Science.gov

Sample records for nuclear envelope breakdown

  1. A New Model for Nuclear Envelope BreakdownV⃞

    PubMed Central

    Terasaki, Mark; Campagnola, Paul; Rolls, Melissa M.; Stein, Pascal A.; Ellenberg, Jan; Hinkle, Beth; Slepchenko, Boris

    2001-01-01

    Nuclear envelope breakdown was investigated during meiotic maturation of starfish oocytes. Fluorescent 70-kDa dextran entry, as monitored by confocal microscopy, consists of two phases, a slow uniform increase and then a massive wave. From quantitative analysis of the first phase of dextran entry, and from imaging of green fluorescent protein chimeras, we conclude that nuclear pore disassembly begins several minutes before nuclear envelope breakdown. The best fit for the second phase of entry is with a spreading disruption of the membrane permeability barrier determined by three-dimensional computer simulations of diffusion. We propose a new model for the mechanism of nuclear envelope breakdown in which disassembly of the nuclear pores leads to a fenestration of the nuclear envelope double membrane. PMID:11179431

  2. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  3. Large Scale RNAi Reveals the Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses

    PubMed Central

    Snijder, Berend; Samperio Ventayol, Pilar; Kühbacher, Andreas; Becker, Miriam; Day, Patricia M.; Schiller, John T.; Kann, Michael; Pelkmans, Lucas; Helenius, Ari; Schelhaas, Mario

    2014-01-01

    A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies. PMID:24874089

  4. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses.

    PubMed

    Aydin, Inci; Weber, Susanne; Snijder, Berend; Samperio Ventayol, Pilar; Kühbacher, Andreas; Becker, Miriam; Day, Patricia M; Schiller, John T; Kann, Michael; Pelkmans, Lucas; Helenius, Ari; Schelhaas, Mario

    2014-05-01

    A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies. PMID:24874089

  5. Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis

    PubMed Central

    Porwal, Manvi; Cohen, Sarah; Snoussi, Kenza; Popa-Wagner, Ruth; Anderson, Fenja; Dugot-Senant, Nathalie; Wodrich, Harald; Dinsart, Christiane; Kleinschmidt, Jürgen A.; Panté, Nelly; Kann, Michael

    2013-01-01

    Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. PMID:24204256

  6. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway.

    PubMed

    Schulz, Katharina S; Klupp, Barbara G; Granzow, Harald; Passvogel, Lars; Mettenleiter, Thomas C

    2015-11-01

    Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions. PMID:25678269

  7. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis.

    PubMed

    Asakawa, Haruhiko; Yang, Hui-Ju; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-01-01

    Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called "open mitosis." In contrast, many fungi undergo a process termed "closed mitosis" in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called "anaphase II") when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This "virtual" nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis. PMID:26870731

  8. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis

    PubMed Central

    Asakawa, Haruhiko; Yang, Hui-Ju; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-01-01

    Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called “open mitosis.” In contrast, many fungi undergo a process termed “closed mitosis” in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called “anaphase II”) when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This “virtual” nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis. PMID:26870731

  9. A Microtubule-Independent Role for Centrosomes and Aurora A in Nuclear Envelope Breakdown

    PubMed Central

    Portier, Nathan; Audhya, Anjon; Maddox, Paul S.; Green, Rebecca A.; Dammermann, Alexander; Desai, Arshad; Oegema, Karen

    2010-01-01

    SUMMARY Aurora A kinase localizes to centrosomes and is required for centrosome maturation and spindle assembly. Here, we describe a microtubule-independent role for aurora A and centrosomes in nuclear envelope breakdown (NEBD) during the first mitotic division of the C. elegans embryo. Aurora A depletion does not alter the onset or kinetics of chromosome condensation, but dramatically lengthens the interval between the completion of condensation and NEBD. Inhibiting centrosome assembly by other means also lengthens this interval, albeit to a lesser extent than aurora A depletion. By contrast, centrosomally-nucleated microtubules and the nuclear envelope-associated motor dynein are not required for timely NEBD. These results indicate that mitotic centrosomes generate a diffusible factor, which we propose is activated aurora A, that promotes NEBD. A positive feedback loop, in which an aurora A-dependent increase in centrosome size promotes aurora A activation, may temporally couple centrosome maturation to NEBD during mitotic entry. PMID:17419991

  10. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown

    PubMed Central

    Turgay, Yagmur; Champion, Lysie; Balazs, Csaba; Held, Michael; Toso, Alberto; Gerlich, Daniel W.; Meraldi, Patrick

    2014-01-01

    SUN proteins reside in the inner nuclear membrane and form complexes with KASH proteins of the outer nuclear membrane that connect the nuclear envelope (NE) to the cytoskeleton. These complexes have well-established functions in nuclear anchorage and migration in interphase, but little is known about their involvement in mitotic processes. Our analysis demonstrates that simultaneous depletion of human SUN1 and SUN2 delayed removal of membranes from chromatin during NE breakdown (NEBD) and impaired the formation of prophase NE invaginations (PNEIs), similar to microtubule depolymerization or down-regulation of the dynein cofactors NudE/EL. In addition, overexpression of dominant-negative SUN and KASH constructs reduced the occurrence of PNEI, indicating a requirement for functional SUN–KASH complexes in NE remodeling. Codepletion of SUN1/2 slowed cell proliferation and resulted in an accumulation of morphologically defective and disoriented mitotic spindles. Quantification of mitotic timing revealed a delay between NEBD and chromatin separation, indicating a role of SUN proteins in bipolar spindle assembly and mitotic progression. PMID:24662567

  11. An Arp2/3 nucleated F-actin shell fragments nuclear membranes at nuclear envelope breakdown in starfish oocytes.

    PubMed

    Mori, Masashi; Somogyi, Kálmán; Kondo, Hiroshi; Monnier, Nilah; Falk, Henning J; Machado, Pedro; Bathe, Mark; Nédélec, François; Lénárt, Péter

    2014-06-16

    Animal cells disassemble and reassemble their nuclear envelopes (NEs) upon each division. Nuclear envelope breakdown (NEBD) serves as a major regulatory mechanism by which mixing of cytoplasmic and nuclear compartments drives the complete reorganization of cellular architecture, committing the cell for division. Breakdown is initiated by phosphorylation-driven partial disassembly of the nuclear pore complexes (NPCs), increasing their permeability but leaving the overall NE structure intact. Subsequently, the NE is rapidly broken into membrane fragments, defining the transition from prophase to prometaphase and resulting in complete mixing of cyto- and nucleoplasm. However, the mechanism underlying this rapid NE fragmentation remains largely unknown. Here, we show that NE fragmentation during NEBD in starfish oocytes is driven by an Arp2/3 complex-nucleated F-actin "shell" that transiently polymerizes on the inner surface of the NE. Blocking the formation of this F-actin shell prevents membrane fragmentation and delays entry of large cytoplasmic molecules into the nucleus. We observe spike-like protrusions extending from the F-actin shell that appear to "pierce" the NE during the fragmentation process. Finally, we show that NE fragmentation is essential for successful reproduction, because blocking this process in meiosis leads to formation of aneuploid eggs. PMID:24909322

  12. Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte

    NASA Technical Reports Server (NTRS)

    Tombes, R. M.; Simerly, C.; Borisy, G. G.; Schatten, G.

    1992-01-01

    During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.

  13. Nuclear envelope breakdown may deliver an inhibitor of protein phosphatase 1 which triggers cyclin B translation in starfish oocytes.

    PubMed

    Lapasset, Laure; Pradet-Balade, Bérengère; Lozano, Jean-Claude; Peaucellier, Gérard; Picard, André

    2005-09-01

    In vertebrates, enhanced translation of mRNAs in oocytes and early embryos entering M-phase is thought to occur through polyadenylation, involving binding, hyperphosphorylation and proteolytic degradation of Aurora-activated CPEB. In starfish, an unknown component of the oocyte nucleus is required for cyclin B synthesis following the release of G2/prophase block by hormonal stimulation. We have found that CPEB cannot be hyperphosphorylated following hormonal stimulation in starfish oocytes from which the nucleus has been removed. Activation of Aurora kinase, known to interact with protein phosphatase 1 and its specific inhibitor Inh-2, is also prevented. The microinjection of Inh-2 restores Aurora activation, CPEB hyperphosphorylation and cyclin B translation in enucleated oocytes. Nevertheless, we provide evidence that CPEB is in fact hyperphosphorylated by cdc2, without apparent involvement of Aurora or MAP kinase, and that cyclin B synthesis can be stimulated without previous degradation of phosphorylated CPEB. Thus, the regulation of cyclin B synthesis necessary for progression through meiosis can be explained by an equilibrium between CPEB phosphorylation and dephosphorylation, and both aspects of this control may rely on the sole activation of Cdc2 and subsequent nuclear breakdown. PMID:16081061

  14. Targeting Nuclear Envelope Repair.

    PubMed

    2016-06-01

    Migrating cancer cells undergo repeated rupture of the protective nuclear envelope as they squeeze through small spaces in the surrounding tissue, compromising genomic integrity. Inhibiting both general DNA repair and the mechanism that seals these tears may enhance cell death and curb metastasis. PMID:27130435

  15. Cell cycle regulation of human immunodeficiency virus type 1 integration in T cells: antagonistic effects of nuclear envelope breakdown and chromatin condensation

    SciTech Connect

    Mannioui, Abdelkrim . E-mail: karim.mannioui@chu-stlouis.fr; Schiffer, Cecile . E-mail: cecile.schiffer@voila.fr; Felix, Nathalie . E-mail: nathalie.felix@chu-stlouis.fr

    2004-11-10

    We examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration. As a result of the balance between the two effects, virus integration efficiency is eventually up to threefold greater in dividing cells. At the single-cell level, using a green fluorescent protein-expressing reporter virus, we found that passage through mitosis leads to prominent asymmetric segregation of the viral genome in daughter cells without interfering with provirus expression.

  16. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  17. Nuclear envelope: positioning nuclei and organizing synapses

    PubMed Central

    Razafsky, David; Hodzic, Didier

    2015-01-01

    The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about Atype lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins. PMID:26079712

  18. ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress.

    PubMed

    Kumar, Amit; Mazzanti, Michele; Mistrik, Martin; Kosar, Martin; Beznoussenko, Galina V; Mironov, Alexandre A; Garrè, Massimiliano; Parazzoli, Dario; Shivashankar, G V; Scita, Giorgio; Bartek, Jiri; Foiani, Marco

    2014-07-31

    ATR controls chromosome integrity and chromatin dynamics. We have previously shown that yeast Mec1/ATR promotes chromatin detachment from the nuclear envelope to counteract aberrant topological transitions during DNA replication. Here, we provide evidence that ATR activity at the nuclear envelope responds to mechanical stress. Human ATR associates with the nuclear envelope during S phase and prophase, and both osmotic stress and mechanical stretching relocalize ATR to nuclear membranes throughout the cell cycle. The ATR-mediated mechanical response occurs within the range of physiological forces, is reversible, and is independent of DNA damage signaling. ATR-defective cells exhibit aberrant chromatin condensation and nuclear envelope breakdown. We propose that mechanical forces derived from chromosome dynamics and torsional stress on nuclear membranes activate ATR to modulate nuclear envelope plasticity and chromatin association to the nuclear envelope, thus enabling cells to cope with the mechanical strain imposed by these molecular processes. PMID:25083873

  19. An unresolved LINC in the nuclear envelope

    PubMed Central

    Torbati, Mehdi; Lele, Tanmay P; Agrawal, Ashutosh

    2016-01-01

    The nuclear envelope segregates the nucleoplasm from the cytoplasm and is a key feature of eukaryotic cells. Nuclear envelope architecture is comprised of two concentric membrane shells which fuse at multiple sites and yet maintain a uniform separation of 30–50 nm over the rest of the membrane. Studies have revealed the roles for numerous nuclear proteins in forming and maintaining the architecture of the nuclear envelope. However, there is a lack of consensus on the fundamental forces and physical mechanisms that establish the geometry. The objective of this review is to discuss recent findings in the context of membrane mechanics in an effort to define open questions and possible answers. PMID:27330571

  20. Closing a gap in the nuclear envelope.

    PubMed

    Vietri, Marina; Stenmark, Harald; Campsteijn, Coen

    2016-06-01

    The nuclear envelope (NE) ensures nucleo-cytoplasmic compartmentalization, with trafficking of macromolecules across this double membrane controlled by embedded nuclear pore complexes (NPCs). The NE and associated proteins are dismantled during open mitosis and reestablishment of this barrier during mitotic exit requires dynamic remodeling of endoplasmic reticulum (ER) membranes and coordination with NPC reformation, with NPC deposition continuing during subsequent interphase. In this review, we discuss recent progress in our understanding of NE reformation and nuclear pore complex generation, with special focus on work implicating the endosomal sorting complex required for transport (ESCRT) membrane remodeling machinery in these events. PMID:27016712

  1. LINCing complex functions at the nuclear envelope

    PubMed Central

    Rothballer, Andrea; Schwartz, Thomas U.; Kutay, Ulrike

    2013-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell. PMID:23324460

  2. Tissue specificity in the nuclear envelope supports its functional complexity

    PubMed Central

    de las Heras, Jose I; Meinke, Peter; Batrakou, Dzmitry G; Srsen, Vlastimil; Zuleger, Nikolaj; Kerr, Alastair RW; Schirmer, Eric C

    2013-01-01

    Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution. PMID:24213376

  3. Nuclear Envelopes Properties and Physical Interactions with Nucleoplasm

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Dahl, Kris; Wilson, Kathy

    2004-03-01

    Given the stresses imposed on a cell and its organelles and the nuclear envelope's important role as a barrier between cytoplasm and nucleoplasm, we sought to measure and model mechanical properties of isolated nuclear envelopes. Xenopus laevis oocyte (XO) nuclei are primarily used since they have been widely studied in many fields as model systems for nuclear structure and function. We manipulate the nuclear envelope by both osmotic swelling and micromanipulation to determine an effective elastic modulus. We show the envelope properties are independent of the effects of the nucleoplasm. Micropipette aspiration of XO nuclei gives an effective elastic modulus of the nuclear envelope of 250 mN/m with similar results obtained from isotropic swelling of XO nuclear envelopes. The results suggest that these nuclear envelopes have relatively homogeneous properties and are highly elastic, sustaining strains of 50-100Square-net simulations and comparisons to polymer network models suggests that XO nuclear envelope physical properties are dominated by the lamin network. If applicable to nuclei in other cells, a "pre-compressed" state envisioned here would allow for significant shear flexibility, especially important for motile cells whose nuclei need to rapidly deform.

  4. Border Safety: Quality Control at the Nuclear Envelope.

    PubMed

    Webster, Brant M; Lusk, C Patrick

    2016-01-01

    The unique biochemical identity of the nuclear envelope confers its capacity to establish a barrier that protects the nuclear compartment and directly contributes to nuclear function. Recent work uncovered quality control mechanisms employing the endosomal sorting complexes required for transport (ESCRT) machinery and a new arm of endoplasmic reticulum-associated protein degradation (ERAD) to counteract the unfolding, damage, or misassembly of nuclear envelope proteins and ensure the integrity of the nuclear envelope membranes. Moreover, cells have the capacity to recognize and triage defective nuclear pore complexes to prevent their inheritance and preserve the longevity of progeny. These mechanisms serve to highlight the diverse strategies used by cells to maintain nuclear compartmentalization; we suggest they mitigate the progression and severity of diseases associated with nuclear envelope malfunction such as the laminopathies. PMID:26437591

  5. Jumping the nuclear envelop barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306.

    PubMed

    Zhou, Xuefei; Liu, Xiangrui; Zhao, Bingxiang; Liu, Xin; Zhu, Dingcheng; Qiu, Nasha; Zhou, Quan; Piao, Ying; Zhou, Zhuxian; Tang, Jianbin; Shen, Youqing

    2016-07-28

    Successful transfection of plasmid DNA (pDNA) requires intranuclear internalization of pDNA effectively and the nuclear envelope appears to be one of the critical intracellular barriers for polymer mediated pDNA delivery. Polyethylenimine (PEI), as the classic cationic polymer, compact the negatively charged pDNA tightly and make up stable polyplexes. The polyplexes are too large to enter the nuclear through nuclear pores and it is believed that the nuclear envelope breakdown in mitosis could facilitate the nuclear entry of polyplexes. To jump the nuclear envelope barrier, we used a selective and reversible CDK1 inhibitor RO-3306 to control the G2/M transition of the cell cycle and increased the proportion of mitotic cells which have disappeared nuclear envelope during transfection. Herein, we show that RO-3306 remarkably increases the transfection efficiency of PEI polyplexes through enhanced nuclear localization of PEI and pDNA. However, RO-3306 is less effective to the charge-reversal polymer poly[(2-acryloyl)ethyl(p-boronic acid benzyl)diethylammonium bromide] (B-PDEAEA) which responses to cellular stimuli and releases free pDNA in cytoplasm. Our findings not only offer new opportunities for improving non-viral based gene delivery but also provide theoretical support for the rational design of novel functional polymers for gene delivery. We also report current data showing that RO-3306 synergizes TRAIL gene induced apoptosis in cancer cells. PMID:27212103

  6. Fluctuations in nuclear envelope's potential mediate synchronization of early neural activity

    SciTech Connect

    Yamashita, Masayuki

    2011-03-04

    Research highlights: {yields} Nuclear envelope's potential changes with a release of Ca{sup 2+}. {yields} Changes in nuclear envelope's potential underlie synchronous burst discharges. {yields} Nuclear envelope's potential generates periodic bursts of fluctuations. {yields} Fluctuations in nuclear envelope's potential function as a current noise generator. -- Abstract: Neural progenitor cells and developing neurons show periodic, synchronous Ca{sup 2+} rises even before synapse formation, and the origin of the synchronous activity remains unknown. Here, fluorescence measurement revealed that the membrane potential of the nuclear envelope, which forms an intracellular Ca{sup 2+} store, changed with a release of Ca{sup 2+} and generated spontaneous, periodic bursts of fluctuations in potential. Furthermore, changes in the nuclear envelope's potential underlay spike burst generations. These results support the model that voltage fluctuations of the nuclear envelope synchronize Ca{sup 2+} release between cells and also function as a current noise generator to cause synchronous burst discharges.

  7. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis[W

    PubMed Central

    Goto, Chieko; Tamura, Kentaro; Fukao, Yoichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2014-01-01

    In animals, the nuclear lamina is a fibrillar meshwork on the inner surface of the nuclear envelope, composed of coiled-coil lamin proteins and lamin binding membrane proteins. Plants also have a meshwork on the inner surface of the nuclear envelope, but little is known about its composition other than the presence of members of the CROWDED NUCLEI (CRWN) protein family, possible plant lamin analogs. Here, we describe a candidate lamina component, based on two Arabidopsis thaliana mutants (kaku2 and kaku4) with aberrant nuclear morphology. The responsible gene in kaku2 encodes CRWN1, and the responsible gene in kaku4 encodes a plant-specific protein of unknown function (KAKU4) that physically interacts with CRWN1 and its homolog CRWN4. Immunogold labeling revealed that KAKU4 localizes at the inner nuclear membrane. KAKU4 deforms the nuclear envelope in a dose-dependent manner, in association with nuclear membrane invagination and stack formation. The KAKU4-dependent nuclear envelope deformation was enhanced by overaccumulation of CRWN1, although KAKU4 can deform the nuclear envelope even in the absence of CRWN1 and/or CRWN4. Together, these results suggest that plants have evolved a unique lamina-like structure to modulate nuclear shape and size. PMID:24824484

  8. Breaching the Barrier-The Nuclear Envelope in Virus Infection.

    PubMed

    Mettenleiter, Thomas C

    2016-05-22

    Many DNA and a few RNA viruses use the host cell nucleus for virion formation and/or genome replication. To this end, the nuclear envelope (NE) barrier has to be overcome for entry into and egress from the intranuclear replication compartment. Different virus families have devised ingenious ways of entering and leaving the nucleus usurping cellular transport pathways through the nuclear pore complex but also translocating directly through both membranes of the NE. This intriguing diversity in nuclear entry and egress of viruses also highlights different ways nucleocytoplasmic transport can occur. Thus, the study of interactions between viruses and the NE also helps to unravel hitherto unknown cellular pathways such as vesicular nucleocytoplasmic transfer. PMID:26522933

  9. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations.

    PubMed

    Wilkie, Gavin S; Korfali, Nadia; Swanson, Selene K; Malik, Poonam; Srsen, Vlastimil; Batrakou, Dzmitry G; de las Heras, Jose; Zuleger, Nikolaj; Kerr, Alastair R W; Florens, Laurence; Schirmer, Eric C

    2011-01-01

    Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights. PMID:20876400

  10. Several Novel Nuclear Envelope Transmembrane Proteins Identified in Skeletal Muscle Have Cytoskeletal Associations*

    PubMed Central

    Wilkie, Gavin S.; Korfali, Nadia; Swanson, Selene K.; Malik, Poonam; Srsen, Vlastimil; Batrakou, Dzmitry G.; de las Heras, Jose; Zuleger, Nikolaj; Kerr, Alastair R. W.; Florens, Laurence; Schirmer, Eric C.

    2011-01-01

    Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights. PMID:20876400

  11. NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope

    PubMed Central

    de las Heras, Jose I.; Saiz-Ros, Natalia; Makarov, Alexandr A.; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A.; Schirmer, Eric C.

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  12. NET23/STING promotes chromatin compaction from the nuclear envelope.

    PubMed

    Malik, Poonam; Zuleger, Nikolaj; de las Heras, Jose I; Saiz-Ros, Natalia; Makarov, Alexandr A; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A; Schirmer, Eric C

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  13. Lipid partitioning at the nuclear envelope controls membrane biogenesis

    PubMed Central

    Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon

    2015-01-01

    Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581

  14. Nuclear envelope and genome interactions in cell fate

    PubMed Central

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  15. In Vivo Dynamics of Drosophila Nuclear Envelope Components

    PubMed Central

    Katsani, Katerina R.; Karess, Roger E.; Dostatni, Nathalie

    2008-01-01

    Nuclear pore complexes (NPCs) are multisubunit protein entities embedded into the nuclear envelope (NE). Here, we examine the in vivo dynamics of the essential Drosophila nucleoporin Nup107 and several other NE-associated proteins during NE and NPCs disassembly and reassembly that take place within each mitosis. During both the rapid mitosis of syncytial embryos and the more conventional mitosis of larval neuroblasts, Nup107 is gradually released from the NE, but it remains partially confined to the nuclear (spindle) region up to late prometaphase, in contrast to nucleoporins detected by wheat germ agglutinin and lamins. We provide evidence that in all Drosophila cells, a structure derived from the NE persists throughout metaphase and early anaphase. Finally, we examined the dynamics of the spindle checkpoint proteins Mad2 and Mad1. During mitotic exit, Mad2 and Mad1 are actively imported back from the cytoplasm into the nucleus after the NE and NPCs have reformed, but they reassociate with the NE only later in G1, concomitantly with the recruitment of the basket nucleoporin Mtor (the Drosophila orthologue of vertebrate Tpr). Surprisingly, Drosophila Nup107 shows no evidence of localization to kinetochores, despite the demonstrated importance of this association in mammalian cells. PMID:18562695

  16. The diagnostic pathology of the nuclear envelope in human cancers.

    PubMed

    Fischer, Andrew H

    2014-01-01

    Cancer is still diagnosed on the basis of altered tissue and cellular morphology. The criteria that pathologists use for diagnosis include many morphologically distinctive alterations in the nuclear envelope (NE). With the expectation that diagnostic NE changes will have biological relevance to cancer, a classification of the various types of NE structural changes into three groups is proposed. The first group predicts chromosomal instability. The changes in this group include pleomorphism of lamina size and shape, as if constraints to maintain a spherical shape were lost. Also characteristic of chromosomal instability are the presence of micronuclei, a specific structural feature likely related to the newly described physiology of chromothripsis. The second group is predicted to be functionally important during clonal evolution, because the NE changes in this group are conserved during the clonal evolution of genetically unstable tumors. Two examples of this group include increased ratio of nuclear volume to cytoplasmic volume and the relatively fragile nuclei of small-cell carcinomas. The third and most interesting group develops in a near-diploid, genetically stable background. Many of these (perhaps ultimately all) are directly related to the activation of particular oncogenes. The changes in this group so far include long inward folds of the NE and spherical invaginations of cytoplasm projecting partially into the nucleus ("intranuclear cytoplasmic inclusions"). This group is exemplified by papillary thyroid carcinoma in which RET and TRK tyrosine kinases, and probably B-Raf mutations, directly lead to diagnostic longitudinal folds of the lamina ("nuclear grooves") and intranuclear cytoplasmic inclusions. B-Raf activation may also be linked to intranuclear cytoplasmic inclusions in melanoma and to nuclear grooves in Langerhans cell histiocytosis. Nuclear grooves in granulosa cell tumor may be related to mutations in the FOXL2 oncogene. Uncovering the precise

  17. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.

    PubMed

    Raab, M; Gentili, M; de Belly, H; Thiam, H R; Vargas, P; Jimenez, A J; Lautenschlaeger, F; Voituriez, Raphaël; Lennon-Duménil, A M; Manel, N; Piel, M

    2016-04-15

    In eukaryotic cells, the nuclear envelope separates the genomic DNA from the cytoplasmic space and regulates protein trafficking between the two compartments. This barrier is only transiently dissolved during mitosis. Here, we found that it also opened at high frequency in migrating mammalian cells during interphase, which allowed nuclear proteins to leak out and cytoplasmic proteins to leak in. This transient opening was caused by nuclear deformation and was rapidly repaired in an ESCRT (endosomal sorting complexes required for transport)-dependent manner. DNA double-strand breaks coincided with nuclear envelope opening events. As a consequence, survival of cells migrating through confining environments depended on efficient nuclear envelope and DNA repair machineries. Nuclear envelope opening in migrating leukocytes could have potentially important consequences for normal and pathological immune responses. PMID:27013426

  18. Cytomegalovirus Primary Envelopment Occurs at Large Infoldings of the Inner Nuclear Membrane▿

    PubMed Central

    Buser, Christopher; Walther, Paul; Mertens, Thomas; Michel, Detlef

    2007-01-01

    We have investigated the morphogenesis of human and murine cytomegalovirus by transmission electron microscopy after high-pressure freezing, freeze substitution, and plastic embedding. We observed large tubular infoldings of the inner nuclear membrane that were free of lamina and active in primary envelopment and subsequent transport of capsids to the nuclear periphery. Semiquantitative determinations of the enlarged inner nuclear membrane area and the location of the primary envelopment of nucleocapsids demonstrated that this structure represents a virus-induced specialized membrane domain at which the particles are preferentially enveloped. This is a previously undescribed structural element relevant in cytomegalovirus morphogenesis. PMID:17192309

  19. Fluctuations in nuclear envelope's potential mediate synchronization of early neural activity.

    PubMed

    Yamashita, Masayuki

    2011-03-01

    Neural progenitor cells and developing neurons show periodic, synchronous Ca(2+) rises even before synapse formation, and the origin of the synchronous activity remains unknown. Here, fluorescence measurement revealed that the membrane potential of the nuclear envelope, which forms an intracellular Ca(2+) store, changed with a release of Ca(2+) and generated spontaneous, periodic bursts of fluctuations in potential. Furthermore, changes in the nuclear envelope's potential underlay spike burst generations. These results support the model that voltage fluctuations of the nuclear envelope synchronize Ca(2+) release between cells and also function as a current noise generator to cause synchronous burst discharges. PMID:21296053

  20. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    PubMed

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform. PMID:18717264

  1. Alterations in nuclear envelope invaginations in axotomized fetal and early postnatal hamster facial motoneurons.

    PubMed

    Clark, P; Jones, K J; LaVelle, A

    1992-07-24

    In this study, changes in the amount of nuclear envelope invaginations (NEI) were morphometrically assessed after axotomy during late fetal and early postnatal developmental stages in hamster facial motoneurons. These changes were expressed as boundary density or BA (length of nuclear envelope per unit area of nucleus). Axotomy-induced changes in nuclear area and perimeter were also quantitatively determined. At 17 h after axotomy in the fetal operative series, no changes in any of the parameters were seen. At 1 day postoperative (dpo) in newborn, 2 and 4 postnatal day animals, the boundary densities of the total and invaginated portion of the nuclear envelope increased significantly. No corresponding qualitative changes were observed. At 2 dpo in 4 and 7 postnatal day animals, there were significant increases in the boundary densities of both invaginated and total nuclear envelope and a decrease in nuclear area. These changes were not seen at 2 dpo in the 9-day operative series. At 4 dpo in 7 and 9 postnatal day animals, scalloping of the normally smooth nuclear profile, as well as a flattening and elongation in nuclear shape, occurred. These qualitative changes in the 7 and 9 day operated groups were also accompanied by significant changes in all the measured parameters. The boundary density of the invaginated, non-invaginated and total nuclear envelope increased; whereas, nuclear area and perimeter decreased. These results argue against the generally held hypothesis that an increase in nuclear envelope invaginations is indicative of an allied increase in cellular metabolism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1521315

  2. Isolation, Proteomic Analysis, and Microscopy Confirmation of the Liver Nuclear Envelope Proteome.

    PubMed

    Korfali, Nadia; Florens, Laurence; Schirmer, Eric C

    2016-01-01

    Nuclei can be relatively easily extracted from homogenized liver due to the softness of the tissue and crudely separated from other cellular organelles by low-speed centrifugation due to the comparatively large size of nuclei. However, further purification is complicated by nuclear envelope continuity with the endoplasmic reticulum, invaginations containing mitochondria, and connections to the cytoskeleton. Subsequent purification to nuclear envelopes is additionally confounded by connections of inner nuclear membrane proteins to chromatin. For these reasons, it is necessary to confirm proteomic identification of nuclear envelope proteins by testing targeting of individual proteins. The proteomic identification of nuclear envelope fractions is affected by the tendencies of transmembrane proteins to have extreme isoelectric points, strongly hydrophobic peptides, posttranslational modifications, and a propensity to aggregate, thus making proteolysis inefficient. To circumvent these problems, we have developed a MudPIT approach that uses multiple extractions and sequential proteolysis to increase identifications. Here we describe methods for isolating nuclear envelopes, determining their proteome by MudPIT, and confirming their targeting to the nuclear periphery by microscopy. PMID:27147032

  3. Nuclear Pore Basket Proteins Are Tethered to the Nuclear Envelope and Can Regulate Membrane Curvature

    PubMed Central

    Mészáros, Noémi; Cibulka, Jakub; Mendiburo, Maria Jose; Romanauska, Anete; Schneider, Maren; Köhler, Alwin

    2015-01-01

    Summary Nuclear pore complexes (NPCs) are selective transport channels embedded in the nuclear envelope. The cylindrical NPC core forms a protein coat lining a highly curved membrane opening and has a basket-like structure appended to the nucleoplasmic side. How NPCs interact with lipids, promoting membrane bending and NPC integrity, is poorly understood. Here we show that the NPC basket proteins Nup1 and Nup60 directly induce membrane curvature by amphipathic helix insertion into the lipid bilayer. In a cell-free system, both Nup1 and Nup60 transform spherical liposomes into highly curved membrane structures. In vivo, high levels of the Nup1/Nup60 amphipathic helices cause deformation of the yeast nuclear membrane, whereas adjacent helical regions contribute to anchoring the basket to the NPC core. Basket amphipathic helices are functionally linked to distinct transmembrane nucleoporins of the NPC core, suggesting a key contribution to the membrane remodeling events that underlie NPC assembly. PMID:25942622

  4. Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development.

    PubMed

    Hampoelz, Bernhard; Mackmull, Marie-Therese; Machado, Pedro; Ronchi, Paolo; Bui, Khanh Huy; Schieber, Nicole; Santarella-Mellwig, Rachel; Necakov, Aleksandar; Andrés-Pons, Amparo; Philippe, Jean Marc; Lecuit, Thomas; Schwab, Yannick; Beck, Martin

    2016-07-28

    Nuclear pore complexes (NPCs) span the nuclear envelope (NE) and mediate nucleocytoplasmic transport. In metazoan oocytes and early embryos, NPCs reside not only within the NE, but also at some endoplasmic reticulum (ER) membrane sheets, termed annulate lamellae (AL). Although a role for AL as NPC storage pools has been discussed, it remains controversial whether and how they contribute to the NPC density at the NE. Here, we show that AL insert into the NE as the ER feeds rapid nuclear expansion in Drosophila blastoderm embryos. We demonstrate that NPCs within AL resemble pore scaffolds that mature only upon insertion into the NE. We delineate a topological model in which NE openings are critical for AL uptake that nevertheless occurs without compromising the permeability barrier of the NE. We finally show that this unanticipated mode of pore insertion is developmentally regulated and operates prior to gastrulation. PMID:27397507

  5. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications.

    PubMed

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA. PMID:25932910

  6. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications

    PubMed Central

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J.; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA. PMID:25932910

  7. Involvement of the Host Cell Nuclear Envelope Membranes in the Replication of Japanese Encephalitis Virus

    PubMed Central

    Zebovitz, E.; Leong, J. K. L.; Doughty, S. C.

    1974-01-01

    The distribution of viral ribonucleic acid (RNA) on various cell membrane fractions derived from a porcine kidney cell line infected with Japanese encephalitis virus was investigated. At 40 h postinfection, after virus growth had reached its peak, three viral RNAs, 45S, 27S, and 20S, were associated with the cytoplasmic membranes and intact nuclei. The amount of each RNA associated with the nucleus was two- to fivefold greater than that present with the cytoplasmic membranes. Treatment of washed infected nuclei with 1.0% Triton X-100, which removed the outer nuclear envelope membrane, also removed the viral RNA. When the nucleus was fractionated into nuclear envelope membranes and a large particle fraction which sedimented at 600 × g, nearly all of the viral RNA remained associated with the envelope membranes. The nuclear envelope membranes contained higher viral RNA polymerase activity than the cytoplasmic membranes derived from the same cells. These data suggest that major sites for Japanese encephalitis virus RNA synthesis may be localized on or in very close association with the nuclear envelope membranes. PMID:4842128

  8. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus.

    PubMed

    Chaumet, Alexandre; Wright, Graham D; Seet, Sze Hwee; Tham, Keit Min; Gounko, Natalia V; Bard, Frederic

    2015-01-01

    Endocytosis directs molecular cargo along three main routes: recycling to the cell surface, transport to the Golgi apparatus or degradation in endolysosomes. Pseudomonas exotoxin A (PE) is a bacterial protein that typically traffics to the Golgi and then the endoplasmic reticulum before translocating to the cytosol. Here we show that a substantial fraction of internalized PE is also located in nuclear envelope-associated endosomes (NAE), which display limited mobility, exhibit a propensity to undergo fusion and readily discharge their contents into the nuclear envelope. Electron microscopy and protein trapping in the nucleus indicate that NAE mediate PE transfer into the nucleoplasm. RNAi screening further revealed that NAE-mediated transfer depends on the nuclear envelope proteins SUN1 and SUN2, as well as the Sec61 translocon complex. These data reveal a novel endosomal route from the cell surface to the nucleoplasm that facilitates the accumulation of extracellular and cell surface proteins in the nucleus. PMID:26356418

  9. Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity

    PubMed Central

    Jahn, Daniel; Schramm, Sabine; Benavente, Ricardo

    2010-01-01

    A hallmark of meiosis is the precise pairing and the stable physical connection (synapsis) of the homologous chromosomes. These processes are essential prerequisite for their proper segregation. Pairing of the homologs during meiotic prophase I critically depends on characteristic movements of chromosomes. These movements, in turn, require attachment of meiotic telomeres to the nuclear envelope and their subsequent dynamic repositioning. Dynamic repositioning of meiotic telomeres goes along with profound structural reorganization of the nuclear envelope. The short A-type lamin C2 is thought to play a critical role in this process due to its specific expression during meiotic prophase I and the unique localization surrounding telomere attachments. Consistent with this notion, here we provide compelling evidence that meiosis-specific lamin C2 features a significantly increased mobility compared to somatic lamins as revealed by photobleaching techniques. We show that this property can be clearly ascribed to the lack of the N-terminal head and the significantly shorter α-helical coil domain. Moreover, expression of lamin C2 in somatic cells induces nuclear deformations and alters the distribution of the endogenous nuclear envelope proteins lamin B1, LAP2, SUN1 and SUN2. Together, our data define lamin C2 as a “natural lamin deletion mutant” that confers unique properties to the nuclear envelope which would be essential for dynamic telomere repositioning during meiotic prophase I. PMID:21327075

  10. The nuclear envelope LEM-domain protein emerin

    PubMed Central

    Berk, Jason M; Tifft, Kathryn E; Wilson, Katherine L

    2013-01-01

    Emerin, a conserved LEM-domain protein, is among the few nuclear membrane proteins for which extensive basic knowledge—biochemistry, partners, functions, localizations, posttranslational regulation, roles in development and links to human disease—is available. This review summarizes emerin and its emerging roles in nuclear “lamina” structure, chromatin tethering, gene regulation, mitosis, nuclear assembly, development, signaling and mechano-transduction. We also highlight many open questions, exploration of which will be critical to understand how this intriguing nuclear membrane protein and its “family” influence the genome. PMID:23873439

  11. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation

    PubMed Central

    Batrakou, Dzmitry G.; de las Heras, Jose I.; Czapiewski, Rafal; Mouras, Rabah; Schirmer, Eric C.

    2015-01-01

    Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity. PMID:26024229

  12. Organellar proteomics: the prizes and pitfalls of opening the nuclear envelope

    PubMed Central

    Schirmer, Eric C; Gerace, Larry

    2002-01-01

    Proteomic studies have the potential to comprehensively define the composition of organelles but are limited by the organellar cross-contamination that arises during subcellular fractionation. Comparative proteomics of organellar subfractions can mitigate these problems, as demonstrated by a recent study involving the nuclear envelope. PMID:11983061

  13. Dynamic Assembly of Brambleberry Mediates Nuclear Envelope Fusion during Early Development

    PubMed Central

    Abrams, Elliott W.; Zhang, Hong; Marlow, Florence L.; Kapp, Lee; Lu, Sumei; Mullins, Mary C.

    2012-01-01

    Summary To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, a mitotic intermediate wherein individual chromatin masses are surrounded by nuclear envelope, which then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion resulting in formation of multiple micronuclei. brambleberry is a previously unannotated gene homologous to Kar5p, which participates in nuclear fusion in yeast. We demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. As karyomeres form, Brambleberry localizes to the nuclear envelope with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. Our studies identify the first factor acting in karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. PMID:22863006

  14. Localization of P-glycoprotein at the nuclear envelope of rat brain cells

    SciTech Connect

    Babakhanian, Karlo; Bendayan, Moise; Bendayan, Reina . E-mail: r.bendayan@utoronto.ca

    2007-09-21

    P-Glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site.

  15. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization.

    PubMed

    Clements, Craig S; Bikkul, Ural; Ahmed, Mai Hassan; Foster, Helen A; Godwin, Lauren S; Bridger, Joanna M

    2016-01-01

    The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH. PMID:27147055

  16. Construction of Nuclear Envelope Shape by a High-Genus Vesicle with Pore-Size Constraint.

    PubMed

    Noguchi, Hiroshi

    2016-08-23

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small perinuclear volume, osmotic pressure within nucleoplasm, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found. PMID:27558725

  17. Tryptophan-binding sites on nuclear envelopes of rat liver

    SciTech Connect

    Kurl, R.; Verney, E.; Sidransky, H.

    1986-03-05

    Tryptophan (TRP), an essential amino acid, has been demonstrated to affect certain cellular processes including transcriptional and translational events in the liver. These events are presumed to be mediated at the nuclear level possibly via binding of TRP to nuclei. In an effort to delineate the role of TRP on these metabolic processes, the nuclear location of these binding sites was investigated. Incubation of isolated, intact, hepatic nuclei with (/sup 3/H)TRP followed by fractionation revealed the presence of about 60% of specific TRP binding to nuclear membranes. This binding reached equilibrium by 2 hours after incubation at room temperature. Scatchard analysis revealed two classes of binding sites: (1) high affinity (K/sub D/ of about 10/sup -10/M) and (2) low affinity (K/sub D/ of about 10/sup -8/M). The inhibition of binding by treatment with either ..beta..-galactosidase or concanavalin A suggested that the binding entity was a glycoprotein. However, treatment with neuraminidase resulted in an increase in binding which suggested that terminal sialic acid residues play a role, possibly an inhibitory one, on TRP binding. The function of these binding sites on the mechanism of TRP action is being investigated.

  18. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export

    PubMed Central

    Li, Ping; Noegel, Angelika A.

    2015-01-01

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. PMID:26476453

  19. Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila

    SciTech Connect

    Liu, Jun; Song, Kiwon; Wolfner, M.F.

    1995-12-01

    The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutant alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that Ya function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function might interact with itself either directly or indirectly. 27 refs., 6 figs.

  20. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    PubMed Central

    Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas

    2016-01-01

    Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839

  1. Till disassembly do us part: a happy marriage of nuclear envelope and chromatin.

    PubMed

    Tsuchiya, Yuichi

    2008-02-01

    A characteristic feature of eukaryotic cells is the presence of nuclear envelope (NE) which separates genomic DNA from cytoplasm. NE is composed of inner nuclear membrane (INM), which interacts with chromatin, and outer nuclear membrane, which is connected to endoplasmic reticulum. Nuclear pore complexes are inserted into NE to form transport channels between nucleus and cytoplasm. In metazoan cells, an intermediate filament-based meshwork called as nuclear lamina exists between INM and chromatin. Sophisticated collaboration of these molecular machineries is necessary for the structure and functions of NE. Recent research advances have revealed that NE dynamically communicates with chromatin and cytoskeleton to control multiple nuclear functions. In this mini review, I briefly summarize the basic concepts and current topics of functional relationships between NE and chromatin. PMID:17999983

  2. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity.

    PubMed

    Di Micco, Antonia; Frera, Gianluca; Lugrin, Jérôme; Jamilloux, Yvan; Hsu, Erh-Ting; Tardivel, Aubry; De Gassart, Aude; Zaffalon, Léa; Bujisic, Bojan; Siegert, Stefanie; Quadroni, Manfredo; Broz, Petr; Henry, Thomas; Hrycyna, Christine A; Martinon, Fabio

    2016-08-01

    Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1β. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R-dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity. PMID:27462105

  3. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity

    PubMed Central

    Di Micco, Antonia; Frera, Gianluca; Lugrin, Jérôme; Jamilloux, Yvan; Hsu, Erh-Ting; Tardivel, Aubry; De Gassart, Aude; Zaffalon, Léa; Bujisic, Bojan; Siegert, Stefanie; Quadroni, Manfredo; Broz, Petr; Henry, Thomas; Hrycyna, Christine A.

    2016-01-01

    Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1β. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R–dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity. PMID:27462105

  4. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    SciTech Connect

    Ostlund, Cecilia; Guan, Tinglu; Figlewicz, Denise A.; Hays, Arthur P.; Worman, Howard J.; Gerace, Larry; Schirmer, Eric C.

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  5. [The role of chromosomal regions anchored to the nuclear envelope in the functional organization of chromosomes].

    PubMed

    Shabarina, A N; Shostak, N G; Glazkov, M V

    2010-09-01

    The functional characteristics of the DNA fragments responsible for chromosome attachment to the nuclear envelope during the interphase (neDNAs) have been studied. The neDNAs flanking the transgene have been found to promote a steadily high rate of its expression, irrespective of the site of its insertion into the host chromosomes. At the same time, neDNAs themselves have no transcription regulatory functions. PMID:21061611

  6. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  7. This bud's for you: mechanisms of cellular nucleocytoplasmic trafficking via nuclear envelope budding.

    PubMed

    Fradkin, Lee G; Budnik, Vivian

    2016-08-01

    The nuclear envelope (NE) physically separates the cytoplasmic and nuclear compartments. While this barrier provides advantages, it also presents a challenge for the nuclear export of large ribonucleoprotein (RNP) complexes. Decades-old dogma holds that all such border-crossing is via the nuclear pore complex (NPC). However, the diameter of the NPC central channel limits the passage of large cargos. Here, we review evidence that such large RNPs employ an endogenous NE-budding pathway, previously thought to be exclusive to the nuclear egress of Herpes viruses. We discuss this and other models proposed, the likelihood that this pathway is conserved, and the consequences of disrupting NE-budding for synapse development, localized translation of synaptic mRNAs, and laminopathies inducing accelerated aging. PMID:27236823

  8. Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization.

    PubMed Central

    Gilbert, R; Ghosh, K; Rasile, L; Ghosh, H P

    1994-01-01

    We have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum. Images PMID:8139012

  9. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development

    PubMed Central

    POPKEN, Jens; SCHMID, Volker J.; STRAUSS, Axel; GUENGOER, Tuna; WOLF, Eckhard; ZAKHARTCHENKO, Valeri

    2015-01-01

    Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling

  10. Aurora B–mediated localized delays in nuclear envelope formation facilitate inclusion of late-segregating chromosome fragments

    PubMed Central

    Karg, Travis; Warecki, Brandt; Sullivan, William

    2015-01-01

    To determine how chromosome segregation is coordinated with nuclear envelope formation (NEF), we examined the dynamics of NEF in the presence of lagging acentric chromosomes in Drosophila neuroblasts. Acentric chromosomes often exhibit delayed but ultimately successful segregation and incorporation into daughter nuclei. However, it is unknown whether these late-segregating acentric fragments influence NEF to ensure their inclusion in daughter nuclei. Through live analysis, we show that acentric chromosomes induce highly localized delays in the reassembly of the nuclear envelope. These delays result in a gap in the nuclear envelope that facilitates the inclusion of lagging acentrics into telophase daughter nuclei. Localized delays of nuclear envelope reassembly require Aurora B kinase activity. In cells with reduced Aurora B activity, there is a decrease in the frequency of local nuclear envelope reassembly delays, resulting in an increase in the frequency of acentric-bearing, lamin-coated micronuclei. These studies reveal a novel role of Aurora B in maintaining genomic integrity by promoting the formation of a passageway in the nuclear envelope through which late-segregating acentric chromosomes enter the telophase daughter nucleus. PMID:25877868

  11. In Situ Detection of Interactions Between Nuclear Envelope Proteins and Partners.

    PubMed

    Barateau, Alice; Buendia, Brigitte

    2016-01-01

    Proximity ligation assay (PLA) appears as a quick and easy technique to visualize within fixed cells the occurrence and in situ distribution of protein complexes. PLA has been validated to detect protein-protein interactions within the nuclear compartment. Here, we describe a protocol which allows the detection of interactions between A-type nuclear lamins and either LEM-domain proteins (such as emerin, integrated within the inner nuclear membrane, and LAP2α which accumulates within the nucleoplasm) or gene regulatory factors (e.g., the transcription factor SREBP1). The distinct amounts and patterns of PLA signals obtained for various complexes highlight the pertinence of using PLA to reveal in situ where and to which extent nuclear envelope proteins bind specific partners. PMID:27147040

  12. Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei

    PubMed Central

    Fridolfsson, Heidi N.

    2010-01-01

    Kinesin-1 and dynein are recruited to the nuclear envelope by the Caenorhabditis elegans klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 to move nuclei. The mechanisms of how these motors are coordinated to mediate nuclear migration are unknown. Time-lapse differential interference contrast and fluorescence imaging of embryonic hypodermal nuclear migration events were used to characterize the kinetics of nuclear migration and determine microtubule dynamics and polarity. Wild-type nuclei display bidirectional movements during migration and are also able to roll past cytoplasmic granules. unc-83, unc-84, and kinesin-1 mutants have severe nuclear migration defects. Without dynein, nuclear migration initiates normally but lacks bidirectional movement and shows defects in nuclear rolling, implicating dynein in resolution of cytoplasmic roadblocks. Microtubules are highly dynamic during nuclear migration. EB1::green fluorescence protein imaging demonstrates that microtubules are polarized in the direction of nuclear migration. This organization of microtubules fits with our model that kinesin-1 moves nuclei forward and dynein functions to move nuclei backward for short stretches to bypass cellular roadblocks. PMID:20921138

  13. A Single Herpesvirus Protein Can Mediate Vesicle Formation in the Nuclear Envelope*

    PubMed Central

    Lorenz, Michael; Vollmer, Benjamin; Unsay, Joseph D.; Klupp, Barbara G.; García-Sáez, Ana J.; Mettenleiter, Thomas C.; Antonin, Wolfram

    2015-01-01

    Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission. PMID:25605719

  14. Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer

    PubMed Central

    2011-01-01

    Background Despite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of the disease. Furthermore, though the atypical nuclear morphology of cancer cells is believed to be a consequence of oncogenic signaling, the molecular basis remains unclear. Another common characteristic of human cancer is aneuploidy, but the causes and its role in carcinogenesis are not well established. Methods We investigated the expression of the nuclear envelope proteins lamin A/C in ovarian cancer by immunohistochemistry and studied the consequence of lamin A/C suppression using siRNA in primary human ovarian surface epithelial cells in culture. We used immunofluorescence microscopy to analyze nuclear morphology, flow cytometry to analyze cellular DNA content, and fluorescence in situ hybridization to examine cell ploidy of the lamin A/C-suppressed cells. Results We found that nuclear lamina proteins lamin A/C are often absent (47%) in ovarian cancer cells and tissues. Even in lamin A/C-positive ovarian cancer, the expression is heterogeneous within the population of tumor cells. In most cancer cell lines, a significant fraction of the lamin A/C-negative population was observed to intermix with the lamin A/C-positive cells. Down regulation of lamin A/C in non-cancerous primary ovarian surface epithelial cells led to morphological deformation and development of aneuploidy. The aneuploid cells became growth retarded due to a p53-dependent induction of the cell cycle inhibitor p21. Conclusions We conclude that the loss of nuclear envelope structural proteins, such as lamin A/C, may underlie two of the hallmarks of cancer - aberrations in nuclear morphology and aneuploidy

  15. Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation

    PubMed Central

    van Heesbeen, Roy G.H.P.; Raaijmakers, Jonne A.; Tanenbaum, Marvin E.; Medema, René H.

    2013-01-01

    Eg5 (kinesin-5) is a highly conserved microtubule motor protein, essential for centrosome separation and bipolar spindle assembly in human cells. Using an “in vitro” evolution approach, we generated human cancer cells that can grow in the complete absence of Eg5 activity. Characterization of these Eg5-independent cells (EICs) led to the identification of a novel pathway for prophase centrosome separation, which depends on nuclear envelope (NE)-associated dynein. Here, we discuss our recent findings and elaborate on the mechanism by which dynein drives centrosome separation. PMID:23713137

  16. Nuclear envelope expansion is crucial for proper chromosomal segregation during a closed mitosis

    PubMed Central

    Takemoto, Ai; Kawashima, Shigehiro A.; Li, Juan-Juan; Jeffery, Linda; Yamatsugu, Kenzo; Elemento, Olivier; Nurse, Paul

    2016-01-01

    ABSTRACT Here, we screened a 10,371 library of diverse molecules using a drug-sensitive fission yeast strain to identify compounds which cause defects in chromosome segregation during mitosis. We identified a phosphorium-ylide-based compound Cutin-1 which inhibits nuclear envelope expansion and nuclear elongation during the closed mitosis of fission yeast, and showed that its target is the β-subunit of fatty acid synthase. A point mutation in the dehydratase domain of Fas1 conferred in vivo and in vitro resistance to Cutin-1. Time-lapse photomicrography showed that the bulk of the chromosomes were only transiently separated during mitosis, and nucleoli separation was defective. Subsequently sister chromatids re-associated leading to chromosomal mis-segregation. These segregation defects were reduced when the nuclear volume was increased and were increased when the nuclear volume was reduced. We propose that there needs to be sufficient nuclear volume to allow the nuclear elongation necessary during a closed mitosis to take place for proper chromosome segregation, and that inhibition of fatty acid synthase compromises nuclear elongation and leads to defects in chromosomal segregation. PMID:26869222

  17. Type B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for nuclear reassembly.

    PubMed Central

    Meier, J; Georgatos, S D

    1994-01-01

    p58 (also referred to as the lamin B receptor) is an integral membrane protein of the nuclear envelope known to form a multimeric complex with the lamins and other nuclear proteins during interphase. To examine the fate of this complex during mitosis, we have investigated the partitioning and the molecular interactions of p58 in dividing chicken hepatoma (DU249) cells. Using confocal microscopy and double immunolabelling, we show here that lamins B1 and B2 co-localize with p58 during all phases of mitosis and co-assemble around reforming nuclei. A close juxtaposition of p58/lamin B-containing vesicles and chromosomes is already detectable in metaphase; however, p58 and lamin reassembly proceeds slowly and is completed in late telophase--G1. Flotation of mitotic membranes in sucrose density gradients and analysis of mitotic vesicles by immunoelectron microscopy confirms that p58 and most of the type B lamins reside in the same compartment. Co-immunoprecipitation of both proteins by affinity-purified anti-p58 antibodies shows that they are physically associated in the context of a mitotic p58 'sub-complex'. This sub-assembly does not include the type A lamins which are fully solubilized during mitosis. Our data provide direct, in vivo and in vitro evidence that the majority of type B lamins remain connected to nuclear membrane 'receptors' during mitosis. The implications of these findings in nuclear envelope reassembly are discussed below. Images PMID:8168487

  18. Nuclear Envelope Phosphatase 1-Regulatory Subunit 1 (Formerly TMEM188) Is the Metazoan Spo7p Ortholog and Functions in the Lipin Activation Pathway*

    PubMed Central

    Han, Sungwon; Bahmanyar, Shirin; Zhang, Peixiang; Grishin, Nick; Oegema, Karen; Crooke, Roseann; Graham, Mark; Reue, Karen; Dixon, Jack E.; Goodman, Joel M.

    2012-01-01

    Lipin-1 catalyzes the formation of diacylglycerol from phosphatidic acid. Lipin-1 mutations cause lipodystrophy in mice and acute myopathy in humans. It is heavily phosphorylated, and the yeast ortholog Pah1p becomes membrane-associated and active upon dephosphorylation by the Nem1p-Spo7p membrane complex. A mammalian ortholog of Nem1p is the C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly “dullard”), but its Spo7p-like partner is unknown, and the need for its existence is debated. Here, we identify the metazoan ortholog of Spo7p, TMEM188, renamed nuclear envelope phosphatase 1-regulatory subunit 1 (NEP1-R1). CTDNEP1 and NEP1-R1 together complement a nem1Δspo7Δ strain to block endoplasmic reticulum proliferation and restore triacylglycerol levels and lipid droplet number. The two human orthologs are in a complex in cells, and the amount of CTDNEP1 is increased in the presence of NEP1-R1. In the Caenorhabditis elegans embryo, expression of nematode CTDNEP1 and NEP1-R1, as well as lipin-1, is required for normal nuclear membrane breakdown after zygote formation. The expression pattern of NEP1-R1 and CTDNEP1 in human and mouse tissues closely mirrors that of lipin-1. CTDNEP1 can dephosphorylate lipins-1a, -1b, and -2 in human cells only in the presence of NEP1-R1. The nuclear fraction of lipin-1b is increased when CTDNEP1 and NEP1-R1 are co-expressed. Therefore, NEP1-R1 is functionally conserved from yeast to humans and functions in the lipin activation pathway. PMID:22134922

  19. Transmembrane protein TMEM170A is a newly discovered regulator of ER and nuclear envelope morphogenesis in human cells

    PubMed Central

    Christodoulou, Andri; Santarella-Mellwig, Rachel; Santama, Niovi

    2016-01-01

    ABSTRACT The mechanism of endoplasmic reticulum (ER) morphogenesis is incompletely understood. ER tubules are shaped by the reticulons (RTNs) and DP1/Yop1p family members, but the mechanism of ER sheet formation is much less clear. Here, we characterize TMEM170A, a human transmembrane protein, which localizes in ER and nuclear envelope membranes. Silencing or overexpressing TMEM170A in HeLa K cells alters ER shape and morphology. Ultrastructural analysis reveals that downregulation of TMEM170A specifically induces tubular ER formation, whereas overexpression of TMEM170A induces ER sheet formation, indicating that TMEM170A is a newly discovered ER-sheet-promoting protein. Additionally, downregulation of TMEM170A alters nuclear shape and size, decreases the density of nuclear pore complexes (NPCs) in the nuclear envelope and causes either a reduction in inner nuclear membrane (INM) proteins or their relocalization to the ER. TMEM170A interacts with RTN4, a member of the reticulon family; simultaneous co-silencing of TMEM170A and RTN4 rescues ER, NPC and nuclear-envelope-related phenotypes, implying that the two proteins have antagonistic effects on ER membrane organization, and nuclear envelope and NPC formation. PMID:26906412

  20. Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line.

    PubMed

    Daryabeigi, Anahita; Woglar, Alexander; Baudrimont, Antoine; Silva, Nicola; Paouneskou, Dimitra; Vesely, Cornelia; Rauter, Manuel; Penkner, Alexandra; Jantsch, Michael; Jantsch, Verena

    2016-06-01

    SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled-coil domain makes SUN-1 sensitive to unilateral force exposure across the nuclear membrane. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in its absence. PMID:27098914

  1. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    SciTech Connect

    Martin, Madhavi Z; Allman, Steve L; Brice, Deanne Jane; Martin, Rodger Carl; Andre, Nicolas O

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  2. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  3. Recommended electromagnetic operating envelopes for safety-related I and C systems in nuclear power plants: Draft report for comment

    SciTech Connect

    Ewing, P.D.; Wood, R.T.

    1997-12-01

    This document presents recommendations for electromagnetic operating envelopes to augment test criteria and test methods addressing electromagnetic interference (EMI), radio-frequency interference (RFI), and power surges that are applicable to safety-related instrumentation and control (I and C) systems in nuclear power plants. The Oak Ridge National Laboratory (ORNL) was engaged by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research to assist in developing the technical basis for regulatory guidance on EMI/RFI immunity and power surge withstand capability (SWC). Previous research has provided recommendations on electromagnetic compatibility (EMC) design and installation practices, endorsement of EMI/RFI immunity and SWC test criteria and test methods, and determination of ambient electromagnetic conditions at nuclear power plants. The present research involves development of recommended electromagnetic envelopes that are applicable to nuclear power plant locations where safety-related I and C systems either are or may be installed. These recommended envelopes establish both emissions criteria and the levels of radiated and conducted interference that I and C systems should be able to withstand without upset or malfunction. The EMI/RFI operating envelopes are derived from conditions in comparable military environments and are confirmed by comparison with the nuclear power plant electromagnetic environment based on measured plant emissions profiles. Detailed information on specific power surge conditions in nuclear power plants is not available, so industrial guidance on representative surge characteristics for susceptibility testing is adopted. An engineering assessment of the power surge environment in nuclear power plants leads to the recommendation of operating envelopes based on location categories and exposure levels defined in IEEE Std C62.41-1991, IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits.

  4. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  5. Nuclear envelope remodeling during mouse spermiogenesis: Postmeiotic expression and redistribution of germline lamin B3

    SciTech Connect

    Schuetz, Wolfgang; Alsheimer, Manfred; Oellinger, Rupert; Benavente, Ricardo . E-mail: benavente@biozentrum.uni-wuerzburg.de

    2005-07-15

    Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis.

  6. Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies.

    PubMed

    Chen, Zi-Jie; Wang, Wan-Ping; Chen, Yu-Ching; Wang, Jing-Ya; Lin, Wen-Hsin; Tai, Lin-Ai; Liou, Gan-Guang; Yang, Chung-Shi; Chi, Ya-Hui

    2014-04-15

    Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS. PMID:24522183

  7. Pleomorphism of the nuclear envelope in breast cancer: a new approach to an old problem

    PubMed Central

    Bussolati, Gianni; Marchiò, Caterina; Gaetano, Laura; Lupo, Rosanna; Sapino, Anna

    2008-01-01

    Abstract In routine practice, nuclear pleomorphism of tumours is assessed by haematoxylin staining of the membrane-bound heterochromatin. However, decoration of the nuclear envelope (NE) through the immunofluorescence staining of NE proteins such as lamin B and emerin can provide a more objective appreciation of the nuclear shape. In breast cancer, nuclear pleomorphism is one of the least reproducible parameters to score histological grade, thus we sought to use NE proteins to improve the reproducibility of nuclear grading. First, immuno-fluorescence staining of NE as well as confocal microscopy and three-dimensional reconstruction of nuclei in cultured cells showed a smooth and uniform NE of normal breast epithelium in contrast to an irregular foldings of the membrane and the presence of deep invaginations leading to the formation of an intranuclear scaffold of NE-bound tubules in breast cancer cells. Following the above methods and criteria, we recorded the degree of NE pleomorphism (NEP) in a series of 273 invasive breast cancers tested by immunofluorescence. A uniform nuclear shape with few irregularities (low NEP) was observed in 135 cases or, alternatively, marked folds of the NE and an intranuclear tubular scaffold (high NEP cases) were observed in 138 cases. The latter features were significantly correlated (P-value <0.002) with lymph node metastases in 54 histological grade 1 and in 173 cancers with low mitotic count. Decoration of the NE might thus be regarded as a novel diagnostic parameter to define the grade of malignancy, which parallels and enhances that provided by routine histological procedures. PMID:18053086

  8. The Use of Polyacrylamide Hydrogels to Study the Effects of Matrix Stiffness on Nuclear Envelope Properties.

    PubMed

    Minaisah, Rose-Marie; Cox, Susan; Warren, Derek T

    2016-01-01

    Matrix-derived mechanical cues influence cell proliferation, motility, and differentiation. Recent findings clearly demonstrate that the nuclear envelope (NE) adapts and remodels in response to mechanical signals, including matrix stiffness, yet a plethora of studies have been performed on tissue culture plastic or glass that have a similar stiffness to cortical bone. Using methods that allow modulation of matrix stiffness will provide further insight into the role of the NE in physiological conditions and the impact of changes in stiffness observed during ageing and disease on cellular function. In this chapter, we describe the polyacrylamide hydrogel system, which allows fabrication of hydrogels with variable stiffness to better mimic the environment experienced by cells in most tissues of the body. PMID:27147046

  9. Nesprin-2 Interacts with α-Catenin and Regulates Wnt Signaling at the Nuclear Envelope*

    PubMed Central

    Neumann, Sascha; Schneider, Maria; Daugherty, Rebecca L.; Gottardi, Cara J.; Eming, Sabine A.; Beijer, Asa; Noegel, Angelika A.; Karakesisoglou, Iakowos

    2010-01-01

    Nesprins and emerin are structural nuclear envelope proteins that tether nuclei to the cytoskeleton. In this work, we identified the cytoskeleton-associated α-N/E-catenins as novel nesprin-2-binding partners. The association involves the C termini of nesprin-2 giant and α-N/E-catenins. α-E/T/N-catenins are known primarily for their roles in cadherin-mediated cell-cell adhesion. Here, we show that, in addition, α-catenin forms complexes with nesprin-2 that include β-catenin and emerin. We demonstrate that the depletion of nesprin-2 reduces both the amount of active β-catenin inside the nucleus and T-cell factor/lymphoid-enhancing factor-dependent transcription. Taken together, these findings suggest novel nesprin-2 functions in cellular signaling. Moreover, we propose that, in contrast to emerin, nesprin-2 is a positive regulator of the Wnt signaling pathway. PMID:20801886

  10. Effect of nuclear mass on carrier-envelope-phase-controlled electron localization in dissociating molecules

    NASA Astrophysics Data System (ADS)

    Xu, Han; Xu, Tian-Yu; He, Feng; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2014-04-01

    We explore the effect of nuclear mass on the laser-driven electron localization process. We dissociate a mixed H2 and D2 target with intense, carrier-envelope-phase (CEP) stable 6 fs laser pulses and detect the products in a reaction microscope. We observe a very strong CEP-dependent asymmetry in proton and deuteron emission for low dissociation energy channels. This asymmetry is stronger for H2 than for D2. We also observe a large CEP offset between the asymmetry spectra for H2 and D2. Our theoretical simulations, based on a one-dimensional two-channel model, agree very well with the asymmetry spectra, but fail to account properly for the phase difference between the two isotopes.

  11. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase

    PubMed Central

    Bolhy, Stéphanie; Bouhlel, Imène; Dultz, Elisa; Nayak, Tania; Zuccolo, Michela; Gatti, Xavier; Vallee, Richard; Ellenberg, Jan

    2011-01-01

    Centrosomes are closely associated with the nuclear envelope (NE) throughout the cell cycle and this association is maintained in prophase when they separate to establish the future mitotic spindle. At this stage, the kinetochore constituents CENP-F, NudE, NudEL, dynein, and dynactin accumulate at the NE. We demonstrate here that the N-terminal domain of the nuclear pore complex (NPC) protein Nup133, although largely dispensable for NPC assembly, is required for efficient anchoring of the dynein/dynactin complex to the NE in prophase. Nup133 exerts this function through an interaction network via CENP-F and NudE/EL. We show that this molecular chain is critical for maintaining centrosome association with the NE at mitotic entry and contributes to this process without interfering with the previously described RanBP2–BICD2-dependent pathway of centrosome anchoring. Finally, our study reveals that tethering of centrosomes to the nuclear surface at the G2/M transition contributes, along with other cellular mechanisms, to early stages of bipolar spindle assembly. PMID:21383080

  12. The Malleable Nature of the Budding Yeast Nuclear Envelope: Flares, Fusion, and Fenestrations.

    PubMed

    Meseroll, Rebecca A; Cohen-Fix, Orna

    2016-11-01

    In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. PMID:26909870

  13. Visualization of the nucleus and nuclear envelope in situ by SEM in tissue culture cells.

    PubMed

    Allen, T D; Rutherford, S A; Murray, S; Gardiner, F; Kiseleva, E; Goldberg, M W; Drummond, S P

    2007-01-01

    Our previous work characterizing the biogenesis and structural integrity of the nuclear envelope and nuclear pore complexes (NPCs) has been based on amphibian material but has recently progressed into the analysis of tissue-culture cells. This protocol describes methods for the high resolution visualization, by field-emission scanning electron microscopy (FESEM), of the nucleus and associated structures in tissue culture cells. Imaging by fluorescence light microscopy shows general nuclear and NPC information at a resolution of approximately 200 nm, in contrast to the 3-5 nm resolution provided by FESEM or transmission electron microscopy (TEM), which generates detail at the macromolecular level. The protocols described here are applicable to all tissue culture cell lines tested to date (HeLa, A6, DLD, XTC and NIH 3T3). The processed cells can be stored long term under vacuum. The protocol can be completed in 5 d, including 3 d for cell growth, 1 d for processing and 1 d for imaging. PMID:17546013

  14. The Nuclear Envelope Protein, LAP1B, Is a Novel Protein Phosphatase 1 Substrate

    PubMed Central

    Santos, Mariana; Rebelo, Sandra; Van Kleeff, Paula J. M.; Kim, Connie E.; Dauer, William T.; Fardilha, Margarida; da Cruz e Silva, Odete A.; da Cruz e Silva, Edgar F.

    2013-01-01

    Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases. PMID:24116158

  15. The budding yeast nuclear envelope adjacent to the nucleolus serves as a membrane sink during mitotic delay

    PubMed Central

    Witkin, Keren L.; Chong, Yolanda; Shao, Sichen; Webster, Micah T.; Lahiri, Sujoy; Walters, Alison D.; Lee, Brandon; Koh, Judice L.Y.; Prinz, William A.; Andrews, Brenda J.; Cohen-Fix, Orna

    2012-01-01

    Summary The mechanisms that dictate nuclear shape are largely unknown. Here we screened the budding yeast deletion collection for mutants with abnormal nuclear shape. A common phenotype was the appearance of a nuclear extension, particularly in mutants in DNA repair and chromosome segregation genes. Our data suggest that these mutations led to the abnormal nuclear morphology indirectly, by causing a checkpoint-induced cell cycle delay. Indeed, delaying cells in mitosis by other means also led to the appearance of nuclear extensions, while inactivating the DNA damage checkpoint pathway in a DNA repair mutant reduced the fraction of cells with nuclear extensions. Formation of a nuclear extension was specific to a mitotic delay, as cells arrested in S or G2 had round nuclei. Moreover, the nuclear extension always coincided with the nucleolus, while the morphology of DNA mass remained largely unchanged. Finally, we found that phospholipid synthesis continues unperturbed when cells delay in mitosis, and inhibiting phospholipid synthesis abolished the formation of nuclear extensions. Our data suggest a mechanism that promotes nuclear envelope expansion during mitosis. When mitotic progression is delayed, cells sequester the added membrane to the nuclear envelope associated with the nucleolus, possibly to avoid disruption of intra-nuclear organization. PMID:22658600

  16. The tethering of chromatin to the nuclear envelope supports nuclear mechanics

    PubMed Central

    Schreiner, Sarah M.; Koo, Peter K.; Zhao, Yao; Mochrie, Simon G. J.; King, Megan C.

    2015-01-01

    The nuclear lamina is thought to be the primary mechanical defence of the nucleus. However, the lamina is integrated within a network of lipids, proteins and chromatin; the interdependence of this network poses a challenge to defining the individual mechanical contributions of these components. Here, we isolate the role of chromatin in nuclear mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that untethering chromatin from the inner nuclear membrane results in highly deformable nuclei in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define both transient and long-lived changes in nuclear shape that are biologically important and may be altered in disease. PMID:26074052

  17. Centrosome attachment to the C. elegans male pronucleus is dependent on the surface area of the nuclear envelope

    PubMed Central

    Meyerzon, Marina; Gao, Zhizhen; Liu, Jin; Wu, Jui-Ching; Malone, Christian J.; Starr, Daniel A.

    2009-01-01

    A close association must be maintained between the male pronucleus and the centrosomes during pronuclear migration. In C. elegans, simultaneous depletion of inner nuclear membrane LEM proteins EMR-1 and LEM-2, depletion of the nuclear lamina proteins LMN-1 or BAF-1, or the depletion of nuclear import components leads to embryonic lethality with small pronuclei. Here, a novel centrosome detachment phenotype in C. elegans zygotes is described. Zygotes with defects in the nuclear envelope had small pronuclei with a single centrosome detached from the male pronucleus. ZYG-12, SUN-1, and LIS-1, which function at the nuclear envelope with dynein to attach centrosomes, were observed at normal concentrations on the nuclear envelope of pronuclei with detached centrosomes. Analysis of time-lapse images showed that as mutant pronuclei grew in surface area, they captured detached centrosomes. Larger tetraploid or smaller histone::mCherry pronuclei suppressed or enhanced the centrosome detachment phenotype respectively. In embryos fertilized with anucleated sperm, only one centrosome was captured by small female pronuclei, suggesting the mechanism of capture is dependent on the surface area of the outer nuclear membrane available to interact with aster microtubules. We propose that the limiting factor for centrosome attachment to the surface of abnormally small pronuclei is dynein. PMID:19162001

  18. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope

    PubMed Central

    Lamm, Christian E.; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-01-01

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell’s nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein. PMID:26978388

  19. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-01-01

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein. PMID:26978388

  20. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants.

    PubMed

    Zhou, Xiao; Graumann, Katja; Wirthmueller, Lennart; Jones, Jonathan D G; Meier, Iris

    2014-06-01

    Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain-interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions. PMID:24891605

  1. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death

    PubMed Central

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  2. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death.

    PubMed

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  3. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure.

    PubMed

    Thompson, Gary L; Roth, Caleb C; Kuipers, Marjorie A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus - histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. PMID:26721436

  4. Effects of 2-acetylaminofluorene, dietary fats and antioxidants on nuclear envelope cytochrome P-450

    SciTech Connect

    Carubelli, R.; Graham, S.A.; Griffin, M.J.; McCay, P.B.

    1986-05-01

    The authors reported a marked loss of cytochrome P-450 in hepatic nuclear envelope (NE) but not in microsomes of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks. This may reflect loss of NE capacity to detoxify AAF metabolites generated by microsomal P-450. They are now investigating if dietary effects such as progressive decrease in the incidence of AAF-induced tumors in rats fed high polyunsaturated fat diet (HPUF) vs. high saturated fat diet (HSF) vs. low fat diet (LF), and the anticarcinogenic activity of butylated hydroxytoluene (BHT; 0.3% w/w) correlate with preservation of NE P-450. Rats fed AAF HSF (25.6% w/w corn oil) showed marked loss of NE P-450 after 3 weeks; BHT protected against this loss. Rats fed AAF in HSF (25.6% w/w; 18 parts beef tallow + 2 parts corn oil), on the other hand, experienced a marked drop in NE P-450 after 9 weeks; BHT protected against this loss. Comparison of NE P-450 levels in control rats fed HPUF or HSF for 3 weeks with those of rats fed a semipurified diet with 10% fat or Purina chow (ca. 5% fat), support the prediction of an inverse correlation between the levels of dietary fat and the NE P-450 content. Studies on AAF and BHT effects using LF (2% w/w corn oil) are in progress.

  5. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons

    SciTech Connect

    Young, Kevin G.; Kothary, Rashmi

    2008-09-10

    Dystonin/Bpag1 proteins are cytoskeletal linkers whose loss of function in mice results in a hereditary sensory neuropathy with a progressive loss of limb coordination starting in the second week of life. These mice, named dystonia musculorum (dt), succumb to the disease and die of unknown causes prior to sexual maturity. Previous evidence indicated that cytoskeletal defects in the axon are a primary cause of dt neurodegeneration. However, more recent data suggests that other factors may be equally important contributors to the disease process. In the present study, we demonstrate perikaryal defects in dorsal root ganglion (DRG) neurons at stages preceding the onset of loss of limb coordination in dt mice. Abnormalities include alterations in endoplasmic reticulum (ER) chaperone protein expression, indicative of an ER stress response. Dystonin in sensory neurons localized in association with the ER and nuclear envelope (NE). A fusion protein ofthe dystonin-a2 isoform, which harbors an N-terminal transmembrane domain, associated with and reorganized the ER in cell culture. This isoform also interacts with the NE protein nesprin-3{alpha}, but not nesprin-3{beta}. Defects in dt mice, as demonstrated here, may ultimately result in pathogenesis involving ER dysfunction and contribute significantly to the dt phenotype.

  6. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding.

    PubMed

    Li, Yihang; Hassinger, Linda; Thomson, Travis; Ding, Baojin; Ashley, James; Hassinger, William; Budnik, Vivian

    2016-08-01

    Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging. PMID:27451905

  7. The scaffolding protein IQGAP1 co-localizes with actin at the cytoplasmic face of the nuclear envelope: implications for cytoskeletal regulation

    PubMed Central

    Johnson, Michael A.

    2012-01-01

    IQGAP1 is an important cytoskeletal regulator, known to act at the plasma membrane to bundle and cap actin filaments, and to tether the cortical actin meshwork to microtubules via plus-end binding proteins. Here we describe the novel subcellular localization of IQGAP1 at the cytoplasmic face of the nuclear envelope, where it co-located with F-actin. The IQGAP1 and F-actin staining overlapped that of microtubules at the nuclear envelope, revealing a pattern strikingly similar to that observed at the plasma membrane. In detergent-extracted cells IQGAP1 was retained at cytoskeletal structures at the nuclear envelope. This finding has new implications for involvement of IQGAP1 in cell polarization and migration events and potentially in cell cycle-associated nuclear envelope assembly/disassembly. PMID:22964981

  8. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application

    PubMed Central

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-01-01

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs. PMID:27114541

  9. Photoaffinity labeling of the major nucleosidetriphosphatase of rat liver nuclear envelope.

    PubMed

    Clawson, G A; Woo, C H; Button, J; Smuckler, E A

    1984-07-17

    We employed the photoaffinity probe 8-azido-adenosine 5'-triphosphate (aATP) to identify the nuclear envelope (NE) nucleosidetriphosphatase activity (NTPase) implicated in control of RNA transport. The photoprobe was hydrolyzed at rates comparable to those for ATP, with a Michaelis constant of 0.225 mM. Photolabeling was dependent upon UV irradiation (300-nm max) and was not affected by quercetin. Unlabeled ATP or GTP competed with [32P]aATP in photolabeling experiments, and UTP was a less effective competitor, paralleling the substrate specificity of the NTPase. Incubation of NE with aATP led to a UV, time, and concentration dependent irreversible inactivation of NTPase. The inactivation could be blocked by ATP or GTP. Polyacrylamide gel electrophoresis and autoradiography of photolabeled NE showed selective, UV-dependent labeling of a 46-kDa protein with both [gamma-32P]aATP and [alpha-32P]aATP. This band was not labeled with [gamma-32P]ATP. Since the NE NTPase implicated in RNA transport is modulated by RNA, we examined the effects of RNA on the labeling process. Removal of RNA from the NE preparations (by RNase/DNase digestion) reduced NTPase by 30-40% and eliminated photolabeling of the 46-kDa band. Addition of yeast RNA to such preparations increased NTPase activity to control levels and selectively reinstated photolabeling of the 46-kDa band. These results suggest that the 46-kDa protein represents the major NTPase implicated in RNA transport. PMID:6087895

  10. Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes.

    PubMed

    Kinney, Nicholas Allen; Onufriev, Alexey V; Sharakhov, Igor V

    2015-01-01

    We use a combined experimental and computational approach to study the effects of chromosome-nuclear envelope (Chr-NE) attachments on the 3D genome organization of Drosophila melanogaster (fruit fly) salivary gland nuclei. We consider 3 distinct models: a Null model - without specific Chr-NE attachments, a 15-attachment model - with 15 previously known Chr-NE attachments, and a 48-attachment model - with 15 original and 33 recently identified Chr-NE attachments. The radial densities of chromosomes in the models are compared to the densities observed in 100 experimental images of optically sectioned salivary gland nuclei forming "z-stacks." Most of the experimental z-stacks support the Chr-NE 48-attachment model suggesting that as many as 48 chromosome loci with appreciable affinity for the NE are necessary to reproduce the experimentally observed distribution of chromosome density in fruit fly nuclei. Next, we investigate if and how the presence and the number of Chr-NE attachments affect several key characteristics of 3D genome organization: chromosome territories and gene-gene contacts. This analysis leads to novel insight about the possible role of Chr-NE attachments in regulating the genome architecture. Specifically, we find that model nuclei with more numerous Chr-NE attachments form more distinct chromosome territories and their chromosomes intertwine less frequently. Intra-chromosome and intra-arm contacts are more common in model nuclei with Chr-NE attachments compared to the Null model (no specific attachments), while inter-chromosome and inter-arm contacts are less common in nuclei with Chr-NE attachments. We demonstrate that Chr-NE attachments increase the specificity of long-range inter-chromosome and inter-arm contacts. The predicted effects of Chr-NE attachments are rationalized by intuitive volume vs. surface accessibility arguments. PMID:26068134

  11. B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis.

    PubMed

    Hayashi, Daisuke; Tanabe, Karin; Katsube, Hiroka; Inoue, Yoshihiro H

    2016-01-01

    In higher eukaryotes, nuclear envelope (NE) disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam) is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC) is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis. PMID:27402967

  12. B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis

    PubMed Central

    Hayashi, Daisuke; Tanabe, Karin; Katsube, Hiroka

    2016-01-01

    ABSTRACT In higher eukaryotes, nuclear envelope (NE) disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam) is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC) is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis. PMID:27402967

  13. GIP Contributions to the Regulation of Centromere at the Interface Between the Nuclear Envelope and the Nucleoplasm

    PubMed Central

    Chabouté, Marie-Edith; Berr, Alexandre

    2016-01-01

    Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm. PMID:26904080

  14. GIP Contributions to the Regulation of Centromere at the Interface Between the Nuclear Envelope and the Nucleoplasm.

    PubMed

    Chabouté, Marie-Edith; Berr, Alexandre

    2016-01-01

    Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm. PMID:26904080

  15. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins.

    PubMed

    Davies, Rebecca G; Wagstaff, Kylie M; McLaughlin, Eileen A; Loveland, Kate L; Jans, David A

    2013-12-01

    Regulation of nuclear protein import is central to many cellular processes such as development, with a key mechanism being factors that retain cargoes in the cytoplasm that normally localize in the nucleus. The breast cancer antigen BRCA1-binding protein BRAP2 has been reported as a novel negative regulator of nuclear import of various nuclear localization signal (NLS)-containing viral and cellular proteins, but although implicated in differentiation pathways and highly expressed in tissues including testis, the gamut of targets for BRAP2 action in a developmental context is unknown. As a first step towards defining the BRAP2 interactome, we performed a yeast-2-hybrid screen to identify binding partners of BRAP2 in human testis. Here we report characterization for the first time of three of these: the high mobility group (HMG)-box-domain-containing chromatin component HMG20A, nuclear mitotic apparatus protein NuMA1 and synaptic nuclear envelope protein SYNE2. Co-immunoprecipitation experiments indicate association of BRAP2 with HMG20A, NuMA1, and SYNE2 in testis, underlining the physiological relevance of the interactions, with immunohistochemistry showing that where BRAP2 is co-expressed with HMG20A and NuMA1, both are present in the cytoplasm, in contrast to their nuclear localization in other testicular cell types. Importantly, quantitative confocal microscopic analysis of cultured cells indicates that ectopic expression of BRAP2 inhibits nuclear localization of HMG20A and NuMA1, and prevents nuclear envelope accumulation of SYNE2, the first report of BRAP2 altering localization of a non-nuclear protein. These results imply for the first time that BRAP2 may have an important role in modulating subcellular localization during testicular development. PMID:23707952

  16. The fission yeast NIMA kinase Fin1p is required for spindle function and nuclear envelope integrity.

    PubMed

    Krien, Michael J E; West, Robert R; John, Ulrik P; Koniaras, Kalli; McIntosh, J Richard; O'Connell, Matthew J

    2002-04-01

    NIMA kinases appear to be the least functionally conserved mitotic regulators, being implicated in chromosome condensation in fungi and in spindle function in metazoans. We demonstrate here that the fission yeast NIMA homologue, Fin1p, can induce profound chromosome condensation in the absence of the condensin and topoisomerase II, indicating that Fin1p-induced condensation differs from mitotic condensation. Fin1p expression is transcriptionally and post-translationally cell cycle-regulated, with Fin1p kinase activity maximal from the metaphase-anaphase transition to G(1). Fin1p is localized to the spindle pole body and fin1Delta cells are hypersensitive to anti-microtubule drugs, synthetically lethal with a number of spindle mutants and require the spindle checkpoint for viability. Moreover, fin1Delta cells show unusual and extensive elaborations of the nuclear envelope. These data support a role for Fin1p in spindle function and nuclear envelope transactions at or after the metaphase-anaphase transition that may be generally applicable to other NIMA-family members. PMID:11927555

  17. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration.

    PubMed

    Bakay, Marina; Wang, Zuyi; Melcon, Gisela; Schiltz, Louis; Xuan, Jianhua; Zhao, Po; Sartorelli, Vittorio; Seo, Jinwook; Pegoraro, Elena; Angelini, Corrado; Shneiderman, Ben; Escolar, Diana; Chen, Yi-Wen; Winokur, Sara T; Pachman, Lauren M; Fan, Chenguang; Mandler, Raul; Nevo, Yoram; Gordon, Erynn; Zhu, Yitan; Dong, Yibin; Wang, Yue; Hoffman, Eric P

    2006-04-01

    Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear

  18. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome–nucleus association and transcriptional signaling

    PubMed Central

    Meyer, Adam J.; Almendrala, Donna K.; Go, Minjoung M.; Krauss, Sharon Wald

    2011-01-01

    The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus–centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome–nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export. PMID:21486941

  19. Investigation of the Chromosome Regions with Significant Affinity for the Nuclear Envelope in Fruit Fly – A Model Based Approach

    PubMed Central

    Kinney, Nicholas Allen; Sharakhov, Igor V.; Onufriev, Alexey V.

    2014-01-01

    Three dimensional nuclear architecture is important for genome function, but is still poorly understood. In particular, little is known about the role of the “boundary conditions” – points of attachment between chromosomes and the nuclear envelope. We describe a method for modeling the 3D organization of the interphase nucleus, and its application to analysis of chromosome-nuclear envelope (Chr-NE) attachments of polytene (giant) chromosomes in Drosophila melanogaster salivary glands. The model represents chromosomes as self-avoiding polymer chains confined within the nucleus; parameters of the model are taken directly from experiment, no fitting parameters are introduced. Methods are developed to objectively quantify chromosome territories and intertwining, which are discussed in the context of corresponding experimental observations. In particular, a mathematically rigorous definition of a territory based on convex hull is proposed. The self-avoiding polymer model is used to re-analyze previous experimental data; the analysis suggests 33 additional Chr-NE attachments in addition to the 15 already explored Chr-NE attachments. Most of these new Chr-NE attachments correspond to intercalary heterochromatin – gene poor, dark staining, late replicating regions of the genome; however, three correspond to euchromatin – gene rich, light staining, early replicating regions of the genome. The analysis also suggests 5 regions of anti-contact, characterized by aversion for the NE, only two of these correspond to euchromatin. This composition of chromatin suggests that heterochromatin may not be necessary or sufficient for the formation of a Chr-NE attachment. To the extent that the proposed model represents reality, the confinement of the polytene chromosomes in a spherical nucleus alone does not favor the positioning of specific chromosome regions at the NE as seen in experiment; consequently, the 15 experimentally known Chr-NE attachment positions do not appear to

  20. SAFEGUARDS ENVELOPE

    SciTech Connect

    Duc Cao; Richard Metcalf

    2010-07-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z-testing. A brief analysis of the impact of the safeguards optimization on the rest of plant efficiency, criticality concerns, and overall requirements is presented.

  1. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope.

    PubMed

    Koszul, R; Kim, K P; Prentiss, M; Kleckner, N; Kameoka, S

    2008-06-27

    Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase telomere-led chromosome motion in budding yeast. Diverse findings reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  2. Nuclear Envelope Composition Determines the Ability of Neutrophil-type Cells to Passage through Micron-scale Constrictions*

    PubMed Central

    Rowat, Amy C.; Jaalouk, Diana E.; Zwerger, Monika; Ung, W. Lloyd; Eydelnant, Irwin A.; Olins, Don E.; Olins, Ada L.; Herrmann, Harald; Weitz, David A.; Lammerding, Jan

    2013-01-01

    Neutrophils are characterized by their distinct nuclear shape, which is thought to facilitate the transit of these cells through pore spaces less than one-fifth of their diameter. We used human promyelocytic leukemia (HL-60) cells as a model system to investigate the effect of nuclear shape in whole cell deformability. We probed neutrophil-differentiated HL-60 cells lacking expression of lamin B receptor, which fail to develop lobulated nuclei during granulopoiesis and present an in vitro model for Pelger-Huët anomaly; despite the circular morphology of their nuclei, the cells passed through micron-scale constrictions on similar timescales as scrambled controls. We then investigated the unique nuclear envelope composition of neutrophil-differentiated HL-60 cells, which may also impact their deformability; although lamin A is typically down-regulated during granulopoiesis, we genetically modified HL-60 cells to generate a subpopulation of cells with well defined levels of ectopic lamin A. The lamin A-overexpressing neutrophil-type cells showed similar functional characteristics as the mock controls, but they had an impaired ability to pass through micron-scale constrictions. Our results suggest that levels of lamin A have a marked effect on the ability of neutrophils to passage through micron-scale constrictions, whereas the unusual multilobed shape of the neutrophil nucleus is less essential. PMID:23355469

  3. 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation.

    PubMed Central

    Woods, J W; Coffey, M J; Brock, T G; Singer, I I; Peters-Golden, M

    1995-01-01

    5-Lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) are two key proteins involved in the synthesis of leukotrienes (LT) from arachidonic acid. Although both alveolar macrophages (AM) and peripheral blood leukocytes (PBL) produce large amounts of LT after activation, 5-LO translocates from a soluble pool to a particulate fraction upon activation of PBL, but is contained in the particulate fraction in AM irrespective of activation. We have therefore examined the subcellular localization of 5-LO in autologous human AM and PBL collected from normal donors. While immunogold electron microscopy demonstrated little 5-LO in resting PBL, resting AM exhibited abundant 5-LO epitopes in the euchromatin region of the nucleus. The presence of substantial quantities of 5-LO in the nucleus of resting AM was verified by cell fractionation and immunoblot analysis and by indirect immunofluorescence microscopy. In both AM and PBL activated by A23187, all of the observable 5-LO immunogold labeling was found associated with the nuclear envelope. In resting cells of both types, FLAP was predominantly associated with the nuclear envelope, and its localization was not affected by activation with A23187. The effects of MK-886, which binds to FLAP, were examined in ionophore-stimulated AM and PBL. Although MK-886 inhibited LT synthesis in both cell types, it failed to prevent the translocation of 5-LO to the nuclear envelope. These results indicate that the nuclear envelope is the site at which 5-LO interacts with FLAP and arachidonic acid to catalyze LT synthesis in activated AM as well as PBL, and that in resting AM the euchromatin region of the nucleus is the predominant source of the translocated enzyme. In addition, LT synthesis is a two-step process consisting of FLAP-independent translocation of 5-LO to the nuclear envelope followed by the FLAP-dependent activation of the enzyme. Images PMID:7738170

  4. A Visual Screen of a Gfp-Fusion Library Identifies a New Type of Nuclear Envelope Membrane Protein

    PubMed Central

    Rolls, Melissa M.; Stein, Pascal A.; Taylor, Stephen S.; Ha, Edward; McKeon, Frank; Rapoport, Tom A.

    1999-01-01

    The nuclear envelope (NE) is a distinct subdomain of the ER, but few membrane components have been described that are specific to it. We performed a visual screen in tissue culture cells to identify proteins targeted to the NE. This approach does not require assumptions about the nature of the association with the NE or the physical separation of NE and ER. We confirmed that screening a library of fusions to the green fluorescent protein can be used to identify proteins targeted to various subcompartments of mammalian cells, including the NE. With this approach, we identified a new NE membrane protein, named nurim. Nurim is a multispanning membrane protein without large hydrophilic domains that is very tightly associated with the nucleus. Unlike the known NE membrane proteins, it is neither associated with nuclear pores, nor targeted like lamin-associated membrane proteins. Thus, nurim is a new type of NE membrane protein that is localized to the NE by a distinct mechanism. PMID:10402458

  5. MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope.

    PubMed Central

    Gindullis, F; Peffer, N J; Meier, I

    1999-01-01

    The interaction of chromatin with the nuclear matrix via matrix attachment region (MAR) DNA is considered to be of fundamental importance for chromatin organization in all eukaryotic cells. MAR binding filament-like protein 1 (MFP1) from tomato is a novel plant protein that specifically binds to MAR DNA. Its filament protein-like structure makes it a likely candidate for a structural component of the nuclear matrix. MFP1 is located at nuclear matrix-associated, specklelike structures at the nuclear envelope. Here, we report the identification of a novel protein that specifically interacts with MFP1 in yeast two-hybrid and in vitro binding assays. MFP1 associated factor 1 (MAF1) is a small, soluble, serine/threonine-rich protein that is ubiquitously expressed and has no similarity to known proteins. MAF1, like MFP1, is located at the nuclear periphery and is a component of the nuclear matrix. These data suggest that MFP1 and MAF1 are in vivo interaction partners and that both proteins are components of a nuclear substructure, previously undescribed in plants, that connects the nuclear envelope and the internal nuclear matrix. PMID:10488241

  6. Nuclear Envelope Lamin-A Couples Actin Dynamics with Immunological Synapse Architecture and T Cell Activation

    PubMed Central

    González-Granado, José María; Trigueros-Motos, Laia; Cibrián, Danay; Morlino, Giulia; Blanco-Berrocal, Marta; Osorio, Fernando Garcia; Freije, José María Pérez; López-Otín, Carlos; Sánchez-Madrid, Francisco; Andrés, Vicente

    2014-01-01

    In many cell types, nuclear A-type lamins have been implicated in structural and functional activities, including higher-order genome organization, DNA replication and repair, gene transcription, and signal transduction. However, their role in specialized immune cells remains largely unexplored. Here, we showed that the abundance of A-type lamins is almost negligible in resting naïve T lymphocytes, but that it is substantially increased upon activation of the T cell receptor (TCR), and is an early event that accelerates formation of the immunological synapse between T cells and antigen-presenting cells. We found that lamin-A enhanced the polymerization of F-actin in T cells, a critical step for immunological synapse formation, by physically connecting the nucleus to the plasma membrane through the linker of nucleoskeleton and cytoskeleton (LINC) complex. We also showed that lamin-A played a key role in other membrane, cytoplasmic, and nuclear events related to TCR activation, including receptor-clustering, downstream signaling, and target gene expression. Notably, the presence of lamin-A was associated with enhanced extracellular signal–regulated kinase 1/2 signaling, and pharmacological inhibition of this pathway reduced the extent of lamin-A–dependent T cell activation. Moreover, mice deficient in lamin-A exhibited impaired T cell responses in vivo. These findings underscore the importance of A-type lamins for TCR activation, and identify lamin-A as a previously unappreciated regulator of the immune response. PMID:24757177

  7. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation

    PubMed Central

    Raaijmakers, Jonne A; van Heesbeen, Roy G H P; Meaders, Johnathan L; Geers, Erica F; Fernandez-Garcia, Belen; Medema, René H; Tanenbaum, Marvin E

    2012-01-01

    The microtubule motor protein kinesin-5 (Eg5) provides an outward force on centrosomes, which drives bipolar spindle assembly. Acute inhibition of Eg5 blocks centrosome separation and causes mitotic arrest in human cells, making Eg5 an attractive target for anti-cancer therapy. Using in vitro directed evolution, we show that human cells treated with Eg5 inhibitors can rapidly acquire the ability to divide in the complete absence of Eg5 activity. We have used these Eg5-independent cells to study alternative mechanisms of centrosome separation. We uncovered a pathway involving nuclear envelope (NE)-associated dynein that drives centrosome separation in prophase. This NE-dynein pathway is essential for bipolar spindle assembly in the absence of Eg5, but also functions in the presence of full Eg5 activity, where it pulls individual centrosomes along the NE and acts in concert with Eg5-dependent outward pushing forces to coordinate prophase centrosome separation. Together, these results reveal how the forces are produced to drive prophase centrosome separation and identify a novel mechanism of resistance to kinesin-5 inhibitors. PMID:23034402

  8. Essential role of the Cdk2 activator RingoA in meiotic telomere tethering to the nuclear envelope

    PubMed Central

    Mikolcevic, Petra; Isoda, Michitaka; Shibuya, Hiroki; del Barco Barrantes, Ivan; Igea, Ana; Suja, José A.; Shackleton, Sue; Watanabe, Yoshinori; Nebreda, Angel R.

    2016-01-01

    Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO) mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic defects virtually identical to those observed in Cdk2 KO mice including non-homologous chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO spermatocytes display severely affected telomere tethering as well as impaired distribution of Sun1, a protein essential for the attachment of telomeres to the nuclear envelope. Our results identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins. PMID:27025256

  9. Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease.

    PubMed

    Osorio, Fernando G; Varela, Ignacio; Lara, Ester; Puente, Xose S; Espada, Jesús; Santoro, Raffaella; Freije, José M P; Fraga, Mario F; López-Otín, Carlos

    2010-12-01

    Mutations in the nuclear envelope protein lamin A or in its processing protease ZMPSTE24 cause human accelerated aging syndromes, including Hutchinson-Gilford progeria syndrome. Similarly, Zmpste24-deficient mice accumulate unprocessed prelamin A and develop multiple progeroid symptoms, thus representing a valuable animal model for the study of these syndromes. Zmpste24-deficient mice also show marked transcriptional alterations associated with chromatin disorganization, but the molecular links between both processes are unknown. We report herein that Zmpste24-deficient mice show a hypermethylation of rDNA that reduces the transcription of ribosomal genes, being this reduction reversible upon treatment with DNA methyltransferase inhibitors. This alteration has been previously described during physiological aging in rodents, suggesting its potential role in the development of the progeroid phenotypes. We also show that Zmpste24-deficient mice present global hypoacetylation of histones H2B and H4. By using a combination of RNA sequencing and chromatin immunoprecipitation assays, we demonstrate that these histone modifications are associated with changes in the expression of several genes involved in the control of cell proliferation and metabolic processes, which may contribute to the plethora of progeroid symptoms exhibited by Zmpste24-deficient mice. The identification of these altered genes may help to clarify the molecular mechanisms underlying aging and progeroid syndromes as well as to define new targets for the treatment of these dramatic diseases. PMID:20961378

  10. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope

    PubMed Central

    Seybold, Christian; Elserafy, Menattallah; Rüthnick, Diana; Ozboyaci, Musa; Neuner, Annett; Flottmann, Benjamin; Heilemann, Mike; Wade, Rebecca C.

    2015-01-01

    The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. The half bridge is a SPB substructure on the nuclear envelope (NE), playing a key role in SPB duplication. Its cytoplasmic components are the membrane-anchored Kar1, the yeast centrin Cdc31, and the Cdc31-binding protein Sfi1. In G1, the half bridge expands into the bridge through Sfi1 C-terminal (Sfi1-CT) dimerization, the licensing step for SPB duplication. We exploited photo-activated localization microscopy (PALM) to show that Kar1 localizes in the bridge center. Binding assays revealed direct interaction between Kar1 and C-terminal Sfi1 fragments. kar1Δ cells whose viability was maintained by the dominant CDC31-16 showed an arched bridge, indicating Kar1’s function in tethering Sfi1 to the NE. Cdc31-16 enhanced Cdc31–Cdc31 interactions between Sfi1–Cdc31 layers, as suggested by binding free energy calculations. In our model, Kar1 binding is restricted to Sfi1-CT and Sfi1 C-terminal centrin-binding repeats, and centrin and Kar1 provide cross-links, while Sfi1-CT stabilizes the bridge and ensures timely SPB separation. PMID:26076691

  11. Nuclear envelope morphology constrains diffusion and promotes asymmetric protein segregation in closed mitosis

    PubMed Central

    Boettcher, Barbara; Marquez-Lago, Tatiana T.; Bayer, Mathias; Weiss, Eric L.

    2012-01-01

    During vegetative growth, Saccharomyces cerevisiae cells divide asymmetrically: the mother cell buds to produce a smaller daughter cell. This daughter asymmetrically inherits the transcription factor Ace2, which activates daughter-specific transcriptional programs. In this paper, we investigate when and how this asymmetry is established and maintained. We show that Ace2 asymmetry is initiated in the elongated, but undivided, anaphase nucleus. At this stage, the nucleoplasm was highly compartmentalized; little exchange was observed for nucleoplasmic proteins between mother and bud. Using photobleaching and in silico modeling, we show that diffusion barriers compartmentalize the nuclear membranes. In contrast, the behavior of proteins in the nucleoplasm is well explained by the dumbbell shape of the anaphase nucleus. This compartmentalization of the nucleoplasm promoted Ace2 asymmetry in anaphase nuclei. Thus, our data indicate that yeast cells use the process of closed mitosis and the morphological constraints associated with it to asymmetrically segregate nucleoplasmic components. PMID:22711697

  12. Nuclear envelope lamin-A as a coordinator of T cell activation

    PubMed Central

    Rocha-Perugini, Vera; González-Granado, José M

    2014-01-01

    Nuclear lamins A/C control several critical cellular functions, e.g., chromatin organization, gene transcription, DNA replication, DNA damage responses, cell cycle progression, cell differentiation, and cell polarization during migration. However, few studies have addressed the role of lamins A/C in the control of the functions of immune cells. Recently, we have demonstrated that lamins A/C are induced in T cells upon antigen recognition. Lamins A/C enhance T cell responses by coupling the plasma membrane to the nucleus via the linker of nucleoskeleton and cytoskeleton (LINC) complex and the actin cytoskeleton. Here, we discuss the possible physiological relevance and functional context of lamin A/C in T cell activation and propose a model in which lamins A/C are key modulators of immune cell functions. PMID:25482193

  13. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope

    PubMed Central

    Tsai, Shang-Yi A.; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-fei; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-01-01

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER–mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  14. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    PubMed

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  15. SUN anchors pollen WIP–WIT complexes at the vegetative nuclear envelope and is necessary for pollen tube targeting and fertility

    PubMed Central

    Zhou, Xiao; Groves, Norman Reid; Meier, Iris

    2015-01-01

    LINC (linker of nucleoskeleton and cytoskeleton) complexes play an essential role in nuclear migration by connecting the nucleus to the cytoskeleton and/or motor proteins. Plant LINC complexes have recently been identified in Arabidopsis thaliana, with the inner nuclear membrane SUN and outer nuclear membrane WIP proteins comprising the first identified complex. A recent study identified a nuclear movement defect in Arabidopsis pollen vegetative nuclei linked to the outer nuclear envelope WIP and WIT proteins. However, the role that SUN proteins may play in pollen nuclear migration has yet to be addressed. To explore this question, a SUN2 lumenal domain that was targeted to the ER specifically in pollen was over-expressed. It is shown that the ER-targeted SUN2 lumenal domain was able to displace WIP and WIT proteins from the pollen vegetative nuclear envelope. Expression of this dominant-negative transgene led to impaired VN mobility, impaired pollen tube guidance, and defective pollen tube reception. The observed pollen defects are similar to phenotypes observed in a wip1-1 wip2-1 wip3-1 wit1-1 wit2-1 mutant. It is also shown that these defects were dependent on the KASH-binding function of the SUN2 lumenal domain. These data support a model where LINC complexes formed by SUN, WIP, and WIT at the VNE are responsible for VN migration and suggest an important function of SUN, WIP, and WIT in pollen tube guidance and reception. PMID:26409047

  16. Advanced Paramagnetic Resonance Spectroscopies of Iron-Sulfur Proteins: Electron Nuclear Double Resonance (ENDOR) and Electron Spin Echo Envelope Modulation (ESEEM)

    PubMed Central

    Cutsail, George E.; Telser, Joshua; Hoffman, Brian M.

    2015-01-01

    The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of Nature’s widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. PMID:25686535

  17. SEPT12/SPAG4/LAMINB1 Complexes Are Required for Maintaining the Integrity of the Nuclear Envelope in Postmeiotic Male Germ Cells

    PubMed Central

    Yeh, Chung-Hsin; Kuo, Pao-Lin; Wang, Ya-Yun; Wu, Ying-Yu; Chen, Mei-Feng; Lin, Ding-Yen; Lai, Tsung-Hsuan; Chiang, Han-Sun; Lin, Ying-Hung

    2015-01-01

    Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to

  18. Novel localization of formin mDia2: importin β-mediated delivery to and retention at the cytoplasmic side of the nuclear envelope

    PubMed Central

    Shao, Xiaowei; Kawauchi, Keiko; Shivashankar, G. V.; Bershadsky, Alexander D.

    2015-01-01

    ABSTRACT The formin family proteins are important regulators of actin polymerization that are involved in many cellular processes. However, little is known about their specific cellular localizations. Here, we show that Diaphanous-related formin-3 (mDia2) localizes to the cytoplasmic side of the nuclear envelope. This localization of mDia2 to the nuclear rim required the presence of a nuclear localization signal (NLS) sequence at the mDia2 N-terminal. Consistent with this result, super-resolution images demonstrated that at the nuclear rim, mDia2 co-localized with the nuclear pore complexes and a nuclear transport receptor, importin β. Furthermore, an interaction between mDia2 and importin β was detected by immunoprecipitation, and silencing of importin β was shown to attenuate accumulation of mDia2 to the nuclear rim. We have shown previously that Ca2+ entry leads to the assembly of perinuclear actin rim in an inverted formin 2 (INF2) dependent manner. mDia2, however, was not involved in this process since abolishing its localization at the nuclear rim by silencing of importin β had no effect on actin assembly at the nuclear rim triggered by Ca2+ stimulation. PMID:26519515

  19. The nuclear pore complex protein ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope

    SciTech Connect

    Kind, Barbara; Koehler, Katrin; Lorenz, Mike; Huebner, Angela

    2009-12-11

    The nuclear pore complex (NPC) consists of {approx}30 different proteins and provides the only sites for macromolecular transport between cytoplasm and nucleus. ALADIN was discovered as a new member of the NPC. Mutations in ALADIN are known to cause triple A syndrome, a rare autosomal recessive disorder characterized by adrenal insufficiency, alacrima, and achalasia. The function and exact location of the nucleoporin ALADIN within the NPC multiprotein complex is still unclear. Using a siRNA-based approach we downregulated the three known membrane integrated nucleoporins NDC1, GP210, and POM121 in stably expressing GFP-ALADIN HeLa cells. We identified NDC1 but not GP210 and POM121 as the main anchor of ALADIN within the NPC. Solely the depletion of NDC1 caused mislocalization of ALADIN. Vice versa, the depletion of ALADIN led also to disappearance of NDC1 at the NPC. However, the downregulation of two further membrane-integral nucleoporins GP210 and POM121 had no effect on ALADIN localization. Furthermore, we could show a direct association of NDC1 and ALADIN in NPCs by fluorescence resonance energy transfer (FRET) measurements. Based on our findings we conclude that ALADIN is anchored in the nuclear envelope via NDC1 and that this interaction gets lost, if ALADIN is mutated. The loss of integration of ALADIN in the NPC is a main pathogenetic aspect for the development of the triple A syndrome and suggests that the interaction between ALADIN and NDC1 may be involved in the pathogenesis of the disease.

  20. Nuclear envelope-localized EGF family protein amphiregulin activates breast cancer cell migration in an EGF-like domain independent manner

    SciTech Connect

    Tanaka, Hisae; Nishioka, Yu; Yokoyama, Yuhki; Higashiyama, Shigeki; Matsuura, Nariaki; Matsuura, Shuji; Hieda, Miki

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Nuclear envelope-localized proAREG activates cancer cell migration via its cytoplasmic domain. Black-Right-Pointing-Pointer The induction of cell migration does not require the EGF-like domain or EGR function. Black-Right-Pointing-Pointer Nuclear envelope-localized proAREG suppresses breast cancer cell growth without EGFR function. Black-Right-Pointing-Pointer This study revealed a novel function mediated by the intracellular domain of proAREG. -- Abstract: Amphiregulin (AREG), an EGF family protein, is synthesized as a type I transmembrane precursor (proAREG) and expressed on the cell surface with an extracellular EGF-like domain and an intracellular short cytoplasmic tail. The ectodomain shedding yields a soluble EGF receptor ligand (soluble AREG) which binds to EGF receptor (EGFR) and concomitantly induces migration of unshed proAREG from the plasma membrane to the nuclear envelope (NE). AREG is known to play a potential role in breast cancer and has been intensively investigated as an EGF receptor ligand, while the function of the NE-localized proAREG remains unknown. In this study we used a truncated mutant that mimics NE-localized proAREG without shedding stimuli to discriminate between the functions of NE-localized and plasma membrane-localized proAREG and demonstrate that NE-localized proAREG activates breast cancer cell migration, but suppresses cell growth. Moreover, the present study shows that induction of cell migration by NE-localized proAREG does not require the extracellular growth factor domain or EGF receptor function. Collectively these data demonstrate a novel function mediated by the intracellular domain of proAREG and suggest a significant role for NE-localized proAREG in driving human breast cancer progression.

  1. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM).

    PubMed

    Cutsail, George E; Telser, Joshua; Hoffman, Brian M

    2015-06-01

    The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. PMID:25686535

  2. A Fungal Sarcolemmal Membrane-Associated Protein (SLMAP) Homolog Plays a Fundamental Role in Development and Localizes to the Nuclear Envelope, Endoplasmic Reticulum, and Mitochondria

    PubMed Central

    Nordzieke, Steffen; Zobel, Thomas; Fränzel, Benjamin; Wolters, Dirk A.

    2014-01-01

    Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions. PMID:25527523

  3. In situ labeling of DNA reveals interindividual variation in nuclear DNA breakdown in hair and may be useful to predict success of forensic genotyping of hair.

    PubMed

    Szabo, Sandra; Jaeger, Karin; Fischer, Heinz; Tschachler, Erwin; Parson, Walther; Eckhart, Leopold

    2012-01-01

    Hair fibers are formed by keratinocytes of the hair follicle in a process that involves the breakdown of the nucleus including DNA. Accordingly, DNA can be isolated with high yield from the hair bulb which contains living keratinocytes, whereas it is difficult to prepare from the distal portions of hair fibers and from shed hair. Nevertheless, forensic investigations are successful in a fraction of shed hair samples found at crime scenes. Here, we report that interindividual differences in the completeness of DNA removal from hair corneocytes are major determinants of DNA content and success rates of forensic investigations of hair. Distal hair samples were permeabilized with ammonia and incubated with the DNA-specific dye Hoechst 33258 to label DNA in situ. Residual nuclear DNA was visualized under the fluorescence microscope. Hair from some donors did not contain any stainable nuclei, whereas hair of other donors contained a variable number of DNA-positive nuclear remnants. The number of DNA-containing nuclear remnants per millimeter of hair correlated with the amount of DNA that could be extracted and amplified by quantitative PCR. When individual hairs were investigated, only hairs in which DNA could be labeled in situ gave positive results in short tandem repeat typing. This study reveals that the completeness of DNA degradation during cornification of the hair is a polymorphic trait. Furthermore, our results suggest that in situ labeling of DNA in hair may be useful for predicting the probability of success of forensic analysis of nuclear DNA in shed hair. PMID:21475959

  4. A-type and B-type lamins initiate layer assembly at distinct areas of the nuclear envelope in living cells

    SciTech Connect

    Furukawa, Kazuhiro; Ishida, Kazuya; Tsunoyama, Taka-aki; Toda, Suguru; Osoda, Shinichi; Horigome, Tsuneyoshi; Fisher, Paul A.; Sugiyama, Shin

    2009-04-15

    To investigate nuclear lamina re-assembly in vivo, Drosophila A-type and B-type lamins were artificially expressed in Drosophila lamin Dm{sub 0}null mutant brain cells. Both exogenous lamin C (A-type) and Dm{sub 0} (B-type) formed sub-layers at the nuclear periphery, and efficiently reverted the abnormal clustering of the NPC. Lamin C initially appeared where NPCs were clustered, and subsequently extended along the nuclear periphery accompanied by the recovery of the regular distribution of NPCs. In contrast, lamin Dm{sub 0} did not show association with the clustered NPCs during lamina formation and NPC spacing recovered only after completion of a closed lamin Dm{sub 0} layer. Further, when lamin Dm{sub 0} and C were both expressed, they did not co-polymerize, initiating layer formation in separate regions. Thus, A and B-type lamins reveal differing properties during lamina assembly, with A-type having the primary role in organizing NPC distribution. This previously unknown complexity in the assembly of the nuclear lamina could be the basis for intricate nuclear envelope functions.

  5. Electrical Breakdown in Solids

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Harold; Zutavern, Fred; Kambour, Kenneth; Moore, Chris; Mar, Alan

    During electron breakdown of a solid subjected to a large electric field, impact ionization causes growth of an electron-hole plasma. This growth process is opposed by Auger recombination of the electron-hole pairs. In our work, such breakdown is investigated by obtaining steady-state solutions to the Boltzmann equation. In these calculations, the carriers are heated by the electric field and cooled by phonon emission. Our results imply that breakdown may lead to high carrier-density current filaments. Conductive filaments have been observed in optically-triggered, high-power photoconductive semiconductor switch (PCSS) devices being developed at Sandia Labs. The relationship between the steady-state computed solutions to the observed filaments will be discussed in the presentation. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.

    PubMed

    Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L

    2016-01-01

    FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest. PMID:27147038

  7. Lamin B1 Polymorphism Influences Morphology of the Nuclear Envelope, Cell Cycle Progression, and Risk of Neural Tube Defects in Mice

    PubMed Central

    De Castro, Sandra C. P.; Malhas, Ashraf; Leung, Kit-Yi; Gustavsson, Peter; Vaux, David J.; Copp, Andrew J.; Greene, Nicholas D. E.

    2012-01-01

    integrity of the nuclear envelope and ensuring normal cell cycle progression. PMID:23166514

  8. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  9. LULL1 Retargets TorsinA to the Nuclear Envelope Revealing an Activity That Is Impaired by the DYT1 Dystonia Mutation

    PubMed Central

    Vander Heyden, Abigail B.; Naismith, Teresa V.; Snapp, Erik L.; Hodzic, Didier

    2009-01-01

    TorsinA (TorA) is an AAA+ ATPase in the endoplasmic reticulum (ER) lumen that is mutated in early onset DYT1 dystonia. TorA is an essential protein in mice and is thought to function in the nuclear envelope (NE) despite localizing throughout the ER. Here, we report that transient interaction of TorA with the ER membrane protein LULL1 targets TorA to the NE. FRAP and Blue Native PAGE indicate that TorA is a stable, slowly diffusing oligomer in either the absence or presence of LULL1. Increasing LULL1 expression redistributes both wild-type and disease-mutant TorA to the NE, while decreasing LULL1 with shRNAs eliminates intrinsic enrichment of disease-mutant TorA in the NE. When concentrated in the NE, TorA displaces the nuclear membrane proteins Sun2, nesprin-2G, and nesprin-3 while leaving nuclear pores and Sun1 unchanged. Wild-type TorA also induces changes in NE membrane structure. Because SUN proteins interact with nesprins to connect nucleus and cytoskeleton, these effects suggest a new role for TorA in modulating complexes that traverse the NE. Importantly, once concentrated in the NE, disease-mutant TorA displaces Sun2 with reduced efficiency and does not change NE membrane structure. Together, our data suggest that LULL1 regulates the distribution and activity of TorA within the ER and NE lumen and reveal functional defects in the mutant protein responsible for DYT1 dystonia. PMID:19339278

  10. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.

    PubMed

    Magliozzo, R S; Peisach, J

    1993-08-24

    Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions. PMID:8395204

  11. Nuclear envelope precursor vesicle targeting to chromatin is stimulated by protein phosphatase 1 in Xenopus egg extracts

    SciTech Connect

    Ito, Hiromi; Koyama, Yuhei; Takano, Makoto; Ishii, Kohei; Maeno, Mitsugu; Furukawa, Kazuhiro; Horigome, Tsuneyoshi . E-mail: thori@chem.sc.niigata-u.ac.jp

    2007-05-15

    The mechanism underlying targeting of the nuclear membrane to chromatin at the end of mitosis was studied using an in vitro cell-free system comprising Xenopus egg membrane and cytosol fractions, and sperm chromatin. The mitotic phase membrane, which was separated from a mitotic phase extract of Xenopus eggs and could not bind to chromatin, became able to bind to chromatin on pretreatment with a synthetic phase cytosol fraction of Xenopus eggs. When the cytosol fraction was depleted of protein phosphatase 1 (PP1) with anti-Xenopus PP1{gamma}1 antibodies, this ability was lost. The addition of recombinant xPP1{gamma}1 to the PP1-depleted cytosol fraction restored the ability. These and other results suggested that dephosphorylation of mitotic phosphorylation sites on membranes by PP1 in the synthetic phase cytosol fraction promoted targeting of the membranes to chromatin. On the other hand, a fragment containing the chromatin-binding domain of lamin B receptor (LBR) but not emerin inhibited targeting of membrane vesicles. It was also shown that PP1 dephosphorylates a phosphate group(s) responsible for regulation of the binding of LBR to chromatin. A possible mechanism involving PP1 and LBR for the regulation of nuclear membrane targeting to chromatin was discussed.

  12. Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament-membrane interactions.

    PubMed Central

    Georgatos, S D; Weber, K; Geisler, N; Blobel, G

    1987-01-01

    Using solution binding assays, we found that a 45-kDa fragment of desmin, lacking 67 residues from the N terminus, could specifically associate with avian erythrocyte nuclear envelopes but not with plasma membranes from the same cells. It was also observed that a 50-kDa desmin peptide, missing 27 C-terminal residues, retained the ability to bind to both membrane preparations. Displacement experiments with an excess of purified vimentin suggested that the two desmin derivatives were interacting with a previously identified vimentin receptor at the nuclear envelope, the protein lamin B [Georgatos, S. & Blobel, G. (1987) J. Cell Biol. 105, 117-127]. Additional analysis by affinity chromatography confirmed this conclusion. Employing an overlay assay, we demonstrated that the 50-kDa fragment, but not the 45-kDa desmin peptide, was capable of interacting with the plasma membrane polypeptide ankyrin (a known vimentin attachment site), as was intact vimentin. Conversely, the nuclear envelope protein lamin B was recognized by both fragments but not by a chymotryptic peptide composed solely of the helical rod domain of desmin. These data imply that the lamin B-binding site on desmin resides within the 21 residues following its helical rod domain, whereas the ankyrin-associating region is localized within its N-terminal head domain, exactly as in the case of vimentin. Images PMID:3477809

  13. Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown.

    PubMed

    Limatola, Nunzia; Chun, Jong T; Kyozuka, Keiichiro; Santella, Luigia

    2015-11-01

    It has been known that the intracellular Ca(2+) level transiently rises at the specific stages of mitosis such as the moment of nuclear envelope breakdown and at the metaphase-anaphase transition. Comparable intracellular Ca(2+) increases may also take place during meiosis, as was intermittently reported in mouse, Xenopus, and starfish oocytes. In a majority of starfish species, the maturing oocytes display an intracellular Ca(2+) increase within few minutes after the addition of the maturation hormone, 1-methyladenine (1-MA). Although starfish oocytes at meiosis also manifest a Ca(2+) increase at the time of polar body extrusion, a similar Ca(2+) increase has never been observed during the envelope breakdown of the nucleus (germinal vesicle, GV). Here, we report, for the first time, the existence of an additional Ca(2+) response in the maturing oocytes of Asterina pectinifera at the time of GV breakdown. In contrast to the immediate early Ca(2+) response to 1-MA, which is independent of external Ca(2+) and takes a form of intracellular Ca(2+) wave traveling three times as fast as that in the fertilized eggs, this late stage Ca(2+) response comprised a train of numerous spikes representing Ca(2+) influx. These Ca(2+) spikes coinciding with GV breakdown were mostly eliminated when the GV was removed from the oocytes prior to the addition of 1-MA, suggesting that the Ca(2+) spikes are rather a consequence of the GV breakdown. In support of the idea that these Ca(2+) spikes play a physiological role, the oocytes matured in calcium-free seawater had a higher rate of cleavage failure 2h after the fertilization in natural seawater. Specific inhibitors of L-type Ca(2+) channels, verapamil and diltiazem, severely suppressed the amplitude of the individual Ca(2+) spikes, but not their frequencies. On the other hand, latrunculin-A (LAT-A), which promotes net depolymerization of the actin cytoskeleton, had a dual effect on this late Ca(2+) response. When added immediately

  14. Spectrin repeat containing nuclear envelope 1 and forkhead box protein E1 are promising markers for the detection of colorectal cancer in blood.

    PubMed

    Melotte, Veerle; Yi, Joo Mi; Lentjes, Marjolein H F M; Smits, Kim M; Van Neste, Leander; Niessen, Hanneke E C; Wouters, Kim A D; Louwagie, Joost; Schuebel, Kornel E; Herman, James G; Baylin, Stephen B; van Criekinge, Wim; Meijer, Gerrit A; Ahuja, Nita; van Engeland, Manon

    2015-02-01

    Identifying biomarkers in body fluids may improve the noninvasive detection of colorectal cancer. Previously, we identified N-Myc downstream-regulated gene 4 (NDRG4) and GATA binding protein 5 (GATA5) methylation as promising biomarkers for colorectal cancer in stool DNA. Here, we examined the utility of NDRG4, GATA5, and two additional markers [Forkhead box protein E1 (FOXE1) and spectrin repeat containing nuclear envelope 1 (SYNE1)] promoter methylation as biomarkers in plasma DNA. Quantitative methylation-specific PCR was performed on plasma DNA from 220 patients with colorectal cancer and 684 noncancer controls, divided in a training set and a test set. Receiver operating characteristic analysis was performed to measure the area under the curve of GATA5, NDRG4, SYNE1, and FOXE1 methylation. Functional assays were performed in SYNE1 and FOXE1 stably transfected cell lines. The sensitivity of NDRG4, GATA5, FOXE1, and SYNE1 methylation in all stages of colorectal cancer (154 cases, 444 controls) was 27% [95% confidence interval (CI), 20%-34%), 18% (95% CI, 12%-24%), 46% (95% CI, 38%-54%), and 47% (95% CI, 39%-55%), with a specificity of 95% (95% CI, 93%-97%), 99% (95% CI, 98%-100%), 93% (95% CI, 91%-95%), and 96% (95% CI, 94%-98%), respectively. Combining SYNE1 and FOXE1, increased the sensitivity to 56% (95% CI, 48%-64%), while the specificity decreased to 90% (95% CI, 87%-93%) in the training set and to 58% sensitivity (95% CI, 46%-70%) and 91% specificity (95% CI, 80%-100%) in a test set (66 cases, 240 controls). SYNE1 overexpression showed no major differences in cell proliferation, migration, and invasion compared with controls. Overexpression of FOXE1 significantly decreased the number of colonies in SW480 and HCT116 cell lines. Overall, our data suggest that SYNE1 and FOXE1 are promising markers for colorectal cancer detection. PMID:25538088

  15. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  16. Stereopsis from contrast envelopes.

    PubMed

    Langley, K; Fleet, D J; Hibbard, P B

    1999-07-01

    We report two experiments concerning the site of the principal nonlinearity in second-order stereopsis. The first exploits the asymmetry in perceiving transparency with second-order stimuli found by Langley et al. (1998) (Proceedings of the Royal Society of London B, 265, 1837-1845) i.e. the product of a positive-valued contrast envelope and a mean-zero carrier grating can be seen transparently only when the disparities are consistent with the envelope appearing in front of the carrier. We measured the energy at the envelope frequencies that must be added in order to negate this asymmetry. We report that this amplitude can be predicted from the envelope sidebands and not from the magnitude of compressive pre-cortical nonlinearities measured by other researchers. In the second experiment, contrast threshold elevations were measured for the discrimination of envelope disparities following adaptation to sinusoidal gratings. It is reported that perception of the envelope's depth was affected most when the adapting grating was similar (in orientation and frequency) to the carrier, rather than to the contrast envelope. These results suggest that the principal nonlinearity in second-order stereopsis is cortical, occurring after orientation- and frequency-selective linear filtering. PMID:10367053

  17. The solar envelope

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1971-01-01

    Processes which occur within the region between approximately 2 solar radii and 25 solar radii, which is called the solar envelope and the effect on the solar wind as seen at 1 AU are discussed. In the envelope the wind speed becomes supersonic and super-Alfvenic, the magnetic energy density is larger than the flow energy density, and the magnetic energy density is much larger than the thermal energy density. Large azimuthal gradients in the bulk speed are expected in the envelope, but the stream interactions near the outer edge of the envelope are probably relatively small. Cosmic ray observations suggest the presence of hydromagnetic waves in the envelope. The collisionless damping of such waves could heat protons out to approximately 25 solar radii and thereby cause an increase in V and T sub p consistent with the observed T sub p -V relation. A mechanism which couples protons and electrons would also heat and accelerate the wind. Alfven waves can accelerate the wind in the envelope without necessarily causing heating of protons; the Lorentz force might have a similar effect.

  18. Thermal Damage to Chloroplast Envelope Membranes 1

    PubMed Central

    McCain, Douglas C.; Croxdale, Judith; Markley, John L.

    1989-01-01

    Nuclear magnetic resonance was used to detect thermal injury to chloroplasts in vivo. A lesion occurs in the chloroplast envelope membrane at temperatures between 53°C and 57°C, depending on species, leaf condition, and heating rate. The injury is associated with a sudden loss of water from the chloroplast. PMID:16666815

  19. Analysis of Laser Breakdown Data

    NASA Astrophysics Data System (ADS)

    Becker, Roger

    2009-03-01

    Experiments on laser breakdown for ns pulses of 532 nm or 1064 nm light in water and dozens of simple hydrocarbon liquids are analyzed and compared to widely-used models and other laser breakdown experiments reported in the literature. Particular attention is given to the curve for the probability of breakdown as a function of the laser fluence at the beam focus. Criticism is made of the na"ive forms of both ``avalanche'' breakdown and multi-photon breakdown. It appears that the process is complex and is intimately tied to the chemical group of the material. Difficulties with developing an accurate model of laser breakdown in liquids are outlined.

  20. Human inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) is a nucleocytoplasmic shuttling protein specifically enriched at cortical actin filaments and at invaginations of the nuclear envelope.

    PubMed

    Nalaskowski, Marcus M; Fliegert, Ralf; Ernst, Olga; Brehm, Maria A; Fanick, Werner; Windhorst, Sabine; Lin, Hongying; Giehler, Susanne; Hein, Jamin; Lin, Yuan-Na; Mayr, Georg W

    2011-02-11

    Recent studies have shown that inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) possesses important roles in the development of immune cells. IP3KB can be targeted to multiple cellular compartments, among them nuclear localization and binding in close proximity to the plasma membrane. The B isoform is the only IP3K that is almost ubiquitously expressed in mammalian cells. Detailed mechanisms of its targeting regulation will be important in understanding the role of Ins(1,4,5)P(3) phosphorylation on subcellular calcium signaling and compartment-specific initiation of pathways leading to regulatory active higher phosphorylated inositol phosphates. Here, we identified an exportin 1-dependent nuclear export signal ((134)LQRELQNVQV) and characterized the amino acids responsible for nuclear localization of IP3KB ((129)RKLR). These two targeting domains regulate the amount of nuclear IP3KB in cells. We also demonstrated that the localization of IP3KB at the plasma membrane is due to its binding to cortical actin structures. Intriguingly, all three of these targeting activities reside in one small polypeptide segment (amino acids 104-165), which acts as a multitargeting domain (MTD). Finally, a hitherto unknown subnuclear localization of IP3KB could be demonstrated in rapidly growing H1299 cells. IP3KB is specifically enriched at nuclear invaginations extending perpendicular between the apical and basal surface of the nucleus of these flat cells. Such nuclear invaginations are known to be involved in Ins(1,4,5)P(3)-mediated Ca(2+) signaling of the nucleus. Our findings indicate that IP3KB not only regulates cytoplasmic Ca(2+) signals by phosphorylation of subplasmalemmal and cytoplasmic Ins(1,4,5)P(3) but may also be involved in modulating nuclear Ca(2+) signals generated from these nuclear envelope invaginations. PMID:21148483

  1. Dynamics of Sun5 Localization during Spermatogenesis in Wild Type and Dpy19l2 Knock-Out Mice Indicates That Sun5 Is Not Involved in Acrosome Attachment to the Nuclear Envelope

    PubMed Central

    Yassine, Sandra; Escoffier, Jessica; Nahed, Roland Abi; Pierre, Virginie; Karaouzene, Thomas; Ray, Pierre F.; Arnoult, Christophe

    2015-01-01

    The acrosome is an organelle that is central to sperm physiology and a defective acrosome biogenesis leads to globozoospermia, a severe male infertility. The identification of the actors involved in acrosome biogenesis is therefore particularly important to decipher the molecular pathogeny of globozoospermia. We recently showed that a defect in the DPY19L2 gene is present in more than 70% of globozoospermic men and demonstrated that Dpy19l2, located in the inner nuclear membrane, is the first protein involved in the attachment of the acrosome to the nuclear envelope (NE). SUN proteins serve to link the nuclear envelope to the cytoskeleton and are therefore good candidates to participate in acrosome-nucleus attachment, potentially by interacting with DPY19L2. In order to characterize new actors of acrosomal attachment, we focused on Sun5 (also called Spag4l), which is highly expressed in male germ cells, and investigated its localization during spermatogenesis. Using immunohistochemistry and Western blot experiments in mice, we showed that Sun5 transits through different cellular compartments during meiosis. In pachytene spermatocytes, it is located in a membranous compartment different to the reticulum. In round spermatids, it progresses to the Golgi and the NE before to be located to the tail/head junction in epididymal sperm. Interestingly, we demonstrate that Sun5 is not, as initially reported, facing the acrosome but is in fact excluded from this zone. Moreover, we show that in Dpy19l2 KO spermatids, upon the detachment of the acrosome, Sun5 relocalizes to the totality of the NE suggesting that the acrosome attachment excludes Sun5 from the NE facing the acrosome. Finally, Western-blot experiments demonstrate that Sun5 is glycosylated. Overall, our work, associated with other publications, strongly suggests that the attachment of the acrosome to the nucleus does not likely depend on the formation of SUN complexes. PMID:25775128

  2. Beauty in the Breakdown

    ERIC Educational Resources Information Center

    Brisco, Nicole

    2008-01-01

    Most human beings look at erosion as the destruction of a surface, but artists can see that erosion often creates indefinable beauty. Where do you see beauty in the breakdown? In this article, the author presents an innovative lesson that would allow students to observe both human and physical nature. In this activity students will create a work…

  3. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  4. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    SciTech Connect

    Richard Metcalf; Aaron Bevill; William Charlton; Robert Bean

    2008-07-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of “non-traditional” operating data, and exploration of new methods of identifying subtle events in transient processes.

  5. Drug design from the cryptic inhibitor envelope

    PubMed Central

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  6. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  7. Safeguards Envelope Progress FY10

    SciTech Connect

    Richard Metcalf

    2010-10-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  8. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  9. COMMON ENVELOPE: ENTHALPY CONSIDERATION

    SciTech Connect

    Ivanova, N.; Chaichenets, S.

    2011-04-20

    In this Letter, we discuss a modification to the criterion for the common envelope (CE) event to result in envelope dispersion. We emphasize that the current energy criterion for the CE phase is not sufficient for an instability of the CE, nor for an ejection. However, in some cases, stellar envelopes undergo stationary mass outflows, which are likely to occur during the slow spiral-in stage of the CE event. We propose the condition for such outflows, in a manner similar to the currently standard {alpha}{sub CE}{lambda}-prescription but with an addition of P/{rho} term in the energy balance equation, accounting therefore for the enthalpy of the envelope rather than merely the gas internal energy. This produces a significant correction, which might help to dispense with an unphysically high value of energy efficiency parameter during the CE phase, currently required in the binary population synthesis studies to make the production of low-mass X-ray binaries with a black hole companion to match the observations.

  10. Space Charge Modulated Electrical Breakdown.

    PubMed

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20(th) century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  11. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  12. STS-8 postal Stamp envelope

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS-8 postal Stamp envelope with Challenger insignia, USA eagle stamp, 25th NASA anniversary stamp. The envelope is stamped with various postmarks, one saying Kennedy Space Center, Fl., another saying 'Returned to earth, Edwards AFB, CA'.

  13. Effects of Deletion and Overexpression of the Autographa californica Nuclear Polyhedrosis Virus FP25K Gene on Synthesis of Two Occlusion-Derived Virus Envelope Proteins and Their Transport into Virus-Induced Intranuclear Membranes

    PubMed Central

    Rosas-Acosta, Germán; Braunagel, Sharon C.; Summers, Max D.

    2001-01-01

    Partial deletions within Autographa californica open reading frame 61 (FP25K) alter the expression and accumulation profile of several viral proteins and the transport of occlusion-derived virus (ODV)-E66 to intranuclear membranes during infection (S. C. Braunagel et al., J. Virol. 73:8559–8570, 1999). Here we show the effects of a full deletion and overexpression of FP25K on the transport and expression of two ODV envelope proteins, ODV-E66 (E66) and ODV-E25 (E25). Deletion and overexpression of FP25K substantially altered the levels of expression of E66 during infection. Compared with cells infected with wild-type (wt) virus, the levels of E66 were reduced fivefold in cells infected with a viral mutant lacking FP25K (ΔFP25K) and were slightly increased in cells infected with a viral mutant overexpressing FP25K (FP25Kpolh). In contrast, no significant changes were observed in the levels of E25 among wt-, ΔFP25K-, and FP25Kpolh-infected cells. The changes observed in the levels of E66 among the different viral mutants were not accompanied by changes in either the time of synthesis, membrane association, protein turnover, or steady-state transcript abundance. Deletion of FP25K also substantially altered the transport and localization of E66 during infection. In cells infected with the ΔFP25K mutant virus, E66 accumulated in localized regions at the nuclear periphery and the outer nuclear membrane and did not traffic to intranuclear membranes. In contrast, in cells infected with the FP25Kpolh mutant virus E66 trafficked to intranuclear membranes. For comparison, E25 was normally transported to intranuclear membranes in both ΔFP25K- and FP25Kpolh-infected cells. Altogether these studies suggest that FP25K affects the synthesis of E66 at a posttranscriptional level, probably by altering the translation of E66; additionally, the block in transport of E66 at the nuclear envelope in ΔFP25K-infected cells suggests that the pathway of E66 trafficking to the inner

  14. Work breakdown structure guide

    SciTech Connect

    Not Available

    1987-02-06

    Utilization of the work breakdown structure (WBS) technique is an effective aid in managing Department of Energy (DOE) programs and projects. The technique provides a framework for project management by focusing on the products that are being developed or constructed to solve technical problems. It assists both DOE and contractors in fulfilling their management responsibilities. This document provides guidance for use of the WBS technique for product oriented work identification and definition. It is one in a series of policy and guidance documents supporting DOE's project manaagement system.

  15. On Preliminary Breakdown

    NASA Astrophysics Data System (ADS)

    Beasley, W. H.; Petersen, D.

    2013-12-01

    The preliminary breakdown phase of a negative cloud-to-ground lightning flash was observed in detail. Observations were made with a Photron SA1.1 high-speed video camera operating at 9,000 frames per second, fast optical sensors, a flat-plate electric field antenna covering the SLF to MF band, and VHF and UHF radio receivers with bandwidths of 20 MHz. Bright stepwise extensions of a negative leader were observed at an altitude of 8 km during the first few milliseconds of the flash, and were coincident with bipolar electric field pulses called 'characteristic pulses'. The 2-D step lengths of the preliminary processes were in excess of 100 meters, with some 2-D step lengths in excess of 200 meters. Smaller and shorter unipolar electric field pulses were superposed onto the bipolar electric field pulses, and were coincident with VHF and UHF radio pulses. After a few milliseconds, the emerging negative stepped leader system showed a marked decrease in luminosity, step length, and propagation velocity. Details of these events will be discussed, including the possibility that the preliminary breakdown phase consists not of a single developing lightning leader system, but of multiple smaller lightning leader systems that eventually join together into a single system.

  16. Safeguards Envelope Progress FY09

    SciTech Connect

    Richard Metcalf; Robert Bean

    2009-09-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters which nuclear facilities may operate within to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). As a result of the U.S. having no operating nuclear chemical reprocessing plants, there has been a strong interest in obtaining process monitoring data from the ICPP. The ICPP was shut down in 1996 and a recent effort has been made to retrieve the PM data from storage in a data mining effort. In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z- testing7.

  17. Model scattering envelopes of young stellar objects. II - Infalling envelopes

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Hartmann, Lee

    1993-01-01

    We present scattered light images for models of young stellar objects surrounded by dusty envelopes. The envelopes are assumed to have finite angular momentum and are falling in steady flow onto a disk. The model envelopes include holes, such as might be created by energetic bipolar flows. We calculate images using the Monte Carlo method to follow the light scattered in the dusty envelope and circumstellar disk, assuming that the photons originate from the central source. Adopting typical interstellar medium dust opacities and expected mass infall rates for protostars of about 10 exp -6 solar mass/yr, we find that detectable amounts of optical radiation can escape from envelopes falling into a disk as small as about 10-100 AU, depending upon the viewing angle and the size of the bipolar flow cavity. We suggest that the extended optical and near-IR light observed around several young stars is scattered by dusty infalling envelopes rather than disks.

  18. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport

    SciTech Connect

    Kylberg, Karin; Bjoerk, Petra; Fomproix, Nathalie; Ivarsson, Birgitta; Wieslander, Lars; Daneholt, Bertil

    2010-04-01

    We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.

  19. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  20. Grammatical Errors and Communication Breakdown.

    ERIC Educational Resources Information Center

    Tomiyama, Machiko

    This study investigated the relationship between grammatical errors and communication breakdown by examining native speakers' ability to correct grammatical errors. The assumption was that communication breakdown exists to a certain degree if a native speaker cannot correct the error or if the correction distorts the information intended to be…

  1. Breakdown of organic insulators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1983-01-01

    Solar cells and their associated electrical interconnects and leads were encapsulated in transparent elastomeric materials. Their purpose in a photovoltaic module, one of the most important for these elastomeric encapsulation materials, is to function as electrical insulation. This includes internal insulation between adjacent solar cells, between other encapsulated electrical parts, and between the total internal electrical circuitry and external metal frames, grounded areas, and module surfaces. Catastrophic electrical breakdown of the encapsulant insulation materials or electrical current through these materials or module edges to external locations can lead to module failure and can create hazards to humans. Electrical insulation stability, advanced elastomeric encapsulation materials are developed which are intended to be intrinsically free of in-situ ionic impurities, have ultralow water absorption, be weather-stable (UV, oxygen), and have high mechanical flexibility. Efforts to develop a method of assessing the life potential of organic insulation materials in photovoltaic modules are described.

  2. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates

    PubMed Central

    Ning, Jue; Otto, Thomas D.; Pfander, Claudia; Schwach, Frank; Brochet, Mathieu; Bushell, Ellen; Goulding, David; Sanders, Mandy; Lefebvre, Paul A.; Pei, Jimin; Grishin, Nick V.; Vanderlaan, Gary; Billker, Oliver; Snell, William J.

    2013-01-01

    Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns. Out of several conserved genes in a minus gamete cluster, we focused on Cre06.g280600, an ortholog of the fertilization-related Arabidopsis GEX1. Gene disruption, cell biological, and immunolocalization studies show that CrGEX1 functions in nuclear fusion in Chlamydomonas. Moreover, CrGEX1 and its Plasmodium ortholog, PBANKA_113980, are essential for production of viable meiotic progeny in both organisms and thus for mosquito transmission of malaria. Remarkably, we discovered that the genes are members of a large, previously unrecognized family whose first-characterized member, KAR5, is essential for nuclear fusion during yeast sexual reproduction. Our comparative transcriptomics approach provides a new resource for studying sexual development and demonstrates that exploiting the data can lead to the discovery of novel biology that is conserved across distant taxa. PMID:23699412

  3. RF breakdown experiments at SLAC

    SciTech Connect

    Laurent, L.; Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N.C.

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning. {copyright} {ital 1999 American Institute of Physics.}

  4. Breakdown in the pretext tokamak

    SciTech Connect

    Benesch, J.F.

    1981-06-01

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges.

  5. High gradient RF breakdown studies

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa Leanne

    Higher accelerating gradients are required by future demands for TeV electron linear colliders. With higher energy comes the challenge of handling stronger electromagnetic fields in the accelerator structures and in the microwave sources that supply the power. A limit on the maximum field gradient is imposed by rf electrical breakdown. Investigating methods to achieve higher gradients and to better understand the mechanisms involved in the rf breakdown process has been the focal point of this study. A systematic series of rf breakdown experiments have been conducted at Stanford Linear Accelerator Center utilizing a transmission cavity operating in the TM020 mode. A procedure was developed to examine the high gradient section of the cavity in an electron microscope. The results have revealed that breakdown asymmetry exists between opposing high gradient surfaces. During breakdown, a plasma formation is detected localized near the surface with no visible evidence of an arc traversing the gap. These findings support the theory that high frequency rf breakdown is a single surface phenomenon. Other results from this study have shown that breakdown can occur at relatively low voltages when surface irregularities exist and along grain boundaries. A series of steps have been developed through this study that have significantly reduced the number of breakdowns that occur along grain boundaries. Testing under various vacuum conditions (10-11--10 -5 Torr) have revealed that while the breakdown threshold remained the same, the field emitted current density increased by almost two orders of magnitude. This suggests that the total field emitted current density is not the critical parameter in the initiation of high frequency vacuum breakdown. In the course of this study, microparticles were carefully tracked before and after rf processing. The outcome of this research suggests that expensive cleanroom facilities may not offer any advantage over practicing good cleaning and

  6. Nonlinear Theory and Breakdown

    NASA Technical Reports Server (NTRS)

    Smith, Frank

    2007-01-01

    The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.

  7. Blueprint for Breakdown: Three Mile Island and the Media before the Accident.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    1981-01-01

    Discusses media coverage of the Three Mile Island nuclear power plant before and during the disaster. Concludes that there was a communication breakdown prior to the accident. Outlines the causes and offers suggestions for avoiding similar breakdowns in the future. (JMF)

  8. Anisotropic charged core envelope star

    NASA Astrophysics Data System (ADS)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  9. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, Omari; Griffiths, Dianne

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  10. Plasma breakdown and combustion ignition

    NASA Astrophysics Data System (ADS)

    McNeill, Donald H.; Tran, Phuoc

    2001-10-01

    Ignition in chemically reactive media and electrical breakdown are among the most widely used transient processes. The two phenomena operate together during electrical (and laser) spark ignition of combustible gases. Analogs between them show up in Semenov's early (1920's) work on chemical chain reactions and on thermal breakdown of dielectrics. Both breakdown and ignition are under active study today. The energy source for breakdown is an applied electric field, and that for ignition, an applied flux of heat or radicals. Electrons and intermediate reactants are the corresponding driver particles, with a velocity difference that implies a vast difference in the growth rates for the two processes. Combustion takes place in a fuel-oxidant mixture, and an ignited reaction can proceed until the fuel or oxidant is depleted, while a (non-afterglow, non-fusion) plasma is sustained by an external power supply. The energy balance, propagation behavior, and time evolution of some specific forms of plasma breakdown and chemical ignition are further compared in order to illustrate their physical nature.

  11. Breakdown properties of epoxy nanodielectric

    SciTech Connect

    Tuncer, Enis; Cantoni, Claudia; More, Karren Leslie; James, David Randy; Polyzos, Georgios; Sauers, Isidor; Ellis, Alvin R

    2010-01-01

    Recent developments in polymeric dielectric nanocomposites have shown that these novel materials can improve design of high voltage (hv) components and systems. Some of the improvements can be listed as reduction in size (compact hv systems), better reliability, high energy density, voltage endurance, and multifunctionality. Nanodielectric systems demonstrated specific improvements that have been published in the literature by different groups working with electrical insulation materials. In this paper we focus on the influence of in-situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles on the dielectric breakdown characteristics of an epoxy-based nanocomposite system. The in-situ synthesis of the particles creates small nanoparticles on the order of 10 nm with narrow size distribution and uniform particle dispersion in the matrix. The breakdown strength of the nanocomposite was studied as a function of TiO{sub 2} concentration at cryogenic temperatures. It was observed that between 2 and 6wt% yields high breakdown values for the nanodielectric.

  12. Vortex breakdown incipience: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  13. Electrical breakdown in tissue electroporation.

    PubMed

    Guenther, Enric; Klein, Nina; Mikus, Paul; Stehling, Michael K; Rubinsky, Boris

    2015-11-27

    Electroporation, the permeabilization of the cell membrane by brief, high electric fields, has become an important technology in medicine for diverse application ranging from gene transfection to tissue ablation. There is ample anecdotal evidence that the clinical application of electroporation is often associated with loud sounds and extremely high currents that exceed the devices design limit after which the devices cease to function. The goal of this paper is to elucidate and quantify the biophysical and biochemical basis for this phenomenon. Using an experimental design that includes clinical data, a tissue phantom, sound, optical, ultrasound and MRI measurements, we show that the phenomenon is caused by electrical breakdown across ionized electrolysis produced gases near the electrodes. The breakdown occurs primarily near the cathode. Electrical breakdown during electroporation is a biophysical phenomenon of substantial importance to the outcome of clinical applications. It was ignored, until now. PMID:26482855

  14. Threshold criteria for undervoltage breakdown

    NASA Astrophysics Data System (ADS)

    Cooley, James E.; Choueiri, Edgar Y.

    2008-05-01

    The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain discharge gap are experimentally and theoretically explored. The minimum number of injected electrons required to achieve breakdown in a parallel-plate gap is measured in argon at pd values of 3-10 Torr m using ultraviolet laser pulses to photoelectrically release electrons from the cathode. This value was found to scale inversely with voltage at constant pd and with pressure within the parameter range explored. A dimensionless theoretical description of the phenomenon is formulated and numerically solved. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low gain. It is also found that fewer electrons are required as the gain due to electron-impact ionization (α process) is increased, or as the sensitivity of the α process to electric field is enhanced by increasing the gas pressure. A predicted insensitivity to ion mobility implies that the breakdown is determined during the first electron avalanche when space-charge distortion is greatest.

  15. Heat Recovery in Building Envelopes

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

  16. Envelope Inflation or Stellar Wind?

    NASA Astrophysics Data System (ADS)

    Ro, S.; Matzner, C. D.

    We an optically-thick, transonic, steady wind model for a H-free Wolf-Rayet star. A bifurcation is found across a critical mass loss rate Mb. Slower winds M < Mb extend by several hydrostatic stellar radii, reproduce features of envelope in ation from Petrovic et al. (2006) and Gräfener et al. (2012), and are energetically unbound. This work is of particular interest for extended envelopes and winds, radiative hydrodynamic instabilities (eg. wind stagnation, clumping, etc.), and NLTE atmospheric models.

  17. Carbon chemistry of circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Bieging, John H.

    1990-01-01

    The chemical composition of envelopes surrounding cool evolved stars, as determined from microwave spectroscopic observations, is reviewed. Emphasis is placed on recent observations with the new large mm-wavelength telescopes and interferometer arrays, and on new theoretical work, especially concerning ion-molecule chemistry of carbon-bearing in these envelopes. Thermal (as opposed to maser) emission lines are discussed. Much progress has been made in the past few years in the theoretical understanding of these objects. It is already clear, however, that observations with the new generation of mm-telescopes will require substantial improvements in the theoretical models to achieve a thorough understanding of the data now becoming available.

  18. Protein breakdown in cancer cachexia.

    PubMed

    Sandri, Marco

    2016-06-01

    Skeletal muscle is a highly adaptive tissue, capable of altering muscle fiber size, functional capacity and metabolism in response to physiological stimuli. However, pathological conditions such as cancer growth compromise the mechanisms that regulate muscle homeostasis, resulting in loss of muscle mass, functional impairment and compromised metabolism. This tumor-induced condition is characterized by enhanced muscle protein breakdown and amino acids release that sustain liver gluconeogenesis and tissue protein synthesis. Proteolysis is controlled by the two most important cellular degradation systems, the ubiquitin proteasome and autophagy lysosome. These systems are carefully regulated by different signalling pathways that determine protein and organelle turnover. In this review we will describe the involvement of the ubiquitin proteasome and autophagy lysosome systems in cancer cachexia and the principal signalling pathways that regulate tumor-induced protein breakdown in muscle. PMID:26564688

  19. Proposed RF Breakdown Studies at the AWA

    SciTech Connect

    Antipov, S.; Conde, M.; Gai, W.; Power, J.G.; Spentzouris, L.; Yusof, Z.; Dolgashev, V.; /SLAC

    2007-03-21

    A study of breakdown mechanism has been initiated at the Argonne Wakefield Accelerator (AWA). Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. We plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV) to determine the role of explosive electron emission in the breakdown process. Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector [1] that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after the breakdown can shed some light on a number of observations such as the crater formation process.

  20. Breakdown

    ERIC Educational Resources Information Center

    Moskowitz, Eva

    2006-01-01

    The multiplicity of ills facing the nation's public schools can depress even the most optimistic. In this article, the author presents her views about the school system and the negative effects that labor agreements have had on it. Her views on how to solve some seemingly intractable education problems have been informed by two experiences: her…

  1. Safeguards Envelope Progress FY08

    SciTech Connect

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  2. Internal structure of a vortex breakdown

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1986-01-01

    An axisymmetric vortex breakdown was well simulated by the vortex filament method. The agreement with the experiment was qualitatively good. In particular, the structure in the interior of the vortex breakdown was ensured to a great degree by the present simulation. The second breakdown, or spiral type, which occurs downstream of the first axisymmetric breakdown, was simulated more similarly to the experiment than before. It shows a kink of the vortex filaments and strong three-dimensionality. Furthermore, a relatively low velocity region was observed near the second breakdown. It was also found that it takes some time for this physical phenomenon to attain its final stage. The comparison with the experiment is getting better as time goes on. In this paper, emphasis is placed on the comparison of the simulated results with the experiment. The present results help to make clear the mechanism of a vortex breakdown.

  3. On a criterion for vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, R. E.; Gatski, T. B.; Grosch, C. H.

    1987-01-01

    A criterion for the onset of vortex breakdown is proposed. Based upon previous experimental, computational, and theoretical studies, an appropriately defined local Rossby number is used to delineate the region where breakdown occurs. In addition, new numerical results are presented which further validate this criterion. A number of previous theoretical studies concentrating on inviscid standing-wave analyses for trailing wing-tip vortices are reviewed and reinterpreted in terms of the Rossby number criterion. Consistent with previous studies, the physical basis for the onset of breakdown is identified as the ability of the flow to sustain such waves. Previous computational results are reviewed and re-evaluated in terms of the proposed breakdown criterion. As a result, the cause of breakdown occurring near the inflow computational boundary, common to several numerical studies, is identified. Finally, previous experimental studies of vortex breakdown for both leading edge and trailing wing-tip vortices are reviewed and quantified in terms of the Rossby number criterion.

  4. Time dependent breakdown in silicon dioxide films

    NASA Technical Reports Server (NTRS)

    Svensson, C.; Shumka, A.

    1975-01-01

    An investigation was conducted regarding the possible existence of a time-dependent breakdown mechanism in thermal oxides of the type used as gate oxide in MOS circuits. Questions of device fabrication are discussed along with details concerning breakdown measurements and the determination of C-V characteristics. A relatively large prebreakdown current observed in one of the cases is related to the time-dependent breakdown.

  5. The structure of common-envelope remnants

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.

    2015-05-01

    We investigate the structure and evolution of the remnants of common-envelope evolution in binary star systems. In a common-envelope phase, two stars become engulfed in a gaseous envelope and, under the influence of drag forces, spiral to smaller separations. They may merge to form a single star or the envelope may be ejected to leave the stars in a shorter period orbit. This process explains the short orbital periods of many observed binary systems, such as cataclysmic variables and low-mass X-ray binary systems. Despite the importance of these systems, and of common-envelope evolution to their formation, it remains poorly understood. Specifically, we are unable to confidently predict the outcome of a common-envelope phase from the properties at its onset. After presenting a review of work on stellar evolution, binary systems, common-envelope evolution and the computer programs used, we describe the results of three computational projects on common-envelope evolution. Our work specifically relates to the methods and prescriptions which are used for predicting the outcome. We use the Cambridge stellar-evolution code STARS to produce detailed models of the structure and evolution of remnants of common-envelope evolution. We compare different assumptions about the uncertain end-of-common envelope structure and envelope mass of remnants which successfully eject their common envelopes. In the first project, we use detailed remnant models to investigate whether planetary nebulae are predicted after common-envelope phases initiated by low-mass red giants. We focus on the requirement that a remnant evolves rapidly enough to photoionize the nebula and compare the predictions for different ideas about the structure at the end of a common-envelope phase. We find that planetary nebulae are possible for some prescriptions for the end-of-common envelope structure. In our second contribution, we compute a large set of single-star models and fit new formulae to the core radii of

  6. Laser-induced electric breakdown in solids

    NASA Technical Reports Server (NTRS)

    Bloembergen, N.

    1974-01-01

    A review is given of recent experimental results on laser-induced electric breakdown in transparent optical solid materials. A fundamental breakdown threshold exists characteristic for each material. The threshold is determined by the same physical process as dc breakdown, namely, avalanche ionization. The dependence of the threshold on laser pulse duration and frequency is consistent with this process. The implication of this breakdown mechanism for laser bulk and surface damage to optical components is discussed. It also determines physical properties of self-focused filaments.

  7. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  8. Work Breakdown Structure (WBS) Handbook

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements. The WBS and WBS dictionary are effective management processes for planning, organizing, and administering NASA programs and projects. The guidance contained in this document is applicable to both in-house, NASA-led effort and contracted effort. It assists management teams from both entities in fulfilling necessary responsibilities for successful accomplishment of project cost, schedule, and technical goals. Benefits resulting from the use of an effective WBS include, but are not limited to: providing a basis for assigned project responsibilities, providing a basis for project schedule development, simplifying a project by dividing the total work scope into manageable units, and providing a common reference for all project communication.

  9. Misdelivery at the Nuclear Pore Complex—Stopping a Virus Dead in Its Tracks

    PubMed Central

    Flatt, Justin W.; Greber, Urs F.

    2015-01-01

    Many viruses deliver their genomes into the host cell’s nucleus before they replicate. While onco-retroviruses and papillomaviruses tether their genomes to host chromatin upon mitotic breakdown of the nuclear envelope, lentiviruses, such as human immunodeficiency virus, adenoviruses, herpesviruses, parvoviruses, influenza viruses, hepatitis B virus, polyomaviruses, and baculoviruses deliver their genomes into the nucleus of post-mitotic cells. This poses the significant challenge of slipping a DNA or RNA genome past the nuclear pore complex (NPC) embedded in the nuclear envelope. Quantitative fluorescence imaging is shedding new light on this process, with recent data implicating misdelivery of viral genomes at nuclear pores as a bottleneck to virus replication. Here, we infer NPC functions for nuclear import of viral genomes from cell biology experiments and explore potential causes of misdelivery, including improper virus docking at NPCs, incomplete translocation, virus-induced stress and innate immunity reactions. We conclude by discussing consequences of viral genome misdelivery for viruses and host cells, and lay out future questions to enhance our understanding of this phenomenon. Further studies into viral genome misdelivery may reveal unexpected aspects about NPC structure and function, as well as aid in developing strategies for controlling viral infections to improve human health. PMID:26226003

  10. Isolating The Building Thermal Envelope

    NASA Astrophysics Data System (ADS)

    Harrje, D. T.; Dutt, G. S.; Gadsby, K. J.

    1981-01-01

    The evaluation of the thermal integrity of building envelopes by infrared scanning tech-niques is often hampered in mild weather because temperature differentials across the envelope are small. Combining the infrared scanning with positive or negative building pressures, induced by a "blower door" or the building ventilation system, considerably extends the periods during which meaningful diagnostics can be conducted. Although missing or poorly installed insulation may lead to a substantial energy penalty, it is the search for air leakage sites that often has the largest potential for energy savings. Infrared inspection of the attic floor with air forced from the occupied space through ceiling by-passes, and inspecting the interior of the building when outside air is being sucked through the envelope reveals unexpected leakage sites. Portability of the diagnostic equipment is essential in these surveys which may include access into some tight spaces. A catalog of bypass heat losses that have been detected in residential housing using the combined infrared pressure differential technique is included to point out the wide variety of leakage sites which may compromise the benefits of thermal insulation and allow excessive air infiltration. Detection and suppression of such leaks should be key items in any building energy audit program. Where a calibrated blower door is used to pressurize or evacuate the house, the leakage rate can be quantified and an excessively tight house recognized. Houses that are too tight may be improved with a minimal energy penalty by forced ventilation,preferably with a heat recuperator and/or by providing combustion air directly to the furnace.

  11. Flexible Envelope Request Notation (FERN)

    NASA Technical Reports Server (NTRS)

    Zoch, David R.; Lavallee, David; Weinstein, Stuart

    1991-01-01

    The following topics are presented in view graph form and include the following: scheduling application; the motivation for the Flexible Envelope Request Notation (FERN); characteristics of FERN; types of information needed in requests; where information is stored in requests; FERN structures; generic requests; resource availability for pooled resources; expressive notation; temporal constraints; time formats; changes to FERN; sample FERN requests; the temporal relationship between two steps; maximum activity length to limit step delays; alternative requests; the temporal relationship between two activities; and idle resource usage between steps.

  12. Fundamental studies on passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.

    1993-06-01

    Using photoelectrochemical impedance and admittance spectroscopies, a fundamental and quantitative understanding of the mechanisms for the growth and breakdown of passive films on metal and alloy surfaces in contact with aqueous environments is being developed. A point defect model has been extended to explain the breakdown of passive films, leading to pitting and crack growth and thus development of damage due to localized corrosion.

  13. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-01

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis. PMID:26787907

  14. Circumplanetary disc or circumplanetary envelope?

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  15. Structural basis for membrane anchoring of HIV-1 envelope spike.

    PubMed

    Dev, Jyoti; Park, Donghyun; Fu, Qingshan; Chen, Jia; Ha, Heather Jiwon; Ghantous, Fadi; Herrmann, Tobias; Chang, Weiting; Liu, Zhijun; Frey, Gary; Seaman, Michael S; Chen, Bing; Chou, James J

    2016-07-01

    HIV-1 envelope spike (Env) is a type I membrane protein that mediates viral entry. We used nuclear magnetic resonance to determine an atomic structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in bicelles that mimic a lipid bilayer. The TM forms a well-ordered trimer that protects a conserved membrane-embedded arginine. An amino-terminal coiled-coil and a carboxyl-terminal hydrophilic core stabilize the trimer. Individual mutations of conserved residues did not disrupt the TM trimer and minimally affected membrane fusion and infectivity. Major changes in the hydrophilic core, however, altered the antibody sensitivity of Env. These results show how a TM domain anchors, stabilizes, and modulates a viral envelope spike and suggest that its influence on Env conformation is an important consideration for HIV-1 immunogen design. PMID:27338706

  16. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  17. Breakdown characteristics of xenon HID Lamps

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  18. Laser-Induced Breakdown Spectroscopy (LIBS): specific applications

    NASA Astrophysics Data System (ADS)

    Trtica, M. S.; Savovic, J.; Stoiljkovic, M.; Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Zivkovic, S.

    2015-12-01

    A short overview of Laser Induced Breakdown Spectroscopy (LIBS) with emphasis on the new trends is presented. Nowadays, due to unique features of this technique, LIBS has found applications in a great variety of fields. Achievements in the application of LIBS in nuclear area, for hazardous materials detection and in geology were considered. Also, some results recently obtained at VINCA Institute, with LIBS system based on transversely excited atmospheric (TEA) CO2 laser, are presented. Future investigations of LIBS will be oriented toward further improvement of the analytical performance of this technique, as well as on finding new application fields.

  19. Modern tools to study nuclear pore complexes and nucleocytoplasmic transport in Caenorhabditis elegans.

    PubMed

    Askjaer, Peter; Galy, Vincent; Meister, Peter

    2014-01-01

    The nematode Caenorhabditis elegans is characterized by many features that make it highly attractive to study nuclear pore complexes (NPCs) and nucleocytoplasmic transport. NPC composition and structure are highly conserved in nematodes and being amenable to a variety of genetic manipulations, key aspects of nuclear envelope dynamics can be observed in great details during breakdown, reassembly, and interphase. In this chapter, we provide an overview of some of the most relevant modern techniques that allow researchers unfamiliar with C. elegans to embark on studies of nucleoporins in an intact organism through its development from zygote to aging adult. We focus on methods relevant to generate loss-of-function phenotypes and their analysis by advanced microscopy. Extensive references to available reagents, such as mutants, transgenic strains, and antibodies are equally useful to scientists with or without prior C. elegans or nucleoporin experience. PMID:24857735

  20. Envelope Membranes from Spinach Chloroplasts Are a Site of Metabolism of Fatty Acid Hydroperoxides.

    PubMed Central

    Blee, E.; Joyard, J.

    1996-01-01

    Enzymes in envelope membranes from spinach (Spinacia oleracea L.) chloroplasts were found to catalyze the rapid breakdown of fatty acid hydroperoxides. In contrast, no such activities were detected in the stroma or in thylakoids. In preparations of envelope membranes, 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, or 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid were transformed at almost the same rates (1-2 [mu]mol min-1 mg-1 protein). The products formed were separated by reversed-phase high-pressure liquid chromatography and further characterized by gas chromatography-mass spectrometry. Fatty acid hydroperoxides were cleaved (a) into aldehydes and oxoacid fragments, corresponding to the functioning of a hydroperoxide lyase, (b) into ketols that were spontaneously formed from allene oxide synthesized by a hydroperoxide dehydratase, (c) into hydroxy compounds synthesized enzymatically by a system that has not yet been characterized, and (d) into oxoenes resulting from the hydroperoxidase activity of a lipoxygenase. Chloroplast envelope membranes therefore contain a whole set of enzymes that catalyze the synthesis of a variety of fatty acid derivatives, some of which may act as regulatory molecules. The results presented demonstrate a new role for the plastid envelope within the plant cell. PMID:12226196

  1. Gas breakdown and secondary electron yields

    NASA Astrophysics Data System (ADS)

    Marić, Dragana; Savić, Marija; Sivoš, Jelena; Škoro, Nikola; Radmilović-Radjenović, Marija; Malović, Gordana; Petrović, Zoran Lj.

    2014-06-01

    In this paper we present a systematic study of the gas breakdown potentials. An analysis of the key elementary processes in low-current low-pressure discharges is given, with an aim to illustrate how such discharges are used to determine swarm parameters and how such data may be applied to modeling discharges. Breakdown data obtained in simple parallel-plate geometry are presented for a number of atomic and molecular gases. Ionization coefficients, secondary electron yields and their influence on breakdown are analyzed, with special attention devoted to non-hydrodynamic conditions near cathode.

  2. Breakdown of Benford's law for birth data

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Herteliu, C.; Ileanu, B.

    2015-02-01

    Long birth time series for Romania are investigated from Benford's law point of view, distinguishing between families with a religious (Orthodox and Non-Orthodox) affiliation. The data extend from Jan. 01, 1905 till Dec. 31, 2001, i.e. over 97 years or 35 429 days. The results point to a drastic breakdown of Benford's law. Some interpretation is proposed, based on the statistical aspects due to population sizes, rather than on human thought constraints when the law breakdown is usually expected. Benford's law breakdown clearly points to natural causes.

  3. Pulsed electric breakdown in adipose tissue

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Scully, Noah; Paithankar, Dilip

    2011-08-01

    High voltage pulses of sub-microsecond duration can instigate electrical breakdown in adipose tissue, which is followed by a spark discharge. Breakdown voltages are generally lower than observed for purified lipids but higher than for air. Development of breakdown for the repetitive application of pulses resembles a gradual and stochastic process as reported for partial discharges in solid dielectrics. The inflicted tissue damage itself is confined to the gap between electrodes, providing a method to use spark discharges as a precise surgical technique.

  4. Fundamental studies of passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  5. 14 CFR 23.333 - Flight envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown...

  6. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    SciTech Connect

    Not Available

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  7. Breakdown-Resistant RF Connectors for Vacuum

    NASA Technical Reports Server (NTRS)

    Caro, Edward R.; Bonazza, Walter J.

    1987-01-01

    Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.

  8. Microwave air breakdown enhanced with metallic initiators

    SciTech Connect

    Herring, G. C.; Popovic, S.

    2008-03-31

    We have determined X-band (9.4 GHz) electric field strengths required to obtain air breakdown at atmospheric pressure in the presence of metallic initiators, which are irradiated with repetitive (30 pulses/s) microwave pulses of 3 {mu}s duration and 200 kW peak power. Using a half-wavelength initiator, a factor of 40 reduction (compared to no initiator) was observed in the electric field required to achieve breakdown. The present measurements are compared to a previously published model for air breakdown, which was originally validated with S-band (3 GHz) frequencies and single 40 {mu}s pulses. We find good agreement between this previous model and our present measurements of breakdown with X-band frequencies and repetitive 3 {mu}s pulses.

  9. Contributions to theory of vortex breakdown

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.; Uberoi, M. S.

    A study is made of vortex breakdown in stratified flows, and it is found that a positive stratification in the vortex where the density is increasing away from the axis, postpones the vortex breakdown and vice versa. This is apparent due to the density increasing in a direction opposite to that of an effective gravity which would correspond to a topheavy arrangement under gravity. It is also shown that a wavemotion promotes the possibility of axisymmetric flow downstream of the transaction.

  10. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  11. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  12. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  13. Enveloped double-stranded DNA insect virus with novel structure and cytopathology

    PubMed Central

    Federici, Brian A.

    1983-01-01

    An unusual type of virus has been isolated from larvae of the cabbage looper, Trichoplusia ni (Lepidoptera; Noctuidae). The virus infects a variety of tissues, including fat body, epidermis, and tracheal matrix, causing a chronic, fatal disease. Viral replication begins in the nucleus and is accompanied by invagination of the nuclear envelope and extensive nuclear and cellular hypertrophy. The nuclear envelope eventually ruptures and fragments, after which viral-induced membranes are assembled along planes through the cell and around its periphery. Subsequently, these membranes coalesce, partitioning most of the cell, including viroplasms and virions in various stages of assembly, among a cluster of vesicles. The vesicles dissociate and are liberated into the hemolymph where they accumulate in large numbers (>108 vesicles per ml), causing the blood to become opaque white. The virus has been isolated from T. ni and transmitted per os and by injection to T. ni and several other species of the family Noctuidae. The virions produced by this virus are large (ca. 130 × 400 nm), enveloped, and allantoid in shape with complex symmetry and contain apparently linear, double-stranded DNA of Mr of ≈ 1.00 × 108. The envelope contains subunits arranged in a hexagonal pattern that impart a distinctive reticular appearance to virions in negatively stained preparations. The unique structural and developmental properties of this virus indicate that it is a member of a group of enveloped, double-stranded DNA viruses not observed previously. Images PMID:16593397

  14. Humidity effects on wire insulation breakdown strength.

    SciTech Connect

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  15. Effect of surface conditions affecting voltage breakdowns

    NASA Astrophysics Data System (ADS)

    Flauta, Randolph; Aghazarian, Maro; Caughman, John; Ruzic, David

    2008-11-01

    The maximum power transferred by ion cyclotron range of frequency (ICRF) antennas is dependent on the breakdown threshold when operated at high voltages. The voltage that these antennas can withstand is lowered and hence breakdowns occur due to many factors. The Surface Plasma Arcs by Radiofrequency - Control Study or SPARCS facility has a 0-15kV DC power supply to deliver power to flat cathode surface and semi-spherical anode made of Cu and Al under 10-8-10-6 torr vacuum conditions. The effects of different surface conditions on the breakdown threshold were then investigated. Also, as the ICRF antennas used for heating plasmas may come into contact with contaminants from the plasma, Li was also deposited on the cathode surface through in-situ evaporation coating and its effect on the breakdown threshold was investigated. Results on surface roughness showed no significant dependence of the breakdown threshold on macroscopic surface roughness in the cathode arithmetic roughness range of ˜77-1139nm. Microscopic surface features such as grain boundaries, impurities and imperfections may play a more visible role in affecting the vacuum breakdown.

  16. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  17. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  18. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  19. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  20. The theoretical polarization of pure scattering axisymmetric circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Fox, G. K.

    1994-01-01

    The Sobolev approach to the scattering of starlight through a pure scattering circumstellar envelope is developed. The theoretical polarization due to electron scattering in Be star envelopes is calculated for two geometries (an equatorially enhanced envelope and a spheroidal envelope). Only the disk-type envelope is found to yield a maximum polarization consistent with the observed range for Be stars. A lower limit, analytical approximation to the theoretical polarization from a pure scattering envelope is obtained.

  1. Personnel occupied woven envelope robot

    NASA Technical Reports Server (NTRS)

    Wessling, Francis; Teoh, William; Ziemke, M. Carl

    1988-01-01

    The Personnel Occupied Woven Envelope Robot (POWER) provides an alternative to extravehicular activity (EVA) of space suited astronauts and/or use of long slender manipulator arms such as are used in the Shuttle Remote Manipulator System. POWER provides the capability for a shirt sleeved astronaut to perform such work by entering a control pod through air locks at both ends of an inflated flexible bellows (access tunnel). The exoskeleton of the tunnel is a series of six degrees of freedom (Six-DOF) articulated links compressible to 1/6 of their fully extended length. The operator can maneuver the control pod to almost any location within about 50 m of the base attachment to the space station. POWER can be envisioned as a series of hollow Six-DOF manipulator segments or arms wherein each arm grasps the shoulder of the next arm. Inside the hollow arms ia a bellow-type access tunnel. The control pod is the fist of the series of linked hollow arms. The fingers of the fist are conventional manipulator arms under direct visual control of the nearby operator in the pod. The applications and progress to date of the POWER system is given.

  2. A computational study of the topology of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  3. The Metabolite Transporters of the Plastid Envelope: An Update

    PubMed Central

    Facchinelli, Fabio; Weber, Andreas P. M.

    2011-01-01

    The engulfment of a photoautotrophic cyanobacterium by a primitive mitochondria-bearing eukaryote traces back to more than 1.2 billion years ago. This single endosymbiotic event not only provided the early petroalgae with the metabolic capacity to perform oxygenic photosynthesis, but also introduced a plethora of other metabolic routes ranging from fatty acids and amino acids biosynthesis, nitrogen and sulfur assimilation to secondary compounds synthesis. This implicated the integration and coordination of the newly acquired metabolic entity with the host metabolism. The interface between the host cytosol and the plastidic stroma became of crucial importance in sorting precursors and products between the plastid and other cellular compartments. The plastid envelope membranes fulfill different tasks: they perform important metabolic functions, as they are involved in the synthesis of carotenoids, chlorophylls, and galactolipids. In addition, since most genes of cyanobacterial origin have been transferred to the nucleus, plastidial proteins encoded by nuclear genes are post-translationally transported across the envelopes through the TIC–TOC import machinery. Most importantly, chloroplasts supply the photoautotrophic cell with photosynthates in form of reduced carbon. The innermost bilayer of the plastidic envelope represents the permeability barrier for the metabolites involved in the carbon cycle and is literally stuffed with transporter proteins facilitating their transfer. The intracellular metabolite transporters consist of polytopic proteins containing membrane spans usually in the number of four or more α-helices. Phylogenetic analyses revealed that connecting the plastid with the host metabolism was mainly a process driven by the host cell. In Arabidopsis, 58% of the metabolite transporters are of host origin, whereas only 12% are attributable to the cyanobacterial endosymbiont. This review focuses on the metabolite transporters of the inner envelope

  4. Resource envelope concepts for mission planning

    NASA Technical Reports Server (NTRS)

    Ibrahim, K. Y.; Weiler, J. D.; Tokaz, J. C.

    1991-01-01

    Seven proposed methods for creating resource envelopes for Space Station Freedom mission planning are detailed. Four reference science activity models are used to illustrate the effect of adding operational flexibility to mission timelines. For each method, a brief explanation is given along with graphs to illustrate the application of the envelopes to the power and crew resources. The benefits and costs of each method are analyzed in terms of resource utilization. In addition to the effect on individual activities, resource envelopes are analyzed at the experiment level.

  5. Dielectric breakdown in mineral oil ITO 100 based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.

    The development of dielectric breakdown and the DC dielectric breakdown voltage of magnetic fluids based on inhibited transformer oil ITO 100 were investigated in parallel orientations of external magnetic field. It was shown that the breakdown voltage is strongly influenced by the magnetic nanoparticles. The magnetic fluids with the volume concentration 1and 0.2% had better dielectric properties than pure transformer oil. The increase of breakdown voltage was interpreted on the base of the bubble theory of breakdown.

  6. Solar envelope concepts: moderate density building applications

    NASA Astrophysics Data System (ADS)

    Knowles, R. L.; Berry, R. D.

    1980-04-01

    The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided.

  7. Personnel occupied woven envelope robot power

    NASA Technical Reports Server (NTRS)

    Wessling, F. C.

    1988-01-01

    The Personnel Occupied Woven Envelope Robot (POWER) concept has evolved over the course of the study. The goal of the project was the development of methods and algorithms for solid modeling for the flexible robot arm.

  8. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast.

    PubMed

    Klasek, Laura; Inoue, Kentaro

    2016-01-01

    The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation. PMID:26944623

  9. Survival of an Enveloped Virus on Toys.

    PubMed

    Bearden, Richard L; Casanova, Lisa M

    2016-08-01

    Children's toys may carry respiratory viruses. Inactivation of a lipid-enveloped bacteriophage, Φ6, was measured on a nonporous toy at indoor temperature and relative humidity (RH). Inactivation was approximately 2log10 after 24 hours at 60% RH and 6.8log10 at 10 hours at 40% RH. Enveloped viruses can potentially survive on toys long enough to result in exposures. PMID:27144972

  10. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  11. Obstacle-induced spiral vortex breakdown

    NASA Astrophysics Data System (ADS)

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-08-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by the free-stream velocity, and the adverse pressure gradient. They were controlled through the incidence angle of the elliptical hydrofoil, the free-stream velocity and the sphere diameter. A single helical breakdown of the vortex was systematically observed over a wide range of experimental parameters. The helical breakdown coiled around the sphere in the direction opposite to the vortex but rotated along the vortex direction. We have observed that the location of vortex breakdown moved upstream as the swirl number or the sphere diameter was increased. LDV measurements were corrected using a reconstruction procedure taking into account the so-called vortex wandering and the size of the LDV measurement volume. This allows us to investigate the spatio-temporal linear stability properties of the flow and demonstrate that the flow transition from columnar to single helical shape is due to a transition from convective to absolute instability.

  12. Vortex Breakdown in Atmospheric Columnar Vortices.

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    1989-12-01

    Vortex breakdown occurs in tornadoes and waterspouts. This phenomenon may give information on the state and future behavior of those whirlwinds. Because of the rarity of recorded events, archival sources are consulted for qualitative descriptions from earlier times and compared with contemporary sources. Drawings and eyewitness reports from earlier times, rare photographs, movies, and observations from recent years indicate the occurrence of vortex breakdown in tornadoes and waterspouts near the ground, in the midsection of the funnel, and close to or inside the parent cloud. Since the contour of the whirlwind's funnel is delineated only by markers in the form of condensates, dust, or other debris, these markers may distort or obscure the evidence of vortex breakdown. This is a likely reason for the rare observation and identification of vortex breakdown which might be more common in whirlwinds than has been previously thought. According to the records examined, meteorologists deserve the honor for discovering and describing vortex breakdown long before the systematic investigation of recent years.

  13. Planned waveguide electric field breakdown studies

    SciTech Connect

    Wang Faya; Li Zenghai

    2012-12-21

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  14. Genetic diversity of koala retroviral envelopes.

    PubMed

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process. PMID:25789509

  15. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-08-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105 - 106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  16. The joke envelope: a neglected precursor of the psychic envelope concept in Freud's writing.

    PubMed

    Spero, Moshe Halevi

    2009-01-01

    The concepts of the primeval skin ego, psychic envelope, and related pre-ego containing and wrapping functions elaborated respectively by Esther Bick, Didier Anzieu, and Francis Tustin occupy an important position in contemporary psychoanalytic theory and clinical practice. The psychic envelope begins as a virtual mental protostructure ("proto" because it is not yet based on fully symbolized representations) that holds the budding mind together pending further developments. With maturity, the enveloping functions adopt symbolized, metaphoric form (for example, the aesthetic use of cloth, the analytic framework), but can regress to more concrete and pathological forms. The aforementioned authors based their ideas on a cluster of specific allusions to the idea of a psychic covering, barrier, or envelope in Freud's work. Yet they neglected one reference, hidden in Freud's analysis of the structure ofjokes and humor: the 'joke envelope"--die witzige Einkleidung. The present essay explores Freud's use of the term Einkleidung, including his intriguing idea that a joke requires three people whereas a dream does not and the fact that Freud nowhere speaks of a "dream envelope. "I take the "joke envelope" beyond its original context and posit a relationship between laughter and the early, normative traumas of breathing, crying, and loss, and the dawn of rhythmic envelopes that enable mentalization. Jokes and joking symbolically repeat the early rupture and rapture of breathing and self-other differentiation and the internalization of maternal containing and envelopment. PMID:20578439

  17. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    SciTech Connect

    Byrne, D.P.

    1986-10-08

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE/sub 10/ mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 ..mu..s, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations greater than or equal to 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs.

  18. Anticipating electrical breakdown in dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Muffoletto, Daniel P.; Burke, Kevin M.; Zirnheld, Jennifer L.

    2013-04-01

    The output strain of a dielectric elastomer actuator is directly proportional to the square of its applied electric field. However, since the likelihood of electric breakdown is elevated with an increased applied field, the maximum operating electric field of the dielectric elastomer is significantly derated in systems employing these actuators so that failure due to breakdown remains unlikely even as the material ages. In an effort to ascertain the dielectric strength so that stronger electric fields can be applied, partial discharge testing is used to assess the health of the actuator by detecting the charge that is released when localized instances of breakdown partially bridge the insulator. Pre-stretched and unstretched samples of VHB4910 tape were submerged in dielectric oil to remove external sources of partial discharges during testing, and the partial discharge patterns were recorded just before failure of the dielectric sample.

  19. Spectrometers for RF breakdown studies for CLIC

    NASA Astrophysics Data System (ADS)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  20. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are

  1. Breakdowns in Coordination Between Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  2. Dynamics of the breakdown of granular clusters

    NASA Astrophysics Data System (ADS)

    Coppex, François; Droz, Michel; Lipowski, Adam

    2002-07-01

    Recently van der Meer et al. studied the breakdown of a granular cluster [Phys. Rev. Lett. 88, 174302 (2002)]. We reexamine this problem using an urn model, which takes into account fluctuations and finite-size effects. General arguments are given for the absence of a continuous transition when the number of urns (compartments) is greater than two. Monte Carlo simulations show that the lifetime of a cluster τ diverges at the limits of stability as τ~N1/3, where N is the number of balls. After the breakdown, depending on the dynamical rules of our urn model, either normal or anomalous diffusion of the cluster takes place.

  3. Featured Image: Orbiting Stars Share an Envelope

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  4. The cell envelope proteome of Aggregatibacter actinomycetemcomitans

    PubMed Central

    Smith, Kenneth P.; Fields, Julia G.; Voogt, Richard D.; Deng, Bin; Lam, Ying-Wai; Mintz, Keith P.

    2014-01-01

    Summary The cell envelope of Gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 28% of the predicted ORFs in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, while others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity. PMID:25055881

  5. Heme content and breakdown in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1990-05-01

    Heme regulates tetrapyrrole biosynthesis in plants by inhibition of {delta}-aminolevulinic acid (ALA) synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Plastid heme levels may be modulated by heme synthesis, breakdown and/or efflux. Heme breakdown may be catalyzed by a chloroplast localized heme oxygenase. Chloroplasts isolated from greening cucumber cotyledons were incubated in the presence or absence of various components thought to modulate heme breakdown. Following the incubations, the chloroplasts were broken (freeze-thaw) and then supplemented with horseradish peroxidase apoenzyme. The reconstituted peroxidase activity was used to determine the amount of free heme remaining (Thomas Weinstein (1989) Plant Physiol. 89S: 74). Chloroplasts, freshly isolated from seedlings greened for 16 hours, contained approximately 37 pmol heme/mg protein. When chloroplasts were incubated with 5 mM NADPH for 30 min, the endogenous heme dropped to unmeasurable levels. Exogenous heme was also broken down when NADPH was included in the incubation. Heme levels could be increased by the inclusion of 50 {mu}M ALA and/or p-hydroxymercuribenzoate. The increase due to exogenous ALA was blocked by levulinic acid, an inhibitor of ALA utilization. NADPH-dependent heme breakdown acid was inhibited by p-hydroxymercuribenzoate.

  6. Fear of breakdown and the unlived life.

    PubMed

    Ogden, Thomas H

    2014-04-01

    Winnicott's Fear of breakdown is an unfinished work that requires that the reader be not only a reader, but also a writer of this work which often gestures toward meaning as opposed to presenting fully developed ideas. The author's understanding of the often confusing, sometimes opaque, argument of Winnicott's paper is as follows. In infancy there occurs a breakdown in the mother-infant tie that forces the infant to take on, by himself, emotional events that he is unable to manage. He short-circuits his experience of primitive agony by generating defense organizations that are psychotic in nature, i.e., they substitute self-created inner reality for external reality, thus foreclosing his actually experiencing critical life events. By not experiencing the breakdown of the mother-infant tie when it occurred in infancy, the individual creates a psychological state in which he lives in fear of a breakdown that has already happened, but which he did not experience. The author extends Winnicott's thinking by suggesting that the driving force of the patient's need to find the source of his fear is his feeling that parts of himself are missing and that he must find them if he is to become whole. What remains of his life feels to him like a life that is mostly an unlived life. PMID:24620827

  7. How to Avoid Language Breakdown? Circumlocution!

    ERIC Educational Resources Information Center

    Salomone, Ann Masters; Marsal, Florence

    1997-01-01

    Circumlocution can prevent communication breakdown and is a required function at the Advanced level on the American Council on the Teaching of Foreign Languages (ACTFL) Oral Proficiency Scale. To encourage this communicative strategy, researchers conducted a study of two intermediate college French classes: one that encouraged circumlocution and…

  8. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  9. Baby Nuclear Pores Grow Up Faster All the Time.

    PubMed

    Lusk, C Patrick

    2016-07-28

    Annulate lamellae (AL) are stacked ER-derived membranes containing nuclear pore complex-like structures whose fate and function have remained a mystery. During the short interphase of early embryonic cells, AL are rapidly delivered into the nuclear envelope through fenestrations, highlighting the remarkable dynamics of the nuclear envelope. PMID:27471962

  10. Envelope Solitons in Acoustically Dispersive Vitreous Silica

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2012-01-01

    Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.

  11. Common Envelope and the Binding Energy Consideration

    NASA Astrophysics Data System (ADS)

    Irawati, P.; Mahasena, P.

    2014-08-01

    We report the results of our study on the common-envelope phase of the cataclysmic variables. We are investigating the role of additional energies, such as recombination energy and internal energy, in expelling the envelope of the primary star. In this work, we use the TWIN stellar evolution code which can evolve both stars in binary simultaneously. We analysed the energies involved by considering the binding energy of the core at the onset of the common envelope phase. The core of the primary is calculated using the hydrogen-exhausted layer with 10% hydrogen fraction. Our preliminary result shows that the internal energy plays a significant role while the recombination energy has only a small contribution to the energy budget of the cataclysmic variable evolution.

  12. Electrical breakdown of carbon nanotube devices and the predictability of breakdown position

    NASA Astrophysics Data System (ADS)

    Goswami, Gopal Krishna; Nanda, Karuna Kar

    2012-06-01

    We have investigated electrical transport properties of long (>10 μm) multiwalled carbon nanotubes (NTs) by dividing individuals into several segments of identical length. Each segment has different resistance because of the random distribution of defect density in an NT and is corroborated by Raman studies. Higher is the resistance, lower is the current required to break the segments indicating that breakdown occurs at the highly resistive segment/site and not necessarily at the middle. This is consistent with the one-dimensional thermal transport model. We have demonstrated the healing of defects by annealing at moderate temperatures or by current annealing. To strengthen our mechanism, we have carried out electrical breakdown of nitrogen doped NTs (NNTs) with diameter variation from one end to the other. It reveals that the electrical breakdown occurs selectively at the narrower diameter region. Overall, we believe that our results will help to predict the breakdown position of both semiconducting and metallic NTs.

  13. A computational study of the taxonomy of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Gatski, Thomas B.

    1990-01-01

    The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.

  14. Perception and coding of envelopes in weakly electric fishes.

    PubMed

    Stamper, Sarah A; Fortune, Eric S; Chacron, Maurice J

    2013-07-01

    Natural sensory stimuli have a rich spatiotemporal structure and can often be characterized as a high frequency signal that is independently modulated at lower frequencies. This lower frequency modulation is known as the envelope. Envelopes are commonly found in a variety of sensory signals, such as contrast modulations of visual stimuli and amplitude modulations of auditory stimuli. While psychophysical studies have shown that envelopes can carry information that is essential for perception, how envelope information is processed in the brain is poorly understood. Here we review the behavioral salience and neural mechanisms for the processing of envelopes in the electrosensory system of wave-type gymnotiform weakly electric fishes. These fish can generate envelope signals through movement, interactions of their electric fields in social groups or communication signals. The envelopes that result from the first two behavioral contexts differ in their frequency content, with movement envelopes typically being of lower frequency. Recent behavioral evidence has shown that weakly electric fish respond in robust and stereotypical ways to social envelopes to increase the envelope frequency. Finally, neurophysiological results show how envelopes are processed by peripheral and central electrosensory neurons. Peripheral electrosensory neurons respond to both stimulus and envelope signals. Neurons in the primary hindbrain recipient of these afferents, the electrosensory lateral line lobe (ELL), exhibit heterogeneities in their responses to stimulus and envelope signals. Complete segregation of stimulus and envelope information is achieved in neurons in the target of ELL efferents, the midbrain torus semicircularis (Ts). PMID:23761464

  15. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  16. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  17. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  18. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  19. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  20. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  1. Recent Studies of RF Breakdown Physics in Normal Conducting Cavities

    SciTech Connect

    Dolgashev, Valery; /SLAC

    2012-06-11

    The operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The behavior of the rf breakdown depends on multiple parameters, including the input rf power, rf circuit, cavity shape and material. Here we discuss recent experimental data and theoretical studies of rf breakdown physics.

  2. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses

    PubMed Central

    Owen, Danielle J.; Crump, Colin M.; Graham, Stephen C.

    2015-01-01

    Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called “tegument” that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei. PMID:26393641

  3. The Methodology of Data Envelopment Analysis.

    ERIC Educational Resources Information Center

    Sexton, Thomas R.

    1986-01-01

    The methodology of data envelopment analysis, (DEA) a linear programming-based method, is described. Other procedures often used for measuring relative productive efficiency are discussed in relation to DEA, including ratio analysis and multiple regression analysis. The DEA technique is graphically illustrated for only two inputs and one output.…

  4. Diffusive heat blanketing envelopes of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Potekhin, A. Y.; Yakovlev, D. G.

    2016-06-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H-He, He-C, C-Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density ρb ˜ 108 - 1010 g cm-3) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses ΔM of lighter ions in the envelope. Our principal result is that the Ts-Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on ΔM. The obtained relations are approximated by analytic expressions which are convenient for modelling the evolution of neutron stars.

  5. Discriminating Dysarthria Type from Envelope Modulation Spectra

    ERIC Educational Resources Information Center

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2010-01-01

    Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…

  6. Trumpet synthesis using context-dependent envelopes

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.

    2002-05-01

    Synthesizing trumpet music in a natural-sounding way requires careful control. Even when synthesis is achieved by splicing together actual recorded trumpet tones, the result can sound artificial and unnatural. This is because natural notes are not played in isolation and are therefore influenced by neighboring notes and the musical context. In fact, a succession of notes played on the trumpet is likely to be a continuous sound with no separating silences. Improved synthesis can be obtained by calculating amplitude and frequency control envelopes that take context into consideration. In the combined spectral interpolation synthesis (CSIS) method, the spectrum is controlled by instantaneous frequency and rms amplitude. These, in turn, are controlled by envelopes computed by a rule-based system. To reduce the high dimensionality of envelopes (typically a vector of 200 samples per second), envelopes are specified by about ten parameters. This reduced set of parameters is computed from note attributes, most importantly, the duration and pitches of the current and preceding notes, and whether or not the notes are tongued or slurred. This procedure is described in detail, and synthesis results will be demonstrated.

  7. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  8. Breakdown and partial discharges in magnetic liquids.

    PubMed

    Herchl, F; Marton, K; Tomčo, L; Kopčanský, P; Timko, M; Koneracká, M; Kolcunová, I

    2008-05-21

    The dielectric properties (permittivity, loss factor, dielectric breakdown strength) of magnetic liquids were investigated. The magnetic liquids were composed of magnetite particles coated with oleic acid as surfactant and dispersed in transformer oil. To determine their dielectric properties they were subjected to a uniform magnetic field at high alternating electric fields up to 14 MV m(-1). Nearly constant permittivity of magnetic liquid with particle volume concentration Φ = 0.0019 as a function of electric field was observed. Magnetic liquids with concentrations Φ = 0.019 and 0.032 showed significant changes of permittivity and loss factor dependent on electric and magnetic fields. The best concentration of magnetic fluid was found at which partial current impulse magnitudes were the lowest. The breakdown strength distribution of the magnetic liquid with Φ = 0.0025 was fitted with the Duxbury-Leath, Weibull and Gauss distribution functions. PMID:21694240

  9. Electrical breakdown studies with Mycalex insulators

    SciTech Connect

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-05-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures.

  10. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, Ronald S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles (14, 15, 114, 214, 314, 414) by a plasma arc (3), introduces a breakdown inhibiting gas into the railgun chamber (26) behind the accelerating projectile (14). The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF.sub.6. The gas is introduced between the railgun rails (12) after the projectile (14) has passed through inlets (16) in the rails (12) or the projectile (114); by coating the rails (12) or the projectile (15) with a material (28) which releases the gas after the projectile (14) passes over it; by fabricating the rails (12) or the projectile (15) or insulators out of a material which releases the gas into the portions of the chamber (26) through which the projectile has travelled. The projectile (214, 314, 414) may have a cavity (232, 332, 432) at its rear to control the release of ablation products (4).

  11. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, Ronald S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles (14, 15, 114, 214, 314, 444) by a plasma arc (3), introduces a breakdown inhibiting gas into the railgun chamber (26) behind the accelerating projectile (14). The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF.sub.6. The gas is introduced between the railgun rails (12) after the projectile (14) has passed through inlets (16) in the rails (12) or the projectile (114); by coating the rails (12) or the projectile (15) with a material (28) which releases the gas after the projectile (14 ) passes over it; by fabricating the rails (12) or the projectile (15) or insulators out of a material which releases the gas into the portions of the chamber (26) through which the projectile has travelled. The projectile (214, 314, 414) may have a cavity (232, 332, 432) at its rear to control the release of ablation products (4).

  12. Supersonic quasi-axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  13. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, R.S.

    1992-10-13

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.

  14. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, R.S.

    1992-09-01

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.

  15. Prevention of breakdown behind railgun projectiles

    SciTech Connect

    Hawke, R.S.

    1989-04-20

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF{sub 6}. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has traveled. The projectile may have a cavity at its rear to control the release of ablation products. 9 figs.

  16. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  17. Breakdown of cyclotron resonance in semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Duffield, T.; Bhat, R.; Koza, M.; Hwang, D. M.; DeRosa, F.; Grabbe, P.; Allen, S. J.

    1988-03-01

    We have observed breakdown of cyclotron resonance in large magnetic fields oriented perpendicular to the growth direction in semiconductor superlattices. At small magnetic fields conventional cyclotron resonance is observed with the mass related to the miniband mass. At large magnetic fields, when the cyclotron diameter approaches the superlattice period, the resonance frequency appears to saturate and is determined by orbits impaled on the barrier. A model calculation gives good account of the magnetic field dependence of the resonance position and line width.

  18. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  19. Peierls-type structural phase transition in a crystal induced by magnetic breakdown

    NASA Astrophysics Data System (ADS)

    Kadigrobov, A. M.; Bjeliš, A.; Radić, D.

    2013-06-01

    We predict a new type of phase transition in a quasi-two dimensional system of electrons at high magnetic fields, namely the stabilization of a density wave which transforms a two dimensional open Fermi surface into a periodic chain of large pockets with small distances between them. The quantum tunneling of electrons between the neighboring closed orbits enveloping these pockets transforms the electron spectrum into a set of extremely narrow energy bands and gaps which decreases the total electron energy, thus leading to a magnetic breakdown induced density wave (MBIDW) ground state. We show that this DW instability has some qualitatively different properties in comparison to analogous DW instabilities of Peierls type; e.g. the critical temperature of the MBIDW phase transition arises and disappears in a peculiar way with a change of the inverse magnetic field.

  20. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  1. Runaway breakdown and electrical discharges in thunderstorms

    NASA Astrophysics Data System (ADS)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  2. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Ferroelectric Polymer Composite with Enhanced Breakdown Strength

    NASA Astrophysics Data System (ADS)

    Han, Kuo; Gadinski, Matthew; Wang, Qing

    2013-03-01

    Numerous efforts have been made in the past decades to improve the energy storage capability of dielectric capacitors by incorporating ceramic addictives into polymers. Ferroelectric polymers have been particularly interesting as matrix for dielectric composites because of their highest dielectric permittivity and energy density. However, most polymer composites suffer from significantly reduced breakdown strength, which compromises the potential gain in energy density. In this work, various metallic alkoxide were introduced into the functionalized ferroelectric poly(vinylidene fluoride-co- chlorotrifluoroethylene), P(VDF-CTFE), via covalent bonding. The composite with the optimized composition exhibited the Weibull statistical breakdown strength of 504.8 MV/m, 67.6 % higher than the pristine polymer. The enhanced breakdown strength was mainly ascribed to the cross-linking and the formation of deep traps, which effectively reduced the conduction and further lowered the energy loss. Additionally, the homogeneous dispersion of the inorganic phase and the small contrast in permittivity between the polymer and amorphous oxides also contribute to the improved dielectric strength. The dielectric spectra of the composites have been recorded at varied temperatures and frequencies, which revealed the presence of the interfacial polarization layer in the composites.

  4. 48 CFR 14.202-3 - Bid envelopes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND CONTRACT TYPES SEALED BIDDING Solicitation of Bids 14.202-3 Bid envelopes. (a) Postage or envelopes bearing Postage and Fees Paid indicia shall not be distributed with the invitation for bids...

  5. 48 CFR 14.202-3 - Bid envelopes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND CONTRACT TYPES SEALED BIDDING Solicitation of Bids 14.202-3 Bid envelopes. (a) Postage or envelopes bearing Postage and Fees Paid indicia shall not be distributed with the invitation for bids...

  6. Proaggregant nuclear factor(s) trigger rapid formation of α-synuclein aggregates in apoptotic neurons.

    PubMed

    Jiang, Peizhou; Gan, Ming; Yen, Shu-Hui; Moussaud, Simon; McLean, Pamela J; Dickson, Dennis W

    2016-07-01

    Cell-to-cell transmission of α-synuclein (αS) aggregates has been proposed to be responsible for progressive αS pathology in Parkinson disease (PD) and related disorders, including dementia with Lewy bodies. In support of this concept, a growing body of in vitro and in vivo experimental evidence shows that exogenously introduced αS aggregates can spread into surrounding cells and trigger PD-like pathology. It remains to be determined what factor(s) lead to initiation of αS aggregation that is capable of seeding subsequent propagation. In this study we demonstrate that filamentous αS aggregates form in neurons in response to apoptosis induced by staurosporine or other toxins-6-hydroxy-dopamine and 1-methyl-4-phenylpyridinium (MPP+). Interaction between αS and proaggregant nuclear factor(s) is associated with disruption of nuclear envelope integrity. Knocking down a key nuclear envelop constituent protein, lamin B1, enhances αS aggregation. Moreover, in vitro and in vivo experimental models demonstrate that aggregates released upon cell breakdown can be taken up by surrounding cells. Accordingly, we suggest that at least some αS aggregation might be related to neuronal apoptosis or loss of nuclear membrane integrity, exposing cytosolic α-synuclein to proaggregant nuclear factors. These findings provide new clues to the pathogenesis of PD and related disorders that can lead to novel treatments of these disorders. Specifically, finding ways to limit the effects of apoptosis on αS aggregation, deposition, local uptake and subsequent propagation might significantly impact progression of disease. PMID:26839082

  7. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    SciTech Connect

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  8. Solar Effective Envelope Design Advisor (SEEDA)

    NASA Astrophysics Data System (ADS)

    Mahaek, Ekkachai

    The lack of effort by mainstream architects in integrating energy-efficient strategies in architectural designing is due to the complexity in a building's energy conscious concepts and theories, the difficulties to visualize and quantify energy consumption, and the late implementing of energy consumption analysis in the conventional design process. This task would be accomplishing by a building system's engineer where results might be determined only after the basic architectural design has been completed. An effective simple tool and method should then be available to assist architects in building's energy-efficient designing at the beginning of the design. The building's energy consumption is directly and mainly influenced by the relationship of the sun, site, and its building configuration. The solar radiations will first impact on the building's envelope, which will have a direct effect on the amount of energy a building will consume. If an architect can define or map the intensity of solar energy on the site's buildable volume, and use this information to determine the levels of solar insolation, a more energy efficient building form can be proposed. This research hypothesis has shared the fundamental techniques of the Solar Envelope projection by Professor Ralph Knowles [Knowles, 1981] of the University of Southern California. However a different approach is taken by including the influence of regional restrictions and the surrounding buildings' shadows when projecting of solar volumes and solar envelope. The research methodology will discuss the development of a computer-based approach to develop a three-dimensional architectural form based on an insolation map related to the design site. The prototype computer program is referred as the Solar Effective Envelope Design Advisor (SEEDA). The solar insolation volume of the site is determined by integrating three types of computer-generated models include the Buildable Volume model based on design constraints

  9. Application of the Envelope Difference Index to Spectrally Sparse Speech

    ERIC Educational Resources Information Center

    Souza, Pamela; Hoover, Eric; Gallun, Frederick

    2012-01-01

    Purpose: Amplitude compression is a common hearing aid processing strategy that can improve speech audibility and loudness comfort but also has the potential to alter important cues carried by the speech envelope. In previous work, a measure of envelope change, the Envelope Difference Index (EDI; Fortune, Woodruff, & Preves, 1994), was moderately…

  10. Analysis of Building Envelope Construction in 2003 CBECS

    SciTech Connect

    Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

    2007-06-01

    The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .

  11. 200 Area Deactivation Project Facilities Authorization Envelope Document

    SciTech Connect

    DODD, E.N.

    2000-03-28

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

  12. Insulator breakdown measurements in a poor vacuum and their interpretation

    SciTech Connect

    Vogtlin, G.E.

    1990-06-01

    Breakdown measurements have been made on insulators with 0 and 45 degree angle surfaces. A technique of observing the electrons produced from the process has given some insight into the mechanisms involved. A three nanosecond pulse was used to induce breakdown. The electrons striking the anode were observed with a plastic fluor and open shutter camera. Two breakdown patterns were interpreted as cathode initiated and anode initiated breakdown. The breakdown process normally encountered was anode initiated with a positive 45 degree insulator. If the anode side was relieved with an internal electrode, the breakdown changed to cathode initiated at a higher level. If the cathode surface was then anodized, the breakdown switched back to the anode at an even higher level. Individual explosive emission sites on the cathode surface could be observed. Insulator breakdown was usually not associated with these sites. Multiple pulses allowed measurement of plasma expansion of the explosive emission sites. It is believed that breakdown with longer pulses is due to the expansion of the explosive emission site plasma to the insulator surface. Measurements were conducted with and without voltage conditioning. It appears that conditioning is achieved without explosive emission. It is believed that this is due to organic fibers that are removed by the conditioning. Organic fibers were used to induce both anode and cathode breakdown. Measurements of fiberous material have shown explosive emission a low as 100 kV on a three nanosecond time scale and below 20 kv/cm on a longer time scale. 8 refs., 5 figs.

  13. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  14. Fluorescence molecular painting of enveloped viruses.

    PubMed

    Metzner, Christoph; Kochan, Feliks; Dangerfield, John A

    2013-01-01

    In this study, we describe a versatile, flexible, and quick method to label different families of enveloped viruses with glycosylphosphatidylinositol-modified green fluorescent protein, termed fluorescence molecular painting (FMP). As an example for a potential application, we investigated virus attachment by means of flow cytometry to determine if viral binding behavior may be analyzed after FMP of enveloped viruses. Virus attachment was inhibited by using either dextran sulfate or by blocking attachment sites with virus pre-treatment. Results from the FMP-flow cytometry approach were verified by immunoblotting and enzyme-linked immunosorbent assay. Since the modification strategy is applicable to a broad range of proteins and viruses, variations of this method may be useful in a range of research and applied applications from bio-distribution studies to vaccine development and targeted infection for gene delivery. PMID:23104232

  15. Formaldehyde in envelopes of interstellar dark clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Allen, M.

    1991-01-01

    Observed formaldehyde column densities of 1 x 10 to the 12th - 3 x 10 to the 13th/sq cm in cloud envelopes along lines of sight with A(V) = 1-4 mag can not be explained with the current understanding of interstellar gas phase chemistry. However, these column densities can be reproduced by a simple time-dependent model in which H2CO is supplied to the gas phase by the erosion of icy grain mantles. The release of H2CO from the grain mantles must occur on time scales comparable to the time scales for mixing from the cloud interior to the cloud envelope. Thus, in low-density regions of clouds, it appears that formaldehyde is the second molecule whose gas phase source is primarily ejection from grains. This simple model suggests understanding gas phase steady state in clouds on macroscopic, rather than microscopic, spatial scales.

  16. Discontinuous envelope function in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Drouhin, Henri-Jean; Bottegoni, Federico; Nguyen, T. L. Hoai; Wegrowe, Jean-Eric; Fishman, Guy

    2013-09-01

    Based on a proper definition of the current operators for non-quadratic Hamiltonians, we derive the expression for the transport current which involves the derivative of the imaginary part of the free-electron current, highlighting peculiarities of the extra terms. The expression of the probability current, when Spin-Orbit Interaction (SOI) is taken into account, requires a reformulation of the boudary conditions. This is especially important for tunnel heterojunctions made of non-centrosymmetric semiconductors. Therefore, we consider a model case: tunneling of conduction electrons through a [110]-oriented GaAs barrier. The new boundary conditions are reduced to two set of equations: the first one expresses the discontinuity of the envelope function at the interface while the other one expresses the discontinuity of the derivative of the envelope function.

  17. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  18. Digital image envelope: method and evaluation

    NASA Astrophysics Data System (ADS)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  19. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  20. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    PubMed Central

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  1. On the hybrid localization/envelopment problem

    SciTech Connect

    Chu, Y.X.; Gou, J.B.; Li, Z.X.

    1999-05-01

    The problem of aligning the CAD model of a workpiece such that all points measured on the finished surfaces of the workpiece match closely to corresponding surfaces on the model while all unmachined surfaces lie outside the model is referred to as the hybrid localization/envelopment problem. The hybrid problem has important applications in setting up for machining of partially finished workpieces. This paper gives a formulation of the hybrid localization/envelopment problem, and presents a simple algorithm for computing its solutions. First, the authors show that when the finished surfaces of a workpiece are inadequate to fully constrain the rigid motions of the workpiece, then the set of free motions remaining must form a subgroup G{sub 0} of the Euclidean group SE(3). This allows the authors to decompose the hybrid problem into a (symmetric) localization problem on G{sub 0}. While the symmetric localization problem is solved using the fast symmetric localization (FSL) algorithm developed in one of the earlier papers, the envelopment problem is solved by computing the solutions of a sequence of linear programming (LP) problems. The authors derive explicitly the LP problems, and apply standard linear programming techniques to solve the LP problems. They present simulation results to demonstrate the effectiveness of the method for the hybrid problem.

  2. Spectral envelope sensitivity of musical instrument sounds.

    PubMed

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model. PMID:18177177

  3. Human skeletal muscle protein breakdown during spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1997-01-01

    Human spaceflight is associated with a loss of body protein. Excretion of 3-methylhistidine (3-MH) in the urine is a useful measurement of myofibrillar protein breakdown. Bed rest, particularly with 6 degrees head-down tilt, is an accepted ground-based model for human spaceflight. The objectives of this report were to compare 3-MH excretion from two Life Sciences shuttle missions (duration 9.5 and 15 days, n = 9) and from 17 days of bed rest (n = 7) with 6 degrees head-down tilt. The bed rest study was designed to mimic an actual Life Sciences spaceflight and so incorporated an extensive battery of physiological tests focused on the musculoskeletal system. Results showed that nitrogen retention, based on excretion of nitrogen in the urine, was reduced during both bed rest [from 22 +/- 1 to 1 +/- 5 mg N x kg(-1) x day(-1) (n = 7; P < 0.05)] and spaceflight [from 57 +/- 9 to 19 +/- 3 mg N x kg(-1) x day(-1) (n = 9; P < 0.05)]. 3-MH excretion was unchanged with either bed rest [pre-bed rest 5.30 +/- 0.29 vs. bed rest 5.71 +/- 0.30 micromol 3-MH x kg(-1) x day(-1), n = 7; P = not significant (NS)] or spaceflight [preflight 4.98 +/- 0.37 vs. 4.59 +/- 0.39 micromol 3-MH x kg(-1) x day(-1) in-flight, n = 9; P = NS]. We conclude that 1) 3-MH excretion was unaffected by spaceflight on the shuttle or with bed rest plus exercise, and 2) because protein breakdown (elevated 3-MH) was increased on Skylab but not on the shuttle, it follows that muscle protein breakdown is not an inevitable consequence of spaceflight.

  4. Multiscale envelope manifold for enhanced fault diagnosis of rotating machines

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2015-02-01

    The wavelet transform has been widely used in the field of machinery fault diagnosis for its good property of band-pass filtering. However, the filtered signal still faces the contamination of in-band noise. This paper focuses on wavelet enveloping, and proposes a new method, called multiscale envelope manifold (MEM), to extract the envelope information of fault impacts with in-band noise suppression. The MEM addresses manifold learning on the wavelet envelopes at multiple scales. Specifically, the proposed method is conducted by three following steps. First, the continuous wavelet transform (CWT) with complex Morlet wavelet base is introduced to obtain the wavelet envelopes at all scales. Second, the wavelet envelopes are restricted in one or more narrow scale bands to simply include the envelope information of fault impacts. The scale band is determined through a smoothness index-based (SI-based) selection method by considering the impulsiveness inside the power spectrum. Third, the manifold learning algorithm is conducted on the wavelet envelopes at selected scales to extract the intrinsic envelope manifold of fault-related impulses. The MEM combines the envelope information at multiple scales in a nonlinear approach, and may thus preserve the factual envelope structure of machinery fault. Simulation studies and experimental verifications confirm that the new method is effective for enhanced fault diagnosis of rotating machines.

  5. Nonlinear breakdowns in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Smith, Frank T.

    1990-01-01

    Theoretical studies of boundary-layer transition are described, based on high Reynolds numbers and with attention drawn to nonlinear interactions, breakdowns and scales. The article notes in particular truly nonlinear theories for which the mean-flow profile is completely altered from its original state. Two- and three-dimensional flow theory and conjectures on turbulent boundary-layer structures are included. Specific recent findings noted, and in qualitative agreement with experiments, are: nonlinear finite-time break-ups in unsteady interactive boundary layers; strong vortex/wave interactions; and prediction of turbulent boundary-layer displacement- and stress sublayer-thicknesses.

  6. Kinetic theory of runaway air-breakdown

    SciTech Connect

    Roussel-Dupre, R.A.; Gurevich, A.V.; Tunnell, T.; Milikh, G.M.

    1993-09-01

    The kinetic theory for a new air breakdown mechanism advanced in a previous paper is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuming a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms.

  7. Kinetic theory of runaway air breakdown

    SciTech Connect

    Roussel-Dupre, R.A. ); Gurevich, A.V. ); Tunnell, T. ); Milikh, G.M. )

    1994-03-01

    The kinetic theory for an air breakdown mechanism advanced in a previous paper [Phys. Lett. A 165, 463 (1992)] is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuming a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms.

  8. Theoretical and experimental investigation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Krause, E.

    1986-01-01

    The slender-vortex approximation was analyzed for incompressible and compressible flow. First the equations of motion were reduced in an order of magnitude analysis. Then compatibility conditions were formulated for the inflow conditions. Thereafter finite-difference-solutions were constructed for incompressible and compressible flow. Finally it was shown that these solutions can be used to describe the flow in slender vortices. The analysis of the breakdown process must, however, be excluded, since its upstream influence cannot be predicted with the slender vortex approximation. The investigaton of this problem is left for future work.

  9. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    PubMed Central

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  10. Antiviral Activity of Graphene-Silver Nanocomposites against Non-Enveloped and Enveloped Viruses.

    PubMed

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  11. Masses and Envelope Binding Energies of Primary Stars at the Onset of a Common Envelope

    NASA Astrophysics Data System (ADS)

    van der Sluys, Marc; Politano, Michael; Taam, Ronald E.

    2010-12-01

    We present basic properties of primary stars that initiate a common envelope (CE) in a binary, while on the giant branch. We use the population-synthesis code described in Politano et al. [1] and follow the evolution of a population of binary stars up to the point where the primary fills its Roche lobe and initiates a CE. We then collect the properties of each system, in particular the donor mass and the binding energy of the donor's envelope, which are important for the treatment of a CE. We find that for most CEs, the donor mass is sufficiently low to define the core-envelope boundary reasonably well. We compute the envelope-structure parameter λenv from the binding energy and compare its distribution to typical assumptions that are made in population-synthesis codes. We conclude that λenv varies appreciably and that the assumption of a constant value for this parameter results in typical errors of 20-50%. In addition, such an assumption may well result in the implicit assumption of unintended and/or unphysical values for the CE parameter αCE. Finally, we discuss accurate existing analytic fits for the envelope binding energy, which make these oversimplified assumptions for λenv, and the use of λenv in general, unnecessary.

  12. Time-dependent MOS breakdown. [of Na contaminated capacitors

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Bates, E. T.; Maserjian, J.

    1976-01-01

    A general model for time-dependent breakdown in metal-oxide-silicon (MOS) structures is developed and related to experimental measurements on samples deliberately contaminated with Na. A statistical method is used for measuring the breakdown probability as a function of log time and applied field. It is shown that three time regions of breakdown can be explained respectively in terms of silicon surface defects, ion emission from the metal interface, and lateral ion diffusion at the silicon interface.

  13. Live Cell Dynamics of Promyelocytic Leukemia Nuclear Bodies upon Entry into and Exit from Mitosis

    PubMed Central

    Chen, Yi-Chun M.; Kappel, Constantin; Beaudouin, Joel; Eils, Roland

    2008-01-01

    Promyelocytic leukemia nuclear bodies (PML NBs) have been proposed to be involved in tumor suppression, viral defense, DNA repair, and/or transcriptional regulation. To study the dynamics of PML NBs during mitosis, we developed several U2OS cell lines stably coexpressing PML-enhanced cyan fluorescent protein with other individual marker proteins. Using three-dimensional time-lapse live cell imaging and four-dimensional particle tracking, we quantitatively demonstrated that PML NBs exhibit a high percentage of directed movement when cells progressed from prophase to prometaphase. The timing of this increased dynamic movement occurred just before or upon nuclear entry of cyclin B1, but before nuclear envelope breakdown. Our data suggest that entry into prophase leads to a loss of tethering between regions of chromatin and PML NBs, resulting in their increased dynamics. On exit from mitosis, Sp100 and Fas death domain-associated protein (Daxx) entered the daughter nuclei after a functional nuclear membrane was reformed. However, the recruitment of these proteins to PML NBs was delayed and correlated with the timing of de novo PML NB formation. Together, these results provide insight into the dynamic changes associated with PML NBs during mitosis. PMID:18480407

  14. Pre-breakdown evaluation of gas discharge mechanisms in microgaps

    SciTech Connect

    Semnani, Abbas; Peroulis, Dimitrios; Venkattraman, Ayyaswamy; Alexeenko, Alina A.

    2013-04-29

    The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.

  15. Effect of droplet-induced breakdown on CARS temperature measurements

    SciTech Connect

    Dunn-Rankin, D. ); Switzer, G.L. ); Obringer, C.A.; Jackson, T. )

    1990-07-20

    This research examines the potential for coherent anti-Stokes Raman scattering (CARS) to rovide reliable gas temperature measurements in the presence of liquid droplets. The droplets cause dielectric breakdown by focusing the CARS laser beams. This breakdown produces a plasma that can disrupt or obscure the CARS signal. Specifically, we examine the influence of laser induced breakdown on the CARS signal, and we determine the importance of droplet position relative to the CARS focal volume and droplet concentration on the reliability of CARS temperature measurements in droplet-laden flows. In addition, we propose a reliable data reduction procedure to minimize the disruptive influence of laser induced breakdown on CARS temperature.

  16. Laser radiation attenuation by sparks of optical breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitskii, O. A.

    1989-06-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases. Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  17. Laser Radiation Attenuation By Sparks Of Optical Breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitsky, O. A.

    1990-01-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases, Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  18. Functions of Carotenoid Metabolites and Breakdown Products

    NASA Astrophysics Data System (ADS)

    Britton, George

    It is not only intact carotenoids but also fragments of carotenoid molecules that have important natural functions and actions. The electron-rich polyene chain of the carotenoids is very susceptible to oxidative breakdown, which may be enzymic or non-enzymic. Central cleavage gives C20 compounds, retinoids, as described in Chapter 16. Cleavage at other positions gives smaller fragments, notably C10, C13 and C15 compounds that retain the carotenoid end group. The formation of these is described in Chapter 17 and in Volume 3, Chapter 4. Oxidative breakdown can also take place during storage, processing and curing of plant material, and the products contribute to the desired aroma/flavour properties of, for example, tea, wine and tobacco. The importance of vitamin A (C20) in animals is well known. Vitamin A deficiency is still a major concern in many parts of the world. It can lead to blindness and serious ill-health or death, especially in young children. Volatile smaller carotenoid fragments (`norisoprenoids') are widespread scent/flavour compounds in plants.

  19. Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications

    SciTech Connect

    Barefield Il, James E; Clegg, Samuel M; Le, Loan A; Lopez, Leon N

    2010-01-01

    In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements

  20. A Hybrid PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan G.; Moore, Christopher H.; Boerner, Jeremiah J.

    2014-10-01

    Triggered vacuum spark gaps (TVSGs) can be used as high voltage, high current switches with a fast switching time and a variable operating voltage, such as in pulsed power applications and crowbar circuits that protect against overvoltage conditions. Hybrid particle-in-cell (PIC) and direct simulation Monte Carlo (DSMC) methods can be used to simulate breakdown in TVSGs. In this talk, we present results of a one-dimensional hybrid PIC/DSMC model and show that changing the density and velocity of injected neutral particles (which can be related to the surface temperature) significantly changes both the time to breakdown and the existence of a short-lived starvation mode in the current waveform. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR.

    PubMed

    Luo, Zhi-Xiang; Xing, Yun-Zhao; Ling, Yan-Chun; Kleinhammes, Alfred; Wu, Yue

    2015-01-01

    Ion distribution in aqueous electrolytes near the interface plays a critical role in electrochemical, biological and colloidal systems, and is expected to be particularly significant inside nanoconfined regions. Electroneutrality of the total charge inside nanoconfined regions is commonly assumed a priori in solving ion distribution of aqueous electrolytes nanoconfined by uncharged hydrophobic surfaces with no direct experimental validation. Here, we use a quantitative nuclear magnetic resonance approach to investigate the properties of aqueous electrolytes nanoconfined in graphitic-like nanoporous carbon. Substantial electroneutrality breakdown in nanoconfined regions and very asymmetric responses of cations and anions to the charging of nanoconfining surfaces are observed. The electroneutrality breakdown is shown to depend strongly on the propensity of anions towards the water-carbon interface and such ion-specific response follows, generally, the anion ranking of the Hofmeister series. The experimental observations are further supported by numerical evaluation using the generalized Poisson-Boltzmann equation. PMID:25698150

  2. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses

    PubMed Central

    Wulan, Wahyu N.; Heydet, Deborah; Walker, Erin J.; Gahan, Michelle E.; Ghildyal, Reena

    2015-01-01

    Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs. PMID:26082769

  3. Envelope tracking CMOS power amplifier with high-speed CMOS envelope amplifier for mobile handsets

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Sakai, Yasufumi; Oishi, Kazuaki; Yamazaki, Hiroshi; Mori, Toshihiko; Yamaura, Shinji; Suto, Kazuo; Tanaka, Tetsu

    2014-01-01

    A high-efficiency CMOS power amplifier (PA) based on envelope tracking (ET) has been reported for a wideband code division multiple access (W-CDMA) and long term evolution (LTE) application. By adopting a high-speed CMOS envelope amplifier with current direction sensing, a 5% improvement in total power-added efficiency (PAE) and a 11 dB decrease in adjacent channel leakage ratio (ACLR) are achieved with a W-CDMA signal. Moreover, the proposed PA achieves a PAE of 25.4% for a 10 MHz LTE signal at an output power (Pout) of 25.6 dBm and a gain of 24 dB.

  4. Modeling pollutant penetration across building envelopes

    SciTech Connect

    Liu, De-Ling; Nazaroff, William W.

    2001-04-01

    As air infiltrates through unintentional openings in building envelopes, pollutants may interact with adjacent surfaces. Such interactions can alter human exposure to air pollutants of outdoor origin. We present modeling explorations of the proportion of particles and reactive gases (e.g., ozone) that penetrate building envelopes as air enters through cracks and wall cavities. Calculations were performed for idealized rectangular cracks, assuming regular geometry, smooth inner crack surface and steady airflow. Particles of 0.1-1.0 {micro}m diameter are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or larger, assuming a pressure difference of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles are significantly removed by means of gravitational settling and Brownian diffusion, respectively. In addition to crack geometry, ozone penetration depends on its reactivity with crack surfaces, as parameterized by the reaction probability. For reaction probabilities less than {approx}10{sup -5}, penetration is complete for cracks heights greater than 1 mm. However, penetration through mm scale cracks is small if the reaction probability is {approx}10{sup -4} or greater. For wall cavities, fiberglass insulation is an efficient particle filter, but particles would penetrate efficiently through uninsulated wall cavities or through insulated cavities with significant airflow bypass. The ozone reaction probability on fiberglass fibers was measured to be 10{sup -7} for fibers previously exposed to high ozone levels and 6 x 10{sup -6} for unexposed fibers. Over this range, ozone penetration through fiberglass insulation would vary from >90% to {approx}10-40%. Thus, under many conditions penetration is high; however, there are realistic circumstances in which building envelopes can provide substantial pollutant removal. Not enough is yet known about the detailed nature of pollutant penetration

  5. Antireflection pyrex envelopes for parabolic solar collectors

    SciTech Connect

    McCollister, H.L.; Pettit, R.B.

    1983-01-01

    Parabolic trough solar collectors utilize glass envelopes around the receiver tube in order to reduce thermal losses. Antireflective (AR) coatings applied to the envelope can potentially increase the solar transmittance by 0.07. An excellent AR surface can be formed on Pyrex (Corning Code 7740 glass) by first heat treating the glass to cause a compositional phase separation. After heat treating, a surface layer is removed using a pre-etch solution of aqueous ammonium bifluoride. Finally the AR layer is formed by etching in a solution containing hydrofluorosilic and ammonium bifluoride acid. Processing parameters studied included the phase separation temperature and heat treatment time, the pre-etch time, and the etching bath temperature and time. AR-coated samples with solar transmittance values >0.97, as compared to a value of 0.91 in untreated samples, were obtained for a range of heat treatment temperatures from 560 to 630/sup 0/C. The phase separation time and temperature interact so that at 630/sup 0/C short times are required (3 hours) while at 560/sup 0/C longer times are necessary (24 hours). Optimum values for the other processing parameters are 12 to 18 minutes in the pre-etching bath, and 5 to 10 minutes in the film forming bath when maintained between 35 and 45/sup 0/C. Application of this process to full scale 3 m long x 6 cm diameter Pyrex envelopes was successful in producing solar transmittance values greater than or equal to 0.97.

  6. Antireflection Pyrex envelopes for parabolic solar collectors

    SciTech Connect

    McCollister, H.L.; Pettit, R.B.

    1983-11-01

    Parabolic trough solar collectors utilize glass envelopes around the receiver tube in order to reduce thermal losses. Antireflective (AR) coatings applied to the envelope can potentially increase the solar transmittance by 7 percent. An excellent AR surface can be formed on Pyrex (Corning Code 7740 glass) by first heat treating the glass to cause a compositional phase separation. After heat treating, a surface layer is removed using a pre-etch solution of aqueous ammonium bifluoride. Finally, the AR layer is formed by etching in a solution containing hydrofluorosilic and ammonium bifluoride acid. Processing parameters studied included the phase separation temperature and heat treatment time, the pre-etch time, and the etching bath temperature and time. AR-coated samples with solar transmittance values > 0.97, as compared to a value of 0.91 in untreated samples, were obtained for a range of heat treatment temperatures from 560-630/sup 0/C. The phase separation time and temperature interact so that at 630/sup 0/C short times are required (3 hrs) while at 560/sup 0/C longer times are necessary (24 hrs). Optimum values for the other processing parameters are 12-18 min in the pre-etching bath, and 5-10 min in the film forming bath when maintained between 35-45/sup 0/C. Application of this process to full scale 3-m-long X 6-cm dia Pyrex envelopes was successful in producing solar transmittance values greater than or equal to 0.97.

  7. Low heat-leak cryogenic envelope

    DOEpatents

    DeHaan, James R.

    1976-10-19

    A plurality of cryogenic envelope sections are joined together to form a power transmission line. Each of the sections is comprised of inner and outer tubes having multilayer metalized plastic spirally wrapped within a vacuum chamber formed between the inner and outer tubes. A refrigeration tube traverses the vacuum chamber, but exits one section and enters another through thermal standoffs for reducing heat-leak from the outer tube to the refrigeration tube. The refrigeration tube passes through a spirally wrapped shield within each section's vacuum chamber in a manner so that the refrigeration tube is in close thermal contact with the shield, but is nevertheless slideable with respect thereto.

  8. Snell Envelope with Small Probability Criteria

    SciTech Connect

    Del Moral, Pierre Hu, Peng; Oudjane, Nadia

    2012-12-15

    We present a new algorithm to compute the Snell envelope in the specific case where the criteria to optimize is associated with a small probability or a rare event. This new approach combines the Stochastic Mesh approach of Broadie and Glasserman with a particle approximation scheme based on a specific change of measure designed to concentrate the computational effort in regions pointed out by the criteria. The theoretical analysis of this new algorithm provides non asymptotic convergence estimates. Finally, the numerical tests confirm the practical interest of this approach.

  9. Surface area coefficients for airship envelopes

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1922-01-01

    In naval architecture, it is customary to determine the wetted surface of a ship by means of some formula which involves the principal dimensions of the design and suitable constants. These formulas of naval architecture may be extended and applied to the calculation of the surface area of airship envelopes by the use of new values of the constants determined for this purpose. Surface area coefficients were calculated from the actual dimensions, surfaces, and volumes of 52 streamline bodies, which form a series covering the entire range of shapes used in the present aeronautical practice.

  10. Nuclear Sphingolipid Metabolism

    PubMed Central

    Lucki, Natasha C.; Sewer, Marion B.

    2014-01-01

    Nuclear lipid metabolism is implicated in various processes, including transcription, splicing, and DNA repair. Sphingolipids play roles in numerous cellular functions, and an emerging body of literature has identified roles for these lipid mediators in distinct nuclear processes. Different sphingolipid species are localized in various subnuclear domains, including chromatin, the nuclear matrix, and the nuclear envelope, where sphingolipids exert specific regulatory and structural functions. Sphingomyelin, the most abundant nuclear sphingolipid, plays both structural and regulatory roles in chromatin assembly and dynamics in addition to being an integral component of the nuclear matrix. Sphingosine-1-phosphate modulates histone acetylation, sphingosine is a ligand for steroidogenic factor 1, and nuclear accumulation of ceramide has been implicated in apoptosis. Finally, nuclear membrane–associated ganglioside GM1 plays a pivotal role in Ca2+ homeostasis. This review highlights research on the factors that control nuclear sphingolipid metabolism and summarizes the roles of these lipids in various nuclear processes. PMID:21888508

  11. Three-dimensional visualization of the Autographa californica multiple nucleopolyhedrovirus occlusion-derived virion envelopment process gives new clues as to its mechanism

    SciTech Connect

    Shi, Yang; Li, Kunpeng; Tang, Peiping; Li, Yinyin; Zhou, Qiang; Yang, Kai; Zhang, Qinfen

    2015-02-15

    Baculoviruses produce two virion phenotypes, occlusion-derived virion (ODV) and budded virion (BV). ODV envelopment occurs in the nucleus. Morphogenesis of the ODV has been studied extensively; however, the mechanisms underlying microvesicle formation and ODV envelopment in nuclei remain unclear. In this study, we used electron tomography (ET) together with the conventional electron microscopy to study the envelopment of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV. Our results demonstrate that not only the inner but also the outer nuclear membrane can invaginate and vesiculate into microvesicles and that intranuclear microvesicles are the direct source of the ODV membrane. Five main events in the ODV envelopment process are summarized, from which we propose a model to explain this process. - Highlights: • Both the inner and outer nuclear membranes could invaginate. • Both the inner and outer nuclear membranes could vesiculate into microvesicles. • Five main events in the ODV envelopment process are summarized. • A model is proposed to explain this ODV envelopment.

  12. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    NASA Astrophysics Data System (ADS)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  13. On-Line Safe Flight Envelope Determination for Impaired Aircraft

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John

    2015-01-01

    The design and simulation of an on-line algorithm which estimates the safe maneuvering envelope of aircraft is discussed in this paper. The trim envelope is estimated using probabilistic methods and efficient high-fidelity model based computations of attainable equilibrium sets. From this trim envelope, a robust reachability analysis provides the maneuverability limitations of the aircraft through an optimal control formulation. Both envelope limits are presented to the flight crew on the primary flight display. In the results section, scenarios are considered where this adaptive algorithm is capable of computing online changes to the maneuvering envelope due to impairment. Furthermore, corresponding updates to display features on the primary flight display are provided to potentially inform the flight crew of safety critical envelope alterations caused by the impairment.

  14. Confusion and its dynamics during device comprehension with breakdown scenarios.

    PubMed

    D'Mello, Sidney; Graesser, Art

    2014-09-01

    The incidence and dynamics of confusion during complex learning and problem solving were investigated in an experiment where participants first read illustrated texts on everyday devices (e.g., an electric bell) followed by breakdown scenarios reflecting device malfunctions (e.g., "When a person rang the bell there was a short ding and then no sound was heard"). The breakdown scenarios were expected to trigger impasses and put participants in a state of cognitive disequilibrium where they would experience confusion and engage in effortful confusion resolution activities in order to restore equilibrium. The results confirmed that participants reported more confusion when presented with the breakdown scenarios compared to control scenarios that involved focusing on important device components in the absence of malfunctions. A second-by-second analysis of the dynamics of confusion yielded two characteristic trajectories that distinguished participants who partially resolved their confusion from those who remained confused. Participants who were successful in partial confusion resolution while processing the breakdowns outperformed their counterparts on knowledge assessments after controlling for scholastic aptitude, engagement, and frustration. This effect was amplified for those who were highly confused by the breakdowns. There was no direct breakdown vs. control effect on learning, but being actively engaged and partially resolving confusion during breakdown processing were positive predictors of increased learning with the breakdown compared to control scenarios. Implications of our findings for theories that highlight the role of impasses, cognitive disequilibrium, and confusion to learning are discussed. PMID:24973629

  15. Modeling optical breakdown in dielectrics during ultrafast laser processing.

    PubMed

    Fan, C H; Longtin, J P

    2001-06-20

    Laser ablation is widely used in micromachining, manufacturing, thin-film formation, and bioengineering applications. During laser ablation the removal of material and quality of the features depend strongly on the optical breakdown region induced by the laser irradiance. The recent advent of amplified ultrafast lasers with pulse durations of less than 1 ps has generated considerable interest because of the ability of the lasers to process virtually all materials with high precision and minimal thermal damage. With ultrashort pulse widths, however, traditional breakdown models no longer accurately capture the laser-material interaction that leads to breakdown. A femtosecond breakdown model for dielectric solids and liquids is presented that characterizes the pulse behavior and predicts the time- and position-dependent breakdown region. The model includes the pulse propagation and small spatial extent of ultrashort laser pulses. Model results are presented and compared with classical breakdown models for 1-ns, 1-ps, and 150-fs pulses. The results show that the revised model is able to model breakdown accurately in the focal region for pulse durations of less than 10 ps. The model can also be of use in estimating the time- and position-resolved electron density in the interaction volume, the breakdown threshold of the material, shielding effects, and temperature distributions during ultrafast processing. PMID:18357333

  16. Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps

    NASA Astrophysics Data System (ADS)

    Meng, Guodong; Cheng, Yonghong; Dong, Chengye; Wu, Kai

    2014-12-01

    The understanding of electrical breakdown in atmospheric air across micrometer gaps is critically important for the insulation design of micro & nano electronic devices. In this paper, planar aluminum electrodes with gaps ranging from 2 μm to 40 μm were fabricated by microelectromechanical system technology. The influence factors including gap width and surface dielectric states were experimentally investigated using the home-built test and measurement system. Results showed that for SiO2 layers the current sustained at 2-3 nA during most of the pre-breakdown period, and then rose rapidly to 10-30 nA just before breakdown due to field electron emission, followed by the breakdown. The breakdown voltage curves demonstrated three stages: (1) a constantly decreasing region (the gap width d < 5 μm), where the field emission effect played an important role just near breakdown, supplying enough initial electrons for the breakdown process; (2) a plateau region with a near constant breakdown potential (5 μm < d < 10 μm) (3) a region for large gaps that adhered to Paschen's curve (d > 10 μm). And the surface dielectric states including the surface resistivity and secondary electron yield were verified to be related to the propagation of discharge due to the interaction between initial electrons and dielectrics.

  17. 7 CFR 51.1009 - Stylar end breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stylar end breakdown. 51.1009 Section 51.1009... STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1009 Stylar end breakdown... affected area becomes darker and usually sinks below the healthy surface, but the area remains firm...

  18. Precision envelope detector and linear rectifier circuitry

    DOEpatents

    Davis, Thomas J.

    1980-01-01

    Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

  19. Glycolate transporter of the pea chloroplast envelope

    SciTech Connect

    Howitz, K.T.

    1985-01-01

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of (/sup 14/C)glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H/sup +/ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on (1-/sup 14/C)D-glycerate transport.

  20. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  1. Sensitivity to changes in amplitude envelope

    NASA Astrophysics Data System (ADS)

    Gallun, Erick; Hafter, Ervin R.; Bonnel, Anne-Marie

    2002-05-01

    Detection of a brief increment in a tonal pedestal is less well predicted by energy-detection (e.g., Macmillan, 1973; Bonnel and Hafter, 1997) than by sensitivity to changes in the stimulus envelope. As this implies a mechanism similar to an envelope extractor (Viemeister, 1979), sinusoidal amplitude modulation was used to mask a single ramped increment (10, 45, or 70 ms) added to a 1000-ms pedestal with carrier frequency (cf)=477 Hz. As in informational masking (Neff, 1994) and ``modulation-detection interference'' (Yost and Sheft, 1989), interference occurred with masker cfs of 477 and 2013 Hz. While slight masking was found with modulation frequencies (mfs) from 16 to 96 Hz, masking grew inversely with still lower mfs, being greatest for mf=4 Hz. This division is reminiscent of that said to separate sensations of ``roughness'' and ``beats,'' respectively (Terhardt, 1974), with the latter also being related to durations associated with auditory groupings in music and speech. Importantly, this result held for all of the signal durations and onset-offset ramps tested, suggesting that an increment on a pedestal is treated as a single auditory object whose detection is most difficult in the presence of other objects (in this case, ``beats'').

  2. Solution of K-V envelope equations

    SciTech Connect

    Anderson, O.A.

    1995-04-01

    The envelope equations for a KV beam with space charge have been analyzed systematically by an e expansion followed by integrations. The focusing profile as a function of axial length is assumed to be symmetric but otherwise arbitrary. Given the bean current, emittance, and peak focusing field, we find the envelopes a(s) and b(s) and obtain , a{sub max}, {sigma}, and {sigma}{sub 0}. Explicit results are presented for various truncations of the expansion. The zeroth order results correspond to those from the well-known smooth approximation; the same convenient format is retained for the higher order cases. The first order results, involving single correction terms, give 3--10 times better accuracy and are good to {approximately}1% at {sigma}{sub 0} = 70{degree}. Third order gives a factor of 10--30 improvement over the smooth approximation and derived quantities accurate to {approximately}1% at {sigma}{sub 0} = 112 {degree}. The first order expressions are convenient design tools. They lend themselves to variable energy problems and have been applied to the design, construction, and testing of ESQ accelerators at LBL.

  3. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  4. Groupwise Dimension Reduction via Envelope Method

    PubMed Central

    Guo, Zifang; Li, Lexin; Lu, Wenbin; Li, Bing

    2016-01-01

    The family of sufficient dimension reduction (SDR) methods that produce informative combinations of predictors, or indices, are particularly useful for high dimensional regression analysis. In many such analyses, it becomes increasingly common that there is available a priori subject knowledge of the predictors; e.g., they belong to different groups. While many recent SDR proposals have greatly expanded the scope of the methods’ applicability, how to effectively incorporate the prior predictor structure information remains a challenge. In this article, we aim at dimension reduction that recovers full regression information while preserving the predictor group structure. Built upon a new concept of the direct sum envelope, we introduce a systematic way to incorporate the group information in most existing SDR estimators. As a result, the reduction outcomes are much easier to interpret. Moreover, the envelope method provides a principled way to build a variety of prior structures into dimension reduction analysis. Both simulations and real data analysis demonstrate the competent numerical performance of the new method. PMID:26973362

  5. Update on the biochemistry of chlorophyll breakdown.

    PubMed

    Hörtensteiner, Stefan

    2013-08-01

    In land plants, chlorophyll is broken down to colorless linear tetrapyrroles in a highly conserved multi-step pathway. The pathway is termed the 'PAO pathway', because the opening of the chlorine macrocycle present in chlorophyll catalyzed by pheophorbide a oxygenase (PAO), the key enzyme of the pathway, provides the characteristic structural basis found in all further downstream chlorophyll breakdown products. To date, most of the biochemical steps of the PAO pathway have been elucidated and genes encoding many of the chlorophyll catabolic enzymes been identified. This review summarizes the current knowledge on the biochemistry of the PAO pathway and provides insight into recent progress made in the field that indicates that the pathway is more complex than thought in the past. PMID:22790503

  6. Vortex Breakdown-Aircraft Tail Interaction

    NASA Astrophysics Data System (ADS)

    Kim, Younjong; Rockwell, Donald

    2003-11-01

    The interaction of vortex breakdown with the tail of an aircraft can lead to severe unsteady loading and vibration. A technique of high-image-density particle image velocimetry is employed to characterize the instantaneous and averaged structure of a broken-down vortex with a generic tail configuration. Interaction of the primary (incident) vortex with the tail results in formation of a relatively large-scale cluster of secondary vorticity. The coexistence of these primary and secondary vortical structures is intimately associated with the unsteadiness of the vortex system, and thereby the near-surface fluctuations associated with buffet loading. Instantaneous and averaged representations of the vortex-tail interaction provide insight into the complex physics. Furthermore, a low order POD model is employed to characterize the most energetic modes of the vortex-tail interaction.

  7. Vortex breakdown in a truncated conical bioreactor

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2015-12-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air-water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small Hw, the AMF effect dominates. As Hw increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors.

  8. State Regulation, Family Breakdown, and Lone Motherhood

    PubMed Central

    Meek, Jeff

    2014-01-01

    Using a range of parish records, records from the Registrar General of Scotland, charity organizations, and media reports, this article contributes to the historiography which evaluates the effects of World War I in Britain as well as the history of lone mothers and their children. It highlights how during the war, women, especially lone mothers, made significant gains through the welfare system, changing approaches to illegitimacy and the plentiful nature of women’s work but also how in doing so this brought them under greater surveillance by the state, local parishes, and charity organizations. Moreover, as this article will demonstrate, many of the gains made by women were short-lived and in fact the war contributed to high levels of family breakdown and gendered and intergenerational poverty endured by lone mothers and their children. PMID:26538794

  9. Laser-induced breakdown spectroscopy in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Yuan, Ting-Bi; Hou, Zong-Yu; Zhou, Wei-Dong; Lu, Ji-Dong; Ding, Hong-Bin; Zeng, Xiao-Yan

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS community is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS community are reviewed for the following four aspects: fundamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.

  10. Activation of bovine oocytes penetrated after germinal vesicle breakdown.

    PubMed

    Abeydeera, L R; Okuda, K; Niwa, K

    1994-11-01

    The present study was designed to examine the ability of bovine oocytes, after germinal vesicle breakdown (GVBD), to be activated by sperm penetration and the sequence of sperm nuclear transformation. Bovine oocytes cultured for 8 h in maturation medium (tissue culture medium TCM-199 containing 10% fetal calf serum) were inseminated in Brackett and Oliphant's medium supplemented with bovine serum albumin (10 mg/ml), caffeine (5 mM) and heparin (10 micrograms/ml). When oocytes were transferred to the maturation medium 8 h after insemination and additionally cultured for 5-40 h at 39 degrees C in 5% CO2 in air, 71-76% of oocytes were penetrated and polyspermy (67-75%) was common. The proportions of penetrated oocytes that were activated significantly increased with the lapse of the additional culture time, reaching 88% and 87% by 25 and 40 h after additional culture, respectively. When compared with unpenetrated oocytes, significantly higher proportions of penetrated oocytes reached metaphase II or beyond 15 and 25 h after additional culture. After penetration, sperm nuclei were transformed into metaphase chromosomes and then to telophase chromosomes before the formation of male pronuclei. These results provide evidence that bovine oocytes acquire the ability to respond to sperm-mediated activation soon after GVBD. PMID:8665157

  11. Analysis Code for High Gradient Dielectric Insulator Surface Breakdown

    SciTech Connect

    Ives, Robert Lawrence; Verboncoeur, John; Aldan, Manuel

    2010-05-30

    High voltage (HV) insulators are critical components in high-energy, accelerator and pulsed power systems that drive diverse applications in the national security, nuclear weapons science, defense and industrial arenas. In these systems, the insulator may separate vacuum/non-vacuum regions or conductors with high electrical field gradients. These insulators will often fail at electric fields over an order of magnitude lower than their intrinsic dielectric strength due to flashover at the dielectric interface. Decades of studies have produced a wealth of information on fundamental processes and mechanisms important for flashover initiation, but only for relatively simple insulator configurations in controlled environments. Accelerator and pulsed power system designers are faced with applying the fundamental knowledge to complex, operational devices with escalating HV requirements. Designers are forced to rely on “best practices” and expensive prototype testing, providing boundaries for successful operation. However, the safety margin is difficult to estimate, and system design must be very conservative for situations where testing is not practicable, or replacement of failed parts is disruptive or expensive. The Phase I program demonstrated the feasibility of developing an advanced code for modeling insulator breakdown. Such a code would be of great interest for a number of applications, including high energy physics, microwave source development, fusion sciences, and other research and industrial applications using high voltage devices.

  12. Rotation prevents finite-time breakdown

    NASA Astrophysics Data System (ADS)

    Liu, Hailiang; Tadmor, Eitan

    2004-02-01

    We consider a two-dimensional (2D) convection model augmented with the rotational Coriolis forcing, Ut+ U·∇ xU=2 kU⊥, with a fixed 2 k being the inverse Rossby number. We ask whether the action of dispersive rotational forcing alone, U⊥, prevents the generic finite-time breakdown of the free nonlinear convection. The answer provided in this work is a conditional yes. Namely, we show that the rotating Euler equations admit global smooth solutions for a subset of generic initial configurations. With other configurations, however, finite-time breakdown of solutions may and actually does occur. Thus, global regularity depends on whether the initial configuration crosses an intrinsic, O(1) critical threshold (CT), which is quantified in terms of the initial vorticity, ω0=∇× U0, and the initial spectral gap associated with the 2×2 initial velocity gradient, η0≔ λ2(0)- λ1(0), λj(0)= λj(∇ U0). Specifically, global regularity of the rotational Euler equation is ensured if and only if 4kω 0(α)+η 20(α)<4k 2,∀α∈ R2. We also prove that the velocity field remains smooth if and only if it is periodic. An equivalent Lagrangian formulation reconfirms the CT and shows a global periodicity of velocity field as well as the associated particle orbits. Moreover, we observe yet another remarkable periodic behavior exhibited by the gradient of the velocity field. The spectral dynamics of the Eulerian formulation [SIAM J. Math. Anal. 33 (2001) 930] reveals that the vorticity and the divergence of the flow evolve with their own path-dependent period. We conclude with a kinetic formulation of the rotating Euler equation.

  13. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  14. On the electric breakdown in liquid argon at centimeter scale

    NASA Astrophysics Data System (ADS)

    Auger, M.; Blatter, A.; Ereditato, A.; Goeldi, D.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C. Rudolf; Strauss, T.; Weber, M. S.

    2016-03-01

    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  15. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    NASA Technical Reports Server (NTRS)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  16. Mechanotransduction and nuclear function.

    PubMed

    Graham, David M; Burridge, Keith

    2016-06-01

    Many signaling pathways converge on the nucleus to regulate crucial nuclear events such as transcription, DNA replication and cell cycle progression. Although the vast majority of research in this area has focused on signals generated in response to hormones or other soluble factors, the nucleus also responds to mechanical forces. During the past decade or so, much has been learned about how mechanical force can affect transcription, as well as the growth and differentiation of cells. Much has also been learned about how force is transmitted via the cytoskeleton to the nucleus and then across the nuclear envelope to the nuclear lamina and chromatin. In this brief review, we focus on some of the key proteins that transmit mechanical signals across the nuclear envelope. PMID:27018929

  17. Defining the Core Proteome of the Chloroplast Envelope Membranes

    PubMed Central

    Simm, Stefan; Papasotiriou, Dimitrios G.; Ibrahim, Mohamed; Leisegang, Matthias S.; Müller, Bernd; Schorge, Tobias; Karas, Michael; Mirus, Oliver; Sommer, Maik S.; Schleiff, Enrico

    2013-01-01

    High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided. PMID:23390424

  18. Pushing the Envelope of Extreme Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  19. Cricket team selection using data envelopment analysis.

    PubMed

    Amin, Gholam R; Sharma, Sujeet Kumar

    2014-01-01

    This paper suggests a new method for cricket team selection using data envelopment analysis (DEA). We propose a DEA formulation for evaluation of cricket players in different capabilities using multiple outputs. This evaluation determines efficient and inefficient cricket players and ranks them on the basis of DEA scores. The ranking can be used to choose the required number of players for a cricket team in each cricketing capability. A real dataset, Indian Premier League 4 (IPL 2011), cricket players having various capabilities is used to choose the best cricket team. The proposed method has the advantage of considering multiple factors related to the performance of players in multiple capabilities collected from IPL 4 and aggregates their scores using a linear programming DEA model. This DEA Aggregation gives the scores of players objectively instead of using subjective computations. The proposed DEA method can be used to form a national cricket team from several clubs or a team of top cricketers. PMID:24444231

  20. Fullerenes and fulleranes in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-07-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C60 and C+ 60 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C+ 60 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C60 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry.

  1. Antireflection Pyrex envelopes for parabolic solar collectors

    NASA Astrophysics Data System (ADS)

    McCollister, H. L.; Pettit, R. B.

    1983-11-01

    Antireflective (AR) coatings, applied to the glass envelopes used in parabolic trough solar collectors around the receiver tube in order to reduce thermal losses, can increase solar transmittance by 7 percent. An AR surface has been formed on Pyrex by first heat treating the glass to cause a compositional phase separation, removing a surface layer after heat treatment through the use of a preetching solution, and finally etching in a solution that contains hydrofluorosilic and ammonium bifluoride acids. AR-coated samples with solar transmittance values of more than 0.97, by comparison to an untreated sample value of 0.91, have been obtained for the 560-630 C range of heat treatment temperatures. Optimum values have also been determined for the other processing parameters.

  2. SO2 and SO in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Guilloteau, S.; Lucas, R.; Omont, A.; Nguyen-Q-Rieu

    1986-09-01

    After its first detection in circumstellar envelopes (Lucas et al. 1986) SO2 has been systematically searched for with the IRAM 30-m telescope. It has been found in 3 new stars, with very strong lines in OH 231.8+4.2 (TA* ≈ 0.7 - 1.4K, Trot ≈ 25K, Δv ≈ 80 km s-1, TA*(SO2) > TA*(CO) ) and relatively strong ones in OH 26.5+0.6. SO has been detected for the first time in a circumstellar shell, in OH 231.8+4.2. H13CN has been observed in the same star, suggesting a very large abundance of 13C.

  3. Diversity in the fertilization envelopes of echinoderms

    PubMed Central

    Oulhen, Nathalie; Reich, Adrian; Wong, Julian L.; Wessel, Gary M.

    2013-01-01

    Cell surface changes in an egg at fertilization are essential to begin development and for protecting the zygote. Most fertilized eggs construct a barrier around themselves by modifying their original extracellular matrix. This construction usually results from calcium induced exocytosis of cortical granules, the contents of which in sea urchins function to form the fertilization envelope (FE), an extracellular matrix of cortical granule contents built upon a vitelline layer scaffold. Here we examined the molecular mechanism of this process in sea stars, a close relative of the sea urchins, and analyze the evolutionary changes that likely occurred in the functionality of this structure between these two organisms. We find that the FE of sea stars is more permeable than in sea urchins, allowing diffusion of molecules in excess of 2 megadaltons. Through a proteomic and transcriptomic approach, we find that most, but not all of the proteins present in the sea urchin envelope are present in sea stars, including SFE9, proteoliaisin, rendezvin, and ovoperoxidase. The mRNAs encoding these FE proteins accumulated most densely in early oocytes, and then beginning with vitellogenesis, these mRNAs deceased in abundance to levels nearly undetectable in eggs. Antibodies to the SFE9 protein of sea stars showed that the cortical granules in sea star also accumulated most significantly in early oocytes, and different from sea urchins, they translocated to the cortex of the oocytes well before meiotic initiation. These results suggest that the preparation of the cell surface changes in sea urchins has been shifted to later in oogenesis and perhaps reflects the meiotic differences among the species–sea star oocytes are stored in prophase of meiosis and fertilized during the meiotic divisions, as in most animals, whereas sea urchins are one of the few taxa in which eggs have completed meiosis prior to fertilization. PMID:23331915

  4. Asymmetric Accretion Flows within a Common Envelope

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-01

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle-Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  5. Implications of dielectric breakdown weathering for the lunar regolith

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N.; Spence, H. E.; Izenberg, N.

    2015-12-01

    Solar energetic particles (SEPs) penetrate the lunar regolith to depths of ~1 mm and cause deep dielectric charging. The greatest charging occurs in permanently shadowed regions (PSRs), where temperatures make the electrical conductivity extremely low, which inhibits dissipating the charge buildup. Charging by very large SEP events may create subsurface electric fields that are strong enough to cause dielectric breakdown, or sparking, in the upper ~1 mm. Previous work has shown that, in PSRs, this breakdown weathering may have affected 10-25% of the meteoritically gardened regolith in PSRs and may thus be comparable to meteoritic weathering. But even regolith at lower latitudes can reach temperatures <100 K at night, causing it to dissipate charging in a few days--still enough to allow significant charging during large SEP events. Consequently, regolith at lower latitudes may also be susceptible to breakdown. We show how up to a few percent of gardened regolith at lower latitudes may have experienced breakdown. We also estimate the percentage of regolith that experienced breakdown during the two events detected in January and March 2012 by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO). Finally, we discuss what this more global view of breakdown weathering implies about the possibility of Apollo and Luna soil samples containing material that may have experienced breakdown.

  6. A nuclear factor required for specific translation of cyclin B may control the timing of first meiotic cleavage in starfish oocytes.

    PubMed Central

    Galas, S; Barakat, H; Dorée, M; Picard, A

    1993-01-01

    In most animals, the rate of cyclin B synthesis increases after nuclear envelope breakdown during the first meiotic cell cycle. We have found that cyclin B-cdc2 kinase activity drops earlier in emetine-treated than in control starfish oocytes, although the protein synthesis inhibitor does not activate the cyclin degradation pathway prematurely. Moreover, protein synthesis is required to prevent meiotic cleavage to occur prematurely, sometimes before chromosomes have segregated on the metaphase plate. In normal conditions, increased synthesis of cyclin B after germinal vesicle breakdown (GVBD) balances cyclin degradation and increases the time required for cyclin B-cdc2 kinase to drop below the level that inhibits cleavage. Taken together, these results point to cyclin B as a possible candidate that could explain the need for increased protein synthesis during meiosis I. Although direct experimental evidence was not provided in the present work, cyclin B synthesis after GVBD may be important for correct segregation of homologous chromosomes at the end of first meiotic metaphase, as shown by a variety of cytological disorders that accompany premature cleavage. Although the overall stimulation of protein synthesis because of cdc2 kinase activation is still observed in oocytes from which the germinal vesicle has been removed before hormonal stimulation, the main increase of cyclin B synthesis normally observed after germinal vesicle breakdown is suppressed. The nuclear factor required for specific translation of cyclin B after GVBD is not cyclin B mRNA, as shown by using a highly sensitive reverse transcription followed by polymerase chain reaction procedure that failed to detect any cyclin B mRNA in isolated germinal vesicles. Images PMID:7513215

  7. Observations of fast VHF-bright positive breakdown

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Lapierre, J. L.; Edens, H. E.

    2014-12-01

    Positive breakdown during lightning discharges is generally considered to be weak and slowly propagating, as high speed video observations show it to be optically weak, and studies of the development of cloud-to-ground (CG) and intracloud (IC) flashes show development in the negative charge region to be slow. With the proper instrumentation, however, fast positive breakdown is a relatively common feature of both CG and IC flashes. The breakdown is bright at VHF, but is smoothly continuous so that time-of-arrival VHF mapping systems such as the Lightning Mapping Array are usually unable to detect or locate its occurrence. However, the breakdown is easily locatable using interferometric mapping techniques. Such an interferometer was developed at NM Tech in the 1980s and used in the CaPE studies at Kennedy Space Center in 1991, where it observed fast (1-6 × 107 m/s), VHF-bright positive leaders propagating away from the source region of negative CG return strokes (Shao et al., 1995). Here we report new observations of fast positive breakdown, obtained with Langmuir Laboratory's flash-continuous broadband VHF interferometer, that confirm and substantially expand our understanding of the phenomena. Numerous examples have been observed following return strokes of negative CG flashes, including bolt-from-blue discharges, and during K-processes of both IC and CG flashes. The breakdown typically propagates a few kilometers at speeds on the order of 107 m/s and frequently produces some of the brightest radiation of the flash. A particularly interesting feature of the breakdown is that it propagates into regions of previously un-ionized air. Then following the breakdown, frequently no further VHF emission is seen along or beyond its channel, indicating that the channel formed is not conducting. But on occasion, especially during cloud-to-ground flashes, the end of the fast positive breakdown turns into a normal, slowly propagating positive leader.

  8. Data Envelopment Analysis: Measurement of Educational Efficiency in Texas

    ERIC Educational Resources Information Center

    Carter, Lacy

    2012-01-01

    The purpose of this study was to examine the efficiency of Texas public school districts through Data Envelopment Analysis. The Data Envelopment Analysis estimation method calculated and assigned efficiency scores to each of the 931 school districts considered in the study. The efficiency scores were utilized in two phases. First, the school…

  9. Stochastic averaging of energy envelope of Preisach hysteretic systems

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ying, Z. G.; Zhu, W. Q.

    2009-04-01

    A new stochastic averaging technique for analyzing the response of a single-degree-of-freedom Preisach hysteretic system with nonlocal memory under stationary Gaussian stochastic excitation is proposed. An equivalent nonhysteretic nonlinear system with amplitude-envelope-dependent damping and stiffness is firstly obtained from the given system by using the generalized harmonic balance technique. The relationship between the amplitude envelope and the energy envelope is then established, and the equivalent damping and stiffness coefficients are expressed as functions of the energy envelope. The available range of the yielding force of the system is extended and also the strong nonlinear stiffness of the system is incorporated so as to improve the response prediction. Finally, an averaged Itô stochastic differential equation for the energy envelope of the system as one-dimensional diffusion process is derived by using the stochastic averaging method of energy envelope, and the Fokker-Planck-Kolmogorov equation associated with the averaged Itô equation is solved to obtain stationary probability densities of the energy envelope and amplitude envelope. The approximate solutions are validated by using the Monte Carlo simulation.

  10. Rolling bearing feature frequency extraction using extreme average envelope decomposition

    NASA Astrophysics Data System (ADS)

    Shi, Kunju; Liu, Shulin; Jiang, Chao; Zhang, Hongli

    2015-12-01

    The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the effective information properly. The traditional classical adaptive signal decomposition method, such as EMD, exists the problems of mode mixing, low decomposition accuracy etc. Aiming at those problems, EAED(extreme average envelope decomposition) method is presented based on EMD. EAED method has three advantages. Firstly, it is completed through midpoint envelopment method rather than using maximum and minimum envelopment respectively as used in EMD. Therefore, the average variability of the signal can be described accurately. Secondly, in order to reduce the envelope errors during the signal decomposition, replacing two envelopes with one envelope strategy is presented. Thirdly, the similar triangle principle is utilized to calculate the time of extreme average points accurately. Thus, the influence of sampling frequency on the calculation results can be significantly reduced. Experimental results show that EAED could separate out single frequency components from a complex signal gradually. EAED could not only isolate three kinds of typical bearing fault characteristic of vibration frequency components but also has fewer decomposition layers. EAED replaces quadratic enveloping to an envelope which ensuring to isolate the fault characteristic frequency under the condition of less decomposition layers. Therefore, the precision of signal decomposition is improved.

  11. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height and forward velocity (including hover) under which a...

  12. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  13. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height and forward velocity (including hover) under which a...

  14. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  15. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  16. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height and forward velocity (including hover) under which a...

  17. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Height-velocity envelope. 29.87 Section 29.87 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height...

  18. 14 CFR 27.87 - Height-speed envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any combination of height and forward speed (including hover) under which a safe landing cannot be made under...

  19. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  20. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  1. Fundamental studies of passivity and passivity breakdown. Final report

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed ``point defects models`` (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  2. Back gate induced breakdown mechanisms for thin layer SOI field P-channel LDMOS

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Qiao, Ming; He, Yitao; Yang, Wen; Li, Zhaoji; Zhang, Bo

    2016-01-01

    The back gate (BG) induced breakdown mechanisms for thin layer SOI Field P-channel LDMOS (FPLDMOS) are investigated in this paper. Surface breakdown, bulk breakdown and punch-through breakdown are discussed, revealing that the block capability depends on not drain voltage (Vd), but also BG voltage (VBG). For surface breakdown, the breakdown voltage (BVs) increases linearly with VBG increasing. An expression of BVs on VBG is given, providing a good fitting to measured and simulated results. Bulk breakdown with a low breakdown voltage is attributed to high VBG. VBG induces depletion in n-well, giving rise to punch-through breakdown. A design requirement for the thin layer SOI FPLDMOS is proposed that breakdown voltages for the three breakdown mechanisms are compelled to be higher than the supply voltage of switching IC.

  3. Control of vortex breakdown by temperature gradients

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel Angel; Shtern, Vladimir

    2003-11-01

    An axial gradient of temperature can either suppress or enhance vortex breakdown (VB). The underlying mechanism of such VB control is centrifugal or/and gravitational convection. An additional thermal-convection flow directed oppositely to the base flow suppresses VB while a co-flow enhances VB. Our numerical simulations of a compressible flow in a sealed cylinder induced by a rotating bottom disk clearly reveal these effects. We vary the temperature gradient (ɛ), Mach (Ma), Froude (Fr), and Reynolds (Re) numbers, and the aspect ratio (h). As ɛ increases (ɛ>0 corresponding to a temperature gradient parallel to the downward near-axis flow), the VB "bubble," which occurs at ɛ=0, diminishes and then totally disappears. The opposite temperature gradient (ɛ<0) enlarges the VB bubble and makes the flow unsteady. These effects of centrifugal convection become more prominent with increasing Ma and Re. Density variations induced by the temperature gradients are more important for VB control than those induced by the increase in Ma. A new efficient time-evolution code for axisymmetric flows of an ideal gas has facilitated these simulations.

  4. Magnetic breakdown in double quantum wells

    SciTech Connect

    Harff, N.E. |; Simmons, J.A.; Klem, J.F.; Boebinger, G.S.; Pfeiffer, L.N.; West, K.W.

    1996-08-01

    The authors find that a sufficiently large perpendicular magnetic field (B{sub {perpendicular}}) causes magnetic breakdown (MB) in coupled double quantum wells (QWs) that are subject to an in-plane magnetic field (B{sub {parallel}}). B{sub {parallel}} shifts one QW dispersion curve with respect to that of the other QW, resulting in an anticrossing and an energy gap. When the gap is below the Fermi level the resulting Fermi surface (FS) consists of two components, a lens-shaped inner orbit and an hour-glass shaped outer orbit. B{sub {perpendicular}} causes Landau level formation and Shubnikov-de Haas (SdH) oscillations for each component of the FS. MB occurs when the magnetic forces from B{sub {perpendicular}} become dominant and the electrons move on free-electron circular orbits rather than on the lens and hour-glass orbits. MB is observed by identifying the peaks present in the Fourier power spectrum of the longitudinal resistance vs. 1/B{sub {perpendicular}} at constant B{sub {parallel}}, an arrangement achieved with an in-situ tilting sample holder. Results are presented for two strongly coupled GaAs/AlGaAs DQW samples.

  5. Nanopore Fabrication by Controlled Dielectric Breakdown

    PubMed Central

    Tabard-Cossa, Vincent

    2014-01-01

    Nanofabrication techniques for achieving dimensional control at the nanometer scale are generally equipment-intensive and time-consuming. The use of energetic beams of electrons or ions has placed the fabrication of nanopores in thin solid-state membranes within reach of some academic laboratories, yet these tools are not accessible to many researchers and are poorly suited for mass-production. Here we describe a fast and simple approach for fabricating a single nanopore down to 2-nm in size with sub-nm precision, directly in solution, by controlling dielectric breakdown at the nanoscale. The method relies on applying a voltage across an insulating membrane to generate a high electric field, while monitoring the induced leakage current. We show that nanopores fabricated by this method produce clear electrical signals from translocating DNA molecules. Considering the tremendous reduction in complexity and cost, we envision this fabrication strategy would not only benefit researchers from the physical and life sciences interested in gaining reliable access to solid-state nanopores, but may provide a path towards manufacturing of nanopore-based biotechnologies. PMID:24658537

  6. Electric field breakdown in single molecule junctions.

    PubMed

    Li, Haixing; Su, Timothy A; Zhang, Vivian; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2015-04-22

    Here we study the stability and rupture of molecular junctions under high voltage bias at the single molecule/single bond level using the scanning tunneling microscope-based break-junction technique. We synthesize carbon-, silicon-, and germanium-based molecular wires terminated by aurophilic linker groups and study how the molecular backbone and linker group affect the probability of voltage-induced junction rupture. First, we find that junctions formed with covalent S-Au bonds are robust under high voltage and their rupture does not demonstrate bias dependence within our bias range. In contrast, junctions formed through donor-acceptor bonds rupture more frequently, and their rupture probability demonstrates a strong bias dependence. Moreover, we find that the junction rupture probability increases significantly above ∼1 V in junctions formed from methylthiol-terminated disilanes and digermanes, indicating a voltage-induced rupture of individual Si-Si and Ge-Ge bonds. Finally, we compare the rupture probabilities of the thiol-terminated silane derivatives containing Si-Si, Si-C, and Si-O bonds and find that Si-C backbones have higher probabilities of sustaining the highest voltage. These results establish a new method for studying electric field breakdown phenomena at the single molecule level. PMID:25675085

  7. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  8. Novel laser breakdown spectrometer for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mirov, Sergey B.; Pitt, Robert E.; Dergachev, Alex Y.; Lee, Wonwoo; Martyshkin, Dmitri V.; Mirov, Olga D.; Randolph, Jeremy J.; DeLucas, Lawrence J.; Brouillette, Christie G.; Basiev, Tasoltan T.; Orlovskii, Yurii V.; Alimov, Olimkhon K.; Vorob'ev, Ivan N.

    1999-11-01

    A novel experimental set-up using laser-induced breakdown spectroscopy (LIBS) for environmental analyses of heavy metals is described in this paper. It is based on state-of-the-art spectroscopic equipment, advanced detectors, and laser atomizers: a 0.75 m spectrometer ARC-750, intensified TE- cooled 256 X 1024 CCD camera, probe with fiber optic guide for signal transportation, and Nd:YAG laser plasma atomizers with two different methods for sample delivery. In the first method the liquid solution containing the atoms to be investigated is drawn into the chamber of the nebulizer. The mixture passes through the nozzle, accompanied by argon gas along with formed aerosol, and enters the plasma plume, which is generated by the laser spark in argon. The second method is based on direct generating of the plasma in the water jet of a continuously circulating sample. LIBS testing of samples containing Al, Cd, Cu, Fe, Pb, Zn, and Cr ions was compared with results using atomic absorption spectrophotometry. Initial indications showed good agreement between these two methods. Detection levels of less than 100 ppb were observed for copper and chromium. The described spectroscopic system exhibits high sensitivity, accumulation of luminescence spectrum in real time; and high dynamic range for concentrations detection from 100 ppb to 1000 ppm.

  9. Theoretical studies of breakdown in random media

    SciTech Connect

    Duxbury, P.M.

    1993-01-01

    Failure initiates in local regions of a material microstructure which are either especially weak, or which carry an especially large field. The size and location of these weak or hotspots'' depends on the microstructure, and is especially sensitive to microstructural disorder. Using model random microstructures, we have developed analytic and numerical tools to predict where failure initiates, its initiation field, and how it propagates from the initiation sites. We have found it useful to divide the failure process into a nucleation stage, in which damage occurs quite randomly throughout the material, a localisation stage, where a critical crack nucleates, and a catastrophic failure stage during which an unstable crack propagates through the material. Results are being compared with experiments on: Highly porous materials (porous glass, and porous gold); dielectric breakdown of metal loaded insulators (e.g. aluminum in poly-ethyelene) and; the critical current of superconductors containing cracks (Nb and Nb[sub 3]Ge). This report summarises our efforts in these areas.

  10. Rupture models with dynamically determined breakdown displacement

    USGS Publications Warehouse

    Andrews, D.J.

    2004-01-01

    The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.

  11. Soft breakdown characteristics of ultralow-k time-dependent dielectric breakdown for advanced complementary metal-oxide semiconductor technologies

    NASA Astrophysics Data System (ADS)

    Chen, Fen; Shinosky, Michael

    2010-09-01

    During technology development, the study of ultralow-k (ULK) time-dependent dielectric breakdown (TDDB) is important for assuring robust reliability. As the technology advances, the increase in ULK leakage current noise level and reversible current change induced by soft breakdown (SBD) during stress has been observed. In this paper, the physical origin of SBD and reversible breakdown, and its correlation to conventional hard breakdowns (HBDs) were extensively studied. Based on constant voltage stress (CVS) and constant current stress (CCS) results, it was concluded that SBD in ULK is an intrinsic characteristic for ULK material, and all first breakdown events most likely are soft instead of hard. Therefore, a unified understanding of SBD and HBD for low-k TDDB was established. Furthermore, the post-SBD and HBD breakdown conduction characteristics were explored and their impacts on circuit operation were discussed. Based on current limited constant voltage stress studies, it was found that the power dissipation, not the stored energy, determined the severity of ULK dielectric breakdown, and the postbreakdown conduction properties. A percolation-threshold controlled, variable-range-hopping (VRH) model was proposed to explain all postbreakdown aspects of SBD and HBD of ULK material.

  12. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    PubMed

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  13. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress

    PubMed Central

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Kaufer, Benedikt B.; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-01-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  14. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.

    PubMed

    Hartley, Douglas E H; Isaiah, Amal

    2014-01-01

    Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD) in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs). In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps) was assessed in response to dichotically-presented i) sinusoidal amplitude-modulated (SAM) and ii) half-wave rectified (HWR) tones (100-ms duration; 70 dB SPL) presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs) were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase) over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps) within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration) over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli. Consequently

  15. 19 CFR 141.87 - Breakdown on component materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY (CONTINUED) ENTRY OF MERCHANDISE Invoices § 141.87 Breakdown on component materials. Whenever the classification or appraisement of merchandise depends on the component materials, the...

  16. Suppressing the cellular breakdown in silicon supersaturated with titanium

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-06-01

    Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.

  17. Implications of Dielectric Breakdown Weathering for the Lunar Polar Regolith

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Wilson, J. K.; Stubbs, T. J.; Schwadron, N. A.; Spence, H. E.; Izenberg, N. R.

    2015-10-01

    Dielectric breakdown weathering may significantly affect lunar regolith in permanently shadowed regions. We estimate how it may evolve the distribution of grain sizes and properties, which could have operational implications for rovers.

  18. D STAND DELIVERY END OF #44 TANDEM BREAKDOWN MILL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    D STAND DELIVERY END OF #44 TANDEM BREAKDOWN MILL WITH UPCOILER. BACKUP ROLLS, 40 TONS. WORK ROLLS, 20 TONS., C. 1900. OPERATING SPEED, 600'/MINUTE. AUTOMATIC GAUGE CONTROL. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  19. Vortex breakdown in closed containers with polygonal cross sections

    SciTech Connect

    Naumov, I. V. Dvoynishnikov, S. V.; Kabardin, I. K.; Tsoy, M. A.

    2015-12-15

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.

  20. Electric field-free gas breakdown in explosively driven generators

    SciTech Connect

    Shkuratov, Sergey I.; Baird, Jason; Talantsev, Evgueni F.; Altgilbers, Larry L.

    2010-07-15

    All known types of gas discharges require an electric field to initiate them. We are reporting on a unique type of gas breakdown in explosively driven generators that does not require an electric field.

  1. Vortex breakdown in closed containers with polygonal cross sections

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Dvoynishnikov, S. V.; Kabardin, I. K.; Tsoy, M. A.

    2015-12-01

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.

  2. Laboratory tests of short intense envelope solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.

    2012-04-01

    Stability of short intense nonlinear wave groups propagating over deep water is tested in laboratory runs which are performed in the facility of the Technical University of Berlin. The strongly nonlinear simulation of quasi-steady nonlinear wave groups within the framework of the Euler equations is used to generate the surface elevation time series at a border of the water tank. Besides, the exact analytic solution of the nonlinear Schrodinger equation is used for this purpose. The time series is then transformed to a wave maker signal with use of a designed transfer algorithm. Wave group propagation along the tank was recorded by 4 distant gauges and by an array of 6 densely situated gauges. This setup allows to consider the wave evolution from 10 to 85 m from the wave maker, and to obtain the wave envelope shape directly from the instrumental data. In the experiments wave groups were characterized by the steepness values up to kAcr < 0.32 and kAtr < 0.24, where k is the mean wavenumber, Acr is the crest amplitude, and Atr is the trough amplitude; and the maximum local wave slope was up to 0.34. Wave breaking phenomenon was not observed in the experiments. Different mean wave numbers and wave groups of different intensities were considered. In some cases the wave groups exhibit noticeable radiation in the course of propagation, though the groups are not dispersed fully. The effect of finite water depth is found to be significant on the wave group stability. Intense wave groups have shorter time of adjustment, what in some sense may help them to manifest their individuality clearer. The experimental tests confirm recent numerical simulations of fully nonlinear equations, where very steep stable single and interacting nonlinear wave groups were reported [1-3]. The quasi-stationary wave groups observed in numerical and laboratory experiments are strongly nonlinear analogues of the nonlinear Schrodinger envelope solitons. The results emphasize the importance of long

  3. On the breakdown of passivity of iron by thiocyanate

    SciTech Connect

    Melendres, C.A.; Acho, J.; Knight, R.L. )

    1991-03-01

    In this paper, the authors report that small amounts (0.001 to 0.02M) of SCN{sup {minus}} significantly increased the rate of anodic dissolution of copper and iron; SCN{sup {minus}} causes a breakdown of the passivity of iron but not of copper. The authors communicate results of our studies using the surface enhanced Raman (SER) effect in order to further elucidate the passivity of iron and its breakdown by thiocyanate.

  4. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  5. Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound

    SciTech Connect

    Wagner, R.F.; Insana, M.F.; Brown, D.G.

    1987-05-01

    Both radio-frequency (rf) and envelope-detected signal anlayses have lead to successful tissue discrimination in medical ultrasound. The extrapolation from tissue discrimination to a description of the tissue structure requires an analysis of the statistics of complex signals. To that end, first- and second-order statistics of complex random signals are reviewed, and an example is taken from rf signal analysis of the backscattered echoes from diffuse scatterers. In this case the scattering form factor of small scatterers can be easily separated from long-range structure and corrected for the transducer characteristics, thereby yielding an instrument-independent tissue signature. The statistics of the more economical envelope- and square-law-detected signals are derived next and found to be almost identical when normalized autocorrelation functions are used. Of the two nonlinear methods of detection, the square-law or intensity scheme gives rise to statistics that are more transparent to physical insight. Moreover, an analysis of the intensity-correlation structure indicates that the contributions to the total echo signal from the diffuse scatter and from the steady and variable components of coherent scatter can still be separated and used for tissue characterization. However, this anlaysis is not system independent. Finally, the statistical methods of this paper may be applied directly to envelope signals in nuclear-magnetic-resonance imaging because of the approximate equivalence of second-order statistics for magnitude and intensity.

  6. Baculoviral display of the green fluorescent protein and rubella virus envelope proteins.

    PubMed

    Mottershead, D; van der Linden, I; von Bonsdorff, C H; Keinänen, K; Oker-Blom, C

    1997-09-29

    The ability to display heterologous proteins and peptides on the surface of different types of bacteriophage has proven extremely useful in protein structure/function studies. To display such proteins in a eucaryotic environment, we have produced a vector allowing for fusion of proteins to the amino-terminus of the Autographa californica nuclear polyhedrosis virus (AcNPV) major envelope glycoprotein, gp64. Such fusion proteins incorporate into the baculoviral virion and display the FLAG epitope tag. We have further produced recombinant baculoviruses displaying the green fluorescent protein (GFP) and the rubella virus envelope proteins, E1 and E2. The incorporation of the GFPgp64, E1gp64, and E2gp64 fusion proteins into the baculovirus particle was demonstrated by western blot analysis of purified budded virus. This is the first report of the display of the GFP protein or the individual rubella virus spike proteins on the surface of an enveloped virus. Such a eucaryotic viral display system may be useful for the display of proteins dependent on glycosylation for activity and for targeting of recombinant baculoviruses to novel host cell types as a gene transfer vehicle. PMID:9325155

  7. Microbiological implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope.

    PubMed

    Jacob, H E; Förster, W; Berg, H

    1981-01-01

    The inactivation of yeast cells in different growth phases by an electric field pulse was investigated. Cells of Saccharomyces cerevisiae in the logarithmic growth phase were found to be much more sensitive with respect to an electric discharge than those in the stationary phase. The influence of the electric field pulse characteristics on the inactivation as well as possible secondary effects were studied. The polyene antibiotic perhydrohexafungin (PHF) is used as a tool to sense defects in the yeast cell envelope brought about by electric field action. The repair kinetics of these defects was followed after the impulse. At least two repair stages can be distinguished, a fast one in the second range and a slower one which takes place after plating the cells on a nutrient medium. The obtained results are discussed in connection with current theories of reversible dielectric breakdown in biological membrane systems. PMID:7023081

  8. Detection of uranium using laser-induced breakdown spectroscopy.

    PubMed

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance. PMID:19891832

  9. Breakdown of atmospheric pressure microgaps at high excitation frequencies

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-05-07

    Microwave (mw) breakdown of atmospheric pressure microgaps is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions numerical model. The effect of both field electron emission and secondary electron emission (due to electron impact, ion impact, and primary electron reflection) from surfaces on the breakdown process is considered. For conditions where field emission is the dominant electron emission mechanism from the electrode surfaces, it is found that the breakdown voltage of mw microdischarge coincides with the breakdown voltage of direct-current (dc) microdischarge. When microdischarge properties are controlled by both field and secondary electron emission, breakdown voltage of mw microdischarge exceeds that of dc microdischarge. When microdischarge is controlled only by secondary electron emission, breakdown voltage of mw microdischarge is smaller than that of dc microdischarge. It is shown that if the interelectrode gap exceeds some critical value, mw microdischarge can be ignited only by electrons initially seeded within the gap volume. In addition, the influence of electron reflection and secondary emission due to electron impact is studied.

  10. Dielectric breakdown weathering of the Moon's polar regolith

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2015-02-01

    Galactic cosmic rays and solar energetic particles (SEPs) can charge the Moon's subsurface, a process expected to be particularly important in the polar regions. Experiments have shown that sufficient fluences (i.e., time-integrated fluxes) of energetic charged particles can cause dielectric breakdown, in which the electric field rapidly vaporizes small, filamentary channels within a dielectric. Lunar regolith has both the characteristics and, in some polar locations, the environment needed to make breakdown likely. We combine the Jet Propulsion Laboratory proton fluence model with temperature measurements from the Lunar Reconnaissance Orbiter's (LRO's) Diviner instrument and related temperature modeling to estimate how often breakdown occurs in the polar regions. We find that all gardened regolith within permanently shadowed regions (PSRs) has likely experienced up to 2×106 SEP events capable of causing breakdown, while the warmest polar regions have experienced about 2 orders of magnitude fewer events. We also use measurements from the Cosmic Ray Telescope for the Effects of Radiation on LRO to show that at least two breakdown-inducing events may have occurred since LRO arrived at the Moon in 2009. Finally, we discuss how such "breakdown weathering" may increase the percentage of fine and monomineralic grains within PSRs; explain the presence of so-called "fairy castle" regolith structures; and contribute to other low-albedo features detected by LRO's Lyman Alpha Mapping Project, possibly establishing a correlation between these features and the average temperatures within craters that are only partly in permanent shadow.

  11. AVLIS Production Plant work breakdown structure and Dictionary

    SciTech Connect

    Not Available

    1984-11-15

    The work breakdown structure has been prepared for the AVLIS Production Plant to define, organize, and identify the work efforts and is summarized in Fig. 1-1 for the top three project levels. The work breakdown structure itself is intended to be the primary organizational tool of the AVLIS Production Plant and is consistent with the overall AVLIS Program Work Breakdown Structure. It is designed to provide a framework for definition and accounting of all of the elements that are required for the eventual design, procurement, and construction of the AVLIS Production Plant. During the present phase of the AVLIS Project, the conceptual engineering phase, the work breakdown structure is intended to be the master structure and project organizer of documents, designs, and cost estimates. As the master project organizer, the key role of the work breakdown structure is to provide the mechanism for developing completeness in AVLIS cost estimates and design development of all hardware and systems. The work breakdown structure provides the framework for tracking, on a one-to-one basis, the component design criteria, systems requirements, design concepts, design drawings, performance projections, and conceptual cost estimates. It also serves as a vehicle for contract reporting. 12 figures, 2 tables.

  12. High-Power Microwave Breakdown of Dielectric Interfaces.

    NASA Astrophysics Data System (ADS)

    Calico, Steve Eugene

    A project to study the electrical breakdown of microwave windows due to high-power pulsed microwave fields was undertaken at Texas Tech University. The pulsed power equipment was acquired from the Air Force Weapons Laboratory in Albuquerque, NM, refurbished and redesigned as necessary, and serves as the high-power microwave source. The microwaves are used to test various vacuum to atmosphere interfaces (windows) in an attempt to isolate the mechanisms governing the electrical breakdown at the window. Windows made of three different materials and of three basic geometrical designs were tested in this experiment. Additionally, the surfaces of two windows were sanded with different grit sandpapers to determine the effect the surface texture has on the breakdown. The windows were tested in atmospheric pressure air, argon, helium, and to a lesser extent sulfur-hexafluoride. Estimates of the breakdown threshold in air and argon on a Lexan window were obtained as a consequence of these tests and were found to be considerably lower than that reported for pulsed microwave breakdown in gases. A hypothesis is presented in an attempt to explain the lower breakdown phenomena. A discussion of the comparative performance of the windows and an explanation as to the enhanced performance of some windows is given.

  13. Luminosity of initial breakdown in lightning

    NASA Astrophysics Data System (ADS)

    Stolzenburg, M.; Marshall, T. C.; Karunarathne, S.; Karunarathna, N.; Vickers, L. E.; Warner, T. A.; Orville, R. E.; Betz, H.-D.

    2013-04-01

    Time correlated high-speed video and electromagnetic data for 15 cloud-to-ground and intracloud lightning flashes reveal bursts of light, bright enough to be seen through intervening cloud, during the initial breakdown (IB) stage and within the first 3 ms after flash initiation. Each sudden increase in luminosity is coincident with a CG type (12 cases) or an IC type (3 cases) IB pulse in fast electric field change records. The E-change data for 217 flashes indicate that all CG and IC flashes have IB pulses. The luminosity bursts of 14 negative CG flashes occur 11-340 ms before the first return stroke, at altitudes of 4-8 km, and at 4-41 km range from the camera. In seven cases, linear segments visibly advance away from the first light burst for 55-200 µs, then the entire length dims, then the luminosity sequence repeats along the same path. These visible initial leaders or streamers lengthen intermittently to about 300-1500 m. Their estimated 2-D speeds are 4-18 × 105 m s-1 over the first few hundred microseconds and decrease by about 50% over the first 2 ms. In other cases, only a bright spot or a broad area of diffuse light, presumably scattered by intervening cloud, is visible. The bright area grows larger over 20-60 µs before the luminosity fades in about 100 µs, then this sequence may repeat several times. In several flashes, a 1-2 ms period of little or no luminosity and small E-change is observed following the IB stage prior to stepped leader development.

  14. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  15. Close Stellar Binary Systems by Grazing Envelope Evolution

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2015-02-01

    I suggest a spiral-in process in which a stellar companion grazes the envelope of a giant star while both the orbital separation and the giant radius shrink simultaneously, forming a close binary system. The binary system might be viewed as evolving in a constant state of "just entering a common envelope (CE) phase." In cases where this process takes place, it can be an alternative to CE evolution where the secondary star is immersed in the giant's envelope. Grazing envelope evolution (GEE) is made possible only if the companion manages to accrete mass at a high rate and launches jets that remove the outskirts of the giant envelope, hence preventing the formation of a CE. The high accretion rate is made possible by the accretion disk launching jets which efficiently carry the excess angular momentum and energy from the accreted mass. The orbital decay itself is caused by the gravitational interaction of the secondary star with the envelope inward of its orbit, i.e., dynamical friction (gravitational tide). Mass loss through the second Lagrangian point can carry additional angular momentum and envelope mass. The GEE lasts for tens to hundreds of years. The high accretion rate, with peaks lasting from months to years, might lead to a bright object referred to as the intermediate luminosity optical transient (Red Novae; Red Transients). A bipolar nebula and/or equatorial ring are formed around the binary remnant.

  16. Vitelline envelope, chorion, and micropyle of Fundulus heteroclitus eggs

    SciTech Connect

    Dumont, J.N.; Brummet, A.R.

    1980-01-01

    The architecture and transformation of the vitelline envelope of the developing oocyte into the chorion of the mature egg of Fundulus heteroclitus have been examined by scanning and transmission electron microscopy. The mature vitelline envelope is structurally complex and consists of about nine strata. The envelope is penetrated by pore canals that contain microvilli arising from the oocyte and macrovilli from follicle cells. During the envelope's transformation into the chorion, the pore canals are lost and the envelope becomes more fibrous and compact and its stratified nature less apparent. The micropyle, or pore, through which the sperm gains access to the enclosed egg is located at the bottom of a small funnel-shaped depression in the envelope. Internally, the micropyle opens on the apex of a cone-like elevation of the chorion. During the development of the envelope, structured chorionic fibrils, the components of which are presumed to be synthesized by the follicle cells, become attached to its surface. These chorionic fibrils are thought to aid in the attachment of the egg to the substratum and perhaps to help prevent water loss during low tides when the egg may be exposed.

  17. The Shaping of Circumstellar Envelopes by Outflow and Infall Motions

    NASA Astrophysics Data System (ADS)

    Arce, H. G.; Calvet, N.; Sargent, A.

    2004-12-01

    In this study, we combine the complementary information obtained from Owens Valley Radio Observatory (OVRO) millimeter array observations of molecular gas around protostars and HST (WFPC2 and NICMOS) archival images of reflection nebulae to obtain the best information available on the physical and dynamical properties of infalling circumstellar envelopes and the outflow-envelope interaction. The HST images of protostellar nebulae probe the dust component of the envelope, and are the best tracers of the geometry of the cavities in the envelope down to regions very close to the central source. The interferometric molecular line observations from OVRO probe the gas component, which constitutes most of the mass, and provide kinematic information that directly reflects the energetics and directions of the outflows, and the distribution of the infalling gas. We plan to analyze the information provided by these two sets of data using scattered light models of protostellar envelopes of different geometries in which cavities due to infall and/or winds with different morphologies and strength have been carved. Preliminary results show that the cavities traced by nebular emission are most likely produced by the interaction of wide-angle protostellar winds and the stellar envelope, rather than by infall of the envelope material onto the forming star. Support for this study is provided in part by an STScI HST Archival grant (HST-AR-09909.01-A). HGA is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401568.

  18. The progenitors of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.

    2013-05-01

    The type Ib/c SNe are those explosions which come from massive star populations, but lack hydrogen and helium. These have been proposed to originate in the explosions of massive Wolf-Rayet stars, and we should easily be able to detect the very luminous, young progenitors if they exist. However, there has not been any detection of progenitors so far. I present the study of two extinguished Type Ic SNe 2003jg and 2004cc. In both cases there is no clear evidence of a direct detection of their progenitors in deep pre-explosion images. Upper limits derived by inserting artificial stars of known brightness at random positions around the progenitor positions (M_v>-8.8 and M_v>-9 magnitudes for the progenitors of SN 2003jg and SN 2004cc, respectively) are brighter than those expected for a massive WC (Wolf-Rayet, carbon-rich) or WO (Wolf-Rayet, oxygen-rich) (e.g., approximately between -3 and -6 in the LMC). Therefore, this is perhaps further evidence that the most massive stars may give rise to black-holes forming SNe, or it is an undetected, compact massive star hidden by a thick dust lane. However the extinction toward these SNe is currently one of the largest known. Even if these results do not directly reveal the nature of the type Ic SN progenitors, they can help to characterize the dusty environment which surrounded the progenitor of the stripped-envelope CC-SNe.

  19. Discriminating Dysarthria Type From Envelope Modulation Spectra

    PubMed Central

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2013-01-01

    Purpose Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the rhythmicity of speech within specified frequency bands. Method EMS was conducted on sentences produced by 43 speakers with 1 of 4 types of dysarthria and healthy controls. The EMS consisted of the spectra of the slow-rate (up to 10 Hz) amplitude modulations of the full signal and 7 octave bands ranging in center frequency from 125 to 8000 Hz. Six variables were calculated for each band relating to peak frequency and amplitude and relative energy above, below, and in the region of 4 Hz. Discriminant function analyses (DFA) determined which sets of predictor variables best discriminated between and among groups. Results Each of 6 DFAs identified 2–6 of the 48 predictor variables. These variables achieved 84%–100% classification accuracy for group membership. Conclusions Dysarthrias can be characterized by quantifiable temporal patterns in acoustic output. Because EMS analysis is automated and requires no editing or linguistic assumptions, it shows promise as a clinical and research tool. PMID:20643800

  20. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  1. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  2. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  3. Critical point analysis of phase envelope diagram

    SciTech Connect

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  4. Critical point analysis of phase envelope diagram

    NASA Astrophysics Data System (ADS)

    Soetikno, Darmadi; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Siagian, Ucok W. R.; Soewono, Edy; Gunawan, Agus Y.

    2014-03-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  5. Carrier-envelope-phase stabilization via dual wavelength pumping.

    PubMed

    Seidel, Marcus; Brons, Jonathan; Lücking, Fabian; Pervak, Vladimir; Apolonski, Alexander; Udem, Thomas; Pronin, Oleg

    2016-04-15

    A power-scalable concept for carrier-envelope-phase stabilization is presented. It takes advantage of simultaneous pumping of the zero- and first-phonon absorption line of Yb:YAG at 969 and 940 nm. The concept was implemented to lock the carrier-envelope-offset frequency of a 45 W average power Kerr-lens mode-locked thin-disk oscillator. The lock performance is compared to previous experiments where carrier-envelope-stabilization was realized by means of cavity loss modulation. PMID:27082362

  6. Revisiting the envelope approximation: Gravitational waves from bubble collisions

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2016-06-01

    We study the envelope approximation and its applicability to first-order phase transitions in the early Universe. We demonstrate that the power laws seen in previous studies exist independently of the nucleation rate. We also compare the envelope approximation prediction to results from large-scale phase transition simulations. For phase transitions where the contribution to gravitational waves from scalar fields dominates over that from the coupled plasma of light particles, the envelope approximation is in agreement, giving a power spectrum of the same form and order of magnitude. In all other cases the form and amplitude of the gravitational wave power spectrum is markedly different and new techniques are required.

  7. Remote Compositional Analysis of Spent-Fuel Residues Using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Whitehouse, A. I.; Young, J.; Evans, C. P.; Brown, A.; Simpson, A.; Franco, J.

    2003-02-26

    We report on the application of a novel technique known as Laser-Induced Breakdown Spectroscopy (LIBS) for remotely detecting and characterizing the elemental composition of highly radioactive materials including spent-fuel residues and High-Level Waste (HLW). Within the UK nuclear industry, LIBS has been demonstrated to offer a convenient alternative to sampling and laboratory analysis of a wide range of materials irrespective of the activity of the material or the ambient radiation levels. Proven applications of this technology include in-situ compositional analysis of nuclear reactor components, remote detection and characterization of vitrified HLW and remote compositional analysis of highly-active gross contamination within a spent-fuel reprocessing plant.

  8. Thermodynamics of nuclear transport

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    Molecular transport across the nuclear envelope is important for eukaryotes for gene expression and signaling. Experimental studies have revealed that nuclear transport is inherently a nonequilibrium process and actively consumes energy. In this work we present a thermodynamics theory of nuclear transport for a major class of nuclear transporters that are mediated by the small GTPase Ran. We identify the molecular elements responsible for powering nuclear transport, which we term the ``Ran battery'' and find that the efficiency of transport, measured by the cargo nuclear localization ratio, is limited by competition between cargo molecules and RanGTP to bind transport receptors, as well as the amount of NTF2 (i.e. RanGDP carrier) available to circulate the energy flow. This picture complements our current understanding of nuclear transport by providing a comprehensive thermodynamics framework to decipher the underlying biochemical machinery. Pm and CHW were supported by a Simons Investigator in the Mathematical Modeling in Living Systems grant (to PM).

  9. Avalanche electron bunching in a Corbino disk in the quantum Hall effect breakdown regime

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Hata, Tokuro; Arakawa, Tomonori; Matsuo, Sadashige; Nishihara, Yoshitaka; Tanaka, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2014-06-01

    We have measured the current noise in a device with Corbino geometry to investigate the dynamics of electrons in the breakdown regime of the integer quantum Hall effect (QHE). In the breakdown regime, the Fano factor of the current noise exceeds 103, which indicates the presence of electron bunching. As super-Poissonian current noise is observed only in the breakdown regime, the bunching effect is related to the QHE breakdown. These observations support a QHE breakdown mechanism that involves an electron avalanche.

  10. Pulsed DF chain-laser breakdown induced by maritime aerosols

    NASA Astrophysics Data System (ADS)

    Amimoto, S. T.; Whittier, J. S.; Ronkowski, F. G.; Valenzuela, P. R.; Harper, G.

    1982-08-01

    Thresholds for breakdown induced by liquid and solid aerosols in room air have been measured for a 1 microsec-duration pulsed D2-F2 laser of 3.58 -4.78 micron bandwidth. The DF laser beam was directed into an aerosol chamber that simulated maritime atmospheres on the open sea. Both focus and collimated beams were studied. For a focused beam in which the largest encountered aerosol particles were of 1 to 4 micron diameter, pulsed DF breakdown thresholds were measured to lie in the range 0.6 to 1.8 GW/sq cm. Salt-water aerosol breakdown thresholds for micron-size particles were found to be 15 to 30% higher than the corresponding thresholds for fresh-water particles. For a collimated beam that encountered particle diameters as large as 100 microns, breakdown could not be induced using 0.5- microsec (FWHM) pulses at peak intensities of 59 MW/sq cm. Image converter camera measurements of the radial plasma growth rate of 1.3 cm/microsec (at 1.4 GW/sq cm) were consistent with measurements of the cutoff rate of the transmitted laser beam. Pulsed DF breakdown thresholds of 32 MW/sq cm for 30- micron diameter Al2O3 particles were also measured to permit comparison with the earlier pulsed-HF breakdown results of Lencioni, et al.; the solid-particle threshold measurements agree with the Lencioni data if one assumes that the thresholds for microsecond-duration pulses scales is 1/lambda. An approximate theoretical model of the water particle breakdown process is presented that permits the scaling of the present results to other laser pulse durations, aerosol distributions, and transmission path lengths.

  11. Envelope gene evolution and HIV-1 neuropathogenesis

    PubMed Central

    Vázquez-Santiago, Fabián J.; Rivera-Amill, Vanessa

    2016-01-01

    In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of

  12. Opacities in the massive stellar envelopes

    NASA Astrophysics Data System (ADS)

    Le Pennec, Maëlle; TURCK-CHIEZE, Sylvaine; SALMON, Sébastien; CONSORTIUM, OPAC

    2015-08-01

    Helio and asteroseismology (SoHo, CoRoT, KEPLER...) have produced observed acoustic oscillations of thousands of stars. The characteristics of these oscillations are deeply linked to the transport of radiation inside the stars. However, the comparisons of seismic data of Sun and stars with model predictions have led to significant discrepancies, which could be due to a bad knowledge of production and transport of energy.We will focus here on the case of β-Cephei.β-Cephei are pulsating stars, progenitor of supernovae and thus deeply linked to our understanding of stellar medium enrichment. Their study has shown some difficulty to predict the observed oscillation modes, which are directly linked to a bump of the opacity of the elements of the iron group (Cr, Fe, Ni) at log T=5.25 through their pulsating mechanism called the κ-mechanism. We will show that the different parameters of the stars (mass, age, metallicity) have a great influence on the amplitude of the bump, and then on the structure of the considered star.The mastery of the κ-mechanism that produces the pulsation of these stars supposes a fine determination of the peak opacity of the iron group in their envelope. We will present the final results of an experiment conducted at LULI 2000 in 2011 on Cr, Fe and Ni and compare them to OP and ATOMIC, SCO-RCG codes. We will show how to improve the opacity in the range of temperature around log T= 5.3.

  13. Beam envelope calculations in general linear coupled lattices

    NASA Astrophysics Data System (ADS)

    Chung, Moses; Qin, Hong; Groening, Lars; Davidson, Ronald C.; Xiao, Chen

    2015-01-01

    The envelope equations and Twiss parameters (β and α) provide important bases for uncoupled linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between two transverse planes are intentionally introduced. The recently developed generalized Courant-Snyder theory offers an effective way of describing the linear beam dynamics in such coupled systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In this work, we present numerical solutions to the symmetrized matrix envelope equation for β which removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation of the beam envelopes in arbitrary linear coupled systems.

  14. Beam envelope calculations in general linear coupled lattices

    SciTech Connect

    Chung, Moses; Qin, Hong; Groening, Lars; Xiao, Chen; Davidson, Ronald C.

    2015-01-15

    The envelope equations and Twiss parameters (β and α) provide important bases for uncoupled linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between two transverse planes are intentionally introduced. The recently developed generalized Courant-Snyder theory offers an effective way of describing the linear beam dynamics in such coupled systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In this work, we present numerical solutions to the symmetrized matrix envelope equation for β which removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation of the beam envelopes in arbitrary linear coupled systems.

  15. Testing Common Envelopes on Double White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Nandez, Jose L. A.; Ivanova, Natalia; Lombardi, James C., Jr.

    2015-06-01

    The formation of a double white dwarf binary likely involves a common envelope (CE) event between a red giant and a white dwarf (WD) during the most recent episode of Roche lobe overflow mass transfer. We study the role of recombination energy with hydrodynamic simulations of such stellar interactions. We find that the recombination energy helps to expel the common envelope entirely, while if recombination energy is not taken into account, a significant fraction of the common envelope remains bound. We apply our numerical methods to constrain the progenitor system for WD 1101+364 - a double WD binary that has well-measured mass ratio of q=0.87±0.03 and an orbital period of 0.145 days. Our best-fit progenitor for the pre-common envelope donor is a 1.5 ⊙ red giant.

  16. Periodic envelopes of waves over non-uniform depth

    NASA Astrophysics Data System (ADS)

    Rajan, Girish K.; Bayram, Saziye; Henderson, Diane M.

    2016-04-01

    The envelope of narrow-banded, periodic, surface-gravity waves propagating in one dimension over water of finite, non-uniform depth may be modeled by the Djordjević and Redekopp ["On the development of packets of surface gravity waves moving over an uneven bottom," Z. Angew. Math. Phys. 29, 950-962 (1978)] equation (DRE). Here we find five approximate solutions of the DRE that are in the form of Jacobi-elliptic functions and discuss them within the framework of ocean swell. We find that in all cases, the maximum envelope-amplitude decreases/increases when the wave group propagates on water of decreasing/increasing depth. In the limit of the elliptic modulus approaching one, three of the solutions reduce to the envelope soliton solution. In the limit of the elliptic modulus approaching zero, two of the solutions reduce to an envelope-amplitude that is uniform in an appropriate reference frame.

  17. Solubilization and reconstitution of vesicular stomatitis virus envelope using octylglucoside.

    PubMed Central

    Paternostre, M; Viard, M; Meyer, O; Ghanam, M; Ollivon, M; Blumenthal, R

    1997-01-01

    Reconstituted vesicular stomatitis virus envelopes or virosomes are formed by detergent removal from solubilized intact virus. We have monitored the solubilization process of the intact vesicular stomatitis virus by the nonionic surfactant octylglucoside at various initial virus concentrations by employing turbidity measurements. This allowed us to determine the phase boundaries between the membrane and the mixed micelles domains. We have also characterized the lipid and protein content of the solubilized material and of the reconstituted envelope. Both G and M proteins and all of the lipids of the envelope were extracted by octylglucoside and recovered in the reconstituted envelope. Fusion activity of the virosomes tested either on Vero cells or on liposomes showed kinetics and pH dependence similar to those of the intact virus. Images FIGURE 4 PMID:9083672

  18. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  19. Evolution of Space Shuttle Range Safety Ascent Flight Envelope Design

    NASA Technical Reports Server (NTRS)

    Brewer, Joan; Davis, Jerel; Glenn, Christopher

    2011-01-01

    For every space vehicle launch from the Eastern Range in Florida, the range user must provide specific Range Safety (RS) data products to the Air Force's 45th Space Wing in order to obtain flight plan approval. One of these data products is a set of RS ascent flight envelope trajectories that define the normal operating region of the vehicle during powered flight. With the Shuttle Program launching 135 manned missions over a 30-year period, 135 envelope sets were delivered to the range. During this time, the envelope methodology and design process evolved to support mission changes, maintain high data quality, and reduce costs. The purpose of this document is to outline the shuttle envelope design evolution and capture the lessons learned that could apply to future spaceflight endeavors.

  20. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... landing cannot be made after failure of the critical engine and with the remaining engines...

  1. Envelope Protection for In-Flight Ice Contamination

    NASA Technical Reports Server (NTRS)

    Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.

    2010-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  2. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development

    SciTech Connect

    Sone, Yoshie; Ito, Masahiko; Shirakawa, Hideki; Shikano, Tomohide; Takeuchi, Hiroyuki; Kinoshita, Katsuyuki; Miyazaki, Shunichi . E-mail: shunm@research.twmu.ac.jp

    2005-05-13

    Phospholipase C-zeta (PLC{zeta}), a strong candidate of the egg-activating sperm factor, causes intracellular Ca{sup 2+} oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLC{zeta}. Changes in the localization of expressed PLC{zeta} were investigated by tagging with a fluorescent protein. PLC{zeta} began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLC{zeta} in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLC{zeta} was recognized in every embryo up to blastocyst. Thus, PLC{zeta} exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca{sup 2+} oscillations in early embryogenesis.

  3. Interactome analysis of herpes simplex virus 1 envelope glycoprotein H.

    PubMed

    Hirohata, Yoshitaka; Kato, Akihisa; Oyama, Masaaki; Kozuka-Hata, Hiroko; Koyanagi, Naoto; Arii, Jun; Kawaguchi, Yasushi

    2015-06-01

    Herpes simplex virus 1 (HSV-1) envelope glycoprotein H (gH) is important for viral entry into cells and nuclear egress of nucleocapsids. To clarify additional novel roles of gH during HSV-1 replication, host cell proteins that interact with gH were screened for by tandem affinity purification coupled with mass spectrometry-based proteomics in 293T cells transiently expressing gH. This screen identified 123 host cell proteins as potential gH interactors. Of these proteins, general control nonderepressive-1 (GCN1), a trans-acting positive effector of GCN2 kinase that regulates phosphorylation of the α subunit of translation initiation factor 2 (eIF2α), was subsequently confirmed to interact with gH in HSV-1-infected cells. eIF2α phosphorylation is known to downregulate protein synthesis, and various viruses have evolved mechanisms to prevent the accumulation of phosphorylated eIF2α in infected cells. Here, it was shown that GCN1 knockdown reduces phosphorylation of eIF2α in HSV-1-infected cells and that the gH-null mutation increases eIF2α in HSV-1-infected cells, whereas gH overexpression in the absence of other HSV-1 proteins reduces eIF2α phosphorylation. These findings suggest that GCN1 can regulate eIF2α phosphorylation in HSV-1-infected cells and that the GCN1-binding viral partner gH is necessary and sufficient to prevent the accumulation of phosphorylated eIF2α. Our database of 123 host cell proteins potentially interacting with gH will be useful for future studies aimed at unveiling further novel functions of gH and the roles of cellular proteins in HSV-1-infected cells. PMID:25808324

  4. Universal enveloping crossed module of Leibniz crossed modules and representations

    NASA Astrophysics Data System (ADS)

    Casado, Rafael F.; García-Martínez, Xabier; Ladra, Manuel

    2016-03-01

    The universal enveloping algebra functor UL: Lb → Alg, defined by Loday and Pirashvili [1], is extended to crossed modules. Then we construct an isomorphism between the category of representations of a Leibniz crossed module and the category of left modules over its universal enveloping crossed module of algebras. Note that the procedure followed in the proof for the Lie case cannot be adapted, since the actor in the category of Leibniz crossed modules does not always exist.

  5. RMS ENVELOPE BACK-PROPAGATION IN THE XAL ONLINE MODEL

    SciTech Connect

    Allen, Christopher K; Sako, Hiroyuki; Ikegami, Masanori

    2009-01-01

    The ability to back-propagate RMS envelopes was added to the J-PARC XAL online model. Specifically, given an arbitrary downstream location, the online model can propagate the RMS envelopes backward to an arbitrary upstream location. This feature provides support for algorithms estimating upstream conditions from downstream data. The upgrade required significant refactoring, which we outline. We also show simulations using the new feature.

  6. 300 Area Liquid Effluent Facilities (LEF) Authorization Envelope

    SciTech Connect

    WRIGHT, E.J.; STORDEUR, R.T.

    2000-04-07

    The purpose of this document is to establish the facility Authorization Envelope (AE) for the 300 Liquid Effluent Facilities (LEP )Project and identify the requirements related to the maintenance of the AE as Specified in HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The 300 LEF Project consists of two separate facilities operating under one management organization. They are the 310 Facility and the 340 Facility. The AE documents the limits of operations for all 300 LEF Project activities.

  7. Advances in Understanding Durability of the Building Envelope: ORNL Research

    SciTech Connect

    Kehrer, Manfred; Desjarlais, Andre Omer

    2013-01-01

    Moisture, and its accompanying outriders things like mold, corrosion, freeze damage, and decay present powerful threats to the durability and long-term performance of a building envelope. Miscalculating the impact of environmental factors like rain, solar radiation, temperature, humidity, and indoor sources of moisture can cause significant damage to many types of building envelope components and materials, and also can lead to unhealthy indoor living environments.

  8. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay.

    PubMed

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-02-01

    Prior studies of clay-virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT-φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  9. Across-frequency envelope correlation discrimination and masked signal detection

    PubMed Central

    Grose, John H.; Buss, Emily; Porter, Heather L.; Hall, Joseph W.

    2013-01-01

    This study compared the dependence of comodulation masking release (CMR) and monaural envelope correlation perception (MECP) on the degree of envelope correlation for the same narrowband noise stimuli. Envelope correlation across noise bands was systematically varied by mixing independent bands with a base set of comodulated bands. The magnitude of CMR fell monotonically with reductions in envelope correlation, and CMR varied over a range of envelope correlations that were not discriminable from each other in the MECP paradigm. For complexes of 100-Hz-wide noise bands, discrimination thresholds in the MECP task were similar whether the standard was a comodulated set of noise bands or a completely independent set of noise bands. This was not the case for 25-Hz-wide noise bands. Although the data demonstrate that CMR and MECP exhibit different dependencies on the degree of envelope correlation, some commonality across the two phenomena was observed. Specifically, for 25-Hz-wide bands of noise, there was a robust relationship between individual listeners' sensitivity to decorrelation from an otherwise comodulated set of noise bands and the magnitude of CMR measured for those same comodulated noise bands. PMID:23927119

  10. Preserving Envelope Efficiency in Performance Based Code Compliance

    SciTech Connect

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.; Baechler, Michael C.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  11. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay

    PubMed Central

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-01-01

    Prior studies of clay–virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT–φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  12. Quenching of vortex breakdown oscillations via harmonic modulation

    NASA Astrophysics Data System (ADS)

    Lopez, J. M.; Cui, Y. D.; Marques, F.; Lim, T. T.

    Vortex breakdown is a phenomenon inherent to many practical problems, such as leading-edge vortices on aircraft, atmospheric tornadoes, and flame-holders in combustion devices. The breakdown of these vortices is associated with the stagnation of the axial velocity on the vortex axis and the development of a near-axis recirculation zone. For large enough Reynolds number, the breakdown can be time-dependent. The unsteadiness can have serious consequences in some applications, such as tail-buffeting in aircraft flying at high angles of attack. There has been much interest in controlling the vortex breakdown phenomenon, but most efforts have focused on either shifting the threshold for the onset of steady breakdown or altering the spatial location of the recirculation zone. There has been much less attention paid to the problem of controlling unsteady vortex breakdown. Here we present results from a combined experimental and numerical investigation of vortex breakdown in an enclosed cylinder in which low-amplitude modulations of the rotating endwall that sets up the vortex are used as an open-loop control. As expected, for very low amplitudes of the modulation, variation of the modulation frequency reveals typical resonance tongues and frequency locking, so that the open-loop control allows us to drive the unsteady vortex breakdown to a prescribed periodicity within the resonance regions. For modulation amplitudes above a critical level that depends on the modulation frequency (but still very low), the result is a periodic state synchronous with the forcing frequency over an extensive range of forcing frequencies. Of particular interest is the spatial form of this forced periodic state: for modulation frequencies less than about twice the natural frequency of the unsteady breakdown, the oscillations of the near-axis recirculation zone are amplified, whereas for modulation frequencies larger than about twice the natural frequency the oscillations of the recirculation

  13. High field breakdown characteristics of carbon nanotube thin film transistors.

    PubMed

    Gupta, Man Prakash; Behnam, Ashkan; Lian, Feifei; Estrada, David; Pop, Eric; Kumar, Satish

    2013-10-11

    The high field properties of carbon nanotube (CNT) network thin film transistors (CN-TFTs) are important for their practical operation, and for understanding their reliability. Using a combination of experimental and computational techniques we show how the channel geometry (length L(C) and width W(C)) and network morphology (average CNT length L(t) and alignment angle distribution θ) affect heat dissipation and high field breakdown in such devices. The results suggest that when WC ≥ L(t), the breakdown voltage remains independent of W(C) but varies linearly with L(C). The breakdown power varies almost linearly with both W(C) and L(C) when WC > L(t). We also find that the breakdown power is more susceptible to the variability in the network morphology compared to the breakdown voltage. The analysis offers new insight into the tunable heat dissipation and thermal reliability of CN-TFTs, which can be significantly improved through optimization of the network morphology and device geometry. PMID:24029606

  14. Delta Wing Vortex Breakdown Suppression by Vortex Core Oscillation

    NASA Astrophysics Data System (ADS)

    Cain, Charles

    2000-11-01

    The flow over a delta wing is characterized by two counter-rotating vortices that can undergo a sudden radial expansion at high angles of attack known as vortex breakdown. Downstream of this breakdown is a region of organized unsteady flow that can cause tail buffeting and structural fatigue, especially on twin-tailed aircraft. The recent self-induction theory of vortex breakdown points to the "pile-up" of vorticity due to the linear addition of vorticity in the spiraling shear layer that surrounds the vortex core as a principal cause of vortex breakdown (Kurosaka 1998). Based on that theory, this research attempts to relieve vorticity pile-up by altering the straight-line path of the vortex core and preventing the linear addition of vorticity. This is accomplished by applying a combination of periodic blowing and suction with low mass and momentum flux. The blowing and suction are directed normal to the low-pressure surface and supplied from ports under the vortex core which are near the forward tip of the delta wing. This oscillating input causes the vortex core to transition into a spiral formation downstream of the input ports. Initial results indicate that this change in the vortex core path may prevent vortex breakdown over the surface of the delta wing.

  15. An empirical formula for gas switch breakdown delay

    NASA Astrophysics Data System (ADS)

    Martin, T. H.

    An empirical scaling relationship between the mean electric field and the breakdown time has been found. Many divergent sets of data were used from breakdown experiments on power lines, laser-triggered switches, trigatrons, e-beam triggered gaps, sharp-point electrode to plane gaps, and uniform field gaps. This relationship builds on the Felsenthal and Proud data and extends their breakdown time delay (formative time) data by three orders of magnitude and into the region of interest for triggered gas switching. The data indicates that electrically triggered gaps, laser-triggered gaps, and untriggered gaps are governed by the same time-delay processes. Predictions can be made of trigger gap geometry, trigger delays, and trigger polarity effects. Breakdown delays of sub-centimeter-long to at least 8-meter-long gaps in air with either high or low field-enhanced electrodes are described by this equation. In addition, this relationship appears to be valid for a variety of gases and even accurately predicts the breakdown delay of mixtures of air and SF(sub 6).

  16. Basic study of transient breakdown voltage in solid dielectric cables

    NASA Astrophysics Data System (ADS)

    Bahder, G.; Sosnowski, M.; Katz, C.

    1980-09-01

    A comprehensive review of the technical and scientific publications relating to crosslinked polyethylene (XLPE) and ethylene propylene rubber (EPR) insulated cables revealed that there is very little known with respect to the life expectancy, the final factory voltage test background and the mechanism of voltage breakdown of these cables. A new methodology for the investigation of breakdown voltages of XLPE and EPR insulated cables was developed which is based on the investigation of breakdown voltages at various voltage transients such as unipolarity pulses and dual-polarity pulses, and a.c. voltage at power and high frequency. Also, a new approach to statistical testing was developed which allows one to establish a correlation among the breakdown voltages obtained with various voltage transients. Finally, a method for the determination of threshold voltage regardless of the magnitude of apparent charge was developed. A model of breakdown and electrical aging of XLPE and EPR insulated cables was developed as well as life expectancy characteristics for high voltage stress XLPE insulated cables operated in a dry environment at room temperature and at 900 C.

  17. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  18. Current contacts and the breakdown of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    van Son, P. C.; Kruithof, G. H.; Klapwijk, T. M.

    1990-12-01

    The nonlinearities in the I-V characteristics have been studied of high-mobility Si metal oxide semiconductor field-effect transistors in the quantum Hall regime. The breakdown curves were measured with different sets of voltage contacts and for different directions of magnetic field and current. Comparison of these curves shows that the breakdown of the quantum Hall effect (QHE) in these samples is an intrinsic effect that starts at the current contact where the electrons are injected into the two-dimensional electron gas (2DEG). This fundamental asymmetry and the crucial role of the current contact are explained using the Büttiker-Landauer approach to the QHE and its recent extension to the nonlinear regime. The electron-injection process contains two mechanisms that lead to breakdown voltages in the 2DEG. We have identified both experimentally by comparing the critical currents of different configurations of current and voltage contacts. In one of the mechanisms, the nonequilibrium distribution of electrons that is injected into the 2DEG extends to the voltage contacts. This means that the equilibration length of the 2D electrons is at least of the order of 100 μm. For currents far beyond breakdown and for voltage contacts that are further from the electron-injection contact, the breakdown characteristics are harder to understand. The variation of the electron density of the 2DEG due to the large Hall voltage has to be taken into account as well as the equilibration induced by additional voltage contacts.

  19. General analysis of (14)N (I = 1) electron spin echo envelope modulation.

    PubMed

    Lee, H I; Doan, P E; Hoffman, B M

    1999-09-01

    The analysis methods described to date for (14)N electron spin echo envelope modulation (ESEEM) mostly deal with isotropic g- and (14)N hyperfine coupling tensors. However, many cases of rhombic tensors are encountered. In the present report we present general equations for analyzing orientation-selective ESEEM and illustrate their use. (i) We present general equations for the nuclear interactions in an electron spin system where the EPR signal arises from an isolated Kramers doublet, then give the nuclear (electron-nuclear double resonance) frequencies for I = 1 associated with such a system. (ii) These are incorporated into equations for single-crystal ESEEM amplitudes, which in turn are incorporated into general equations for the orientation-selective ESEEM that arises when the EPR envelope of a frozen-solution (powder) sample is determined by g anisotropy. (iii) This development is first used in the simplest limit of an isotropic g-tensor and leads to a more general picture of the response of the I = 1 modulation amplitude to variations in the nuclear hyperfine and quadrupole coupling constants, relative to the nuclear Zeeman interaction, than had been presented previously. We find that strong modulation occurs not only in the well-known regime where the "exact/near cancellation" condition (A/2 approximately nu(N)) is satisfied, but also when the nuclear hyperfine interaction is much larger than the nuclear Zeeman interaction (A/nu(N) > 3) with A/K = 4 approximately 5. (iv) We then describe the orientation-selective (14)N ESEEM frequency-domain patterns (g vs frequency) in the presence of anisotropic (rhombic) hyperfine and electron Zeeman interactions for both coaxial and noncoaxial cases. We derive analytical solutions when the g-, hyperfine, and nuclear quadrupole tensors are coaxial. (v) The method is applied to the ESEEM of the nitrogenase MoFe protein (Av1) to determine the full hyperfine and nuclear quadrupole tensors of (14)N nuclei interacting with the

  20. EWS-FLI1 impairs aryl hydrocarbon receptor activation by blocking tryptophan breakdown via the kynurenine pathway.

    PubMed

    Mutz, Cornelia N; Schwentner, Raphaela; Kauer, Maximilian O; Katschnig, Anna M; Kromp, Florian; Aryee, Dave N T; Erhardt, Sophie; Goiny, Michel; Alonso, Javier; Fuchs, Dietmar; Kovar, Heinrich

    2016-07-01

    Ewing sarcoma (ES) is an aggressive pediatric tumor driven by the fusion protein EWS-FLI1. We report that EWS-FLI1 suppresses TDO2-mediated tryptophan (TRP) breakdown in ES cells. Gene expression and metabolite analyses reveal an EWS-FLI1-dependent regulation of TRP metabolism. TRP consumption increased in the absence of EWS-FLI1, resulting in kynurenine and kynurenic acid accumulation, both aryl hydrocarbon receptor (AHR) ligands. Activated AHR binds to the promoter region of target genes. We demonstrate that EWS-FLI1 knockdown results in AHR nuclear translocation and activation. Our data suggest that EWS-FLI1 suppresses autocrine AHR signaling by inhibiting TDO2-catalyzed TRP breakdown. PMID:27282934

  1. 2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan; Moore, Chris; Boerner, Jeremiah

    2015-09-01

    Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Optoelectronic switching in diamond and optical surface breakdown

    SciTech Connect

    Lipatov, E I; Tarasenko, V F

    2008-03-31

    The optoelectronic switching in two natural diamond samples of type 2-A is studied at voltages up to 1000 V and the energy density of control 60-ns, 308-nm laser pulses up to 0.6 J cm{sup -2}. It is shown that the design of a diamond switch affects the switching efficiency. When the energy density exceeds 0.2 J cm{sup -2} and the interelectrode surface is completely illuminated, the surface breakdown is initiated by UV radiation, which shunts the current flow through the diamond crystal. When the illumination of the interelectrode surface is excluded, the surface breakdown does not occur. The threshold radiation densities sufficient for initiating the surface breakdown are determined for electric field strengths up to 10 kV cm{sup -1}. (laser applications and other topics in quantum electronics)

  3. Exploration of Underwater Laser Breakdown Using Two Synchronized Gated Cameras

    NASA Astrophysics Data System (ADS)

    Huwel, Lutz; Baumgart, Clayton; Betts, Susannah; Morgan, Thomas J.; Graham, William G.

    2014-10-01

    Using two synchronized intensified CCD cameras, we have studied spatial and temporal characteristics of optical breakdown in water created by a focused 10 ns pulsed Nd:YAG laser operating at 1064 nm. For three water samples with different impurity content (ultrapure, distilled, and tap water), the plasma evolution was monitored up to 1 ms after breakdown. Images taken by the two cameras, systematically delayed relative to each other, reveal that the center of emission intensity does not remain at a fixed location. In single plasma events, the center first moves, on average, toward the incoming laser beam. Then, at about 100 to 200 ns, the apparent direction of motion reverses and the center returns towards the focal point. On the other hand, in repetitive breakdown the time averaged center moves steadily downstream with each subsequent pulse. Details of this behavior depend on repetition frequency. We will also present shadowgraphy results revealing time resolved speeds of both shockwave and bubble expansion.

  4. Breakdown of silicon particle detectors under proton irradiation

    SciTech Connect

    Vaeyrynen, S.; Raeisaenen, J.; Kassamakov, I.; Tuominen, E.

    2009-11-15

    Silicon particle detectors made on Czochralski and float zone silicon materials were irradiated with 7 and 9 MeV protons at a temperature of 220 K. During the irradiations, the detectors were biased up to their operating voltage. Specific values for the fluence and flux of the irradiation were found to cause a sudden breakdown in the detectors. We studied the limits of the fluence and the flux in the breakdown as well as the behavior of the detector response function under high flux irradiations. The breakdown was shown to be an edge effect. Additionally, the buildup of an oxide charge is suggested to lead to an increased localized electric field, which in turn triggers a charge carrier multiplication. Furthermore, we studied the influences of the type of silicon material and the configuration of the detector guard rings.

  5. Analysis of the breakdown voltage in SOI and SOS technologies

    NASA Astrophysics Data System (ADS)

    Roig, J.; Vellvehi, M.; Flores, D.; Rebollo, J.; Millan, J.; Krishnan, S.; De Souza, M. M.; Sankara Narayanan, E. M.

    2002-02-01

    The aim of the paper is to analyse the breakdown voltage performance of lateral power devices in silicon on insulator (SOI) technologies. Both silicon on oxide (termed SOI as per the convention) and silicon on sapphire (SOS) technologies have been considered. Detailed numerical modelling together with analytical evaluation has been carried out on lateral devices employing uniformly doped and variation in lateral doping drift regions. The results indicate that existing theories to predict breakdown voltage are valid only in the case of ultrathin insulator layers and fail when ultrathick layers are considered. Predicted results for devices with ultrathick dielectric layers, as it is the case in SOS technology, are presented. Moreover, the breakdown voltage sensitivity with respect to the SOI layer and dielectric thickness is also analysed.

  6. Electrical breakdown gas detector featuring carbon nanotube array electrodes.

    PubMed

    Kim, Seongyul; Pal, Sunil; Ajayan, Pulickel M; Borca-Tasciuc, Theodorian; Koratkar, Nikhil

    2008-01-01

    We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices. PMID:18468093

  7. Fundamentals of undervoltage breakdown through the Townsend mechanism

    NASA Astrophysics Data System (ADS)

    Cooley, James E.

    The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain, DC discharge gap are experimentally and theoretically explored. The phenomenon is relevant to fundamental understanding of breakdown physics, to switching applications such as triggered spark gaps and discharge initiation in pulsed-plasma thrusters, and to gas-avalanche particle counters. A dimensionless theoretical description of the phenomenon is formulated and solved numerically. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low avalanche-ionization gain, when an electron undergoes fewer than approximately 10 ionizing collisions during one gap transit. It is also found that fewer injected electrons are required as the gain due to electron-impact ionization (alpha process) is increased, or as the sensitivity of the alpha process to electric field is enhanced by decreasing the reduced electric field (electric field divided by pressure, E/p). A predicted insensitivity to ion mobility implies that breakdown is determined during the first electron avalanche when space charge distortion is greatest. A dimensionless, theoretical study of the development of this avalanche reveals a critical value of the reduced electric field to be the value at the Paschen curve minimum divided by 1.6. Below this value, the net result of the electric field distortion is to increase ionization for subsequent avalanches, making undervoltage breakdown possible. Above this value, ionization for subsequent avalanches will be suppressed and undervoltage breakdown is not possible. Using an experimental apparatus in which ultraviolet laser pulses are directed onto a photo-emissive cathode of a parallel-plate discharge gap, it is found that undervoltage breakdown can occur through a Townsend-like mechanism through the buildup of successively larger avalanche generations. The minimum number of injected

  8. Resistance of a pulsed electrical breakdown channel in ionic crystals

    NASA Astrophysics Data System (ADS)

    Punanov, I. F.; Emlin, R. V.; Kulikov, V. D.; Cholakh, S. O.

    2014-04-01

    A technique for estimating the resistance of the electrical breakdown channel in ionic crystals is proposed. This technique is based on measuring the channel velocity in a sample when a ballast resistor is connected to the circuit of a needle anode and on using the theoretical dependence of the channel velocity on the channel conductivity. The breakdown channel resistance at a voltage of 140 kV is about 6.5 kΩ in KCl and about 6.1 kΩ in KBr. These resistances are shown to characterize a gas phase. The gas-phase resistance is found to be nonuniform along the breakdown channel. The head part ˜1 mm long has the maximum resistance. This head region is concluded to contain dielectric substance clusters, which then decompose into metal and halogen ions. The cluster lifetime is ˜10-9 s.

  9. Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus

    NASA Astrophysics Data System (ADS)

    Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru

    This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.

  10. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    SciTech Connect

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  11. Phenylalanines at positions 88 and 159 of Ebolavirus envelope glycoprotein differentially impact envelope function

    SciTech Connect

    Ou Wu; King, Harlan; Delisle, Josie; Shi Dashuang; Wilson, Carolyn A.

    2010-01-05

    The envelope glycoprotein (GP) of Ebolavirus (EBOV) mediates viral entry into host cells. Through mutagenesis, we and other groups reported that two phenylalanines at positions 88 and 159 of GP are critical for viral entry. However, it remains elusive which steps of viral entry are impaired by F88 or F159 mutations and how. In this study, we further characterized these two phenylalanines through mutagenesis and examined the impact on GP expression, function, and structure. Our data suggest that F159 plays an indirect role in viral entry by maintaining EBOV GP's overall structure. In contrast, we did not detect any evidence for conformational differences in GP with F88 mutations. The data suggest that F88 influences viral entry during a step after cathepsin processing, presumably impacting viral fusion.

  12. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  13. Dynamics of a supernova envelope in a cloudy interstellar medium

    NASA Astrophysics Data System (ADS)

    Korolev, V. V.; Vasiliev, E. O.; Kovalenko, I. G.; Shchekinov, Yu. A.

    2015-07-01

    The evolution of a supernova remnant in a cloudy medium as a function of the volume filling factor of the clouds is studied in a three-dimensional axially symmetrical model. The model includes the mixing of heavy elements (metals) ejected by the supernova and their contribution to radiative losses. The interaction of the supernova envelope with the cloudy phase of the interstellar medium leads to nonsimultaneous, and on average earlier, onsets of the radiative phase in different parts of the supernova envelope. Growth in the volume filling factor f leads to a decrease in the time for the transition of the envelope to the radiative phase and a decrease in the envelope's mean radius, due to the increased energy losses by the envelope in the cloudy medium. When the development of hydrodynamical instabilities in the supernova envelope is efficient, the thermal energy falls as E t ~ t -2.3, for the propagation of the supernova remnant through either a homogeneous or a cloudy medium. When the volume filling factor is f ≳ 0.1, a layer with excess kinetic energy andmomentumforms far behind the global shock front from the supernova, which traps the hot gas of the cavity in the central part of the supernova remnant. Metals ejected by the supernova are also enclosed in the central region of the remnant, where the initial (high) metallicity is essentially preserved. Thus, the interaction of the supernova envelope with the cloudy interstellar medium appreciably changes the dynamics and structure of the distribution of the gas in the remnant. This affects the observational characteristics of the remnant, in particularly, leading to substantial fluctuations of the emissionmeasure of the gas with T > 105 K and the velocity dispersion of the ionized gas.

  14. Characterization of superconducting radiofrequency breakdown by two-mode excitation

    SciTech Connect

    Eremeev, Grigory V.; Palczewski, Ari D.

    2014-01-14

    We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.

  15. Nonequilibrium breakdown of a correlated insulator through pattern formation

    NASA Astrophysics Data System (ADS)

    Ribeiro, Pedro; Antipov, Andrey E.; Rubtsov, Alexey N.

    2016-04-01

    We study the breakdown of an interaction-induced insulator under an imposed bias voltage. A rich voltage-temperature phase diagram is found that contains phases with a spatially patterned charge gap. Nonequilibrium conditions are shown to be able to change the antiferromagnetic nature of the equilibrium correlations. Above a threshold voltage, smaller than the charge gap, the formation of patterns occurs together with the emergence of midgap states yielding a finite conductance. We discuss the experimental implications of this proposed scenario for the breakdown of the insulating state.

  16. Infrared laser-induced breakdown spectroscopy emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Yang, Clayton S.; Brown, E.; Hommerich, Uwe; Trivedi, Sudhir B.; Samuels, Alan C.; Snyder, A. Peter

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives (CBE) sensing and has significant potential for real time standoff detection and analysis. We have studied LIBS emissions in the mid-infrared (MIR) spectral region for potential applications in CBE sensing. Detailed MIR-LIBS studies were performed for several energetic materials for the first time. In this study, the IR signature spectral region between 4 - 12 um was mined for the appearance of MIR-LIBS emissions that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species.

  17. Breakdown voltage of discrete capacitors under single-pulse conditions

    NASA Technical Reports Server (NTRS)

    Domingos, H.; Scaturro, J.; Hayes, L.

    1981-01-01

    For electrostatic capacitors the breakdown voltage is inherently related to the properties of the dielectric, with the important parameters being the dielectric field strength which is related to the dielectric constant and the dielectric thickness. These are not necessarily related to the capacitance value and the rated voltage, but generally the larger values of capacitance have lower breakdown voltages. Foil and wet slug electrolytics can withstand conduction currents pulses without apparent damage (in either direction for foil types). For solid tantalums, damage occurs whenever the capacitor charges to the forming voltage.

  18. Electrical breakdown of soil under nonlinear pulsed current spreading

    NASA Astrophysics Data System (ADS)

    Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Panov, V. A.; Son, E. E.; Efimov, B. V.; Danilin, A. N.; Kolobov, V. V.; Selivanov, V. N.; Ivonin, V. V.

    2015-07-01

    Laboratory investigations on pulsed current spreading from spherical electrodes and evolution of electrical breakdown of silica sand with different water contents under a 15-20 kV voltage pulse were carried out. A sharp nonlinear decrease in the pulsed resistance of soil was observed when the current density exceeded a certain threshold value. Then ionization-overheating instability develops and leads to current contraction and plasma channel formation in the soil. The method for determination of the threshold electric field for ionization is proposed. Electrical discharge in wet sand was found to develop with a significant delay time for long discharge gaps similar to thermal breakdown.

  19. A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale

    SciTech Connect

    Foissac, R.; Blonkowski, S.; Delcroix, P.; Kogelschatz, M.

    2014-07-14

    Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.

  20. Characterization of a chloroplast inner envelope K+ channel.

    PubMed Central

    Mi, F; Peters, J S; Berkowitz, G A

    1994-01-01

    A K(+)-conducting protein of the chloroplast inner envelope was characterized as a K+ channel. Studies of this transport protein in the native membrane documented its sensitivity to K+ channel blockers. Further studies of native membranes demonstrated a sensitivity of K+ conductance to divalent cations such as Mg2+, which modulate ion conduction through interaction with negative surface charges on the inner-envelope membrane. Purified chloroplast inner-envelope vesicles were fused into an artificial planar lipid bilayer to facilitate recording of single-channel K+ currents. These single-channel K+ currents had a slope conductance of 160 picosiemens. Antibodies generated against the conserved amino acid sequence that serves as a selectivity filter in the pore of K+ channels immunoreacted with a 62-kD polypeptide derived from the chloroplast inner envelope. This polypeptide was fractionated using density gradient centrifugation. Comigration of this immunoreactive polypeptide and K+ channel activity in sucrose density gradients further suggested that this polypeptide is the protein facilitating K+ conductance across the chloroplast inner envelope. PMID:8058841