coal'' technology development programs and towards more fundamental research on ways to decarbonize fossil fuels and sequester carbon dioxide. The federal nuclear energy R&D program has restarted (at a modest level) research to develop new reactor concepts after many years of no federal research in this area. The United States has withdrawn from the ITER project, calling into question the viability of this international fusion energy program. Renewable energy and energy efficiency R&D programs continue to be the only consistent areas of growth in the federal energy R&D budget.

  14. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  15. The development of nuclear energy in the Philippines

    SciTech Connect

    Aleta, C. )

    1992-01-01

    The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherent fear of nuclear energy.

  16. Nuclear energy release from fragmentation

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Souza, S. R.; Tsang, M. B.; Zhang, Feng-Shou

    2016-08-01

    It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting 230,232Th and 235,238U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for 230,232Th and 235,238U are around 0.7-0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.

  17. Energy resiliency. Hearing before the Subcommittee on Energy, Nuclear proliferation, and Government Processes of the Committee on Governmental Affairs, United States Senate, Ninety-Seventh Congress, Second Session, May 21, 1982

    SciTech Connect

    Not Available

    1982-01-01

    Nine witnesses, including William A. Vaughan of DOE, Robert H. Kupperman of Georgetown University, Donald G. Handy of the Illinois Alcohol Fuels Association, and Amory and Hunter Lovins addressed the question of the US energy infrastructure's vulnerability to terrorism or sabotage and the impact this has on national security. Some of the witnesses testified on the lack of consideration given to security as the US built up its energy systems. Vaughan proposed a program to identify key vulnerabilities, take corrective measures, encourage organizations to reduce the risks, and prepare an appropriate response if events exceed the energy system's resiliency. Other recommendations were for an alcohol-fuels program and decentralization of energy facilities. (DCK)

  18. Nuclear Energy Infrastructure Database Description and User’s Manual

    SciTech Connect

    Heidrich, Brenden

    2015-11-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  19. 76 FR 23798 - Nuclear Energy Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee; Meeting AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory...

  20. Surface layer effect on nuclear deformation energy

    NASA Astrophysics Data System (ADS)

    Kolomietz, V. M.; Sanzhur, A. I.; Reznychenko, B. V.

    2016-03-01

    In this paper, we apply the direct variational method to derive the nuclear deformation energy. The extended Thomas-Fermi approximation (ETFA) for the energy functional with Skyrme forces is used. We study the influence of the finite surface layer of the nuclear density profile function on the formation of the fission barrier and the scission configuration. Comparison of the variational approach with the traditional liquid drop model (LDM) is presented. We show the sensitivity of the numerical results to the surface diffuseness parameter.

  1. An approach to a self-consistent nuclear energy system

    SciTech Connect

    Fujii-e, Yoichi ); Arie, Kazuo; Endo, Hiroshi )

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal.

  2. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR...

  3. Leak testing United States Nuclear Regulatory Commission type b packaging

    SciTech Connect

    Lacy, K.A.

    1995-12-31

    The Waste Isolation Pilot Plant (WTPP) is a one of its kind research and development facility operated by the Department of Energy, Carlsbad Area Office. Located in southeastern New Mexico, the WTPP is designed to demonstrate the safe, permanent disposal of transuranic (TRU) radioactive nuclear waste, accumulated from 40 years of nuclear weapons production. Before the waste can be disposed of, it must first be safely transported from generator storage sites to the WIPP. To accomplish this, the TRUPACT-II was designed and fabricated. This double containment, non-vented waste packaging successfully completed a rigorous testing program, and in 1989 received a Certificate of Compliance (C of C) from the Nuclear Regulatory Commission (NRC). Currently, the TRUPACT-II is in use at Idaho National Engineering Laboratory to transport waste on site for characterization. The DOE/CAO is responsible for maintaining the TRUPACT-II C of C. The C of C requires performance of nondestructive examination (NDE), e.g., visual testing (VT), dimensional inspections, Liquid Dye Penetrant testing (PT), and Helium Leak Detection (HLD). The Waste Isolation Division (WID) uses HLD for verification of the containment integrity. The following HLD tests are performed on annual basis or when required, i.e. repairs or component replacement: (1) fabrication verification leak tests on both the outer containment vessel (OCV) and the inner containment vessel (ICV); (2) assembly verification leak tests on the OCV and ICV upper main o-rings; and (3) assembly verification leak tests on the OCV and the ICV vent port plugs. These tests are addressed in detail as part of this presentation.

  4. A nuclear fragmentation energy deposition model

    NASA Technical Reports Server (NTRS)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  5. Data requirements for intermediate energy nuclear applications

    SciTech Connect

    Pearlstein, S.

    1990-01-01

    Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

  6. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  7. Stamps Tell the Story of Nuclear Energy.

    ERIC Educational Resources Information Center

    Angelo, Joseph A., Jr.

    This document provides a summary history of the individual scientists principally responsible for the development of nuclear physics and a survey of modern utilization of atomic energy. Identified throughout the booklet are postage stamps illustrating each individual and topic discussed. (SL)

  8. NSTA Conducts Nuclear Energy Survey for AIF

    ERIC Educational Resources Information Center

    Science Teacher, 1972

    1972-01-01

    A survey conducted to determine teacher's instructional resources, methods, materials, and attitudes toward various uses of nuclear energy resulted in nearly one thousand science teachers throughout the nation responding. Results of survey are presented and five recommendations for action are made. (DF)

  9. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  10. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect

    Steven E. Aumeier

    2010-10-01

    applications is certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD&D areas, or “platforms”: • feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); • heat / energy management (e.g. advanced heat exchangers, process design); • energy storage (e.g. H2 production, liquid fuels synthesis); • byproduct management (e.g. CO2 recycle approaches); • systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  11. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    SciTech Connect

    Stewart, L.

    2004-10-03

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

  12. Renewable Energy Resources in the United Kingdom.

    ERIC Educational Resources Information Center

    Roberts, Michael J.; Thomas, M. Pugh

    1990-01-01

    This paper defines renewable energy and outlines possible sources of this energy. Supplies, and ethics are considered. The position of renewable energy sources in the energy policy of Great Britain are discussed. (CW)

  13. Functional Mock-up Unit Export of EnergyPlus

    Energy Science and Technology Software Center (ESTSC)

    2012-08-01

    The Functional Mock-up Unit Export of EnergyPlus is a software package that allows EnergyPlus to be exported as a Functional Mock-up Unit. This allows other software tools to run EnergyPlus as part of a larger simulation. To do so, the outside software needs to implement the Functional Mock-up interface standard (http://www.modelisar.com/), and be able to import Functional Mock-up Units for co-simulation.

  14. 76 FR 62457 - Atomic Safety and Licensing Board; Nextera Energy Seabrook, LLC (Seabrook Station, Unit 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Atomic Safety and Licensing Board; Nextera Energy Seabrook, LLC (Seabrook Station, Unit 1); Notice... hearing will be announced in a subsequent notice or order. \\2\\ Id. at 63. It is so ordered. For the...

  15. Applying activity-based costing to the nuclear medicine unit.

    PubMed

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better. PMID:16102243

  16. Application of Nuclear Energy to Bitumen Upgrading and Biomass Conversion

    SciTech Connect

    Mamoru Numata; Yasushi Fujimura; Takayuki Amaya; Masao Hori

    2006-07-01

    Key drivers for the increasing use of nuclear energy are the need to mitigate global warming and the requirement for energy security. Nuclear energy can be applied not only to generate electricity but also as a heat source. Moreover, nuclear energy can be applied for hydrogen as well as water production. The application of nuclear energy to oil processing and biomass production is studied in this paper. (authors)

  17. 75 FR 38845 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... on the quality of the human environment (75 FR 36700). This exemption is effective upon issuance... COMMISSION Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit No. 1; Exemption 1.0... No. DPR-50 which authorizes operation of the Three Mile Island Nuclear Station, Unit 1 (TMI-1)....

  18. 75 FR 61226 - Exemption; Entergy Operations, Inc.; Arkansas Nuclear One, Units 1 and 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... COMMISSION Exemption; Entergy Operations, Inc.; Arkansas Nuclear One, Units 1 and 2 1.0 Background Entergy..., which authorize operation of the Arkansas Nuclear One, Units 1 and 2 (ANO-1 and ANO-2), respectively... the ANO-1 TS conversion, the submittal date for ANO-1 became May 1. The licensee continued to send...

  19. 76 FR 52356 - Indiana Michigan Power Company, Donald C. Cook Nuclear Plant, Unit 1; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... COMMISSION Indiana Michigan Power Company, Donald C. Cook Nuclear Plant, Unit 1; Environmental Assessment and... to Indiana Michigan Power Company (the licensee), for operation of Donald C. Cook Nuclear Plant, Unit 1 (DCCNP-1), located in Berrien County, Michigan, in accordance with Title 10 of the Code of...

  20. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all... COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3),...

  1. 76 FR 5216 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption 1.0 Background... authorizes operation of the Crystal River ] Unit 3 Nuclear Generating Plant (Crystal River). The license... under 10 CFR 55.11 from the schedule requirements of 10 CFR 55.59. Specifically for Crystal River,...

  2. The Control of the PBMR Nuclear Power Unit

    SciTech Connect

    Rubin, Olis; Venter, Miek; Jordaan, Johannes

    2006-07-01

    PBMR is an advanced, helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). Heat is converted to electric energy by means of a direct recuperative Brayton cycle. This paper considers various design aspects associated with the control of the unit and examples are given of generator load control. Physical material restrictions and process dynamics have a major effect on control, necessitating detail thermo-hydraulic simulation of the plant operation. The Flownex dynamic thermo-hydraulic simulation code was developed to model the plant, which is linked to the control software for co-simulation. Matlab and Simulink are used for controller development while care was taken to ensure compatibility with the operational control code based on IEC standards. Generator load is controlled by regulating the helium inventory in the pressurized system. Helium is injected in order to increase the generator load, and extracted for load reduction. While this method of actuation produces the required steady state response, the plant dynamic response is non minimum phase, i.e. the load initially reduces on a load ramp-up. In base load operation, the extent of the power dip is contained by limiting the rate at which the helium injection can be increased. Feasibility studies show that it is possible to achieve faster load ramp rates by combining helium injection with quick response cycle gas bypass control. Lead compensation on the input load reference signal further enhances the load following capabilities of the unit. (authors)

  3. Medium energy nuclear physics research

    SciTech Connect

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q{sup 2}; Measurement of the 5th Structure Function in Deuterium and {sup 12}C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of {sup 117}Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from {sup 13}C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of {sup 3}He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e{prime}p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N {yields} {Delta} Excitation; Experiment E-140: Measurement of the x-, Q{sup 2} and A-Dependence of R = {sigma}{sub L}/{sigma}{sub T}; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2{gamma} Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions.

  4. 77 FR 27804 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1 AGENCY: Nuclear Regulatory Commission. ACTION: Draft environmental assessment and finding of no significant impact, opportunity to comment. DATES: Comments must be filed by June 11,...

  5. 75 FR 9955 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to Title 10 of the Code...

  6. 77 FR 50533 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and finding of no significant impact; issuance. ADDRESSES: Please refer to Docket ID NRC-2012-0197...

  7. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC, the Commission) is considering issuance of an exemption,...

  8. 75 FR 11947 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Exemption 1.0 Background STP Nuclear Operating Company (STPNOC, the licensee) is the holder of Facility Operating Licenses numbered NPF-76 and NPF-80, which authorize operation...

  9. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability of Draft Supplement 44 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License...

  10. 75 FR 36700 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption from Title 10 of the...