Science.gov

Sample records for nuclear level density

  1. Nuclear Level Densities

    SciTech Connect

    Grimes, S.M.

    2005-05-24

    Recent research in the area of nuclear level densities is reviewed. The current interest in nuclear astrophysics and in structure of nuclei off of the line of stability has led to the development of radioactive beam facilities with larger machines currently being planned. Nuclear level densities for the systems used to produce the radioactive beams influence substantially the production rates of these beams. The modification of level-density parameters near the drip lines would also affect nucleosynthesis rates and abundances.

  2. Nuclear Level Densities

    SciTech Connect

    Grimes, S. M.; Voinov, A.

    2009-01-28

    A summary of some recent level density research is presented. Although the subject is an old one, it is argued that a number of unanswered questions remain. These include uncertainties in related quantities such as the parity ratio and the spin cutoff parameter, which are needed to deduce level density parameters from resonance counting for low energy neutrons. Additional points of interest are the extent to which the low energy region shows constant temperature rather than Fermi gas energy dependence, whether the region below the neutron binding energy shows significant structure and whether the level density for fixed A shows a drop for neutron-rich and proton-rich nuclei compared to nuclei on the valley of stability.

  3. Nuclear level density: Shell-model approach

    NASA Astrophysics Data System (ADS)

    Sen'kov, Roman; Zelevinsky, Vladimir

    2016-06-01

    Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.

  4. Statistical approach to nuclear level density

    SciTech Connect

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2014-10-15

    We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.

  5. Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models

    NASA Astrophysics Data System (ADS)

    Razavi, Rohallah; Rahmatinejad, Azam; Kakavand, Tayeb; Taheri, Fariba; Aghajani, Maghsood; Khooy, Asghar

    2016-02-01

    In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

  6. Determination of the nuclear level density at high excitation energy

    SciTech Connect

    Chbihi, A.; Sobotka, L.G.; Nicolis, N.G.; Sarantites, D.G.; Stracener, D.W.; Majka, Z. ); Hensley, D.C.; Beene, J.R.; Halbert, M.L. )

    1991-02-01

    Evaporation simulations are presented to illustrate the problems associated with the determination of the nuclear level density constant at high excitation energy from evaporation spectra. The methods of using either the total (whole chain) spectra or the difference (from two different initial excitation energies) spectra are discussed. Data from the study of the reaction 701 MeV {sup 28}Si+{sup 100}Mo are presented and both methods are used to extract the level density constant. We find that in order to reproduce the slopes of the light particle spectra the level density constant must have a value near 1/10{ital A}-- 1 / 11 {ital A} for excited nuclei with statistical temperatures in the range of 3.5 to 5.5 MeV. This presumes that the only parameter adjustment required to treat the decay of highly exited nuclei is the level density constant. If this is so, the shapes of the evaporation spectra imply a reduction in the level density constant from the value required to explain the decay of less highly excited nuclei, a conclusion reached by others. However, the reduced level density constant leads to an overproduction of deuterons and tritons. This suggests that a more complicated set of parameter adjustments may be required to treat the decay of highly excited nuclei.

  7. Nuclear Level Densities Off of the Stability Line

    SciTech Connect

    Grimes, Steven M.; Massey, T. N.; Oginni, B. M.; Shukla, S.; Voinov, A.

    2008-04-17

    Nuclear level densities have been extensively studied on or near the valley of stability. Because the data base is so sparse away from the valley of stability, the systematics found for stable nuclei are assumed to apply off the line of stability as well. A model which predicts different systematics off of the stability line is examined. A pair of recent measurements provide tentative support for the new hypothesis, though it is clear additional data are needed.

  8. IAEA advisory group meeting on basic and applied problems of nuclear level densities

    SciTech Connect

    Bhat, M.R.

    1983-06-01

    Separate entries were made in the data base for 17 of the 19 papers included. Two papers were previously included in the data base. Workshop reports are included on (1) nuclear level density theories and nuclear model reaction cross-section calculations and (2) extraction of nuclear level density information from experimental data. (WHK)

  9. Determination of nuclear level densities from experimental information

    SciTech Connect

    Cole, B.J. ); Davidson, N.J. , P.O. Box 88, Manchester M60 1QD ); Miller, H.G. )

    1994-10-01

    A novel information theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval, and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.

  10. Persistence of Vibrational Collectivity in Nuclear Level Densities

    NASA Astrophysics Data System (ADS)

    Nakada, H.; Matsuyama, E.; Özen, C.

    2016-06-01

    By applying the particle-number projection to the finite-temperature BCS theory to the state densities in the rare-earth nuclei and comparing its results to the SMMC ones, we investigate effects of the particle-number conservation on the collective enhancement factor for the state densities. Once we restore the particle-number conservation, the rapid decay of vibrational enhancement disappears. This suggests that the vibrational collectivity may survive up to higher energy and the relevant enhancement factor is insensitive to the excitation energy.

  11. Inconsistencies in the description of pairing effects in nuclear level densities

    NASA Astrophysics Data System (ADS)

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2012-10-01

    Pairing correlations have a strong influence on nuclear level densities. Empirical descriptions and theoretical models have been developed to take these effects into account. The present article discusses cases, where descriptions of nuclear level densities are inconsistent or in conflict with the present understanding of nuclear properties. Phenomenological approaches consider an energy-shift parameter. However, the absolute magnitude of the energy shift, which actually corresponds to the pairing condensation energy, is generally not compatible with the observation that stable pairing correlations are present in essentially all nuclei. It is also shown that in the BCS model pairing condensation energies and critical pairing energies are inconsistent for light nuclei. A modification to the composite Gilbert-Cameron level-density description is proposed, and the use of more realistic pairing theories is suggested.

  12. Stochastic estimation of level density in nuclear shell-model calculations

    NASA Astrophysics Data System (ADS)

    Shimizu, Noritaka; Utsuno, Yutaka; Futamura, Yasunori; Sakurai, Tetsuya; Mizusaki, Takahiro; Otsuka, Takaharu

    2016-06-01

    An estimation method of the nuclear level density stochastically based on nuclear shell-model calculations is introduced. In order to count the number of the eigen-values of the shell-model Hamiltonian matrix, we perform the contour integral of the matrix element of a resolvent. The shifted block Krylov subspace method enables us its efficient computation. Utilizing this method, the contamination of center-of-mass motion is clearly removed.

  13. Nuclear level density and γ-ray strength function of 43Sc

    NASA Astrophysics Data System (ADS)

    Bürger, A.; Larsen, A. C.; Hilaire, S.; Guttormsen, M.; Harissopulos, S.; Kmiecik, M.; Konstantinopoulos, T.; Krtička, M.; Lagoyannis, A.; Lönnroth, T.; Mazurek, K.; Norrby, M.; Nyhus, H. T.; Perdikakis, G.; Siem, S.; Spyrou, A.; Syed, N. U. H.

    2012-06-01

    The nuclear level density and the γ-ray strength function have been determined for 43Sc in the energy range up to 2 MeV below the neutron separation energy using the Oslo method with the 46Ti(p,α)43Sc reaction. A comparison to 45Sc shows that the level density of 43Sc is smaller by an approximately constant factor of two. This behavior is well reproduced in a microscopic, combinatorial model calculation. The γ-ray strength function increases at low γ-ray energies, a feature which has been observed in several nuclei but which still awaits theoretical explanation.

  14. Experimental Study of Level Density and {gamma}-strength Functions from Compound Nuclear Reactions

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Massey, T. N.; Schiller, A.; Guttormsen, M.; Siem, S.

    2008-04-17

    The current status of experimental study of level density and {gamma}-strength functions is reviewed. Three experimental techniques are used. These are measurements of particle evaporation spectra from compound nuclear reactions, the measurements of particle-{gamma} coincidences from inelastic scattering and pick-up reactions and the method of two-step {gamma}-cascades following neutron/proton radiative capture. Recent experimental data on level densities from neutron evaporation spectra are shown. The first results on the cascade {gamma}-spectrum from the {sup 59}Co(p,2{gamma}){sup 60}Ni reaction are presented.

  15. The Hagedorn spectrum, nuclear level densities and first order phase transitions

    SciTech Connect

    Moretto, Luciano G.; Larsen, A. C.; Guttormsen, M.; Siem, S.

    2015-10-15

    An exponential mass spectrum, like the Hagedorn spectrum, with slope 1/T{sub H} was interpreted as fixing an upper limiting temperature T{sub H} that the system can achieve. However, thermodynamically, such spectrum indicates a 1{sup st} order phase transition at a fixed temperature T{sub H}. A much lower energy example is the log linear level nuclear density below the neutron binding energy that prevails throughout the nuclear chart. We show that, for non-magic nuclei, such linearity implies a 1{sup st} order phase transition from the pairing superfluid to an ideal gas of quasi particles.

  16. Conditions for observation of fade out of collective enhancement of the nuclear level density

    SciTech Connect

    Grimes, S. M.

    2008-11-15

    The results of two recent papers searching for the disappearance of collective enhancements with energy in nuclear level densities are examined. It is found that the effects of such enhancements are less than has been assumed. The reduction in the size of the effect only partially resolves the disagreement between theory and experiment. This effect also plays a role in explaining the results of an earlier experiment.

  17. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    DOE PAGESBeta

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  18. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  19. Level Density Inputs in Nuclear Reaction Codes and the Role of the Spin Cutoff Parameter

    NASA Astrophysics Data System (ADS)

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2014-05-01

    The proton spectrum from the 57Fe(α, p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacings and to discrete levels and using the spin cutoff parameter with much a weaker excitation energy dependence than predicted by the Fermi-gas model.

  20. Nuclear level densities of 64,66Zn from neutron evaporation

    NASA Astrophysics Data System (ADS)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Schiller, A.; Brune, C. R.; Massey, T. N.; Salas-Bacci, A.

    2013-12-01

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. The angle-integrated cross sections have been analyzed with the exciton model of nuclear reaction.

  1. Nuclear level densities of 64,66 Zn from neutron evaporation

    DOE PAGESBeta

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Schiller, A.; Brune, C. R.; Massey, T. N.; Salas-Bacci, A.

    2013-12-26

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated cross sectionsmore » have been analyzed with the exciton model of nuclear reaction.« less

  2. A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities

    NASA Astrophysics Data System (ADS)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2013-01-01

    A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message

  3. The role of seniority-zero states in nuclear level densities

    DOE PAGESBeta

    Åberg, S.; Carlsson, B. G.; Døssing, Th.; Möller, P.

    2015-06-01

    At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed even–even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.

  4. Test of nuclear level density inputs for Hauser-Feshbach model calculations

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Hornish, M. J.; Massey, T. N.; Salas, A.

    2007-10-15

    The energy spectra of neutrons, protons, and {alpha}-particles have been measured from the d+{sup 59}Co and {sup 3}He+{sup 58}Fe reactions leading to the same compound nucleus, {sup 61}Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parametrizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as {sup 60}Ni, {sup 60}Co, and {sup 57}Fe.

  5. Nuclear level densities of 64,66Zn from neutron evaporation

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; Voinov, Alexander; Grimes, Steven; Brune, Carl; Massey, Thomas

    2013-10-01

    The neutron spectra from the reactions 63Cu(d,n)64Zn and 65Cu(d,n)66Zn have been measured at deuteron beam energies of 6 and 7.5 MeV. Level densities of the residual nuclei 64Zn and 66Zn were extracted and compared with different level density models: (1) Gilbert-Cameron model, (2) Backshifted Fermi gas model using the Egidy systematics, and (3) microscopic combinatorial level densities. We found that the Gilbert-Cameron model closely agrees with the experimental results. We have also studied the non-compound component of the reactions from the neutron angular distributions. The non-compound component has been shown to be dominant in forward angles and is more pronounced at high neutron emission energies. We have also observed a slight enhancement of the non-compound contribution as the incident deuteron energy is increased.

  6. The role of seniority-zero states in nuclear level densities

    NASA Astrophysics Data System (ADS)

    Åberg, S.; Carlsson, B. G.; Døssing, Th.; Möller, P.

    2015-09-01

    At low excitation energies seniority-zero states dominate the level density of K = 0 bands in deformed even-even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei. An explanation is provided for recent observations of an odd-even staggering in the spin-distribution function as an effect of r-symmetry of wave functions for deformed nuclei. The structure of 0+ states in deformed nuclei is discussed in the model and compared to data, stressing the role of the seniority quantum number. The Fermi-gas model is utilized to obtain an overview of the odd-even staggering phenomenon in other mass regions. Odd-even staggering in spherical nuclei, appearing in open-shell nuclei, is briefly discussed as caused by fermion exchange symmetry.

  7. Investigation of the effects of nuclear level density parameters on the cross sections for the 234U(γ,f) reaction

    NASA Astrophysics Data System (ADS)

    Pekdogan, Hakan; Aydin, Abdullah; Hakki Sarpun, Ismail

    2015-07-01

    In this study, we have investigated the effects of nuclear level density parameters on the cross sections for the 234U(γ,f) reaction up to 20 MeV. The cross sections on 234U(γ,f) reaction were calculated for different level density models using the TALYS 1.6 code. First, it was determined the level density model that was the closest to the experimental data. Secondly, cross sections obtained for different level density parameters of this model were compared with experimental data from the EXFOR database. Thus it was determined the best level density parameter fit to experimental data.

  8. Nuclear Energy Density Optimization

    SciTech Connect

    Kortelainen, Erno M; Lesinski, Thomas; More, J.; Nazarewicz, W.; Sarich, J.; Schunck, N.; Stoitsov, M. V.; Wild, S.

    2010-01-01

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  9. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    DOE PAGESBeta

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore,more » excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less

  10. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    NASA Astrophysics Data System (ADS)

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2013-11-01

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys.0008-420410.1139/p65-139 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  11. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    SciTech Connect

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  12. Level densities of heaviest nuclei

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. N.; Shneidman, T. M.; Adamian, G. G.; Antonenko, N. V.

    2014-06-01

    The intrinsic level densities of superheavy nuclei in the α-decay chains of 296,298,300120 are calculated using the single-particle spectra obtained with the modified two-center shell model. The role of the shell and pairing effects on the level density as well as their quenching with excitation energy are studied. The extracted level density parameter is expressed as a function of mass number, ground-state shell correction, and excitation energy. The results are compared with the phenomenological values of level density parameters used to calculate the survival of excited heavy nuclei.

  13. Applied uses of level density models

    SciTech Connect

    Arthur, E.D.; Guenther, P.T.; Smith, A.B.; Smith, D.L.; Argonne National Lab., IL )

    1989-01-01

    This paper addresses issues associated with the use of nuclear level density models in calculations made for data applications. The two most commonly used models, the Gilbert Cameron and the Back-Shifted Fermi Gas, are briefly summarized and examples are provided of recent efforts to improve their parameterization. Calculated particle emission spectra are compared with recent experimental data in order to assess performance and sensitivity to these models. Extrapolation of nuclear level densities for calculations involving nuclei away from stability poses special problems and examples of recent efforts to improve such extrapolations are cited. The sensitivity of current schemes in the modeling of fission transition state densities are explored through calculated (n,f) cross sections. Two newer phenomenological models, those of Ignatyuk and Schmidt, provide a more physically realistic description of level densities. Calculations concerning {sup 207}Pb(n,xn) cross sections compare results using the Ignatyuk formalism with the Gilbert Cameron results. 31 refs., 10 figs.

  14. Nuclear level densities in {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn from neutron evaporation spectra

    SciTech Connect

    Zhuravlev, B. V. Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2011-03-15

    The spectra of neutrons from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, and {sup 54}Cr nuclei were measured in the proton-energy range 7-11 MeV. The measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). Owing to a high resolution and a high stability of the time-of-flight spectrometer used, low-lying discrete levels could be identified reliably along with a continuum section of neutron spectra. An analysis of measured data was performed within the statistical equilibrium and preequilibrium models of nuclear reactions. The relevant calculations were performed by using the exact formalism of Hauser-Feshbach statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for the nuclear level density. The nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn were determined along with their energy dependences and model parameters. The results are discussed together with available experimental data and recommendations of model systematics.

  15. Nuclear level densities of 64,66 Zn from neutron evaporation

    SciTech Connect

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Schiller, A.; Brune, C. R.; Massey, T. N.; Salas-Bacci, A.

    2013-12-26

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated cross sections have been analyzed with the exciton model of nuclear reaction.

  16. Nuclear-level densities in the 49V and 57Co nuclei on the basis of evaporated-neutron spectra in ( p, n) and ( d, n) reactions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, B. V.; Titarenko, N. N.

    2016-03-01

    The spectra of neutrons from the reactions 49Ti( p, n)49V and 57Fe ( p, n)57Co were measured in the range of proton energies between 8 and 11 MeV along with their counterparts from the reactions 48Ti( d, n)49V and 56Fe ( d, n)57Co at the deuteron energies of 2.7 and 3.8 MeV. These measurements were conducted with the aid of a time-of-flight fast-neutron spectrometer on the basis of the EGP-15 pulsed tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). An analysis of measured data was performed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations based on the Hauser-Feshbach formalism of statistical theory were carried out with nuclear-level densities given by the generalized superfluid model of the nucleus, the backshifted Fermi-gas model, and the Gilbert-Cameron composite formula. The nuclear-level densities of 49V and 57Co and their energy dependences were determined. The results were discussed together with available experimental data and data recommended by model systematics.

  17. Pairing interaction effects in exciton level densities

    SciTech Connect

    Fu, C.Y.

    1989-01-01

    Recent progress in pairing corrections for exciton state-density formulas used in pre-compound nuclear reaction theories is reviewed. These correction factors are, strictly speaking, dependent on the nuclear excitation energy U and the exciton number n. A simple formula for (U,n)-dependent pairing corrections has been derived, based on the BCS pairing equations for constant single-particle spacing, for the exciton state-density formula for one kind of Fermion. It has been shown that the constant-pairing-energy correction used in standard state-density formulas, such U{sub 0} in Gilbert and Cameron, is a limiting case of the general (U,n)-dependent results. Spin cutoff factors with pairing effects were also obtained using the same theory and parameterized into an explicit (U,n)-dependent function, thereby defining a simple exciton level-density formula for applications in quantum mechanical precompound theories. Preliminary results from extending such simple pairing-interaction representations to level-density formulas for two kinds of Fermions are summarized. The results show that the ratios in the exciton level densities in the one-Fermion and two-Fermion approaches vary with both U and n, thus likely leading to differences in calculated compound to precompound ratios. However, the differences in the spin cutoff factors in the two cases are found to be rather small. 12 refs., 3 figs.

  18. High level nuclear waste

    SciTech Connect

    Crandall, J L

    1980-01-01

    The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

  19. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    SciTech Connect

    Liu Min; Wang Ning; Li Zhuxia; Zhang Fengshou

    2010-12-15

    The symmetry energy coefficients for nuclei with mass number A=20-250 are extracted from more than 2000 measured nuclear masses. With the semiempirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of the symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  20. Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  1. Nuclear moments in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, J.; Zhao, P. W.; Zhang, S. Q.; Hu, J. N.; Li, J.

    2014-05-01

    Recent progresses on microscopic and self-consistent description of the nuclear moments in covariant density functional theory based on a point-coupling interaction are briefly reviewed. In particular, the electric quadrupole moments of Cd isotopes and the magnetic moments of Pb isotopes are discussed.

  2. Supernovae and high density nuclear matter

    SciTech Connect

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  3. Chiral density wave in nuclear matter

    NASA Astrophysics Data System (ADS)

    Heinz, Achim; Giacosa, Francesco; Rischke, Dirk H.

    2015-01-01

    Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ0, where ρ0 is the nuclear matter ground-state density.

  4. Nuclear level densities in {sup 208}Bi and {sup 209}Po from the neutron spectra in the (p, n) reactions on {sup 208}Pb and {sup 209}Bi nuclei

    SciTech Connect

    Zhuravlev, B. V. Lychagin, A. A. Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2010-07-15

    The spectra of neutrons from the (p, n) reactions on the {sup 208}Pb and {sup 209}Bi nuclei were measured in the proton-energy range 8-11 MeV. These measurements were performed by using a time-of-flight spectrometer of fast neutrons on the basis of the pulsed tandem accelerator EGP-15 of the Institute of Physics and Power Engineering (Obninsk, Russian Federation). A high resolution and stability of the time-of-flight spectrometermade it possible to identify reliably low-lying discrete levels alongwith the continuum section of the neutron spectra. The measured data were analyzed on the basis of the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed by using the precise formalism of Hauser-Feshbach statistical theory together with the generalized model of a superfluid nucleus and the back-shifted Fermi gas model for the nuclear-level density. The nuclear-level densities in {sup 208}Bi and {sup 209}Po were determined along with their energy dependencies and model parameters. Our results are discussed together with available experimental data and recommendations of model systematics.

  5. Nuclear power: levels of safety.

    PubMed

    Lidsky, L M

    1988-02-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the "nuclear establishment" itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired. PMID:3340728

  6. Chaos and structure of level densities

    SciTech Connect

    Moller, Peter; Aberg, Sven; Uhrenholt, Henrik; Ickhikawa, Takatoshi

    2008-01-01

    The energy region of the first few MeV above the ground state shows interesting features of the nucleus. Beyond an ordered energy region just above the ground-state the dynamics changes, and chaotic features are observed in the neutron resonance region. The statistical properties of energies and wave-functions are common to all chaotic nuclei. However, if instead a global property, like the local level-density function is studied, strong structure effects emerge. In this contribution we discuss these two different facets of warm nuclei. In section 2 the onset of chaos with increasing excitation energy is discussed, with both experimental observations and proposed theoretical mechanisms as starting points. The structure of level densities in the same excitation energy region based on the two different starting points, is treated in section 3, where we give a short presentation of a newly developed combinatorial level-density modell. Some results from the model are presented and discussed. Two coexisting facets of warm nuclei, quantum chaos and structure of the level density, are considered. A newly developed combinatorial level-density model is presented, and the role of collective enhancements discussed. An example of extreme parity enhancement is shown.

  7. Mammographic breast density and serum phytoestrogen levels.

    PubMed

    Lowry, Sarah J; Sprague, Brian L; Aiello Bowles, Erin J; Hedman, Curtis J; Hemming, Jocelyn; Hampton, John M; Burnside, Elizabeth S; Sisney, Gale A; Buist, Diana S M; Trentham-Dietz, Amy

    2012-08-01

    Some forms of estrogen are associated with breast cancer risk as well as with mammographic density (MD), a strong marker of breast cancer risk. Whether phytoestrogen intake affects breast density, however, remains unclear. We evaluated the association between serum levels of phytoestrogens and MD in postmenopausal women. We enrolled 269 women, ages 55-70 yr, who received a screening mammogram and had no history of postmenopausal hormone use. Subjects completed a survey on diet and factors related to MD and provided a blood sample for analysis of 3 phytoestrogens: genistein, daidzein, and coumestrol. We examined whether mean percent MD was related to serum level of phytoestrogens, adjusting for age and body mass index. Genistein and daidzein levels correlated with self-reported soy consumption. Mean percent MD did not differ across women with different phytoestrogen levels. For example, women with nondetectable genistein levels had mean density of 11.0% [95% confidence intervals (CI) = 9.9-12.4], compared to 10.5% (95% CI = 8.0-13.7) and 11.2% (95% CI = 8.7-14.6) for < and ≥ median detectable levels, respectively. In a population with relatively low soy intake, serum phytoestrogens were not associated with mammographic density. Additional studies are needed to determine effects of higher levels, particularly given patterns of increasing phytoestrogen intake. PMID:22860715

  8. Central depression of nuclear charge density distribution

    SciTech Connect

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-08-15

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Ar and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  9. Building a Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold:  First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties;  Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data;  Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  10. Regulation of high density lipoprotein levels

    SciTech Connect

    Krauss, R.M.

    1982-03-01

    An increasing awareness of the physiologic and pathologic importance of serum high density lipoproteins (HDL) has led to a large number of observations regarding factors which influence their concentrations. HDL consists of a heterogeneous collection of macromolecules with diverse physical properties and chemical constituents. While laboratory techniques have made it possible to measure HDL and their individual components, there are as yet large gaps in our knowledge of the biochemical mechanisms and clinical significance of changes in these laboratory parameters. In this review, current concepts of the structure and metabolism of HDL will be briefly summarized, and the factors influencing their levels in humans will be surveyed. 313 references.

  11. The Nuclear Energy Density Functional Formalism

    NASA Astrophysics Data System (ADS)

    Duguet, T.

    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

  12. Level density from evaporation spectra for proton rich nuclei

    NASA Astrophysics Data System (ADS)

    Voinov, Alexander

    2005-04-01

    The level density is an important characteristic of atomic nuclei. It tells us about the nuclear structure and is needed to calculate reaction rates. The experimental information about the level density and corresponding model parameter systematics are available for the nuclei close to the stability line but little is known for the nuclei beyond the stability line. It follows from theoretical consideration that several physical effects might give the of Fermi-gas parameter `a' dependence on N and/or Z rather than on simply on A [1]. To study this and other features, the level density from neutron evaporation spectra has been measured for proton-rich nuclei ^60Zn and ^56Ni as well as for corresponding stable nuclei ^60Ni and^ 56Fe of the same A. Targets of ^58Ni, ^54Fe,^ 58Fe, and ^55Mn were bombarded with beams of 3He and deuterium at Ohio University's Edwards Accelerator Laboratory. Neutron energies were determined by the time-of-flight method. The different level density models have been tested in the excitation energy interval up to 8-10 MeV and the best parameters have been found. The results are compared to available systematics as well as to calculations performed on the basis of microscopic model recommended in RIPL data base. [1] S.I. Al-Quraishi, S.M.Grimes, T.N. Massey and D.A.Resler, Phys.Rev. C63, 065803 (2001).

  13. Connection between the Strutinsky level density and the semiclassical level density

    SciTech Connect

    Mohammed-Azizi, B.; Medjadi, D. E.

    2006-11-15

    We establish an analytical link between the level density obtained by means of the Strutinsky averaging method and the semiclassical level density. This link occurs only in the so-called asymptotic limit. It turns out that the Strutinsky method amounts to an approximation to the semiclassical method. This approximation contains an unavoidable remainder that constitutes an intrinsic noise in comparison to the semiclassical method. Thus, the problem of the dependency of the Strutinsky procedure on the two free smoothing parameters of the averaging is intimately connected to this noise. However, we demonstrate that the noise of the method is small in the average density of states and in the average energy, whereas it might be non-negligible in the shell correction itself. To improve this method, we give a rule that consists simply of minimizing the relative error for the average energy.

  14. Testing for parity violation in nuclei using spin density matrices for nuclear density functionals

    NASA Astrophysics Data System (ADS)

    Barrett, B. R.; Giraud, B. G.

    2015-06-01

    The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a ‘hedgehog’ situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.

  15. Nuclear collective excitations: A relativistic density functional approach

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2015-08-01

    Density functional theory provides the most promising, and likely unique, microscopic framework to describe nuclear systems ranging from finite nuclei to neutron stars. Properly optimized energy density functionals define a new paradigm in nuclear theory where predictive capability is possible and uncertainty quantification is demanded. Moreover, density functional theory offers a consistent approach to the linear response of the nuclear ground state. In this paper, we review the fundamental role played by nuclear collective modes in uncovering novel excitations and in guiding the optimization of the density functional. Indeed, without collective excitations the determination of the density functional remains incomplete. Without collective excitations, the equation of state of neutron-rich matter continues to be poorly constrained. We conclude with a discussion of some of the remaining challenges in this field and propose a path forward to address these challenges.

  16. Nuclear physics at extreme energy density

    SciTech Connect

    Mueller, B.

    1992-05-15

    This report discusses topics in the following areas: QCD transport theory; minijets in hadronic and nuclear collisions; lattice gauge theory; hadronic matter and other studies; and strong electromagnetic fields. (LSP)

  17. Level densities of {sup 44}Sc and {sup 47}Ti from different experimental techniques

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Massey, T.; Schiller, A.; Larsen, A. C.; Guttormsen, M.; Siem, S.; Syed, N. U. H.

    2008-03-15

    The level densities of {sup 44}Sc and {sup 47}Ti have been determined from measurements of particle evaporation spectra from the compound nuclear reaction {sup 3}He+{sup 45}Sc with an 11 MeV {sup 3}He beam. The level density of {sup 44}Sc has been compared to the level density obtained from an independent experimental method based on an analysis of {alpha}-{gamma} coincidences from the transfer reaction {sup 45}Sc({sup 3}He,{alpha}{gamma}){sup 44}Sc. The good agreement between the two experiments indicates the reliability of the level density obtained. Some level density systematics have been tested against the experimental data. New Fermi-gas level density parameters have been derived.

  18. Quantification of Uncertainties in Nuclear Density Functional Theory

    SciTech Connect

    Schunck, N.; McDonnell, J.D.; Higdon, D.; Sarich, J.; Wild, S.

    2015-01-15

    Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.

  19. Constraining the level density using fission of lead projectiles

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  20. The shell model Monte Carlo approach to level densities: Recent developments and perspectives

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.

    2015-12-01

    We review recent advances in the shell model Monte Carlo approach for the microscopic calculation of statistical and collective properties of nuclei. We discuss applications to the calculation of i) level densities in nickel isotopes, implementing a recent method to circumvent the odd-particle sign problem; ii) state densities in heavy nuclei; iii) spin distributions of nuclear levels; and iv) finite-temperature quadrupole distributions.

  1. Nuclear moment of inertia and spin distribution of nuclear levels

    SciTech Connect

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-12-15

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region.

  2. Reflection-Asymmetric Nuclear Deformations within the Density Functional Theory

    SciTech Connect

    Olsen, E; Erler, J; Nazarewicz, W.; Stoitsov, M

    2012-01-01

    Within the nuclear density functional theory (DFT) we study the effect of reflection- asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver axialhfb that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even- even isotopes of radium and thorium.

  3. Combined backscatter and transmission method for nuclear density gauge

    NASA Astrophysics Data System (ADS)

    Golgoun, Seyed Mohammad; Sardari, Dariush; Sadeghi, Mahdi; Ebrahimi, Mohammad; Aminipour, Mojtaba; Davarpanah, Mohammad Reza

    2015-07-01

    Nowadays, the use of nuclear density gauges, due to the ability to work in harsh industrial environments, is very common. In this study, to reduce error related to the ρ of continuous measuring density, the combination of backscatter and transmission are used simultaneously. For this reason, a 137Cs source for Compton scattering dominance and two detectors are simulated by MCNP4C code for measuring the density of 3 materials. Important advantages of this combined radiometric gauge are diminished influence of μ and therefore improving linear regression.

  4. Level densities and shell corrections of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. N.; Shneidman, T. M.; Adamian, G. G.; Antonenko, N. V.

    2015-02-01

    The intrinsic level densities of superheavy nuclei in the α-decay chains of 296;298;300120 nuclei are calculated using the single-particle spectra obtained with the modifed two-center shell model. The level density parameters are extracted and compared with their phenomenological values used in the calculations of the survival of excited heavy nuclei. The dependences of the level density parameters on the mass and charge numbers as well as on the ground-state shell corrections are studied.

  5. Dipole polarizability of 120Sn and nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Krumbholz, A. M.; Reinhard, P.-G.; Tamii, A.; von Neumann-Cosel, P.; Adachi, T.; Aoi, N.; Bertulani, C. A.; Fujita, H.; Fujita, Y.; Ganioǧlu, E.; Hatanaka, K.; Ideguchi, E.; Iwamoto, C.; Kawabata, T.; Khai, N. T.; Krugmann, A.; Martin, D.; Matsubara, H.; Miki, K.; Neveling, R.; Okamura, H.; Ong, H. J.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Sakaguchi, H.; Shimbara, Y.; Shimizu, Y.; Simonis, J.; Smit, F. D.; Süsoy, G.; Suzuki, T.; Thies, J. H.; Yosoi, M.; Zenihiro, J.

    2015-09-01

    The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at the Research Center for Nuclear Physics, Osaka, from polarization transfer observables measured in proton inelastic scattering at E0=295 MeV and forward angles including 0∘. Combined with photoabsorption data, a highly precise electric dipole polarizability αD(120Sn) =8.93 (36 ) fm3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on nuclear symmetry energy and its density dependence. The correlation of the new value with the well-established αD(208Pb) serves as a test of its prediction by nuclear energy density functionals. Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.

  6. The study of the role of the two-body force in determining level densities

    NASA Astrophysics Data System (ADS)

    Huang, Po-Lin

    The study of the role of the two-body force in determining level densities explored the characteristics of the two-body force and their impact on nuclear level densities. Two different theoretical approaches, the statistical mechanical model and moment expansion method, were used for the determining the impact of the two-body force on level densities. Discrete levels in the lower excitation region were compiled to provide information about level density systematics. A shell model calculation for a number of light nuclei allowed a test of the input parameters including single particle energies and two-body matrix elements. Generally good agreement was found between the calculated and observed energies of low-lying states. A comparison of the results obtained with three widely used interactions for nuclei with mass numbers 18 and 20 allowed some insight into the two-body interaction and the possibilities for improving it. For the level density calculations twenty four nuclei with mass numbers between 20 and 41 were used. Both the values from tabulations of low-lying levels and the results from previous studies of level densities at 7 Mev and at 20 Mev were included. It was found that the parameters derived from the higher energy measurements gave poor results at energies below 5 Mev. The discrepancies appeared to be related to problems in determining one of the two parameters involved. Two approaches were used in an effort to improve the precision of this parameter. Both were reasonably successful. Calculations of the level of density using a super conducting model within a statistical mechanical framework and a full two-body interaction utilizing a moment method approach were completed. Both gave a reasonably good representation of the data. An examination of the significance of the analysis for future study of the two body force and of nuclear level densities is presented.

  7. Parity dependence of level densities in sup 49 V

    SciTech Connect

    York, B.W.

    1991-01-01

    In this research, we have studied {sup 48}Ti(p, p{sub 1}) and {sup 48}(p, p{sub 1}{gamma}) in an effort to determine the dependence of level densities on parity in the compound nucleus {sup 49}V. This nuclide was chosen because of the high level density of the {sup 49}V system (leading to good statistical accuracy) and because the target is zero spin (making the assignment of J easier). 5 refs., 3 figs.

  8. Level densities of heavy nuclei in the shell model Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Nakada, H.; Özen, C.

    2016-06-01

    Nuclear level densities are necessary input to the Hauser-Feshbach theory of compound nuclear reactions. However, the microscopic calculation of level densities in the presence of correlations is a challenging many-body problem. The configurationinteraction shell model provides a suitable framework for the inclusion of correlations and shell effects, but the large dimensionality of the many-particle model space has limited its application in heavy nuclei. The shell model Monte Carlo method enables calculations in spaces that are many orders of magnitude larger than spaces that can be treated by conventional diagonalization methods and has proven to be a powerful tool in the microscopic calculation of level densities. We discuss recent applications of the method in heavy nuclei.

  9. Study of nuclear matter density distributions using hadronic probes

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2011-05-06

    We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.

  10. Nuclear chiral and magnetic rotation in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC–CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  11. Density functional theory calculations of nuclear quadrupole coupling constants with calibrated 14N quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sicilia, E.; de Luca, G.; Chiodo, S.; Russo, N.; Calaminici, P.; Koster, A. M.; Jug, K.

    Density functional calculations of the electric field gradient tensor at the nitrogen nucleus in 13 test molecules, containing 14 nitrogen sites, have been performed using the linear combination of Gaussian-type orbital Kohn-Sham density functional theory (LCGTO-KSDFT) approach. Local and gradient corrected functionals were used for all-electron calculations. All the molecular structures were optimized at their respective levels of theory with extended basis sets. Calibrated 14N nuclear quadrupole moments were obtained through a fitting procedure between calculated electric field gradients and experimental nuclear quadrupole coupling constants of the test set of molecules for each basis set and functional considered. With these calibrated 14N nuclear quadrupole moments, the nuclear quadrupole coupling constants of the following selected systems were determined: fluoromethylisonitrile, pyridine, pyrrole, imadazole, pyrazole, 1,8-bis(dimethyl-amino)naphthalene, cyclotetramethylenetetranitramine, cocaine and heroin.

  12. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    SciTech Connect

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  13. BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)

    SciTech Connect

    Nazarewicz, Witold

    2012-07-01

    The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  14. Uncertainty Quantification and Propagation in Nuclear Density Functional Theory

    SciTech Connect

    Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M

    2015-03-17

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.

  15. Effect of interstitial low level laser stimulation in skin density

    NASA Astrophysics Data System (ADS)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  16. Level Densities and Radiative Strength Functions in 56FE and 57FE

    SciTech Connect

    Tavukcu, E

    2002-12-10

    Understanding nuclear level densities and radiative strength functions is important for pure and applied nuclear physics. Recently, the Oslo Cyclotron Group has developed an experimental method to extract level densities and radiative strength functions simultaneously from the primary {gamma} rays after a light-ion reaction. A primary {gamma}-ray spectrum represents the {gamma}-decay probability distribution. The Oslo method is based on the Axel-Brink hypothesis, according to which the primary {gamma}-ray spectrum is proportional to the product of the level density at the final energy and the radiative strength function. The level density and the radiative strength function are fit to the experimental primary {gamma}-ray spectra, and then normalized to known data. The method works well for heavy nuclei. The present measurements extend the Oslo method to the lighter mass nuclei {sup 56}Fe and {sup 57}Fe. The experimental level densities in {sup 56}Fe and {sup 57}Fe reveal step structure. This step structure is a signature for nucleon pair breaking. The predicted pairing gap parameter is in good agreement with the step corresponding to the first pair breaking. Thermodynamic quantities for {sup 56}Fe and {sup 57}Fe are derived within the microcanonical and canonical ensembles using the experimental level densities. Energy-temperature relations are considered using caloric curves and probability density functions. The differences between the thermodynamics of small and large systems are emphasized. The experimental heat capacities are compared with the recent theoretical calculations obtained in the Shell Model Monte Carlo method. Radiative strength functions in {sup 56}Fe and {sup 57}Fe have surprisingly high values at low {gamma}-ray energies. This behavior has not been observed for heavy nuclei, but has been observed in other light- and medium-mass nuclei. The origin of this low {gamma}-ray energy effect remains unknown.

  17. A Code For Combinatorial Calculation of Level Densities.

    Energy Science and Technology Software Center (ESTSC)

    1990-11-26

    Version 00 ICAR performs state and level density calculations for a specified type of nucleon. Calculations can be carried out in terms of the free gas model or in the frame of the BCS formalism to account for the pairing interaction.

  18. Density dependence of the nuclear symmetry energy: A microscopic perspective

    SciTech Connect

    Vidana, Isaac; Providencia, Constanca; Polls, Artur; Rios, Arnau

    2009-10-15

    We perform a systematic analysis of the density dependence of nuclear symmetry energy within the microscopic Brueckner-Hartree-Fock (BHF) approach using the realistic Argonne V18 nucleon-nucleon potential plus a phenomenological three-body force of Urbana type. Our results are compared thoroughly with those arising from several Skyrme and relativistic effective models. The values of the parameters characterizing the BHF equation of state of isospin asymmetric nuclear matter fall within the trends predicted by those models and are compatible with recent constraints coming from heavy ion collisions, giant monopole resonances, or isobaric analog states. In particular we find a value of the slope parameter L=66.5 MeV, compatible with recent experimental constraints from isospin diffusion, L=88{+-}25 MeV. The correlation between the neutron skin thickness of neutron-rich isotopes and the slope L and curvature K{sub sym} parameters of the symmetry energy is studied. Our BHF results are in very good agreement with the correlations already predicted by other authors using nonrelativistic and relativistic effective models. The correlations of these two parameters and the neutron skin thickness with the transition density from nonuniform to {beta}-stable matter in neutron stars are also analyzed. Our results confirm that there is an inverse correlation between the neutron skin thickness and the transition density.

  19. Building A Universal Nuclear Energy Density Functional (UNEDF)

    SciTech Connect

    Joe Carlson; Dick Furnstahl; Mihai Horoi; Rusty Lusk; Witek Nazarewicz; Esmond Ng; Ian Thompson; James Vary

    2012-09-30

    During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  20. Nuclear clustering in the energy density functional approach

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.

    2015-10-01

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  1. Nuclear clustering in the energy density functional approach

    SciTech Connect

    Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.

    2015-10-15

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  2. Generalized Freud's equation and level densities with polynomial potential

    NASA Astrophysics Data System (ADS)

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  3. Spinodal density enhancements in nuclear collisions at the CBM experiment

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Koch, V.; Randrup, J.; Bleicher, M.

    2015-04-01

    We discuss a novel approach to describe the evolution of a fireball, created in a high-energy nuclear collision, experiencing spinodal instabilities due to the first-order deconfinement phase transition of quantum chromo dynamics (QCD). We show that initial density fluctuations in these collisions are enhanced in the mechanically unstable region of the QCD phase diagram. In our study we find that the most favorable energy range for observing these density enhancements is at the lower end of the SIS100 accelerator at FAIR, currently under construction. Furthermore we discuss how one can distinguish and constrain different types of QCD phase transitions, one of hadron-quark type and one of liquid-gas type, leading to strong differences in the dynamical evolution of the QCD medium.

  4. Level densities and radiative strength functions in ^116,117Sn

    NASA Astrophysics Data System (ADS)

    Agvaanluvsan, U.; Mitchell, G. E.; Chankova, R.; Guttormsen, M.; Sunde, A.-C.; Becker, J. A.; Bernstein, L. A.; Schiller, A.; Voinov, A.

    2003-10-01

    Level densities and radiative strength functions are important for understanding nuclear properties in general, for an accurate knowledge of nuclear reaction rates in particular. A recently developed method to extract level densities and radiative strength functions from ^3He induced reactions is applied to ^117Sn. Level densities and radiative strength functions in ^116,117Sn from ground state up to the neutron binding energy are obtained from ^3He and α channels. Spectra of the first γ-rays emitted from each excitation energy bin are obtained via sequential extraction. The emission probability of these γ-rays is proportional to the product of the radiative strength function and the final state level density. This so-called Oslo method has been applied extensively to rare-earth nuclei. The method has also been applied to lighter nuclei such as Fe and Mo. The measurement of ^116,117Sn is intended to provide information on nuclei intermediate between the lighter and heavier nuclei that show quite different behavior.

  5. Phenomenological calculation of nuclear binding energy and density with Yukawa-potentials

    NASA Astrophysics Data System (ADS)

    Scheid, W.

    2016-01-01

    In this paper, we study a phenomenological collective model for the calculation of the nuclear density and ground state binding energy of nuclei. The proton density is assumed proportional to the nuclear density. The total binding energy of the nuclear matter consists of the binding energy of infinite nuclear matter, of two Yukawa-potentials, of the Coulomb-energy and of the symmetry-energy. The parameters of the Yukawa-potential are fitted with the Bethe-Weizsäcker (BW) mass formula. The resulting binding energies and nuclear densities agree quite satisfying with known nuclear values.

  6. Level density and thermodynamic properties of dysprosium isotopes

    NASA Astrophysics Data System (ADS)

    Nyhus, H. T.; Siem, S.; Guttormsen, M.; Larsen, A. C.; Bürger, A.; Syed, N. U. H.; Toft, H. K.; Tveten, G. M.; Voinov, A.

    2012-01-01

    163,164Dy nuclei have been measured by use of the Oslo method on data from pick-up (3He,α) and inelastic scattering (3He,3He') reactions, respectively. The level densities for these dysprosium isotopes together with previously measured 160-162Dy are extracted in the region below the neutron binding energy. Thermodynamic properties are deduced within both micro-canonical and canonical ensemble theories. A phase transition from the pair-correlated state at low energies to a less correlated or uncorrelated state is studied in both ensembles. It is investigated whether the temperature of the nucleus is constant or a varying function of excitation energy. It is found that above an excitation energy of 3 MeV the temperature of all five dysprosium nuclei have a constant value within the experimental uncertainties. The impact of a constant-temperature level density versus a Fermi gas level density is discussed with respect to the canonical heat capacity.

  7. Competing quantum Hall phases in the second Landau level in low density limit

    NASA Astrophysics Data System (ADS)

    Pan, Wei; Serafin, A.; Xia, J. S.; Yin, L.; Sullivan, N. S.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-01

    We present here the results from two high quality, low density GaAs quantum wells. In sample A of electron density n = 5.0 x 1010 cm-2, anisotropic electronic transport behavior was observed at ν = 7/2 in the second Landau level. We believe that the anisotropy is due to the large Landau level mixing effect in this sample. In sample B of density 4.1 x 1010 cm-2, strong 8/3, 5/2, and 7/3 fractional quantum Hall states were observed. Furthermore, our energy gap data obtained in various samples of different densities suggest that the 5/2 state may be spin unpolarized in the low density limit. The results from both samples show that the strong electron-electron interactions and a large Landau level mixing effect play an import role in the competing ground states in the second landau level. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  8. Level Density of COBALT-57 in the Energy Region 1 Mev to 14 Mev

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek

    The level density of ^{57 }Co is studied in the energy region of 1-14 MeV using three experimental techniques. Levels are counted in the resolved region, evaporation spectra are measured in the resolved to continuum region, and the coherence width is measured in the region of level overlap. Use of Hauser-Feshbach fits to the evaporation cross sections requires level densities of the residual nucleus. A two -parameter based Fermi gas form is used for the calculation of level density as a function of the nuclear excitation energy. This procedure enables level density calculation beyond the energy region in which the two fixed parameters provide the best fits to the data. A comparison is made between the level density obtained from the above described methods and the predictions of the microscopic model in an energy range of 1-20 MeV. This model utilizes a BCS pairing Hamiltonian and specific sets of single particle states and calculates numerical values of the level density. Comparisons are also made with level density of ^{57 }Co obtained in various other studies. Both the resolved level studies and the fits to the evaporation spectra were conducted using the ^{56}Fe(d,n)^{57 }Co and ^{57}Fe(p,n) ^{57}Co reactions. Standard neutron time-of-flight techniques including pulse shape discrimination for elimination of gamma -rays were employed. An energy resolution as good as 6 keV at 1-1.5 MeV neutron energy was obtained for high resolution measurements. For Ericson fluctuation measurements, the excitation functions corresponding to the ground state and the first two excited states of the residual nucleus in the ^{56}Fe(p,n) ^{56}Co reaction were obtained for lab angles between 0^circ and 150^circ. The ^{56}Fe(d,n) ^{57}Co reaction proves to be very selective in populating resolved states and includes substantial contributions from mechanisms other than the compound nuclear. The ^{57 }Fe(p,n)^{57}Co reaction populated 14 previously unknown levels. The fits to the

  9. Critical noise levels for low-density parity check decoding

    NASA Astrophysics Data System (ADS)

    Mourik, J. Van; Saad, D.; Kabashima, Y.

    2002-08-01

    We determine the critical noise level for decoding low-density parity check error-correcting codes based on the magnetization enumerator (M), rather than on the weight enumerator (W) employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived using the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.

  10. Nuclear actin levels as an important transcriptional switch

    PubMed Central

    Huet, Guillaume; Skarp, Kari-Pekka; Vartiainen, Maria K.

    2012-01-01

    Nuclear actin levels have recently been linked to different cellular fates, suggesting that actin could act as a switch between altered transcriptional states. Here we discuss our latest results on the mechanisms by which nuclear actin levels are regulated and their implications to the functional significance of nuclear actin. PMID:22771994

  11. Level densities and γ-ray strength functions in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  12. Benchmarking mean-field approximations to level densities

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Nakada, H.

    2016-04-01

    We assess the accuracy of finite-temperature mean-field theory using as a standard the Hamiltonian and model space of the shell model Monte Carlo calculations. Two examples are considered: the nucleus 162Dy, representing a heavy deformed nucleus, and 148Sm, representing a nearby heavy spherical nucleus with strong pairing correlations. The errors inherent in the finite-temperature Hartree-Fock and Hartree-Fock-Bogoliubov approximations are analyzed by comparing the entropies of the grand canonical and canonical ensembles, as well as the level density at the neutron resonance threshold, with shell model Monte Carlo calculations, which are accurate up to well-controlled statistical errors. The main weak points in the mean-field treatments are found to be: (i) the extraction of number-projected densities from the grand canonical ensembles, and (ii) the symmetry breaking by deformation or by the pairing condensate. In the absence of a pairing condensate, we confirm that the usual saddle-point approximation to extract the number-projected densities is not a significant source of error compared to other errors inherent to the mean-field theory. We also present an alternative formulation of the saddle-point approximation that makes direct use of an approximate particle-number projection and avoids computing the usual three-dimensional Jacobian of the saddle-point integration. We find that the pairing condensate is less amenable to approximate particle-number projection methods because of the explicit violation of particle-number conservation in the pairing condensate. Nevertheless, the Hartree-Fock-Bogoliubov theory is accurate to less than one unit of entropy for 148Sm at the neutron threshold energy, which is above the pairing phase transition. This result provides support for the commonly used "back-shift" approximation, treating pairing as only affecting the excitation energy scale. When the ground state is strongly deformed, the Hartree-Fock entropy is significantly

  13. Capacitance-level/density monitor for fluidized-bed combustor

    DOEpatents

    Fasching, George E.; Utt, Carroll E.

    1982-01-01

    A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

  14. Possibility of determination of the asymptotic level-density parameter

    SciTech Connect

    Kudyaev, G.A.; Ostapenko, Y.B.; Svirin, M.I.; Smirenkin, G.N.

    1988-02-01

    We investigate the sensitivity of the fissility of nuclei to the parameters of the density of excited levels and conclude that the nuclei in the region of Pb are most favorable for an experimental estimate of the asymptotic parameter a-italic-tilde = ..cap alpha..A. The mean value ..cap alpha.. = 0.086 +- 0.009 MeV/sup -1/ is found from analysis of the fission of seven nuclei from /sup 201/Tl to /sup 213/At. This value is in agreement with the phenomenological description of the energy dependence a(U) (..cap alpha.. = 0.093 MeV/sup -1/) and with the theoretical prediction ..cap alpha.. = 0.09 MeV/sup -1/ obtained for a Woods-Saxon potential.

  15. Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities

    SciTech Connect

    Garrett, P. E.; Lehmann, H.; Jolie, J.; McGrath, C. A.; Yeh, Minfang; Younes, W.; Yates, S. W.

    2001-08-01

    Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is made with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.

  16. Level densities and spin cutoff parameters for 60Co and 62Ni from proton evaporation spectra

    NASA Astrophysics Data System (ADS)

    Voinov, Alexander; Grimes, Steven; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann Cecilie; Massey, Tomas; Siem, Sunniva

    2013-10-01

    Prediction of reaction cross sections remains a major problem in applications such as data evaluations or/and astrophysics reaction rate calculations. There is big progress in the development of nuclear reaction codes which now include different reaction mechanisms. However, these codes use many input parameters. The variety of input parameters helps us to describe existing experimental data but it creates problems when it comes to predictions. The uncertainties of the level density and the spin cutoff parameter cause the major concern. The proton spectra from α and lithium induced reactions have been measured and analyzed with the Hauser-Feshbach model. Different input level density models have been tested. The level densities and spin cutoff parameters were obtained with Monte-Carlo technique taking into account known spins of discrete low-lying levels of residual nuclei. It was found that the best description is achieved with the Gilbert and Cameron model functions. Excitation energy dependence of spin cutoff parameters was found to be different for 60Co and 62Ni nuclei. It is inconsistent with Fermi-gas model which is usually used to calculate spin cutoff parameters.

  17. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  18. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  19. Herbivore effects on plant species density at varying productivity levels

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.

    1998-01-01

    Artificially increasing primary productivity decreases plant species richness in many habitats; herbivory may affect this outcome, but it has rarely been directly addressed in fertilization studies. This experiment was conducted in two Louisiana coastal marshes to examine the effects of nutrient enrichment and sediment addition on herbaceous plant communities with and without vertebrate herbivory. After three growing seasons, fertilization increased community biomass in all plots, but decreased species density (the number of species per unit area) only in plots protected from herbivory. Herbivory alone did not alter species density at either site. At the brackish marsh, herbivory caused a shift in dominance in the fertilized plots from a species that is considered the competitive dominant, but is selectively eaten, to another less palatable species. At the fresh marsh, increased dead biomass in the absence of herbivory and in the fertilized plots probably contributed to the decrease in species density, perhaps by limiting germination of annuals. Our results support those of other fertilization studies in which plant species density decreases with increased biomass, but only in those plots protected from herbivory.

  20. Relationship between electron density and effective densities of body tissues for stopping, scattering, and nuclear interactions of proton and ion beams

    SciTech Connect

    Kanematsu, Nobuyuki; Inaniwa, Taku; Koba, Yusuke

    2012-02-15

    Purpose: In treatment planning of charged-particle radiotherapy, patient heterogeneity is conventionally modeled as variable-density water converted from CT images to best reproduce the stopping power, which may lead to inaccuracies in the handling of multiple scattering and nuclear interactions. Although similar conversions can be defined for these individual interactions, they would be valid only for specific CT systems and would require additional tasks for clinical application. This study aims to improve the practicality of the interaction-specific heterogeneity correction. Methods: The authors calculated the electron densities and effective densities for stopping power, multiple scattering, and nuclear interactions of protons and ions, using the standard elemental-composition data for body tissues to construct the invariant conversion functions. The authors also simulated a proton beam in a lung-like geometry and a carbon-ion beam in a prostate-like geometry to demonstrate the procedure and the effects of the interaction-specific heterogeneity correction. Results: Strong correlations were observed between the electron density and the respective effective densities, with which the authors formulated polyline conversion functions. Their effects amounted to 10% differences in multiple-scattering angle and nuclear interaction mean free path for bones compared to those in the conventional heterogeneity correction. Although their realistic effect on patient dose distributions would be generally small, it could be at the level of a few percent when a carbon-ion beam traverses a large bone. Conclusions: The present conversion functions are invariant and may be incorporated in treatment planning systems with a common function relating CT number to electron density. This will enable improved beam dose calculation while minimizing initial setup and quality management of the user's specific system.

  1. Graded safeguards: Determination of attractiveness levels for special nuclear material

    SciTech Connect

    Wilkey, D.D.; Crawford, D.W.

    1994-08-01

    The DOE graded safeguards approach--as described in DOE Order 5633.3A, Control and Accountability of Nuclear Materials, and its guide--requires the determination of category levels of nuclear material locations to establish protection requirements for these locations. A critical parameter related to category determination is knowledge of the attractiveness level of the nuclear material with respect to use in a nuclear explosive device. DOE Order 5633.3A and its guide provide the policy basis for determining the attractiveness level of various forms and types of special nuclear material (SNM); however, these requirements and guidance are necessarily general and sometimes based on arbitrary criteria. Currently, there are large quantities of nuclear material on inventory within the DOE that need attractiveness determinations to ensure appropriate protection controls. Specific forms of these materials include materials in matrices requiring special processing, irradiated SNM that does not meet criteria for self-protecting, low concentration SNM, SNM as numerous small items, and bulk non-portable SNM items. This paper discusses the technical basis for applying material concentration limits for solids and liquids that can influence the various factors and criteria affecting the attractiveness level of SNM. Holdup and rollup considerations for determining category levels will be discussed as well.

  2. Level density and mechanism of deuteron-induced reactions on 54,58,56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Byun, Y.; Brune, C. R.; Massey, T. N.; Akhtar, S.; Dhakal, S.; Parker, C. E.

    2015-07-01

    Deuteron elastic cross sections, as well as neutron, proton, and α -particle emission spectra, from d + 54,58,56Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 57Co, 55Co, 57Fe, 55Fe, 52Mn, 54Mn have been deduced from the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)], 10.1016/0375-9474(92)90278-R was found to have a good agreement with our results.

  3. Level density and mechanism of deuteron-induced reactions on Fe54,56,58

    DOE PAGESBeta

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Byun, Y.; Brune, C. R.; Massey, T. N.; Akhtar, S.; Dhakal, S.; Parker, C. E.

    2015-07-06

    Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced from themore » compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less

  4. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  5. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    SciTech Connect

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-11-07

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  6. Determination of nuclear-matter temperature and density

    SciTech Connect

    Wolf, K.L.

    1980-01-01

    Some of the things learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies are reviewed. Two developments are discussed. The completion of analyses and publication of results from the impact parameter selected, single-particle inclusive experiments have proven to be important. Preliminary results from the new generation of two-particle correlation and particle-exclusive measurements, especially those using streamer chambers, look even more definitive. Also the measurement of more exotic ejectiles with long mean free paths in nuclear matter promises to provide more basic information. Calculations are offering real guidance and are providing explanations of high energy collisions. The Monte Carlo and intranuclear cascade calculations discussed are especially informative.

  7. Two level scheme solvers for nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; DiJulio, Douglas; Cederkäll, Joakim

    2011-10-01

    A program for building level schemes from γ-spectroscopy coincidence data has been developed. The scheme builder was equipped with two different algorithms: a statistical one based on the Metropolis method and a more logical one, called REMP (REcurse, Merge and Permute), developed from scratch. These two methods are compared both on ideal cases and on experimental γ-ray data sets. The REMP algorithm is based on coincidences and transition energies. Using correct and complete coincidence data, it has solved approximately half a million schemes without failures. Also, for incomplete data and data with minor errors, the algorithm produces consistent sub-schemes when it is not possible to obtain a complete scheme from the provided data.

  8. Constraints on Neutron Density and Temperature Conditions for Astrophysical r-PROCESS from Updated Nuclear Masses

    NASA Astrophysics Data System (ADS)

    Xu, X. D.; Sun, B.; Niu, Z. M.; Li, Z.; Meng, J.

    2013-11-01

    Based on the (n, γ) ⇌ (γ, n) equilibrium, the neutron density and temperature conditions required for the r-process are constrained with updated nuclear masses. It is found that the uncertainty of determined neutron density and temperature ranges can be greatly minimized when mass values tabulated in the latest Atomic Mass Evaluation AME2011-preview are employed.

  9. Covariant energy density functionals: The assessment of global performance across the nuclear landscape

    SciTech Connect

    Afanasjev, A. V.

    2015-10-15

    The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.

  10. Nuclear matter at high temperature and low net baryonic density

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-11-12

    We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

  11. Toward a better parameterization of nuclear density for α-decay calculation

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Ellithi, A. Y.; Adel, A.; Abdulghany, A. R.

    2016-03-01

    Starting from three-parameter Fermi distribution of nuclear densities, we used two formulas, for calculating the half-density radius, to study the effect of variation of radius of daughter nucleus on both α-decay half-life and α-preformation factor. We compared the results of the aforementioned two formulas with the corresponding results obtained from the nuclear densities of Hartree-Fock calculation derived from the BSk2 Skyrme force. We considered >60 isotopes of Po and Rn α-emitter elements and studied the variation of half-life and preformation factor with density parameters. We found that the variation of density parameters of daughter nuclei highly affects the calculated half-life and the extracted value of preformation factor, but the behavior of these two quantities with variation of parent neutron number is almost independent of the density parameters.

  12. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  13. Core-level shifts from density-functional computations

    NASA Astrophysics Data System (ADS)

    Pedocchi, Luca; Russo, Nino; Salahub, Dennis R.

    1993-05-01

    The C 1s x-ray photoelectron spectroscopy binding energies of a series of organic (CO, CH4, C2H2, HCHO, CH3CCH, C6H6) and inorganic [Ni(CO)4, Mo(CO)6] molecules have been calculated by using the linear-combination of Gaussian-type orbitals local- and nonlocal-spin-density (LCGTO-LSD and LCGTO-NLSD) methods. The calculated C 1s chemical shifts are in very good agreement with experiment. The differences between experimental and theoretical shifts are found to be less than 0.5 eV. It is shown that the addition of nonlocal corrections improves the agreement with the experimental data.

  14. Nuclear Structure and Astrophysics r-PROCESS with Covariant Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Meng, J.; Long, W. H.; Niu, Z. M.; Sun, B.; Zhou, S. G.

    2010-09-01

    The density functional theory (DFT) with a minimal number of parameters allows a very successful phenomenological description of ground state properties of nuclei all over the periodic table. Recent progresses on the application of the covariant density functional theory as well as its extensions by the group in Beijing for a series of interests and hot topics in nuclear astrophysics and nuclear structure are reviewed, including the rapid neutron-capture process, Th/U chronometer, halo and giant halo in density dependent relativistic Hartree-Fock-Bogoliubov, and neutron halo in deformed nuclei.

  15. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

    SciTech Connect

    Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-12-15

    We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.

  16. Nuclear density functional theory with a semi-contact 3-body interaction

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis; Bennaceur, Karim

    2016-01-01

    Theories combining nuclear density functional approach (DFT) and effects beyond the independent particle/quasi-particle limit have attracted much attention recently. In particular, such theories, generically referred as "beyond mean-field" (BMF) seem unavoidable to account for both single-particle effects and complex quantum internal phenomena in nuclear finite many-body nuclear systems. It has been realized recently that BMF theories might lead to specific difficulties when applied within the nuclear DFT context. An example is the appearance of divergences in configuration mixing approaches. A short summary of the difficulties is given here. One source of problem is the use of energy functional of non-integer powers of the density. We show that such dependence can be mimicked by a suitable choice of a three-body interaction. Application on infinite nuclear matter in various spin-isospin channels will be given.

  17. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections. PMID:25554877

  18. Modification of generalized vector form factors and transverse charge densities of the nucleon in nuclear matter

    NASA Astrophysics Data System (ADS)

    Jung, Ju-Hyun; Yakhshiev, Ulugbek; Kim, Hyun-Chul

    2016-03-01

    We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified π -ρ -ω soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.

  19. Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory.

    PubMed

    Hinohara, Nobuo; Nazarewicz, Witold

    2016-04-15

    We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the T=1 pairing condensate offers a quantitative description of the binding-energy differences of open-shell superfluid nuclei. We conclude that the pairing-rotational moments of inertia are excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unified interpretation of the binding-energy differences traditionally viewed in the shell model picture as signatures of the valence nucleon properties. We present the first systematic analysis of the off-diagonal pairing-rotational moments of inertia and demonstrate the mixing of the neutron and proton pairing-rotational modes in the ground states of even-even nuclei. Finally, we discuss the importance of mass measurements of neutron-rich nuclei for constraining the pairing energy density functional. PMID:27127964

  20. Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Hinohara, Nobuo; Nazarewicz, Witold

    2016-04-01

    We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the T =1 pairing condensate offers a quantitative description of the binding-energy differences of open-shell superfluid nuclei. We conclude that the pairing-rotational moments of inertia are excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unified interpretation of the binding-energy differences traditionally viewed in the shell model picture as signatures of the valence nucleon properties. We present the first systematic analysis of the off-diagonal pairing-rotational moments of inertia and demonstrate the mixing of the neutron and proton pairing-rotational modes in the ground states of even-even nuclei. Finally, we discuss the importance of mass measurements of neutron-rich nuclei for constraining the pairing energy density functional.

  1. Shampoo, Soy Sauce, and the Prince's Pendant: Density for Middle-Level Students

    ERIC Educational Resources Information Center

    Chandrasekhar, Meera; Litherland, Rebecca

    2006-01-01

    In this article, the authors describe a series of activities they have used with middle-level students. The first set of lessons explores density through the layering of liquids. In the second set, they use some of the same liquids to explore the density of solids. The third set investigates how temperature affects the density of…

  2. Density measurements of road overlays samples with nuclear gauges and a Step Frequency Radar

    NASA Astrophysics Data System (ADS)

    Fauchard, C.; Li, B.; Kadi, M.

    2012-04-01

    The density of Hot-Mix Asphalt layers (HMA) and thin overlays is an important parameter for the pavement quality and its long time performance. In the laboratory, the density could be measured with nuclear gauges based on the gamma rays absorption through cores samples drilled from the pavement. However, it is a destructive testing. For in-place control, the density could be measured with nuclear gauges based on the back-scattered gamma rays. But it is limited to overlays thickness greater than 3 cm. For both cases, nuclear gauges require specific training and certification for users. The use of a nuclear source (generally Cesium 137) is a major constraint for transportation and is a threat for operator safety. This work proposes a laboratory density measurement with an electromagnetic method, the Step Frequency Radar developped in our institute (Fauchard et al, 2009). It is based on the same physical principle than the Ground Penetrating Radar, but the used frequencies allow the study of very thin asphalt overlays less than 3 cm and the possible non-destructive measurement of in-place density with high performance. For this study, the dimensions of the device are designed to measure the density of slab samples (40*60*8 cm) in laboratory. The results are compared to the nuclear density measurement used in French Labs. Three kinds of slabs are implemented with four various degrees of compaction (88, 90, 92 and 94%) according to the French norm. Their composition is known and differs mainly with the nature of the aggregates (basalt, quartzite and limestone) that represent the main part of the mix materials. Then the permittivity of the samples is measured according to the reflected waves on surface and bottom slabs. A Complex Refractive Index Model gives the measured permittivity of the tested mix as a function of the compaction and the content, permittiviy and density of each component (filler, aggregates and bitumen). The obtained density is very closed to the

  3. Cell density-dependent nuclear accumulation of ELK3 is involved in suppression of PAI-1 expression.

    PubMed

    Tanaka, Shu; Nakao, Kazuyuki; Sekimoto, Toshihiro; Oka, Masahiro; Yoneda, Yoshihiro

    2013-07-01

    Cell-cell contact regulates the proliferation and differentiation of non-transformed cells, e.g., NIH/3T3 cells show growth arrest at high cell density. However, only a few reports described the dynamic behavior of transcription factors involved in this process. In this study, we showed that the mRNA levels of plasminogen activator inhibitor type 1 (PAI-1) decreased drastically at high cell density, and that ELK3, a member of the Ets transcription factor family, repressed PAI-1 expression. We also demonstrated that while ELK3 was distributed evenly throughout the cell at low cell density, it accumulated in the nucleus at high cell density, and that binding of DNA by ELK3 at the A domain facilitated its nuclear accumulation. Furthermore, we found that ETS1, a PAI-1 activator, occupied the ELK3-binding site within the PAI-1 promoter at low cell density, while it was released at high cell density. These results suggest that at high cell density, the switching of binding of transcription factors from ETS1 to ELK3 occurs at a specific binding site of the PAI-1 promoter, leading to the cell-density dependent suppression of PAI-1 expression. PMID:23708702

  4. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    NASA Astrophysics Data System (ADS)

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.

  5. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    PubMed Central

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Abstract. Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype. PMID:24441943

  6. Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients.

    PubMed

    Heuser, Johannes; Höfener, Sebastian

    2016-05-01

    We report the derivation of approximate analytical nuclear ground-state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second-order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an efficient implementation thereof in the KOALA program. In order to guarantee a computationally efficient treatment, those gradient terms are neglected which would require the exchange of orbital information. This approach allows for geometry optimizations of single molecules surrounded by numerous molecules with fixed nuclei at RICC2-in-RICC2, RICC2-in-DFT, and DFT-in-DFT FDE level of theory using a dispersion correction, required due to the DFT-based treatment of the interaction in FDE theory. Accuracy and applicability are assessed by the example of two case studies: (a) the Watson-Crick pair adenine-thymine, for which the optimized structures exhibit a maximum error of about 0.08 Å for our best scheme compared to supermolecular reference calculations, (b) carbon monoxide on a magnesium oxide surface model, for which the error amount up to 0.1 Å for our best scheme. Efficiency is demonstrated by successively including environment molecules and comparing to an optimized conventional supermolecular implementation, showing that the method is able to outperform conventional RICC2 schemes already with a rather small number of environment molecules, gaining significant speed up in computation time. PMID:26804310

  7. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  8. Temperature and density dependence of properties of nuclear matter deduced from heavy ion collisions

    SciTech Connect

    Shlomo, Shalom

    2010-11-24

    Heavy-ion collision experiments are often employed to determine properties of nuclear matter under extreme conditions of temperature and density. This has been the subject of many investigations in recent decades, since understanding the equation of state of hot nuclear matter is very important in the study supernovae, neutron stars and nuclei. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling hot nucleus from ratios of the yields of emitted fragments.

  9. Seismic fragility levels of nuclear power plant equipment

    SciTech Connect

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided.

  10. Spontaneous Fission Modes and Lifetimes of Superheavy Elements in the Nuclear Density Functional Theory

    SciTech Connect

    Staszczak, A,

    2013-01-01

    Background: The reactions with the neutron-rich 48Ca beam and actinide targets resulted in the detection of new superheavy (SH) nuclides with Z=104 118. The unambiguous identification of the new isotopes, however, still poses a problem because their -decay chains terminate by spontaneous fission (SF) before reaching the known region of the nuclear chart. The understanding of the competition between -decay and SF channels in SH nuclei is, therefore, of crucial importance for our ability to map the SH region and to assess its extent.

    Purpose: We perform self-consistent calculations of the competing decay modes of even-even SH isotopes with 108 Z 126 and 148 N 188.

    Methods: We use the state-of-the-art computational framework based on self-consistent symmetry-unrestricted nuclear density functional theory capable of describing the competition between nuclear attraction and electrostatic repulsion. We apply the SkM* Skyrme energy density functional. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. This paper constitutes a systematic self-consistent study of spontaneous fission in the SH region, carried out at a full HFB level, that simultaneously takes into account both triaxiality and reflection asymmetry.

    Results: Breaking axial symmetry and parity turns out to be crucial for a realistic estimate of collective action; it results in lowering SF lifetimes by more than 7 orders of magnitude in some cases. We predict two competing SF modes: reflection symmetric modes and reflection asymmetric modes.

    Conclusions: The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280Hs, 284Fl, and 118284Uuo that separates the regions of SH nuclei synthesized in cold-fusion and hot-fusion reactions. The region of long-lived SH nuclei is expected to be centered on 294Ds with a total half-life of

  11. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  12. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  13. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    SciTech Connect

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  14. Bone density and hemoglobin levels in older persons: results from the InCHIANTI study.

    PubMed

    Cesari, Matteo; Pahor, Marco; Lauretani, Fulvio; Penninx, Brenda W H J; Bartali, Benedetta; Russo, Roberto; Cherubini, Antonio; Woodman, Richard; Bandinelli, Stefania; Guralnik, Jack M; Ferrucci, Luigi

    2005-06-01

    Hypoxemia has been recognized as a risk factor for bone loss. The aim of the present study is to investigate the relationship of bone mass and density measures with anemia and hemoglobin levels in a large sample of older community-dwelling persons. The study is based on data from 950 participants enrolled in the "Invecchiare in Chianti" (Aging in the Chianti area, InCHIANTI) study. All the analyses were performed considering continuous hemoglobin levels as well as the dichotomous anemia variable (defined according to WHO criteria as hemoglobin < 12 g/dl in women and < 13 g/dl in men). A peripheral quantitative computerized tomography (pQCT) scan of the right calf was performed in all participants to evaluate total bone density, trabecular bone density, cortical bone density, and the ratio between cortical and total bone area. Linear regression analyses were used to assess the multivariate relationship of pQCT bone measures with anemia and hemoglobin levels after adjustment for demographics, chronic conditions, muscle strength and biological variables. Participants were 75.0 (SD 6.9) years old. In our sample, 101 participants (10.6%) were anemic. In women, coefficients from adjusted linear regression analyses evaluating the association between pQCT bone measures (per SD increase) and hemoglobin levels/anemia showed significant associations of anemia with total bone density (beta = -0.335, SE = 0.163; P = 0.04) and cortical bone density (beta = -0.428, SE = 0.160; P = 0.008). Relationships with borderline significance were found for the associations of anemia with trabecular bone density and the ratio between cortical and total bone area. Significant associations were found between hemoglobin levels and trabecular bone density (beta = 0.112, SE = 0.049; P = 0.02), total bone density (beta = 0.101, SE = 0.046; P = 0.03), cortical bone density (beta = 0.100, SE = 0.046; P = 0.03) and the ratio between cortical bone and total area (beta = 0.092, SE = 0.045; P = 0

  15. Level densities of iron isotopes and low-energy enhancement of {gamma}-strength function

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Hornish, M. J.; Massey, T. N.; Agvaanluvsan, U.; Algin, E.; Belgya, T.; Guttormsen, M.; Rekstad, J.; Siem, S.; Mitchell, G. E.; Schiller, A.

    2006-03-13

    The neutron spectrum from the 55Mn(d, n)56Fe reaction has been measured at Ed = 7 MeV. The level density of 56Fe obtained from neutron evaporation spectrum has been compared to the level density obtained from Oslo-type 57Fe(3He, {alpha}{gamma})56Fe experiment. The good agreement supports the recent results including the low-energy enhancement in the {gamma}-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy.

  16. Microscopic-macroscopic method for studying single-particle level density of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. N.; Shneidman, T. M.; Adamian, G. G.; Antonenko, N. V.

    2014-04-01

    The intrinsic level densities of superheavy nuclei in the a-decay chains of 296,298,300120 nuclei are calculated using the single-particle spectra obtained with the modified two-center shell model. The level density parameters are extracted and compared with their phenomenological values used in the calculations of the survival of excited heavy nuclei. The dependences of the level density parameters on the mass and charge numbers as well as on the ground-state shell corrections are studied.

  17. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers.

    PubMed

    Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A

    2012-02-01

    An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers. PMID:22252353

  18. Effects of population density on corticosterone levels of prairie voles in the field.

    PubMed

    Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M

    2016-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. PMID:26342968

  19. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H., Jr.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  20. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  1. Elastic proton scattering at intermediate energies as a probe of the He,86 nuclear matter densities

    NASA Astrophysics Data System (ADS)

    Chung, Le Xuan; Kiselev, Oleg A.; Khoa, Dao T.; Egelhof, Peter

    2015-09-01

    The Glauber model analysis of the elastic He,86+p scattering data at energies around 700 MeV/nucleon, measured in two separate experiments at GSI-Darmstadt, has been carried out using several phenomenological parametrizations of the nuclear matter density. By taking into account the new data points measured at high-momentum transfer, the nuclear matter radii of ,8He6 have been accurately determined from the Glauber model analysis of the data, with the spin-orbital interaction explicitly taken into account. The well-known geometry for the core and dineutron halo has been used with the new parametrizations of the 6He density to extract the detailed information on the structure of 6He in terms of the core and dineutron halo radii. An enhanced sensitivity of the data measured at high-momentum transfer to the core part of the 6,8He densities has been found.

  2. Increases in Serum Estrone Sulfate Level Are Associated with Increased Mammographic Density during Menopausal Hormone Therapy

    PubMed Central

    Crandall, Carolyn J.; Guan, Min; Laughlin, Gail A.; Ursin, Giske A.; Stanczyk, Frank Z.; Ingles, Sue A.; Barrett-Connor, Elizabeth; Greendale, Gail A.

    2009-01-01

    Background Menopausal hormone therapy increases mammographic density. We determined whether increases in serum estrone sulfate (E1S) levels during menopausal hormone therapy predict increased mammographic density. Methods We measured percent mammographic density and serum E1S levels in 428 participants of the Postmenopausal Estrogen/Progestin Interventions study who were randomly assigned to daily conjugated equine estrogen (CEE) 0.625 mg alone, CEE + daily medroxyprogesterone acetate (MPA) 2.5 mg, CEE + cyclical MPA (10 mg days 1-12 per 28-day cycle), or CEE + cyclical micronized progesterone (10 mg days 1-12). Serum E1S levels were determined by RIA. Information about covariates was determined by annual questionnaire. Using linear regression, we determined the association between change in E1S level from baseline to 12 months and change in percent mammographic density (by semiquantitative interactive threshold method). Results After controlling for baseline mammographic density, age, body mass index, alcohol intake, parity, smoking, ethnicity, physical activity, and age at first pregnancy, mammographic density increased by 1.3% for every 1 ng/mL increase in E1S level (P < 0.0001). The association between change in E1S level and change in mammographic density differed by treatment group (greater effect in CEE + cyclical MPA group versus CEE group; P = 0.05). After controlling for treatment group, change in the ratio of E1S to E1 was also positively associated with change in mammographic density. Conclusions Increases in serum E1S levels during menopausal hormone therapy are associated with increases in mammographic density. The relative contribution of E1S and E1 to stimulation of breast tissue awaits further elucidation. PMID:18628419

  3. Fine Structure of the Gamow-Teller Resonance in {sup 90}Nb and Level Density of 1{sup +} States

    SciTech Connect

    Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V.Yu.; Richter, A.; Shevchenko, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Berg, G.P.A.; Fujita, K.; Hatanaka, K.; Kamiya, J.; Nakanishi, K.; Sakamoto, N.; Sakemi, Y.; Shimizu, Y.; Wakasa, T.; Fujita, H.; Smit, F.D.

    2006-01-13

    The fine structure of the Gamow-Teller resonance in a medium-heavy nucleus is observed for the first time in a high-resolution {sup 90}Zr({sup 3}He,t){sup 90}Nb experiment at the Research Center for Nuclear Physics, Osaka. Using a novel wavelet analysis technique, it is possible to extract characteristic energy scales and to quantify their relative importance for the generation of the fine structure. This method combined with the selectivity of the reaction permits an extraction of the level density of 1{sup +} states in {sup 90}Nb.

  4. DENSITY LEVELS OF PATHOGENIC ORGANISMS IN MUNICIPAL WASTEWATER SLUDGE: A LITERATURE REVIEW

    EPA Science Inventory

    This report presents a critical review of the literature from laboratory and full scale studies regarding density levels of indicator and pathogenic organisms in municipal wastewater sludges and septage. The effectiveness of conventional municipal sludge stabilization processes (...

  5. Disposal of high-level nuclear waste in space

    NASA Astrophysics Data System (ADS)

    Coopersmith, Jonathan

    1992-08-01

    A solution of launching high-level nuclear waste into space is suggested. Disposal in space includes solidifying the wastes, embedding them in an explosion-proof vehicle, and launching it into earth orbit, and then into a solar orbit. The benefits of such a system include not only the safe disposal of high-level waste but also the establishment of an infrastructure for large-scale space exploration and development. Particular attention is given to the wide range of technical choices along with the societal, economic, and political factors needed for success.

  6. Multidimensionally constrained covariant density functional theories—nuclear shapes and potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Shan-Gui

    2016-06-01

    The intrinsic nuclear shapes deviating from a sphere not only manifest themselves in nuclear collective states but also play important roles in determining nuclear potential energy surfaces (PES’s) and fission barriers. In order to describe microscopically and self-consistently nuclear shapes and PES’s with as many shape degrees of freedom as possible included, we developed multidimensionally constrained covariant density functional theories (MDC-CDFTs). In MDC-CDFTs, the axial symmetry and the reflection symmetry are both broken and all deformations characterized by {β }λ μ with even μ are considered. We have used the MDC-CDFTs to study PES’s and fission barriers of actinides, the non-axial octupole Y 32 correlations in N = 150 isotones and shapes of hypernuclei. In this Review we will give briefly the formalism of MDC-CDFTs and present the applications to normal nuclei.

  7. a Transition-Centric Approach to Nuclear Level Scheme Determination

    NASA Astrophysics Data System (ADS)

    Demand, G. A.; Garrett, P. E.; Waddington, J. C.

    2013-03-01

    Powerful γ-ray spectrometers such as the 8π and GAMMASPHERE are capable of rapidly collecting large data sets that incorporate hundreds of transitions. The determination of nuclear level schemes from the resulting experimental data is time consuming and is a substantial obstacle to the rapid development and formulation of new ideas, particularly when examining trends amongst large numbers of nuclei. The development of next-generation spectrometers such as GRETINA,AGATA, or GRIFFIN, will vastly increase the complexity of the experimental data sets and increase the need for new methods of level scheme determination. We present a new transition-centric level scheme representation that closely matches the form of the experimental data and facilitates the use of graph-theoretic methods. We then present a derivation of an analytical formula that directly relates level scheme structure to experimental singles and coincidence data.

  8. Effects of level density parameter on the superheavy production in cold fusion

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Alavi, S. A.

    2014-12-01

    By using semiclassical method and considering Woods-Saxon and Coulomb potentials, the level density parameter a was calculated for three superheavy nuclei 270110, 278112 and 290116. Obtained results showed that the value of level density parameter of these nuclei is near to the simple relation a ≈ A/10. In framework of the dinuclear system model, the effects of level density parameter on the probability of the formation of a compound nucleus, the ratio of neutron emission width and fission width, and evaporation residue cross-section of three cold fusion reactions 62Ni+208Pb, 70Zn+208Pb and 82Se+208Pb, leading to superheavy elements were investigated. The findings indicate that the level density parameter play a significant role in calculations of heavy-ion fusion-fission reactions. The obtained results in the case of a = A/12 have larger values in comparison with calculated level density parameter with Woods-Saxon potential (aWS) and a = A/10. The theoretical results of the evaporation residue cross-section are very sensitive to the choice of level density parameter. The calculated values with aWS are in good agreement with experimental values.

  9. Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

    SciTech Connect

    Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.

    2010-06-15

    The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}

  10. DPF2 regulates OCT4 protein level and nuclear distribution.

    PubMed

    Liu, Chao; Zhang, Dijuan; Shen, Yuxian; Tao, Xiaofang; Liu, Lihua; Zhong, Yongwang; Fang, Shengyun

    2015-12-01

    The amount of transcription factor OCT4 is strictly regulated. A tight regulation of OCT4 levels is crucial for mammalian embryonic development and oncogenesis. However, the mechanisms underlying regulation of OCT4 protein expression and nuclear distribution are largely unknown. Here, we report that DPF2, a plant homeodomain (PHD) finger protein, is upregulated during H9 cell differentiation induced by retinoic acid. Endogenous interaction between DPF2 and OCT4 in P19 cells was revealed by an immunoprecipitation assay. GST-pull down assay proved that OCT4 protein in H9 cells and recombinant OCT4 can precipitate with DPF2 in vitro. In vitro ubiquitination assay demonstrated DPF2 might serve as an E3 ligase. Knock down of dpf2 using siRNA increased OCT4 protein level and stability in P19 cells. DPF2 siRNAs also up-regulates OCT4 but not NANOG in H9 cells. However, RA fails to downregulates OCT4 protein level in cells infected by lenitviruses containing DPF2 siRNA. Moreover, overexpression of both DPF2 and OCT4 in 293 cells proved the DPF2-OCT4 interaction. DPF2 but not PHD2 mutant DPF2 enhanced ubiquitination and degradation of OCT4 in 293 cells co-expressed DPF2 and OCT4. Both wild type DPF2 and PHD2 mutant DPF2 redistributes nuclear OCT4 without affecting DPF2-OCT4 interaction. Further analysis indicated that DPF2 decreases monomeric and mono-ubiquitinated OCT4, assembles poly-ubiquitin chains on OCT4 mainly through Ub-K48 linkage. These findings contribute to an understanding of how OCT4 protein level and nuclear distribution is regulated by its associated protein. PMID:26417682

  11. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-11-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  12. Establishment of dose reference levels for nuclear medicine in Greece.

    PubMed

    Vogiatzi, S; Kipouros, P; Chobis, M

    2011-09-01

    Greek Atomic Energy Commission's Department of Licensing and Inspections conducted a national survey for the establishment of nuclear medicine (NM) dose reference levels (DRLs) for adult patients, in Greece. The administered activities (AAs) (MBq) were collected from 120 NM departments (88 % of total), during on-site inspections for licensing purposes. Factors influencing the image quality were also investigated. The established national DRLs represent the AA value corresponding to the 75th percentile of the AA frequency distributions. In their majority, national DRLs and average AAs are comparable with the ones published in the international literature. In the light of new technologies, there might be potential for reducing the higher values of AAs, in co-operation with the nuclear medicine experts. PMID:21765158

  13. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed Central

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-01-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  14. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Gunsing, F.; Bernstein, L.; Bürger, A.; Görgen, A.; Thompson, I. J.; Guttormssen, M.; Larsen, A.-C.; Mansouri, P.; Renstrøm, T.; Rose, S. J.; Siem, S.; Wiedeking, M.; Wiborg, T.

    2012-02-01

    Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x) and 232Th(3He,x) reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  15. Effects of the density dependence of the nuclear symmetry energy on the properties of superheavy nuclei

    SciTech Connect

    Jiang Weizhou

    2010-04-15

    Effects of the density dependence of the nuclear symmetry energy on ground-state properties of superheavy nuclei are studied in the relativistic mean-field theory. It is found that the softening of the symmetry energy plays an important role in the empirical shift [Phys. Rev. C 67, 024309 (2003)] of spherical orbitals in superheavy nuclei. The calculation based on the relativistic mean-field models NL3 and FSUGold supports the double shell closure in {sup 292}120 with the softening of the symmetry energy. In addition, the significant effect of the density dependence of the symmetry energy on the neutron skin thickness in superheavy nuclei is investigated.

  16. Effects of molecular symmetry on the directions of nuclear flux densities during tunnelling in double well potentials

    NASA Astrophysics Data System (ADS)

    Grohmann, Thomas; Manz, Jörn; Schild, Axel

    2013-08-01

    Coherent tunnelling in molecular systems with cyclic and non-cyclic symmetric double well potentials may proceed with similar nuclear densities, but with entirely different flux densities. For sufficiently high potential barriers, the nuclear densities may even become indistinguishable, whereas the patterns of the flux densities at a given time remain pincer-motion type for the cyclic systems, but unidirectional for the non-cyclic one. This effect is traced back to symmetry breaking of the cyclic to the non-cyclic model. Accordingly, nuclear flux densities are much more sensitive to symmetry breaking than nuclear densities. For a proof of principle, the phenomenon is demonstrated by means of three one-dimensional models. The cyclic model I represents torsion in oriented B2Cl2F2, the non-cyclic model II is constructed from I by symmetry breaking and the non-cyclic model III represents tunnelling by inversion of oriented NH3.

  17. Orthometric corrections from leveling, gravity, density and elevation data: a case study in Taiwan

    NASA Astrophysics Data System (ADS)

    Hwang, C.; Hsiao, Y.-S.

    2003-08-01

    A new orthometric correction (OC) formula is presented and tested with various mean gravity reduction methods using leveling, gravity, elevation, and density data. For mean gravity computations, the Helmert method, a modified Helmert method with variable density and gravity anomaly gradient, and a modified Mader method were used. An improved method of terrain correction computation based on Gaussian quadrature is used in the modified Mader method. These methods produce different results and yield OCs that are greater than 10 cm between adjacent benchmarks (separated by sim2 km) at elevations over 3000 m. Applying OC reduces misclosures at closed leveling circuits and improves the results of leveling network adjustments. Variable density yields variation of OC at millimeter level everywhere, while gravity anomaly gradient introduces variation of OC of greater than 10 cm at higher elevations, suggesting that these quantities must be considered in OC. The modified Mader method is recommended for computing OC.

  18. Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsäcker behavior and applications to density functionals

    NASA Astrophysics Data System (ADS)

    Della Sala, Fabio; Fabiano, Eduardo; Constantin, Lucian A.

    2015-01-01

    We show that the Kohn-Sham positive-definite kinetic energy (KE) density significantly differs from the von Weizsäcker (VW) one at the nuclear cusp as well as in the asymptotic region. At the nuclear cusp, the VW functional is shown to be linear, and the contribution of p -type orbitals to the KE density is theoretically derived and numerically demonstrated in the limit of infinite nuclear charge as well in the semiclassical limit of neutral large atoms. In the latter case, it reaches 12% of the KE density. In the asymptotic region we find new exact constraints for meta-generalized gradient approximation (meta-GGA) exchange functionals: with an exchange enhancement factor proportional to √{α }, where α is the common meta-GGA ingredient, both the exchange energy density and the potential are proportional to the exact ones. In addition, this describes exactly the large-gradient limit of quasi-two-dimensional systems.

  19. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density

    PubMed Central

    Kota, Sunil; Jammula, Sruti; Kota, Siva; Meher, Lalit; Modi, Kirtikumar

    2013-01-01

    Background: Bone mineral densiy (BMD) is known to be affected by serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels. Indian data pertinent to above observation is scant. Our study aimed to investigate the relationships between serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels and bone mineral density (BMD) in a cohort of Indian patients. Materials and Methods: Adults with or without fragility fractures with low BMD at the hip or lumbar spine were evaluated clinically along with laboratory investigations. T-scores of the hip and spine were derived from BMD-DEXA (dual-energy X-ray absorptiometry). Multivariate regression models were used to investigate the relationships between serum 25(OH) D, iPTH and BMD. Results: Total of 102 patients (male:female = 38:64) with a mean age of 62.5 ± 6.4 years were included in the study. Forty-four patients had osteopenia. Osteoporosis was present in 58 patients. The mean values for serum 25(OH) D and iPTH levels were 21.3 ± 0.5 ng/ml and 53.1 ± 22.3 pg/ml, respectively. In 84.3% of patients, serum 25(OH) D levels were below 30 ng/ml (Normal = 30-74 ng/ml), confirming vitamin D deficiency. There was no association between 25(OH) D levels and BMD at the hip or lumbar spine (P = 0.473 and 0.353, respectively). Both at the hip and lumbar spine; iPTH levels, male gender, body mass index (BMI) and age were found to be significant predictors of BMD. Patients with higher BMI had significantly lower BMD and T-score. At levels <30 ng/ml, 25(OH) D was negatively associated with iPTH (P = 0.041). Conclusion: Among our cohort of patients with low BMD, no direct relationship between serum 25(OH) D levels and BMD was observed. However, a negative correlation between iPTH and 25(OH) D at serum 25(OH) D concentrations <30 ng/ml. Serum iPTH levels showed a significant negative association with BMD at the hip and lumbar spine. Our findings underscore the critical role of

  20. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care

    PubMed Central

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B.; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism’s entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056

  1. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    PubMed

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056

  2. Level densities of iron isotopes and lower-energy enhancement of y-strength function

    SciTech Connect

    Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S

    2005-08-30

    The neutron spectrum from the {sup 55}Mn(d,n){sup 56}Fe reaction has been measured at E{sub d} = 7 MeV. The level density of {sup 56}Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type {sup 57}Fe({sup 3}He, a{gamma}){sup 56}Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the {gamma}-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy.

  3. Technical basis for staffing levels at nuclear power plants

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.; Morisseau, D.

    1995-04-01

    The objective of this project is to provide a technical basis for the establishment of criteria for minimum staffing levels of licensed and non-licensed NPP shift personnel. Minimum staffing levels for the purpose of this study, are defined as those necessary for successful accomplishment of all safety and additional functions that must be performed in order for the licensee to meet applicable regulatory requirements. This project involves a multi-faceted approach to the investigation of the issue. Relevant NRC documentation was identified and reviewed. Using the information obtained from this documentation review, a test plan was developed to aid in the collection of further information regarding the adequacy of current shift staffing levels. The test plan addresses three different activities to be conducted to provide information to the NRC for use in the assessment of current minimum staffing levels. The first activity is collection of data related to industry shift staffing practices through site visits to seven nuclear power plants. The second activity is a simulator study, which will use licensed operator crews responding to a simulated event, under two different staffing levels. Finally, workload models will be constructed for both licensed and non-licensed personnel, using a priori knowledge of the simulator scenarios with data resulting from one of the staffing levels studied in the simulator, and the data collected from the site visits. The model will then be validated against the data obtained from the second staffing level studied in the simulator. The validated model can then be used to study the impact of changing staffing-related variables on the plant shift crew`s ability to effectively mitigate an event.

  4. Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project

    SciTech Connect

    Carlson, Joe; Furnstahl, Dick; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-06-30

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1, 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; and third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  5. Delineating effects of tensor force on the density dependence of nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Li, Ang; Li, Bao-An

    2013-03-01

    In this talk, we report results of our recent studies to delineate effects of the tensor force on the density dependence of nuclear symmetry energy within phenomenological models. The tensor force active in the isosinglet neutron roton interaction channel leads to appreciable depletion/population of nucleons below/above the Fermi surface in the single-nucleon momentum distribution in cold symmetric nuclear matter (SNM). We found that as a consequence of the high momentum tail in SNM the kinetic part of the symmetry energy Ekinsym(ρ) is significantly below the well-known Fermi gas model prediction of approximately 125(ρ/ρ0)2/3. With about 15% nucleons in the high momentum tail as indicated by the recent experiments at J-Lab by the CLAS Collaboration, the Ekinsym(ρ) is negligibly small. It even becomes negative when more nucleons are in the high momentum tail in SNM. These features have recently been confirmed by three independent studies based on the state-of-the-art microscopic nuclear many-body theories. In addition, we also estimate the second-order tensor force contribution to the potential part of the symmetry energy. Implications of these findings in extracting information about nuclear symmetry energy from nuclear reactions are discussed briefly.

  6. BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls

    PubMed Central

    Young, Keith A.; Thompson, Peter M.; Cruz, Dianne A.; Williamson, Douglas E.; Selemon, Lynn D.

    2015-01-01

    Genetic variants of the immunophilin FKBP5 have been implicated in susceptibility to post-traumatic stress disorder (PTSD) and other stress-related disorders. We examined the relationship between mushroom, stubby, thin and filopodial spine densities measured with Golgi staining and FKBP5 gene expression in the medial orbitofrontal cortex (BA11) in individuals diagnosed with PTSD and normal controls (n = 8/8). ANCOVA revealed PTSD cases had a significantly elevated density of stubby spines (29%, P < 0.037) and a trend for a reduction in mushroom spine density (25%, p < 0.082). Levels of FKBP5 mRNA were marginally elevated in the PTSD cases (z = 1.94, p = 0.053) and levels correlated inversely with mushroom (Spearman's rho = −0.83, p < 0.001) and overall spine density (rho = −0.75, p < 0.002) and directly with stubby spine density (rho = 0.55, p < 0.027). These data suggest that FKBP5 may participate in a cellular pathway modulating neuronal spine density changes in the brain, and that this pathway may be dysregulated in PTSD. PMID:26844242

  7. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  8. Density of saturated nuclear matter at large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.; Datta, Ishaun

    2014-06-01

    We exhibit the existence of stable, saturated nuclear matter in the large Nc and heavy quark mass limits of QCD. In this limit, baryons (with the same spin flavor structure) interact at leading order in Nc via a repulsive interaction due to the Pauli exclusion principle and at subleading order in 1/Nc via the exchange of glueballs. Assuming that the lightest glueball is a scalar, which implies that the subleading baryon interaction is attractive, we find that nuclear matter saturates since the subleading attractive interaction is longer ranged than the leading order repulsive one. We find that the saturated matter is in the form of a crystal with either a face-centered-cubic or a hexagonal-close-packed symmetry with baryon densities of O ({α˜smq[density of saturated nuclear matter is independent of the lightest glueball mass and scalar-glueball-baryon coupling in the extreme large Nc limit or heavy quark limit (or both), which we define precisely in this work.

  9. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    SciTech Connect

    Chen Liewen; Ko Che Ming; Xu Jun; Li Baoan

    2010-08-15

    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness {Delta}r{sub np} of Sn isotopes give an important constraint on the symmetry energy E{sub sym}({rho}{sub 0}) and its density slope L at saturation density {rho}{sub 0}. Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E{sub sym}({rho}{sub 0}). The implication of these new constraints on the {Delta}r{sub np} of {sup 208}Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

  10. Serum Dickkopf-1 Level in Postmenopausal Females: Correlation with Bone Mineral Density and Serum Biochemical Markers

    PubMed Central

    Fouda, Neveen; Abbas, Amal Ahmed

    2013-01-01

    Objective. To assess serum level of Dickkopf-1 in postmenopausal females and its correlation with bone mineral density and serum biochemical markers. Methods. Bone densitometry, serum Dickkopf-1, calcium, phosphorus, and alkaline phosphatase were done in sixty postmenopausal females. Patients were divided according to T score into osteoporosis (group I), osteopenia (group II), and normal bone mineral density that served as controls. Results. There was highly significant increase in serum Dickkopf-1 levels in postmenopausal females with abnormal T score versus controls (P < 0.001). Serum DKK-1 levels correlated negatively with both lumbar T score (r = −0.69, P < 0.001) and femur T score (r = −0.64, P < 0.001) and correlated positively with duration of menopause (r = 0.61, P < 0.001), while there was no significant correlation between serum levels of either calcium, phosphorus or alkaline phosphatase, and both serum Dickkopf-1 levels and the level of bone mineral density (P > 0.05). Conclusion. Postmenopausal females may suffer from osteoporosis as evidenced by bone densitometry. Postmenopausal women with significantly increased serum Dickkopf-1 had more significant osteoporosis. Prolonged duration of menopause and increased serum Dickkopf-1 are important risk factors for the development and severity of osteoporosis. PMID:23878759

  11. Complex-energy approach to sum rules within nuclear density functional theory

    SciTech Connect

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.

  12. Covariant energy density functionals: Nuclear matter constraints and global ground state properties

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Agbemava, S. E.

    2016-05-01

    The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Dutra et al. [Phys. Rev. C 90, 055203 (2014), 10.1103/PhysRevC.90.055203] will not necessarily lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not only by nuclear matter properties but also by underlying shell effects. The mismatch of phenomenological content, existing in all modern functionals, related to nuclear matter physics and the physics of finite nuclei could also be responsible.

  13. Modeling Nuclear Fusion in High Energy Density Plasmas Using a Strongly Magnetized Non-neutral Plasma

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    2005-10-01

    In the hot dense interiors of stars and giant planets, nuclear reactions are predicted to occur at rates that are greatly enhanced compared to those at low densities. The enhancement is caused by plasma screening of the reacting pairs, increasing the probability of close collisions. However, strongly enhanced nuclear reaction rates have never been observed in the laboratory. This poster discusses a method for observing the enhancement using an analogy between nuclear energy and cyclotron energy in a non-neutral plasma in a strong magnetic field. In such a plasma, cyclotron energy is an adiabatic invariant, and is released only through close collisions that break this invariant. It is shown that the rate of release of cyclotron energy is enhanced by precisely the same factor as that for the release of nuclear energy, because both processes rely on close collisions that are enhanced by plasma screening.ootnotetextD. Dubin, Phys. Rev. Lett. 94, 025002 (2005). Simulations measuring the screening enhancement will be presented, and the possibility of exciting and studying burn fronts will be discussed.ootnotetextSee also adjacent poster by J. Bollinger.

  14. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGESBeta

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  15. Corrosion issues in high-level nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  16. Nuclear science research with dynamic high energy density plasmas at NIF

    NASA Astrophysics Data System (ADS)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  17. Considerations for CBI Screen Design with Respect to Text Density Levels in Content Learning from an Integrated Perspective.

    ERIC Educational Resources Information Center

    Ipek, Ismail

    This paper examines variations of text density levels for learning in a computer-based instruction (CBI) tutorial from an integrated perspective, and addresses the following questions: (1) What is the text density? (2) What are the relationships among text density approaches? and (3) What are the contributions of text density for learning and how…

  18. A method for estimating the height of a mesospheric density level using meteor radar

    NASA Astrophysics Data System (ADS)

    Younger, J. P.; Reid, I. M.; Vincent, R. A.; Murphy, D. J.

    2015-07-01

    A new technique for determining the height of a constant density surface at altitudes of 78-85 km is presented. The first results are derived from a decade of observations by a meteor radar located at Davis Station in Antarctica and are compared with observations from the Microwave Limb Sounder instrument aboard the Aura satellite. The density of the neutral atmosphere in the mesosphere/lower thermosphere region around 70-110 km is an essential parameter for interpreting airglow-derived atmospheric temperatures, planning atmospheric entry maneuvers of returning spacecraft, and understanding the response of climate to different stimuli. This region is not well characterized, however, due to inaccessibility combined with a lack of consistent strong atmospheric radar scattering mechanisms. Recent advances in the analysis of detection records from high-performance meteor radars provide new opportunities to obtain atmospheric density estimates at high time resolutions in the MLT region using the durations and heights of faint radar echoes from meteor trails. Previous studies have indicated that the expected increase in underdense meteor radar echo decay times with decreasing altitude is reversed in the lower part of the meteor ablation region due to the neutralization of meteor plasma. The height at which the gradient of meteor echo decay times reverses is found to occur at a fixed atmospheric density. Thus, the gradient reversal height of meteor radar diffusion coefficient profiles can be used to infer the height of a constant density level, enabling the observation of mesospheric density variations using meteor radar.

  19. Modern energy density functional and the current status of the equation of state of nuclear matter

    SciTech Connect

    Shlomo, S.

    2012-11-20

    We first describe a method, based on the simulated annealing approach, for determining a modern energy density functional within the Skyrme Hartree-Fock (HF) theory by carrying out a fit to extensive set of experimental data with additional constraints on the Skyrme parameters. Next, we review the HF-based random phase approximation (RPA) approach for calculating properties of giant resonances. We then present results of calculations for the centroid energies of giant resonances within the HF-based RPA and discuss the current status of the equation of state of nuclear matter.

  20. Estimations of electron densities and temperatures in He-3 dominated plasmas. [in nuclear pumped lasers

    NASA Technical Reports Server (NTRS)

    Depaola, B. D.; Marcum, S. D.; Wrench, H. K.; Whitten, B. L.; Wells, W. E.

    1979-01-01

    It is very useful to have a method of estimation for electron temperature and electron densities in nuclear pumped plasmas because measurements of such quantities are very difficult. This paper describes a method, based on rate equation analysis of the ionized species in the plasma and the electron energy balance. In addition to the ionized species, certain neutral species must also be calculated. Examples are given for pure helium and a mixture of helium and argon. In the HeAr case, He(+), He2(+), He/2 3S/, Ar(+), Ar2(+), and excited Ar are evaluated.

  1. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    PubMed

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. PMID:26372719

  2. Description of 158Er at Ultrahigh Spin in Nuclear Density Functional Theory

    SciTech Connect

    Afanasjev, A. V.; Nazarewicz, Witold

    2012-01-01

    Rotational bands in 158Er at ultrahigh spin have been studied in the framework of relativistic and nonrelativistic nuclear density-functional theories. Consistent results are obtained across the theoretical models used but some puzzles remain when confronted with experiment. Namely, the many-body configurations which provide good description of experimental transition quadrupole moments and dynamic moments of inertia require substantial increase of the spins of observed bands as compared with experimental estimates, which are still subject to large uncertainties. If, however, the theoretical spin assignments turned out to be correct, experimental band 1 in 158Er would be the highest spin structure ever observed.

  3. The novel measurement method of liquid level and density in airtight container

    NASA Astrophysics Data System (ADS)

    Niu, Zhe; Zhao, Yulong; Tian, Bian; Guo, Fangfang

    2012-12-01

    This paper describes a novel method of liquid level and density measurement with application in airtight container such as oil storage tank. In order to prove the method, a multifunctional pressure-type liquidometer (MPTL) was designed. The MPTL comprises two pressure sensors for capturing the underwater pressure accurately, by which the MPTL could calculate the density of the liquid and back-calculate the level of the liquid. A digital temperature sensor was implanted in the MPTL to collect the temperature of the liquid. Series of experiments show a favorable linearity of 0.2% and a high accuracy of 0.27%. Besides, the simple fabrication, low cost and unconstrained conditions guarantee its popularity in the petrochemical industry fields. Overall, the findings of this study confirm the feasibility of the novel liquid level measure method and offer an economical scheme for mass producing.

  4. Spectral density of Cooper pairs in two level quantum dot-superconductors Josephson junction

    NASA Astrophysics Data System (ADS)

    Dhyani, A.; Rawat, P. S.; Tewari, B. S.

    2016-09-01

    In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  5. Dose estimation for nuclear power plant 4 accident in Taiwan at Fukushima nuclear meltdown emission level.

    PubMed

    Tang, Mei-Ling; Tsuang, Ben-Jei; Kuo, Pei-Hsuan

    2016-05-01

    An advanced Gaussian trajectory dispersion model is used to evaluate the evacuation zone due to a nuclear meltdown at the Nuclear Power Plant 4 (NPP4) in Taiwan, with the same emission level as that occurred at Fukushima nuclear meltdown (FNM) in 2011. Our study demonstrates that a FNM emission level would pollute 9% of the island's land area with annual effective dose ≥50 mSv using the meteorological data on 11 March 2011 in Taiwan. This high dose area is also called permanent evacuation zone (denoted as PEZ). The PEZ as well as the emergency-planning zone (EPZ) are found to be sensitive to meteorological conditions on the event. In a sunny day under the dominated NE wind conditions, the EPZ can be as far as 100 km with the first 7-day dose ≥20 mSv. Three hundred sixty-five daily events using the meteorological data from 11 March 2011 to 9 March 2012 are evaluated. It is found that the mean land area of Taiwan in becoming the PEZ is 11%. Especially, the probabilities of the northern counties/cities (Keelung, New Taipei, Taipei, Taoyuan, Hsinchu City, Hsinchu County and Ilan County) to be PEZs are high, ranging from 15% in Ilan County to 51% in Keelung City. Note that the total population of the above cities/counties is as high as 10 million people. Moreover, the western valleys of the Central Mountain Range are also found to be probable being PEZs, where all of the reservoirs in western Taiwan are located. For example, the probability can be as high as 3% in the far southern-most tip of Taiwan Island in Pingtung County. This shows that the entire populations in western Taiwan can be at risk due to the shortage of clean water sources under an event at FNM emission level, especially during the NE monsoon period. PMID:26913979

  6. Level scheme of /sup 148/Pm and the s-process neutron density

    SciTech Connect

    Lesko, K.T.; Norman, E.B.; Larimer, R.; Bacelar, J.C.; Beck, E.M.

    1989-02-01

    A level scheme of /sup 148/Pm up to 800 keV is deduced from gamma-ray coincidence data and published particle transfer data. Approximately 106 gamma-ray transitions have been placed between 36 levels. We have identified three levels below 500 keV in excitation which decay to both the ground state and to the isomeric level at 137 keV. The presence of these levels guarantees that /sup 148/Pm/sup g//sup ,//sup m/ are in thermal equilibrium during the s process. The s-process neutron density inferred from the branch point at /sup 148/Pm is deduced to be 3 x 10/sup 8//cm/sup 3/.

  7. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGESBeta

    McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  8. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method. PMID:25860736

  9. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    SciTech Connect

    McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  10. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    SciTech Connect

    McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  11. Fermi-level pinning through defects at GaAs/oxide interfaces: A density functional study

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Miceli, Giacomo; Pasquarello, Alfredo

    2015-09-01

    Using density functional calculations, we study a set of candidate defects for Fermi-level pinning at GaAs/oxide interfaces. The set of considered defects comprises both bulklike and interfacial defects, including As antisites, Ga and As dangling bonds, the As-As dimer/dangling bond defect, and several defect complexes. The defects are generated within atomistic model structures representing the GaAs /Al2O3 interface. Formation energies of bulklike defects are obtained and compared with those of corresponding bulk defects, while interfacial defects are studied through their relative defect energies. Finite-size corrections to the defect energies are applied through a scheme that accounts for the interfacial geometry of our models. Defect levels are defined as thermodynamic transition levels between different charge states and are calculated for all considered defects. Through an alignment procedure based on hybrid functional calculations, the defect levels are then positioned within the calculated band gap of GaAs that reproduces the experimental one, thereby enabling direct comparisons with the experimental density of defect states. Our study shows that several As-related defects show a similar amphoteric bistability between an As-As dimer state and a configuration with two doubly occupied As dangling bonds. The associated charge transition levels generally lie in the midgap region, in accord with experimental observations. This mechanism is proposed as the origin of the observed Fermi-level pinning at GaAs/oxide interfaces.

  12. Shell energy and the level-density parameter of hot nuclei

    SciTech Connect

    Nerlo-Pomorska, Bozena; Pomorski, Krzysztof; Bartel, Johann

    2006-09-15

    Macroscopic-microscopic calculations have been performed with the Yukawa folded mean field for 134 spherical even-even nuclei and 6 deformed ones at temperatures 0{<=}T{<=}5 MeV and elongations ranging from oblate shapes to the scission configuration of fissioning nuclei. The Strutinsky type free-energy shell corrections for this sample of nuclei and their temperature and deformation dependence are found by a folding procedure in particle-number space. The average dependence of the single-particle level-density parameter on mass number A and isospin I is determined and compared with previous estimates obtained using the relativistic mean-field theory, the Hartree-Fock approximation with the Skyrme effective interaction, and the phenomenological Thomas-Fermi approach adjusted to experimental data. The estimates for the level-density parameter obtained for different deformations are fitted by a liquid-drop type expression.

  13. Effect of altered reproductive function and lowered testosterone levels on bone density in male endurance athletes

    PubMed Central

    Bennell, Kim L; Brukner, Peter D; Malcolm, Susan A

    1996-01-01

    The effect of intense physical activity on female reproductive hormones is well recognised1–3 and there is evidence that menstrual disturbances associated with hypo-oestrogenism adversely affect bone density especially at the lumbar spine.4 5 Physical activity can also have a range of effects on male reproductive function depending upon the intensity and duration of the activity and the fitness of the individual.6 In particular, endurance training may be associated with reductions in circulating testosterone levels. Since testosterone has important anabolic roles, alterations in reproductive hormone profiles may have detrimental skeletal consequences similar to those seen in females with menstrual disturbances. The aim of this brief review is to present the limited literature on the relation between bone density and testosterone levels in male endurance athletes. PMID:8889111

  14. Level Densities of Residual Nuclei from particle evaporation of {sup 64}Cu

    SciTech Connect

    Oginni, B. M.; Grimes, S. M.; Voinov, A. V.; Adekola, A. S.; Brune, C. R.; Carter, D.; Heinen, Z.; Jacobs, D.; Massey, T. N.; O'Donnell, J.

    2009-07-06

    The reactions of {sup 6}Li on {sup 58}Fe and {sup 7}Li on {sup 57}Fe have been studied at beam energy 15 MeV. These two reactions produce the same compound nucleus, {sup 64}Cu. The neutron, proton, and alpha spectra were measured at backward angles. The data obtained have been compared with Hauser Fesh-bach model calculations. The level density parameters of the residual nuclei have been obtained from the particle evaporation spectra.

  15. Increase of inherent protection level in spent nuclear fuel

    SciTech Connect

    Krasnobaev, A.; Kryuchkov, E.; Glebov, V.

    2006-07-01

    The paper is devoted to upgrading inherent proliferation protection of fissionable nuclear materials (FNM). Some possibilities were investigated to form high radiation barrier inside spent fuel assemblies (SFA) discharged from power reactors of VVER-1000 type and research reactors of IRT type. The radiation barrier is estimated in the terms of rate of equivalent dose (RED) at 30-cm distance from SFA. The values of RED were calculated with application of the computer code package SCALE 4.3. The paper considers the criteria adopted for estimation of FNM proliferation resistance. The paper presents numerical results on a component-wise analysis of the radiation barrier in SFA from reactors of VVER-1000 and IRT type and on capability of various radionuclides to prolong action of the radiation barrier. Isotopic admixtures were selected and amounts of these admixtures were evaluated for significant prolongation of the radiation barrier action at the levels of the radiation standards used for estimation of FNM proliferation resistance. The paper considers vulnerability of the radiation barriers in respect to thermal processing of spent fuel. (authors)

  16. Ocean Turbulence V: Mesoscale Modeling in Level Coordinates. The Effect of Random Nature of Density

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    1998-01-01

    The main result of this paper is the derivation of a new expression for the tracer subgrid term in level coordinates S(l) to be employed in O-GCM. The novel feature is the proper account of the random nature of the density field which strongly affects the transformation from isopycnal to level coordinates of the variables of interest, velocity and tracer fields, their correlation functions and ultimately the subgrid terms. In deriving our result we made use of measured properties of vertical ocean turbulence. The major new results are: 1) the new subgrid expression is different from that of the heuristic GM model, 2) u++(tracer)=1/2u+(thickness), where u++ and u+ are the tracer and thickness bolus velocities. In previous models, u++ = u+, 2) the subgrid for a tracer tau is not the same as that for the density rho even when one accounts for the obvious absence of a diffusion term in the latter. The difference stems from a new treatment of the stochastic nature of the density, 3) the mesoscale diffusivity enters both locally and non-locally, as the integral over all z's from the bottom of the ocean to the level z.

  17. Theoretical predictions of the impact of nuclear dynamics and environment on core-level spectra of organic molecules

    NASA Astrophysics Data System (ADS)

    Prendergast, David; Schwartz, Craig; Uejio, Janel; Saykally, Richard

    2009-03-01

    Core-level spectroscopy provides an element-specific probe of local electronic structure and bonding, but linking details of atomic structure to measured spectra relies heavily on accurate theoretical interpretation. We present first principles simulations of the x-ray absorption of a range of organic molecules both in isolation and aqueous solvation, highlighting the spectral impact of internal nuclear motion as well as solvent interactions. Our approach uses density functional theory with explicit inclusion of the core-level excited state within a plane-wave supercell framework. Nuclear degrees of freedom are sampled using various molecular dynamics techniques. We indicate specific cases for molecules in their vibrational ground state at experimental conditions, where nuclear quantum effects must be included. Prepared by LBNL under Contract DE-AC02-05CH11231.

  18. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  19. Assessment of thermal comfort level at pedestrian level in high-density urban area of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ma, J.; Ng, E.; Yuan, C.; Lai, A.

    2015-12-01

    Hong Kong is a subtropical city which is very hot and humid in the summer. Pedestrians commonly experience thermal discomfort. Various studies have shown that the tall bulky buildings intensify the urban heat island effect and reduce urban air ventilation. However, relatively few studies have focused on modeling the thermal load at pedestrian level (~ 2 m). This study assesses the thermal comfort level, quantified by PET (Physiological Equivalent Temperature), using a GIS - based simulation approach. A thermal comfort level map shows the PET value of a typical summer afternoon in the high building density area. For example, the averaged PET in Sheung Wan is about 41 degree Celsius in a clear day and 38 degree Celsius in a cloudy day. This map shows where the walkways, colonnades, and greening is most needed. In addition, given a start point, a end point, and weather data, we generate the most comfort walking routes weighted by the PET. In the simulation, shortwave irradiance is calculated using the topographic radiation model (Fu and Rich, 1999) under various cloud cover scenarios; longwave irradiance is calculated based the radiative transfer equation (Swinbank, 1963). Combining these two factors, Tmrt (mean radiant temperature) is solved. And in some cases, the Tmrt differ more than 40 degree Celsius between areas under the sun and under the shades. Considering thermal load and wind information, we found that shading from buildings has stronger effect on PET than poor air ventilation resulted from dense buildings. We predict that pedestrians would feel more comfortable (lower PET) in a hot summer afternoon when walking in the higher building density area.

  20. Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence

    SciTech Connect

    Nikolić, M.; Newton, J.; Sukenik, C. I.; Vušković, L.; Popović, S.

    2015-01-14

    We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. We also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.

  1. Endurance training associated with slightly lowered serum estradiol levels decreases mineral density of canine skeleton.

    PubMed

    Puustjärvi, K; Karjalainen, P; Nieminen, J; Arokoski, J; Parviainen, M; Helminen, H J; Soimakallio, S

    1992-06-01

    The effects of long-term running exercise were studied in 20 beagle dogs. A total of 10 dogs ran from the age of 15 weeks to the age of 70 weeks in a progressive program for up to 40 km/day. A total of 10 sister dogs spent the study period in individual cages. When the dogs were 70 weeks old, bone mineral density of the vertebrae, hip, and radius was analyzed by dual-energy x-ray absorptiometry (DEXA; Lunar) and the vertebrae were also assessed by quantitative computed tomography (QCT; Siemens DR 1). Mineral density was lower in the running dogs than in the controls. The difference was greatest in the spine in the QCT analysis. Blood chemistry analyses revealed that the metabolism of the bone was significantly accelerated. The estradiol levels showed the trend to be reduced in the running group. The beneficial effect of exercise on mineral density has been shown in many earlier studies. However, in this study we demonstrate the possibility of adverse effects of long-term exercise on bone tissue. The change was associated with a decrease of serum estradiol level. PMID:1414479

  2. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    SciTech Connect

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.

  3. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    SciTech Connect

    Stránský, Pavel; Macek, Michal; Cejnar, Pavel

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.

  4. Spent nuclear fuel project high-level information management plan

    SciTech Connect

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  5. Density dependence of the nuclear symmetry energy from measurements of neutron radii in nuclei

    SciTech Connect

    Viñas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2014-07-23

    We study the density dependence of the nuclear symmetry energy, characterized by its slope parameter L, by means of the information provided by the neutron radius and the neutron skin thickness in finite nuclei. These quantities are extracted from the analysis of data obtained in antiprotonic atoms, from the parity-violating asymmetry at low-momentum transfer in polarized electron scattering in {sup 208}Pb, and from the electric dipole polarizability obtained via polarized proton inelastic scattering at forward angles in {sup 208}Pb. All these experiments provide different constraints on the slope L of the symmetry energy but the corresponding values have a considerable overlap in a range around 50 MeV ≤ L ≤ 70 MeV, in a reasonable agreement with other estimates that use different observables and methods to extract L.

  6. Modern energy density functional for nuclei and the nuclear matter equation of state

    SciTech Connect

    Shlomo, S.

    2010-08-15

    We discuss a method of determining a modern energy density functional (EDF) in nuclei. We adopt a Skyrme type EDF and fit the Skyrme parameters to an extensive set of experimental data on the ground-state binding energies, radii, and the breathing mode energies of a wide range of nuclei. We further constrain the values of the Skyrme parameters by requiring positive values for the slope of the symmetry energy S, the enhancement factor {kappa}, associated with the isovector giant dipole resonance, and the Landau parameter G{sub 0}{sup '}. This is done within the approaches of Hartree-Fock (HF) and HF with the inclusion of correlation effects, using a simulated-annealing based algorithm forminimizing {chi}{sup 2}.We also present results of HF based random phase approximation for the excitation strength function of the breathing mode and discuss the current status of the nuclear matter incompressibility coefficient.

  7. Noninvasive method for determining the liquid level and density inside of a container

    DOEpatents

    Sinha, Dipen N.

    2000-01-01

    Noninvasive method for determining the liquid level and density inside of a container having arbitrary dimension and shape. By generating a flexural acoustic wave in the container shell and measuring the phase difference of the detected flexural wave from that of the originally generated wave a small distance from the generated wave, while moving the generation and detection means through the liquid/vapor interface, this interface can be detected. Both the wave generation and wave detection may be achieved by transducers on the surface of the container. A change in the phase difference over the outer surface of the vessel signifies that a liquid/vapor interface has been crossed, while the magnitude of the phase difference can be related to fluid density immediately opposite the measurement position on the surface of the vessel.

  8. Characteristics of High-density Lipoprotein Subclasses Distribution for Subjects with Desirable Total Cholesterol Levels

    PubMed Central

    2011-01-01

    Background To investigate alteration of high density lipoproteins (HDL) subclasses distribution in different total cholesterol (TC) levels, mainly the characteristics of HDL subclasses distribution in desirable TC levels and analyze the related mechanisms. Methods ApoA-I contents of plasma HDL subclasses were determined by 2-dimensional gel electrophoresis coupled with immunodetection. 486 Chinese Adults subjects were assigned to different TC groups according to the third Report of NCEP (ATP- III) guidelines. Results The increase in contents of small preβ1-HDL, HDL3c, HDL3b, and HDL3a particles clustered and reduce in HDL2b with increased of TC. The distribution of HDL subclasses have shown abnormality characterized by the lower HDL2b (324.2 mg/L) contents and the higher preβ1-HDL (90.4 mg/L) contents for desirable TC Chinese subjects. Among 176 desirable TC subjects, 58.6% subjects with triglyceride (TG) < 2.26 mmol/L, 61.2% subjects with HDL-C ≥1.03 mmol/L and 88.6% subjects with low density lipoprotein cholesterol(LDL-C) < 3.34 mmol/L, and the profile of HDL subclasses distribution for above these subjects was reasonable. Conclusions The particles size of HDL subclasses shifted towards smaller with increased TC levels. The TC was liner with HDL2b contents and those can be reduced 17 mg/L for 0.5 mmol/L increment in TC levels. The HDL subclasses distribution phenotype was not expectation for Chinese Population with desirable TC levels. Thus, from the HDL subclasses distribution point, when assessing the coronary heart disease(CHD) risk not only rely on the TC levels, but also the concentrations of TG, HDL-C and LDL-C must considered in case the potential risk for desirable TC subjects with other plasma lipids metabolism disorders. PMID:21513524

  9. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  10. Coupled-Channels Density-Matrix Approach to Low-Energy Nuclear Reaction Dynamics

    SciTech Connect

    Diaz-Torres, Alexis

    2011-10-28

    Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The associated states are usually employed, within a truncated model space, as a basis in (coherent) coupled channels approaches to low-energy reaction dynamics. However, excluded states can be essential, and their effects on the open (nuclear) system dynamics are usually treated through complex potentials. Is this a complete description of open system dynamics? Does it include effects of quantum decoherence? Can decoherence be manifested in reaction observables? In this contribution, I discuss these issues and the main ideas of a coupled-channels density-matrix approach that makes it possible to quantify the role and importance of quantum decoherence in low-energy nuclear reaction dynamics. Topical applications, which refer to understanding the astrophysically important collision {sup 12}C+{sup 12}C and achieving a unified quantum dynamical description of relevant reaction processes of weakly-bound nuclei, are highlighted.

  11. Density matrix reconstruction of three-level atoms via Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Signoles, A.; Ferreira-Cao, M.; Zürn, G.; Hofmann, C. S.; Günter, G.; Schempp, H.; Robert-de-Saint-Vincent, M.; Whitlock, S.; Weidemüller, M.

    2016-08-01

    We present combined measurements of the spatially resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, while the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.

  12. Increasing the maximally random jammed density with electric field to reduce the fat level in chocolate

    NASA Astrophysics Data System (ADS)

    Tao, R.; Tang, H.

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.

  13. Lowering low-density lipoprotein cholesterol levels in patients with type 2 diabetes mellitus

    PubMed Central

    Bays, Harold E

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, insulin resistance, and/or progressive loss of β-cell function. T2DM patients are at increased risk of micro- and macrovascular disease, and are often considered as representing an atherosclerotic coronary heart disease (CHD) risk equivalent. Interventions directed at glucose and lipid level control in T2DM patients may reduce micro- and macrovascular disease. The optimal T2DM agent is one that lowers glucose levels with limited risk for hypoglycemia, and with no clinical trial evidence of worsening CHD risk. Lipid-altering drugs should preferably reduce low-density lipoprotein cholesterol and apolipoprotein B (apo B) and have evidence that the mechanism of action reduces CHD risk. Statins reduce low-density lipoprotein cholesterol and apo B and have evidence of improving CHD outcomes, and are thus first-line therapy for the treatment of hypercholesterolemia. In patients who do not achieve optimal lipid levels with statin therapy, or who are intolerant to statin therapy, add-on therapy or alternative therapies may be indicated. Additional available agents to treat hypercholesterolemic patients with T2DM include bile acid sequestrants, fibrates, niacin, and ezetimibe. This review discusses the use of these alternative agents to treat hypercholesterolemia in patients with T2DM, either as monotherapy or in combination with statin therapy. PMID:25045281

  14. Low-density lipoprotein cholesterol level and statin use among Medicare beneficiaries with diabetes mellitus.

    PubMed

    Qualls, Laura G; Hammill, Bradley G; Maciejewski, Matthew L; Curtis, Lesley H; Jones, W Schuyler

    2016-05-01

    At the time of this study, guidelines recommended a primary goal of low-density lipoprotein cholesterol level less than 100 mg/dL for all patients, an optional goal of low-density lipoprotein cholesterol less than 70 mg/dL for patients with overt cardiovascular disease and statins for patients with diabetes and overt cardiovascular disease and patients 40 years and older with diabetes and at least one risk factor for cardiovascular disease. This study examined statin use and achievement of lipid goals among 111,730 Medicare fee-for-service beneficiaries 65 years and older in 2011. Three-quarters of patients met the low-density lipoprotein cholesterol goal of less than 100 mg/dL. Patients with cardiovascular disease were more likely to meet the goal than those without, not controlling for other differences. Patients on a statin were more likely to meet the goal. There is considerable opportunity for improvement in cholesterol management in high-risk patients with diabetes mellitus. PMID:26802221

  15. Reduction in Postoperative High-Density Lipoprotein Cholesterol Levels in Children Undergoing the Fontan Operation

    PubMed Central

    Argraves, W. Scott; Graham, Eric M.; Slate, Elizabeth H.; Atz, Andrew M.; Bradley, Scott M.; McQuinn, Tim C.; Wilkerson, Brent A.; Wing, Shane B.

    2015-01-01

    Despite the emerging relevance of high-density lipoprotein (HDL) in the inflammatory cascade and vascular barrier integrity, HDL levels in children undergoing cardiac surgery are unexplored. As a measure of HDL levels, the HDL-cholesterol (HDL-C) in single-ventricle patients was quantified before and after the Fontan operation, and it was determined whether relationships existed between the duration and the type of postoperative pleural effusions. The study prospectively enrolled 12 children undergoing the Fontan operation. Plasma HDL-C levels were measured before and after cardiopulmonary bypass. The outcome variables of interest were the duration and type of chest tube drainage (chylous vs. nonchylous). The Kendall rank correlation coefficient and the Wilcoxon rank sum test were used. There were 11 complete observations. The median preoperative HDL-C level for all the subjects was 30 mg/dl (range, 24–53 mg/dl), and the median postcardiopulmonary bypass level was 21 mg/dl (range, 14–46 mg/dl) (p = 0.004). There was a tendency toward a moderate inverse correlation (–0.42) between the postcardiopulmonary bypass HDL-C level and the duration of chest tube drainage, but the result was not statistically significant (p = 0.07). In the chylous effusion group, the median postcardiopulmonary bypass HDL-C tended to be lower (16 vs. 23 mg/dl; p = 0.09). After the Fontan operation, the plasma HDL-C levels in children are significantly reduced. It is reasonable to conclude that the reduction in HDL-C reflects reduced plasma levels of HDL particles, which may have pertinent implications in postoperative pleural effusions given the antiinflammatory and endothelial barrier functions of HDL. PMID:22411716

  16. Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density

    SciTech Connect

    Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. |||

    1997-01-01

    It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}

  17. Environmental radioactivity levels in the Cumberland River at the Hartsville Nuclear Project site, 1975-1982

    SciTech Connect

    Not Available

    1985-07-01

    Samples of surface water taken from the Cumberland River during the period from 1975 through 1982 exhibited radioactivity levels less than 1% of the maximum permissible concentrations published by the Nuclear Regulatory Commission. Radioactivity concentrations reported herein are typical of natural radioactivity levels with slight indications of influences from fallout of radioactivity from atmospheric nuclear weapons testing.

  18. Parity-projected shell model Monte Carlo level densities for medium-mass nuclei

    SciTech Connect

    Oezen, C.; Langanke, K.; Martinez-Pinedo, G.; Dean, D. J.

    2008-11-11

    We investigate the effects of single-particle structure and pairing on the equilibration of positive and negative-parity level densities for the even-even nuclei {sup 58,62,66}Fe and {sup 58}Ni and the odd-A nuclei {sup 59}Ni and {sup 65}Fe. Calculations are performed using the shell model Monte Carlo method in the complete fp-gds shell-model space using a pairing+quadrupole type residual interaction. We find for the even-even nuclei that the positive-parity states dominate at low excitation energies due to strong pairing correlations. At excitation energies at which pairs are broken, single-particle structure of these nuclei is seen to play the decisive role for the energy dependence of the ratio of negative-to-positive parity level densities. We also find that equilibration energies are noticeably lower for the odd-A nuclei {sup 59}Ni and {sup 65}Fe than for the neighboring even-even nuclei {sup 58}Ni and {sup 66}Fe.

  19. Level densities and gamma-ray strength functions in 170,171,172-Yb

    SciTech Connect

    Agvaanluvsan, U; Schiller, A; Becker, J; Bernstein, L; Garrett, P; Guttormsen, M; Mitchell, G; Rekstad, J; Siem, S; Voinov, A; Younes, W

    2004-07-28

    Level densities and radiative strength functions in {sup 171}Yb and {sup 170}Yb nuclei have been measured using the {sup 171}Yb({sup 3}He{sup 3}He{gamma}){sup 171}Yb and {sup 171}Yb({sup 3}He,{alpha}{gamma}){sup 170}Yb reactions. New data on {sup 171}Yb are compared to a previous measurement for {sup 171}Yb from the {sup 172}Yb({sup 3}He,{alpha}{gamma}){sup 171}Yb reaction. Systematics of level densities and radiative strength functions in {sup 170,171,172}Yb are established. The entropy excess in {sup 171}Yb relative to the even-even nuclei {sup 170,172}Yb due to the unpaired neutron quasiparticle is found to be approximately 2k{sub B}. Results for the radiative strength function from the two reactions lead to consistent parameters characterizing the ''pygmy'' resonances. Pygmy resonances in the {sup 170,172}Yb populated by the ({sup 3}He,{alpha}) reaction appear to be split into two components for both of which a complete set of resonance parameters are obtained.

  20. Nuclear sizes of /sup 40,42,44,48/Ca from elastic scattering of 104 MeV alpha particles. II. Nuclear density distributions

    SciTech Connect

    Gils, H.J.; Friedman, E.; Majka, Z.; Rebel, H.

    1980-04-01

    The elastic scattering of 104 MeV ..cap alpha.. particles from /sup 40,42,44,48/Ca has been analyzed by a single-folding model with a density-dependent effective interaction. Nuclear density distributions have been extracted using various descriptions including Fourier-Bessel series which distinctly reduces the model dependence of the results and enables realistic estimates of errors. Differences of the density shapes of the Ca isotopes are well determined showing evidence for a neutron skin in /sup 48/Ca. The resulting root mean square radii are compared to the results obtained from other methods. The sensitivity and limitations of various methods are discussed.

  1. Steady-state nuclear actin levels are determined by export competent actin pool.

    PubMed

    Skarp, Kari-Pekka; Huet, Guillaume; Vartiainen, Maria K

    2013-10-01

    A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin. PMID:23749625

  2. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  3. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  4. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  5. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: Non-uniqueness of density-derived molecular structure

    SciTech Connect

    Ludena, E. V.; Echevarria, L.; Lopez, X.; Ugalde, J. M.

    2012-02-28

    We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.

  6. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: Non-uniqueness of density-derived molecular structure

    NASA Astrophysics Data System (ADS)

    Ludeña, E. V.; Echevarría, L.; Lopez, X.; Ugalde, J. M.

    2012-02-01

    We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.

  7. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD

    PubMed Central

    Funamoto, Masafumi; Sunagawa, Yoichi; Katanasaka, Yasufumi; Miyazaki, Yusuke; Imaizumi, Atsushi; Kakeya, Hideaki; Yamakage, Hajime; Satoh-Asahara, Noriko; Komiyama, Maki; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-01-01

    Purpose COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin–low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin®, a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. Patients and methods This is a randomized, double-blind, parallel-group study. Subjects with stages I–II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin® or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. Results There were no differences between the Theracurmin® and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin® group compared with the placebo group. Conclusion Theracurmin® reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects. PMID:27616885

  8. Evidence for low high-density lipoprotein cholesterol levels in Australian indigenous peoples: a systematic review

    PubMed Central

    2014-01-01

    Background Low plasma high-density lipoprotein cholesterol (HDL-C) levels are a strong, independent, but poorly understood risk factor for cardiovascular disease (CVD). Although this atherogenic lipid abnormality has been widely reported in Australia’s Indigenous peoples, Aboriginal and Torres Strait Islanders, the evidence has not come under systematic review. This review therefore examines published data for Indigenous Australians reporting 1) mean HDL-C levels for both sexes and 2) factors associated with low HDL-C. Methods PubMed, Medline and Informit ATSI Health databases were systematically searched between 1950 and 2012 for studies on Indigenous Australians reporting mean HDL-C levels in both sexes. Retrieved studies were evaluated by standard criteria. Low HDL-C was defined as: <1.0 mmol/L. Analyses of primary data associating measures of HDL-C with other CVD risk factors were also performed. Results Fifteen of 93 retrieved studies were identified for inclusion. These provided 58 mean HDL-C levels; 29 for each sex, most obtained in rural/regional (20%) or remote settings (60%) and including 51–1641 participants. For Australian Aborigines, mean HDL-C values ranged between 0.81-1.50 mmol/L in females and 0.76-1.60 mmol/L in males. Two of 15 studies reported HDL-C levels for Torres Strait Islander populations, mean HDL-C: 1.00 or 1.11 mmol/L for females and 1.01 or 1.13 mmol/L for males. Low HDL-C was observed only in rural/regional and remote settings - not in national or urban studies (n = 3) in either gender. Diabetes prevalence, mean/median waist-to-hip ratio and circulating C-reactive protein levels were negatively associated with HDL-C levels (all P < 0.05). Thirty-four per cent of studies reported lower mean HDL-C levels in females than in males. Conclusions Very low mean HDL-C levels are common in Australian Indigenous populations living in rural and remote communities. Inverse associations between HDL-C and central obesity, diabetes

  9. State-of-the-art of beyond mean field theories with nuclear density functionals

    NASA Astrophysics Data System (ADS)

    Egido, J. Luis

    2016-07-01

    discuss the classical β and γ vibrations by considering the quadrupole operators as coordinates. We present pairing fluctuations by considering the pairing gaps as generator coordinates. The combination of quadrupole and pairing fluctuations mirrors the elementary modes of excitation of the atomic nucleus and provides a realistic description of it. Lastly the explicit consideration of the time reversal symmetry breaking in the HFB wave function by the cranking procedure allows the alignment of nucleon pairs opening a new dimension in the BMFT calculations. Abundant calculations with the finite range density dependent Gogny force applied to exotic nuclei illustrate the state-of-the-art of BMFTs with nuclear density functionals. We conclude with a thorough discussion on the potential poles of the theory.

  10. Systematics of nuclear level properties in the lead region

    SciTech Connect

    Schmorak, M. R.

    1980-11-01

    This survey of the lead region is an extension of our ''Survey of Nuclear Structure Systematics for A> or =229'' (72ElSc) published previously. The mass range covered is primarily A = 190 through A = 221. The emphases are on properties of low-lying states, their shell-model configurations, and their decay modes. A comprehensive systematics of a-decay hindrance factors is presented; for b/sup -/ decay, only transitions between pure single-particle states are included in the log ft systematics. For IT decays the important case of M4 transitions is presented. Magnetic dipole moments are tabulated and the additivity relation is examined. The starting point of the present survey was the Evaluated Nuclear Structure Data File (ENSDF) (see the Cumulated Index to A-Chains on page iii of this issue for references to the individual mass chains). Most changes and updates of this file, made in the course of preparing the present survey, are mentioned in the text. We refer the reader to Nuclear Data Sheets for information on high-lying states, spectroscopic factors, documentation of the data, and other topics not treated in this survey.

  11. Progress in Understanding the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas; P.A.M. Guichon

    2007-01-03

    At the present time there is a lively debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We outline the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently, to density dependent effective interactions.

  12. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  13. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

    PubMed

    Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip

    2016-04-26

    We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces. PMID:27002483

  14. [Composition and Density of Soil Fauna in the Region with Enhanced Radioactivity Level (Komi Republic, Vodnyi)].

    PubMed

    Kolesnikova, A A; Kudrin, A A; Konakova, T N; Taskaeva, A A

    2015-01-01

    Studies on the influence of high levels of radiation on soil fauna were carried out in 2012 in the territory formed as a result of the activity of the enterprise for extraction and production of radium from reservoir water and waste of uranium ore from 1931 to 1956. At present the local radioactive pollution in this area is caused by the presence of heavy natural radionuclides 226Ra, 238U and products of their disintegration in soils. The oppression of soil invertebrate.fauna in pine forests and meadows with high levels of radionuclides and heavy metals is revealed. Also shown is the decrease in the number and density of different taxonomic groups of invertebrates, reduction of the diversity and spectrum of trophic groups and vital forms in the area with a high content of radionuclides in soil. Our results are in agreement with the results obtained by the similar studies showing negative influence of high-level ionizing radiation on soil fauna. PMID:26310020

  15. Organic semiconductor density of states controls the energy level alignment at electrode interfaces

    PubMed Central

    Oehzelt, Martin; Koch, Norbert; Heimel, Georg

    2014-01-01

    Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867

  16. Estimation of loading density of underground well repositories for solid high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Malkovsky, V. I.; Pek, A. A.

    2007-06-01

    The convective transfer of radionuclides by subsurface water from a geological repository of solidified high-level radioactive wastes (HLW) is considered. The repository is a cluster of wells of large diameter with HLW disposed of in the lower portions of the wells. The safe distance between wells as a function of rock properties and parameters of well loading with wastes has been estimated from mathematical modeling. A maximum permissible concentration of radionuclides in subsurface water near the ground surface above the repository is regarded as a necessary condition of safety. The estimates obtained show that well repositories allow for a higher density of solid HLW disposal than shaft storage facilities. Advantages and disadvantages of both types of storage facilities are considered in order to estimate the prospects for their use for underground disposal of solid HLW.

  17. Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases

    NASA Astrophysics Data System (ADS)

    Arellano, Hugo F.; Delaroche, Jean-Paul

    2015-01-01

    The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the 1 S 0 and 3 SD 1 channels are explicitly accounted for --within the continuous choice for the auxiliary fields-- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range fm-1, using the Argonne bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm-1 0.285 fm-1, corresponding to mass densities between and g cm-3. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.

  18. ATMS_Phase_II: a standalone code for counting non-overlapping high-density nuclear tracks

    NASA Astrophysics Data System (ADS)

    Khayat, Omid

    2014-02-01

    In this paper we focus on counting and density measurements of non-overlapping high-density nuclear track images. This paper is a continuum of another paper of the author introducing ATMS software which has been particularly developed for overlapping nuclear tracks. Here, as the second phase of the ATMS software, a hybrid algorithm is presented for counting the tracks according to user parameter initialization, template inserting and correlation estimation to initially detect nuclear track candidates, then to evaluate geometrical and contextual features of track candidates and finally a decision-making process according to the user's sensitivity considerations. The presented hybrid algorithm is verified and validated by a database containing 100 randomly selected Alpha track images captured from the surface of CR-39 polycarbonate detectors irradiated by environmental Alpha particles emitted from Rn-222 near a copper mine around Anarak city.

  19. Triton-He3 relative and differential flows as probes of the nuclear symmetry energy at supra-saturation densities

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan; Li, Bao-An; Chen, Lie-Wen; Zhang, Xun-Chao

    2009-10-01

    Using a transport model coupled with a phase-space coalescence afterburner, we study the triton-He3 (t-He3) ratio with both relative and differential transverse flows in semicentral Sn132+Sn124 reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t-He3 pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t-He3 relative and differential flows than the π-/π+ ratio in the same reaction. The t-He3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.

  20. Physical Activity Level of Post-menopausal Women with Low Bone Mineral Density.

    PubMed

    Dallanezi, Glauber; Freire, Beatriz Funayama Alvarenga; Nahás, Eliana Aguiar Petri; Nahás-Neto, Jorge; Corrente, José Eduardo; Mazeto, Gláucia Maria Ferreira da Silva

    2016-05-01

    Introduction Proper physical activity is related to the prevention and the treatment of osteoporosis. Purpose To assess the level of physical activity (PA) in post-menopausal women with low bone mineral density (BMD). Methods This cross-sectional clinical study included 123 post-menopausal women. The inclusion criteria were: age of ≥ 45 years with last menses at least 12 months prior to the initiation of the study, and bone density scan (BDS) values measured over the preceding 12 months. Women with severe osteoarthritis were excluded. Women were allocated into three groups, according to BMD measured by BDS [osteoporosis (OP; 54 women), osteopenia (35 women), and normal bone density (NBD; 35 women)], and compared for general, clinical, and anthropometric data, and for PA level. The latter was assessed using the International Physical Activity Questionnaire (IPAQ), in metabolic equivalent of task (MET) units. Participants were classified as sedentary, active or very active. Quantitative variables were compared using ANOVA followed by Tukey's test. Associations between qualitative variables were tested by Chi-square (χ2) or Fisher's exact test. In order to check for differences among groups and IPAQ domains, a generalized linear model with Gamma distribution was adjusted for values in METs. Results The OP group differed from the NBD group regarding age (61.8 ± 10.1 and 52.9 ± 5.4 years), percentage of participants with self-declared white ethnicity (43.9 and 28.0%), body mass index (BMI - 25.7 ± 5.4 and 30.9 ± 5.1 kg/m(2)), and time since menopause (15.5 ± 7.5 and 5.8 ± 4.5 years). Smoking rates were higher in the OP (55.6%) and NBD groups (33.3%) than in the osteopenia group (11.1%). Within the OP group, the rate of subjects with sedentary lifestyles was higher (42.6%), and time spent sitting was greater (344.3 ± 204.8 METs) than in the groups with osteopenia (20.0% and 300.9 ± 230.6 METs) and NBD (17.7% and 303

  1. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    NASA Astrophysics Data System (ADS)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  2. Design of robust level control system of nuclear steam generator

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Na, M. G.

    2007-12-01

    The nuclear steam generator feedwater control system is designed by the robust control methods. The design is divided into two steps. First, the feedwater controller in the feedwater station is designed by H ∞ and MWS methods. Then the controller located on the feedback loop is designed both by classical PID and by robust technique. It is found that the feedback controller of simple PID whose coefficients vary with the power is proper for the system performance. The simulations show that the hybrid system of H ∞ and PID has a good performance with proper stability margins.

  3. Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...

  4. Intensive Lowering of Low-Density Lipoprotein Cholesterol Levels for Primary Prevention of Coronary Artery Disease

    PubMed Central

    Karalis, Dean G.

    2009-01-01

    Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the United States, and a high concentration of low-density lipoprotein cholesterol (LDL-C) is a major risk factor for CAD. Current guidelines recommend the use of statins to lower LDL-C levels for the primary prevention of CAD based on an individual's risk factor profile and baseline LDL-C level. For moderaterisk individuals, those with 2 or more major risk factors for CAD and a Framingham risk score of 10% to 20%, the recommendation is to use a statin to lower LDL-C levels to less than 130 mg/dL. However, up to 40% of individuals who develop CAD have LDL-C levels lower than this cutoff. In 2004, the National Cholesterol Education Program Adult Treatment Panel III guidelines were updated to include an LDL-C goal of less than 100 mg/dL for individuals at moderately high risk of developing CAD. The guidelines identified several risk factors that when present would favor the use of pharmacological therapy to achieve this more aggressive LDL-C goal. This review evaluates the evidence supporting an LDL-C target of less than 100 mg/dL for moderately high-risk individuals and reviews those risk factors that when present help identify patients who would benefit from achieving this lower LDL-C goal. English-language publications in MEDLINE and references from relevant articles published between January 1, 1980, and November 30, 2008, were reviewed. Main keywords searched were coronary artery disease, hyperlipidemia, statins, cardiac risk factors, inflammatory markers, metabolic syndrome, and coronary artery calcium. PMID:19339653

  5. Process for solidifying high-level nuclear waste

    DOEpatents

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  6. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Gibb, F. G. F.; McTaggart, N. A.; Travis, K. P.; Burley, D.; Hesketh, K. W.

    2008-03-01

    Deep (4-5 km) boreholes are emerging as a safe, secure, environmentally sound and potentially cost-effective option for disposal of high-level radioactive wastes, including plutonium. One reason this option has not been widely accepted for spent fuel is because stacking the containers in a borehole could create load stresses threatening their integrity with potential for releasing highly mobile radionuclides like 129I before the borehole is filled and sealed. This problem can be overcome by using novel high-density support matrices deployed as fine metal shot along with the containers. Temperature distributions in and around the disposal are modelled to show how decay heat from the fuel can melt the shot within weeks of disposal to give a dense liquid in which the containers are almost weightless. Finally, within a few decades, this liquid will cool and solidify, entombing the waste containers in a base metal sarcophagus sealed into the host rock.

  7. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Culver, Cody; Wang, Shicong; Wendt, Amy E.; Radovanov, Svetlana; Persing, Harold

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  8. First pregnancy characteristics, postmenopausal breast density, and salivary sex hormone levels in a population at high risk for breast cancer

    PubMed Central

    Mockus, Mary; Prebil, LeeAnn; Ereman, Rochelle; Dollbaum, Charles; Powell, Mark; Yau, Christina; Benz, Christopher C.

    2015-01-01

    Background It remains unknown if later life breast cancer risk as determined by reproductive history is mediated by postmenopausal breast density and/or sex steroid levels. Methods Increased breast density is a strong surrogate for future breast cancer risk. A cross-sectional study with a longitudinal follow-up for breast health outcomes evaluated women without breast cancer (n = 1023; 682 = parous), drawn from a high risk postmenopausal population, with questionnaire- reported reproductive histories. The questionnaire was linked to prospective screening mammogram breast density measurements, and saliva biospecimens that were used to assess sex steroid hormone levels. Results Expected age- and postmenopause- related declines in salivary estradiol (E), progesterone (P), dehydroepiandrosterone (DHEA) and testosterone (T) levels were observed. This was most pronounced for DHEA and T, which were also the only postmenopausal hormone levels significantly associated with any reproductive characteristics: parity and breast feeding for DHEA, and age-at-first birth for T. Postmenopausal breast density was borderline significantly lower with parity and higher body mass index (BMI). After multivariate analysis, T was the only hormone level to retain any association (negative, p < 0.05) with breast density. Conclusions and general significance While reproductive characteristics, in particular parity, generally demonstrated independent associations with postmenopausal breast density and E, P and DHEA levels, T levels showed concordant inverse associations with age-at-first birth and breast density. These findings suggest that reproductive effects and later life salivary sex steroid hormone levels may have independent effects on later life breast density and cancer risk. PMID:26317068

  9. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts... 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles, Virginia, on October 26, 2010... technical issues and to review the technical validity of DOE activities related to implementing the...

  10. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women.

    PubMed

    Shi, Liang; Mao, Chaoming; Wang, Xuefeng; Liu, Rencong; Li, Lin; Mou, Xiao; Xu, Ping; Li, Hongli; Xu, Chengcheng; Yuan, Guoyue; Wang, Bin; Zhang, Hao

    2016-08-01

    Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = -0.155, P = 0.001; r = -0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = -0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population. PMID:27583869