Effective field theory in nuclear physics
Martin J. Savage
2000-12-12
I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.
Effective Field Theory in Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei
2001-04-01
I will discuss some basic ideas of effective field theory and its application to two nucleon systems. The theory allows a perturbative treatment of strongly interacting, bound state problems such that the calculations can be systematically improved and reliable error estimation performed. Also, the field theory formalism naturally allows manifest incorporation of symmetry properties such as gauge symmetry and Lorentz symmetry. Emphasis will be placed on some high precision calculations to low energy astrophysical problems: neutron radiative capture onto proton which is relevant to big-bang nucleosynthesis; neutrino deuteron inelastic scattering employed in the solar neutrino detection by Sudbury Neutrino Observatory (SNO) and the proton-proton solar fusion process which is an important process to fuel the sun. The last two classes of processes share the same two-body operator which is proposed to be measured at ORLAND and could serve to calibrate SNO and the solar fusion rate.
Power counting and Wilsonian renormalization in nuclear effective field theory
NASA Astrophysics Data System (ADS)
Valderrama, Manuel Pavón
2016-05-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.
Regularization methods for Nuclear Lattice Effective Field Theory
NASA Astrophysics Data System (ADS)
Klein, Nico; Lee, Dean; Liu, Weitao; Meißner, Ulf-G.
2015-07-01
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations and predictions for the effective range expansion. In the pionless case, a simple Gaussian smearing allows to demonstrate lattice spacing independence over a wide range of lattice spacings. We show that regularization methods known from the continuum formulation are necessary as well as feasible for the pionful approach.
Nuclear Parity-Violation in Effective Field Theory
Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck
2005-02-21
We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.
Effective field theory for nuclear vibrations with quantified uncertainties
NASA Astrophysics Data System (ADS)
Coello Pérez, E. A.; Papenbrock, T.
2015-12-01
We develop an effective field theory (EFT) for nuclear vibrations. The key ingredients—quadrupole degrees of freedom, rotational invariance, and a breakdown scale around the three-phonon level—are taken from data. The EFT is developed for spectra and electromagnetic moments and transitions. We employ tools from Bayesian statistics for the quantification of theoretical uncertainties. The EFT consistently describes spectra and electromagnetic transitions for 62Ni,100,98Ru,108,106Pd, 110,112,114Cd, and 118,120,122Te within the theoretical uncertainties. This suggests that these nuclei can be viewed as anharmonic vibrators.
Three-Body Nuclear Systems in Pionless Effective Field Theory
NASA Astrophysics Data System (ADS)
Vanasse, Jared
2016-03-01
New perturbative techniques for three-body systems with contact interactions are discussed. Their application to pionless effective field theory (EF{Tnot π }) for nd scattering is shown, and their extension to bound states addressed. With the extension to bound states a leading-order EF{Tnot π } calculation of the triton charge radius and novel treatments of three-body forces are discussed.
Nuclear axial currents in chiral effective field theory
Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; Schiavilla, Rocco; Viviani, Michele
2016-01-11
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less
Power counting for nuclear forces in chiral effective field theory
NASA Astrophysics Data System (ADS)
Long, Bingwei
2016-02-01
The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.
Ab initio nuclear structure from lattice effective field theory
Lee, Dean
2014-11-11
This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.
Turro, Nicholas J.
1983-01-01
The course of chemical reactions involving radical pairs may depend on occurrence and orientation of nuclear spins in the pairs. The influence of nuclear spins is maximized when the radical pairs are confined to a space that serves as a cage that allows a certain degree of independent diffusional and rotational motion of the partners of the pair but that also encourages reencounters of the partners within a period which allows the nuclear spins to operate on the odd electron spins of the pair. Under the proper conditions, the nuclear spins can induce intersystem crossing between triplet and singlet states of radical pairs. It is shown that this dependence of intersystem crossing on nuclear spin leads to a magnetic isotope effect on the chemistry of radical pairs which provides a means of separating isotopes on the basis of nuclear spins rather than nuclear masses and also leads to a magnetic field effect on the chemistry of radical pairs which provides a means of influencing the course of polymerization by the application of weak magnetic fields. PMID:16593273
Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields
Rabhi, A.; Providencia, C.; Providencia, J. Da
2009-01-15
We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.
What Do Effective Field Theories Tell Us About the Nuclear Force?
NASA Astrophysics Data System (ADS)
Friar, J. L.
2003-10-01
Potentials are the tools that traditional nuclear physics uses to calculate bound states and reaction rates. First-generation potentials (developed more than a decade ago) used many different mechanisms to motivate shapes and strengths, while their fits to nucleon-nucleon scattering data were indifferent. Second-generation potentials, whose fits to data range from good to excellent, were constructed within the past decade using the same motivations. Accurate third-generation potentials are now being developed using the language and techniques of chiral perturbation theory, which is an effective field theory based on the symmetries of QCD. The philosophy of such effective field theories has made a large impact on the way I view nuclear potentials. Power counting, for example, uses the scales of strongly interacting systems to provide a systematic and concise organizational scheme that subsumes both two-nucleon and three-nucleon potentials. Although this new development has led to a rapid advance in our understanding of nuclear forces (especially in isospin violation), much of this work mirrors traditional approaches. Many of the techniques usually associated with field theory (such as regularization and renormalization, for example) also have direct analogues in more traditional approaches to constructing potentials. Examples of nuclear-force mechanisms and their associated scales will be discussed throughout the talk, together with my appreciation of how well we understand the nuclear force.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
NASA Astrophysics Data System (ADS)
Holt, Jeremy W.; Rho, Mannque; Weise, Wolfram
2016-03-01
Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme". Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Dissertation in Nuclear Physics Award Talk: Effective Field Theory for Nuclear Physics
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei
2002-04-01
I will discuss some basic ideas of effective field theory and its application to two nucleon systems. The theory allows a perturbative treatment of strongly interacting, bound state problems such that the calculations can be systematically improved and reliable error estimation performed. Also, the field theory formalism naturally allows manifest incorporation of symmetry properties such as gauge symmetry and Lorentz symmetry. Emphasis will be placed on some high precision calculations to low energy astrophysical problems: neutron radiative capture onto proton which is relevant to big-bang nucleosynthesis; neutrino deuteron inelastic scattering employed in the solar neutrino detection by Sudbury Neutrino Observatory (SNO) and the proton-proton solar fusion process which is an important process to fuel the sun. The last two classes of processes share the same two-body operator which is proposed to be measured at ORLAND and could serve to calibrate SNO and the solar fusion rate.
Effect of the {delta} meson on the instabilities of nuclear matter under strong magnetic fields
Rabhi, A.; Providencia, C.; Da Providencia, J.
2009-08-15
We study the influence of the isovector-scalar meson on the spinodal instabilities and the distillation effect in asymmetric nonhomogenous nuclear matter under strong magnetic fields of the order of 10{sup 18}-10{sup 19} G. Relativistic nuclear models both with constant couplings (NLW) and with density-dependent parameters (DDRH) are considered. A strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. It is shown that for neutron-rich matter the inclusion of the {delta} meson increases the size of the instability region for NLW models and decreases it for the DDRH models. The effect of the {delta} meson on the transition density to homogeneous {beta}-equilibrium matter is discussed. The DDRH{delta} model predicts the smallest transition pressures, about half the values obtained for NL{delta}.
Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.
2015-06-21
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
NASA Astrophysics Data System (ADS)
Mance, Deni; Gast, Peter; Huber, Martina; Baldus, Marc; Ivanov, Konstantin L.
2015-06-01
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between "bulk" and "core" nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
Nuclear-spin-induced cotton-mouton effect in a strong external magnetic field.
Fu, Li-Juan; Vaara, Juha
2014-08-01
Novel, high-sensitivity and high-resolution spectroscopic methods can provide site-specific nuclear information by exploiting nuclear magneto-optic properties. We present a first-principles electronic structure formulation of the recently proposed nuclear-spin-induced Cotton-Mouton effect in a strong external magnetic field (NSCM-B). In NSCM-B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature-dependent partial alignment of the molecules due to the magnetic fields. Quantum-chemical calculations of NSCM-B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10(-11) -10(-6) rad T(-1) M(-1) cm(-1) for fully spin-polarized nuclei. In particular, liquid-state heavy-atom systems should be promising for experiments in the Voigt setup. PMID:24862946
Effective meson masses in nuclear matter based on a cutoff field theory
Nakano, M.; Noda, N.; Mitsumori, T.; Koide, K.; Kouno, H.; Hasegawa, A.
1997-02-01
Effective masses of {sigma}, {omega}, {pi}, and {rho} mesons in nuclear matter are calculated based on a cutoff field theory. Instead of the traditional density-Feynman representation, we adopt the particle-hole-antiparticle representation for nuclear propagators so that unphysical components are not included in the meson self-energies. For an estimation of the contribution from the divergent particle-antiparticle excitations, i.e., vacuum polarization in nuclear matter, the idea of the renormalization group method is adopted. In this cutoff field theory, all the counterterms are finite and calculated numerically. It is shown that the predicted meson masses converge even if the cutoff {Lambda} is changed as long as {Lambda} is sufficiently large and that the prescription works well also for so-called nonrenormalized mesons such as {pi} and {rho}. According to this method, it is concluded that meson masses in nuclear matter have a weak dependence on the baryon density. {copyright} {ital 1997} {ital The American Physical Society}
Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei
2015-03-15
We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
Urban, Jeffry Todd
2004-12-21
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an
Effect of the Nuclear Hyperfine Field on the 2D Electron Conductivity in the Quantum Hall Regime
VITKALOV,S.A.; BOWERS,C.R.; SIMMONS,JERRY A.; RENO,JOHN L.
2000-07-13
The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor v= 1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.
NASA Astrophysics Data System (ADS)
Jiang, Li; Zhang, Guo-Feng
2016-08-01
The effects of nuclear field and spin-orbit interaction on dense coding and swap operation are studied in detail for both the antiferromagnetic (AFM) and ferromagnetic (FM) coupling cases. The conditions for a valid dense coding and under which swap operation is feasible are given.
NASA Astrophysics Data System (ADS)
Guseva, S. V.; Lesovaya, E. N.; Timoshenko, G. N.
2015-01-01
The questions of a correlation between normative and operational quantities in the dosimetry of ionizing radiation still attract the attention of professionals working in the field. Since the neutron fields of nuclear-physics facilities at the Joint Institute for Nuclear Research (JINR) are highly varied, the question of whether the ambient neutron dose always serves as a conservative estimate of the effective dose (in the terms of which the dose limits are set) is of practical importance for radiation monitoring at JINR. We studied the correlation between the calculated values of effective and ambient neutron doses obtained based on a representative set of neutron spectra measured at JINR with the use of a multisphere neutron spectrometer. It is demonstrated that measuring the ambient neutron dose may not serve as a confirmation of compliance with the set dose limits in "hard" neutron fields.
NASA Astrophysics Data System (ADS)
Vasconcellos, C. A. Zen
2015-12-01
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ-, Σ0, Σ+, Λ, Ξ-, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, ɸ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ- experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
Effects of magnetic fields on the nuclear burning propagation and the Type Ia SNe runaway
NASA Astrophysics Data System (ADS)
Hristov, Boyan; Collins, David C.; Hoeflich, Peter; Weatherford, Charles
2016-01-01
The consistency of Type Ia SNe allows for simple descriptions of the phenomena founded on basic physics and yet no theory is able to explain the observations entirely. In particular we are addressing an outstanding problem with current 3D simulations, in which Rayleigh-Taylor (RT) instabilities bring too much burned material to the outer layers thus mixing iron group elements towards the surface but those are not observed. Additionally light curves are reproduced well only in spherically symmetric explosions, while they break down when instabilities are present. We attempt to explain these discrepancies by introducing magnetic fields, which affects the rate of growth of unstable modes. Specifically it increases the growth rate of modes parallel to itself and suppress the transverse modes. This reduces the mixing in two possible ways: stronger burning causes faster pre-expansion, then plumes rise with the similar speed as the surrounding material is expanding; and RT instabilities are suppressed so much that they don't rise at all. Our preliminary models run in a rectangular domain inside a C/O white dwarf (WD) extending 120km along the stellar radius and is about 15km on the side. External magnetic fields between 1e4G and 1e9G are superimposed at various angles to the WD radius. A simple two-species nuclear network is employed in the form of fuel-product (C/O -> 56Ni). The front propagation is modeled as diffusion of the burned fraction of the C/O fuel. All simulations were done with Enzo - a 3D AMR MHD code for astrophysical and cosmological imulations, which was enhanced with additional physics for the nuclear burning. Future work will extend to full star simulations and more complex nuclear networks.
Magnetic field effect on charmonium formation in high energy nuclear collisions
NASA Astrophysics Data System (ADS)
Guo, Xingyu; Shi, Shuzhe; Xu, Nu; Xu, Zhe; Zhuang, Pengfei
2015-12-01
It is important to understand the strong external magnetic field generated at the very beginning of heavy ion collisions. We study the effect of the magnetic field on the anisotropic charmonium formation in Pb + Pb collisions at the LHC energy. The time dependent Schrödinger equation is employed to describe the motion of c c bar pairs. We compare our model prediction of the non-collective anisotropic parameter v2 of J / ψ with CMS data at high transverse momentum.
Some nuclear magnetic resonance studies of the effect of electric field on lipid dispersions
NASA Astrophysics Data System (ADS)
Osman, Peter Damien
1997-11-01
A method has been developed for studying, by NMR spectroscopy, the effect of pulsed electric fields on lipid aggregate structures such as bilayers and inverted hexagonal tubules as well as on the lipid conformation. Sample conductivity and ohmic heating caused the lipid to dehydrate under some test conditions and led to the use of glycerol as a substitute for water in membrane dispersions. It was found possible to produce aligned lipid multilayers which appeared very similar in spectral character to those obtained using water and lipid. Such membranes were more stable and possessed low ionic conduction. Additionally, it was possible to use the temperature dependence of chemical shifts in the NMR spectra to measure the ohmic heating effects resulting from the application of electric field to a lipid multilayer stack. The effect of electric fields on several lipids were investigated, including: egg yolk phosphatidylcholine, dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and dimyristoylphosphatidylcholine; together with mixtures of these lipids. Additionally lipids in which the voltage dependent ionophore alamethicin was included were tested. It was observed that electric fields below 16 MV/m had little direct effect on the conformation of lipid molecules, although slight changes were observed in the lipid headgroup region of lipid-glycerol multilayers. However, alterations in the long range order were observed including the rotation of lipid tubules in the inverted hexagonal phase; a lowering of the lamellar to inverted hexagonal phase transition temperature, and alteration of the spectra from aligned lipid multilayers of mixed lipids to spectra consistent with a viscous isotropic phase. Analyses were carried out to predict the effect of electric field on lipid dispersions. These included a model for the dielectrophoretic reorientation of elongated structures. This model was tested using dioleoylphosphatidylethanolamine in the inverted hexagonal phase
Vasconcellos, C. A. Zen
2015-12-17
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
Cohen, T.D.
1998-04-01
The physics goals of the effective field theory program for nuclear phenomena are outlined. It is pointed out that there are multiple schemes for implementing EFT and it is presently not clear if any of these schemes is viable. Most of the applications of effective field theory ideas have been on nucleon-nucleon scattering. It is argued that this is little more than curve fitting and that other quantities need to be calculated to test the ideas. It is shown that EFT methods work well for certain bound state properties of the deuteron electric form factor. However, it is also shown that this success depends sensitively on the fact that the majority of the probability of the deuteron`s wave function is beyond the range of the potential. This circumstance is special to the deuteron suggesting that it will be very difficult to achieve the same kinds of success for tightly bound nuclei.
Nuclear weapons, nuclear effects, nuclear war
Bing, G.F.
1991-08-20
This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``
Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J
2010-02-01
It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements. PMID:20365625
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.; Fredrickson, Jim K.; Ahmed, B.; Beyenal, Haluk
2010-08-15
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.; Fredrickson, Jim K.; Ahmed, Bulbul; Beyenal, Haluk
2010-01-01
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time-dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1 biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm. PMID:20589671
Wang, L.M.; Ewing, R.C.
1997-11-25
'Sheet silicates (e.g. micas and clays) are important constituents of a wide variety of geological formations such as granite, basalt, and sandstone. Sheet silicates, particularly clays such as bentonite are common materials in near-field engineered barriers in high-level nuclear waste (HLW) repositories. This is because migration of radionuclides from an underground HLW repository to the geosphere may be significantly reduced by sorption of radionuclides (e.g., Pu, U and Np) onto sheet silicates (e.g., clays and micas) that line the fractures and pores of the rocks along groundwater flowpaths. In addition to surface sorption, it has been suggested that some sheet silicates may also be able to incorporate many radionuclides, such as Cs and Sr, in the inter-layer sites of the sheet structure. However, theability of the sheet silicates to incorporate radionuclides and retard release and migration of radionuclides may be significantly affected by the near-field radiation due to the decay of fission products and actinides. for example, the unique properties of the sheet structures will be lost completely if the structure becomes amorphous due to irradiation effects. Thus, the study of irradiation effects on sheet-structures, such as structural damage and modification of chemical properties, are critical to the performance assessment of long-term repository behavior.'
RADIATION EFFECTS ON MATERIALS IN THE NEAR-FIELD OF NUCLEAR WASTE REPOSITORY
Successful, demonstrated containment of radionuclides in the near-field can greatly reduce the complexity of the performance assessment analysis of a geologic repository. The chemical durability of the waste form, the corrosion rate of the canister, and the physical and chemical ...
NASA Astrophysics Data System (ADS)
Burgos, Gaël.; Capdeville, Yann; Guillot, Laurent
2016-06-01
We investigate the effect of small-scale heterogeneities close to a seismic explosive source, at intermediate periods (20-50 s), with an emphasis on the resulting nonisotropic far-field radiation. First, using a direct numerical approach, we show that small-scale elastic heterogeneities located in the near-field of an explosive source, generate unexpected phases (i.e., long period S waves). We then demonstrate that the nonperiodic homogenization theory applied to 2-D and 3-D elastic models, with various pattern of small-scale heterogeneities near the source, leads to accurate waveforms at a reduced computational cost compared to direct modeling. Further, it gives an interpretation of how nearby small-scale features interact with the source at low frequencies, through an explicit correction to the seismic moment tensor. In 2-D simulations, we find a deviatoric contribution to the moment tensor, as high as 21% for near-source heterogeneities showing a 25% contrast of elastic values (relative to a homogeneous background medium). In 3-D this nonisotropic contribution reaches 27%. Second, we analyze intermediate-periods regional seismic waveforms associated with some underground nuclear explosions conducted at the Nevada National Security Site and invert for the full moment tensor, in order to quantify the relative contribution of the isotropic and deviatoric components of the tensor. The average value of the deviatoric part is about 35%. We conclude that the interactions between an explosive source and small-scale local heterogeneities of moderate amplitude may lead to a deviatoric contribution to the seismic moment, close to what is observed using regional data from nuclear test explosions.
ERIC Educational Resources Information Center
Sartori, Leo
1983-01-01
Fundamental principles governing nuclear explosions and their effects are discussed, including three components of a nuclear explosion (thermal radiation, shock wave, nuclear radiation). Describes how effects of these components depend on the weapon's yield, its height of burst, and distance of detonation point. Includes effects of three…
Harada, Koji; Kubo, Hirofumi; Yamamoto, Yuki
2011-03-15
Nuclear effective field theory (NEFT) including pions in the two-nucleon sector is examined from the Wilsonian renormalization group point of view. The pion exchange is cut off at the floating cutoff scale, {Lambda}, with the short-distance part being represented as contact interactions in accordance with the general principle of renormalization. We derive the nonperturbative renormalization group equations in the leading order of the nonrelativistic approximation in the operator space up to including O(p{sup 2}), and find the nontrivial fixed points in the {sup 1}S{sub 0} and {sup 3}S{sub 1}-{sup 3}D{sub 1} channels which are identified with those in the pionless NEFT. The scaling dimensions, which determine the power counting, of the contact interactions at the nontrivial fixed points are also identified with those in the pionless NEFT. We emphasize the importance of the separation of the pion exchange into the short-distance and the long-distance parts, since a part of the former is nonperturbative while the latter is perturbative.
von Hippel, F.
1983-01-01
The author reviews the subject rising the following topics and subtopics: I. Nuclear explosions: heat, nuclear radiation, and radioactive fallout; II. Effects: radiation sickness, burns, blast injuries, and equivalent areas of death; III. Nuclear war: battlefield, regional, intercontinental - counterforce, and intercontinental - counter-city and industry. There are two appendices. 34 references, 32 figures.
NASA Astrophysics Data System (ADS)
Mateja, Piotr; Wojcik, Mariusz
2016-07-01
A computer simulation method is applied to study electron-ion recombination in tracks of low-energy nuclear recoils in nonpolar liquids in which the electron transport can be described as ideal diffusion. The electron escape probability is calculated as a function of applied electric field, both for the field parallel to the track and for the field perpendicular to the track. The dependence of escape probability on the field direction is the stronger, the longer the ionization track, with a significant effect being found already for tracks of ~100 nm length. The results are discussed in the context of possible applications of nonpolar molecular liquids as target media in directional dark matter detectors.
Dynamic nuclear polarization at high magnetic fields
Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.
2009-01-01
Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (μw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (γe/γl), being ∼660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (≥5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in μw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416
Iselin, L.H.
1995-12-01
Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.
Radiological Effects of Nuclear War.
ERIC Educational Resources Information Center
Shapiro, Charles S.
1988-01-01
Described are the global effects of nuclear war. Discussed are radiation dosages, limited nuclear attacks, strategic arms reductions, and other results reported at the workshop on nuclear war issues in Moscow in March 1988. (CW)
NASA Astrophysics Data System (ADS)
Kohno, M.
2015-12-01
The nuclear saturation mechanism is discussed in terms of two-nucleon and three-nucleon interactions in chiral effective field theory (Ch-EFT), using the framework of lowest-order Brueckner theory. After the Coester band, which is observed in calculating saturation points with various nucleon-nucleon (NN) forces, is revisited using modern NN potentials and their low-momentum equivalent interactions, a detailed account of the saturation curve of the Ch-EFT interaction is presented. The three-nucleon force (3NF) is treated by reducing it to an effective two-body interaction by folding the third nucleon degrees of freedom. Uncertainties due to the choice of the 3NF low-energy constants c_D and c_E are discussed. The reduction of the cutoff-energy dependence of the NN potential is explained by demonstrating the effect of the 3NF in the ^1S_0 and ^3S_1 states.
Little, Reginald B; McClary, Felicia; Rice, Bria; Jackman, Corine; Mitchell, James W
2012-12-14
The recent observation of the explosive oxidation of graphene with enhancement for decreasing temperature and the requirements for synchronizing oxidants for collective oxidation-reduction (redox) reactions presented a chemical scenario for the thermal harvesting by the magnetic spin Hall Effect. More experimental data are presented to demonstrate such spin Hall Effect by determining the influence of spins of so-called spectator fermionic cations. Furthermore, the so-called spectator bosonic cations are discovered to cause a Klein tunneling effect during the redox reaction of graphene. The Na(+) and K(+), fermionic cations and the Mg(2+) and Ca(2+), bosonic cations were observed and compared under a variety of experimental conditions: adiabatic reactions with initial temperatures (18-22 °C); reactions toward infinite dilution; isothermal reactions under nonadiabatic conditions at low temperature of 18 °C; reactions under paramagnetic O(2) or diamagnetic N(2) atmospheres of different permeabilities; reactions in applied and no applied external magnetic field; and reactions toward excess concentrations of common and uncommon Na(+) and Mg(2+) cations. The observed reaction kinetics and dynamics under these various, diverse conditions are consistent with the spin Hall mechanism, energy harvesting and short time violation of Second Law of Thermodynamics for redox reactions of graphene by the Na(+)K(+) mixture and are consistent with the Klein tunnel mechanism for the redox reactions of graphene by the Mg(2+)Ca(2+) mixture. Mixed spin Hall and Klein tunnel mechanisms are discovered to slow and modulate explosive redox reactions. Such spin Hall Effect also gives explanation of recent tunneling of electrons through boron nitride. PMID:23108034
Gudjónsdóttir, María; Jónsson, Ásbjörn; Bergsson, Arnljótur Bjarki; Arason, Sigurjón; Rustad, Turid
2011-05-01
The effect of using polyphosphates during prebrining and the effect of prebrining time of cold water shrimp (Pandalus borealis) was studied with low field nuclear magnetic resonance (LF-NMR) transverse relaxation time measurements (benchtop and unilateral) and near infrared (NIR) spectroscopy with the aim of improving shrimp processing. Strong calibrations were obtained for moisture content and water-holding capacity (WHC) using the NIR technique. Multivariate analysis indicated significant correlations between benchtop NMR parameters and moisture content and WHC, as measured with physicochemical methods and NIR spectroscopy. Significant correlations were also observed between NMR parameters and muscle pH, protein content, and phosphate content. The study showed that LF-NMR contribute to improved understanding of the shrimp brining process and to improved process control on-line or at-line, especially in combination with NIR measurements. However, optimization of the unilateral device is necessary. PMID:22417356
Microscopically constrained mean-field models from chiral nuclear thermodynamics
NASA Astrophysics Data System (ADS)
Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.
2016-06-01
We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.
Momentum dependence of the nuclear mean field
Baldo, M.; Bombaci, I.; Giansiracusa, G.; Lombardo, U. Dipartimento di Fisica, Universita di Catania, Corso Italia 57, 95129 Catania, Italy)
1989-08-01
The dependence on the momentum of the nuclear mean field is studied in the framework of the self-consistent Bethe-Brueckner theory. It is pointed out that the rearrangement term, coming from the variation of the {ital G} matrix, gives a substantial contribution at the lowest momenta. The resulting single particle potential exhibits a good rate of convergence. Its momentum dependence appears to be negligible up to 2 fm{sup {minus}1}, in contrast with potentials used in calculations of heavy-ion collisions at intermediate energies.
Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field
Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.
2014-01-01
Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329
NASA Astrophysics Data System (ADS)
Saidian, Milad
), and thermal maturity are the main factors that affect the reliability of a measurement technique in organic rich shales. The final step for surface relaxivity measurement is to combine the mentioned petrophysical measurement with NMR data and investigating the effect of rock composition and texture on surface relaxivity. The surface relaxivities were calculated for organic rich samples with different thermal maturity and also shales with no organic content. My results show that identification of paramagnetic minerals that affect the surface relaxivity, their content and distribution are the key factors that affect the surface relaxivity of the rock. In absence of ferromagnetic minerals, paramagnetic clays such as chlorite, illite and illite-smectite mixed layer are the main mineral groups that affect the surface relaxivity. Since clays are one of the controlling factors of rock quality and gamma ray logs respond to clays occurring in oil and gas producing formations, these logs can be used to help perform a more accurate NMR log interpretation.
Quark mean field approach with derivative coupling for nuclear matter
Kawabata, M.; Akiyama, S.; Futami, Y.; Nakasone, T.; Yukino, T.
2008-05-15
We propose the quark mean field model including derivative coupling between quarks and scalar mesons in nuclear matter. This model concisely interprets an increasing size of the nucleon as well as a modification of coupling constant in the nuclear environment.
In-field analysis and assessment of nuclear material
Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.
1996-05-01
Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials.
Nuclear oncology, a fast growing field of nuclear medicine
NASA Astrophysics Data System (ADS)
Olivier, Pierre
2004-07-01
Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as 111In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while 131I- and 123I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of 99mTc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of 18F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a 90Y-labelled anti-CD20 antibody ( 90Y-ibritumomab tiuxetan (Zevalin ®)) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with 153Sm-EDTMP, 186Re-HEDP or 89Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with 90Y, 111In or 177Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined developments of radiopharmaceuticals and instrumentation.
Modeling nuclear field shift isotope fractionation in crystals
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2013-12-01
In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results
Holographic effective field theories
NASA Astrophysics Data System (ADS)
Martucci, Luca; Zaffaroni, Alberto
2016-06-01
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Microwave field effect transistor
NASA Technical Reports Server (NTRS)
Huang, Ho-Chung (Inventor)
1989-01-01
Electrodes of a high power, microwave field effect transistor are substantially matched to external input and output networks. The field effect transistor includes a metal ground plane layer, a dielectric layer on the ground plane layer, a gallium arsenide active region on the dielectric layer, and substantially coplanar spaced source, gate, and drain electrodes having active segments covering the active region. The active segment of the gate electrode is located between edges of the active segments of the source and drain electrodes. The gate and drain electrodes include inactive pads remote from the active segments. The pads are connected directly to the input and output networks. The source electrode is connected to the ground plane layer. The space between the electrodes and the geometry of the electrodes extablish parasitic shunt capacitances and series inductances that provide substantial matches between the input network and the gate electrode and between the output network and the drain electrode. Many of the devices are connected in parallel and share a common active region, so that each pair of adjacent devices shares the same source electrodes and each pair of adjacent devices shares the same drain electrodes. The gate electrodes for the parallel devices are formed by a continuous stripe that extends between adjacent devices and is connected at different points to the common gate pad.
Nuclear effects hardened shelters
NASA Astrophysics Data System (ADS)
Lindke, Paul
1990-11-01
The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.
Gordon, C.J.
1991-01-01
During magnetic resonance imaging (MRI) procedures, a subject is exposed to three novel environmental stimuli which have drawn attention over the past decade as potential health hazards: (1) a relatively intense static magnetic field; (2) a time-varying magnetic field, and (3) a radiofrequency (RF) field. Thermoregulation is one of many physiological systems that can be affected by MRI, specifically by the RF radiation absorbed by the subject during MRI. While there is some sparse, albeit controversial data on the possible effects of static magnetic fields on thermoregulation, the major concern regarding potential health hazards of the MRI-induced thermal effects centers on the RF radiation absorbed by a subject during a scan. The purpose of the paper is to review the studies that have impacted on understanding the thermoregulatory effects of MRI with special emphasis on the problems of selecting appropriate animal models for assessing the potential risk of RF radiation exposure during MRI.
Sanyal, Tania; Palanisamy, Pradeep; Nag, T C; Roy, T S; Wadhwa, Shashi
2013-06-01
The present study explores whether prenatal patterned and unpatterned sound of high sound pressure level (110 dB) has any differential effect on the morphology of brainstem auditory nuclei, field L (auditory cortex analog) and hippocampus in chicks (Gallus domesticus). The total number of neurons and glia, mean neuronal nuclear area and total volume of the brainstem auditory nuclei, field L and hippocampus of post-hatch day 1 chicks were determined in serial, cresyl violet-stained sections, using stereology software. All regions studied showed a significantly increased total volume with increase in total neuron number and mean neuronal nuclear area in the patterned music stimulated group as compared to control. Contrastingly the unpatterned noise stimulated group showed an attenuated volume with reduction in the total neuron number. The mean neuronal nuclear area was significantly reduced in the auditory nuclei and hippocampus but increased in the field L. Glial cell number was significantly increased in both experimental groups, being highest in the noise group. The brainstem auditory nuclei and field L showed an increase in glia to neuron ratio in the experimental groups as compared to control. In the hippocampus the ratio remained unaltered between control and music groups, but was higher in the noise group. It is thus evident that though the sound pressure level in both experimental groups was the same there were differential changes in the morphological parameters of the brain regions studied, indicating that the characteristics of the sound had a role in mediating these effects. PMID:23466415
Relativistic mean field model based on realistic nuclear forces
Hirose, S.; Serra, M.; Ring, P.; Otsuka, T.; Akaishi, Y.
2007-02-15
In order to predict properties of asymmetric nuclear matter, we construct a relativistic mean field (RMF) model consisting of one-meson exchange (OME) terms and point coupling (PC) terms. In order to determine the density dependent parameters of this model, we use properties of isospin symmetric nuclear matter in combination with the information on nucleon-nucleon scattering data, which are given in the form of the density dependent G-matrix derived from Brueckner calculations based on the Tamagaki potential. We show that the medium- and long-range components of this G-matrix can be described reasonably well by our effective OME interaction. In order to take into account the short-range part of the nucleon-nucleon interaction, which cannot be described well in this manner, a point coupling term is added. Its analytical form is taken from a model based on chiral perturbation theory. It contains only one additional parameter, which does not depend on the density. It is, together with the parameters of the OME potentials adjusted to the equation of state of symmetric nuclear matter. We apply this model for the investigation of asymmetric nuclear matter and find that the results for the symmetry energy as well as for the equation of state of pure neutron matter are in good agreement with either experimental data or with presently adopted theoretical predictions. In order to test the model at higher density, we use its equation of state for an investigation of properties of neutron stars.
Nuclear effects in Neutrino Nuclear Cross-sections
Singh, S. K.; Athar, M. Sajjad
2008-02-21
Nuclear effects in the quasielastic and inelastic scattering of neutrinos(antineutrinos) from nuclear targets have been studied. The calculations are done in the local density approximation which take into account the effect of nucleon motion as well as renormalisation of weak transition strengths in the nuclear medium. The inelastic reaction leading to production of pions is calculated in a {delta} dominance model taking into account the renormalization of {delta} properties in the nuclear medium.
Rutqvist, J.; Chijimatsu, M.; Jing, L.; Millard, A.; Nguyen,T.S.; Rejeb, A.; Sugita, Y.; Tsang, C.F.
2004-09-09
BENCHPAR project, the impact of thermal-hydrological-mechanical (THM) couplings on the performance of a bentonite-back-filled nuclear waste repository in near-field crystalline rocks is evaluated in a Bench-Mark Test problem (BMT1) and the results are presented in a series of three companion papers in this issue. This is the third paper with focus on the effects of THM processes at a repository located in a sparsely fractured rock. Several independent coupled THM analyses presented in this paper show that THM couplings have the most significant impact on the mechanical stress evolution, which is important for repository design, construction and post-closure monitoring considerations. The results show that the stress evolution in the bentonite-back-filled excavations and the surrounding rock depends on the post-closure evolution of both fields of temperature and fluid pressure.It is further shown that the time required to full resaturation may play an important role for the mechanical integrity of the repository drifts.In this sense, the presence of hydraulically conducting fractures in the near-field rock might actually improve the mechanical performance of the repository. Hydraulically conducting fractures in the near-field rocks enhances the water supply to the buffers/back-fills, which promotes a more timely process of resaturation and development of swelling pressures in the back-fill, thus provides timely confining stress and support to the rock walls. In one particular case simulated in this study, it was shown that failure in the drift walls could be prevented if the compressive stresses in back-fill were fully developed within 50 years,which is when thermally induced rock strain begins to create high differential (failure-prone) stresses in the near-field rocks.
Superconducting Field-Effect Transistors
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Romanofsky, Robert R.; Tabib-Azar, Massood
1995-01-01
Devices offer switching speeds greater than semiconducting counterparts. High-Tc superconducting field-effect transistors (SUPEFETs) investigated for use as electronic switches in delay-line-type microwave phase shifters. Resemble semiconductor field-effect transistors in some respects, but their operation based on different principle; namely, electric-field control of transition between superconductivity and normal conductivity.
Pairing effects in nuclear dynamic
NASA Astrophysics Data System (ADS)
Lacroix, Denis; Scamps, Guillaume; Tanimura, Yusuke
2016-05-01
In recent years, efforts have been made to account for super-fluidity in time-dependent mean-field description of nuclear dynamic [1-5]. Inclusion of pairing is important to achieve a realistic description of static properties of nuclei. Here,we show that pairing can also affect the nuclear motion. State of the art TDHF approach can describe from small to large amplitude collective motion as well as the collision between nuclei. Very recently, this microscopic approach has been improved to include pairing either in the BCS or HFB framework. Recent applications of the 3D TDHF + BCS (TDHF+BCS) model introduced in [4] will be presented. The role of super-fluidity on collective motion [6, 7], on one- and two-particle transfer [8] and on fission [9, 10] will be illustrated.
Effective Field Theory for Lattice Nuclei
NASA Astrophysics Data System (ADS)
Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.
2015-02-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at mπ≈800 MeV , we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states.
Effective field theory for lattice nuclei.
Barnea, N; Contessi, L; Gazit, D; Pederiva, F; van Kolck, U
2015-02-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at m_{π}≈800 MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states. PMID:25699436
Global Effects of Nuclear War: A Status Report.
ERIC Educational Resources Information Center
Turco, R. P.; Golitsyn, G. S.
1988-01-01
Provided is an update on nuclear winter research based on reports made at the Moscow meeting of the Scientific Committee on Problems of the Environment (SCOPE) including early results from a major field experimentation program. Describes the development and effects of smoke produced from nuclear detonations. (CW)
Modeling nuclear volume isotope effects in crystals
NASA Astrophysics Data System (ADS)
Schauble, Edwin A.
2013-10-01
Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.
Modeling nuclear volume isotope effects in crystals
Schauble, Edwin A.
2013-01-01
Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium
Modeling nuclear volume isotope effects in crystals.
Schauble, Edwin A
2013-10-29
Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from (119)Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium. PMID
Nuclear spin effects in optical lattice clocks
Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun
2007-08-15
We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.
Development and applications of NMR (nuclear magnetic resonance) in low fields and zero field
Bielecki, A.
1987-05-01
This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab.
Nucleosynthesis:. a Field with Still Many Open Nuclear Physics Questions
NASA Astrophysics Data System (ADS)
Goriely, S.
2013-03-01
Stellar nucleosynthesis is a vastly interdisciplinary field. There is a large number of different problems invoked calling for a variety of different and complementary research fields. Impressive progress has been made in the last decades in the various fields related to nucle-osynthesis, especially experimental and theoretical nuclear physics, as well as in ground-or space-based astronomical observations and astrophysical modelings. In spite of that success, major problems and puzzles remain. The three major nucleosynthesis processes called for to explain the origin of the elements heavier than iron are described and the major pending questions discussed. As far as nuclear physics is concerned, good quality nuclear data is known to be a necessary condition for a reliable model-ling of stellar nu-cleosynthesis. Through some specific examples, the need for further theoretical or experimental developments is also critically discussed in view of their impact on nucleosynthesis predictions.
Nucleosynthesis: a field with still many open nuclear physics questions
Goriely, S.
2010-06-01
Stellar nucleosynthesis is a vastly interdisciplinary field. There is a large number of different problems invoked calling for a variety of different and complementary research fields. Impressive progress has been made for the last decades in the various fields related to nucleosynthesis, especially in experimental and theoretical nuclear physics, as well as in ground-based or space astronomical observations and astrophysical modellings. In spite of that success, major problems and puzzles remain. The three major nucleosynthesis processes called for to explain the origin of the elements heavier than iron are described and the major pending questions discussed. As far as nuclear physics is concerned, good quality nuclear data is known to be a necessary condition for a reliable modelling of stellar nucleosynthesis. Through some specific examples, the need for further theoretical or experimental developments is also critically discussed in view of their impact on nucleosynthesis predictions.
Nuclear size effects in vibrational spectra.
Almoukhalalati, Adel; Shee, Avijit; Saue, Trond
2016-06-01
We present a theoretical study of nuclear volume in the rovibrational spectra of diatomic molecules which is an extension of a previous study restricted to rotational spectra [Chem. Phys., 2012, 401, 103]. We provide a new derivation for the electron-nucleus electrostatic interaction energy which is basically independent of the choice of model for the nuclear charge distribution. Starting from this expression we derive expressions for the electronic, rotational and vibrational field shift parameters in terms of effective electron density and its first and second derivatives with respect to internuclear distance. The effective density is often approximated by the contact density, but we demonstrate that this leads to errors on the order of 10% and is furthermore not necessary since the contact and effective densities can be obtained at the same computational cost. We calculate the field shift parameters at the 4-component relativistic coupled-cluster singles-and-doubles level and find that our results confirm the experimental findings of Tiemann and co-workers [Chem. Phys., 1982, 68(21), 1982, Ber. Bunsenges. Phys. Chem., 1982, 86, 821], whereas we find no theoretical justification for a scaling factor introduced in later work [Chem. Phys., 1985, 93, 349]. For lead sulfide we study the effective density as a function of internuclear distance and find a minimum some 0.2 Å inside the equilibrium bond distance. We also discuss Bigeleisen-Goeppert-Mayer theory of isotope fractionation in light of our results. PMID:27215395
Desktop fast-field cycling nuclear magnetic resonance relaxometer.
Sousa, Duarte Mesquita; Marques, Gil Domingos; Cascais, José Manuel; Sebastião, Pedro José
2010-07-01
In this paper a new type of Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer with low power consumption (200W) and cycle to cycle field stability better than 10(-4) is described. The new high-permeability magnet was designed to allow for good magnetic field homogeneity and allows for the sample rotation around an axis perpendicular to magnetic field, operating with magnetic fields between 0 and 0.21T. The power supply of the new relaxometer was specially developed in order to have steady state accurate currents and allow for magnetic field switching times less than 3ms. Additional control circuits were developed and included to compensate the Earth magnetic field component parallel to the field axis and to compensate for parasitic currents. The main aspects of the developed circuits together with some calibrating experimental results using the liquid crystal compounds 5CB and 8CB are presented and discussed. PMID:20688489
NASA Astrophysics Data System (ADS)
Bes, Daniel R.
2016-06-01
The highlights of the model which was developed during the 1950s at the Niels Bohr Institute, Copenhagen, under the leadership of Aage Bohr and Ben Mottelson, are described in this contribution. Subsequently, it is shown that the field concept—the fundamental tool of the unified model—is not only an intelligent guess to describe the difficult many-body nuclear system. By means of a systematic expansion of field-coupling effects, the nuclear field theory (NFT) accounts for the overcompleteness of the initial product basis and the overlooking of the Pauli principle acting between constituents of the basis. Eventually it leads to the exact solution of the nuclear many-body problem. The description in terms of fields involves another problem if the field violates a symmetry inherent to the initial problem. The solution is borrowed from the BRST treatments of gauge systems, in which the lost symmetry is replaced by a more powerful one.
Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.
2009-12-15
We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.
Iachininoto, Maria Grazia; Camisa, Vincenzo; Leone, Lucia; Pinto, Rosanna; Lopresto, Vanni; Merla, Caterina; Giorda, Ezio; Carsetti, Rita; Zaffina, Salvatore; Podda, Maria Vittoria; Teofili, Luciana; Grassi, Claudio
2016-05-01
This study investigates effects of gradient magnetic fields (GMFs) emitted by magnetic resonance imaging (MRI) devices on hematopoietic stem cells. Field measurements were performed to assess exposure to GMFs of staff working at 1.5 T and 3 T MRI units. Then an exposure system reproducing measured signals was realized to expose in vitro CD34+ cells to GMFs (1.5 T-protocol and 3 T-protocol). CD34+ cells were obtained by Fluorescence Activated Cell Sorting from six blood donors and three MRI-exposed workers. Blood donor CD34+ cells were exposed in vitro for 72 h to 1.5 T or 3 T-protocol and to sham procedure. Cells were then cultured and evaluated in colony forming unit (CFU)-assay up to 4 weeks after exposure. Results showed that in vitro GMF exposure did not affect cell proliferation but instead induced expansion of erythroid and monocytes progenitors soon after exposure and for the subsequent 3 weeks. No decrease of other clonogenic cell output (i.e., CFU-granulocyte/erythroid/macrophage/megakaryocyte and CFU-granulocyte/macrophage) was noticed, nor exposed CD34+ cells underwent the premature exhaustion of their clonogenic potential compared to sham-exposed controls. On the other hand, pilot experiments showed that CD34+ cells exposed in vivo to GMFs (i.e., samples from MRI workers) behaved in culture similarly to sham-exposed CD34+ cells, suggesting that other cells and/or microenvironment factors might prevent GMF effects on hematopoietic stem cells in vivo. Accordingly, GMFs did not affect the clonogenic potential of umbilical cord blood CD34+ cells exposed in vitro together with the whole mononuclear cell fraction. PMID:26992028
NASA Astrophysics Data System (ADS)
Moustaizis, S. D.; Lalousis, P.; Hora, H.; Larour, J.; Auvray, P.; Balcou, P.; Ducret, J.-E.; Martin, P.
2015-05-01
The burning process of high density (about 1018cm-3), high temperature (tens to hundreds of keV) plasma trapped by a high mirror-like magnetic field in a Compact Magnetic Fusion (CMF) device is numerically investigated.. The initial high density and high temperature plasma in the CMF device is produced by ultrashort high intensity laser beam interaction with clusters or thin foils, and two fuels, D-T and p-11B are studied. The spatio-temporal evolution of D-T and p-11B plasmas, the production of alphas, the generated electric fields and the high external applied magnetic field are described by a 1-D multifluid code. The initial values for the plasma densities, temperatures and external applied magnetic field (about 100 T) correspond to high β plasmas. The main objectives of the numerical simulations are: to study the plasma trapping, the neutron and alpha production for both fuels, and compare the effect of the external applied magnetic field on the nuclear burning efficiency for the two fuels.. The comparisons and the advantages for each fuel will be presented. The proposed CMF device and the potential operation of the device within the ELI-NP pillar will be discussed.
Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix
NASA Astrophysics Data System (ADS)
Popov, E. N.; Barantsev, K. A.; Litvinov, A. N.
2015-09-01
Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.
Nuclear and extranuclear effects of vitamin A.
Iskakova, Madina; Karbyshev, Mikhail; Piskunov, Aleksandr; Rochette-Egly, Cécile
2015-12-01
Vitamin A or retinol is a multifunctional vitamin that is essential at all stages of life from embryogenesis to adulthood. Up to now, it has been accepted that the effects of vitamin A are exerted by active metabolites, the major ones being 11-cis retinal for vision, and all trans-retinoic acid (RA) for cell growth and differentiation. Basically RA binds nuclear receptors, RARs, which regulate the expression of a battery of target genes in a ligand dependent manner. During the last decade, new scenarios have been discovered, providing a rationale for the understanding of other long-noted but not explained functions of retinol. These novel scenarios involve: (i) other nuclear receptors such as PPAR β/δ, which regulate the expression of other target genes with other functions; (ii) extranuclear and nontranscriptional effects, such as the activation of kinases, which phosphorylate RARs and other transcription factors, thus expanding the list of the RA-activated genes; (iii) finally, vitamin A is active per se and can work as a cytokine that regulates gene transcription by activating STRA6. New effects of vitamin A and RA are continuously being discovered in new fields, revealing new targets and new mechanisms thus improving the understanding the pleiotropicity of their effects. PMID:26459513
The Active Field of Nuclear and Radiochemistry: Not Just Nuclear Power.
Walther, Clemens
2016-08-01
" … The number of universities teaching nuclear and radiochemistry has decreased, not least as radiochemistry is erroneously linked to the use of nuclear power … Radiochemistry is essential for a variety of fields, including radiopharmaceuticals, as well as the management of radioactive waste … we are facing a lack of specialists in the area of radiation protection …" Read more in the Editorial by Clemens Walther. PMID:27321863
NASA Astrophysics Data System (ADS)
Fischer, Elmar; Grinberg, Farida; Kimmich, Rainer; Hafner, Siegfried
1998-07-01
Chain dynamics in a series of styrene-butadiene rubbers (SBR) was studied with the aid of the dipolar correlation effect (DCE) and field-cycling NMR relaxometry (FCR). The typical time scales of the two techniques are t>10-4 s and t<10-3 s, respectively, and therefore complementary. The crosslink density of the polymer networks was varied in a wide range. In order to prevent sinusoidal undulations of the stimulated-echo attenuation curves due to spin exchange between groups with different chemical-shift offsets, the DCE of the samples was examined using a modified radio frequency pulse sequence with additional π pulses inserted in the free-evolution intervals. Residual dipolar couplings can thus be probed in samples where chemical-shift and dipolar interactions are of the same order. The dipolar correlations probed with the DCE in SBR networks turned out to exist on a time scale exceeding 300 ms. The short-time fluctuations (probed by FCR) and the long-time dynamics (probed by DCE) can be approached by power-law dipolar correlation functions with exponents -0.78±0.02 and -1.5±0.1, respectively. The crossover time is in the order of 1 ms. In contrast to FCR, the DCE data strongly depend on the crosslink density but not on the temperature in a range from 30 to 80 °C. On this basis determinations of the crosslink density may be possible as an alternative to the usual mechanical torsion modulus measurements.
Effective Field Theories, Reductionism and Scientific Explanation
NASA Astrophysics Data System (ADS)
Hartmann, Stephan
Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effective field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispensable. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation.
Dynamic nuclear polarization in the hyperfine-field-dominant region
NASA Astrophysics Data System (ADS)
Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min
2015-06-01
Dynamic nuclear polarization (DNP) allows measuring enhanced nuclear magnetic resonance (NMR) signals. Though the efficiency of DNP has been known to increase at low fields, the usefulness of DNP has not been throughly investigated yet. Here, using a superconducting quantum interference device-based NMR system, we performed a series of DNP experiments with a nitroxide radical and measured DNP spectra at several magnetic fields down to sub-microtesla. In the DNP spectra, the large overlap of two peaks having opposite signs results in net enhancement factors, which are significantly lower than theoretical expectations [30] and nearly invariant with respect to magnetic fields below the Earth's field. The numerical analysis based on the radical's Hamiltonian provides qualitative explanations of such features. The net enhancement factor reached 325 at maximum experimentally, but our analysis reveals that the local enhancement factor at the center of the rf coil is 575, which is unaffected by detection schemes. We conclude that DNP in the hyperfine-field-dominant region yields sufficiently enhanced NMR signals at magnetic fields above 1 μ T.
Mechanism of dynamic nuclear polarization in high magnetic fields
NASA Astrophysics Data System (ADS)
Farrar, C. T.; Hall, D. A.; Gerfen, G. J.; Inati, S. J.; Griffin, R. G.
2001-03-01
Solid-state NMR signal enhancements of about two orders of magnitude (100-400) have been observed in dynamic nuclear polarization (DNP) experiments performed at high magnetic field (5 T) and low temperature (10 K) using the nitroxide radical 4-amino TEMPO as the source of electron polarization. Since the breadth of the 4-amino TEMPO EPR spectrum is large compared to the nuclear Larmor frequency, it has been assumed that thermal mixing (TM) is the dominate mechanism by which polarization is transferred from electron to nuclear spins. However, theoretical explanations of TM generally assume a homogeneously broadened EPR line and, since the 4-amino TEMPO line at 5 T is inhomogeneously broadened, they do not explain the observed DNP enhancements. Accordingly, we have developed a treatment of DNP that explicitly uses electron-electron cross-relaxation to mediate electron-nuclear polarization transfer. The process proceeds via spin flip-flops between pairs of electronic spin packets whose Zeeman temperatures differ from one another. To confirm the essential features of the model we have studied the field dependence of electron-electron double resonance (ELDOR) data and DNP enhancement data. Both are well simulated using a simple model of electron cross-relaxation in the inhomogeneously broadened 4-amino TEMPO EPR line.
Neutron star cooling: A challenge to the nuclear mean field
Hoang Sy Than; Nguyen Van Giai
2009-12-15
The two recent density-dependent versions of the finite-range M3Y interaction (CDM3Yn and M3Y-Pn) have been probed against the bulk properties of asymmetric nuclear matter (NM) in the nonrelativistic Hartree-Fock (HF) formalism. The same HF study has also been done with the famous Skyrme (SLy4) and Gogny (D1S and D1N) interactions that were well tested in the nuclear structure calculations. Our HF results are compared with those given by other many-body calculations like the Dirac-Brueckner Hartree-Fock approach or ab initio variational calculations using free nucleon-nucleon interaction and by both the nonrelativistic and relativistic mean-field studies using different model parameters. Although the two considered density-dependent versions of the M3Y interaction were proven to be quite realistic in the nuclear structure or reaction studies, they give two distinct behaviors of the NM symmetry energy at high densities, like the Asy-soft and Asy-stiff scenarios found earlier with other mean-field interactions. As a consequence, we obtain two different behaviors of the proton fraction in the {beta}-equilibrium that in turn can imply two drastically different mechanisms for the neutron star cooling. While some preference of the Asy-stiff scenario was found based on predictions of the latest microscopic many-body calculations or empirical NM pressure and isospin diffusion data deduced from heavy-ion collisions, a consistent mean-field description of nuclear structure database is more often given by some Asy-soft type interaction like the Gogny or M3Y-Pn ones. Such a dilemma poses an interesting challenge to the modern mean-field approaches.
Stochastic Mean-Field Dynamics For Nuclear Collisions
Ayik, Sakir
2008-11-11
We discuss a stochastic approach to improve description of nuclear dynamics beyond the mean-field approximation at low energies. For small amplitude fluctuations, this approach gives a result for the dispersion of a one-body observable that is identical to the result obtained previously through a variational approach. Furthermore, it incorporates one-body dissipation and fluctuation mechanisms in accordance with quantal fluctuation-dissipation relation.
Radiation Effects in Nuclear Waste Materials
William j. Weber; Lumin Wang; Jonathan Icenhower
2004-07-09
The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.
Nuclear Weapons Effects (Self-Teaching Materials).
ERIC Educational Resources Information Center
Defense Civil Preparedness Agency (DOD), Battle Creek, MI.
Developed by the Civil Defense Preparedness Agency, this autoinstructional text deals with nuclear weapons effects. The destructive effects of an atomic blast are first introduced, and then long-term radioactive consequences are stressed. (CP)
Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.
Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry
2016-09-01
We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity. PMID:27391123
Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer
NASA Astrophysics Data System (ADS)
Tayler, Michael C. D.; Sjolander, Tobias F.; Pines, Alexander; Budker, Dmitry
2016-09-01
We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1 μT. Using magnetic fields in the 100 μT to 1 mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.
Phase transitions of nuclear matter beyond mean field theory
Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa
2007-10-15
The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.
Relativistic mean-field models and nuclear matter constraints
Dutra, M.; Lourenco, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providencia, C.; Typel, S.
2013-05-06
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Rearranging Pionless Effective Field Theory
Martin Savage; Silas Beane
2001-11-19
We point out a redundancy in the operator structure of the pionless effective field theory which dramatically simplifies computations. This redundancy is best exploited by using dibaryon fields as fundamental degrees of freedom. In turn, this suggests a new power counting scheme which sums range corrections to all orders. We explore this method with a few simple observables: the deuteron charge form factor, n p -> d gamma, and Compton scattering from the deuteron. Higher dimension operators involving electroweak gauge fields are not renormalized by the s-wave strong interactions, and therefore do not scale with inverse powers of the renormalization scale. Thus, naive dimensional analysis of these operators is sufficient to estimate their contribution to a given process.
Effective citizen advocacy of beneficial nuclear technologies
McKibben, J. Malvyn; Wood, Susan
2007-07-01
In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)
Inflating with large effective fields
Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca
2014-11-01
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.
Fan, N.Q.; Clarke, J.
1993-10-19
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.
Fan, Non Q.; Clarke, John
1993-01-01
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.
High Field Dynamic Nuclear Polarization NMR with Surfactant Sheltered Biradicals
2015-01-01
We illustrate the ability to place a water-insoluble biradical, bTbk, into a glycerol/water matrix with the assistance of a surfactant, sodium octyl sulfate (SOS). This surfactant approach enables a previously water insoluble biradical, bTbk, with favorable electron–electron dipolar coupling to be used for dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments in frozen, glassy, aqueous media. Nuclear Overhauser enhancement (NOE) and paramagnetic relaxation enhancement (PRE) experiments are conducted to determine the distribution of urea and several biradicals within the SOS macromolecular assembly. We also demonstrate that SOS assemblies are an effective approach by which mixed biradicals are created through an assembly process. PMID:24506193
Radiation tolerant silicon nitride insulated gate field effect transistors
NASA Technical Reports Server (NTRS)
Newman, P. A.
1969-01-01
Metal-Insulated-Semiconductor Field Effect Transistor /MISFET/ device uses a silicon nitride passivation layer over a thin silicon oxide layer to enhance the radiation tolerance. It is useful in electronic systems exposed to space radiation environment or the effects of nuclear weapons.
New methodology for use in rotating field nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Jachman, Rebecca Corina
High-resolution NMR spectra of samples with anisotropic broadening are simplified to their isotropic spectra by fast rotation of the sample at the magic angle 54.7°. This dissertation concerns the development of novel Nuclear Magnetic Resonance (NMR) methodologies which would rotate the magnetic field instead of the sample, i.e. rotating field NMR. It also provides an overview of the NMR concepts, procedures, and experiments needed to understand the methodologies that will be used for rotating field NMR. A simple two-dimensional shimming method based on harmonic corrector rings provides arbitrary multiple order shimming corrections that are necessary for rotating field systems, but can be used in shimming other systems as well. Those results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to a factor of ten. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients. Additionally, initial investigations into a specialized pulse sequence for the rotating field NMR experiment, which allows for spinning at angles other than the magic angle and spinning slower than the anisotropic broadening is discussed. This will be useful for rotating field NMR because there are limits on how fast a field can be spun and difficulties of reaching the magic angle. This pulse sequence is a combination of the previously established projected magic angle spinning (p-MAS) and magic angle turning (MAT) pulse sequences. One of the goals of this project is for rotating field NMR to be used on biological systems. The p-MAS pulse sequence was successfully tested on bovine tissue samples, which suggests that it will be a viable methodology to use in rotating field NMR. A side experiment on steering magnetic particles by MRI gradients was also carried out. Initial investigations indicate some movement, but for total steering control, further experiments are
Process dependent nuclear k⊥ broadening effect
NASA Astrophysics Data System (ADS)
Schäfer, Andreas; Zhou, Jian
2013-10-01
We study the process dependent nuclear k⊥ broadening effect by employing the transverse momentum dependent (TMD) factorization approach in combination with the Mclerran-Venugopalan model. More specifically, we investigate how the parton transverse momentum distributions are affected by the process dependent gauge links in cold nuclear matter. In particular, our analysis also applies to the polarized cases including the nuclear quark Boer-Mulders function and the linearly polarized gluon distribution. Our main focus is on the nuclear TMDs at intermediate or large x.
Nuclear versus nucleon structure effects on nuclear transparency
O. Benhar
1997-06-25
Nuclear structure effects account for the observed enhancement of the nuclear transparency to moderate energy protons, with respect to the predictions of Glauber theory. This enhancement appears to be comparable to the one associated with the onset of color transparency in the Q2 range spanned by the available (e,e'p) data (Q2 < 7 (GeV/c)2). It is argued that in this kinematical regime a stronger colour transparency signal can be observed in the low energy loss tail of the inclusive electron-nucleus cross section, corresponding to large values of the Bjorken scaling variable x (x>2).
The environmental effects of nuclear war
MacCracken, M.C.
1988-09-01
Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several percent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe. 27 refs., 4 figs.
A Novel Variable Field System for Field-Cycled Dynamic Nuclear Polarization Spectroscopy
Shet, Keerthi; Caia, George L.; Kesselring, Eric; Samouilov, Alexandre; Petryakov, Sergey; Lurie, David J.; Zweier, Jay L.
2014-01-01
Dynamic nuclear polarization (DNP) is an NMR-based technique which enables detection and spectral characterization of endogenous and exogenous paramagnetic substances measured via transfer of polarization from the saturated unpaired electron spin system to the NMR active nuclei. A variable field system capable of performing DNP spectroscopy with NMR detection at any magnetic field in the range 0 - 0.38 T is described. The system is built around a clinical open-MRI system. To obtain EPR spectra via DNP, partial cancellation of the detection field B0NMR is required to alter the evolution field B0EPR at which the EPR excitation is achieved. The addition of resistive actively shielded field cancellation coils in the gap of the primary magnet provides this field offset in the range of 0–100 mT. A description of the primary magnet, cancellation coils, power supplies, interfacing hardware, RF electronics and console are included. Performance of the instrument has been evaluated by acquiring DNP spectra of phantoms with aqueous nitroxide solutions (TEMPOL) at three NMR detection fields of 97 G, 200 G and 587 G corresponding to 413 kHz, 851.6 kHz and 2.5 MHz respectively and fixed EPR evolution field of 100 G corresponding to an irradiation frequency of 282.3 MHz. This variable field DNP system offers great flexibility for the performance of DNP spectroscopy with independent optimum choice of EPR excitation and NMR detection fields. PMID:20570197
Rotational Doppler Effect and Barnett Field in Spinning NMR
NASA Astrophysics Data System (ADS)
Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Jun'ichi; Ono, Masao; Maekawa, Sadamichi; Saitoh, Eiji
2015-04-01
We report the observation of the rotational Doppler effect using nuclear magnetic resonance (NMR). We have developed a coil-spinning technique that enables measurements by rotating a detector and fixing a sample. We found that the rotational Doppler effect gives rise to NMR frequency shifts equal to the rotation frequency. We formulate the rotational Doppler effect and the Barnett field using a vector model for the nuclear magnetic moment. This formulation reveals that, with just the sample rotating, both effects cancel each other, thereby explaining the absence of an NMR frequency shift in conventional sample-spinning NMR measurements.
Unstable infinite nuclear matter in stochastic mean field approach
Colonna, M.; Chomaz, P. Laboratorio Nazionale del Sud, Viale Andrea Doria, Catania )
1994-04-01
In this article, we consider a semiclassical stochastic mean-field approach. In the case of unstable infinite nuclear matter, we calculate the characteristic time of the exponential growing of fluctuations and the diffusion coefficients associated to the unstable modes, in the framework of the Boltzmann-Langevin theory. These two quantities are essential to describe the dynamics of fluctuations and instabilities since, in the unstable regions, the evolution of the system will be dominated by the amplification of fluctuations. In order to make realistic 3D calculations feasible, we suggest to replace the complicated Boltzmann-Langevin theory by a simpler stochastic mean-field approach corresponding to a standard Boltzmann evolution, complemented by a simple noise chosen to reproduce the dynamics of the most unstable modes. Finally we explain how to approximately implement this method by simply tuning the noise associated to the use of a finite number of test particles in Boltzman-like calculations.
Ambipolar phosphorene field effect transistor.
Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas
2014-11-25
In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs. PMID:25329532
Solid effect in magic angle spinning dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-08-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.
Solid effect in magic angle spinning dynamic nuclear polarization
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-01-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\omega _0 ^{ - 2}\\end{equation*} \\end{document}ω0−2 field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements
Solid effect in magic angle spinning dynamic nuclear polarization.
Corzilius, Björn; Smith, Albert A; Griffin, Robert G
2012-08-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω(0)(-2) field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ε = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of (1)H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear (1)H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect. PMID:22894339
Nuclear effects in neutrino oscillation experiments
Chauhan, S.; Athar, M. Sajjad; Singh, S. K.
2011-10-06
We have studied the nuclear medium effects in the neutrino(antineutrino) induced interactions in nuclei which are relevant for present neutrino oscillation experiments in the few GeV energy region. The study is specially focused on calculating the cross sections and the event rates for atmospheric and accelerator neutrino experiments. The nuclear effects are found to be important for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.
Global climatic effects of a nuclear war: An interdisciplinary problem
Ghan, S.J.
1988-05-01
In summary, an elucidation of the global-scale response to a nuclear war is a problem of great breadth, involving many of the sub-disciplines of aerosol physics, meteorology, oceanography, atmospheric chemistry and ecology. As diverse as these fields are, communication between the sub-disciplines has been remarkably effective, with two major interdisciplinary reports published in the last few years. It is my belief that, in addition to addressing the global-scale implications of a nuclear war, the global effects effort also serves as an excellent example of an interdisciplinary research program. 23 refs.
Nuclear-Electronic Coherence in Strong-Field Dissociative Ionization
NASA Astrophysics Data System (ADS)
Yu, Youliang; Wang, Yujun; Zeng, Shuo; Esry, B. D.
2015-05-01
In strong-field dissociative ionization of molecules, the ionization step is usually modeled since direct calculation is very challenging. In most of the models used to date, ionization is assumed to occur at several well-defined times accompanied by promotion of a nuclear wave packet to the ionic Born-Oppenheimer potential. Whether these nuclear wave packets should add coherently or incoherently in general is an open question. To answer it, we solve the time-dependent Schrödinger equation for one-dimensional H2+,where ionization is included naturally, and compare the observables, such as the kinetic energy release spectrum, with those from an ionization model. We then examine the validity of such models in strong-field dissociative ionization of H2+with reduced dimensionality. We do not, however, expect this physics to depend sensitively on the dimensionality. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.
Solid Tumor-Targeting Theranostic Polymer Nanoparticle in Nuclear Medicinal Fields
Makino, Akira; Kimura, Shunsaku
2014-01-01
Polymer nanoparticles can be prepared by self-assembling of amphiphilic polymers, and various types of molecular assemblies have been reported. In particular, in medicinal fields, utilization of these polymer nanoparticles as carriers for drug delivery system (DDS) has been actively tried, and some nanoparticulate drugs are currently under preclinical evaluations. A radionuclide is an unstable nucleus and decays with emission of radioactive rays, which can be utilized as a tracer in the diagnostic imaging systems of PET and SPECT and also in therapeutic purposes. Since polymer nanoparticles can encapsulate most of diagnostic and therapeutic agents with a proper design of amphiphilic polymers, they should be effective DDS carriers of radionuclides in the nuclear medicinal field. Indeed, nanoparticles have been recently attracting much attention as common platform carriers for diagnostic and therapeutic drugs and contribute to the development of nanotheranostics. In this paper, recent developments of solid tumor-targeting polymer nanoparticles in nuclear medicinal fields are reviewed. PMID:25379530
Solid tumor-targeting theranostic polymer nanoparticle in nuclear medicinal fields.
Makino, Akira; Kimura, Shunsaku
2014-01-01
Polymer nanoparticles can be prepared by self-assembling of amphiphilic polymers, and various types of molecular assemblies have been reported. In particular, in medicinal fields, utilization of these polymer nanoparticles as carriers for drug delivery system (DDS) has been actively tried, and some nanoparticulate drugs are currently under preclinical evaluations. A radionuclide is an unstable nucleus and decays with emission of radioactive rays, which can be utilized as a tracer in the diagnostic imaging systems of PET and SPECT and also in therapeutic purposes. Since polymer nanoparticles can encapsulate most of diagnostic and therapeutic agents with a proper design of amphiphilic polymers, they should be effective DDS carriers of radionuclides in the nuclear medicinal field. Indeed, nanoparticles have been recently attracting much attention as common platform carriers for diagnostic and therapeutic drugs and contribute to the development of nanotheranostics. In this paper, recent developments of solid tumor-targeting polymer nanoparticles in nuclear medicinal fields are reviewed. PMID:25379530
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
Effective field theory out of equilibrium: Brownian quantum fields
NASA Astrophysics Data System (ADS)
Boyanovsky, D.
2015-06-01
The emergence of an effective field theory out of equilibrium is studied in the case in which a light field—the system—interacts with very heavy fields in a finite temperature bath. We obtain the reduced density matrix for the light field, its time evolution is determined by an effective action that includes the influence action from correlations of the heavy degrees of freedom. The non-equilibrium effective field theory yields a Langevin equation of motion for the light field in terms of dissipative and noise kernels that obey a generalized fluctuation dissipation relation. These are completely determined by the spectral density of the bath which is analyzed in detail for several cases. At T = 0 we elucidate the effect of thresholds in the renormalization aspects and the asymptotic emergence of a local effective field theory with unitary time evolution. At T\
Relativistic mean-field hadronic models under nuclear matter constraints
NASA Astrophysics Data System (ADS)
Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.
2014-11-01
Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The
Coherent nuclear resonant scattering by {sup 61}Ni using the nuclear lighthouse effect
Roth, T.; Leupold, O.; Wille, H.-C.; Rueffer, R.; Quast, K.W.; Burkel, E.; Roehlsberger, R.
2005-04-01
We have observed coherent nuclear resonant scattering of synchrotron radiation from the 67.41-keV level of {sup 61}Ni. The time evolution of the forward scattering signal was recorded by employing the nuclear lighthouse effect. This method is used to investigate Moessbauer isotopes in a coherent scattering process with synchrotron radiation at high transition energies. The decay of the excited ensemble of nuclei in Ni metal shows quantum beats that allowed the determination of the magnetic hyperfine field at the {sup 61}Ni nucleus. Moreover, we determined the lifetime of the 67.41-keV level of {sup 61}Ni to be 7.4(1) ns.
[Health effects of electromagnetic fields].
Röösli, Martin
2013-12-01
Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies. PMID:24297859
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-09-02
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-09-02
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.
Application of Phase-field Method in Predicting Gas Bubble Microstructure Evolution in Nuclear Fuels
Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Gao, Fei; Devanathan, Ramaswami; Henager, Charles H.; Khaleel, Mohammad A.
2010-04-30
Fission product accumulation and gas bubble microstructure evolution in nuclear fuels strongly affect thermo-mechanical properties such as thermal conductivity, gas release, volumetric swelling and cracking, and hence the fuel performance. In this paper, a general phase-field model is developed to predict gas bubble formation and evolution. Important materials processes and thermodynamic properties including the generation of gas atoms and vacancies, sinks for vacancies and gas atoms, the elastic interaction among defects, gas re-solution, and inhomogeneity of elasticity and diffusivity are accounted for in the model. The simulations demonstrate the potential application of the phase-field method in investigating 1) heterogeneous nucleation of gas bubbles at defects; 2) effect of elastic interaction, inhomogeneity of material properties, and gas re-solution on gas bubble microstructures; and 3) effective properties from the output of phase-field simulations such as distribution of defects, gas bubbles, and stress fields.
Effective field theory, past and future
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2016-02-01
I reminisce about the early development of effective field theories of the strong interactions, comment briefly on some other applications of effective field theories, and then take up the idea that the Standard Model and General Relativity are the leading terms in an effective field theory. Finally, I cite recent calculations that suggest that the effective field theory of gravitation and matter is asymptotically safe.
Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations
NASA Astrophysics Data System (ADS)
Kuznetsova, M. S.; Flisinski, K.; Gerlovin, I. Ya.; Ignatiev, I. V.; Kavokin, K. V.; Verbin, S. Yu.; Yakovlev, D. R.; Reuter, D.; Wieck, A. D.; Bayer, M.
2013-06-01
The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As/GaAs quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically modified when changing this control field, as observed earlier in bulk semiconductors and quantum wells. However, the standard nuclear spin cooling theory, operating with the mean nuclear magnetic field (Overhauser field), fails to describe the experimental Hanle curves in a certain range of control fields. This controversy is resolved by taking into account the nuclear spin fluctuations owed to the finite number of nuclei in the quantum dot. We propose a model considering cooling of the nuclear spin system by electron spins experiencing fast vector precession in the random Overhauser fields of nuclear spin fluctuations. The model allows us to accurately describe the measured Hanle curves and to evaluate the parameters of the electron-nuclear spin system of the studied quantum dots.
Deregulation and Nuclear Training: Cost Effective Alternatives
Richard P. Coe; Patricia A. Lake
2000-11-12
Training is crucial to the success of any organization. It is also expensive, with some estimates exceeding $50 billion annually spent on training by U.S. corporations. Nuclear training, like that of many other highly technical organizations, is both crucial and costly. It is unlikely that the amount of training can be significantly reduced. If anything, current trends indicate that training needs will probably increase as the industry and workforce ages and changes. With the advent of energy deregulation in the United States, greater pressures will surface to make the costs of energy more cost-competitive. This in turn will drive businesses to more closely examine existing costs and find ways to do things in a more cost-effective way. The commercial nuclear industry will be no exception, and nuclear training will be equally affected. It is time for nuclear training and indeed the entire nuclear industry to begin using more aggressive techniques to reduce costs. This includes the need for nuclear training to find alternatives to traditional methods for the delivery of cost-effective high-quality training that meets regulatory requirements and produces well-qualified personnel capable of working in an efficient and safe manner. Computer-based and/or Web-based training are leading emerging technologies.
Nuclear force and the EMC effect
NASA Astrophysics Data System (ADS)
Wang, Rong; Chen, Xurong
2015-04-01
A linear correlation is shown quantitatively between the magnitude of the EMC effect measured in electron deep inelastic scattering (DIS) and the nuclear residual strong interaction energy (RSIE) obtained from nuclear binding energy subtracting the Coulomb energy contribution. This phenomenological relationship is used to extract the size of in-medium correction (IMC) effect on deuteron and to predict the EMC slopes | dREMC / dx | of various nuclei. We further investigate the correlations between RSIE and other quantities which are related to the EMC effect. The observed correlations among RSIE, EMC slope and SRC ratio R2NNtotal /Nnp(S31) imply that the local nuclear environment drives the modification of quark distributions.
Stray-field nuclear magnetic resonance imaging in microgravity conditions
NASA Astrophysics Data System (ADS)
Garrido, Leoncio; Sampayo, José
2008-03-01
Magnetic levitation has been proposed as an alternative approach to simulate on Earth microgravity conditions encountered in space, allowing the investigation of weightlessness on materials and biological systems. In general, very strong magnetic fields, 15T or higher, are required to achieve levitation for a majority of diamagnetic substances. Here, we show that it is possible to achieve levitation of these substances in a commercial superconductive magnet operating with a nuclear magnetic resonance (NMR) spectrometer at 9.4T at ambient conditions. Furthermore, stray-field proton NMR imaging is performed in situ at the location where a sample is levitating, showing that it is feasible to obtain the corresponding one-dimensional profile. Considering that water is a diamagnetic substance and the main constituent of living systems, the outlined approach could be useful to investigate alterations in water proton NMR properties induced by low gravity and magnetic forces upon levitating, e.g., seeds, cells, etc. In addition to protons, it would also be possible to observe other nuclei (e.g., F19, P31, etc.) that may be of interest in metabolic and therapeutic investigations.
NASA Astrophysics Data System (ADS)
Alkorta, Ibon; Elguero, José; Provasi, Patricio F.; Pagola, Gabriel I.; Ferraro, Marta B.
2011-09-01
The set of 1:1 and 2:1 complexes of XOOX' (X, X' = H, CH3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 × 108 V m-1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes.
Alkorta, Ibon; Elguero, José; Provasi, Patricio F; Pagola, Gabriel I; Ferraro, Marta B
2011-09-14
The set of 1:1 and 2:1 complexes of XOOX' (X, X' = H, CH(3)) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for (17)O nucleus in each compound. Additional calculations for (1)H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 × 10(8) V m(-1) should be applied to observe a shift of ≈1 ppm for (17)O magnetic shielding in the proposed set of complexes. PMID:21932885
Hawkley, Gavin
2014-01-01
Atmospheric dispersion modeling within the near field of a nuclear facility typically applies a building wake correction to the Gaussian plume model, whereby a point source is modeled as a plane source. The plane source results in greater near field dilution and reduces the far field effluent concentration. However, the correction does not account for the concentration profile within the near field. Receptors of interest, such as the maximally exposed individual, may exist within the near field and thus the realm of building wake effects. Furthermore, release parameters and displacement characteristics may be unknown, particularly during upset conditions. Therefore, emphasis is placed upon the need to analyze and estimate an enveloping concentration profile within the near field of a release. This investigation included the analysis of 64 air samples collected over 128 wk. Variables of importance were then derived from the measurement data, and a methodology was developed that allowed for the estimation of Lorentzian-based dispersion coefficients along the lateral axis of the near field recirculation cavity; the development of recirculation cavity boundaries; and conservative evaluation of the associated concentration profile. The results evaluated the effectiveness of the Lorentzian distribution methodology for estimating near field releases and emphasized the need to place air-monitoring stations appropriately for complete concentration characterization. Additionally, the importance of the sampling period and operational conditions were discussed to balance operational feedback and the reporting of public dose.
Coherent transfer of nuclear spin polarization in field-cycling NMR experiments
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin
2013-12-28
Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.
The climatic effects of nuclear war
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, C.
1984-01-01
The effects of various US-USSR nuclear-exchange scenarios on global climate are investigated by means of computer simulations, summarizing the results of Turco et al. (1983) and follow-up studies using 3D global-circulation models. A nuclear-scenario model is used to determine the amounts of dust, smoke, radioactivity, and pyrotoxins generated by a particular type of nuclear exchange (such as a general 5,000-Mt exchange, a 1,000-Mt limited exchange, a 5,000-Mt hard-target counterforce attack, and a 100-Mt attack on cities only): a particle-microphysics model predicts the evolution of the dust and smoke particles; and a radiative-convective climate model estimates the effects of the dust and smoke clouds on the global radiation budget. The findings are presented in graphs, diagrams, and a table. Thick clouds blocking most sunlight over the Northern Hemisphere midlatitudes for weeks or months and producing ground-temperature reductions of 20-40 C, disruption of global circulation patterns, and rapid spread of clouds to the Southern Hemisphere are among the 'nuclear-winter' effects predicted for the 5,000-Mt baseline case. The catastrophic consequences for plant, animal, and human populations are considered, and the revision of superpower nuclear strategies is urged.
Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding
NASA Astrophysics Data System (ADS)
Garbacz, Piotr
2016-08-01
It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for 205Tl nucleus in a Pt-Tl bonded complex, Pt(CN)5Tl, the transverse relaxation rate induced by the electric field is of the order of 1 s-1 at E = 5 kV/mm and B = 10 T.
Radiation Effects in Nuclear Waste Materials
Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.
2000-10-02
Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.
High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR
Barnes, A.B.; Paëpe, G. De; van der Wel, P.C.A.; Hu, K.-N.; Joo, C.-G.; Bajaj, V.S.; Mak-Jurkauskas, M.L.; Sirigiri, J.R.; Herzfeld, J.; Temkin, R.J.; Griffin, R.G.
2008-01-01
Dynamic nuclear polarization (DNP) results in a substantial nuclear polarization enhancement through a transfer of the magnetization from electrons to nuclei. Recent years have seen considerable progress in the development of DNP experiments directed towards enhancing sensitivity in biological nuclear magnetic resonance (NMR). This review covers the applications, hardware, polarizing agents, and theoretical descriptions that were developed at the Francis Bitter Magnet Laboratory at Massachusetts Institute of Technology for high-field DNP experiments. In frozen dielectrics, the enhanced nuclear polarization developed in the vicinity of the polarizing agent can be efficiently dispersed to the bulk of the sample via 1H spin diffusion. This strategy has been proven effective in polarizing biologically interesting systems, such as nanocrystalline peptides and membrane proteins, without leading to paramagnetic broadening of the NMR signals. Gyrotrons have been used as a source of high-power (5–10 W) microwaves up to 460 GHz as required for the DNP experiments. Other hardware has also been developed allowing in situ microwave irradiation integrated with cryogenic magic-angle-spinning solid-state NMR. Advances in the quantum mechanical treatment are successful in describing the mechanism by which new biradical polarizing agents yield larger enhancements at higher magnetic fields. Finally, pulsed methods and solution experiments should play a prominent role in the future of DNP. PMID:19194532
Alred, W.T. )
1990-10-01
Many factors influence the impact that a nuclear war would have on both the environment and survivors. These factors include, although are not limited to, the type of nuclear weapons used, the amount of these weapons, and the time of year a war would take place. The effects that a major nuclear war would have on the environment would vary greatly depending on the factors previously mentioned. Some effects that would occur are: major climatic changes, destruction of most food crops, contamination of current food and water supplies, and the deaths of animals and insects that are crucial to the balance of the environment. The factors that influence the survivors also vary; however, certain problems have been predicted by researchers. Among these problems are psychological disorders, lack of food supplies, the elimination of medical relief, and exposure from both radiation and the changing environment. All these effects, as well as others, tend to give researchers a much different view of the effects that a nuclear war would have on the environment and survivors than has been predicted since before the mid nineteen-eighties.
Surface effects of underground nuclear explosions
Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.
1997-06-01
The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.
Effectively Managing Nuclear Risk Through Human Performance Improvement
Coe, Richard; Lake, Patricia
2003-09-01
The U.S. commercial nuclear industry has just completed an outstanding decade of plant performance. Safety levels and electric production are at unprecedented high levels and continue to exceed even high industry goals. Nuclear energy continues to keep the highest priority on performance improvement programs and highly trained and qualified people that maintain its record setting safety and reliability of operations. While the industry has maintained a high level of performance, the advent of deregulation and the consolidation of nuclear power plant ownership, as well as the current climate for concern about both rising energy costs and the availability of power, have raised the standard for nuclear energy's level of competitiveness in today's market place. The resulting challenge is how to more effectively manage risk and to improve performance even further in a generally high-performing industry. One of the most effective ways to develop this culture is to apply the principles of Hum an Performance Technology, or HPT. HPT is a relatively new field. Its principles are derived from the research and practice of behavioral and cognitive psychologists, instructional technologists, training designers, organizational developers, and various human resource specialists. Using the principles of HPT can help the nuclear industry successfully meet ever-changing environmental and business demands.
From effective field theories to effective density functionals in and beyond the mean field
NASA Astrophysics Data System (ADS)
Grasso, M.; Lacroix, D.; van Kolck, U.
2016-06-01
Since the 1975 Nobel Prize in Physics, nuclear theory has evolved along two main directions. On the one hand, the energy–density functional (EDF) theory was established, which presently encompasses (by enlarging the EDF framework) all the mean-field and beyond-mean-field theories based on energy functionals produced by effective phenomenological interactions. Highly sophisticated structure and reaction models are currently available for the treatment of medium-mass and heavy nuclei. On the other hand, effective field theories (EFTs) have rendered possible the formulation of QCD as a low-energy hadronic theory. Ab initio methods have recently achieved remarkable success in the application of EFT or EFT-inspired potentials to structure analyses of light nuclei. Different but complementary competences have been developed during the past few decades in the EDF and EFT communities. Bridges and connections have in some cases been identified and constructed. We review here some of the developments that have been performed within the EDF theory and the EFT during recent years, with some emphasis on analogies and connections that may one day provide a unified picture of the two theories. Illustrations are given for infinite matter and finite nuclei.
Phase-field Modeling of Gas Bubbles and Thermal Conductivity Evolution in Nuclear Fuels
Hu, Shenyang Y.; Henager, Charles H.; Heinisch, Howard L.; Stan, Marius; Baskes, Michael I.; Valone, Steven
2009-07-15
The major factors that influence the thermal conductivity of the ceramics and metals are temperature, stoichiometry, microstructure, porosity, and point defects. Nuclear fuels and structure materials are subject to a severe radiation environment and their properties, including thermal conductivity change significantly with time and irradiation level. In particular, the accumulation of fission products and the formation of He bubbles can decrease the heat transfer, leading to overheating of the fuel element. In this work, we use the phase-field method to study the effect of microstructural changes on thermal conductivity. We developed a phase-field model to simulate the He bubble formation and growth in a single/polycrystalline material with defects. The model takes into account the generation of gas atoms and defects, gas atom diffusivity inhomogeneity, gas atom segregation, and gas bubble nucleation. With the model, we simulated the gas bubble and temperature evolution, and calculated the effect of gas bubble volume fraction on effective thermal conductivity.
Nuclear Effects in Hadron Production at HERMES
Bianchi, Nicola
2007-11-19
The influence of the nuclear medium on the lepto-production of hadrons was studied in semi-inclusive deep-inelastic scattering off several nuclear targets. In particular, at the HERMES experiment at DESY, the differential multiplicity for nuclei relative to that of deuterium has been measured for the first time for various identified hadrons ({pi}{sup +}, {pi}{sup -}, {pi}{sup 0}, K{sup +}, K{sup -}, p and anti-p) as a function of the virtual photon energy {nu}, the fraction z of this energy transferred to the hadron, and the hadron transverse momentum squared p{sub t}{sup 2}. The distribution of the hadron transverse momentum is broadened towards high p{sub t}{sup 2} in the nuclear medium, in a manner resembling the Cronin effect previously observed in collisions of heavy ions and protons with nuclei.
Effects of δ mesons in relativistic mean field theory
NASA Astrophysics Data System (ADS)
Singh, Shailesh K.; Biswal, S. K.; Bhuyan, M.; Patra, S. K.
2014-04-01
The effect of δ- and ω-ρ-meson cross couplings on asymmetry nuclear systems are analyzed in the framework of an effective field theory motivated relativistic mean field formalism. The calculations are done on top of the G2 parameter set, where these contributions are absent. To show the effect of δ meson on the nuclear system, we split the isospin coupling into two parts: (i) gρ due to ρ meson and (ii) gδ for δ meson. Thus, our investigation is based on varying the coupling strengths of the δ and ρ mesons to reproduce the binding energies of the nuclei Ca48 and Pb208. We calculate the root mean square radius, binding energy, single particle energy, density, and spin-orbit interaction potential for some selected nuclei and evaluate the Lsym and Esym coefficients for nuclear matter as function of δ- and ω-ρ-meson coupling strengths. As expected, the influence of these effects are negligible for the symmetric nuclear system, but substantial for the contribution with large isospin asymmetry.
Climatic Effects of Regional Nuclear War
NASA Technical Reports Server (NTRS)
Oman, Luke D.
2011-01-01
We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.
Global nuclear structure effects of the tensor interaction
Zalewski, M.; Olbratowski, P.; Rafalski, M.; Werner, T. R.; Satula, W.; Wyss, R. A.
2009-12-15
A direct fit of the isoscalar spin-orbit (SO) and both isoscalar and isovector tensor coupling constants to the f{sub 5/2}-f{sub 7/2} SO splittings in {sup 40}Ca, {sup 56}Ni, and {sup 48}Ca nuclei requires a drastic reduction of the isoscalar SO strength and strong attractive tensor coupling constants. The aim of this work is to address further consequences of these strong attractive tensor and weak SO fields on binding energies, nuclear deformability, and high-spin states. In particular, the contribution to the nuclear binding energy from the tensor field shows a generic magic structure with tensorial magic numbers N(Z)=14,32,56, or 90, corresponding to the maximum spin asymmetries in 1d{sub 5/2}, 1f{sub 7/2}+2p{sub 3/2}, 1g{sub 9/2}+2d{sub 5/2}, and 1h{sub 11/2}+2f{sub 7/2} single-particle configurations, respectively, and that these numbers are smeared out by pairing correlations and deformation effects. The consequences of strong attractive tensor fields and weak SO interaction for nuclear stability at the drip lines are also examined, particularly those close to the tensorial doubly magic nuclei. The possibility of an entirely new tensor-force-driven deformation effect is discussed.
Adolescents' Knowledge of Nuclear Issues and the Effects of Nuclear War.
ERIC Educational Resources Information Center
Roscoe, Bruce; Goodwin, Megan P.
1987-01-01
Surveyed 357 college students to assess awareness of the status of nuclear arms development and possible effects of nuclear war on people and environment. Results suggest that older adolescents are extremely uninformed regarding the current status of nuclear issues and consequences of nuclear war. Indicates a strong need to educate young people…
Uncertainty quantification of effective nuclear interactions
NASA Astrophysics Data System (ADS)
Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz
2016-03-01
We give a brief review on the development of phenomenological NN interactions and the corresponding quantification of statistical uncertainties. We look into the uncertainty of effective interactions broadly used in mean field calculations through the Skyrme parameters and effective field theory counterterms by estimating both statistical and systematic uncertainties stemming from the NN interaction. We also comment on the role played by different fitting strategies on the light of recent developments.
Electric Field Effect in Intrinsic Josephson Junctions
NASA Astrophysics Data System (ADS)
Koyama, T.
The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.
NASA Astrophysics Data System (ADS)
Mitchell, J.; Chandrasekera, T. C.; Gladden, L. F.
2013-08-01
A measure of the nuclear spin transverse relaxation time T2, as determined using the nuclear magnetic resonance Carr-Purcell Meiboom-Gill (CPMG) experiment, provides unique information characterizing the microstructure of porous media which are themselves ubiquitous across fields of petrophysics, biophysics, and chemical engineering. However, the CPMG measurement is sensitive to diffusion in large magnetic field gradients. Under such conditions an effective relaxation time T_{2,eff} is observed instead, described by a combination of relaxation and diffusion exponents. The relaxation exponent always varies as nte (where n is the number, and te is the temporal separation, of spin echoes). The diffusion exponent varies as nt_e^k, where 1 < k ⩽ 3, although the exact analytic form is often unknown. Here we present a general approach to separating the influence of relaxation and diffusion by utilizing a composite diffusion exponent. Any T_{2,eff} component with a power of k > 1 is removed to provide a measure of the true T2 relaxation time distribution from CPMG data acquired in the presence of a strong background gradient. We apply the technique to discriminate between the effects of relaxation and diffusion in porous media using catalysts and rocks as examples. The method is generally applicable to any CPMG measurements conducted in the presence of a static magnetic field gradient.
Nuclear quantum effects and kinetic isotope effects in enzyme reactions.
Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas
2015-09-15
Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. PMID:25769515
Magnetic field effect on charged Brownian swimmers
NASA Astrophysics Data System (ADS)
Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.
2016-01-01
We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.
Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon
NASA Astrophysics Data System (ADS)
Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.
2016-04-01
We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.
Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.
2010-05-21
We study the nuclear matter properties in the regime of high temperatures using a relativistic mean-field theory. Contrasting with the usual linear Walecka model, we include the sigma-omega meson coupling in order to investigate the role of this interaction in the nucleon effective mass behavior. Some numerical results are presented and discussed.
Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM
Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.
2009-08-04
A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.
Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel
2013-01-01
Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829
Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields
ERIC Educational Resources Information Center
Reynolds, G. Fredric
1977-01-01
Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)
Topical Developments in High-Field Dynamic Nuclear Polarization
Kiesewetter, Matthew K.; Frantz, Derik K.; Walish, Joseph J.; Ravera, Enrico; Luchinat, Claudio; Swager, Timothy M.; Griffin, Robert G.
2015-01-01
We report our recent efforts directed at improving high-field DNP experiments. We investigated a series of thiourea nitroxide radicals and the associated DNP enhancements ranging from ε = 25 to 82 that demonstrate the impact of molecular structure on performance. We directly polarized low-gamma nuclei including 13C, 2H, and 17O using trityl via the cross effect. We discuss a variety of sample preparation techniques for DNP with emphasis on the benefit of methods that do not use a glass-forming cryoprotecting matrix. Lastly, we describe a corrugated waveguide for use in a 700 MHz / 460 GHz DNP system that improves microwave delivery and increases enhancements up to 50%. PMID:25977588
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Li, Min; Zhou, Yueming; Li, Yang; Lan, Pengfei; Lu, Peixiang
2016-01-01
By numerically solving the time-dependent Schrödinger equation, we investigate electron-nuclear-energy sharing in strong-field fragmentation of the H2+ molecule. We find a counterintuitive energy shift in the joint electron-nuclear-energy spectrum. This energy shift becomes larger for lower nuclear energies. Through tracing the time evolution of the electron wave packet of bound states, we identify that the energy shift originates from the Stark effect due to the coupling of the ground state and the first exited state of the H2+ molecule in strong laser fields. We achieve a good agreement between the ab initio result and the analytic method that includes the Stark effect of molecules.
Field-induced spin reorientation in [Fe/Cr ] n multilayers studied by nuclear resonance reflectivity
NASA Astrophysics Data System (ADS)
Andreeva, M.; Gupta, A.; Sharma, G.; Kamali, S.; Okada, K.; Yoda, Y.
2015-10-01
We present depth-resolved nuclear resonance reflectivity studies of the magnetization evolution in [57Fe(3nm ) /Cr (1.2 nm ) ] 10 multilayer under applied external field. The measurements have been performed at the station BL09XU of SPring-8 at different values of the external field (0-1500 Oe). We apply the joint fit of the delayed reflectivity curves and the time spectra of the nuclear resonance reflectivity measured at different grazing angles for enhancement of the depth resolution and reliability of results. We show that the azimuth angle, which is used in all papers devoted to the magnetization profile determination, has a more complicated physical sense due to the partially coherent averaging of the scattering amplitudes from magnetic lateral domains. We describe how to select the true azimuth angle from the determined "effective azimuth angle." Finally we obtain the noncollinear twisted magnetization depth profiles where the spin-flop state appears sequentially in different 57Fe layers at increasing applied field.
Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories
Carnahan, C.L.
1983-11-01
In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.
Hu, Kan-Nian
2011-09-01
This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the electron and nuclear spin interactions induced by the paramagnetic species. The Overhauser Effect (OE) DNP, which relies on time-dependent spin-spin interactions, is excluded from our discussion due the lack of conducting electrons in frozen aqueous solutions containing biological entities. DNP of particular interest to us relies primarily on time-independent, spin-spin interactions for significant electron-nucleus polarization transfer through mechanisms such as the Solid Effect (SE), the Cross Effect (CE) or Thermal Mixing (TM), involving one, two or multiple electron spins, respectively. Derived from monomeric radicals initially used in high-field DNP experiments, bi- or multiple-radical polarizing agents facilitate CE/TM to generate significant NMR signal enhancements in dielectric solids at low temperatures (<100 K). For example, large DNP enhancements (∼300 times at 5 T) from a biologically compatible biradical, 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL), have enabled high-resolution MAS NMR in sample systems existing in submicron domains or embedded in larger biomolecular complexes. The scope of this review is focused on recently developed DNP polarizing agents for high-field applications and leads up to future developments per the CE DNP mechanism. Because DNP experiments are feasible with a solid-state microwave source when performed at <20K, nuclear polarization using lower microwave power (<100 mW) is possible by forcing a high proportion of biradicals to
Aging effects of US space nuclear systems in orbit
Bartram, B.W.; Huang, R.; Tammara, S.R.; Thielke, N.R.
1982-05-14
This report presents information and data in support of a cost-benefit analysis being performed by Fair child Industries (FI) on the feasibility of retrieving existing US space nuclear systems in earth orbit by the Space Shuttle. This report evaluates, for US space nuclear systems presently in orbit, the radioisotopic inventory and external radiation field as a function of time, the effect of aging on fuel containment materials over the projected lifetime of the system, and the possible radioactive source terms should reentry eventually occur. Although the radioisotopic inventories and radiation fields have been evaluated for all systems, Transit 4A and Transit Triad have been emphasized in the evaluation of the aging effects and reentry consequences because these spacecraft have the shortest projected orbital lifetimes (570 and 150 years, respectively). In addition to existing systems in orbit, the radioisotopic inventory, radiation field, and reentry source terms have been evaluated for a General Purpose Heat Source (GPHS) in a parking orbit due to an aborted Galileo Mission or International Solar Polar Mission (ISPM).
Steeb, Jennifer L.; Mertz, Carol J.; Finck, Martha R.; Engelstad, Gary; Carney, Kevin P.; Chamberlain, David B.
2015-03-28
X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld, portable XRF device by applying an external radiation field (10 mR/h to 17 R/h) using two types of radiography sources: a ^{60}Co radiography camera to observe effects from high-energy gamma emissions and an ^{192}Ir radiography camera to observe effects from several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter x-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/hr for both the ^{192}Ir and ^{60}Co sources.
Effects of realistic tensor force on nuclear structure
Nakada, H.
2012-10-20
First-order tensor-force effects on nuclear structure are investigated in the self-consistent mean-field and RPA calculations with the M3Y-type semi-realistic interactions, which contain the realistic tensor force. The tensor force plays a key role in Z- or N-dependence of the shell structure, and in transitions involving spin degrees-of-freedom. It is demonstrated that the semi-realistic interactions successfully describe the N-dependence of the shell structure in the proton-magic nuclei (e.g. Ca and Sn), and the magnetic transitions (e.g. M1 transition in {sup 208}Pb).
Solar Magnetic Field: Zeeman and Hanle Effects
NASA Astrophysics Data System (ADS)
Stenflo, J.; Murdin, P.
2001-10-01
An external magnetic field causes the atomic energy levels to split into different sublevels, and the emitted radiation becomes polarized. This phenomenon is called the ZEEMAN EFFECT. When atoms in a magnetic field scatter radiation via bound-bound transitions, the phase relations or quantum interferences between the Zeeman-split sublevels give rise to POLARIZATION phenomena that go under the nam...
Nuclear Winter: Uncertainties Surround the Long-Term Effects of Nuclear War. Report to the Congress.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC.
Nuclear winter, a term used to describe potential long-term climate and environmental effects of nuclear war, has been a subject of debate and controversy. This report examines and presents scientific and policy implications of nuclear winter. Contents include: (1) an executive summary (highlighting previous and current studies on the topic); (2)…
Can realistic interaction be useful for nuclear mean-field approaches?
NASA Astrophysics Data System (ADS)
Nakada, H.; Sugiura, K.; Inakura, T.; Margueron, J.
2016-07-01
Recent applications of the M3Y-type semi-realistic interaction to the nuclear mean-field approaches are presented: i) Prediction of magic numbers and ii) isotope shifts of nuclei with magic proton numbers. The results exemplify that the realistic interaction, which is derived from the bare 2 N and 3 N interaction, furnishes a new theoretical instrument for advancing nuclear mean-field approaches.
Nuclear-resonance magnetometer with flowing liquid for superstrong inhomogeneous fields measuring
NASA Astrophysics Data System (ADS)
Davydov, V. V.; Dudkin, V. I.; Vologdin, V. A.
2016-03-01
Multichannel nuclear-resonance magnetometer for remote monitoring of induction and heterogeneity of a magnetic field in different areas inside and near a charged particle accelerator is considered. The maximal distance between the nuclear magnetic resonance signal detector and the magnetometer is 50 m. Measurement error is 0.5%, sensitivity of the magnetometer is 10-10 T/Hz1/2, measurement time of the magnetic field parameters in 24 control points is no more than 4 minutes.
Polarization effects in molecular mechanical force fields
Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei
2014-01-01
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594
Polarization effects in molecular mechanical force fields.
Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei
2009-08-19
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594
HIGHER ORDER HARD EDGE END FIELD EFFECTS.
BERG,J.S.
2004-09-14
In most cases, nonlinearities from magnets must be properly included in tracking and analysis to properly compute quantities of interest, in particular chromatic properties and dynamic aperture. One source of nonlinearities in magnets that is often important and cannot be avoided is the nonlinearity arising at the end of a magnet due to the longitudinal variation of the field at the end of the magnet. Part of this effect is independent of the longitudinal of the end. It is lowest order in the body field of the magnet, and is the result of taking a limit as the length over which the field at the end varies approaches zero. This is referred to as a ''hard edge'' end field. This effect has been computed previously to lowest order in the transverse variables. This paper describes a method to compute this effect to arbitrary order in the transverse variables, under certain constraints.
Effects of static magnetic fields on plants.
NASA Astrophysics Data System (ADS)
Kuznetsov, O.
In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ < 0). High gradient magnetic fields (HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that
Computer simulation of underwater nuclear effects
Kamegai, M.
1987-01-30
We investigated underwater nuclear effects by computer simulations. First, we computed a long distance wave propagation in water by the 1-D LASNEX code by modeling the energy source and the underwater environment. The pressure-distance data were calculated for two quite different yields; pressures range from 300 GPa to 15 MPa. They were found to be in good agreement with Snay's theoretical points and the Wigwam measurements. The computed data also agree with the similarity solution at high pressures and the empirical equation at low pressures. After completion of the 1-D study, we investigated a free surface effect commonly referred to as irregular surface rarefaction by applying two hydrocodes (LASNEX and ALE), linked at the appropriate time. Using these codes, we simulated near-surface explosions for three depths of burst (3 m, 21 m and 66.5 m), which represent the strong, intermediate, and weak surface shocks, respectively.
Decommissioning and Cutting Methods in the Nuclear Field
Bensoussan, E.
2008-07-01
A few states started in the early forties/fifties the first development of nuclear technologies. Some of them now own a great amount of nuclear installations which entirely fulfil their assignment. In some cases, the life time of the nuclear power plants which were scheduled for approximately 30 years have been extended by more than 50%, the other ones as well as fuel production and enrichment plants, experimental or research reactors, will have to be dismantled in the near future. The decommissioning of those installations is definitely one of the twenty first century challenge. It is differently managed depending on the countries and their energetic and development policies, their financial consideration, the availability of qualified engineers or specialized companies to handle such projects. The final aim of decommissioning is to recover the geographic site in its original condition. A real cooperation is existing in between the people involved in different countries through different types of conferences and meetings during which the main subjects are: - The safety of the operators during all the phases of decommissioning operations; - Restrictions and dimensioning of the required equipment; - Storage and waste management; - Elaboration of procedures for recording all different steps and processes. Some of the techniques are described in this paper without being exhaustive: Hot cutting, oxy-fuel and plasma cutting; Band saw; Milling saw; Milling; Cutting tool; Wheel cutting; Shear cutting; And any other cutting processes or dismantling methods. (authors)
Hu, Kan-Nian
2011-01-01
This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the electron and nuclear spin interactions induced by the paramagnetic species. The Overhauser Effect (OE) DNP, which relies on time-dependent spin-spin interactions, is excluded from our discussion due the lack of conducting electrons in frozen aqueous solutions containing biological entities. DNP of particular interest to us relies primarily on time-independent, spin interactions for significant electron-nucleus polarization transfer through mechanisms such as the Solid Effect (SE), the Cross Effect (CE) or Thermal Mixing (TM), involving one, two or multiple electron spins, respectively. Derived from monomeric radicals initially used in DNP experiments, bi- or multiple-radical polarizing agents facilitate CE/TM to generate significant NMR signal enhancements in dielectric solids at low temperatures (< 100 K). For example, large DNP enhancements (~300 times at 5 T) from a biologically compatible biradical, 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL), have enabled high-resolution MAS NMR in sample systems existing in submicron domains or embedded in larger biomolecular complexes. The scope of this review is focused on recently developed DNP polarizing agents for high-field applications and leads up to future developments per the CE DNP mechanism. Because DNP experiments are feasible with a solid-state microwave source when performed at <20 K, nuclear polarization using lower microwave power (< 100 mW) is possible by forcing a high proportion of biradicals to fulfill the
Global anomalies and effective field theory
NASA Astrophysics Data System (ADS)
Golkar, Siavash; Sethi, Savdeep
2016-05-01
We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.
Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. |||
1997-01-01
It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}
Magnetic field effects on microwave absorbing materials
NASA Technical Reports Server (NTRS)
Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.
1991-01-01
The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.
Radiation fields and dose assessments in Korean nuclear power plants.
Kim, Hee Geun; Kong, Tae Young; Jeong, Woo Tae; Kim, Seok Tae
2011-07-01
In the primary systems of nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water chemistry conditions. In particular, (3)H, (14)C, (58)Co, (60)Co, (137)Cs, and (131)I are important or potential radionuclides with respect to dose assessment for workers and the management of radioactive effluents or dose assessment for the public. In this paper, the dominant contributors to the dose for workers and the public were reviewed and the process of dose assessment attributable to those contributors was investigated. Furthermore, an analysis was carried out on some examples of dose to workers during NPP operation. PMID:21498858
Reductionism, emergence, and effective field theories
NASA Astrophysics Data System (ADS)
Castellani, Elena
In recent years, a "change in attitude" in particle physics has led to our understanding current quantum field theories as effective field theories (EFTs). The present paper is concerned with the significance of this EFT approach, especially from the viewpoint of the debate on reductionism in science. In particular, I shall show how EFTs provide a new and interesting case study in current philosophical discussion on reduction, emergence, and inter-level relationships in general.
NASA Astrophysics Data System (ADS)
Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle
2016-08-01
We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.
Gerlovin, I. Ya.; Cherbunin, R. V.; Ignatiev, I. V.; Kuznetsova, M. S.; Verbin, S. Yu.; Flisinski, K.; Bayer, M.; Reuter, D.; Wieck, A. D.; Yakovlev, D. R.
2013-12-04
The degree of circular polarization of photoluminescence of (In,Ga)As quantum dots as a function of magnetic field applied perpendicular to the optical axis (Hanle effect) is experimentally studied. The measurements have been performed at various regimes of the optical excitation modulation. The analysis of experimental data has been performed in the framework of a vector model of regular nuclear spin polarization and its fluctuations. The analysis allowed us to evaluate the magnitude of nuclear polarization and its dynamics at the experimental conditions used.
Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction.
Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi
2015-01-01
Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure. PMID:25802117
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule
NASA Astrophysics Data System (ADS)
Cloët, Ian C.; Bentz, Wolfgang; Thomas, Anthony W.
2016-01-01
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q |≳0.5 GeV . The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.
Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W
2016-01-22
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5 GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei. PMID:26849589
Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction
Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi
2015-01-01
Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure. PMID:25802117
The Solar hep Process in Effective Field Theory
T.-S. Park; L. E. Marcucci; R. Schiavilla; M. Viviani; A. Kievsky; S. Rosati; K. Kubodera; D.-P. Min; M. Rho
2001-09-01
Using effective field theory, we calculate the S-factor for the hep process in a totally parameter-free formulation. The transition operators are organized according to chiral counting, and their matrix elements are evaluated using the realistic nuclear wave functions obtained in the Correlated-hyperspherical-harmonics method. Terms of up to next-to-next-to-next-to-leading order in heavy-baryon chiral perturbation theory are considered. Fixing the only parameter in the theory by fitting the tritium beta-decay rate, we predict the hep S-factor with accuracy better than {approx} 20%.
Three-body systems in pionless effective field theory
NASA Astrophysics Data System (ADS)
Vanasse, Jared
2016-04-01
Investigations of three-body nuclear systems using pionless effective field theory (EFTπ̸) are reviewed. The history of EFTπ̸ in nd and pd scattering is briefly discussed and emphasis put on the use of strict perturbative techniques. In addition renormalization issues appearing in pd scattering are also presented. Bound state calculations are addressed and new perturbative techniques for describing them are highlighted. Three-body breakup observables in nd scattering are also considered and the utility of EFTπ̸ for addressing them.
Electric field effects on droplet burning
NASA Astrophysics Data System (ADS)
Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe
2015-11-01
The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.
Complementary junction heterostructure field-effect transistor
Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.
1995-01-01
A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.
Complementary junction heterostructure field-effect transistor
Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.
1995-12-26
A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.
Fractional effective action at strong electromagnetic fields
NASA Astrophysics Data System (ADS)
Kleinert, Hagen; Strobel, Eckhard; Xue, She-Sheng
2013-07-01
In 1936, Weisskopf [K. Dan. Vidensk. Selsk. Mat. Fys. Medd. XIV (1936)] showed that for vanishing electric or magnetic fields the strong-field behavior of the one-loop Euler-Heisenberg effective Lagrangian of quantum electro dynamics (QED) is logarithmic. Here we generalize this result for different limits of the Lorentz invariants E→2-B→2 and B→·E→. The logarithmic dependence can be interpreted as a lowest-order manifestation of an anomalous power behavior of the effective Lagrangian of QED, with critical exponents δ=e2/(12π) for spinor QED, and δS=δ/4 for scalar QED.
Observation of spin Hall effective field
NASA Astrophysics Data System (ADS)
Fan, Xin; Wu, Jun; Chen, Yunpeng; Jerry, Matthew; Zhang, Huaiwu; Xiao, John
2013-03-01
Recent development in spin Hall driven spin transfer torque has attracted intensive interests1. Liu et. al. has shown that the spin transfer torque induced by the spin Hall effect in a normal metal-ferromagnetic metal bilayer can switch the magnetization of the ferromagnetic layer, which may be a potential candidate for magnetic random access memory2. The switching of the magnetization was primarily attributed to the Slonczewski torque3. We show that besides the Slonczewski torque, the spin Hall effect also produces an effective field that can also facilitate the magnetization reversal. This effective field persists even with a Cu spacer layer, and reduces quickly with the increase of the ferromagnetic layer thickness. The observation of the spin Hall effective field shall have ramification on the understanding of both spin transfer torque and spin Hall effect. 1. K. Ando et. al., Electric manipulation of spin relaxation using the spin Hall effect, Physical Review Letters, 101, 036601 (2008). 2. L. Liu et. al., Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555-558 (2012). 3. J. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159, L1-L7 (1996).
Plasma wave instability in a quantum field effect transistor with magnetic field effect
Zhang, Li-Ping; Xue, Ju-Kui
2013-08-15
The current-carrying state of a nanometer Field Effect Transistor (FET) may become unstable against the generation of high-frequency plasma waves and lead to generation of terahertz radiation. In this paper, the influences of magnetic field, quantum effects, electron exchange-correlation, and thermal motion of electrons on the instability of the plasma waves in a nanometer FET are reported. We find that, while the electron exchange-correlation suppresses the radiation power, the magnetic field, the quantum effects, and the thermal motion of electrons can enhance the radiation power. The radiation frequency increases with quantum effects and thermal motion of electrons, but decreases with electron exchange-correlation effect. Interestingly, we find that magnetic field can suppress the quantum effects and the thermal motion of electrons and the radiation frequency changes non-monotonely with the magnetic field. These properties could make the nanometer FET advantageous for realization of practical terahertz oscillations.
The characterization of human compact bone structure changes by low-field nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Ni, Qingwen; Derwin King, J.; Wang, Xiaodu
2004-01-01
A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for characterizing the porosity and (effective) pore size distribution in vitro in human compact bone. The technique involves spin spin relaxation measurement and inversion spin spin relaxation spectral analysis methods. The spin spin relaxation decay curve is converted into a T2 distribution spectrum by a sum of single exponential decays. The advantages of using low-field NMR for the spin spin relaxation technique are illustrated. The results obtained from NMR methodology are compared with the results obtained from currently available but destructive histomorphometry and mercury porosimetry methods. The NMR porosities correlate well with the results obtained from the histomorphometry measurements of eight samples from donors of ages 21 89 years. The pore size distributions from T2 relaxation measurements are similar to the distributions obtained from the mercury porosimetry and histomorphometry measurements. This indicates that the age-related porosity and pore size changes in human compact bone can be detected using the low-field NMR technique.
Applied-field MPD thruster geometry effects
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1991-01-01
Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.
Magnetocaloric effect in strong magnetic fields
NASA Astrophysics Data System (ADS)
Tishin, A. M.
Calculations of magnetic entropy change, Δ SM, and magnetocaloric effect, Δ T, in 3d and 4f magnetics have been carried out, based on the molecular field theory. Δ SM and Δ T have been studied as a function of Debye temperature, θ D, Lande factor, gj, quantum number of total mechanical momentum, J, and also of magnetic phase transition temperatures. Limiting values of Δ SM and Δ T have been determined in extremely strong magnetic fields. The results obtained are compared with experimental data. It is shown that the use of ferromagnetic alloys Tb x Gd 1-x as operating devices of magnetic refrigerating machines in the room temperature range is more efficient than the use of pure Gd. These alloys have been found to have high specific refrigerant capacity over a wide range of fields from 0.1 to 6 T, which enables one to develop highly economic refrigeration devices in which weak fields are applied.
Psychotherapist countertransference in the nuclear age: Effects on therapeutic interventions
Oderberg, N.A.
1991-01-01
Since the early 1980s, there has been considerable attention in the psychology literature to mental health problems related to living in a world threatened by nuclear destruction. Questionnaires were mailed to 630 psychotherapists from the Colorado Psychological Association, California Psychotherapists for Social Responsibility, California Psychologists for Social Responsibility, the US Army, and the APA Division of Military Psychology; 174 questionnaires were returned. It was hypothesized that liberalism, nuclear weapons opposition, nuclear concern, nuclear awareness, and anti-nuclear activism in psychotherapists would facilitate perception of, and openness to working with, a client's nuclear concerns and thus, would be positively correlated with intentions to discuss nuclear issues with clients in three different clinical vignettes. Results indicated that when controlling for subject group, psychotherapy orientation, age, sex, and income, all five independent variables were positively correlated with responses to all three clinical vignettes, with nuclear concern having the strongest unique effect in accounting for variance in responses to the vignettes.
Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.
1995-06-01
We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.
Electric Field Effects in RUS Measurements
Darling, Timothy W; Ten Cate, James A; Allured, Bradley; Carpenter, Michael A
2009-09-21
Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.
Electric field effects in RUS measurements.
Darling, Timothy W; Allured, Bradley; Tencate, James A; Carpenter, Michael A
2010-02-01
Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material--a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the "statistical residual" strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods. PMID:19850314
Individual SWCNT based ionic field effect transistor
NASA Astrophysics Data System (ADS)
Pang, Pei; He, Jin; Park, Jae Hyun; Krstic, Predrag; Lindsay, Stuart
2011-03-01
Here we report that the ionic current through a single-walled carbon nanotube (SWCNT) can be effectively gated by a perpendicular electrical field from a top gate electrode, working as ionic field effect transistor. Both our experiment and simulation confirms that the electroosmotic current (EOF) is the main component in the ionic current through the SWCNT and is responsible for the gating effect. We also studied the gating efficiency as a function of solution concentration and pH and demonstrated that the device can work effectively in the physiological relevant condition. This work opens the door to use CNT based nanofluidics for ion and molecule manipulation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises and the Biodesign Institute.
Effective Field Theory for Jet Processes
NASA Astrophysics Data System (ADS)
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-01
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.
Effective Field Theory for Jet Processes.
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-13
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms. PMID:27232017
Solving the eigenvalue problem of the nuclear Yukawa-folded mean-field Hamiltonian
NASA Astrophysics Data System (ADS)
Dobrowolski, A.; Pomorski, K.; Bartel, J.
2016-02-01
The nuclear Hamiltonian with a Yukawa-folded mean-field potential is diagonalized within the basis of a deformed harmonic-oscillator in Cartesian coordinates. The nuclear shape is characterized by the equivalent sharp surface described either by the well known Funny-Hills or the Trentalange-Koonin-Sierk parametrizations. They are both able to describe a very vast variety of nuclear deformations, including necked-in shapes, left-right asymmetry and non-axiality. The only imposed limitation on the nuclear shape is the z-signature symmetry, which corresponds to a symmetry of the shape with respect to a rotation by an angle π around the z-axis. On output, the computer code produces for a given nucleus with mass number A and charge number Z the energy eigenvalues and eigenfunctions of the mean-field Hamiltonian at chosen deformation.
Screening Nuclear Field Fluctuations in Quantum Dots for Indistinguishable Photon Generation.
Malein, R N E; Santana, T S; Zajac, J M; Dada, A C; Gauger, E M; Petroff, P M; Lim, J Y; Song, J D; Gerardot, B D
2016-06-24
A semiconductor quantum dot can generate highly coherent and indistinguishable single photons. However, intrinsic semiconductor dephasing mechanisms can reduce the visibility of two-photon interference. For an electron in a quantum dot, a fundamental dephasing process is the hyperfine interaction with the nuclear spin bath. Here, we directly probe the consequence of the fluctuating nuclear spins on the elastic and inelastic scattered photon spectra from a resident electron in a single dot. We find the in-plane component of the nuclear Overhauser field leads to detuned Raman scattered photons, broadened over experimental time scales by field fluctuations, which are distinguishable from both the elastic and incoherent components of the resonance fluorescence. This significantly reduces two-photon interference visibility. However, we demonstrate successful screening of the nuclear spin noise, which enables the generation of coherent single photons that exhibit high visibility two-photon interference. PMID:27391751
Screening Nuclear Field Fluctuations in Quantum Dots for Indistinguishable Photon Generation
NASA Astrophysics Data System (ADS)
Malein, R. N. E.; Santana, T. S.; Zajac, J. M.; Dada, A. C.; Gauger, E. M.; Petroff, P. M.; Lim, J. Y.; Song, J. D.; Gerardot, B. D.
2016-06-01
A semiconductor quantum dot can generate highly coherent and indistinguishable single photons. However, intrinsic semiconductor dephasing mechanisms can reduce the visibility of two-photon interference. For an electron in a quantum dot, a fundamental dephasing process is the hyperfine interaction with the nuclear spin bath. Here, we directly probe the consequence of the fluctuating nuclear spins on the elastic and inelastic scattered photon spectra from a resident electron in a single dot. We find the in-plane component of the nuclear Overhauser field leads to detuned Raman scattered photons, broadened over experimental time scales by field fluctuations, which are distinguishable from both the elastic and incoherent components of the resonance fluorescence. This significantly reduces two-photon interference visibility. However, we demonstrate successful screening of the nuclear spin noise, which enables the generation of coherent single photons that exhibit high visibility two-photon interference.
CADAT field-effect-transistor simulator
NASA Technical Reports Server (NTRS)
1981-01-01
CADAT field-effect transistor simulator (FETSIM) analyzes dc and transient behavior of metal-oxide-semiconductor (MOS) circuits. Both N-MOS and P-MOS transistor configurations in either bulk of silicon-on-sapphire (SOS) technology and almost any combination of R/C elements are analyzed.
Gallium nitride junction field-effect transistor
Zolper, J.C.; Shul, R.J.
1999-02-02
An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.
Gallium nitride junction field-effect transistor
Zolper, John C.; Shul, Randy J.
1999-01-01
An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.
Unified description of structure and reactions: implementing the nuclear field theory program
NASA Astrophysics Data System (ADS)
Broglia, R. A.; Bortignon, P. F.; Barranco, F.; Vigezzi, E.; Idini, A.; Potel, G.
2016-06-01
The modern theory of the atomic nucleus results from the merging of the liquid drop model of Niels Bohr and Fritz Kalckar, and of the shell model of Marie Goeppert Meyer and Hans Jensen. The first model contributed the concepts of collective excitations. The second, those of independent-particle motion. The unification of these apparently contradictory views in terms of the particle-vibration and particle-rotation couplings carried out by Aage Bohr and Ben Mottelson has allowed for an ever more complete, accurate and detailed description of nuclear structure. Nuclear field theory (NFT), developed by the Copenhagen–Buenos Aires collaboration, provided a powerful quantal embodiment of this unification. Reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born), but also the specific tools to probe the atomic nucleus. It is then natural that NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with bound states (structure). As a result, spectroscopic studies of transfer to continuum states could eventually make use of the NFT rules, properly extended to take care of recoil effects. In the present contribution we review the implementation of the NFT program of structure and reactions, setting special emphasis on open problems and outstanding predictions.
Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure.
Thompson, Gary L; Roth, Caleb C; Kuipers, Marjorie A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L
2016-01-29
Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus - histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. PMID:26721436
Toward understanding the effects of nuclear war
Grover, H.D.; White, G.F.
1985-10-01
The authors discuss the scientific justifications for studying the consequences of nuclear war. The consequences of nuclear war and nuclear winter - biotic impoverishment, climate change, pollution of the air, water, and soil - recapitulate in compressed time the patterns of ecological change humankind is even now imposing on the planet. By studying the biological consequences of nuclear war, important discoveries about the intricate nature of the global ecosystem may be made. Wiser management practices and more thorough appreciation of alterations in the physical and biological environment could results.
Nuclear excitation via the motion of electrons in a strong laser field
Berger, J.F.; Gogny, D.; Weiss, M.S.
1987-12-01
A method of switching from a nuclear isomeric state to a lasing state is examined. A semi-classical model of laser-electron-nuclear coupling is developed. In it the electrons are treated as free in the external field of the laser, but with initial conditions corresponding to their atomic orbits. Application is made to testing this model in /sup 235/U and to the design criteria of a gamma-ray laser. 14 refs., 2 tabs.
A description of a wide beam saddle field ion source used for nuclear target applications
Greene, J.P.; Schiel, S.L.; Thomas, G.E.
1997-07-01
A description is given of a new, wide beam saddle field sputter source used for the preparation of targets applied in nuclear physics experiments. The ion source characteristics are presented and compared with published results obtained with other sources. Deposition rates acquired utilizing this source are given for a variety of target materials encountered in nuclear target production. New applications involving target thinning and ion milling are discussed.
Erickson, D.; Ickler, J.; McKeown, P.; Metzger, L.; Plock, R.
1984-12-31
This report concludes that a common control system based on Motorola paging systems, using off-the-shelf commercial hardware, appears to be the most cost-effective approach. In regard to the chemical detector simulator, there is considerable risk associated with the design based on activating an actual M-43 detector with a harmless chemical. This is the most cost-effective design if (1) a harmless chemical will reliably activate the M-43 detector (2) there are enough M-43 detectors in the hands of troops undergoing training and (3) the degradation of M-43s resulting from use in field exercises is acceptable. There were not sufficient M-43s available for test to resolve whether a harmless chemical will reliably activate the detector. If the use of actual M-43 detectors is not feasible, an alternate design for a simple simulator appears most cost-effective. Designs for both approaches are provided. A design for a radiacmeter simulator has been provided using a clock mechanism for a meter movement.
Electromagnetic fields-Part 1; Biological effects
Nair, I.; Morgan, M.G. )
1990-08-01
It is known that low-frequency electric and magnetic fields can produce a variety of effects in biological systems. Pulsed magnetic fields, for instance, are used to mend broken bones, and other beneficial medical applications are being developed. But in more chronic and less controlled environments, can exposure to such fields also pose health risks No one knows. Today that possibility, however, requires serious consideration. Though present knowledge is fragmentary, and a coherent theory to explain the observations seems far off, the continuous presence of power-frequency fields in the modern environment makes potential health effects a matter of serious scientific and public health policy concern. That concern has focused on cancer - especially leukemia and brain tumors - and developmental abnormalities, and, to a lesser extent on endocrine and nervous system disorders, including chronic depression. The authors focus on 60-hertz fields, where the mechanism of interaction probably involves the cell membrane, is nonlinear, and may act by causing some cooperative phenomena among the components of the cell membrane.
Microbial Effects on Nuclear Waste Packaging Materials
Horn, J; Martin, S; Carrillo, C; Lian, T
2005-07-22
Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM
Abnormal magnetic field effects on electrogenerated chemiluminescence.
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-01-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-01-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
NASA Astrophysics Data System (ADS)
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-03-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.
Effective field theory for deformed atomic nuclei
Papenbrock, Thomas F.; Weidenmüller, H. A.
2016-04-13
In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
NASA Astrophysics Data System (ADS)
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Functional organic field-effect transistors.
Guo, Yunlong; Yu, Gui; Liu, Yunqi
2010-10-25
Functional organic field-effect transistors (OFETs) have attracted increasing attention in the past few years due to their wide variety of potential applications. Research on functional OFETs underpins future advances in organic electronics. In this review, different types of functional OFETs including organic phototransistors, organic memory FETs, organic light emitting FETs, sensors based on OFETs and other functional OFETs are introduced. In order to provide a comprehensive overview of this field, the history, current status of research, main challenges and prospects for functional OFETs are all discussed. PMID:20853375
Nuclear effects in atmospheric and accelerator neutrino experiments
Chauhan, S.; Athar, M. Sajjad; Singh, S. K.
2010-11-24
We have studied the nuclear medium effects in the neutrino (antineutrino) induced interactions in nuclei at intermediate energy region. We have applied this study to calculate the event rates for atmospheric and accelerator neutrino experiments. The study of the nuclear effects has been done for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.
Jhala, Chirag; Lein, Manfred
2010-06-15
The multiconfiguration time-dependent Hartree approach is applied to study the electron-nuclear correlation in the dynamics of molecules subject to strong external laser fields, using the example of a model hydrogen molecular ion. The ground state of the system is well described by as few as two single-particle functions per degree of freedom. A significantly larger but moderate number of configurations is required to predict laser-induced fragmentation probabilities and high-order harmonic generation spectra accurately, showing that the correlation between electronic and nuclear degree of freedom is strongly increased by the presence of the laser field.
Biological effects of electric fields: EPRI's role
Kavet, R.
1982-07-01
Since 1973 the Electric Power Research Institute (EPRI) has supported research to evaluate the biological effects which may result from exposure to electric fields produced by AC overhead transmission lines; more recently, EPRI has also begun DC research. Through 1981 EPRI will have expended $8.7M on these efforts. Ongoing AC projects are studying a variety of lifeforms exposed to electric fields; these include humans, miniature swine, rats, honeybees, chick embryos, and crops. The status of these projects is discussed. The DC program has not as yet produced data. These studies will add to the current data base so as to enable a more complete assessment of health risks which may be associated with exposure to electric fields at power frequencies.
Electric field effect in "metallic" polymers
NASA Astrophysics Data System (ADS)
Hsu, Fang-Chi
The charge transport properties of the "metallic" polymer, poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonic acid) (PEDOT:PSS), with a conductivity around 30 S/cm are studied in this thesis. The PEDOT:PSS is incorporated into a field effect transistor (FET) structure as an active component. Considering the screening effect of metals, it is unexpected to observe a dramatic conductance change in PEDOT:PSS under the application of a gate electric field. The conventional FET model is used to further investigate this phenomenon. Though the current-voltage (I-V) characteristics of PEDOT:PSS devices are similar to the conventional field effect transistors (FETs), the extracted field effect mobility (mu FET) from I-V curves is two orders of magnitude larger than that estimated from the conductivity. Further investigating the I-V curves, a hysteresis behavior is observed and varies with drain voltage sweeping rate. This hysteresis phenomenon suggests ion motion is involved in the PEDOT:PSS conductance suppression. Since the structure of the metallic polymers is viewed as metallic ordered regions embedded in poorly conducting disordered media, charge carriers conduct electricity by hopping over or resonant tunneling through the localized states in the disordered regions. Therefore, several experiments are performed to understand the origin of the electric field penetration inside the metallic polymer. Using the transient current measurements, the relationship between inserted ion charges and PEDOT:PSS conductance variation is examined. Around 2% replacement of hole charges on the PEDOT:PSS backbone with inserted ionic charges enables the modulation of the conductance of PEDOT:PSS by three orders of magnitude. This small fraction of charge compensation of counterions by inserted ion charges suggests a percolation phenomenon for PEDOT:PSS conduction suppression. The role of inserted ions is further investigated by measurements of the temperature dependence of
Interfacial fields in organic field-effect transistors and sensors
NASA Astrophysics Data System (ADS)
Dawidczyk, Thomas J.
Organic electronics are currently being commercialized and present a viable alternative to conventional electronics. These organic materials offer the ability to chemically manipulate the molecule, allowing for more facile mass processing techniques, which in turn reduces the cost. One application where organic semiconductors (OSCs) are being investigated is sensors. This work evaluates an assortment of n- and p-channel semiconductors as organic field-effect transistor (OFET) sensors. The sensor responses to dinitrotoluene (DNT) vapor and solid along with trinitrotoluene (TNT) solid were studied. Different semiconductor materials give different magnitude and direction of electrical current response upon exposure to DNT. Additional OFET parameters---mobility and threshold voltage---further refine the response to the DNT with each OFET sensor requiring a certain gate voltage for an optimized response to the vapor. The pattern of responses has sufficient diversity to distinguish DNT from other vapors. To effectively use these OFET sensors in a circuit, the threshold voltage needs to be tuned for each transistor to increase the efficiency of the circuit and maximize the sensor response. The threshold voltage can be altered by embedding charges into the dielectric layer of the OFET. To study the quantity and energy of charges needed to alter the threshold voltage, charge carriers were injected into polystyrene (PS) and investigated with scanning Kelvin probe microscopy (SKPM) and thermally stimulated discharge current (TSDC). Lateral heterojunctions of pentacene/PS were scanned using SKPM, effectively observing polarization along a side view of a lateral nonvolatile organic field-effect transistor dielectric interface. TSDC was used to observe charge migration out of PS films and to estimate the trap energy level inside the PS, using the initial rise method. The process was further refined to create lateral heterojunctions that were actual working OFETs, consisting of a
Field effect memory alloy heat engine
Johnson, A.D.; Kirkpatrick, P.F.
1981-08-04
A heat engine employing a memory alloy and a force field such as gravity for converting heat energy into mechanical work is disclosed. Field effect elements are mounted on the distal ends of flexible spokes which in turn are mounted about a hub to form a rotating wheel. The memory alloy is in the form of a helix disposed about the circumference of the wheel and interconnecting the ends of adjacent spoke pairs. Heat is transferred to segments of the memory alloy on one side of the wheel so that the segments deform toward their memory shape and deflect the associated spokes toward each other. Heat is transferred away from the memory alloy segments on the opposite side so that the segments deform toward their trained shape and permit the spokes to flex apart. The concentration of field effect elements on the first side of the wheel is greater than the concentration on the other side so that the resultant force created by a remote field acts as a torque for rotating the wheel.
Assessment of structural changes of human teeth by low-field nuclear magnetic resonance (NMR)
NASA Astrophysics Data System (ADS)
Ni, Qingwen; Chen, Shuo
2010-01-01
A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for assessment of age-related structural changes (dentin and pulp) of human teeth in vitro. The technique involves spin-spin relaxation measurement and inversion spin-spin spectral analysis methods. The spin-spin relaxation decay curve is converted into a T2 distribution spectrum by a sum of single exponential decays. The NMR spectra from the extracted dentin-portion-only and dental pulp-cells-only were compared with the whole extracted teeth spectra, for the dentin and pulp peak assignments. While dentin and pulp are highly significant parameters in determining tooth quality, variations in these parameters with age can be used as an effective tool for estimating tooth quality. Here we propose an NMR calibration method—the ratio of the amount of dentin to the amount of pulp obtained from NMR T2 distribution spectra can be used for measuring the age-related structural changes in teeth while eliminating any variations in size of teeth. Eight teeth (third molars) extracted from humans, aged among 17-67 years old, were tested in this study. It is found that the intensity ratio of dentin to pulp sensitively changes from 0.48 to 3.2 approaching a linear growth with age. This indicates that age-related structural changes in human teeth can be detected using the low-field NMR technique.
NASA Astrophysics Data System (ADS)
Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.
2014-11-01
In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.
Antiferromagnetic Spin Wave Field-Effect Transistor.
Cheng, Ran; Daniels, Matthew W; Zhu, Jian-Gang; Xiao, Di
2016-01-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928
Radiative reactions in halo effective field theory
NASA Astrophysics Data System (ADS)
Rupak, Gautam
2016-03-01
In this article we review the recent progress in radiative reaction calculations in halo effective field theory. We look at radiative capture and breakup processes that involve a halo nucleus with a single valence neutron or proton. Looking at 7Li(n,γ) 8Li,14C(n,γ)15C and related reactions, the dominant source of theoretical uncertainty in s- and p-wave halo nuclei reaction calculations is quantified in a model-independent framework. The analysis for neutron halos is extended to proton halo systems. The effective field theory results quantify which observable parameters of the strong interaction at low energy need to be determined more precisely for accurate cross-section calculations.
A silicon nanocrystal tunnel field effect transistor
Harvey-Collard, Patrick; Drouin, Dominique; Pioro-Ladrière, Michel
2014-05-12
In this work, we demonstrate a silicon nanocrystal Field Effect Transistor (ncFET). Its operation is similar to that of a Tunnelling Field Effect Transistor (TFET) with two barriers in series. The tunnelling barriers are fabricated in very thin silicon dioxide and the channel in intrinsic polycrystalline silicon. The absence of doping eliminates the problem of achieving sharp doping profiles at the junctions, which has proven a challenge for large-scale integration and, in principle, allows scaling down the atomic level. The demonstrated ncFET features a 10{sup 4} on/off current ratio at room temperature, a low 30 pA/μm leakage current at a 0.5 V bias, an on-state current on a par with typical all-Si TFETs and bipolar operation with high symmetry. Quantum dot transport spectroscopy is used to assess the band structure and energy levels of the silicon island.
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-04-06
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-01-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928
Antiferromagnetic Spin Wave Field-Effect Transistor
NASA Astrophysics Data System (ADS)
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-04-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.
Day after midnight: the effects of nuclear war
Riordan, M.
1982-01-01
This book is an important contribution to the nuclear-weapons debate. Based on a widely circulated OTA report, The Effects of Nuclear War, it depicts in graphic detail the likely social and economic effects of nuclear war on both the United States and the Soviet Union. The book does not try to assess the probability that nuclear conflict, once initiated, would escalate into an all-out war. Rather, it examines four militarily plausible nuclear-attack scenarios ranging from single-weapons detonations to all-out, massive attacks. The one consistent conclusion in all cases is that nuclear war would be an unmitigated catastrophe unlike anything the world has ever experienced. The inherent uncertainties in these analyses, including the possibility of unbridled escalation, are tremendous. Thus, the total extinction of humanity cannot be completely ruled out. 60 references, 16 figures, 6 tables.
Schwantes, Jon M.; Miller, Steven D.; Piper, Roman K.; Murphy, Mark K.; Amonette, James E.; Bonde, Steven E.; Duckworth, Douglas C.
2008-09-15
Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 minutes to ~60 days following exposure to a dose of up to 10,000 Rad. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 50-100 Rad. Three peaks were identified in the TL glow curve at roughly 110oC, 205oC, and 225oC. The intensity of the 205oC peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and little or no variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205oC peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 330 Rad, a 10,000 Rad dose would still be detected 2.7E3 years after exposure. This paper introduces the concept of intrinsic dosimetry, the consideration of a measured dose received to container walls in concert with the physical characteristics of the radioactive material contained inside those walls, as a method for gathering rather unique pathway information about the history of that sample. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.
Effects of acidic precipitation on field crops
Evans, L.S.; Hendrey, G.R.; Lewin, K.F.; Gmur, N.F.
1982-02-01
The effects of acid rain on yields of field-grown soybeans has been investigated. Plants exposed to simulated rainfalls of pH 4.1, 3,3 and 2.7 had decreased seed yields of 10.6, 16.8 and 23.9% below yields of plants exposed to simulated rainfalls of pH 5.6. (ACR)
Evaluation of near-field earthquake effects
Shrivastava, H.P.
1994-11-01
Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.
Capture Reactions with Halo Effective Field Theory
NASA Astrophysics Data System (ADS)
Higa, R.
2015-12-01
Loosely bound nuclei far from the stability region emerge as a quantum phenomenon with many universal properties. The connection between these properties and the underlying symmetries can be best explored with halo/cluster EFT, an effective field theory where the softness of the binding momentum and the hardness of the core(s) form the expansion parameter of a given perturbative approach. In the following I highlight a particular application where these ideas are being tested, namely capture reactions.
Halo Effective Field Theory of 6He
NASA Astrophysics Data System (ADS)
Thapaliya, Arbin; Ji, Chen; Phillips, Daniel
2016-03-01
6He has a cluster structure with a tight 4He (α) core surrounded by two loosely bound neutrons (n) making it a halo nucleus. The leading-order (LO) Halo Effective Field Theory (EFT) [1, 2] calculations using momentum-space Faddeev equations pertinent to a bound 6He were carried out in [3]. In this work, we investigate 6He up to next-to-leading order (NLO) within Halo EFT.
Review of radiation effects in solid-nuclear-waste forms
Weber, W.J.
1981-09-01
Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10/sup 3/ to 10/sup 6/ years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references.