Science.gov

Sample records for nuclear matter equation

  1. Asymmetric nuclear matter equation of state

    SciTech Connect

    Bombaci, I.; Lombardo, U. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania )

    1991-11-01

    Systematic calculations of asymmetric nuclear matter have been performed in the framework of the Brueckner-Bethe-Goldstone approach in a wide range of both density and asymmetry parameter. The empirical parabolic law fulfilled by the binding energy per nucleon is confirmed by the present results in all the range of the asymmetry parameter values. The predominant role of the {sup 3}{ital S}{sub 1-}{sup 3}{ital D}{sub 1} component of the {ital NN} interaction is elucidated. A linear variation of the proton and neutron single-particle potentials is found as increasing the neutron excess; a deviation from the phenomenological potentials occurs for highly asymmetric matter as an effect of the self-consistency. The present calculations of the incompressibility predict a strong softening of the equation of state going from symmetric to asymmetric nuclear matter. The proton fraction in equilibrium with neutron matter has been determined from the beta-stability condition and its relevance to the superfluidity of neutron stars has been investigated.

  2. Equation of state for {beta}-stable hot nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.; Panos, C. P.

    2009-04-15

    We provide an equation of state for hot nuclear matter in {beta} equilibrium by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter, containing leptons (electrons and muons) under the chemical equilibrium condition in which neutrinos have left the system. The conditions of charge neutrality and equilibrium under the {beta}-decay process lead first to the evaluation of proton and lepton fractions and then to the evaluation of internal energy, free energy, and pressure, and in total to the equation of state of hot nuclear matter. Thermal effects on the properties and equation of state of nuclear matter are assessed and analyzed in the framework of the proposed effective interaction model. Special attention is given to the study of the contribution of the components of {beta}-stable nuclear matter to the entropy per particle, a quantity of great interest in the study of structure and collapse of supernova.

  3. Nuclear Matter Equations of State and the Neutron Stars

    SciTech Connect

    Urbanec, M.; Stuchlik, Z.; Betak, E.

    2008-05-12

    The equations of state (EoS) of relativistic asymmetric nuclear matter are obtainable from assumed form of the interaction Lagrangian. They are one of important inputs to describe the neutron stars. The structure of the neutron stars, i.e. the density of matter and the pressure as functions of radial distance starting from their values at the center of a star, is straightforwardly dependent on EoS. Similarly, a limitation on the total mass of the neutron star can be obtained therefrom. Thus, EoS and the underlying nucleon interactions can be tested also by the means of astronomical observations.

  4. Nuclear condensation and the equation of state of nuclear matter

    SciTech Connect

    De, J. N.; Samaddar, S. K.

    2007-10-15

    The isothermal compression of a dilute nucleonic gas invoking cluster degrees of freedom is studied in an equilibrium statistical model; this clusterized system is found to be more stable than the pure nucleonic system. The equation of state (EoS) of this matter, shows features qualitatively very similar to the one obtained from pure nucleonic gas. In the isothermal compression process, there is a sudden enhancement of clusterization at a transition density rendering features analogous to the gas-liquid phase transition in normal dilute nucleonic matter. Different observables like the caloric curves, heat capacities, isospin distillation, etc are studied in both the models. Possible changes in the observables due to recently indicated medium modifications in the symmetry energy are also investigated.

  5. Chiral symmetry and nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Santra, A. B.

    2001-08-01

    We investigate the effect on the nuclear matter equation of state (EOS) due to modification of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner--Bethe--Golstone formalism with Bonn-B potential as two-body interaction and QCD sum rule and Brown--Rho scaling prescriptions for modi- fication of hadron parameters. We find that EOS is very much sensitive to the meson parameters. We can fit, with two body interaction alone, both the saturation density and the binding energy per nucleon.

  6. Extended Skyrme equation of state in asymmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Davesne, D.; Pastore, A.; Navarro, J.

    2016-01-01

    We present a new equation of state for infinite systems (symmetric, asymmetric, and neutron matter) based on an extended Skyrme functional that has been constrained by microscopic Brueckner-Bethe-Goldstone results. The resulting equation of state reproduces the main features of microscopic calculations very accurately and is compatible with recent measurements of two times Solar-mass neutron stars. We provide all necessary analytical expressions to facilitate a quick numerical implementation of quantities of astrophysical interest.

  7. Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions

    SciTech Connect

    Ghodsi, O. N.; Gharaei, R.

    2011-08-15

    We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV. Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter, it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the precompound nucleons' emission and the incompressibility of nuclear matter to calculate the nuclear potential in fusion reactions within a static formalism such as the double-folding (DF) model.

  8. Nonlinear nuclear equation of state and thermodynamical instabilities in warm and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.; Pigato, D.

    2014-03-01

    We study a nonlinear nuclear equation of state in the framework of a relativistic mean field theory. We investigate the possible thermodynamic instability in a warm and dense asymmetric nuclear medium where a phase transition from nucleonic matter to resonance dominated Δ matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon-Δ matter phase transition due essentially to a negative Δ-particles excess in asymmetric nuclear matter. In this context, we investigate also the effects of power law effects, due to the possible presence of nonextensive statistical mechanics effects.

  9. Equation of state of homogeneous nuclear matter and the symmetry coefficient

    SciTech Connect

    Onsi, M. ); Przysiezniak, H.; Pearson, J.M. )

    1994-07-01

    For different Skyrme-type forces we investigate the equation of state of homogeneous nuclear matter under the conditions appropriate to a collapsing star. We find that the stiffness of the equation of state increases significantly as the symmetry coefficient [ital J] of nuclear matter increases over the range of its experimental uncertainty. We present analytic expressions for the adiabatic index [Gamma] permitting the elimination of all numerical derivatives.

  10. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  11. Excited nuclear matter at Fermi energies: From transport properties to the equation of state

    NASA Astrophysics Data System (ADS)

    Lopez, O.; Durand, D.; Lehaut, G.

    2016-05-01

    Properties of excited nuclear matter are one of the main subject of investigation in Nuclear Physics. Indeed, the response of nuclear matter under extreme conditions encountered in heavy-ion induced reactions (large compression, thermal and collective excitations, isopin diffusion) around the Fermi energy is strongly needed when studying the nuclear equation of state and the underlying in-medium properties concerning the nuclear interaction. In this contribution, we will present some experimental results concerning the transport properties of nuclear matter, focusing specifically on the determination of in-medium quantities such as mean free pathes and nucleon-nucleon cross sections around the Fermi energy. We will see that, in this specific energy range, energy and isospin dissipations exhibit very peculiar features, such as the crossover between 1-body to 2-body dissipation regimes corresponding to the transition between the nuclear response from Mean-Field to the nucleonic response through the appearance of nucleon-nucleon collisions.

  12. Skyrme models and nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Adam, C.; Haberichter, M.; Wereszczynski, A.

    2015-11-01

    We investigate the role of pressure in a class of generalized Skyrme models. We introduce pressure as the trace of the spatial part of the energy-momentum tensor and show that it obeys the usual thermodynamical relation. Then, we compute analytically the mean-field equation of state in the high- and medium-pressure regimes by applying topological bounds on compact domains. The equation of state is further investigated numerically for the charge-one Skyrmions. We identify which term in a generalized Skyrme model is responsible for which part in the equation of state. Further, we compare our findings with the corresponding results in the Walecka model.

  13. Unified description of equation of state and transport properties of nuclear matter

    SciTech Connect

    Benhar, Omar; Farina, Nicola; Valli, Marco; Fiorilla, Salvatore

    2008-10-13

    Correlated basis function perturbation theory and the formalism of cluster expansions have been recently employed to obtain an effective interaction from a state-of-the-art nucleon nucleon potential model. The approach based on the effective interaction allows for a consistent description of the nuclear matter ground state and nucleon-nucleon scattering in the nuclear medium. This paper reports the the results of numerical calculations of different properties of nuclear and neutron matter, including the equation of state and the shear viscosity and thermal conductivity transport coefficients, carried out using the effective interaction.

  14. Equation of state for nuclear matter in core-collapse supernovae by the variational method

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Takehara, Y.; Yamamuro, S.; Nakazato, K.; Suzuki, H.; Sumiyoshi, K.; Takano, M.

    2014-12-01

    We construct a new nuclear equation of state (EOS) for core-collapse supernova (SN) simulations using the variational many-body theory. For uniform nuclear matter, the EOS is constructed with the cluster variational method starting from the realistic nuclear Hamiltonian composed of the Argonne v18 two-body potential and the Urbana IX three-body potential. The masses and radii of neutron stars calculated with the obtained EOS at zero temperature are consistent with recent observational data. For non-uniform nuclear matter, we construct the EOS in the Thomas-Fermi approximation. In this approximation, we assume a functional form of the density distributions of protons, neutrons, and alpha-particles, and minimize the free energy density in a Wigner-Seitz cell with respect to the parameters included in the assumed density distribution functions. The phase diagram of hot nuclear matter at a typical temperature is reasonable as compared with that of the Shen EOS.

  15. Neutron drip line and the equation of state of nuclear matter

    SciTech Connect

    Oyamatsu, Kazuhiro; Iida, Kei; Koura, Hiroyuki

    2010-08-15

    We investigate how the neutron drip line is related to the density dependence of the symmetry energy by using a macroscopic nuclear model that allows us to calculate nuclear masses in a way that is dependent on the equation of state of asymmetric nuclear matter. The neutron drip line obtained from these masses is shown to appreciably shift to a neutron-rich side in a nuclear chart as the density derivative of the symmetry energy increases. Such a shift is clearly seen for light nuclei, a feature coming mainly from the surface property of neutron-rich nuclei.

  16. The equation of state of dense matter: from nuclear collisions to neutron stars

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.

    2008-01-01

    The equation of state (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner Hartree Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu Jona-Lasinio and the color dielectric models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.

  17. Equation of state of neutron star matter, and the nuclear symmetry energy

    SciTech Connect

    Loan, Doan Thi; Tan, Ngo Hai; Khoa, Dao T.; Margueron, Jerome

    2011-06-15

    The nuclear mean-field potentials obtained in the Hartree-Fock method with different choices of the in-medium nucleon-nucleon (NN) interaction have been used to study the equation of state (EOS) of the neutron star (NS) matter. The EOS of the uniform NS core has been calculated for the npe{mu} composition in the {beta} equilibrium at zero temperature, using version Sly4 of the Skyrme interaction as well as two density-dependent versions of the finite-range M3Y interaction (CDM3Yn and M3Y-Pn), and versions D1S and D1N of the Gogny interaction. Although the considered effective NN interactions were proven to be quite realistic in numerous nuclear structure and/or reaction studies, they give quite different behaviors of the symmetry energy of nuclear matter at supranuclear densities that lead to the soft and stiff scenarios discussed recently in the literature. Different EOS's of the NS core and the EOS of the NS crust given by the compressible liquid drop model have been used as input of the Tolman-Oppenheimer-Volkov equations to study how the nuclear symmetry energy affects the model prediction of different NS properties, like the cooling process as well as the gravitational mass, radius, and moment of inertia.

  18. Modern energy density functional and the current status of the equation of state of nuclear matter

    SciTech Connect

    Shlomo, S.

    2012-11-20

    We first describe a method, based on the simulated annealing approach, for determining a modern energy density functional within the Skyrme Hartree-Fock (HF) theory by carrying out a fit to extensive set of experimental data with additional constraints on the Skyrme parameters. Next, we review the HF-based random phase approximation (RPA) approach for calculating properties of giant resonances. We then present results of calculations for the centroid energies of giant resonances within the HF-based RPA and discuss the current status of the equation of state of nuclear matter.

  19. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.

    2013-06-01

    A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.

  20. From the lightest nuclei to the equation of state of asymmetric nuclear matter with realistic nuclear interactions

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Lovato, A.; Carlson, J.; Schmidt, Kevin E.

    2014-12-01

    We present microscopic calculations of light and medium mass nuclei and the equation of state of symmetric and asymmetric nuclear matter using different nucleon-nucleon interactions, including a new Argonne version that has the same spin-isospin structure as local chiral forces at next-to-next-to-leading order. The calculations are performed using auxiliary field diffusion Monte Carlo (AFDMC) combined with an improved variational wave function and sampling technique. The AFDMC method can now be used to successfully calculate the energies of very light to medium mass nuclei as well as the energy of isospin-asymmetric nuclear matter, demonstrating microscopically the quadratic dependence of the energy on the symmetry energy.

  1. Nuclear-matter equation of state with consistent two- and three-body perturbative chiral interactions

    NASA Astrophysics Data System (ADS)

    Coraggio, L.; Holt, J. W.; Itaco, N.; Machleidt, R.; Marcucci, L. E.; Sammarruca, F.

    2014-04-01

    We compute the energy per particle of infinite symmetric nuclear matter from chiral NLO3 (next-to-next-to-next-to-leading order) two-body potentials plus NLO2 three-body forces. The low-energy constants of the chiral three-nucleon force that cannot be constrained by two-body observables are fitted to reproduce the triton binding energy and the H3-He3 Gamow-Teller transition matrix element. In this way, the saturation properties of nuclear matter are reproduced in a parameter-free approach. The equation of state is computed up to third order in many-body perturbation theory, with special emphasis on the role of the third-order particle-hole diagram. The dependence of these results on the cutoff scale and regulator function is studied. We find that the inclusion of three-nucleon forces consistent with the applied two-nucleon interaction leads to a reduced dependence on the choice of the regulator only for lower values of the cutoff.

  2. Tabulated equation of state for supernova matter including full nuclear ensemble

    SciTech Connect

    Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N.

    2014-07-01

    This is an introduction to the tabulated database of stellar matter properties calculated within the framework of the Statistical Model for Supernova Matter (SMSM). The tables present thermodynamical characteristics and nuclear abundances for 31 values of baryon density (10{sup –8} < ρ/ρ{sub 0} < 0.32, ρ{sub 0} = 0.15 fm{sup –3} is the normal nuclear matter density), 35 values of temperature (0.2 MeV < T < 25 MeV), and 28 values of electron-to-baryon ratio (0.02 < Y{sub e} < 0.56). The properties of stellar matter in β equilibrium are also considered. The main ingredients of the SMSM are briefly outlined, and the data structure and content of the tables are explained.

  3. Nuclear matter equation of state including two-, three-, and four-nucleon correlations

    NASA Astrophysics Data System (ADS)

    Röpke, G.

    2015-11-01

    Light clusters (mass number A ≤4 ) in nuclear matter at subsaturation densities are described using a quantum statistical approach to calculate the quasiparticle properties and abundances of light elements. I review the formalism and approximations used and extend it with respect to the treatment of continuum correlations. Virial coefficients are derived from continuum contributions to the partial densities which depend on temperature, densities, and total momentum. The Pauli blocking is modified taking correlations in the medium into account. Both effects of continuum correlations lead to an enhancement of cluster abundances in nuclear matter at higher densities. Based on calculations for A =2 , estimates for the contributions with A =3 ,4 are given. The properties of light clusters and continuum correlations in dense matter are of interest for nuclear structure calculations, heavy-ion collisions, and astrophysical applications such as the formation of neutron stars in core-collapse supernovae.

  4. Fast rotating neutron stars with realistic nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.

    2015-07-01

    We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.

  5. Modern energy density functional for nuclei and the nuclear matter equation of state

    SciTech Connect

    Shlomo, S.

    2010-08-15

    We discuss a method of determining a modern energy density functional (EDF) in nuclei. We adopt a Skyrme type EDF and fit the Skyrme parameters to an extensive set of experimental data on the ground-state binding energies, radii, and the breathing mode energies of a wide range of nuclei. We further constrain the values of the Skyrme parameters by requiring positive values for the slope of the symmetry energy S, the enhancement factor {kappa}, associated with the isovector giant dipole resonance, and the Landau parameter G{sub 0}{sup '}. This is done within the approaches of Hartree-Fock (HF) and HF with the inclusion of correlation effects, using a simulated-annealing based algorithm forminimizing {chi}{sup 2}.We also present results of HF based random phase approximation for the excitation strength function of the breathing mode and discuss the current status of the nuclear matter incompressibility coefficient.

  6. Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density

    SciTech Connect

    Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. |||

    1997-01-01

    It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}

  7. Equation of state for neutron star matter

    SciTech Connect

    Shang-Hui, G.; Yun-Zao, G.; Leung, Y.C.; Zong-Wei, L.; Shao-Rong, L.

    1981-05-01

    We modify the relativistic mean field model proposed by Walecka to handle differently the short-range interaction induced by the vector meson. There are three parameters in the modified model, which are then fixed by fitting them to the properties of nuclear matter at saturation. The equation of state for pure neutron matter is computed. Our results differ substantially from those obtained by Walecka, but are in line with those obtained from the potential approach. The maximum neutron star mass is found tobe 1.7 M/sub sun/.

  8. Exotic States of Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto; Baldo, Marcello; Burgio, Fiorella; Schulze, Hans-Josef

    2008-02-01

    pt. A. Theory of nuclear matter EOS and symmetry energy. Constraining the nuclear equation of state from astrophysics and heavy ion reactions / C. Fuchs. In-medium hadronic interactions and the nuclear equation of state / F. Sammarruca. EOS and single-particle properties of isospin-asymmetric nuclear matter within the Brueckner theory / W. Zuo, U. Lombardo & H.-J. Schulze. Thermodynamics of correlated nuclear matter / A. Polls ... [et al.]. The validity of the LOCV formalism and neutron star properties / H. R. Moshfegh ... [et al.]. Ferromagnetic instabilities of neutron matter: microscopic versus phenomenological approaches / I. Vidaã. Sigma meson and nuclear matter saturation / A. B. Santra & U. Lombardo. Ramifications of the nuclear symmetry energy for neutron stars, nuclei and heavy-ion collisions / A. W. Steiner, B.-A. Li & M. Prakash. The symmetry energy in nuclei and nuclear matter / A. E. L. Dieperink. Probing the symmetry energy at supra-saturation densities / M. Di Toro et al. Investigation of low-density symmetry energy via nucleon and fragment observables / H. H. Wolter et al. Instability against cluster formation in nuclear and compact-star matter / C. Ducoin ... [et al.]. Microscopic optical potentials of nucleon-nucleus and nucleus-nucleus scattering / Z.-Y. Ma, J. Rong & Y.-Q. Ma -- pt. B. The neutron star crust: structure, formation and dynamics. Neutron star crust beyond the Wigner-Seitz approximation / N. Chamel. The inner crust of a neutron star within the Wigner-Seitz method with pairing: from drip point to the bottom / E. E. Saperstein, M. Baldo & S. V. Tolokonnikov. Nuclear superfluidity and thermal properties of neutron stars / N. Sandulescu. Collective excitations: from exotic nuclei to the crust of neutron stars / E. Khan, M. Grasso & J. Margueron. Monte Carlo simulation of the nuclear medium: fermi gases, nuclei and the role of Pauli potentials / M. A. Pérez-García. Low-density instabilities in relativistic hadronic models / C. Provid

  9. Nuclear matter magnetization in the Skyrme model

    SciTech Connect

    Aguirre, R.

    2011-05-15

    The effects of an external magnetic field on the nuclear medium are studied within the Skyrme model of the nuclear interaction. The equation of state, spin polarization, and magnetization are evaluated at zero temperature for both neutron matter and isospin symmetric nuclear matter. We consider the anomalous magnetic moments of the nucleons and the quantization induced by a magnetic field over the proton energy spectrum. A comparison of two versions of the model, allowing or not for spontaneous magnetization, is performed. We cover a range of magnetic-field strengths and matter densities appropriate for astrophysical studies.

  10. Holographic cold nuclear matter and neutron star

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Kubo, Kouki; Tachibana, Motoi; Toyoda, Fumihiko

    2014-04-01

    We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8//lineD8 branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing Fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.

  11. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  12. Quantum Monte Carlo calculations of neutron and nuclear matter

    NASA Astrophysics Data System (ADS)

    Gandolfi, Stefano

    2014-09-01

    Recent advances in experiments of the symmetry energy of nuclear matter and in neutron star observations yield important new insights on the equation of state of neutron matter at nuclear densities. In this regime the EOS of neutron matter plays a critical role in determining the mass-radius relationship for neutron stars. We show how microscopic calculations of neutron matter, based on realistic two- and three-nucleon forces, make clear predictions for the relation between the isospin-asymmetry energy of nuclear matter and its density dependence, and the maximum mass and radius for a neutron star. We will also discuss the recent extension of the Auxiliary Field Diffusion Monte Carlo method to study the equation of state of nuclear matter using two-body nucleon interactions. The equation of state of isospin-asymmetric nuclear matter will also be discussed.

  13. Effects of medium-induced {rho}-{omega} meson mixing on the equation of state in isospin-asymmetric nuclear matter

    SciTech Connect

    Jiang Weizhou; Li Baoan

    2009-10-15

    We reexamine effects of the {rho}-{omega} meson mixing mediated by nucleon polarizations on the symmetry energy in isospin-asymmetric nuclear matter. Taking into account the rearrangement term neglected in previous studies by others, we evaluate the {rho}-{omega} mixing angle in a novel way within the relativistic mean-field models with and without chiral limits. It is found that the symmetry energy is significantly softened at high densities contrary to the finding in earlier studies. As the first step of going beyond the lowest-order calculations, we also solve the Dyson equation for the {rho}-{omega} mixing. In this case, it is found that the symmetry energy is not only significantly softened by the {rho}-{omega}mixing at suprasaturation densities, similar to the lowest-order {rho}-{omega} mixing, but interestingly also softened at subsaturation densities. In addition, the softening of the symmetry energy at subsaturation densities can be partly suppressed by the nonlinear self-interaction of the {sigma} meson.

  14. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  15. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  16. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  17. Equation of State of Nucleonic Matter

    NASA Astrophysics Data System (ADS)

    Cassing, W.

    2000-02-01

    The nuclear equation of state (EoS) is investigated by flow phenomena in relativistic heavy-ion collisions, both in transverse and radial direction, in comparison to experimental data from 150 A MeV to 11 A GeV. To this aim the collective dynamics of the nucleus--nucleus collision is described within a transport model of the coupled channel RBUU type. There are two factors which dominantly determine the baryon flow at these energies: the momentum dependence of the scalar (US) and vector potentials (Uμ ) for baryons and the resonance/string degrees of freedom for energetic hadron excitations. We fix the explicit momentum dependence of the nucleon--meson couplings by the nucleon optical potential up to 1 GeV and extrapolate to higher energy. When assuming the optical potential to vanish identically for Ekin ≥ 3.5 GeV we simultaneously describe the sideward flow data of the PLASTIC BALL, FOPI, EoS and E877 collaborations, the elliptic flow data of the E895 and E877 collaborations and approximately the rapidity and transverse mass distribution of protons at AGS energies without employing any explicit assumption on a phase transition in the EoS. However, the gradual change from hadronic to string degrees of freedom with increasing bombarding energy can be viewed as a transition from hadronic to string matter, i.e. a dissolution of hadrons at high energy density.

  18. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  19. Nuclear and neutron matter studies

    SciTech Connect

    Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.

    1995-08-01

    We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.

  20. Hot nuclear matter

    SciTech Connect

    Chapman, S.

    1992-11-01

    The goal in this thesis is thus twofold: The first is to investigate the feasibility of using heavy ion collisions to create conditions in the laboratory which are ripe for the formation of a quark-gluon plasma. The second is to develop a technique for studying some of the many non-perturbative features of this novel phase of matter.

  1. Thermodynamics of neutron-rich nuclear matter

    NASA Astrophysics Data System (ADS)

    López, Jorge A.; Porras, Sergio Terrazas; Gutiérrez, Araceli Rodríguez

    2016-07-01

    This manuscript presents methods to obtain properties of neutron-rich nuclear matter from classical molecular dynamics. Some of these are bulk properties of infinite nuclear matter, phase information, the Maxwell construction, spinodal lines and symmetry energy.

  2. Particle-hole states in nuclear matter

    SciTech Connect

    Matyas, C.A.

    1985-01-01

    This work deals with the collective excitations in nuclear matter, from the point of view of the TDA approximation. Our calculations involved the construction of a Hamiltonian, expressed as a matrix in the space of particle-hole excitations with a given momentum transfer. We used in this Hamiltonian an average single nucleon potential, and (in some cases) an effective interaction obtained for the potential HEA in the relativistic Brueckner-Hartree Fock theory. The eigenvectors of the TDA-Hamiltonian were used to compute the strength of the collective response of nuclear matter to external probes. Our results, succinctly described in the last section, are summarized in a set of figures at the end of this monograph. The specific form of the TDA equations that we used, and the procedure to calculate the degree of collectivity of the solutions, is studied in detail in the fifth chapter. A derivation of the TDA equations, and a discussion of the solutions for a separable potential, is given in the fourth chapter. The structure of a non-relativistic potential for a system of two nucleons is examined in the third chapter, in several representations. On the other hand, the particle-hole states relevant to our discussions on the TDA equations are introduced in the first two chapters.

  3. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star's equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  4. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star`s equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  5. Equation of state of wet granular matter

    NASA Astrophysics Data System (ADS)

    Fingerle, A.; Herminghaus, S.

    2008-01-01

    An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb . The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T) , of wet granular matter for D=2 , valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures Tmatter [A. Fingerle and S. Herminghaus, Phys. Rev. Lett. 97, 078001 (2006)], and extends the effect to higher dimensional systems. Since the limiting case of sticky bonds, Ecb≫T , is of relevance for aggregation in general, simulations have been performed which show very good

  6. Elementary diagrams in nuclear and neutron matter

    SciTech Connect

    Wiringa, R.B.

    1995-08-01

    Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developed a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.

  7. Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars

    DOE PAGESBeta

    Gandolfi, S.

    2015-02-01

    We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.

  8. Monte Carlo approach to nuclei and nuclear matter

    SciTech Connect

    Fantoni, Stefano; Gandolfi, Stefano; Illarionov, Alexey Yu.; Schmidt, Kevin E.; Pederiva, Francesco

    2008-10-13

    We report on the most recent applications of the Auxiliary Field Diffusion Monte Carlo (AFDMC) method. The equation of state (EOS) for pure neutron matter in both normal and BCS phase and the superfluid gap in the low-density regime are computed, using a realistic Hamiltonian containing the Argonne AV8' plus Urbana IX three-nucleon interaction. Preliminary results for the EOS of isospin-asymmetric nuclear matter are also presented.

  9. Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach

    SciTech Connect

    S. Lawley; W. Bentz; A.W. Thomas

    2006-02-10

    We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

  10. Superfluidity in asymmetric nuclear matter

    SciTech Connect

    Sedrakian, A.; Alm, T.; Lombardo, U.

    1997-02-01

    The onset of superfluidity in isospin-asymmetric nuclear matter is investigated within the BCS theory. A neutron-proton superfluid state in the channel {sup 3}S{sub 1}-{sup 3}D{sub 1} comes about from the interplay between thermal excitations and separation {delta}{mu} of the two Fermi surfaces. The superfluid state disappears above the threshold value of the density-asymmetry parameter {alpha}=(n{sub n}{minus}n{sub p})/n{approx_equal}0.35. For large enough shift between the two Fermi surfaces {delta}{mu}=(1)/(2)({mu}{sub n}{minus}{mu}{sub p}) the transition to the normal state becomes a first-order transition and a second gap solution develops. This solution, however, corresponds to a metastable superfluid state which is unstable with respect to the transition to the normal state. {copyright} {ital 1997} {ital The American Physical Society}

  11. Ground-state energy of nuclear matter

    NASA Astrophysics Data System (ADS)

    Baker, George A., Jr.; Benofy, L. P.; Fortes, Mauricio

    1988-07-01

    The low-density expansion of the ground-state energy for spin-dependent forces is given, through order k6F for the ladder approximation and through order k6FlnkF for the complete energy, in terms of derivatives with respect to the strength of the attractive part of the interaction defined by the Baker-Hind-Kahane potential. The ladder approximation is also computed by the numerical solution of the K-matrix equation. The resulting series gives a satisfactory representation of the energy at interesting densities. Using Padé extrapolation techniques, both in the density and in the attractive part of the interaction, we obtain the ground-state energy of nuclear matter.

  12. Asymptotic analysis of the Boltzmann equation for dark matter relics

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Sarkar, Sarben

    2012-10-01

    This paper presents an asymptotic analysis of the Boltzmann equations (Riccati differential equations) that describe the physics of thermal dark-matter-relic abundances. Two different asymptotic techniques are used, boundary-layer theory, which makes use of asymptotic matching, and the delta expansion, which is a powerful technique for solving nonlinear differential equations. Two different Boltzmann equations are considered. The first is derived from general relativistic considerations and the second arises in dilatonic string cosmology. The global asymptotic analysis presented here is used to find the long-time behavior of the solutions to these equations. In the first case, the nature of the so-called freeze-out region and the post-freeze-out behavior is explored. In the second case, the effect of the dilaton on cold dark-matter abundances is calculated and it is shown that there is a large-time power-law fall off of the dark-matter abundance.

  13. Equation of State of Structured Matter at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Yasutake, N.; Tatsumi, T.

    We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.

  14. EOSDB: The database for nuclear equations of state*

    NASA Astrophysics Data System (ADS)

    Ishizuka, Chikako; Suda, Takuma; Suzuki, Hideyuki; Ohnishi, Akira; Sumiyoshi, Kohsuke; Toki, Hiroshi

    2015-02-01

    The nuclear equation of state (EoS) plays an important role in understanding the formation of compact objects such as neutron stars and black holes. The true nature of the EoS has been a matter of debate at any density range not only in nuclear physics but also in astronomy and astrophysics. We have constructed a database of EoSs by compiling data from the literature. Our database contains the basic properties of the nuclear EoS of symmetric nuclear matter and of pure neutron matter. It also includes detailed information about the theoretical models, for example the adopted methods and assumptions in individual models. The novelty of the database is to consider new experimental probes such as symmetry energy, its slope with respect to the baryon density, and incompressibility, which enables users to check their model dependence. We demonstrate the performance of the EOSDB through examinations of model dependence among different nuclear EoSs. It is revealed that some theoretical EoSs, commonly used in astrophysics, do not satisfactorily agree with the experimental constraints.

  15. Phenomenological neutron star equations of state. 3-window modeling of QCD matter

    NASA Astrophysics Data System (ADS)

    Kojo, Toru

    2016-03-01

    We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, nBlesssim 2ns (ns: nuclear saturation density), we utilize purely hadronic equations of state that are constrained by empirical observations at density n_B˜ n_s and neutron star radii. At high density, nBgtrsim 5ns, we use the percolated quark matter equations of state which must be very stiff to pass the two-solar mass constraints. The intermediate domain at 2lesssim nB/ns lesssim 5 is described as neither purely hadronic nor percolated quark matter, and the equations of state are inferred by interpolating hadronic and percolated quark matter equations of state. Possible forms of the interpolation are severely restricted by the condition on the (square of) speed of sound, 0le cs2 le 1. The characteristics of the 3-window equation of state are compared with those of conventional hybrid and self-bound quark matters. Using a schematic quark model for the percolated domain, it is argued that the two-solar mass constraint requires the model parameters to be as large as their vacuum values, indicating that the gluon dynamics remains strongly non-perturbative to nB˜ 10ns. The hyperon puzzle is also briefly discussed in light of quark descriptions.

  16. Soliton matter as a model of dense nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1985-01-01

    We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures.

  17. Cosmological constraints on the matter equation of state

    SciTech Connect

    Calabrese, Erminia; Pagano, Luca; Melchiorri, Alessandro; Migliaccio, Marina; De Troia, Grazia; Natoli, Paolo

    2009-09-15

    We investigate the impact of a nonstandard time evolution of the dark matter component on current cosmological bounds from cosmic microwave background (CMB) anisotropies. We found that a less than 0.1% variation in the effective dark matter equation of state w{sub dm} can drastically change current CMB bounds on the matter density, the Hubble parameter and the age of the Universe. A flat universe without dark energy could provide an excellent fit to current CMB data, providing that w{sub dm}{approx}-10{sup -2}.

  18. Relativity damps OPEP in nuclear matter

    SciTech Connect

    Banerjee, M.K.

    1998-06-01

    Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M{sup *}/M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M{sup *} it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled {pi}N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.

  19. Charged anisotropic matter with linear or nonlinear equation of state

    SciTech Connect

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-15

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  20. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    SciTech Connect

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  1. Nuclear "pasta matter" for different proton fractions

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Iida, K.; Maruhn, J. A.; Reinhard, P.-G.

    2014-11-01

    Nuclear matter under astrophysical conditions is explored with time-dependent and static Hartree-Fock calculations. The focus is in a regime of densities where matter segregates into liquid and gaseous phases unfolding a rich scenario of geometries, often called nuclear pasta shapes (e.g., spaghetti, lasagna). Particularly the appearance of the different phases depending on the proton fraction and the transition to uniform matter are investigated. In this context the neutron background density is of special interest, because it plays a crucial role in the type of pasta shape that is built. The study is performed in two dynamical ranges, once for hot matter and once at temperature zero, to investigate the effect of cooling.

  2. Medium polarization in asymmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Zhang, S. S.; Cao, L. G.; Lombardo, U.; Schuck, P.

    2016-04-01

    The influence of the medium polarization on the effective nuclear interaction of asymmetric nuclear matter is calculated in the framework of the induced interaction theory. The strong isospin dependence of the density and spin-density fluctuations is studied as it is driven by the interplay between the neutron and proton medium polarizations. Going from symmetric nuclear matter to pure neutron matter, the crossover of the induced interaction from attractive to repulsive in the spin-singlet state is determined as a function of the isospin imbalance. The density range in which the crossover occurs is also determined. For the spin-triplet state the induced interaction turns out to be always repulsive. The implications of the results for neutron star superfluid phases are briefly discussed.

  3. Granular matter and the time-dependent viscous eikonal equation

    NASA Astrophysics Data System (ADS)

    Hadeler, K. P.; Schieborn, Dirk

    2012-03-01

    Deposition of granular matter under gravity can be described by the well-known two-layer model for a standing and a rolling layer. Matter from sources enters the rolling layer which flows along the gradient of the standing layer and finally enters the standing layer via interaction of the two layers. From this system of two coupled hyperbolic partial differential equations a time-dependent viscous eikonal equation is derived as a limiting case for weak sources, a thin rolling layer and fast convection of the rolling layer. This equation, supplied with boundary conditions, describes the deposition of dry sand from evenly distributed sources onto a flat table with a vertical rim of variable height. The stationary problem can also be seen as an application of the method of vanishing viscosity to the eikonal equation. For certain types of interaction between the two layers the resulting eikonal equation can be transformed into a linear equation. This transformation yields additional insight into the problem.

  4. Phase structure in a chiral model of nuclear matter

    SciTech Connect

    Phat, Tran Huu; Anh, Nguyen Tuan; Tam, Dinh Thanh

    2011-08-15

    The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.

  5. Einstein's equations and a cosmology with finite matter

    NASA Astrophysics Data System (ADS)

    Clavelli, L.; Goldstein, Gary R.

    2015-04-01

    We discuss various space-time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.

  6. Resonance properties in nuclear matter

    SciTech Connect

    Ehehalt, W.; Cassing, W.; Engel, A.; Mosel, U.; Wolf, G. )

    1993-06-01

    We analyze the formation and decay properties of nucleon resonances formed in heavy-ion collisions at 1--2 GeV/[ital u] within a microscopic transport approach. In case of Au+Au reactions the density of [Delta] resonances reaches 0.15 fm[sup [minus]3] in the central cell for a time period of the order of 10 fm/[ital c] such that one can legitimately speak about [ital resonance] [ital matter]. The lifetime of the [Delta]'s is found to be shortened at high density by only 20% due to the in-medium channel [Delta]+[ital N][r arrow][ital N]+[ital N].

  7. Probing cold dense nuclear matter.

    PubMed

    Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L

    2008-06-13

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658

  8. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  9. The neutron star radius and the dense-matter equation of state

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Servillat, M.; Webb, N.; Rutledge, R. E.

    2014-01-01

    A physical understanding of the behaviour of cold ultra-dense matter - at and above nuclear density - can only be achieved by the study of neutron stars, and the thermal emission from quiescent low-mass X-ray binaries inside globular clusters have proven very useful for that purpose. The recent 1.97±0.04 Msun measurement for the radio pulsar PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of states (EoS) are disfavoured, in favour of hadronic "normal matter" EoSs. Over much of the neutron star mass-radius parameter space, "normal matter" EoSs produce lines of quasi-constant radii (within the measurement uncertainties, of about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to un-modelled spectrally hard components. Our results suggest a neutron star radius much smaller than previously reported, with a value Rns = 9.1±1.4 km, at 90% confidence, using conservative assumptions, which suggests that neutron start matter is best described by the softest "normal matter" equations of state.

  10. Measuring the neutron star radius to constrain the dense-matter equation of state.

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Servillat, Mathieu; Webb, Natalie; Rutledge, Robert E.

    2014-08-01

    A physical understanding of the behaviour of cold ultra-dense matter - at and above nuclear density - can only be achieved by the study of neutron stars, and the thermal emission from quiescent low-mass X-ray binaries inside globular clusters have proven very useful for that purpose. The recent ~2M⊙ mass measurements suggest that strange quark matter and hyperons/kaons condensate equations of states (EoS) are disfavoured, in favour of hadronic "normal matter" EoSs. Over much of the neutron star mass-radius parameter space, "normal matter" EoSs produce lines of quasi-constant radii (within the measurement uncertainties, of about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to un-modelled spectrally hard components. Our results suggest a neutron star radius much smaller than previously reported, with a value RNS = 9.1±1.4 km, at 90% confidence, using conservative assumptions, which suggests that neutron star matter is best described by the softest "normal matter" equations of state.

  11. Chiral density wave in nuclear matter

    NASA Astrophysics Data System (ADS)

    Heinz, Achim; Giacosa, Francesco; Rischke, Dirk H.

    2015-01-01

    Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ0, where ρ0 is the nuclear matter ground-state density.

  12. Supernovae and high density nuclear matter

    SciTech Connect

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  13. Neutron star merger, gravitational waves, and the dense matter equation of state

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yuichiro

    2014-09-01

    The equation of state of dense matter that determines properties of the neutron star also characterizes the dynamics and gravitational waveforms emitted during binary neutron-star mergers. Understanding the effects of the equation of state on them requires numerical-relativity simulations of the mergers and a number of strategies for extracting information of equation of sate from gravitational waves have been proposed. Furthermore, recent numerical-relativity simulations also clarified that the neutron-star equation of state has a significant impact on the r-process nucleosynthesis which proceeds in the neutron-rich ejecta of the mergers. The r-process in the mergers has been accumulated wide interests both as a possible origin of heavy nuclei and a promising electro-magnetic counterpart to gravitational waves. I will review these topics and discuss possible feedbacks to the nuclear physics. The equation of state of dense matter that determines properties of the neutron star also characterizes the dynamics and gravitational waveforms emitted during binary neutron-star mergers. Understanding the effects of the equation of state on them requires numerical-relativity simulations of the mergers and a number of strategies for extracting information of equation of sate from gravitational waves have been proposed. Furthermore, recent numerical-relativity simulations also clarified that the neutron-star equation of state has a significant impact on the r-process nucleosynthesis which proceeds in the neutron-rich ejecta of the mergers. The r-process in the mergers has been accumulated wide interests both as a possible origin of heavy nuclei and a promising electro-magnetic counterpart to gravitational waves. I will review these topics and discuss possible feedbacks to the nuclear physics. Supported by the JSPS Grant-in-Aid for Scientific Research (24244028, 25103510), Scientific Research on Innovative Area (20105004), and HPCI Strategic Program.

  14. Symmetry Energy and Surface Clustering in Nuclei; Probing the Asymmetric Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Abdullah, Nooraihan; Nasir Usmani, Qamar; Anwar, Khairul; Sauli, Zaliman

    We investigate the properties of asymmetric nuclear matter (ANM) which is consistent with clustering at low densities of nuclear matter. Due to clustering, the equation of state of asymmetric nuclear matter demonstrates peculiar properties. It is shown that the ground of ANM has two separate phases of normal nuclear matter and neutron matter for N > Z. This situation is at variance with the conventional picture of uniform distribution of neutrons and protons for ANM. Thus, this leads to an excellent understanding of the symmetry energy data of Wada et al. [1] in the density range of 0.048-0.032 fm-3. It is shown that inclusion of clustering at the nuclear surface is essential to explain about nuclei near the neutron drip line. The research incorporates 2149 nuclei [2] with N,Z ≥ 8.

  15. Probing nuclear matter with jet conversions

    SciTech Connect

    Liu, W.; Fries, R. J.

    2008-05-15

    We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum p{sub T}. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum p{sub T} that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/{lambda} while energy loss probes the average squared momentum transfer {mu}{sup 2}/{lambda}. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-p{sub T} identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects.

  16. Wanted! Nuclear Data for Dark Matter Astrophysics

    SciTech Connect

    Gondolo, P.

    2014-06-15

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.

  17. INTERACTING QUARK MATTER EQUATION OF STATE FOR COMPACT STARS

    SciTech Connect

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2014-02-01

    Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.

  18. Nuclear matter within the continuous choice

    SciTech Connect

    Baldo, M.; Bombaci, I.; Ferreira, L.S.; Giansiracusa, G.; Lombardo, U. Dipartimento di Fisica, Universita di Catania, Corso Italia 57, 95129 Catania, Italy)

    1991-06-01

    The saturation curve of symmetric nuclear matter is calculated at the Brueckner-Hartree-Fock level of approximation within the continuous choice for the single-particle potential. The realistic local Argonne {ital v}{sub 14} potential is used and the results are compared with similar calculations presented in the literature. The binding energies per nucleon around saturation agree closely with previous results obtained with separable versions of the same potential as well as of the Paris potential.

  19. Finite-temperature calculations for spin-polarized asymmetric nuclear matter with the lowest order constrained variational method

    SciTech Connect

    Bigdeli, M.; Bordbar, G. H.; Poostforush, A.

    2010-09-15

    The lowest order constrained variational technique has been used to investigate some of the thermodynamic properties of spin-polarized hot asymmetric nuclear matter, such as the free energy, symmetry energy, susceptibility, and equation of state. We have shown that the symmetry energy of the nuclear matter is substantially sensitive to the value of spin polarization. Our calculations show that the equation of state of the polarized hot asymmetric nuclear matter is stiffer for higher values of the polarization as well as the isospin asymmetry parameter. Our results for the free energy and susceptibility show that spontaneous ferromagnetic phase transition cannot occur for hot asymmetric matter.

  20. Neutrinos, Dark Matter and Nuclear Detection

    SciTech Connect

    Goldstein, W H; Bernstein, A; Craig, W W; Johnson, M

    2007-05-29

    Solutions to problems in nuclear non-proliferation and counter-terrorism may be found at the forefront of modern physics. Neutrino oscillation experiments, dark matter searches, and high energy astrophysics, are based on technology advances that have may also have application to nuclear detection. The detection problems share many characteristics, including energy scales, time structures, particle-type, and, of course, the combination of high backgrounds and low signal levels. This convergence of basic and applied physics is realized in non-proliferation and homeland security projects at Lawrence Livermore National Laboratory. Examples described here include reactor anti-neutrino monitoring, dual-phase noble liquid TPC development, gamma-ray telescopes, and nuclear resonance fluorescence.

  1. Relativistic mean-field hadronic models under nuclear matter constraints

    NASA Astrophysics Data System (ADS)

    Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.

    2014-11-01

    Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The

  2. Dynamics of hot and dense nuclear and partonic matter

    SciTech Connect

    Bratkovskaya, E. L.; Cassing, W.; Linnyk, O.; Konchakovski, V. P.; Voronyuk, V.; Ozvenchuk, V.

    2012-06-15

    The dynamics of hot and dense nuclear matter is discussed from the microscopic transport point of view. The basic concepts of the Hadron-String-Dynamical transport model (HSD)-derived from Kadanoff-Baym equations in phase phase-are presented as well as 'highlights' of HSD results for different observables in heavy-ion collisions from 100 A MeV (SIS) to 21 A TeV(RHIC) energies. Furthermore, a novel extension of the HSD model for the description of the partonic phase-the Parton-Hadron-String-Dynamics (PHSD) approach-is introduced. PHSD includes a nontrivial partonic equation of state-in line with lattice QCD-as well as covariant transition rates from partonic to hadronic degrees of freedom. The sensitivity of hadronic observables to the partonic phase is demonstrated for relativistic heavy-ion collisions from the FAIR/NICA up to the RHIC energy regime.

  3. Probing the Equation of State of Neutron-Rich Matter with Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An

    2006-06-01

    The equation of state (EOS) of neutron-rich matter plays many important roles in both nuclear physics and astrophysics. However, it is still very poorly known, especially its isospin dependent part, namely the symmetry energy. Nuclear reactions with neutron-rich nuclei, stable and/or radioactive, provide a great opportunity to pin down the EOS of isospin asymmetric nuclear matter. In this talk, we report some recent theoretical progress in this field within an isospin and momentum dependent transport model (IBUU04). Using in-medium nucleon-nucleon cross sections consistent with the nuclear mean field used in the transport model, a symmetry energy of Esym(ρ) ≈ 31.6(ρ/ρ0)0.69 was found most acceptable compared with both the MSU isospin diffusion data and the presently acceptable neutron-skin thickness in 208Pb. The isospin dependent part Kasy(ρ0) of isobaric nuclear incompressibility was further narrowed down to -500 ± 50 MeV. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  4. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  5. Nucleon sigma term and quark condensate in nuclear matter

    SciTech Connect

    K. Tsushima; K. Saito; A. W. Thomas; A. Valcarce

    2007-03-01

    We study the bound nucleon sigma term and its effect on the quark condensate in nuclear matter. In the quark-meson coupling (QMC) model it is shown that the nuclear correction to the sigma term is small and negative. Thus, the correction decelerates the decrease of the quark condensate in nuclear matter. However, the quark condensate in nuclear matter is controlled primarily by the scalar-isoscalar sigma field of the model. It appreciably moderates the decrease relative to the leading term at densities around and larger than the normal nuclear matter density.

  6. Is nuclear matter a quantum crystal?

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1973-01-01

    A possible alternative to the ordinary gas-like computation for nuclear matter is investigated under the assumption that the nucleons are arranged in a lattice. BCC, FCC and HCP structures are investigated. Only HCP shows a minimum in the energy vs. density curve with a modest binding energy of -1.5 MeV. The very low density limit is investigated and sensible results are obtained only if the tensor force decreases with the density. A study of the elastic properties indicates that the previous structures are mechanically unstable against shearing stresses.

  7. Hadronization measurements in cold nuclear matter

    SciTech Connect

    Dupre, Raphael

    2015-05-01

    Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.

  8. Three-body equations for nuclear reactions

    SciTech Connect

    Chao, S.H.

    1980-01-01

    The problem of calculating three-body differential cross sections for two-body interactions which are local in configuration space is considered. The integral equations of Faddeev and recent modifications are reviewed. The difficulties both in solving and interpreting the various equations are discussed. An alternative set of exact operator equations is proposed. This new set of operator equations involve the two-body potentials directly rather than the two-body t-matrices. The solutions represent quantities different from those of previous equations. The formal structure of the operator equations is similar to but different from the Faddeev equations. It is demonstrated that the equations contain no terms which correspond to disconnected diagrams. The transformation of the equations to the Faddeev equations is given. Integral equations are obtained using the momentum representation. Only Cauchy-type singularities occur in the Green's function, and the equations have unique solutions. No off-energy shell t-matrices are required. Transition amplitudes are obtained from the solutions by quadrature, so that effects which result from the nature of the final state can be separated from the three-body effects. The angular momentum reduction of Omnes is used to obtain two-dimensional coupled integral equations. A method of numerical solution is developed using a generalization of the approximate product integration method due to Young. Examples corresponding to the reactions /sup 16/O(d,p)/sup 17/O g.s and /sup 16/O(d,d)/sup 16/O in two dimensions and /sup 16/O(d,p)/sup 17/O* (0.87 MeV) in three dimensions for a deuteron enegy of 5 MeV are considered using Gaussian potentials. The convergence of the summation over angular momentum is examined and a comparison is made with experiment to obtain the spectroscopic factor for the 0.87 MeV state of /sup 17/O.

  9. EQUATION OF STATE AND NEUTRON STAR PROPERTIES CONSTRAINED BY NUCLEAR PHYSICS AND OBSERVATION

    SciTech Connect

    Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.

    2013-08-10

    Microscopic calculations of neutron matter based on nuclear interactions derived from chiral effective field theory, combined with the recent observation of a 1.97 {+-} 0.04 M{sub Sun} neutron star, constrain the equation of state of neutron-rich matter at sub- and supranuclear densities. We discuss in detail the allowed equations of state and the impact of our results on the structure of neutron stars, the crust-core transition density, and the nuclear symmetry energy. In particular, we show that the predicted range for neutron star radii is robust. For use in astrophysical simulations, we provide detailed numerical tables for a representative set of equations of state consistent with these constraints.

  10. Influence of spin polarizability on liquid gas phase transition in the nuclear matter

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bigdeli, M.; Bordbar, G. H.

    2015-10-01

    In this paper, we investigate the liquid gas phase transition for the spin polarized nuclear matter. Applying the lowest order constrained variational (LOCV) method, and using two microscopic potentials, AV18 and UV14+TNI, we calculate the free energy, equation of state (EOS), order parameter, entropy, heat capacity and compressibility to derive the critical properties of spin polarized nuclear matter. Our results indicate that for the spin polarized nuclear matter, the second-order phase transition takes place at lower temperatures with respect to the unpolarized one. It is also shown that the critical temperature of our spin polarized nuclear matter with a specific value of spin polarization parameter is in good agreement with the experimental result.

  11. Big Bang synthesis of nuclear dark matter

    NASA Astrophysics Data System (ADS)

    Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.

    2015-06-01

    We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳ 108, may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫ 108, are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

  12. Spin polarized asymmetric nuclear matter and neutron star matter within the lowest order constrained variational method

    SciTech Connect

    Bordbar, G. H.; Bigdeli, M.

    2008-01-15

    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.

  13. Neutron stars, fast pulsars, supernovae and the equation of state of dense matter

    SciTech Connect

    Glendening, N.K.

    1989-06-01

    We discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neutron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general theory of relativity is correct at the macroscopic scale. If the millisecond pulses briefly observed in the remnant of SN1987A can be attributed to uniform rotation of a pulsar, then a very severe constraint is placed on the equation of state. The theory again is very secure. The precise nature of the constraint is not yet understood, but it appears that the equation of state must be neither too soft nor stiff, and it may be that there is information not only on the stiffness of the equation of state but on its shape. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Not even the broad category of mechanism for the explosion is agreed upon (prompt shock, delayed shock, or nuclear explosion). In connection with very fast pulsars, we include some speculations on pure quark matter stars, and on possible scenarios for understanding the disappearance of the fast pulsar in SN1987A. 47 refs., 16 figs., 1 tab.

  14. Quark mean field approach with derivative coupling for nuclear matter

    SciTech Connect

    Kawabata, M.; Akiyama, S.; Futami, Y.; Nakasone, T.; Yukino, T.

    2008-05-15

    We propose the quark mean field model including derivative coupling between quarks and scalar mesons in nuclear matter. This model concisely interprets an increasing size of the nucleon as well as a modification of coupling constant in the nuclear environment.

  15. The many facets of the (non-relativistic) Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Giuliani, G.; Zheng, H.; Bonasera, A.

    2014-05-01

    A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.

  16. Nuclear matter in the early universe

    NASA Astrophysics Data System (ADS)

    Barros, Celso de Camargo; da Cunha, Ivan Eugênio

    2015-12-01

    Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10-6s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.

  17. Nuclear matter in the early universe

    SciTech Connect

    Barros, Celso de Camargo; Cunha, Ivan Eugênio da

    2015-12-17

    Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10{sup −6}s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.

  18. THE NEUTRON STAR MASS-RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER

    SciTech Connect

    Steiner, Andrew W.; Brown, Edward F.; Lattimer, James M. E-mail: ebrown@pa.msu.edu

    2013-03-01

    The equation of state (EOS) of dense matter has been a long-sought goal of nuclear physics. EOSs generate unique mass versus radius (M-R) relations for neutron stars, the ultra-dense remnants of stellar evolution. In this work, we determine the neutron star mass-radius relation and, based on recent observations of both transiently accreting and bursting sources, we show that the radius of a 1.4 solar mass neutron star lies between 10.4 and 12.9 km, independent of assumptions about the composition of the core. We show, for the first time, that these constraints remain valid upon removal from our sample of the most extreme transient sources or of the entire set of bursting sources; our constraints also apply even if deconfined quark matter exists in the neutron star core. Our results significantly constrain the dense matter EOS and are furthermore consistent with constraints from both heavy-ion collisions and theoretical studies of neutron matter. We predict a relatively weak dependence of the symmetry energy on the density and a value for the neutron skin thickness of lead which is less than 0.20 fm, results that are testable in forthcoming experiments.

  19. Strangeness and charm in nuclear matter

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Cabrera, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis

    2013-09-01

    The properties of strange (K, Kbar and K) and open-charm (D, Dbar and D*) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the K, Kbar and K spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the γA→K+KA‧ reaction, which we propose as a tool to detect in-medium modifications of the K meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of D-mesic nuclei at FAIR energies.

  20. Probing the nuclear equation-of-state and the symmetry energy with heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Verde, Giuseppe

    2014-03-01

    The present status of studies aimed at constraining the nuclear equation of state with heavy-ion collision dynamics is presented. Multifragmentation phenomena, including their isotopic distributions, charge correlations and emission time-scales, may revel the existence of liquid-gas transitions in the phase diagram. Exploring the isotopic degree of freedom in nuclear dynamics is then required in order to constrain the equation of state of asymmetric nuclear matter which presently represents a major priority due to its relevance to both nuclear physics and astrophysics. Some observables that have successfully constrained the density dependence of the symmetry energy are presented, such as neutron-proton yield ratios and isospin diffusion and drift phenomena. The reported results and status of the art is discussed by also considering some of the present problems and some future perspectives for the heavy-ion collision community.

  1. Incompressibility in finite nuclei and nuclear matter

    NASA Astrophysics Data System (ADS)

    Stone, J. R.; Stone, N. J.; Moszkowski, S. A.

    2014-04-01

    The incompressibility (compression modulus) K0 of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. It is usually extracted from data on the giant monopole resonance (GMR) or calculated using theoretical models. We present a comprehensive reanalysis of recent data on GMR energies in even-even 112-124Sn and 106,100-116Cd and earlier data on 58≤A≤208 nuclei. The incompressibility of finite nuclei KA is calculated from experimental GMR energies and expressed in terms of A-1/3 and the asymmetry parameter β =(N-Z)/A as a leptodermous expansion with volume, surface, isospin, and Coulomb coefficients Kvol, Ksurf, Kτ, and KCoul. Only data consistent with the scaling approximation, leading to a fast converging leptodermous expansion, with negligible higher-order-term contributions to KA, were used in the present analysis. Assuming that the volume coefficient Kvol is identified with K0, the KCoul=-(5.2±0.7) MeV and the contribution from the curvature term KcurvA-2/3 in the expansion is neglected, compelling evidence is found for K0 to be in the range 250 nuclear surface properties in determination of K0 from fits to the leptodermous expansion of KA. A self-consistent simple (toy) model has been

  2. Structure of matter, radioactivity, and nuclear fission. Volume 3

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes structure of matter (what is matter, forces holding atoms together, visualizing the atom, the chemical elements, atomic symbols, isotopes, radiation from the atom), radioactivity (what holds the nucleus together, can one element change into another element, radiation from the nucleus, half-life, chart of the nuclides), and nuclear fission (nuclear energy release, the fission process, where does fission energy go, radiation and radioactivity resulting from fission).

  3. a Finite Nucleon Extended Volume Model for Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Rocha, Alberto S. S.; Vasconcellos, César A. Z.; Coelho, Helio T.

    We investigate the effects of a finite volume extension for nucleons immersed in nuclear matter. We wish in this way to explore the role played by this non-vanishing (but fixed) volume in shaping nuclear matter properties, in contrast with other models of nuclear physics in which nucleons are treated as point-like particles. We introduce a model characterized by an exclusion volume à la Van der Waals, as well as an effective non-relativistic approximation to model meson-exchange interactions between nucleons. The model is consistent with experimental values of saturation density and binding energy of nuclear matter in the domain of typical densities for neutron stars.

  4. New Nuclear Equation of State for Core-Collapse Supernovae with the Variational Method

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Yamamuro, S.; Nakazato, K.; Takano, M.; Suzuki, H.; Sumiyoshi, K.

    2014-03-01

    We report the current status of our project to construct a new nuclear equation of state (EOS) with the variational method for core-collapse supernova (SN) simulations. Starting from the realistic nuclear Hamiltonian, the EOS for uniform nuclear matter is constructed with the cluster variational method: For non-uniform nuclear matter, the EOS is calculated with the Thomas-Fermi method. The obtained thermodynamic quantities of uniform matter are in good agreement with those with more sophisticated Fermi Hypernetted Chain variational calculations, and phase diagrams constructed so far are close to those of the Shen-EOS. The structure of neutron stars calculated with this EOS at zero temperature is consistent with recent observational data, and the maximum mass of the neutron star is slightly larger than that with the Shen-EOS. Using the present EOS of uniform nuclear matter, we also perform the 1D simulation of the core-collapse supernovae by a simplified prescription of adiabatic hydrodynamics. The stellar core with the present EOS is more compact than that with the Shen-EOS, and correspondingly, the explosion energy in this simulation with the present EOS is larger than that with the Shen-EOS.

  5. Pairing in bulk nuclear matter beyond BCS

    SciTech Connect

    Ding, D.; Dickhoff, W. H.; Dussan, H.; Witte, S. J.; Rios, A.; Polls, A.

    2014-10-15

    The influence of short-range correlations on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the {sup 3}P{sub 2}−{sup 3}F{sub 2} coupled channel in pure neutron matter. This effect is studied for different realistic interactions including one based on chiral perturbation theory. The gap in this channel vanishes at all relevant densities due to the treatment of these correlations. We also consider the effect of long-range correlations by including polarization terms in addition to the bare interaction which allow the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters allowed to have reasonable values consistent with the available literature. Preliminary results indicate that reasonable values of these parameters do not generate a gap in the {sup 3}P{sub 2}−{sup 3}F{sub 2} coupled channel either for all three realistic interactions although the pairing interaction becomes slightly more attractive.

  6. Dark energy and equation of state oscillations with collisional matter fluid in exponential modified gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Karagiannakis, N.; Park, Miok

    2015-03-01

    We study some aspects of cosmological evolution in a universe described by a viable curvature corrected exponential F (R ) gravity model, in the presence of matter fluids consisting of collisional matter and radiation. Particularly, we express the Friedmann-Robertson-Walker equations of motion in terms of parameters that are appropriate for describing the dark energy oscillations and compare the dark energy density and the dark energy equation of state parameter corresponding to collisional and noncollisional matter. In addition to these, and owing to the fact that the cosmological evolution of collisional and noncollisional matter universes, when quantified in terms of the Hubble parameter and the effective equation of states parameters, is very much alike, we further scrutinize the cosmological evolution study by extending the analysis to the study of matter perturbations in the matter domination era. We quantify this analysis in terms of the growth factor of matter perturbations, in which case the resulting picture of the cosmological evolution is clear, since collisional and noncollisional universes can be clearly distinguished. Interestingly enough, since it is known that the oscillations of the effective equation of state parameter around the phantom divide are undesirable and unwanted in F (R ) gravities, when these are considered for redshifts near the matter domination era and before, in the curvature corrected exponential model with collisional matter that we study here there exist oscillations that never cross the phantom divide. Therefore, this rather unwanted feature of the effective equation of state parameter is also absent in the collisional matter filled universe.

  7. Temperature and density dependence of properties of nuclear matter deduced from heavy ion collisions

    SciTech Connect

    Shlomo, Shalom

    2010-11-24

    Heavy-ion collision experiments are often employed to determine properties of nuclear matter under extreme conditions of temperature and density. This has been the subject of many investigations in recent decades, since understanding the equation of state of hot nuclear matter is very important in the study supernovae, neutron stars and nuclei. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling hot nucleus from ratios of the yields of emitted fragments.

  8. Neutron Star Evolutions Using Nuclear Equations of State with a New Execution Model

    NASA Astrophysics Data System (ADS)

    Neilsen, David; Anderson, Matthew; Sterling, Thomas; Kaiser, Hartmut

    2015-01-01

    The addition of nuclear and neutrino physics to general relativistic fluid codes allows for a more realistic description of hot nuclear matter in neutron star and black hole systems. This additional microphysics requires that each processor have access to large tables of data, such as equations of state. Modern many-tasking execution models contain special semantic constructs designed to simplify distributed access to such tables and to reduce the negative impact in distributed large table access through network latency hiding measures such as local control objects. We present evolutions of a neutron star obtained using a message driven multi-threaded execution model known as ParalleX.

  9. Three-body force effect on the properties of neutron-rich nuclear matter

    NASA Astrophysics Data System (ADS)

    Zuo, Wei; Bombarci, Ignazio; Lombardo, Umberto

    2016-05-01

    We review our research work in recent years on the properties of neutron-rich nuclear matter within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We discuss specially the TBF effect on the equation of state and the singleparticle (s.p.) potentials. The TBF turns out to be crucial for describing the saturation properties of nuclear matter in nonrelativistic microscopic framework. The TBF effect on the EOS of neutron-rich nuclear matter is to result in a significant stiffening of its isovector part at supra-saturation densities. Within the Brueckner approach, the TBF may lead to a rearrangement contribution to the s.p. potentials, which enhances strongly the repulsion and momentum-dependence of the s.p. potentials at high densities and high momenta. Our results are also compared with the predictions by other ab initio approaches.

  10. Sigma omega meson coupling and properties of nuclei and nuclear matter

    NASA Astrophysics Data System (ADS)

    Haidari, Maryam M.; Sharma, Madan M.

    2008-05-01

    We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model.

  11. Neutrino mean free paths in cold symmetric nuclear matter

    SciTech Connect

    Cowell, S.; Pandharipande, V.R.

    2004-09-01

    The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.

  12. K meson-nucleus interactions: strangeness and nuclear matter

    SciTech Connect

    Kahana, S.

    1985-01-01

    A brief review is provided of some straightforward K-nuclear and ..lambda..-hypernuclear systems. A discussion of less straightforward speculations on H-dibaryons and strange quark matter by many authors, is also given. 28 refs., 6 figs.

  13. Properties of nuclear matter within the JISP16 NN interaction

    NASA Astrophysics Data System (ADS)

    Shirokov, A. M.; Negoita, A. G.; Vary, J. P.; Bogner, S. K.; Mazur, A. I.; Mazur, E. A.; Gogny, D.

    2014-08-01

    Saturation properties of the JISP16 NN interaction are studied in symmetric nuclear matter calculations, with special attention paid to the convergence properties with respect to the number of partial waves. We also present results of pure neutron matter calculations with the JISP16 interaction.

  14. The Layzer-Irvine equation in theories with non-minimal coupling between matter and curvature

    SciTech Connect

    Bertolami, O.; Gomes, C. E-mail: claudio.gomes@fc.up.pt

    2014-09-01

    We derive the Layzer-Irvine equation for alternative gravitational theories with non-minimal coupling between curvature and matter for an homogeneous and isotropic Universe. As an application, we study the case of Abell 586, a relaxed and spherically symmetric galaxy cluster, assuming some matter density profiles.

  15. Connecting neutron star observations to three-body forces in neutron matter and to the nuclear symmetry energy.

    PubMed

    Steiner, A W; Gandolfi, S

    2012-02-24

    Using a phenomenological form of the equation of state of neutron matter near the saturation density which has been previously demonstrated to be a good characterization of quantum Monte Carlo simulations, we show that currently available neutron star mass and radius measurements provide a significant constraint on the equation of state of neutron matter. At higher densities we model the equation of state by using polytropes and a quark matter model. We show that observations offer an important constraint on the strength of the three-body force in neutron matter, and thus some theoretical models of the three-body force may be ruled out by currently available astrophysical data. In addition, we obtain an estimate of the symmetry energy of nuclear matter and its slope that can be directly compared to the experiment and other theoretical calculations. PMID:22463511

  16. Variational study of the supernova equation of state with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Togashi, Hajime; Takehara, Yuta; Yamamuro, Sachiko; Nakazato, Ken'ichiro; Suzuki, Hideyuki; Sumiyoshi, Kohsuke; Takano, Masatoshi

    2014-09-01

    We construct a new nuclear equation of state (EOS) for numerical simulations of core-collapse supernovae (SNe) with the realistic nuclear forces. For this purpose, we first constructed the EOS for uniform matter based on the Argonne v18 two-body potential and the Urbana IX three-body potential with the cluster variational method. The obtained free energies agree well with those by the more sophisticated Fermi Hypernetted Chain variational method. The symmetry energy of our EOS is smaller than that of the Shen EOS, and masses and radii of neutron stars with the present EOS are consistent with the observational data. In order to complete the SN-EOS, we are constructing an EOS for non-uniform matter in the Thomas-Fermi approximation. The thermodynamic quantities obtained so far are quite reasonable, and the phase diagrams of nuclear matter are similar to those of the Shen EOS. To our knowledge, this is the first SN-EOS based on the bare nuclear forces. In this talk, we systematically compare the thermodynamic quantities of the present EOS with those of the Shen EOS. Furthermore, as the first step of the application to SN simulations, we will examine the properties of central core from the collapse of a progenitor with our EOS.

  17. Low energy overlineKN interaction in nuclear matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    We investigate the low-energy overlineKN interaction in nuclear matter including Pauli blocking, Fermi motion and binding effects. We use a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, πΣ, πΛ system. Due to the dynamics of the Λ (1405) resonance we find a strong non-linear density dependence of the K -p scattering amplitude in nuclear matter. The real part of the K -p scattering length changes sign already at a small fraction of nuclear matter density, less than 0.2 po. This may explain the striking behaviour of the K - -nuclear optical potential found in the analysis of kaonic atom data.

  18. Equation of state of neutron star matter, limiting, rotational periods of fast pulsars, and the properties of strange stars

    SciTech Connect

    Weber, F. |; Glendenning, N.K.

    1993-10-25

    In this paper the following items will be treated: The present status of dense nuclear matter calculations and constraints on the behavior of the associated equation of state at high densities from data on rapidly rotating pulsars. Recent finding of the likely existence of a mixed phase of baryons and quarks forming a coulomb lattice in the dense cores of neutron stars. Review of important findings of recently performed calculations of rapidly rotating compact stars. These are constructed in the framework of general relativity theory for a representative collection of realistic nuclear equations of state. Establish the minimum-possible rotational periods of gravitationally bound neutron stars and self-bound strange stars. Its knowledge is of fundamental importance for the decision between pulsars that can be understood as rotating neutron stars and those that cannot (signature of hypothetical self-bound matter of which strange stars are the likely stellar candidates. Investigate the properties of sequences of strange stars. Specifically, we answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  19. $J/\\Psi$ mass shift in nuclear matter

    SciTech Connect

    Gastao Krein, Anthony Thomas, Kazuo Tsushima

    2011-02-01

    The $J/\\Psi$ mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating $D$ and $D^*$ meson loop contributions to the $J/\\Psi$ self-energy employing medium-modified meson masses. The modification of the $D$ and $D^*$ masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The $J/\\Psi$ mass shift arising from the modification of the $D$ and $D^*$ loops at normal nuclear matter density is found to range from $-16$~MeV to $-24$~MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of $J/\\Psi$ to a nucleus are investigated.

  20. Recent Developments in Cold Fusion / Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2006-03-01

    Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.

  1. Axion electrodynamics and nonrelativistic photons in nuclear and quark matter

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2016-04-01

    We argue that the effective theory for electromagnetic fields in spatially varying meson condensations in dense nuclear and quark matter is given by the axion electrodynamics. We show that one of the helicity states of photons there has the nonrelativistic gapless dispersion relation ω ˜k2 at small momentum, while the other is gapped. This "nonrelativistic photon" may also be realized at the interface between topological and trivial insulators in condensed matter systems.

  2. Nuclear Physics the core of matter, the fuel of stars.

    SciTech Connect

    Schiffer, J. P.; Physics

    1999-01-01

    Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe

  3. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  4. Shell effects in hot nuclei and their influence on nuclear composition in supernova matter

    SciTech Connect

    Nishimura, Suguru; Takano, Masatoshi

    2014-05-02

    We calculate nuclear composition in supernova (SN) matter explicitly taking into account the temperature dependence of nuclear shell effects. The abundance of nuclei in SN matter is important in the dynamics of core-collapse supernovae and, in recently constructed equations of state (EOS) for SN matter, the composition of nuclei are calculated assuming nuclear statistical equilibrium wherein the nuclear internal free energies govern the composition. However, in these EOS, thermal effects on the shell energy are not explicitly taken into account. To address this shortfall, we calculate herein the shell energies of hot nuclei and examine their influence on the composition of SN matter. Following a simplified macroscopic-microscopic approach, we first calculate single-particle (SP) energies by using a spherical Woods-Saxon potential. Then we extract shell energies at finite temperatures using Strutinsky method with the Fermi distribution as the average occupation probability of the SP levels. The results show that at relatively low temperatures, shell effects are still important and magic nuclei are abundant. However, at temperatures above approximately 2 MeV, shell effects are almost negligible, and the mass fractions with shell energies including the thermal effect are close to those obtained from a simple liquid drop model at finite temperatures.

  5. The Einstein-Klein-Gordon Equations, Wave Dark Matter, and the Tully-Fisher Relation

    NASA Astrophysics Data System (ADS)

    Goetz, Andrew S.

    2015-01-01

    We examine the Einstein equation coupled to the Klein-Gordon equation for a complex-valued scalar field. These two equations together are known as the Einstein-Klein-Gordon system. In the low-field, non-relativistic limit, the Einstein-Klein-Gordon system reduces to the Poisson-Schrodinger system. We describe the simplest solutions of these systems in spherical symmetry, the spherically symmetric static states, and some scaling properties they obey. We also describe some approximate analytic solutions for these states. The EKG system underlies a theory of wave dark matter, also known as scalar field dark matter (SFDM), boson star dark matter, and Bose-Einstein condensate (BEC) dark matter. We discuss a possible connection between the theory of wave dark matter and the baryonic Tully-Fisher relation, which is a scaling relation observed to hold for disk galaxies in the universe across many decades in mass. We show how fixing boundary conditions at the edge of the spherically symmetric static states implies Tully-Fisher-like relations for the states. We also catalog other ``scaling conditions'' one can impose on the static states and show that they do not lead to Tully-Fisher-like relations--barring one exception which is already known and which has nothing to do with the specifics of wave dark matter.

  6. Attenuation and recombination of quarks in nuclear matter

    SciTech Connect

    Dar, A.; Takagi, F.

    1980-03-24

    Quark models of hadron production in the beam-fragmentation region are extended to production off nuclei by taking into account quark attenuation in nuclear matter. Simple expressions are derived for the A dependence of the production of beam fragments. They reproduce well the experimental data on hadron-nucleus and virtual photon-nucleus collisions.

  7. Three-dimensional calculation of inhomogeneous nuclear matter

    SciTech Connect

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2012-11-12

    We numerically explore the pasta structures and properties of low-density symmetric nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta appears as a meta-stable state at some transient densities. We also analyze the lattice structure of droplets.

  8. Phase transitions of nuclear matter beyond mean field theory

    SciTech Connect

    Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa

    2007-10-15

    The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.

  9. Nuclear matter from effective quark-quark interaction.

    PubMed

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces. PMID:25541769

  10. Method of wave equations exact solutions in studies of neutrinos and electrons interaction in dense matter

    NASA Astrophysics Data System (ADS)

    Studenikin, A. I.

    2008-04-01

    We present quite a powerful method in investigations of different phenomena that can appear when neutrinos and electrons propagate in background matter. This method implies use of exact solutions of modified Dirac equations that contain the correspondent effective potentials accounting for the matter influence on particles. For several particular cases the exact solutions of modified Dirac and Dirac-Pauli equations for a neutrino and an electron in the background environment of different composition are obtained (the case of magnetized matter is also considered). Neutrino reflection, trapping, neutrino pair creation and annihilation in matter and neutrino energy quantization in a rotating medium are discussed. The neutrino Green functions in matter are also derived. The two recently proposed mechanisms of electromagnetic radiation by a neutrino and an electron in matter (the spin light of neutrino and electron, SLν and SLe) are considered. A possibility to introduce an effective 'matter-induced Lorentz force' acting on a neutrino and an electron is discussed. A new mechanism of electromagnetic radiation that can be emitted by an electron moving in the neutrino background with nonzero gradient of density is predicted.

  11. Effective pairing interaction in semi-infinite nuclear matter in the Brueckner approach: Model {delta}-shaped NN interaction

    SciTech Connect

    Baldo, M.; Lombardo, U.; Saperstein, E.E.; Zverev, M.V.

    1995-09-01

    The problem of pairing in semi-infinite nuclear matter is considered in the Brueckner approach. Equations for effective pairing interaction in semi-infinite matter are derived for the case of the separable representation of realistic NN interaction. The propagator of two noninteracting particles in a semi-infinite potential well is calculated numerically. The equation for effective interaction is solved for a model 8-shaped NN interaction, which correctly reproduces NN scattering in the low-energy limit. 15 refs., 10 figs.

  12. Nuclear techniques in studies of condensed matter

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1987-01-01

    Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.

  13. Structural Equation Modeling in Assessing Students' Understanding of the State Changes of Matter

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios; Tsitsipis, Georgios; Papageorgiou, George

    2012-01-01

    In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of the particulate nature of matter, the collective properties and physical changes, such as melting, evaporation, boiling and condensation. The structural relationships among particular groups of items were investigated. In addition,…

  14. Phase transitions in neutron star equation of state induced by the delta resonances matter

    NASA Astrophysics Data System (ADS)

    T, Oliveira J. C.; Rodrigues, H.; Duarte, S. B.

    2016-04-01

    In the present work we determine the equation of state and the population of baryons and leptons, and also we discuss the implication of changes in the baryon-meson coupling constants to the formation of delta matter in the stellar medium. And also in this work the phase transition is explored with respect to the domain of the delta-mesons coupling constants.

  15. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  16. Nuclear matter at high temperature and low net baryonic density

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-11-12

    We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

  17. Initial-state splitting kernels in cold nuclear matter

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Grigory; Ringer, Felix; Vitev, Ivan

    2016-09-01

    We derive medium-induced splitting kernels for energetic partons that undergo interactions in dense QCD matter before a hard-scattering event at large momentum transfer Q2. Working in the framework of the effective theory SCETG, we compute the splitting kernels beyond the soft gluon approximation. We present numerical studies that compare our new results with previous findings. We expect the full medium-induced splitting kernels to be most relevant for the extension of initial-state cold nuclear matter energy loss phenomenology in both p+A and A+A collisions.

  18. Study of nuclear matter density distributions using hadronic probes

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2011-05-06

    We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.

  19. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  20. Suppression of the {Lambda}-{Sigma} coupling in nuclear matter

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We initiated a study of the modification of the coupling of the {Lambda}N to the {Sigma}N channel in nuclear matter with the Fermi hypernetted-chain variational approach. This modification of the {Lambda}N-{Sigma}N coupling is a central problem in hypernuclear physics and is related closely to the strongly repulsive three-body forces which are needed to account for hypernuclear binding energies. All earlier calculations have only considered this problem in the so-called G-matrix approximation which neglects important higher-order effects. An important result of this work will be a better understanding of the density dependence of {Lambda} binding in nuclear matter, which can then be tested in the calculation of the {Lambda} single-particle energies.

  1. Determination of nuclear-matter temperature and density

    SciTech Connect

    Wolf, K.L.

    1980-01-01

    Some of the things learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies are reviewed. Two developments are discussed. The completion of analyses and publication of results from the impact parameter selected, single-particle inclusive experiments have proven to be important. Preliminary results from the new generation of two-particle correlation and particle-exclusive measurements, especially those using streamer chambers, look even more definitive. Also the measurement of more exotic ejectiles with long mean free paths in nuclear matter promises to provide more basic information. Calculations are offering real guidance and are providing explanations of high energy collisions. The Monte Carlo and intranuclear cascade calculations discussed are especially informative.

  2. Scattering and stopping of hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.

  3. Equation of State of Warm Dense Matter at DARHT-2 Facility

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Schmitt, Mark; Daughton, William; Ekdahl, Carl; Benage, John; Murillo, Michael; Wysocki, Frederick

    2008-11-01

    Accurate equation-of-state theory on warm dense matter is a big challenge to model and good experimental data is difficult to obtain. One of the difficulties is the creation of a warm dense matter (WDM) suitable for experiments to examine its equation of state. We have examine methods of creating a warm dense matter using three different kinds of energetic particle beams such as short pulse laser, energetic proton beam, and relativistic electron beam. We found that the use of relativistic electrons such as the second axis of the Dual Axis Radiographic Hydro-Test (DARHT) facility at Los Alamos National Laboratory can create WDM ideally suitable for experiments to obtain data on the equation of state of such WDM over an extended parameter space. The electron beam has an energy of 18 MeV and a current of 2 kA. Its pulse length can be varied from 20 ns to 200 ns. We will present results from our calculations on the creation and characterization of WDM using the DARHT electron beam. We will also present our planned experiments specifically for the measurements of equations of state of such a WDM.

  4. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  5. Nucleon-nucleon cross sections in nuclear matter

    SciTech Connect

    Schulze, H.; Schnell, A.; Roepke, G.; Lombardo, U.

    1997-06-01

    We provide a microscopic calculation of neutron-proton and neutron-neutron cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Paris potential. We investigate separately the medium effects on the effective mass and on the scattering amplitude. We determine average cross sections suitable for application in the dynamical simulation of heavy ion collisions, including a parametrization of their energy and density dependence. {copyright} {ital 1997} {ital The American Physical Society}

  6. Heating of nuclear matter and multifragmentation : antiprotons vs. pions.

    SciTech Connect

    Back, B.; Beaulieu, L.; Breuer, H.; Gushue, S.; Hsi, W.-C.; Korteling, R. G.; Kwiatkowski, K.; Laforest, R.; Lefort, T.; Martin, E.; Pienkowski, L.; Ramakrishnan, E.; Remsberg, L. P.; Rowland, D.; Ruangma, A.; Viola, V. E.; Winchester, E.; Yennello, S. J.

    1999-05-03

    Heating of nuclear matter with 8 GeV/c {bar p} and {pi}{sup {minus}} beams has been investigated in an experiment conducted at BNL AGS accelerator. All charged particles from protons to Z {approx_equal} 16 were detected using the Indiana Silicon Sphere 4{pi} array. Significant enhancement of energy deposition in high multiplicity events is observed for antiprotons compared to other hadron beams. The experimental trends are qualitatively consistent with predictions from an intranuclear cascade code.

  7. Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Polls, A.; Rios, A.; Schulze, H.-J.; Vidaña, I.

    2012-12-01

    We present calculations of the energy per particle of pure neutron and symmetric nuclear matter with simplified Argonne nucleon-nucleon potentials for different many-body theories. We compare critically the Brueckner-Hartree-Fock results to other formalisms, such as the Brueckner-Bethe-Goldstone expansion up to third order, self-consistent Green's functions, auxiliary field diffusion Monte Carlo, and Fermi hypernetted chain. We evaluate the importance of spin-orbit and tensor correlations in the equation of state and find these to be important in a wide range of densities.

  8. Effective kaon masses in dense nuclear and neutron matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    The effective mass and decay width of kaonic modes in baryonic matter are studied within a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, π∑, πΛ system. Including Pauli blocking and Fermi motion in the kaon dispersion relation, we find a strong non-linear density dependence of the K - effective mass and decay width in symmetric nuclear matter at densities around 0.1 times normal nuclear matter density ϱ0 due to the in-medium dynamics of the Λ(1405) resonance. At higher densities the K - effective mass decreases slowly but stays above 0.5 mK at least up to densities below 3 ϱ0. In neutron matter the K - effective mass decreases almost linearly with increasing density but remains relatively large ( m K∗ > 0.65 m K) for ϱn ≲ 3 ϱ0. The K + effective mass turns out to increase very slowly with rising density.

  9. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  10. Masses of nuclei in the infinite nuclear matter model

    SciTech Connect

    Satpathy, L.; Nayak, R.C.

    1987-12-10

    The ground-state masses of 3481 nuclei in the range 18less than or equal toAless than or equal to267 have been calculated using the inifinite nuclear matter model based on the generalised Hugenholtz-Van Hove theorem. In this model there are two kinds of parameters: Global and local. The five global parameters which characterise the properties of the sphere made up of inifinite nuclear matter are determined once for all by fitting the masses of all nuclei (756) in the recent mass table with error bar less than 30 keV. The local parameters are determined for 25 regions defined by ..delta..A = 8 or 10. The r.m.s. deviation for the calculated masses from the experiment is 397 keV for the 1572 nuclei used in the least square fit. Sample results on Na isotopes and other recently measured masses have been given. The derived saturation properties of nuclear matter have been discussed.

  11. Superconducting Nuclear Recoil Sensor for Directional Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Baldwin, Kevin; Hehlen, Markus; Lafler, Randy; Loomba, Dinesh; Phan, Nguyen; Weisse-Bernstein, Nina

    The Universe consists of 72% dark energy, 23% dark matter and only 5% of ordinary matter. One of the greatest challenges of the scientific community is to understand the nature of dark matter. Current models suggest that dark matter is made up of slowly moving, weakly interacting massive particles (WIMPs). But detecting WIMPs is challenging, as their expected signals are small and rare compared to the large background that can mimic the signal. The largest and most robust unique signature that sets them apart from other particles is the day-night variation of the directionality of dark matter on Earth. This modulation could be observed with a direction-sensitive detector and hence, would provide an unambiguous signature for the galactic origin of WIMPs. There are many studies underway to attempt to detect WIMPs both directly and indirectly, but solid-state WIMP detectors are widely unexplored although they would present many advantages to prevalent detectors that use large volumes of low pressure gas. We present first results of a novel multi-layered architecture, in which WIMPs would interact primarily with solid layers to produce nuclear recoils that then induce measureable voltage pulses in adjacent superconductor layers. This work was supported by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development Program.

  12. Theory of magnetohydrodynamic accretion of matter with an ultrahard equation of state onto a black hole

    SciTech Connect

    Chernov, S. V.

    2015-06-15

    We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ{sup 2}, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter.

  13. Constraining the equation of state of superhadronic matter from heavy-ion collisions

    DOE PAGESBeta

    Pratt, Scott; Sorensen, Paul; Sangaline, Evan; Wang, Hui

    2015-05-19

    The equation of state of QCD matter for temperatures near and above the quark-hadron transition (~165 MeV) is inferred within a Bayesian framework through the comparison of data from the Relativistic Heavy Ion Collider and from the Large Hadron Collider to theoretical models. State-of-the-art statistical techniques are applied to simultaneously analyze multiple classes of observables while varying 14 independent model parameters. Thus, the resulting posterior distribution over possible equations of state is consistent with results from lattice gauge theory.

  14. Constraining the Equation of State of Superhadronic Matter from Heavy-Ion Collisions.

    PubMed

    Pratt, Scott; Sangaline, Evan; Sorensen, Paul; Wang, Hui

    2015-05-22

    The equation of state of QCD matter for temperatures near and above the quark-hadron transition (∼165  MeV) is inferred within a Bayesian framework through the comparison of data from the Relativistic Heavy Ion Collider and from the Large Hadron Collider to theoretical models. State-of-the-art statistical techniques are applied to simultaneously analyze multiple classes of observables while varying 14 independent model parameters. The resulting posterior distribution over possible equations of state is consistent with results from lattice gauge theory. PMID:26047223

  15. Liquid-gas phase transition in nuclear matter including strangeness

    SciTech Connect

    Wang, P.; Leinweber, D.B.; Williams, A.G.; Thomas, A.W.

    2004-11-01

    We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of the system cannot remain constant during the phase transition, since there are two independent conserved charges (baryon and strangeness number). In a range of temperatures around 15 MeV (precise values depending on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness fraction f{sub s} between the liquid and gas phases is small when they coexist. The critical temperature of strange matter turns out to be a nontrivial function of the strangeness fraction.

  16. Constraints of the variation of fundamental couplings and sensitivity of the equation of state of dense matter

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Martins, C. J. A. P.

    2012-12-01

    We discuss the coupled variations of the gravitational, strong and electroweak coupling constants and the current knowledge of the nuclear equation of state based on heavy ion collision experiments and neutron star mass-radius relationship. In particular we focus in our description on phenomenological parameters, R, relating variations in the quantum chromodynamics scale ΛQCD and the fine structure constant α, and S, relating variations of v, the Higgs vacuum expectation value and the Yukawa couplings, h, in the quark sector. This parametrization is valid for any model where gauge coupling unification occurs at some (unspecified) high energy scale. From a physically motivated set of equations of state for dense matter we obtain the constrained parameter phase space (R,S) in high density nuclear environments. This procedure is complementary to (although currently less powerful than) those used in low-density conditions. For variations of Δα/α=0.005 we find that the obtained constrained parameter lies on a strip region in the (R,S) plane that partially overlaps some of the allowed values of parameters derived from primordial abundances. This may be of interest in the context of unification scenarios where a dense phase of the universe may have existed at early times.

  17. A NEW EQUATION OF STATE FOR NEUTRON STAR MATTER WITH NUCLEI IN THE CRUST AND HYPERONS IN THE CORE

    SciTech Connect

    Miyatsu, Tsuyoshi; Yamamuro, Sachiko; Nakazato, Ken'ichiro

    2013-11-01

    The equation of state for neutron stars in a wide-density range at zero temperature is constructed. The chiral quark-meson coupling model within relativistic Hartree-Fock approximation is adopted for uniform nuclear matter. The coupling constants are determined so as to reproduce the experimental data of atomic nuclei and hypernuclei. In the crust region, nuclei are taken into account within the Thomas-Fermi calculation. All octet baryons are considered in the core region, while only Ξ{sup –} appears in neutron stars. The resultant maximum mass of neutron stars is 1.95 M{sub ☉}, which is consistent with the constraint from the recently observed massive pulsar, PSR J1614-2230.

  18. Relativistic mean-field models and nuclear matter constraints

    SciTech Connect

    Dutra, M.; Lourenco, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providencia, C.; Typel, S.

    2013-05-06

    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

  19. Higher-order symmetry energy of nuclear matter and the inner edge of neutron star crusts

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Basu, D. N.

    2014-02-01

    The parabolic approximation to the equation of state of the isospin asymmetric nuclear matter (ANM) is widely used in the literature to make predictions for the nuclear structure and the neutron star properties. Based on the realistic M3Y-Paris and M3Y-Reid nucleon-nucleon interactions, we investigate the effects of the higher-order symmetry energy on the proton fraction in neutron stars and the location of the inner edge of their crusts and their core-crust transition density and pressure, thermodynamically. Analytical expressions for different-order symmetry energy coefficients of ANM are derived using the realistic interactions mentioned above. It is found that the higher-order terms of the symmetry-energy coefficients up to its eighth order (Esym8) contributes substantially to the proton fraction in β-stable neutron star matter at different nuclear matter densities, the core-crust transition density and pressure. Even by considering the symmetry-energy coefficients up to Esym8, we obtain a significant change of about 40% in the transition pressure value from the one based on the exact equation of state. The slope parameters of the symmetry energies for the M3Y-Paris (Reid) interaction, at the saturation density, are L =47.51(50.98), L4=-0.47(-1.43), L6=0.58(0.67), and L8=0.126(0.133) MeV. Using equations of state based on both Paris and Reid effective interactions which provide saturation incompressibility of symmetric nuclear matter in the range of 220≤K0≤270 MeV, we estimate the ranges 0.090≤ρt≤0.095fm-3 and 0.49≤Pt≤0.59MeVfm-3 for the liquid-core-solid-crust transition density and pressure, respectively. The corresponding range of the proton fraction obtained at this ρt range is 0.029≤xp (t)≤0.032.

  20. Heavy-ion collisions and the nuclear equation of state

    SciTech Connect

    Keane, D.

    1992-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the past year, the PI has been on leave at Lawrence Berkeley Lab and has worked on this research project full-time. A large fraction of the effort of the PI and graduate students has gone into preparing for experiments using the Time Projection Chamber at LBL's Bevalac accelerator; in March 1992, this device successfully took data in production mode for the first time, and the first physics analysis is now under way. The PI has carried out simulations that help to define the physics performance and engineering specifications of the recently-approved STAR detector for the Relativistic Heavy Ion Collider, and has identified a new capability of this device with the potential for being an important quark-gluon plasma signature. A Postdoctoral Fellow, jointly supported by this grant and Kent State University, has been recruited to augment these efforts. Since May 1991, 11 journal papers have been published or submitted for publication; 2 conference proceedings and 9 reports or abstracts have also been published during the past year. One paper in Phys. Rev. Left., one in Phys. Rev. C, and one conference proceedings are based on the thesis project of one of the PI's Ph.D. students who is expected to graduate later this year. Partly in response to the impending closure of the Bevalac, the PI's group has recently joined the NA49 experiment at CERN.

  1. Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials

    SciTech Connect

    Hassaneen, Kh.S.A.; Abo-Elsebaa, H.M.; Sultan, E.A.; Mansour, H.M.M.

    2011-03-15

    Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.

  2. Relativistic spectral function of nucleons in hot nuclear matter

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Sarkar, Sourav; Mallik, S.

    2010-10-01

    We present a simple calculation of the nucleon self-energy in nuclear matter at finite temperature in a relativistic framework, using the real-time thermal field theory. The imaginary parts of one-loop graphs are identified with discontinuities across the unitary and the Landau cuts. We find that in general both the cuts contribute significantly to the spectral function in the region of (virtual) nucleon mass usually considered, even though the unitary cut is ignored in the literature. Furthermore, our relativistic spectral function differs from the one in nonrelativistic approximation, used in some earlier calculations.

  3. Thermodynamic instabilities in dense asymmetric nuclear matter and in compact stars

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Drago, A.; Pagliara, G.; Pigato, D.

    2014-07-01

    We investigate the presence of thermodynamic instabilities in compressed asymmetric baryonic matter, reachable in high energy heavy ion collisions, and in the cold β-stable compact stars. To this end we study the relativistic nuclear equation of state with the inclusion of Δ-isobars and require the global conservation of baryon and electric charge numbers. Similarly to the low density nuclear liquid-gas phase transition, we show that a phase transition can occur in dense asymmetric nuclear matter and it is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the electric charge concentration). Such thermodynamic instabilities can imply a very different electric charge fraction Z/A in the coexisting phases during the phase transition and favoring an early formation of Δ- particles with relevant phenomenological consequences in the physics of the protoneutron stars and compact stars. Finally, we discuss the possible co-existence of very compact and very massive compact stars in terms of two separate families: compact hadronic stars and very massive quark stars.

  4. 78 FR 28245 - In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION [NRC-2013-0093; Docket No.: 50-348, 50-364; License No.: NPF-2, NPF-8; EA-12-145] In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2; Confirmatory Order I Southern Nuclear Operating Company (SNC or Licensee)...

  5. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for Information I Entergy Nuclear Operations (Entergy) is the holder of Facility Operating License No....

  6. Open heavy flavor in QCD matter and in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Prino, Francesco; Rapp, Ralf

    2016-09-01

    We review the experimental and theoretical status of open heavy-flavor (HF) production in high-energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). We first overview the theoretical concepts and pertinent calculations of HF transport in strong-interaction matter, including perturbative and non-perturbative approaches in quark–gluon plasma, effective models in hadronic matter, as well as implementations of heavy-quark (HQ) hadronization. This is followed by a brief discussion of bulk evolution models for heavy-ion collisions and initial conditions for the HQ distributions which are needed to calculate HF spectra in comparison to observables. We then turn to a discussion of experimental data that have been collected to date at RHIC and the LHC, specifically for the nuclear modification factor and elliptic flow of leptons from semileptonic HF decays, D mesons, non-prompt J/\\psi from B-meson decays, and b-jets. Model comparisons to HF data are conducted with regards to extracting the magnitude, temperature and momentum dependence of HF transport coefficients from experiment.

  7. The Hypothesis of Nuclear Fusion in Condensed Matter: An Update

    NASA Astrophysics Data System (ADS)

    Jones, Steven; Ellsworth, John; Rees, Lawrence

    2004-05-01

    In our 1986 and1989 papers, we discussed the hypothesis of nuclear fusion in condensed matter and particularly in the planets and provided supporting evidence.[1,2] We continue to assert that non-thermonuclear d-Z fusion (including but not limited to d-d fusion) may occur in the core-region of the earth, and generally in hydrogen-bearing metals and minerals which are subjected to extreme off-equilibrium conditions. This hypothesis can be tested by measuring tritium and helium-3 in magmatic fluids from hot-spot volcanoes which tap plumes arising from the core-mantle boundary. In particular, magmatic waters of Kilauea, Loihi, and Icelandic volcanoes are predicted to contain significant tritium. Magmatic emissions of Kilauea demonstrated anomalous tritium content over twelve years ago[3], and a re-test of Kilauea emissions is urged along with further laboratory experiments. [1] C. DeW. Van Siclen and S. E. Jones, "Piezonuclear fusion in isotopic hydrogen molecules," J. Phys. G: Nucl. Phys. 12: 213-221 (March 1986). [2] S. E. Jones, et al., Observation of Cold Nuclear Fusion in Condensed Matter, Nature 338: 737-740 (April 1989). [4] F. Goff and G. M. McMurtry, "Tritium and stable isotopes of magmatic waters," J. Volcanology and Geothermal Research, 97: 347-396 (2000)

  8. Masses of atomic nuclei in the infinite nuclear matter model

    SciTech Connect

    Satpathy, L.; Nayak, R.C.

    1988-07-01

    We present mass excesses of 3481 nuclei in the range 18less than or equal toAless than or equal to267 using the infinite nuclear matter model based on the Hugenholtz-Van Hove theorem. In this model the ground-state energy of a nucleus of asymmetry ..beta.. is considered equivalent to the energy of a perfect sphere made up of the infinite nuclear matter of the same asymmetry plus the residual energy due to shell effects, deformation, etc., called the local energy eta. In this model there are two kinds of parameters: global and local. The five global parameters characterizing the properties of the above sphere are determined by fitting the mass of all nuclei (756) in the recent mass table of Wapstra et al. having error bar less than 30 keV. The local parameters are determined for 25 regions each spanning 8 or 10 A values. The total number of parameters including the five global ones is 238. The root-mean-square deviation for the calculated masses from experiment is 397 keV for the 1572 nuclei used in the least-squares fit. copyright 1988 Academic Press, Inc.

  9. The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Psaltis, Dimitrios; Güver, Tolga; Baym, Gordon; Heinke, Craig; Guillot, Sebastien

    2016-03-01

    We present a comprehensive study of spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear bursts or in quiescence. We incorporate, for the first time, a large number of systematic uncertainties in the measurement of the apparent angular sizes, Eddington fluxes, and distances, in the composition of the interstellar medium, and in the flux calibration of X-ray detectors. We also take into account the results of recent theoretical calculations of rotational effects on neutron star radii, of atmospheric effects on surface spectra, and of relativistic corrections to the Eddington critical flux. We employ Bayesian statistical frameworks to obtain neutron star radii from the spectroscopic measurements as well as to infer the equation of state from the radius measurements. Combining these with the results of experiments in the vicinity of nuclear saturation density and the observations of ˜ 2 {M}⊙ neutron stars, we place strong and quantitative constraints on the properties of the equation of state between ≈ 2{--}8 times the nuclear saturation density. We find that around M=1.5{M}⊙ , the preferred equation of state predicts radii between 10.1 and 11.1 km. When interpreting the pressure constraints in the context of high density equations of state based on interacting nucleons, our results suggest a relatively weak contribution of the three-body interaction potential.

  10. Equation of State of the Strong Interaction Matter in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Liu, Yu-Xin

    2015-10-01

    We investigate the equation of state of the strong interaction matter in a background magnetic field via the two flavor Nambu-Jona-Lasinio model. Starting from the mean-field thermodynamical potential density Ω, we calculate the pressure density p, the entropy density s, the energy density ɛ, and the interaction measure (ɛ - 3p)/T4 of the strong interaction matter at finite temperature and finite magnetic field. The results manifest that the chiral phase transition is just a crossover but not a low order phase transition. Moreover there may exist magnetic catalysis effect, and its mechanism is just the effective dimension reduction induced by the magnetic field. Supported by the National Natural Science Foundation of China under Grant Nos. 10935001, 11175004 and 11435001, and the National Key Basic Research Program of China under Grant Nos. G2013CB834400 and 2015CB856900

  11. Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method

    NASA Astrophysics Data System (ADS)

    Nättilä, J.; Steiner, A. W.; Kajava, J. J. E.; Suleimanov, V. F.; Poutanen, J.

    2016-06-01

    The cooling phase of thermonuclear (type-I) X-ray bursts can be used to constrain neutron star (NS) compactness by comparing the observed cooling tracks of bursts to accurate theoretical atmosphere model calculations. By applying the so-called cooling tail method, where the information from the whole cooling track is used, we constrain the mass, radius, and distance for three different NSs in low-mass X-ray binaries 4U 1702-429, 4U 1724-307, and SAX J1810.8-260. Care is taken to use only the hard state bursts where it is thought that the NS surface alone is emitting. We then use a Markov chain Monte Carlo algorithm within a Bayesian framework to obtain a parameterized equation of state (EoS) of cold dense matter from our initial mass and radius constraints. This allows us to set limits on various nuclear parameters and to constrain an empirical pressure-density relationship for the dense matter. Our predicted EoS results in NS a radius between 10.5-12.8 km (95% confidence limits) for a mass of 1.4 M⊙, depending slightly on the assumed composition. Because of systematic errors and uncertainty in the composition, these results should be interpreted as lower limits for the radius.

  12. The spacetime models with dust matter that admit separation of variables in Hamilton-Jacobi equations of a test particle

    NASA Astrophysics Data System (ADS)

    Osetrin, Konstantin; Filippov, Altair; Osetrin, Evgeny

    2016-01-01

    The characteristics of dust matter in spacetime models, admitting the existence of privilege coordinate systems are given, where the single-particle Hamilton-Jacobi equation can be integrated by the method of complete separation of variables. The resulting functional form of the 4-velocity field and energy density of matter for all types of spaces under consideration is presented.

  13. Divergence of the isospin-asymmetry expansion of the nuclear equation of state in many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Wellenhofer, Corbinian; Holt, Jeremy W.; Kaiser, Norbert

    2016-05-01

    The isospin-asymmetry dependence of the nuclear-matter equation of state obtained from microscopic chiral two- and three-body interactions in second-order many-body perturbation theory is examined in detail. The quadratic, quartic, and sextic coefficients in the Maclaurin expansion of the free energy per particle of infinite homogeneous nuclear matter with respect to the isospin asymmetry are extracted numerically using finite differences, and the resulting polynomial isospin-asymmetry parametrizations are compared to the full isospin-asymmetry dependence of the free energy. It is found that in the low-temperature and high-density regime where the radius of convergence of the expansion is generically zero, the inclusion of higher-order terms beyond the leading quadratic approximation leads overall to a significantly poorer description of the isospin-asymmetry dependence. In contrast, at high temperatures and densities well below nuclear saturation density, the interaction contributions to the higher-order coefficients are negligible and the deviations from the quadratic approximation are predominantly from the noninteracting term in the many-body perturbation series. Furthermore, we extract the leading logarithmic term in the isospin-asymmetry expansion of the equation of state at zero temperature from the analysis of linear combinations of finite differences. It is shown that the logarithmic term leads to a considerably improved description of the isospin-asymmetry dependence at zero temperature.

  14. Modification of the {omega}-Meson Lifetime in Nuclear Matter

    SciTech Connect

    Kotulla, M.; Trnka, D.; Gregor, R.; Lugert, S.; Metag, V.; Nanova, M.; Novotny, R.; Pant, L. M.; Pee, H. van; Pfeiffer, M.; Roy, A.; Schadmand, S.; Varma, R.; Muehlich, P.; Mosel, U.; Anton, G.; Bogendoerfer, R.; Hoessl, J.; Suft, G.; Bacelar, J. C. S.

    2008-05-16

    Information on hadron properties in the nuclear medium has been derived from the photoproduction of {omega} mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the {omega}-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic {omega} width is found to be 130-150 MeV/c{sup 2} at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the {omega} meson, this inelastic {omega} width corresponds to a reduction of the {omega} lifetime by a factor {approx_equal}30. For the first time, the momentum dependent {omega}N cross section has been extracted from the experiment and is in the range of 70 mb.

  15. Modification of the omega-meson lifetime in nuclear matter.

    PubMed

    Kotulla, M; Trnka, D; Mühlich, P; Anton, G; Bacelar, J C S; Bartholomy, O; Bayadilov, D; Beloglazov, Y A; Bogendörfer, R; Castelijns, R; Crede, V; Dutz, H; Ehmanns, A; Elsner, D; Ewald, R; Fabry, I; Fuchs, M; Essig, K; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Hössl, J; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Klein, Frank; Klein, Fritz; Klempt, E; Konrad, M; Kopf, B; Krusche, B; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Mertens, T; Metag, V; Mosel, U; Nanova, M; Novotny, R; Ostrick, M; Pant, L M; van Pee, H; Pfeiffer, M; Roy, A; Radkov, A; Schadmand, S; Schmidt, Ch; Schmieden, H; Schoch, B; Shende, S; Suft, G; Sumachev, V V; Szczepanek, T; Süle, A; Thoma, U; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch

    2008-05-16

    Information on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic omega width is found to be 130-150 MeV/c(2) at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the omega meson, this inelastic omega width corresponds to a reduction of the omega lifetime by a factor approximately 30. For the first time, the momentum dependent omegaN cross section has been extracted from the experiment and is in the range of 70 mb. PMID:18518443

  16. Green's Function of the Dirac Equation with Complex Energy and Non-singular Central Nuclear Potential

    SciTech Connect

    Svinarenko, A. A.; Loboda, A. V.; Sukharev, D. E.; Dubrovskaya, Yu. V.; Mudraya, N. V.; Serga, I. N.; Glushkov, A. V.

    2010-05-04

    We report the further development of an effective approach to construction of the electron Green's function (GF) for the Dirac equation with a complex energy and non-singular central nuclear potential. The nuclear charge distribution and the corresponding nuclear potential are received within the relativistic mean field (RMF) model. The Green's function is usually represented as a combination of two fundamental solutions of the Dirac equation. In the numerical procedure we use the Ivanov-Ivanova effective numerical algorithm and reduce a definition of the Dirac equation fundamental solutions to solving the system of differential equations, which includes the differential equations for the RMF nuclear potential too. As an application, we estimate the self-energy shift correction to atomic levels energies within the Mohr covariant procedure and presented GF approach and calculate the transitions energies for some heavy Li-like multi-charged ions within the QED many-body perturbation theory formalism.

  17. Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter

    SciTech Connect

    Matevosyan, Hrayr

    2007-08-01

    Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme

  18. Unstable infinite nuclear matter in stochastic mean field approach

    SciTech Connect

    Colonna, M.; Chomaz, P. Laboratorio Nazionale del Sud, Viale Andrea Doria, Catania )

    1994-04-01

    In this article, we consider a semiclassical stochastic mean-field approach. In the case of unstable infinite nuclear matter, we calculate the characteristic time of the exponential growing of fluctuations and the diffusion coefficients associated to the unstable modes, in the framework of the Boltzmann-Langevin theory. These two quantities are essential to describe the dynamics of fluctuations and instabilities since, in the unstable regions, the evolution of the system will be dominated by the amplification of fluctuations. In order to make realistic 3D calculations feasible, we suggest to replace the complicated Boltzmann-Langevin theory by a simpler stochastic mean-field approach corresponding to a standard Boltzmann evolution, complemented by a simple noise chosen to reproduce the dynamics of the most unstable modes. Finally we explain how to approximately implement this method by simply tuning the noise associated to the use of a finite number of test particles in Boltzman-like calculations.

  19. Bulk Properties of Nuclear Matter From Excitations of Nuclei

    SciTech Connect

    Shlomo, Shalom

    2007-10-26

    We consider the predictive power of Hartree-Fock (HF) approximation in determining properties of finite nuclei and thereby in extracting bulk properties of infinite nuclear matter (NM) by extrapolation. In particular, we review the current status of determining the value of NM incompressibility coefficient K, considering the most sensitive method of analyzing the recent accurate experimental data on excitation strengths of compression modes of nuclei within microscopic relativistic and non-relativistic theoretical models. We discuss the consequences of common violations of self-consistency in HF based random-phase-approximation calculations of strength functions and present results of highly accurate calculations of centroid energies and excitation cross sections of giant resonances. Explanations (resolutions) of long standing discrepancies in the value of K are presented.

  20. Modified Dihadron Fragmentation Functions in Hot and Nuclear Matter

    SciTech Connect

    Majumder, A.; Wang Enke; Wang Xinnian

    2007-10-12

    Medium modification of dihadron fragmentation functions due to gluon bremsstrahlung induced by multiple partonic scattering is studied in both deep-inelastic scattering (DIS) off large nuclei and high-energy heavy-ion collisions within the same framework of twist expansion. The modification for dihadrons is found to closely follow that for single hadrons, leading to a weak nuclear suppression of their ratios in DIS experiments. A mild enhancement of the near-side correlation of two high transverse momentum hadrons with increasing centrality is found in heavy-ion collisions due to trigger bias and the rise in parton energy loss with centrality. Successful comparisons between theory and experiment for multihadron observables in both confining and deconfined media offer comprehensive evidence for partonic energy loss as the mechanism of jet modification in dense matter.

  1. Effects of angular correlations on particle-particle propagation in infinite nuclear matter

    NASA Astrophysics Data System (ADS)

    Romero-Barrientos, J.; Arellano, H. F.

    2016-05-01

    The effect of angular correlations on self-consistent solutions for single-particle (sp) potentials in infinite nuclear matter is investigated. To this end we treat explicitly the angular dependence of the particle-particle (pp) propagator in Brueckner-Hartree-Fock (BHF) equation for the g matrix. It is observed that the exact angular dependence of the pp propagator yields highly fluctuating structures, posing stringent difficulties in the actual search of self-consistent solutions for the sp energy. A perturbative approach is presented to evaluate the effect of the angular correlations in the self-consistent solutions. Solutions at Fermi momenta kF in the range 1.20 - 1.75 fm-1 are reported using Argonne v 18 nucleon- nucleon potential. Although the sp potentials are sensitive to the treatment of the angular behaviour of the propagator, such sensitivity appears at momenta well above the Fermi surface. As a result, the saturation properties of symmetric nuclear matter differ marginally from those calculated using angle-averaged energy denominators in pp propagators.

  2. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2016-05-01

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) ‑ Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  3. Conventional and Unconventional Pairing and Condensates in Dilute Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Clark, John W.; Sedrakian, Armen; Stein, Martin; Huang, Xu-Guang; Khodel, Victor A.; Shaginyan, Vasily R.; Zverev, Mikhail V.

    2016-03-01

    This contribution will survey recent progress toward an understanding of diverse pairing phenomena in dilute nuclear matter at small and moderate isospin asymmetry, with results of potential relevance to supernova envelopes and proto-neutron stars. Application of ab initio many-body techniques has revealed a rich array of temperature-density phase diagrams, indexed by isospin asymmetry, which feature both conventional and unconventional superfluid phases. At low density there exist a homogeneous translationally invariant BCS phase, a homogeneous LOFF phase violating translational invariance, and an inhomogeneous translationally invariant phase-separated BCS phase. The transition from the BCS to the BEC phases is characterized in terms of the evolution, from weak to strong coupling, of the pairing gap, condensate wave function, and quasiparticle occupation numbers and spectra. Additionally, a schematic formal analysis of pairing in neutron matter at low to moderate densities is presented that establishes conditions for the emergence of both conventional and unconventional pairing solutions and encompasses the possibility of dineutron formation.

  4. Empirical observations on the unpredictable behavior of nuclear matter

    SciTech Connect

    Tannenbaum, M.J.

    1994-01-19

    While many aspects of matter are unpredictable from basic principles, there are some that are susceptible to empirical descriptions which can be quite accurate and beautiful. One such example from the field of ``Nuclear Matter Under Extreme Conditions`` is the distribution of the number of particles produced, or alternatively, of the energy carried by these particles, in energetic collisions of atomic nuclei. The present work consists of a series of published scientific papers on measurements of the distribution of particles produced, or the energy carried by these particles, in collisions of various nuclei, spanning more than a decade of research. Due to the unpredictability of the theory, the work includes empirical studies of the regularity of the measured distributions from which significant knowledge is gained. The aesthetics of this subject derives from the physical beauty of the measured curves, the characteristic changes of shape with different species of nuclei, and the deep understanding obtained by the use of a simple and elegant mathematical function to describe the data.

  5. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    NASA Astrophysics Data System (ADS)

    Vasconcellos, C. A. Zen

    2015-12-01

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ-, Σ0, Σ+, Λ, Ξ-, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, ɸ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ- experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  6. 77 FR 6598 - In the Matter of Entergy Nuclear Operations, Inc., Palisades Nuclear Plant, 27780 Blue Star...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... entities participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations, Inc., Palisades Nuclear Plant, 27780 Blue...

  7. Stability and size of a chiral soliton immersed in nuclear matter

    SciTech Connect

    Kahana, S.

    1985-01-01

    The alteration in nucleon substructure when nucleons are placed in nuclear matter is addressed in a Wigner-Seitz approximation by treating nuclei as a collection of chiral solitons. In the limit of strong coupling between quarks and the binding chiral fields, and for low density nuclear matter, it is found the solitons decrease slightly in size. 19 refs., 3 figs.

  8. Fierz-Pauli equation for massive gravitons from Induced Matter theory of gravity

    NASA Astrophysics Data System (ADS)

    Bellini, Mauricio

    2011-01-01

    Starting with a 5D physical vacuum described by a 5D Ricci-flat background metric, we study the emergence of gravitational waves (GW) from the Induce Matter (IM) theory of gravity. We obtain the equation of motion for GW on a 4D curved spacetime which has the form of a Fierz-Pauli one. In our model the mass of gravitons mg is induced by a static foliation on the noncompact space-like extra dimension and the source-term is originated in the interaction of the GW with the induced connections of the background 5D metric. Here, relies the main difference of this formalism with the original Fierz-Pauli one.

  9. Diffusion of dark matter in a hot and dense nuclear environment

    NASA Astrophysics Data System (ADS)

    Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph

    2016-07-01

    We calculate the mean free path in a hot and dense nuclear environment for a fermionic dark matter particle candidate in the ˜GeV mass range interacting with nucleons via scalar and vector effective couplings. We focus on the effects of density and temperature in the nuclear medium in order to evaluate the importance of the final state blocking in the scattering process. We discuss qualitatively possible implications for opacities in stellar nuclear scenarios, where dark matter may be gravitationally accreted.

  10. Equation of state studies of warm dense matter samples heated by laser produced proton beams

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; Guymer, T.; James, S. F.; Gumbrell, E.; Brown, C. R. D.; Hill, M.; Morton, J.; Doyle, H.

    2012-03-01

    Heating of matter by proton beams produced by short pulse, laser-solid target interaction has been demonstrated over the last ten years by a number of workers. In the work described in this paper heating by a pulse of laser produced protons has been combined with high-resolution soft x-ray radiography to record the expansion of thin wire targets. Analysis of the radiographs yields material properties in the warm dense matter regime. These measurements imply initial temperatures in the experimental samples over a range from 14 eV up to 40 eV; the sample densities varied from solid to a tenth solid density. Assuming an adiabatic expansion after the initial proton heating phase isentropes of the aluminium sample material were inferred and compared to tabulated data from the SESAME equation of state library. The proton spectrum was also measured using calibrated magnetic spectrometers and radiochromic film. The accuracy of the technique used to infer material data is discussed along with possible future development.

  11. Mass predictions of atomic nuclei in the infinite nuclear matter model

    NASA Astrophysics Data System (ADS)

    Nayak, R. C.; Satpathy, L.

    2012-07-01

    We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and α-particle separation energies of 6727 nuclei in the ranges 4≤Z≤120 and 8≤A≤303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the η-differential equations of the INM model. The local energy η's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact η-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around 31Na and 62Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.

  12. Mass predictions of atomic nuclei in the infinite nuclear matter model

    SciTech Connect

    Nayak, R.C.; Satpathy, L.

    2012-07-15

    We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and {alpha}-particle separation energies of 6727 nuclei in the ranges 4{<=}Z{<=}120 and 8{<=}A{<=}303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the {eta}-differential equations of the INM model. The local energy {eta}'s supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact {eta}-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around {sup 31}Na and {sup 62}Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.

  13. Impact of the nuclear equation of state on models of rotating neutron stars

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1991-06-03

    The impact of the nuclear equation of state on the properties of rotating neutron stars from two different sources, stable rotation at the general relativistic Kepler period and rotation at the gravitational radiation-reaction driven instability mode, is analyzed. For this purpose models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity by applying a refined version of Hartle's perturbative stellar structure equations. The investigation is based on a representative collection of a total of seventeen nuclear equations of state, covering both non-relativistic as well as relativistic ones. 41 refs., 3 figs., 2 tabs.

  14. Attenuation of {omega} mesons in cold nuclear matter

    SciTech Connect

    Rodrigues, T. E.; Arruda-Neto, J. D. T.

    2011-08-15

    The attenuation of {omega} mesons in cold nuclear matter has been investigated via the time-dependent multiple-scattering Monte Carlo multicollisional (MCMC) intranuclear cascade model. The inelastic {omega} width deduced from CBELSA/TAPS Collaboration data of meson transparency in complex nuclei ({Gamma}*{approx_equal}30 MeV/c{sup 2}) is approximately 5 times lower than the value obtained with recent theoretical models and consistent with an in-medium total {omega}N cross section within 25-30 mb for an average meson momentum of 1.1 GeV/c . The momentum-dependent transparency ratios suggest an elastic/total cross-section ratio around 40%. For the case of CLAS Collaboration data a much higher width is deduced ({Gamma}* > or approx. 120 MeV/c{sup 2}), with the MCMC model providing a consistent interpretation of the data, assuming a much higher meson absorption ({sigma}{sub {omega}N}* > or approx. 100 mb) for p{sub {omega}{approx}1}.7 GeV/c.

  15. The tendency analytical equations of stable nuclides and the superluminal velocity motion laws of matter in geospace

    NASA Astrophysics Data System (ADS)

    Yan, Kun

    In this paper, by discussing the existent distribution trend of relation for the proton number and the neutron number to be included by the stable nuclides in geospace, the tendency analytical method and it's periodic distribution equation forms of the stable nuclides are expressed at first. Then the comparison result between the curve of the theoretical equation analysis and the points of the experimental distribution data of the stable nuclides in geospace are given. Further more, the stable nuclide limit and the chemical element limit for the chemical element periodic table are given, and the possible corresponding relation equation with the positron-particle annihilation is expressed, which includes the estimation of the order of the static mass to be situated nearby at the electron neutrino structural dimension. Subsequently, by forming two hypotheses about the energy state of vacuum matter, and basing on the equivalent Binet equation, the mass equations and the energy equations of the partial moving with light-velocity or superluminal-velocity motion fusing with the results of Einstein special relativity are expressed. As inference, the possible corresponding relations between the mass equations and energy equations with the dark matter and dark energy are discussed tentatively.

  16. Equation of state of strongly interacting matter: spectra for thermal particles and intensity correlation of thermal photons

    NASA Astrophysics Data System (ADS)

    De, Somnath; Srivastava, Dinesh K.; Chatterjee, Rupa

    2010-11-01

    We find that an equation of state for hot hadronic matter consisting of all baryons having M < 2 GeV and all mesons having M < 1.5 GeV, along with Hagedorn resonances in thermal and chemical equilibrium, matches rather smoothly with the lattice equation of state (p4 action, Nτ = 8) for T up to ≈200 MeV, when corrected for the finite volume of hadrons. Next we construct two equations of state for strongly interacting matter; one, HHL, in which the above is matched to the lattice equation of state at T = 165 MeV and the other, HHB, where we match it to a bag model equation of state with critical temperature Tc = 165 MeV. We compare particle spectra, thermal photon spectra and histories of evolution of the quark-gluon plasma produced in the central collision of gold (lead) nuclei at RHIC (LHC) energies, considering ideal hydrodynamical expansion of the system. The particle and thermal photon spectra are seen to differ only marginally for the two equations of state. The history of evolution shows differences in the evolution of temperature and radial velocity, as one might expect. We calculate intensity interferometry of thermal photons and find it to be quite distinct for the two equations of state, especially for the outward correlation. The longitudinal correlation also shows a dependence on the equation of state, though, to a smaller extent.

  17. Dynamical properties of nuclear and stellar matter and the symmetry energy

    SciTech Connect

    Pais, Helena; Santos, Alexandre; Brito, Lucilia; Providencia, Constanca

    2010-08-15

    The effects of density dependence of the symmetry energy on the collective modes and dynamical instabilities of cold and warm nuclear and stellar matter are studied in the framework of relativistic mean-field hadron models. The existence of the collective isovector and possibly an isoscalar collective mode above saturation density is discussed. It is shown that soft equations of state do not allow for a high-density isoscalar collective mode; however, if the symmetry energy is hard enough, an isovector mode will not disappear at high densities. The crust-core transition density and pressure are obtained as a function of temperature for {beta}-equilibrium matter with and without neutrino trapping. Estimations of the size of the clusters formed in the nonhomogeneous phase, as well as the corresponding growth rates and distillation effect, are made. It is shown that cluster sizes increase with temperature, that the distillation effect close to the inner edge of the crust-core transition is very sensitive to the symmetry energy, and that, within a dynamical instability calculation, the pasta phase exists in warm compact stars up to 10-12 MeV.

  18. Partonic Equations of State in High-Energy Nuclear Collisions atRHIC

    SciTech Connect

    Xu, Nu

    2006-10-01

    The authors discuss the recent results on equation of state for partonic matter created at RHIC. Issues of partonic collectivity for multi-strange hadrons and J/{psi} from Au + Au collisions at {radical}s{sub NN} = 200 GeV are the focus of this paper.

  19. On the electrodynamical properties of nuclear matter in bulk

    SciTech Connect

    Rotondo, Michael; Xue Shesheng; Ruffini, Remo

    2008-01-03

    We analyze the properties of solutions of the relativistic Thomas-Fermi equation for globally neutral cores with radius of the order of R{approx_equal}10 Km, at constant densities around the nuclear density. By using numerical tecniques as well as well tested analytic procedures developed in the study of heavy ions, we confirm the existence of an electric field close to the critical value E{sub c} = m{sub e}{sup 2}c{sup 3}/e({Dirac_h}/2{pi}) in a shell {delta}R{approx_equal}l0{sup 4}({Dirac_h}/2{pi})/m{sub {pi}}c near the core surface. For a core of {approx_equal}10 Km the difference in binding energy reaches 10{sup 49} ergs. These results can be of interest for the understanding of very heavy nuclei as well as physics of neutron stars, their formation processes and further gravitational collapse to a black hole.

  20. Deuteron formation in expanding nuclear matter from a strong coupling BCS approach

    SciTech Connect

    Baldo, M.; Lombardo, U.; Schuck, P.

    1995-08-01

    The process of deuteron formation in intermediate heavy ion reactions is approached within the strong coupling BCS theory assuming that the final stage of the reaction can be described as an adiabatic expansion of a piece of nuclear matter. Since the gap equation in the {sup 3}{ital S}{sub 1}-{sup 3}{ital D}{sub 1} channel goes over into the deuteron Schroedinger equation in the low density limit, a smooth transition from the superfluid Cooper pair phase to a Bose deuteron gas is found. For a fixed entropy ranging from 0.5 to 2 units per particle the deuteron fraction, the chemical potential and temperature are reported as a function of density. For densities down to {rho}=0.1 fm{sup {minus}3} and lower, the deuteron-to-nucleon ratio rapidly increases from a density threshold strongly depending on the entropy. Decreasing further the density this ratio tends logarithmically to one. The possible relevance of these results for heavy ion collisions and the shortcomings of the present approach are briefly discussed.

  1. Landau parameters for isospin asymmetric nuclear matter based on a relativistic model of composite and finite extension nucleons

    SciTech Connect

    Aguirre, R. M.; Paoli, A. L. de

    2007-04-15

    We study the properties of cold asymmetric nuclear matter at high density, applying the quark meson coupling model with excluded volume corrections in the framework of the Landau theory of relativistic Fermi liquids. We discuss the role of the finite spatial extension of composite baryons on dynamical and statistical properties such as the Landau parameters, the compressibility, and the symmetry energy. We have also calculated the low-lying collective eigenfrequencies arising from the collisionless quasiparticle transport equation, considering both unstable and stable modes. An overall analysis of the excluded volume correlations on the collective properties is performed.

  2. Time-dependent pairing equations for seniority-one nuclear systems

    SciTech Connect

    Mirea, M.

    2008-10-15

    When the time-dependent Hartree-Fock-Bogoliubov intrinsic equations of motion are solved in the case of seniority-one nuclear systems, the unpaired nucleon remains on the same orbital. The blocking effect hinders the possibility to skip from one orbital to another. This unpleasant feature is by-passed with a new set of pairing time-dependent equations that allows the possibility that the unpaired nucleon changes its single-particle level. These equations generalize the time-dependent Hartree-Fock-Bogoliubov equations of motion by including the Landau-Zener effect. The derivation of these new equations is presented in detail. These equations are applied to the case of a superasymmetric fission process, that is, to explain the fine structure the {sup 14}C emission from {sup 233}Ra. In this context, a new version of the Woods-Saxon model extended for two-center potentials is used.

  3. Modification of generalized vector form factors and transverse charge densities of the nucleon in nuclear matter

    NASA Astrophysics Data System (ADS)

    Jung, Ju-Hyun; Yakhshiev, Ulugbek; Kim, Hyun-Chul

    2016-03-01

    We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified π -ρ -ω soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.

  4. Equation of state of imbalanced cold matter from chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo

    2016-03-01

    We study the thermodynamic properties of matter at vanishing temperature for nonextreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading-order pressure obtained by maximizing the static chiral Lagrangian density, we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the energy density and the Stefan-Boltzmann energy density and for the isospin chemical potential at the peak, both in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For μI≳2 mπ, the leading-order chiral perturbation theory breaks down; for example, it underestimates the energy density of the system and leads to a wrong asymptotic behavior.

  5. Do Skyrme forces that fit nuclear matter work well in finite nuclei?

    NASA Astrophysics Data System (ADS)

    Stevenson, P. D.; Goddard, P. M.; Stone, J. R.; Dutra, M.

    2013-05-01

    A short list of Skyrme force parameterizations, recently found to have passed a series of constraints relating to nuclear matter properties is analyzed for their ability to reproduce data in finite nuclei. We analyse binding energies, isotope shifts, neutron skin thicknesses and fission barriers. We find that the subset of forces have no common ability to reproduce(or otherwise)properties of finite nuclei, despite passing the extensive range of nuclear matter constraints.

  6. Investigating the Nuclear Equation of State through N/Z Equilibration

    SciTech Connect

    Yennello, S.; Keksis, A.; Bell, E.

    2007-10-26

    The equilibration of the N/Z degree of freedom during heavy-ion collisions can be a discriminating observables for helping to understand the nuclear equation of state. Equilibration can be investigated by examining the ratios of isotopes produced in these reactions. The isotope ratio method and the tracer method yield consistent results. The quasiprojectiles produced in deep inelastic collisions are predicted to be sensitive to the density dependence of the equation of state.

  7. Constraining the high-density behavior of the nuclear equation of state from strangeness production in heavy-ion collisions

    SciTech Connect

    Feng Zhaoing

    2011-06-15

    The dynamics of pions and strange particles in heavy-ion collisions in the region of 1A GeV energies is investigated by the lanzhou quantum molecular dynamics model for probing the nuclear equation of state at suprasaturation densities. The total multiplicities and the ratios obtained in {sup 197}Au+{sup 197}Au over {sup 12}C+{sup 12}C systems are calculated for selected Skyrme parameters SkP, SLy6, Ska, and SIII, which correspond to different modulus of incompressibility of symmetric nuclear matter and different cases of the stiffness of symmetry energy. A decreasing trend of the excitation functions of the ratios for strange particle production with increasing incident energy was observed. The available data of K{sup +} production measured by KaoS collaboration are described well with the parameter SkP, which results in a soft equation of state. The conclusions cannot be modified by an in-medium kaon-nucleon potential.

  8. Electronic Contributions to the Equation-of-State of Warm Dense Matter*

    NASA Astrophysics Data System (ADS)

    Albritton, J. R.; Liberman, D. A.; Sonnad, V.; Young, D. A.; Reisman, D. B.; Cauble, R. C.

    2001-10-01

    We describe calculations with the INFERNO[1] atom-in-jellium model to produce single-shock Hugoniot curves for aluminum, copper, and still other elements, from their normal initial density and also from "expanded" states of initial density of about 1/10 normal. These calculations address the regime of "warm-dense-matter", the former in support of experiments toward maximum compression, and the latter in support of experiments toward isentropic compression. INFERNO provides the electronic contributions to the internal energy and pressure, and ideal-gas or QEOS[2] atomic nuclear contributions complete the scheme. We compare INFERNO’s fully quantum-mechanical treatment of electrons with the familiar Thomas-Fermi model. We also investigate the one-component-plasma[3] model for the non-ideal contributions of atomic ions in strongly-coupled plasmas. [1] D.A. Liberman, Phys Rev B, 20, 4981 (1979) [2] R.M. More, K.H. Warren, D.A. Young, and G.B. Zimmerman, Phys Fluids, 31, 3059 (1988) [3] H. DeWitt, W. Slattery, and Gilles Chabrier, Physica B, 228, 21 (1996) *This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  9. Heavy ion collisions with A = 10/sup 57/: Aspects of nuclear stability and the nuclear equation of state in coalescing neutron-star binary systems

    SciTech Connect

    Mathews, G.J.; Wilson, J.R.; Evans, C.R.; Detweiler, S.L.

    1987-12-01

    The dynamics of the final stages of the coalescence of two neturon stars (such as the binary pulsar PSR 1913+16) is an unsolved problem in astrophysics. Such systems are probably efficient generators of gravitational radiation, and may be significant contributors to heavy-element nucleosynthesis. The input physics for the study of such systems is similar to that required for the strudy of heavy-ion collision hydrodynamics; e.g., a finite temperature nuclear equation of state, properties of nuclei away from stability, etc. We discuss the development of a relativistic hydrodynamics code in three spatial dimensions for the purpose of studying such neutron-star systems. The properties of the mass-radius relation (determined by the nuclear equation of state) may lead to a proposed mechanism by which hot, highly neutronized matter is ejected from the coalescing stars. This material is photodisintegrated into a free (mostly) neutron gas which may subsequently experience rapid-neutron capture (r-process) nucleosynthesis. 15 refs., 4 figs.

  10. New formulation of Magnetization Equation for Flowing Nuclear Spin under NMR/MRI Excitation(I)

    NASA Astrophysics Data System (ADS)

    de, Dilip; Emetere, Moses; Omotosho, Victor

    2015-03-01

    We have obtained for the first time from the Bloch NMR equations the correct dependence of the single component of magnetization, My and Mz at resonance (NMR/MRI) on relaxation times, rf B1 field (pulsed or continuous), blood(nuclear spin) flow velocity, etc. in the rotating frame of reference. The equations are applicable for both CW and pulsed NMR experiments with or without flow of spins. Our approaches can be extended easily to include gradient fields and diffusion of spins, if needed in NMR/MRI experiments. We also discuss the application of our equations to a specific case of MR excitation scheme: Free induction decay. The first time new equations of single component of MR magnetization and further equations that can be derived with the methodologies used here, can be applied towards accurate simulation of MR images/signals and extraction of parameters of clinical importance through comparison of the measured and the simulated images/signals.

  11. The Heart of Matter: A Nuclear Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Viola, Vic; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching nuclear chemistry. In this book, the fundamental concepts of nuclear science and the applications of nuclear energy are discussed. The material in this book can be integrated with the other modules in a sequence that helps students…

  12. Thermodynamics of Hot Nuclear Matter: 1978 in the Statistical Bootstrap Model

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann; Hagedorn, Rolf

    We formulate the statistical bootstrap model for nuclear matter, and study its resulting thermodynamic properties at nuclear densities below the saturation density. We discuss the relevance of limiting temperature and the phase transition gas-`liquid' when the volume of the fireball grows with its energy.

  13. Kaon properties in dense nuclear matter: are there experimental evidences of in medio effects?

    SciTech Connect

    Mangiarotti, A.

    2009-06-03

    Beyond the general interest for nuclear matter theory, the K{sup -} in medio mass modification could have important astrophysical consequences. Experimental evidences of how a nuclear medium affects K{sup +} and K{sup -} properties will be summarised. To reach a firm conclusion about the K{sup -}, the missing information on the flow will be shown to be still relevant.

  14. Accelerating Nuclear Magnetic Resonance (NMR) Analysis of Soil Organic Matter with Dynamic Nuclear Polarization (DNP) Enhancement

    NASA Astrophysics Data System (ADS)

    Normand, A. E.; Smith, A. N.; Long, J. R.; Reddy, K. R.

    2014-12-01

    13C magic angle spinning (MAS) solid state Nuclear Magnetic Resonance (ssNMR) has become an essential tool for discerning the chemical composition of soil organic matter (SOM). However, the technique is limited due to the inherent insensitivity of NMR resulting in long acquisition times, especially for low carbon (C) soil. The pursuits of higher magnetic fields or concentrating C with hydrofluoric acid are limited solutions for signal improvement. Recent advances in dynamic nuclear polarization (DNP) have addressed the insensitivity of NMR. DNP utilizes the greater polarization of an unpaired electron in a given magnetic field and transfers that polarization to an NMR active nucleus of interest via microwave irradiation. Signal enhancements of up to a few orders of magnitude have been achieved for various DNP experiments. In this novel study, we conduct DNP 13C cross-polarization (CP) MAS ssNMR experiments of SOM varying in soil C content and chemical composition. DNP signal enhancements reduce the experiment run time allowing samples with low C to be analyzed in hours rather than days. We compare 13C CP MAS ssNMR of SOM with multiple magnetic field strengths, hydrofluoric acid treatment, and novel DNP approaches. We also explore DNP surface enhanced NMR Spectroscopy (SENP) to determine the surface chemistry of SOM. The presented results and future DNP MAS ssNMR advances will lead to further understanding of the nature and processes of SOM.

  15. Athena's Constraints on the Dense Matter Equation of State from Quiescent Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien

    2016-07-01

    The study of neutron star quiescent low-mass X-ray binaries (qLMXBs) will address one of the science goals of the Athena X-ray observatory. The study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to place constrains on the dense matter equation of state and understand the interior structure of neutron stars. I will briefly review this method, its strengths and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit the acquisition of unprecedentedly high signal-to-noise spectra from these sources. It has been demonstrated that a single qLMXB, even with a high signal-to-noise spectrum, will not place useful constraints on the dense matter equation of state. However, a combination of qLMXB spectra has shown great promises of obtaining tight constraints on the equation of state. I will discuss the expected prospects for observations of qLMXBs and in particular, I will show that very tight constraints on the equation of state can be obtained from the observations of qLMXBs with the Athena X-ray observatory (even with a 10 % uncertainty on the flux calibration).

  16. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    SciTech Connect

    Vasconcellos, C. A. Zen

    2015-12-17

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  17. Moments of ϕ meson spectral functions in vacuum and nuclear matter

    NASA Astrophysics Data System (ADS)

    Gubler, Philipp; Weise, Wolfram

    2015-12-01

    Moments of the ϕ meson spectral function in vacuum and in nuclear matter are analyzed, combining a model based on chiral SU (3) effective field theory (with kaonic degrees of freedom) and finite-energy QCD sum rules. For the vacuum we show that the spectral density is strongly constrained by a recent accurate measurement of the e+e- →K+K- cross section. In nuclear matter the ϕ spectrum is modified by interactions of the decay kaons with the surrounding nuclear medium, leading to a significant broadening and an asymmetric deformation of the ϕ meson peak. We demonstrate that both in vacuum and nuclear matter, the first two moments of the spectral function are compatible with finite-energy QCD sum rules. A brief discussion of the next-higher spectral moment involving strange four-quark condensates is also presented.

  18. Mesonic and nonmesonic absorption of kaon in nuclear matter and {Lambda}(1405) doorway process

    SciTech Connect

    Sekihara, T.; Yamagata-Sekihara, J.; Jido, D.; Kanada-En'yo, Y.

    2010-12-28

    The mesonic and nonmesonic absorptions of kaon into nuclear systems are investigated from a viewpoint of {Lambda}(1405) doorway process. Using a one-meson exchange model in the calculation of the nonmesonic {Lambda}(1405)N{yields}YN transition and using the chiral unitary approach for the description of the {Lambda}(1405), we obtain the nonmesonic transition ratio {Gamma}{sub {Lambda}N}/{Gamma}{sub {Sigma}}{sup 0}{sub N{approx_equal}}1.2 which is almost independent of the nucleon density, and find the total nonmesonic decay width of the {Lambda}(1405) in uniform nuclear matter to be 22 MeV at the normal density. We also calculate the absorption for stopped K{sup -} in nuclear matter, and find that the ''formation rate'' of {Lambda}(1405) is important for the density dependence and the absolute value of the absorption potential of kaon in nuclear matter.

  19. A structural equation modeling investigation of age-related variance in executive function and DTI measured white matter damage.

    PubMed

    Charlton, R A; Landau, S; Schiavone, F; Barrick, T R; Clark, C A; Markus, H S; Morris, R G

    2008-10-01

    Cognitive changes in normal aging have been explained by the frontal-executive hypothesis, but the assumptions made by this hypothesis concerning the neurobiological causes are still a matter of debate. Executive functions (EF) may activate neural networks that include disparate grey matter regions, and rely on the integrity of white matter connections. In 118 adults (50-90 years old) from the GENIE study, white matter integrity was measured using diffusion tensor imaging, and information processing speed, fluid intelligence and EF were assessed. A theory-driven structural equation model was developed to test associations between variables. The model was revised, removing non-significant paths. The adjusted model explained well the covariance in our data; and suggested that the reduction in white matter integrity associated with age directly affected only working memory. Fluid intelligence was mediated by all measured cognitive variables. The results suggest that white matter integrity may be particularly important for abilities activating complex neural networks, as occurs in working memory. Integration of the information processing speed and frontal-executive hypotheses may provide important information regarding common, unique, and mediating factors in cognitive aging. PMID:17451845

  20. Thermodynamic instabilities in warm and dense asymmetric nuclear matter and in compact stars

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.; Pigato, D.

    2016-01-01

    We investigate the possible thermodynamic instability in a warm and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated Δ-matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon- Δmatter phase transition due essentially to a Δ- excess in the Δ-matter phase in asymmetric nuclear matter. In this context we also discuss the relevance of Δ-isobar degrees of freedom in the bulk properties and in the maximum mass of compact stars.

  1. Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies

    SciTech Connect

    Berninger, M.

    2011-06-24

    Experimental equation-of-state (EOS) data are difficult to obtain for warm dense matter (WDM)–ionized materials at near-solid densities and temperatures ranging from a few to tens of electron volts–due to the difficulty in preparing suitable plasmas without significant density gradients and transient phenomena. We propose that the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility can be used to create a temporally stationary and spatially uniform WDM. DARHT has an 18 MeV electron beam with 2 kA of current and a programmable pulse length of 20 ns to 200 ns. This poster describes how Monte Carlo n-Particle (MCNP) radiation transport and LASNEX hydrodynamics codes were used to demonstrate that the DARHT beam is favorable for avoiding the problems that have hindered past attempts to constrain WDM properties. In our concept, a 60 ns pulse of electrons is focused onto a small, cylindrical (1 mm diameter × 1 mm long) foam target, which is inside a stiff high-heat capacity tube that both confines the WDM and allows pressure measurements. In our model, the foam is made of 30% density Au and the tamper is a B4C tube. An MCNP model of the DARHT beam investigated electron collisions and the amount of energy deposited in the foam target. The MCNP data became the basis for a LASNEX source model, where the total energy was distributed over a 60 ns time-dependent linear ramp consistent with the DARHT pulse. We used LASNEX to calculate the evolution of the foam EOS properties during and after deposition. Besides indicating that a ~3 eV Au plasma can be achieved, LASNEX models also showed that the WDM generates a shock wave into the tamper whose speed can be measured using photonic Doppler velocimetry. EOS pressures can be identified to better than 10% precision. These pressures can be correlated to energy deposition with electron spectrometry in order to obtain the Au EOS. Radial uniformity in the DARHT beam was also investigated. To further obtain uniform radial

  2. Isospin splitting of nucleon effective mass and shear viscosity of nuclear matter

    NASA Astrophysics Data System (ADS)

    Xu, Jun

    2015-03-01

    Based on an improved isospin- and momentum-dependent interaction, I have studied the qualitative effect of isospin splitting of nucleon effective mass on the specific shear viscosity of neutron-rich nuclear matter from a relaxation time approach. It is seen that for mn>mp , the relaxation time of neutrons is smaller, and the neutron flux between flow layers is weaker, leading to a smaller specific shear viscosity of neutron-rich matter compared to the case for mnnuclear matter at higher densities, lower temperatures, and larger isospin asymmetries, but it does not affect the behavior of the specific shear viscosity much near nuclear liquid-gas phase transition.

  3. Jet-induced modifications of the characteristic of the bulk nuclear matter

    NASA Astrophysics Data System (ADS)

    Marcinkowski, P.; Słodkowski, M.; Kikoła, D.; Sikorski, J.; Porter-Sobieraj, J.; Gawryszewski, P.; Zygmunt, B.

    2016-01-01

    We present our studies on jet induced modifications of the characteristics of bulk nuclear matter. To describe such matter, we use efficient relativistic hydrodynamic simulations in (3+1)-dimension, employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.

  4. Superheavy Elements --- A Probe for Nuclear Matter at the Extremes

    NASA Astrophysics Data System (ADS)

    Ackermann, D.

    The spherical shell stabilised superheavy elements (SHE) predictedat the extreme of high Z and A are a nuclear structure phenomenon. They owe their existence to shell effects, an energy contribution of quantum mechanical origin to the nuclear potential, without which they would not be bound. Experimental activities in this field, apart from attempts to directly synthesise new elements, have to investigate reaction mechanism studies and, in particular, they have to pursue nuclear structure investigations to study the development of single particle levels towards the expected gaps for the proton (at Z = 114, 120 or 126) and neutron (at N = 184) shell closures in the region of spherical SHE. A number of exciting results in terms of the synthesis of new elements have reached the border of that region. In particular, the results obtained at the Flerov Laboratory of Nuclear Reactions (FLNR) for a rich number of decay patterns for ^{48}Ca induced reactions on actinide targets have by now been confirmed for reactions on ^{238}U, ^{244}Pu and ^{248}Cm at GSI, and on ^{242}Pu at LBNL. In recent years the development of efficient experimental set-ups, including separators and advanced particle and photon detection arrangements, allowed for more detailed nuclear structure studies for nuclei at and beyond Z = 100. Among the most interesting features is the observation of K-isomeric states. The heaviest example for such a structure feature was found in ^{270}Ds. In a recent experiment the knowledge on this nucleus and its decay products could be largely extended.

  5. Holographic Quark Matter and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-01

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  6. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars. PMID:27472110

  7. NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Graen, Timo; Grubmüller, Helmut

    2016-01-01

    The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov's method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.

  8. 75 FR 5357 - In the Matter of Entergy Nuclear Operations, Inc., et al.; Order Extending the Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations, Inc., et al.; Order Extending the Effectiveness of the Approval of the Indirect Transfer of Facility Operating Licenses Entergy Nuclear Operations, Inc. Entergy Nuclear Generation Company (Pilgrim...

  9. Nuclear space-valued stochastic differential equations driven by Poisson random measures

    SciTech Connect

    Xiong, J.

    1992-01-01

    The thesis is devoted primarily to the study of stochastic differential equations on duals of nuclear spaces driven by Poisson random measures. The existence of a weak solution is obtained by the Galerkin method and the uniqueness is established by implementing the Yamada-Watanabe argument in the present setup. When the magnitudes of the driving terms are small enough and the Poisson streams occur frequently enough, it is proved that the stochastic differential equations mentioned above can be approximated by diffusion equations. Finally, the author considers a system of interacting stochastic differential equations driven by Poisson random measures. Let (X[sup n][sub i](t), [center dot][center dot][center dot], X[sup n][sub n](t)) be the solution of this system and consider the empirical measures [zeta]n([omega],B) [identical to] (1/n) (sum of j=1 to n) [delta]x[sup n][sub j]([center dot],[omega])(B) (n[>=]1). It is provided that [zeta][sub n] converges in distribution to a non-random measure which is the unique solution of a McKean-Vlasov equation. The above problems are motivated by applications to neurophysiology, in particular, to the fluctuation of voltage potentials of spatially distributed neurons and to the study of asymptotic behavior of large systems of interacting neurons.

  10. Investigation of the nuclear matter distribution of 56Ni by elastic proton scattering in inverse kinematics

    NASA Astrophysics Data System (ADS)

    von Schmid, M.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, T.; Kuilman, M.; Litvinov, S.; Litvinov, Yu A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zamora, J. C.; Zenihiro, J.; the EXL Collaboration

    2015-11-01

    We have measured the nuclear-matter distribution of the doubly-magic N = Z nucleus 56Ni by investigating elastic proton scattering in inverse kinematics. The radioactive beam of 56Ni was injected and stored in the experimental storage ring (ESR, GSI) and interacted with an internal hydrogen gas-jet target. The high revolution frequency of the ions in the ring enabled a high luminosity, despite the low density of the target being used. This way, measurements at very low momentum transfers became possible. By measuring the energy and the scattering angle of the recoiling protons, we were able to separate the elastic reaction channel from inelastic scattering to the first excited {2}+ state of 56Ni and deduced the differential cross section of 56Ni {(p,p)}56 Ni. The data were analyzed within the framework of the Glauber multiple-scattering theory in order to extract the nuclear-matter radius and radial matter distribution of 56Ni. Parameterizing the matter distribution with the phenomenological Symmetrized Fermi distribution, a preliminary value of 3.5 fm for the rms matter radius was deduced. This experiment was part of an EXL (EXotic nuclei studied in Light-ion induced reactions at storage rings) campaign at GSI in 2012 and was the first successful investigation of nuclear reactions with a stored radioactive beam ever.

  11. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies. PMID:24093546

  12. Covariant energy density functionals: Nuclear matter constraints and global ground state properties

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Agbemava, S. E.

    2016-05-01

    The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Dutra et al. [Phys. Rev. C 90, 055203 (2014), 10.1103/PhysRevC.90.055203] will not necessarily lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not only by nuclear matter properties but also by underlying shell effects. The mismatch of phenomenological content, existing in all modern functionals, related to nuclear matter physics and the physics of finite nuclei could also be responsible.

  13. 77 FR 5853 - In the Matter of Entergy Nuclear Operations Inc; Confirmatory Order Modifying License (Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... entities participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR...-47; DPR-28; NFP-38; EA-10-090; EA-10-248; EA-11-160] In the Matter of Entergy Nuclear Operations...

  14. Pion condensation in a relativistic field theory consistent with bulk properties of nuclear matter

    SciTech Connect

    Banerjee, B.; Glendenning, N. K.; Gyulassy, M.

    1981-05-01

    Pion condensation is investigated in a self-consistent. relativistic mean field theory that is constrained to reproduce the bulk properties of nuclear matter. This constraint and self-consistency provide stringent constraints on the existence and energy of the condensate.

  15. Self-Consistent Green Function Calculations for Isospin Asymmetric Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Mansour, H.; Gad, K.; Hassaneen, K. S. A.

    2010-04-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potentia l at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m(*_n) ≥ m(*_p) .

  16. Effect of the {delta} meson on the instabilities of nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Da Providencia, J.

    2009-08-15

    We study the influence of the isovector-scalar meson on the spinodal instabilities and the distillation effect in asymmetric nonhomogenous nuclear matter under strong magnetic fields of the order of 10{sup 18}-10{sup 19} G. Relativistic nuclear models both with constant couplings (NLW) and with density-dependent parameters (DDRH) are considered. A strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. It is shown that for neutron-rich matter the inclusion of the {delta} meson increases the size of the instability region for NLW models and decreases it for the DDRH models. The effect of the {delta} meson on the transition density to homogeneous {beta}-equilibrium matter is discussed. The DDRH{delta} model predicts the smallest transition pressures, about half the values obtained for NL{delta}.

  17. Constraining the Dense Matter Equation of State with ATHENA-WFI observations of Neutron Stars in Quiescent LMXBs

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Oezel, F.

    2015-09-01

    The study of neutron star quiescent low-mass X-ray binaries (qLMXBs) will address one of the main science goals of the Athena x-ray observatory. The study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to place constrains on the dense matter equation of state. I will briefly review this method, its strength and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit the acquisition of unprecedentedly high signal-to-noise spectra from these sources. It has been demonstrated that a single qLMXB, even with high S/N, will not place useful constraints on the EoS. However, a combination of qLMXBs spectra has shown promises of obtaining tight constraints on the equation of state. I will discuss the expected prospects for observations of qLMXBs inside globular clusters -- those that Athena will be able to resolve. I will also present the constraints on the equation of state that Athena will be able to obtain from these qLMXBs and from a population of qLMXBs in the field of the Galaxy, with distance measurements provided by Gaia.

  18. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  19. Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2010-08-26

    Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.

  20. Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-07-01

    Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.

  1. Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-07-01

    Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.

  2. Rater Comparability Scoring and Equating: Does Choice of Target Population Weights Matter in This Context?

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2013-01-01

    When a constructed-response test form is reused, raw scores from the two administrations of the form may not be comparable. The solution to this problem requires a rescoring, at the current administration, of examinee responses from the previous administration. The scores from this "rescoring" can be used as an anchor for equating. In…

  3. Energy-Momentum Tensor Form Factors of the Nucleon in Nuclear Matter in the Chiral Soliton Model

    NASA Astrophysics Data System (ADS)

    Yakhshiev, Ulugbek; Kim, Hyun-Chul; Schweitzer, Peter

    2013-08-01

    In the present talk, we report a recent investigation on the nucleon form factors of the energy-momentum tensor in nuclear matter, based on the in-medium modified chiral soliton model. The results in free space are in agreement with those from other approaches. We have discussed the changes of the energy-momentum tensor form factors in nuclear matter and the modification of the soliton structure due to the surrounding nuclear environment.

  4. Theory of damped quantum rotation in nuclear magnetic resonance spectra. III. Nuclear permutation symmetry of the line shape equation.

    PubMed

    Szymański, S

    2009-12-28

    The damped quantum rotation (DQR) theory describes manifestations in nuclear magnetic resonance spectra of the coherent and stochastic dynamics of N-fold molecular rotors composed of indistinguishable particles. The standard jump model is only a limiting case of the DQR approach; outside this limit, the stochastic motions of such rotors have no kinematic description. In this paper, completing the previous two of this series, consequences of nuclear permutation symmetry for the properties of the DQR line shape equation are considered. The systems addressed are planar rotors, such as aromatic hydrocarbons' rings, occurring inside of molecular crystals oriented in the magnetic field. Under such conditions, oddfold rotors can have nontrivial permutation symmetries only for peculiar orientations while evenfold ones always retain their intrinsic symmetry element, which is rotation by 180 degrees about the N-fold axis; in specific orientations the latter can gain two additional symmetry elements. It is shown that the symmetry selection rules applicable to the classical rate processes in fluids, once recognized as having two diverse aspects, macroscopic and microscopic, are also rigorously valid for the DQR processes in the solid state. However, formal justification of these rules is different because the DQR equation is based on the Pauli principle, which is ignored in the jump model. For objects like the benzene ring, exploitation of these rules in simulations of spectra using the DQR equation can be of critical significance for the feasibility of the calculations. Examples of such calculations for the proton system of the benzene ring in a general orientation are provided. It is also shown that, because of the intrinsic symmetries of the evenfold rotors, many of the DQR processes, which such rotors can undergo, are unobservable in NMR spectra. PMID:20059076

  5. Nuclear equation of state from observations of short gamma-ray burst remnants

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.; Haskell, Brynmor; Ravi, Vikram; Howell, Eric J.; Coward, David M.

    2014-02-01

    The favored progenitor model for short γ-ray bursts (SGRBs) is the merger of two neutron stars that triggers an explosion with a burst of collimated γ-rays. Following the initial prompt emission, some SGRBs exhibit a plateau phase in their X-ray light curves that indicates additional energy injection from a central engine, believed to be a rapidly rotating, highly magnetized neutron star. The collapse of this "protomagnetar" to a black hole is likely to be responsible for a steep decay in X-ray flux observed at the end of the plateau. In this paper, we show that these observations can be used to effectively constrain the equation of state of dense matter. In particular, we show that the known distribution of masses in binary neutron star systems, together with fits to the X-ray light curves, provides constraints that exclude the softest and stiffest plausible equations of state. We further illustrate how a future gravitational wave observation with Advanced LIGO/Virgo can place tight constraints on the equation of state, by adding into the picture a measurement of the chirp mass of the SGRB progenitor.

  6. Density of saturated nuclear matter at large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.; Datta, Ishaun

    2014-06-01

    We exhibit the existence of stable, saturated nuclear matter in the large Nc and heavy quark mass limits of QCD. In this limit, baryons (with the same spin flavor structure) interact at leading order in Nc via a repulsive interaction due to the Pauli exclusion principle and at subleading order in 1/Nc via the exchange of glueballs. Assuming that the lightest glueball is a scalar, which implies that the subleading baryon interaction is attractive, we find that nuclear matter saturates since the subleading attractive interaction is longer ranged than the leading order repulsive one. We find that the saturated matter is in the form of a crystal with either a face-centered-cubic or a hexagonal-close-packed symmetry with baryon densities of O ({α˜smq[nuclear matter is independent of the lightest glueball mass and scalar-glueball-baryon coupling in the extreme large Nc limit or heavy quark limit (or both), which we define precisely in this work.

  7. A further update on possible crises in nuclear-matter theory

    NASA Astrophysics Data System (ADS)

    Dickhoff, W. H.

    2016-03-01

    The ancient problem of the saturation of symmetric nuclear matter is reviewed with an update on the status of the crises that were identified at an early stage by John Clark. We discuss how the initial problem with variational calculations providing more binding than the two hole-line contribution for the same interaction was overcome by calculations including three hole-line contributions without however reproducing the empirical nuclear saturation properties. It is argued that this remaining problem is still open because many solutions have been proposed or ad hoc adjustments implemented without generating universal agreement on the proper interpretation of the physics. The problem of nuclear saturation therefore persists leading to the necessity of an analysis of the way the nuclear saturation properties are obtained from experimental data. We clarify the role of short-range correlations and review results for nuclear saturation when such ingredients are completely taken into account using the Green’s function method. The role of long-range correlations is then analyzed with special emphasis on the importance of attractive pion-dominated excitation modes which inevitably lead to higher saturation densities than observed. Because such modes have no counterpart in finite nuclear systems, it is therefore argued that they should not be considered when calculating nuclear matter properties. The remaining open question is then whether long-range correlations in finite nuclei which in turn have no counterpart in infinite matter, represent the remaining missing ingredient in this analysis. We also briefly comment on the role of three-body interactions in the context of the dispersive optical model description of experimental data. It is further noted that interactions based on chiral perturbation theory at present do not generate a sufficient number of high-momentum nucleons leading to radii that are too small and substantial overbinding in finite nuclei.

  8. Coefficients of the isobaric mass equation and their correlations with various nuclear parameters

    SciTech Connect

    Britz, J.; Pape, A.; Antony, M.S.

    1998-05-01

    The coefficients of the isobaric multiplet mass equation M = a + bT{sub z} + cT{sub z}{sup 2} have been calculated for the 430 identified T = 1/2, 1, 3/2, 2 multiplets and correlations of its b, c coefficients with various nuclear parameters have been sought. For most mass numbers A there is a tendency for b to increase, and for c to decrease, with the average excitation energy of the multiplet. There seems to be no separate dependence of b or c on spin, but there could be a dependence of b on parity.

  9. Effective meson masses in nuclear matter based on a cutoff field theory

    SciTech Connect

    Nakano, M.; Noda, N.; Mitsumori, T.; Koide, K.; Kouno, H.; Hasegawa, A.

    1997-02-01

    Effective masses of {sigma}, {omega}, {pi}, and {rho} mesons in nuclear matter are calculated based on a cutoff field theory. Instead of the traditional density-Feynman representation, we adopt the particle-hole-antiparticle representation for nuclear propagators so that unphysical components are not included in the meson self-energies. For an estimation of the contribution from the divergent particle-antiparticle excitations, i.e., vacuum polarization in nuclear matter, the idea of the renormalization group method is adopted. In this cutoff field theory, all the counterterms are finite and calculated numerically. It is shown that the predicted meson masses converge even if the cutoff {Lambda} is changed as long as {Lambda} is sufficiently large and that the prescription works well also for so-called nonrenormalized mesons such as {pi} and {rho}. According to this method, it is concluded that meson masses in nuclear matter have a weak dependence on the baryon density. {copyright} {ital 1997} {ital The American Physical Society}

  10. Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties

    NASA Astrophysics Data System (ADS)

    Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro

    2016-07-01

    The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the many-body Brueckner-Hartree-Fock approach and employing the Chiral Next-to-next-to-next-to leading order (N3LO) nucleon-nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very good agreement with those extracted from various nuclear experimental data. Thus, our results represent a significant step toward a unified description of few- and many-body nuclear systems starting from two- and three-nucleon interactions based on the symmetries of QCD.

  11. Constraints on the asymmetric equation of state from heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry; McIntosh, Alan; Heilborn, Lauren

    2016-05-01

    Nuclear matter is one of the most fascinating materials that exists.Therefore elucidating the equation-of-state of nuclear matter is a fundamentally interesting question. Additionally, the nuclear equationof-state has impacts on astrophysical observables. One important means of constraining the nuclear equation-of-state is through studying heavy-ion collisions. Nuclear material has two components - neutrons and protons - the ratio of which impacts the equation-of-state. Measurements of fragments emitted from reactions of nuclei with different ratios of neutrons and protons - and comparison to simulations based on various underlying interactions - have placed constraints on both the symmetric and asymmetric parts of the equation of state.

  12. Collective Sideward Flow of Nuclear Matter in Violent High-Energy Heavy-Ion Collisions

    SciTech Connect

    Stöcker, Horst; Maruhn, Jouchim A.; Greiner, Walter

    1980-03-01

    The nuclear fluid dynamical model with final thermal breakup is used to study the reactions {sup 20}Ne + {sup 238}U and {sup 40} Ar + {sup 40}Ca at E{sub LAB}=390 MeV/n. Calculated double differential cross sections d{sup 2}{sigma}/d{Omega}dE are in agreement with recent experimental data. It is shown that azimuthally dependent triple differential cross sections d{sup 3}{sigma}/dEd cos{theta}d{phi} yield considerably deeper insight into the collision process and allow for snapshots of the reactions. Strongly correlated jets of nuclear matter are predicted.

  13. A Matter of Principle: The Principles of Quantum Theory, Dirac's Equation, and Quantum Information

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be addressed as well, in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac's work, which, in particular Dirac's derivation of his relativistic equation of the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall also consider Heisenberg's earlier work leading him to the discovery of quantum mechanics, which inspired Dirac's work. I argue that Heisenberg's and Dirac's work was guided by their adherence to and their confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by D'Ariano and coworkers on the principles of quantum information theory, which extend quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac's equations from these principles alone, without using the principles of relativity.

  14. Elastic proton scattering at intermediate energies as a probe of the He,86 nuclear matter densities

    NASA Astrophysics Data System (ADS)

    Chung, Le Xuan; Kiselev, Oleg A.; Khoa, Dao T.; Egelhof, Peter

    2015-09-01

    The Glauber model analysis of the elastic He,86+p scattering data at energies around 700 MeV/nucleon, measured in two separate experiments at GSI-Darmstadt, has been carried out using several phenomenological parametrizations of the nuclear matter density. By taking into account the new data points measured at high-momentum transfer, the nuclear matter radii of ,8He6 have been accurately determined from the Glauber model analysis of the data, with the spin-orbital interaction explicitly taken into account. The well-known geometry for the core and dineutron halo has been used with the new parametrizations of the 6He density to extract the detailed information on the structure of 6He in terms of the core and dineutron halo radii. An enhanced sensitivity of the data measured at high-momentum transfer to the core part of the 6,8He densities has been found.

  15. QCD sum rules for D and B mesons in nuclear matter

    SciTech Connect

    Hilger, T.; Thomas, R.; Kaempfer, B.

    2009-02-15

    QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D-D and B-B mesons as a function of the nuclear matter density; extrapolated to saturation density it is in the order of 60 and 130 MeV, respectively, driven essentially by the condensates , , and . The poorly known condensate may leave room for an even larger D-D mass splitting. The genuine chiral condensate , amplified by heavy-quark masses, enters the Borel transformed sum rules for the mass splitting beyond linear density dependence. The inclusion of strange quark condensates reveals a numerically smaller and opposite effect for the D{sub s}-D{sub s} mass splitting.

  16. Investigation of the organic matter in inactive nuclear tank liquids. Environmental Restoration Program

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  17. Simulation of electromagnetic and strange probes of dense nuclear matter at NICA/MPD

    NASA Astrophysics Data System (ADS)

    Zinchenko, A.; Kolesnikov, V.; Vasendina, V.

    2016-01-01

    The main task of the NICA/MPD physics program is a study of the properties of nuclear matter under extreme conditions achieved in collisions of heavy ions. These properties can reveal themselves through different probes, the most promising among those being the lepton-antilepton pairs and strange hadrons. In this paper the MPD performance for measuring the electron-positron pairs and strange hyperons in central Au+Au collisions at NICA energies is presented.

  18. Exploring the nuclear pasta phase in Core-Collapse Supernova Matter

    SciTech Connect

    Pais, Helena; Stone, Jirina R

    2012-01-01

    The core-collapse supernova (CCSN) phenomenon, one of the most explosive events in the Uni- verse, presents a challenge to theoretical astrophysics. Of the large variety of forms of matter present in CCSN, we focus on the transitional region between homogeneous and inhomogeneous phases. Traditionally, here the nuclear structures undergo a series of changes in shape from spher- ical to exotic deformed forms: rods, slabs, cylindrical holes and bubbles, termed nuclear pasta . A fully self-consistent three-dimensional, finite temperature Skyrme-Hartree-Fock + BCS (SHF) calculation yields, for the first time, the critical density and temperature of both the onset of the pasta in inhomogeneous matter, consisting of neutron heavy nuclei and a free neutron and electron gas, and its dissolution in to a homogeneous neutron, proton and electron liquid. As the nuclear matter properties depend on the effective nucleon-nucleon interaction in the SHF model, we employ four different forms of the Skyrme interaction, SkM , SLy4, NRAPR and SQMC700 and find subtle variations in the low density and high density transitions into and out of the pasta phase. Two new stable pasta shapes have been identified, in addition to the classic ones, on the grid of densities and temperatures used in this work. Detailed examination and clasification of the transitions found will form the content of a forthcoming publication.

  19. The effects of QCD equation of state on the relic density of WIMP dark matter

    SciTech Connect

    Drees, Manuel; Hajkarim, Fazlollah; Schmitz, Ernany Rossi

    2015-06-12

    Weakly Interactive Massive Particles (WIMPs) are the most widely studied candidate particles forming the cold dark matter (CDM) whose existence can be inferred from a wealth of astrophysical and cosmological observations. In the framework of the minimal cosmological model detailed measurements on the cosmic microwave background by the PLANCK collaboration fix the scaled CDM relic density to Ω{sub c}h{sup 2}=0.1193±0.0014, with an error of less than 1.5%. In order to fully exploit this observational precision, theoretical calculations should have a comparable or smaller error. In this paper we use recent lattice QCD calculations to improve the description of the thermal plasma. This affects the predicted relic density of “thermal WIMPs”, which once were in chemical equilibrium with Standard Model particles. For WIMP masses between 3 and 15 GeV, where QCD effects are most important, our predictions differ from earlier results by up to 9% (12%) for pure S-wave (P-wave) annihilation. We use these results to compute the thermally averaged WIMP annihilation cross section that reproduces the correct CDM relic density, for WIMP masses between 0.1 GeV and 10 TeV.

  20. Sensitivity of the moment of inertia of neutron stars to the equation of state of neutron-rich matter

    SciTech Connect

    Fattoyev, F. J.; Piekarewicz, J.

    2010-08-15

    The sensitivity of the stellar moment of inertia to the neutron-star matter equation of state is examined using accurately calibrated relativistic mean-field models. We probe this sensitivity by tuning both the density dependence of the symmetry energy and the high-density component of the equation of state, properties that are at present poorly constrained by existing laboratory data. Particularly attractive is the study of the fraction of the moment of inertia contained in the solid crust. Analytic treatments of the crustal moment of inertia reveal a high sensitivity to the transition pressure at the core-crust interface. This may suggest the existence of a strong correlation between the density dependence of the symmetry energy and the crustal moment of inertia. However, no correlation was found. We conclude that constraining the density dependence of the symmetry energy - through, for example, the measurement of the neutron skin thickness in {sup 208}Pb - will place no significant bound on either the transition pressure or the crustal moment of inertia.

  1. Generation of matter-wave solitons of the Gross-Pitaevskii equation with a time-dependent complicated potential

    SciTech Connect

    Mohamadou, Alidou; Wamba, Etienne; Kofane, Timoleon C.; Doka, Serge Y.; Ekogo, Thierry B.

    2011-08-15

    We examine the generation of bright matter-wave solitons in the Gross-Pitaevskii equation describing Bose-Einstein condensates with a time-dependent complex potential, which is composed of a repulsive parabolic background potential and a gravitational field. By performing a modified lens-type transformation, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effects of the gravitational field, as well as of the parameter related to the feeding or loss of atoms in the condensate, on the instability growth rate. It is evident from numerical simulations that the feeding with atoms and the magnetic trap have opposite effects on the dynamics of the system. It is shown that the feeding or loss parameter can be well used to control the instability domain. Our study shows that the gravitational field changes the condensate trail of the soliton trains during the propagation. We also perform a numerical analysis to solve the Gross-Pitaevskii equation with a time-dependent complicated potential. The numerical results on the effect of both the gravitational field and the parameter of feeding or loss of atoms in the condensate agree well with predictions of the linear stability analysis. Another result of the present work is the modification of the background wave function in the Thomas-Fermi approximation during the numerical simulations.

  2. Nuclear Matter Properties with the Re-evaluated Coefficients of Liquid Drop Model

    NASA Astrophysics Data System (ADS)

    Chowdhury, P. Roy; Basu, D. N.

    2006-06-01

    The coefficients of the volume, surface, Coulomb, asymmetry and pairing energy terms of the semiempirical liquid drop model mass formula have been determined by furnishing best fit to the observed mass excesses. Slightly different sets of the weighting parameters for liquid drop model mass formula have been obtained from minimizations of \\chi 2 and mean square deviation. The most recent experimental and estimated mass excesses from Audi-Wapstra-Thibault atomic mass table have been used for the least square fitting procedure. Equation of state, nuclear incompressibility, nuclear mean free path and the most stable nuclei for corresponding atomic numbers, all are in good agreement with the experimental results.

  3. Approximate analytical solution for nuclear matter in a mean-field Walecka model and Coester line behavior

    SciTech Connect

    Delfino, A.; Silva, J.B.; Malheiro, M.

    2006-03-15

    We study nuclear matter, at the mean-field approximation, by considering as equal the values of the scalar and the vector density in the Walecka model, which is a very reasonable approximation up to the nuclear matter saturation density. It turns out that the model has an analytical solution for the scalar and vector couplings as functions only of the nuclear matter density and binding energy. The nuclear matter properties are very close to the original version of the model. This solution allows us to show that the correlation between the binding energy and the saturation density is Coester line like. The liquid-gas phase transition is also studied and the critical and flash temperatures are again very similar to the original ones.

  4. Impact of Fock terms on the isospin properties of nuclear matter

    NASA Astrophysics Data System (ADS)

    Sun, Bao Yuan; Zhao, Qian; Long, Wen Hui

    2016-05-01

    Several topics on the isospin properties of nuclear matter studied within the density-dependent relativistic Hartree-Fock theory are summarized. In detail, the effects of the Fock terms on the nuclear symmetry energy are listed, including the extra enhancement from the Fock terms of the isoscalar meson-nucleon coupling channels, the extra hyperon-induced suppression effect originating from the Fock channel, self-consistent tensor effects embedded automatically in the Fock diagrams, the enhanced density-dependent isospin-triplet potential part of the symmetry energy at high densities, a reduced kinetic symmetry energy at supranuclear density and so on. The results demonstrate the importance of the Fork diagram, especially from the isoscalar mesonnucleon coupling channels, on the isospin properties of the in-medium nuclear force.

  5. Propulsion concepts for nuclear matter compression energy and "cold" fusion energy sources in interstellar flight

    NASA Astrophysics Data System (ADS)

    Subotowicz, M.

    Various energy sources for interstellar flight are reviewed. Two more "non-conventional" energy sources were proposed in a recent paper: (1) energy delivery during "pionization" of nuclear matter through nuclear matter compression in heavy nuclei collisions and (2) generation of the energy in muon-catalysed "cold" fusion in compressed hydrogen. After a short discussion of the physical principles of the "pionization" of the nuclear matter, the engine design concept is sketched. It has some advantages in comparison to the annihilation propulsion. In laboratory reference system after nuclear matter pionization, all the pions and the resulting particles after decay of pions will move inside of the narrow pionization cone. Power supply of the heavy ion accelerator will extract some part of the energy from the nozzle of the propulsion engine. This would be the magneto-hydrodynamics (m-h-d) power unit based on the Hall effect. Muon-catalysed fusion as the energy source is possible thanks to the discovery of the multiple tritium + deuterium (T + D) synthesis catalysed by one muon. It is possible to combine muon-catalysed fusion with the nuclear fission process. Commercial fusion-fission hybrid reactor would require 100-300 fusions per muon. The principles of the muon-catalysed fusion are shortly discussed. The advantage of the muon-catalysis in T + D mixture is explained because existence of nuclear resonance in deuterium-tritium-muon fusion. This is the reason why the sticking probability muon-α particle is so small (0.4%). A conception of the muon-catalysed "cold" fusion reactor is presented. The pions and muons are produced and stopped in D + T fuel itself. Many technical details are discussed more briefly, e.g. the probability of negative pion production at various projectiles and targets, average energy to produce one negative muon, muon-catalysed fusion-fission systems, advantages of the fusion-fission systems. In the paper is shown a block scheme of the "cold

  6. Many-particle theory of nuclear system with application to neutron-star matter and other systems

    NASA Technical Reports Server (NTRS)

    Yang, C. H.

    1978-01-01

    General problems in nuclear-many-body theory were considered. Superfluid states of neutron star matter and other strongly interacting many-fermion systems were analyzed by using the soft-core potential of Reid. The pion condensation in neutron star matter was also treated.

  7. Equation of state and transport property measurements of warm dense matter.

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael Paul

    2009-10-01

    Location of the liquid-vapor critical point (c.p.) is one of the key features of equation of state models used in simulating high energy density physics and pulsed power experiments. For example, material behavior in the location of the vapor dome is critical in determining how and when coronal plasmas form in expanding wires. Transport properties, such as conductivity and opacity, can vary an order of magnitude depending on whether the state of the material is inside or outside of the vapor dome. Due to the difficulty in experimentally producing states near the vapor dome, for all but a few materials, such as Cesium and Mercury, the uncertainty in the location of the c.p. is of order 100%. These states of interest can be produced on Z through high-velocity shock and release experiments. For example, it is estimated that release adiabats from {approx}1000 GPa in aluminum would skirt the vapor dome allowing estimates of the c.p. to be made. This is within the reach of Z experiments (flyer plate velocity of {approx}30 km/s). Recent high-fidelity EOS models and hydrocode simulations suggest that the dynamic two-phase flow behavior observed in initial scoping experiments can be reproduced, providing a link between theory and experiment. Experimental identification of the c.p. in aluminum would represent the first measurement of its kind in a dynamic experiment. Furthermore, once the c.p. has been experimentally determined it should be possible to probe the electrical conductivity, opacity, reflectivity, etc. of the material near the vapor dome, using a variety of diagnostics. We propose a combined experimental and theoretical investigation with the initial emphasis on aluminum.

  8. Constraining the symmetry energy content of nuclear matter from nuclear masses: A covariance analysis

    NASA Astrophysics Data System (ADS)

    Mondal, C.; Agrawal, B. K.; De, J. N.

    2015-08-01

    Elements of nuclear symmetry energy evaluated from different energy density functionals parametrized by fitting selective bulk properties of few representative nuclei are seen to vary widely. Those obtained from experimental data on nuclear masses across the periodic table, however, show that they are better constrained. A possible direction in reconciling this paradox may be gleaned from comparison of results obtained from use of the binding energies in the fitting protocol within a microscopic model with two sets of nuclei, one a representative standard set and another where very highly asymmetric nuclei are additionally included. A covariance analysis reveals that the additional fitting protocol reduces the uncertainties in the nuclear symmetry energy coefficient, its slope parameter, as well as the neutron-skin thickness in 208Pb nucleus by ˜50 % . The central values of these entities are also seen to be slightly reduced.

  9. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  10. Hard photons and neutral pions as probes of hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Schutz, Y.; Martínez, G.; Marqués, F. M.; Marín, A.; Matulewicz, T.; Ostendorf, R. W.; Bożek, P.; Delagrange, H.; Díaz, J.; Franke, M.; Gudima, K. K.; Hlaváč, S.; Holzmann, R.; Lautridou, P.; Lefèvre, F.; Löhner, H.; Mittig, W.; Płoszajczak, M.; van Pol, J. H. G.; Québert, J.; Roussel-Chomaz, P.; Schubert, A.; Siemssen, R. H.; Simon, R. S.; Sujkowski, Z.; Toneev, V. D.; Wagner, V.; Wilschut, H. W.; Wolf, Gy.

    1997-02-01

    The dynamics of heavy-ion collisions is studied in an energy domain in the vicinity of the Fermi energy. The early history of the collision is analyzed from the theoretical and experimental point of view in which the message conveyed by bremsstrahlung photons and neutral pions is exploited. The Boltzmann-Uehling-Uhlenbeck model and the Dubna Cascade Model, both based on similar principles but each adopting different computation technics, are briefly described and their respective predictions are discussed. In particular the emission pattern of bremsstrahlung photons is discussed. The photon production has been measured in the systems 86Kr+ 58Ni at 60 A MeV, 181Ta+ 197Au at 40 A MeV and 208Pb+ 197Au at 30 A MeV and energy spectra, angular distributions and two-photon correlations have been analyzed. We find that bremsstrahlung photons are emitted from two distinct sources that can be correlated with nuclear-matter density oscillations. The properties of photon emission are discussed in terms of collective properties of nuclear matter. The high energy tail of the photon spectrum is interpreted by π0 and Δ decay but predominantly by radiative capture of pions. The π0 absorption in the nuclear medium is further analyzed by examining their emission pattern.

  11. Cold Nuclear Matter Effects on J/psi and Upsilon Production at the LHC

    SciTech Connect

    Vogt, R

    2009-06-23

    The charmonium yields are expected to be considerably suppressed if a deconfined medium is formed in high-energy heavy-ion collisions. In addition, the bottomonium states, with the possible exception of the {Upsilon}(1S) state, are also expected to be suppressed in heavy-ion collisions. However, in proton-nucleus collisions the quarkonium production cross sections, even those of the {Upsilon}(1S), scale less than linearly with the number of binary nucleon-nucleon collisions. These 'cold nuclear matter' effects need to be accounted for before signals of the high density QCD medium can be identified in the measurements made in nucleus-nucleus collisions. We identify two cold nuclear matter effects important for midrapidity quarkonium production: 'nuclear absorption', typically characterized as a final-state effect on the produced quarkonium state and shadowing, the modification of the parton densities in nuclei relative to the nucleon, an initial-state effect. We characterize these effects and study their energy and rapidity dependence.

  12. Compressibility, the measurement of surface tension, and particle size in molecular or nuclear matter.

    PubMed

    Dixmier, Marc

    2006-02-15

    It is shown that the interface shrinkage resulting from the capillary pressure difference between both sides of a curved interface is the product of a "standard shrinkage"kappagamma (kappa is the isothermal compressibility, gamma the interfacial tension) by a dimensionless factor that depends only on the shape of the sample of matter under study. The behaviour of the standard shrinkage in the critical domain shows that it cannot be a measure of the thickness of the liquid-vapour interface in that domain. The standard shrinkage of classical liquids somewhat above triple point is usually near to 0.048 v(c)(1/3) (v(c) is the critical molecular volume); exceptions to this rule are discussed. The variation of the standard shrinkage along the liquid-vapour coexistence curves of water and argon is presented; the effect of the interface shrinkage on the measured surface tension of liquids can become important within about 15% of the critical temperature. The standard shrinkage of solids is less than that of the corresponding liquids, and is of no consequence when measuring the surface tension of solids. The standard shrinkage of the nuclear fluid is 0.23 fm=0.09 v(c)(1/3). The saturation density of infinite nuclear matter is about 9% less than its value in atomic nuclei, and a term proportional to A(1/3) (A is the mass number) must be added to the nuclear binding energy formula. PMID:16266717

  13. Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; Deaton, M. Brett; Duez, Matthew D.; O'Connor, Evan; Ott, Christian D.; Haas, Roland; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela

    2014-07-01

    We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of 7M⊙-10M⊙, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperature nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted (χBH≳0.7), we show that the merger consistently produces large amounts of cool (T ≲1 MeV), unbound, neutron-rich material (Mej˜0.05M⊙-0.20M⊙). A comparable amount of bound matter is initially divided between a hot disk (Tmax˜15 MeV) with typical neutrino luminosity of Lν˜1053 erg /s, and a cooler tidal tail. After a short period of rapid protonization of the disk lasting ˜10 ms, the accretion disk cools down under the combined effects of the fall-back of cool material from the tail, continued accretion of the hottest material onto the black hole, and neutrino emission. As the temperature decreases, the disk progressively becomes more neutron rich, with dimmer neutrino emission. This cooling process should stop once the viscous heating in the disk (not included in our simulations) balances the cooling. These mergers of neutron star-black hole binaries with black hole masses of MBH˜7M⊙-10M⊙, and black hole spins high enough for the neutron star to disrupt provide promising candidates for the production of short gamma-ray bursts, of bright infrared postmerger signals due to the radioactive decay of unbound material, and of large amounts of r-process nuclei.

  14. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2); Notice of Appointment of Adjudicatory Employee Commissioners: Gregory B. Jaczko, Chairman, Kristine L. Svinicki,...

  15. 76 FR 77023 - In the Matter of Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Opportunity for Hearing,'' was published in the Federal Register on August 30, 2011 (76 FR 53972). No comments... COMMISSION In the Matter of Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant...) and nine other entities are the owners of Crystal River Unit 3 Nuclear Generating Plant (Crystal...

  16. 78 FR 19535 - In the Matter of Entergy Operations, Inc. (Arkansas Nuclear One, Unit 1); Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... accordance with the NRC's E-Filing rule (72 FR 49139; August 28, 2007). The E-Filing process requires... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Operations, Inc. (Arkansas Nuclear One, Unit 1); Confirmatory...

  17. 77 FR 11169 - In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... approval and opportunity for a hearing was published in the Federal Register on July 8, 2011 (76 FR 40403... License] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power... (Exelon), and Exelon Ventures Company, LLC (Exelon Ventures), and Constellation Energy Nuclear Group,...

  18. Does fairness matter in the context of anger about nuclear energy decision making?

    PubMed

    Besley, John C

    2012-01-01

    Several recent studies have questioned whether nonoutcome forms of fairness matter in decision-making situations where individuals feel strongly engaged by the issue at hand. This survey-based study focuses on perceptions about a decision-making process related to a proposal to expand a nuclear power plant in the U.S. Southeast. It finds that anger moderates the impacts of outcome and procedural fairness on willingness to accept a decision process as satisfactory and legitimate. The more anger a person said he or she would feel if a decision were to contradict that person's point of view, the more perceived outcome and procedural fairness mattered. The study also finds that interpersonal fairness is also moderated by anger, but in the opposite direction. Interpersonal fairness had less of an impact on willingness to accept a decision for those who said they would feel angry if the decision did not go their preferred way. PMID:21883331

  19. Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics

    SciTech Connect

    Beane, S R; Cohen, S D; Detmold, W; Lin, H -W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Walker-Loud, A

    2012-10-01

    The low-energy neutron-{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m{sub pi} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.

  20. The Brueckner-Hartree-Fock Equation of State for Nuclear Matter and Neutron Skin

    NASA Astrophysics Data System (ADS)

    Qing-Yang, Bu; Zeng-Hua, Li; Hans-Josef, Schulze

    2016-03-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11075037 and 11475045, the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Ministry of Education of China, the Fundamental Research Funds for the Central Universities of China, the Shanghai Leading Academic Discipline Project under Grant No B107, and the ‘NewCompStar’, COST Action MP1304.

  1. Equation of state of dense nuclear matter and an upper bound on neutron star masses

    NASA Astrophysics Data System (ADS)

    Negi, P. S.; Durgapal, M. C.

    2001-02-01

    We have discussed, in general, the important physical parameters, like maximum mass, radius, and the minimum rotation period of self-bound, causally consistent, and pulsationally stable neutron stars (Q-star models) by using a realistic stiff EOS (such that, the speed of sound, v~ P, or nP=K(E-E), where K<= 1 and n =1/(1-2N) where P and E represent respectively, the pressure and the energy-density, and E is the value of E at the surface (r = a) of the configuration) within the two constraints imposed by: (i) The minimum rotation period, P, for the pulsar known to date corresponds to 1.558 ms, and (ii) The maximum number density anywhere inside the structure for the models described as Q-stars cannot exceed ~ 1 nucleon/fm^3. By using the empirical formula given by Koranda, Stergioulas and Friedman (1997) (KSF-formula), and imposing constraint (i), we have obtained an upper bound of M ≅ 7.76 M radius a≅ 32.5 km, and the central energy-density around 2.17 × 10^14 g cm^-3 (for n =1.01). Constraint (ii) provides the minimum rotation period, P ~ 0.489 ms for the maximum mass M ~ 2.4 M_solar, and the central energy-density around 2.20 × 10^15 g cm^-3 (for n =1.01). The speed of sound at the centre of these models approaches ~ 99% of the speed of light `c' (in the vacuum) and vanishes at the surface of the configuration together with pressure. If we relax the maximum Kepler frequency imposed by the fastest rotating pulsar known to date (constraint (i)), in view of certain observational effects and theoretical evidences, and allow the present EOS to produce larger rotation rates than the 1.558 ms pulsar, the maximum mass of the non-rotating model drops down to a value ~ 7.2 M_solar. The higher values of masses (>= 7 M_solar) and radii (~ 31-32 km) obtained in this study imply that these models may represent the massive compact objects like Cyg X-1, Cyg XR-1, LMC X-3, and others which are known as black hole candidates (BHCs). This study also suggest that the strongest contender for black hole at present might be recurrent nova V404 Cyg (mass estimate ~ 8 -12 M_solar).

  2. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  3. Asymmetric nuclear matter based on chiral two- and three-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Drischler, C.; Hebeler, K.; Schwenk, A.

    2016-05-01

    We calculate the properties of isospin-asymmetric nuclear matter based on chiral nucleon-nucleon (NN) and three-nucleon (3N) interactions. To this end, we develop an improved normal-ordering framework that allows us to include general 3N interactions starting from a plane-wave partial-wave-decomposed form. We present results for the energy per particle for general isospin asymmetries based on a set of different Hamiltonians, study their saturation properties, the incompressibility, symmetry energy, and also provide an analytic parametrization for the energy per particle as a function of density and isospin asymmetry.

  4. Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Providencia, J. Da

    2009-01-15

    We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.

  5. In-medium effects for nuclear matter in the Fermi-energy domain

    NASA Astrophysics Data System (ADS)

    Lopez, O.; Durand, D.; Lehaut, G.; Borderie, B.; Frankland, J. D.; Rivet, M. F.; Bougault, R.; Chbihi, A.; Galichet, E.; Guinet, D.; La Commara, M.; Le Neindre, N.; Lombardo, I.; Manduci, L.; Marini, P.; Napolitani, P.; Pârlog, M.; Rosato, E.; Spadaccini, G.; Vient, E.; Vigilante, M.; Indra Collaboration

    2014-12-01

    Background: By looking specifically at free nucleons (here protons), we present for the first time a comprehensive body of experimental results concerning the mean free path, the nucleon-nucleon cross-section and in-medium effects in nuclear matter. Purpose: Using the large dataset of exclusive measurements provided by the 4 π array INDRA, we determine the relative degree of stopping as a function of system mass and bombarding energy. We show that the stopping can be directly related to the transport properties in the nuclear medium. Methods: We perform a systematic study of protons nuclear stopping in central collisions for heavy-ion induced reactions in the Fermi-energy domain, between 15 A and 100 A MeV. Results: It is found that the mean free path exhibits a maximum at λN N=9.5 ±2 fm, around Einc=35 A MeV incident energy and decreases toward an asymptotic value λN N=4.5 ±1 fm at Einc=100 A MeV. Conclusions: After accounting for Pauli blocking of elastic nucleon-nucleon collisions, it is shown that the effective in-medium N N cross section is further reduced compared to the free value in this energy range. Therefore, in-medium effects cannot be neglected in the Fermi-energy range. These results bring new fundamental inputs for microscopic descriptions of nuclear reactions in the Fermi-energy domain.

  6. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    NASA Astrophysics Data System (ADS)

    Múnera, Héctor A.

    2016-07-01

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.

  7. Few-Body Problem in Nuclear Reactions: Beyond the horizon of the three-body Faddeev equations

    NASA Astrophysics Data System (ADS)

    Oryu, Shinsho; Hiratsuka, Yasuhisa; Watanabe, Takashi

    2016-06-01

    Recent progress in few-body problem physics based on the three-body Faddeev equations is reviewed for three-related fields. The first field involves the description of light nuclear reactions in terms of multi-channel three-body Faddeev equations. The second field is the investigation of the two- and three-body threshold behaviors for the NNπ system using the three-body Faddeev equations, where the πD and the NN' or N-(Nπ) scattering lengths are calculated, and also we show that the NN' potential has a long range term of 1/r2 form. The third is a new Coulomb treatment in terms of a generalized screening range to describe on-shell Coulomb amplitudes which is useful in the threebody Faddeev equations. This procedure reproduces both of the Coulomb phase shift and the wave function from the electron-electron to the heavy-ion-heavy-ion systems.

  8. Effect of nuclear matter incompressibility on the +Pb208O16 system

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Torabi, F.

    2016-06-01

    To analyze the property of nuclear matter in the +Pb208O16 collision system, the internuclear potential of the fusion reaction is calculated by using the Skyrme forces associated with an extensive nuclear matter incompressibility K range in the semiclassical energy-density formalism. Comparison of the experimental fusion cross sections and those obtained by using potentials derived from different forces with various K values shows that the incompressibility of nuclear matter changes during the fusion process at different bombarding energies. The results indicate that, as the energy increases, the nuclear matter becomes more incompressible.

  9. CLASH-VLT: Constraints on the Dark Matter Equation of State from Accurate Measurements of Galaxy Cluster Mass Profiles

    NASA Astrophysics Data System (ADS)

    Sartoris, Barbara; Biviano, Andrea; Rosati, Piero; Borgani, Stefano; Umetsu, Keiichi; Bartelmann, Matthias; Girardi, Marisa; Grillo, Claudio; Lemze, Doron; Zitrin, Adi; Balestra, Italo; Mercurio, Amata; Nonino, Mario; Postman, Marc; Czakon, Nicole; Bradley, Larry; Broadhurst, Tom; Coe, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Annunziatella, Marianna; Benitez, Narciso; Czoske, Oliver; Donahue, Megan; Ettori, Stefano; Ford, Holland; Fritz, Alexander; Kelson, Dan; Koekemoer, Anton; Kuchner, Ulrike; Lombardi, Marco; Maier, Christian; Moustakas, Leonidas A.; Munari, Emiliano; Presotto, Valentina; Scodeggio, Marco; Seitz, Stella; Tozzi, Paolo; Zheng, Wei; Ziegler, Bodo

    2014-03-01

    A pressureless scenario for the dark matter (DM) fluid is a widely adopted hypothesis, despite the absence of direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being Ltc, depend solely on the gravitational potential, whereas photon trajectories reflect the contributions from the gravitational potential plus a relativistic-pressure term that depends on the cluster mass. We exploit this phenomenon to constrain the equation of state (EoS) parameter of the fluid, primarily DM, contained in galaxy clusters. We use complementary information provided by the kinematic and lensing mass profiles of the galaxy cluster MACS 1206.2-0847 at z = 0.44, as obtained in an extensive imaging and spectroscopic campaign within the Cluster Lensing And Supernova survey with Hubble. The unprecedented high quality of our data set and the properties of this cluster are well suited to determine the EoS parameter of the cluster fluid. Since baryons contribute at most 15% to the total mass in clusters and their pressure is negligible, the EoS parameter we derive describes the behavior of the DM fluid. We obtain the most stringent constraint on the DM EoS parameter to date, w = (pr + 2 pt )/(3 c 2ρ) = 0.00 ± 0.15 (stat) ± 0.08 (syst), averaged over the radial range 0.5 Mpc <= r <= r 200, where pr and pt are the radial and tangential pressure, and ρ is the density. We plan to further improve our constraint by applying the same procedure to all clusters from the ongoing Cluster Lensing And Supernova Survey with Hubble-Very Large Telescope program.

  10. CLASH-VLT: CONSTRAINTS ON THE DARK MATTER EQUATION OF STATE FROM ACCURATE MEASUREMENTS OF GALAXY CLUSTER MASS PROFILES

    SciTech Connect

    Sartoris, Barbara; Borgani, Stefano; Girardi, Marisa; Biviano, Andrea; Balestra, Italo; Nonino, Mario; Umetsu, Keiichi; Czakon, Nicole; Bartelmann, Matthias; Grillo, Claudio; Lemze, Doron; Medezinski, Elinor; Zitrin, Adi; Mercurio, Amata; Broadhurst, Tom; Melchior, Peter; and others

    2014-03-01

    A pressureless scenario for the dark matter (DM) fluid is a widely adopted hypothesis, despite the absence of direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being <equation of state (EoS) parameter of the fluid, primarily DM, contained in galaxy clusters. We use complementary information provided by the kinematic and lensing mass profiles of the galaxy cluster MACS 1206.2–0847 at z = 0.44, as obtained in an extensive imaging and spectroscopic campaign within the Cluster Lensing And Supernova survey with Hubble. The unprecedented high quality of our data set and the properties of this cluster are well suited to determine the EoS parameter of the cluster fluid. Since baryons contribute at most 15% to the total mass in clusters and their pressure is negligible, the EoS parameter we derive describes the behavior of the DM fluid. We obtain the most stringent constraint on the DM EoS parameter to date, w = (p{sub r} + 2 p{sub t} )/(3 c {sup 2}ρ) = 0.00 ± 0.15 (stat) ± 0.08 (syst), averaged over the radial range 0.5 Mpc ≤ r ≤ r {sub 200}, where p{sub r} and p{sub t} are the radial and tangential pressure, and ρ is the density. We plan to further improve our constraint by applying the same procedure to all clusters from the ongoing Cluster Lensing And Supernova Survey with Hubble-Very Large Telescope program.

  11. A systematic study of J/psi suppression in cold nuclear matter

    SciTech Connect

    Arleo, Francois; Tram, Vi-Nham

    2008-04-05

    Understanding the effects of cold nuclear matter on J/psi production is a key requirement in order to interpret the J/psi suppression reported in heavy-ion collisions. Based on a Glauber model, the J/psi-nucleon inelastic cross section is determined from a statistical analysis of J/psi world data on nuclear targets. The global fit of all data gives sigmaJ/psiN = 3.4 +/- 0.2 mb, significantly smaller than previous estimates, yet the chi2 of the fit is pretty large, chi2/ndf = 1.5. A similar value, sigmaJ/psiN = 3.5 +/- 0.2 +/- 1.7 mb, is obtained when the De Florian-Sassot modifications of the nuclear parton densities are included in the analysis, although we emphasize that the present uncertainties on gluon (anti)shadowing do not allow for a precise determination of sigmaJ/psiN. Finally, the possible energy dependence of the J/psi-nucleon inelastic cross section is investigated within this framework. No significant energy dependence of the J/psi-N interaction is observed.

  12. Computational methods for the nuclear and neutron matter problems. Progress report

    SciTech Connect

    Kalos, M.H.

    1980-01-01

    Progress on the development of Monte Carlo methods for the treatment of extensive nuclear and neutron matter and of finite nuclei is reported. Appropriate modifications in the Monte Carlo formalism were made and carried through for the V/sub 4/ potential; the previous method was satisfactory for V/sub 3/, and the latter calculations have been completed. Significant progress was made in the development of the Green's function Monte Carlo method for fermion systems. It proved useful to study a model nuclear few-body problem, in particular, a kind of three-neutron problem. This work proved successful in that a stable Monte Carlo algorithm was developed. It gave correct results for energy and wave function for a soluble (separable) test problem and reasonable results (confirmed by variational computations) for a system interacting by pairwise phenomenological potentials. A stable GFMC algorithm for many-fermion systems has not been implemented, but ancillary studies on /sup 3/He have advanced considerably. In particular, new methods for finding upper bounds have been devised in which Green's function methods are used. These have particular application to nuclear problems. Lower values of the upper bounds were found for /sup 3/He. 20 tables. (RWR)

  13. Dense stellar matter with strange quark matter driven by kaon condensation

    SciTech Connect

    Kim, Kyungmin; Lee, Hyun Kyu; Rho, Mannque

    2011-09-15

    The core of neutron-star matter is supposed to be at a much higher density than the normal nuclear-matter density, for which various possibilities have been suggested, such as, for example, meson or hyperon condensation and/or deconfined quark or color-superconducting matter. In this work, we explore the implication on hadron physics of a dense compact object that has three ''phases'': nuclear matter at the outer layer, kaon condensed nuclear matter in the middle, and strange quark matter at the core. Using a drastically simplified but not unreasonable model, we develop the scenario where the different phases are smoothly connected with the kaon condensed matter playing a role of a ''doorway'' to a quark core, the equation of state of which with parameters restricted within the range allowed by nature could be made compatible with the mass vs radius constraint given by the 1.97-solar-mass object PSR J1614-2230 recently observed.

  14. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  15. Measurements of hadron mean free path for the particle-producing collisions in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.

  16. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  17. Toward the Limits of Matter: Ultra-relativistic Nuclear Collisions at CERN

    NASA Astrophysics Data System (ADS)

    Schukraft, Jurgen; Stock, Reinhard

    2015-07-01

    Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium, to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD phase boundary. We describe three decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultrarelativistic heavy ion physics is today a central pillar of contemporary nuclear physics and forms a significant part of the LHC programme.

  18. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    SciTech Connect

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.

  19. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    SciTech Connect

    Fallows, Scott Mathew

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  20. Developing Nuclear Magnetic Resonance Force Microscopy (NMRFM) as an Electronic Probe of Nanoscale Condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Paster, Jeremy W.; Tennant, Daniel M.; Mozaffari, Shirin; Markert, John T.

    2015-03-01

    The investigation of NMR via magnetic force coupling in a large field gradient has led to vast improvements in spatial resolution over the conventional inductive method. It has been demonstrated that nanoscale force sensors could be scaled to distinguish a single nuclear spin, assuming experimental noise can be minimized and other specious force signatures stifled. Accordingly, there are many efforts aimed at repurposing NMR for 3D imaging on the atomic scale. In addition to proof-of-concept experiments aimed at separately resolving some of the eventual experimental barriers to atomic resolution, some of us have directed our attention to using NMR to probe the electronic environment in larger condensed matter systems which are not well suited for other scanning probe microscopy techniques and which are prohibitively small for inductive NMR detection. Previously, we proposed using NMRFM to probe superconducting transitions in microcrystals. In parallel, we revamped our investigation of thin films to explore two-dimensional conducting interfaces between insulating oxides. Presented here is a survey of the technical impediments as well as current strategies for unlocking this exciting potential for NMRFM, as a tool to investigate sub-surface electronic transport in microscale and nanoscale condensed matter systems.

  1. Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

    SciTech Connect

    Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.; Pacheco, J.A. de Freitas E-mail: davi.rodrigues@ufes.br E-mail: pacheco@oca.eu

    2013-11-01

    We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ{sub 1D}{sup 2}){sup 3/2} remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: λ{sub J} = (5π/G){sup 1/2}Q{sup −1/3}ρ{sub dm}{sup −1/6}. The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10{sup −6}M{sub ⊙}.

  2. 77 FR 134 - In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... opportunity to request a hearing was published in the Federal Register on July 14, 2011 (76 FR 41532). No... COMMISSION In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power Station); Order Approving Application Regarding Proposed Merger I Yankee Atomic Electric Company...

  3. Nuclear matter properties in the relativistic mean-field theory at finite temperature with interaction between sigma-omega mesons

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-05-21

    We study the nuclear matter properties in the regime of high temperatures using a relativistic mean-field theory. Contrasting with the usual linear Walecka model, we include the sigma-omega meson coupling in order to investigate the role of this interaction in the nucleon effective mass behavior. Some numerical results are presented and discussed.

  4. 75 FR 24998 - In the Matter of Florida Power and Light Company: Turkey Point Nuclear Plant; Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... to prohibit unauthorized access to sensitive information and to prohibit modification of the... COMMISSION In the Matter of Florida Power and Light Company: Turkey Point Nuclear Plant; Independent...

  5. 78 FR 68102 - Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... COMMISSION Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South.... The Atomic Safety and Licensing Board hereby gives notice that it has rescheduled the evidentiary... this Licensing Board as follows: Mail: Administrative Judge Michael M. Gibson, Atomic Safety...

  6. 76 FR 61401 - Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... COMMISSION Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South... Statements) On October 31, 2011, the Atomic Safety and Licensing Board will convene an evidentiary hearing to... Daylight Time (EDT) on Monday, October 31, 2011, at the Atomic Safety and Licensing Board Panel...

  7. 76 FR 44623 - Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... COMMISSION Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South..., Chairman, Dr. Gary S. Arnold, Dr. Randall J. Charbeneau. The Atomic Safety and Licensing Board hereby gives... as follows: Mail: Administrative Judge Michael M. Gibson, Atomic Safety and Licensing Board...

  8. 78 FR 13384 - In the Matter of FirstEnergy Nuclear Operating Co. (Beaver Valley Units 1 and 2); Confirmatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... accordance with NRC E-Filing rule (72 FR 49139; August 28, 2007). The E-Filing process requires participants... Matter of FirstEnergy Nuclear Operating Co. (Beaver Valley Units 1 and 2); Confirmatory Order Modifying... Utilization Facilities,'' on November 5, 2009. The licenses authorize the operation of the Beaver Valley...

  9. Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Rudolph, J.; Wassner, T. A.; Eickhoff, M.; Hägele, D.

    2016-04-01

    We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction, and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.

  10. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  11. Some guidelines for structural equation modelling in cognitive neuroscience: the case of Charlton et al.'s study on white matter integrity and cognitive ageing.

    PubMed

    Penke, Lars; Deary, Ian J

    2010-09-01

    Charlton et al. (2008) (Charlton, R.A., Landua, S., Schiavone, F., Barrick, T.R., Clark, C.A., Markus, H.S., Morris, R.G.A., 2008. Structural equation modelling investigation of age-related variance in executive function and DTI-measured white matter change. Neurobiol. Aging 29, 1547-1555) presented a model that suggests a specific age-related effect of white matter integrity on working memory. We illustrate potential pitfalls of structural equation modelling by criticizing their model for (a) its neglect of latent variables, (b) its complexity, (c) its questionable causal assumptions, (d) the use of empirical model reduction, (e) the mix-up of theoretical perspectives, and (f) the failure to compare alternative models. We show that a more parsimonious model, based solely on the well-established general factor of cognitive ability, fits their data at least as well. Importantly, when modelled this way there is no support for a role of white matter integrity in cognitive aging in this sample, indicating that their conclusion is strongly dependent on how the data are analysed. We suggest that evidence from more conclusive study designs is needed. PMID:20079555

  12. Calculation of the release of total organic matter and total mineral using the hydrodynamic equations applied to palm oil mill effluent treatment by cascaded anaerobic ponds.

    PubMed

    Fulazzaky, Mohamad Ali

    2013-01-01

    Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis. PMID:22622964

  13. Anomalous nuclear reactions in condensed matter: Recent results and open questions

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Palmer, E. P.; Czirr, J. B.; Decker, D. L.; Jensen, G. L.; Thorne, J. M.; Taylor, S. F.; Rafelski, J.

    1990-06-01

    We have observed clear signatures for neutron emission during deuteron infusion into metals, implying the occurrence of nuclear fusion in condensed matter near room temperature. The low-level nuclear phenomenon has been demonstrated in collaborative experiments at Brigham Young University, at the Gran Sasso laboratory in Italy, and at the Los Alamos National Laboratory. We have shown that neutron emission can be induced in metals using both electrochemical and variational temperature/pressure means to generate non-equilibrium conditions. Observed average neutron emission rates are approximately 0.04-0.4 no/ s. Current efforts focus on trying to understand and control the phenomenon. In particular, we wish to understand the correlation of neutron yields with parameters such as hydrogen/metal ion ratio, pressure (induced, for example, by electrical field or gas pressure or mechanical pressure), temperature variation, hydride phase changes, and surface conditions, e.g., a palladium coating on titanium. We want to know if fusion arises due to the close proximity of the deuterons in the lattice (piezonuclear fusion), or possibly from “microscopic hot fusion”, accompanying strong electric fields at propagating cracks in the hydride. The latter interpretation would imply neutron emission in bursts. Our experiments show clear evidence for emission of ˜102 neutrons in bursts lasting <128 μs, although random neutron-singles emissions were also observed. Experiments now underway to compare the d-d, and p-d, and d-t reaction rates will be important to a consistent description of the new phenomenon. Careful scrutiny of this effect could increase our understanding of heat, helium-3, and tritium production in the earth, other planets, and even the stars.

  14. First measurement of proton-induced low-momentum dielectron radiation off cold nuclear matter

    NASA Astrophysics Data System (ADS)

    HADES Collaboration; Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Mishra, D.; Müntz, C.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2012-09-01

    We present data on dielectron emission in proton induced reactions on a Nb target at 3.5 GeV kinetic beam energy measured with HADES installed at GSI. The data represent the first high statistics measurement of proton-induced dielectron radiation from cold nuclear matter in a kinematic regime, where strong medium effects are expected. Combined with the good mass resolution of 2%, it is the first measurement sensitive to changes of the spectral functions of vector mesons, as predicted by models for hadrons at rest or small relative momenta. Comparing the e+e- invariant mass spectra to elementary p + p data, we observe for e+e- momenta Pee<0.8 GeV/c a strong modification of the shape of the spectrum, which we attribute to an additional ρ-like contribution and a decrease of ω yield. These opposite trends are tentatively interpreted as a strong coupling of the ρ meson to baryonic resonances and an absorption of the ω meson, which are two aspects of in-medium modification of vector mesons.

  15. Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases

    NASA Astrophysics Data System (ADS)

    Arellano, Hugo F.; Delaroche, Jean-Paul

    2015-01-01

    The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the 1 S 0 and 3 SD 1 channels are explicitly accounted for --within the continuous choice for the auxiliary fields-- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range fm-1, using the Argonne bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm-1 0.285 fm-1, corresponding to mass densities between and g cm-3. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.

  16. Indications for a critical end point in the phase diagram for hot and dense nuclear matter.

    PubMed

    Lacey, Roy A

    2015-04-10

    Excitation functions for the Gaussian emission source radii difference (R_{out}^{2}-R_{side}^{2}) obtained from two-pion interferometry measurements in Au+Au (sqrt[s_{NN}]=7.7-200  GeV) and Pb+Pb (sqrt[s_{NN}]=2.76  TeV) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T,μ_{B}) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates T^{cep}∼165  MeV and μ_{B}^{cep}∼95  MeV for the location of the critical end point. The critical exponents (ν≈0.66 and γ≈1.2) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class. PMID:25910113

  17. Observation of the critical end point in the phase diagram for hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lacey, Roy

    2015-10-01

    Excitation functions for the Gaussian emission source radii difference (Rout2 -Rside2) obtained from two-pion interferometry measurements in Au+Au (√{sNN} = 7 . 7 - 200 GeV) and Pb+Pb (√{sNN} = 2 . 76 TeV) collisions, are studied for a broad range of collision centralities. The observed non-monotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature vs. baryon chemical potential (T ,μB) plane of the nuclear matter phase diagram. A Dynamic Finite-Size Scaling (DFSS) analysis of these data suggests a second order phase transition with the estimates Tcep 165 MeV and μBcep 95 MeV for the location of the critical end point. The critical exponents (ν 0 . 66 and γ 1 . 2) extracted via the same DFSS analysis, places this CEP in the 3D Ising model universality class. This research is supported by the US DOE under Contract DE-FG02-87ER40331.A008.

  18. Indications for a Critical End Point in the Phase Diagram for Hot and Dense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Lacey, Roy A.

    2015-04-01

    Excitation functions for the Gaussian emission source radii difference (Rout2-Rside2) obtained from two-pion interferometry measurements in Au +Au (√{sN N }=7.7 - 200 GeV ) and Pb +Pb (√{sN N }=2.76 TeV ) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T ,μB) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates Tcep˜165 MeV and μBcep˜95 MeV for the location of the critical end point. The critical exponents (ν ≈0.66 and γ ≈1.2 ) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class.

  19. Progress in Understanding the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas; P.A.M. Guichon

    2007-01-03

    At the present time there is a lively debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We outline the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently, to density dependent effective interactions.

  20. 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state.

    PubMed

    Ott, C D; Dimmelmeier, H; Marek, A; Janka, H-T; Hawke, I; Zink, B; Schnetter, E

    2007-06-29

    We present 2D and 3D simulations of the collapse of rotating stellar iron cores in general relativity employing a nuclear equation of state and an approximate treatment of deleptonization. We compare fully general relativistic and conformally flat evolutions and find that the latter treatment is sufficiently accurate for the core-collapse supernova problem. We focus on gravitational wave (GW) emission from rotating collapse, bounce, and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. We also track the growth of a nonaxisymmetric instability in one model, leading to strong narrow-band GW emission. PMID:17678077

  1. Sensitivity of elements of the symmetry energy of nuclear matter to the properties of neutron-rich systems

    NASA Astrophysics Data System (ADS)

    Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.

    2016-04-01

    The sensitivity of nuclear symmetry energy elements at the saturation density to the binding energies of ultra-neutron-rich nuclei (neutron-to-proton ratio ˜2 ) and the maximum mass of a neutron star is explored within a relativistic mean field model. Values of the interaction parameters governing the isovector strengths and the symmetry elements are determined in tighter bounds. Assessments based on the sensitivity matrix reveal that the properties of extreme neutron-rich systems play a predominant role in narrowing down the uncertainties in the various symmetry energy parameters. The calculations are extended over a wide range of nuclear matter density, and the results are discussed.

  2. 76 FR 54499 - In the Matter of Entergy Operations, Inc. and Entergy Nuclear Operations, Inc.; Confirmatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August 28... Fitzpatrick Nuclear Power Plant, Grand Gulf Nuclear Station, Unit 1, Indian Point Nuclear Generating, Units...

  3. Status of the Brueckner-Hartree-Fock approximation to the nuclear matter binding energy with the Paris potential

    SciTech Connect

    Schulze, H.; Cugnon, J.; Lejeune, A.; Baldo, M.; Lombardo, U.

    1995-11-01

    A new calculation of the binding energy of nuclear matter in the Brueckner-Hartree-Fock approximation with the Paris potential using the standard and continuous choices of single particle energies is presented, paying special attention to the numerical accuracy and higher partial waves. Comparison with other calculations is made and the accuracy of the state of the art for the Brueckner-Hartree-Fock method is assessed.

  4. On a heuristic point of view concerning the motion of matter: From random metric to Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Santos, Emilio

    2006-03-01

    The motion of a particle is studied in a random space time metric, using a non-relativistic approximation. The randomness induces a diffusion of the particle in coordinate space. Hence it is shown that the evolution of the probability density of the particle's positions is given by Schrödinger equation.

  5. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  6. CONDENSED MATTER: STRUCTURE, MECHANICAL, AND THERMAL PROPERTIES: Ultrahigh-Pressure Equation of State for Copper at 0 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lu; Gao, Xiang; Ma, Gui-Cun; Yan, Jun; Zhang, Wen-Qing; Li, Jia-Ming

    2008-09-01

    Based on the first-principles all-electron full-potential augmented-plane-wave plus local orbital method, an equation of state (EOS) at 0K for copper up to 10000 GPa (108 bar) is presented. Our recommended EOS is in good agreement with the available experimental data. Furthermore, the agreement between theoretical EOS of hcp and fcc lattices at extremely compressed condition sets the foundation of spherical atom models for high density and high temperate plasmas.

  7. Using heavy-ion collisions to elucidate the asymmetric equation-of-state

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry; McIntosh, Alan

    2016-06-01

    The nuclear equation-of-state impacts a number of nuclear properties as well as astrophysical processes. The asymmetric term of the equation-of-state, which describes the behavior away from N=Z, has significant uncertainty. Giant resonances and nuclear masses can elucidate the asymmetry energy for cold normal-density nuclei. Heavy-ion collisions can be used to probe nuclear matter at higher temperatures and densities away from saturation density. The temperatures that are attained in these nuclear collisions are predicted to depend on the isospin asymmetry. In this work we present evidence of the asymmetry dependence of the nuclear caloric curve.

  8. Plasma dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Clarke, J. D.; Foot, R.

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless "dark photon" (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  9. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C. H.

    1974-01-01

    The energy-density relation was calculated for pure neutron matter in the density range relevant for neutron stars, using four different hard-core potentials. Calculations are also presented of the properties of the superfluid state of the neutron component, along with the superconducting state of the proton component and the effects of polarization in neutron star matter.

  10. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  11. Equation-of-motion approach to frequency-dependent nuclear electric shielding tensors in the HF molecule

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Rossi, E.; Zanasi, R.

    1983-03-01

    The frequency dependence of the dipole electric polarizability and electric shielding tensors of hydrogen and fluorine nuclei in the HF molecule has been investigated by means of the lower approximations to the equation-of-motion method-namely, the single-transition approximation (STA), the Tamm-Dancoff approximation (TDA), and the random-phase approximation (RPA)-within the framework of dipole length, velocity, acceleration, and mixed formalisms. Some relations are proved, concerning the relative magnitude of TDA and RPA polarizabilities and Thomas-Reich-Kuhn sum rules in the various formalisms. An interdependence between dynamic polarizabilities and nuclear shielding factors has been found. Good agreement with experimental static shielding factors has been obtained in the RPA calculation.

  12. Nuclear matter properties from a separable representation of the Paris interaction

    SciTech Connect

    Baldo, M.; Bombaci, I.; Giansiracusa, G.; Lombardo, U. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia, 57, I-95129 Catania ); Mahaux, C.; Sartor, R. )

    1990-04-01

    A separable representation of the Paris interaction is used as input for the investigation of various nuclear matter properties. The faithfulness of the separable representation is checked by comparison with results previously obtained from the original Paris interaction. Calculations are performed for four different values of the Fermi momentum, namely {ital k}{sub {ital F}}=1.10, 1.36, 1.55, and 1.75 fm{sup {minus}1}. One evaluates the contributions to the quasiparticle potential energy that are of first, second, and third order in the reaction matrix. The momentum distribution {ital n}({ital k}) in the correlated ground state is calculated up to second order in the reaction matrix. For 0{lt}{ital k}{lt}2 fm{sup {minus}1}, it mainly depends upon the ratio {ital k}/{ital k}{sub {ital F}}; in the domain 2{lt}{ital k}{lt}4.5 fm{sup {minus}1}, it is accurately reproduced by the expression 1/7{ital k}{sub {ital F}}{sup 5}{ital e{minus}1.6{ital k}}, with {ital k} and {ital k}{sub {ital F}} in units of fm{sup {minus}1}. The quasiparticle strength at the Fermi surface is calculated, as well as the mean-square deviation of the one-body density matrix from that of the unperturbed Fermi sea: This quantity gives an estimate of the minimum value of the norm of the difference between the one-body density matrix of a correlated nucleus and that associated with any Slater determinant. The average kinetic energy per nucleon is evaluated. Various contributions to the average binding energy per nucleon are investigated in the framework of Brueckner's expansion; particular attention is paid to the dependence of the calculated binding energy upon the choice of the auxiliary'' potential which is added to and subtracted from the Hamiltonian before performing the expansion. One also evaluates diagrams that are characteristic of the difference between the Green's function and the Brueckner hole-line expansions.

  13. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime

    SciTech Connect

    Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.

    2015-08-04

    We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based on the Coulomb coupling parameter and one-component plasmas.

  14. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime

    DOE PAGESBeta

    Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.

    2015-08-04

    We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based onmore » the Coulomb coupling parameter and one-component plasmas.« less

  15. A Study of Intrinsic Statistical Variation for Nuclear Recoils in Germanium Detector for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao; Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-10-01

    The intrinsic statistical variation in nuclear recoils is a critical part that cannot be ignored when calculating energy resolution of germanium detector in detecting WIMPs. Have a good theoretical understanding about the intrinsic statistical variation in nuclear recoils and develop a model for calculating this variation based on experimental data is of great importance in determining the width of nuclear recoil band, which is used to identify nuclear recoils events. Hence, we designed an experiment to study the intrinsic statistical variation in nuclear recoils with various gamma sources and AmBe neutron source. In addition, we developed a theoretical model to calculate the intrinsic statistical variation in nuclear recoils based on data from AmBe neutron source. In this work, we will present our data and theoretical calculation for nuclear recoils. This work is supported by NSF in part by the NSF PHY-0758120, DOE grant DE-FG02-10ER46709, and the State of South Dakota.

  16. Electronic and nuclear contributions in sub-GeV dark matter scattering: A case study with hydrogen

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Liu, C.-P.; Wu, Chih-Liang; Wu, Chih-Pan

    2015-11-01

    The scattering of sub-GeV dark matter (DM) particles with hydrogen atoms is studied in this paper. The interactions of DM with electrons and nucleons are both included and formulated in a general framework based on nonrelativistic effective field theory. On the assumption of the same dark matter coupling strengths, it is found that DM-electron interactions dominate the inelastic atomic transitions to discrete excited states and ionization continuum around the threshold regions, and DM-nucleon interactions become more important with increasing energy and dominate in elastic scattering. The conclusion should apply, qualitatively, to practical detector species so that electronic and nuclear contributions in DM scattering processes can be disentangled, while issues including binding effects and the recoil mechanism in many-body systems will require further detailed calculations.

  17. Effects of equation of state on nuclear suppression and the initial entropy density of quark gluon plasma

    NASA Astrophysics Data System (ADS)

    Mazumder, Surasree; Alam, Jan-e.

    2012-04-01

    We study the effects of the equation of state on the nuclear suppression of heavy flavors in quark gluon plasma and estimate the initial entropy density of the system produced in Au + Au collision at the highest Relativistic Heavy Ion Collider (RHIC) energy. For this purpose the experimental data on the charged-particle multiplicity and the nuclear suppression of single-electron spectra originating from the semileptonic decays of open charm and beauty mesons have been employed. We have used inputs from lattice QCD to minimize the model dependence of the results. We obtain the value of the initial entropy density, which varies from 20 to 59/fm3 depending on the value of the velocity of sound that one uses for the analysis. Our investigation leads to a conservative value of the initial entropy density of ˜20/fm3 with a corresponding initial temperature of ˜210 MeV, which is well above the value of the transition temperature predicted by lattice QCD.

  18. Heavy-ion collisions and the nuclear equation of state. Progress report, August 15, 1992--April 1993

    SciTech Connect

    Keane, D.

    1993-08-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL`s Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development.

  19. The solution to the nuclear reactor kinetic equations with a continuous slowing down model using numerical Laplace transform inversion

    SciTech Connect

    Ravetto, P.; Sumini, M.; Ganapol, B.D.

    1988-01-01

    In an attempt to better understand the influence of prompt and delayed neutrons on nuclear reactor dynamics, a continuous slowing down model based on Fermi age theory was developed several years ago. This model was easily incorporated into the one-group diffusion equation and provided a realistic physical picture of how delayed and prompt neutrons slow down and simultaneously diffuse throughout a medium. The model allows for different slowing down times for each delayed neutron group as well as for prompt neutrons and for spectral differences between the two typed of neutrons. Because of its generality, this model serves not only a a useful predictive tool to anticipate reactor transients, but also as an excellent educational tool to demonstrate the effect of delayed neutrons in reactor kinetics. However, because of numerical complications, the slowing down model could not be developed to its full potential. In particular, the major limitation was the inversion of the Laplace transform, which relied on a knowledge of the poles associated with the resulting transformed flux. For this reason, only one group of delayed neutrons and times longer than the slowing down times could be considered. As is shown, the new inversion procedure removes the short time limitation as well as allows for any number of delayed neutron groups. The inversion technique is versatile and is useful in teaching numerical methods in nuclear science.

  20. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C.

    1973-01-01

    The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.

  1. Analysis of colliding nuclear matter in terms of symmetry energy and cross-section using computational method

    SciTech Connect

    Sharma, Arun Bharti, Arun; Gautam, Sakshi

    2015-08-28

    Here we perform a systematic study to extract the information for colliding nuclear matter via symmetry energy and nucleon-nucleon cross section in the fragmentation of some asymmetric colliding nuclei (O{sup 16}+Br{sup 80,} {sup 84,} {sup 92}) in the energy range between 50-200 MeV/nucleon. The simulations are carried out using isospin-dependent quantum-molecular dynamics (IQMD) computational approach for central collisions. Our study reveals that fragmentation pattern of neutron-rich colliding nuclei is sensitive to symmetry energy at lower incident energies, whereas isospin dependence of nucleon-nucleon cross section becomes dominant for reactions at higher incident energies.

  2. First principles calculations of nucleon and pion form factors: understanding the building blocks of nuclear matter from lattice QCD

    SciTech Connect

    Constantia Alexandrou; Bojan Bistrovic; Robert Edwards; P de Forcrand; George Fleming; Philipp Haegler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers; Antonios Tsapalis

    2005-10-01

    Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom.

  3. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D. E-mail: m.duez@wsu.edu

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  4. Coupled-cluster calculations of nucleonic matter

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Ekström, A.; Wendt, K. A.; Baardsen, G.; Gandolfi, S.; Hjorth-Jensen, M.; Horowitz, C. J.

    2014-01-01

    Background: The equation of state (EoS) of nucleonic matter is central for the understanding of bulk nuclear properties, the physics of neutron star crusts, and the energy release in supernova explosions. Because nuclear matter exhibits a finely tuned saturation point, its EoS also constrains nuclear interactions. Purpose: This work presents coupled-cluster calculations of infinite nucleonic matter using modern interactions from chiral effective field theory (EFT). It assesses the role of correlations beyond particle-particle and hole-hole ladders, and the role of three-nucleon forces (3NFs) in nuclear matter calculations with chiral interactions. Methods: This work employs the optimized nucleon-nucleon (NN) potential NNLOopt at next-to-next-to leading order, and presents coupled-cluster computations of the EoS for symmetric nuclear matter and neutron matter. The coupled-cluster method employs up to selected triples clusters and the single-particle space consists of a momentum-space lattice. We compare our results with benchmark calculations and control finite-size effects and shell oscillations via twist-averaged boundary conditions. Results: We provide several benchmarks to validate the formalism and show that our results exhibit a good convergence toward the thermodynamic limit. Our calculations agree well with recent coupled-cluster results based on a partial wave expansion and particle-particle and hole-hole ladders. For neutron matter at low densities, and for simple potential models, our calculations agree with results from quantum Monte Carlo computations. While neutron matter with interactions from chiral EFT is perturbative, symmetric nuclear matter requires nonperturbative approaches. Correlations beyond the standard particle-particle ladder approximation yield non-negligible contributions. The saturation point of symmetric nuclear matter is sensitive to the employed 3NFs and the employed regularization scheme. 3NFs with nonlocal cutoffs exhibit a

  5. QCD constraints on the equation of state for compact stars

    NASA Astrophysics Data System (ADS)

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-01-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  6. 75 FR 4877 - In the Matter of Beta Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all... Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective Immediately) I Beta Gamma Nuclear Radiology (BGNR) (Licensee) is the holder of medical License No. 52-25542-01, issued by the...

  7. A modified explanation of cold nuclear matter effects on J/ψ production in p+A collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Feng

    2015-08-01

    A modified explanation of the cold nuclear matter (CNM) effects on J/ψ production in p+A collisions is presented in this paper. The advantage of the modified explanation is that all the CNM effects implemented in this model have clear physical origins and are mostly centered on the idea of multiple parton scattering. With the CNM effects presented in this paper, we calculated the nuclear modification factor RpA in J/ψ production under different collision energies. The results are compared with the corresponding experiment data and the factors calculated with classic nuclear effects. The factors calculated with CNM effects presented in this paper can accurately reproduce almost all existing J/ψ measurements in p-A collisions, which is much better than results obtained with the factors calculated with classic nuclear effects. The new model is therefore a more suitable approach to explain CNM effects in the hardproduction of quarkonium. Supported by National Nature Science Foundation of China (10575028)

  8. Nuclear and particle astrophysics

    SciTech Connect

    Glendenning, N.K.

    1990-10-31

    We discuss the physics of matter that is relevant to the structure of compact stars. This includes nuclear, neutron star matter and quark matter and phase transitions between them. Many aspects of neutron star structure and its dependance on a number of physical assumptions about nuclear matter properties and hyperon couplings are investigated. We also discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neuron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general of theory of relativity is correct at the macroscopic scale. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Indeed the prompt explosion, from which a constraint had been thought to follow, is now believed not to be mechanism by which most, if any stars, explode. In any case the nuclear equation of state is but one of a multitude on uncertain factors, and possibly one of the least important. The rapid rotation of pulsars is also discussed. It is shown that for periods below a certain limit it becomes increasingly difficult to reconcile them with neutron stars. Strange stars are possible if strange matter is the absolute ground state. We discuss such stars and their compatibility with observation. 112 refs., 37 figs., 6 tabs.

  9. Heavy-ion collisions and the nuclear equation of state. Progress report, August 15, 1991--March 1992

    SciTech Connect

    Keane, D.

    1992-09-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the past year, the PI has been on leave at Lawrence Berkeley Lab and has worked on this research project full-time. A large fraction of the effort of the PI and graduate students has gone into preparing for experiments using the Time Projection Chamber at LBL`s Bevalac accelerator; in March 1992, this device successfully took data in production mode for the first time, and the first physics analysis is now under way. The PI has carried out simulations that help to define the physics performance and engineering specifications of the recently-approved STAR detector for the Relativistic Heavy Ion Collider, and has identified a new capability of this device with the potential for being an important quark-gluon plasma signature. A Postdoctoral Fellow, jointly supported by this grant and Kent State University, has been recruited to augment these efforts. Since May 1991, 11 journal papers have been published or submitted for publication; 2 conference proceedings and 9 reports or abstracts have also been published during the past year. One paper in Phys. Rev. Left., one in Phys. Rev. C, and one conference proceedings are based on the thesis project of one of the PI`s Ph.D. students who is expected to graduate later this year. Partly in response to the impending closure of the Bevalac, the PI`s group has recently joined the NA49 experiment at CERN.

  10. Investigating a suitable equation of state for an infinite system of nucleons

    NASA Astrophysics Data System (ADS)

    Zoghi-Foumani, Niloufar; Shojaei, Mohammad Reza

    2016-08-01

    In this paper, the average energy variation with respect to the density of a system of nucleons is theoretically studied. A new formula is proposed for the nuclear equation of state. This formula is related to an infinite system of protons and neutrons with relatively small thermal excitation. It is shown that the presented formulation for the nuclear equation of state reproduces the results obtained in the Skyrme-Hartree-Fock (SHF) and Relativistic Mean-Field (RMF) models of nuclear matter. It should be realized that the consistency of the obtained results for nuclear matter with the predictions of the well-known SHF and RMF models for symmetric and asymmetric system of nucleons indicates the reliability of this formulation for various types of nuclear matter in large scales such as neutron stars.

  11. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    NASA Astrophysics Data System (ADS)

    Holt, Jeremy W.; Rho, Mannque; Weise, Wolfram

    2016-03-01

    Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme". Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  12. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    SciTech Connect

    Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L; Roberts, Luke F; Tytler, David; Fuller, George M; Lingerfelt, Eric J; Hix, William Raphael; Nesaraja, Caroline D

    2008-01-01

    We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint.

  13. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density

    SciTech Connect

    Smith, Michael Scott; Roberts, Luke F; Hix, William Raphael; Bruner, Blake D; Kozub, R. L.; Tytler, David; Fuller, George M; Lingerfelt, Eric J; Nesaraja, Caroline D

    2008-01-01

    We performed new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio {eta} given current observational uncertainties. We also performed sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the {eta} constraint.

  14. Symmetry energy from nuclear masses and neutron-star observations using generalised Skyrme functionals

    NASA Astrophysics Data System (ADS)

    Chamel, N.; Fantina, A. F.; Pearson, J. M.; Goriely, S.

    2016-01-01

    We study the constraints imposed by nuclear mass measurements and neutron-star observations on the symmetry energy. For this purpose, we use a family of unified equations of state of neutron-star interiors, based on generalised Skyrme functionals that were fitted to essentially all the experimental nuclear mass data while ensuring a realistic neutron-matter equation of state.

  15. Economy, Speed and Size Matter: Evolutionary Forces Driving Nuclear Genome Miniaturization and Expansion

    PubMed Central

    CAVALIER-SMITH, THOMAS

    2005-01-01

    • Background Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or ‘selfish’ outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear DNA amounts, modulated somewhat by genes affecting the degree of DNA packing or unfolding; the huge spread of nuclear genome sizes is the necessary consequence of the origin of the nuclear envelope and the nucleation of its assembly by DNA, plus the adaptively significant 300 000-fold range of cell volumes and selection for balanced growth by optimizing karyoplasmic volume ratios (essentially invariant with cell volume in growing/multiplying cells). This simple explanation of the C-value paradox is refined here in the light of new insights into the nature of heterochromatin and the nuclear lamina, the genetic control of cell volume, and large-scale eukaryote phylogeny, placing special emphasis on protist test cases of the basic principles of nuclear genome size evolution. • Genome Miniaturization and Expansion Intracellular parasites (e.g. Plasmodium, microsporidia) dwarfed their genomes by gene loss and eliminating virtually all secondary DNA. The primary driving forces for genome reduction are metabolic and spatial economy and cell multiplication speed. Most extreme nuclear shrinkage yielded genomes as tiny as 0·38 Mb (making the nuclear genome size range effectively 1·8 million-fold!) in some minute enslaved nuclei (nucleomorphs) of cryptomonads and chlorarachneans, chimaeric cells that also retain a separate normal large nucleus. The latter shows typical correlation between genome size and cell volume, but nucleomorphs do not despite co-existing in the same cell

  16. Relativistic nuclear collisions: theory

    SciTech Connect

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures.

  17. Properties of excited A = 40 nuclear systems with varying matter composition

    NASA Astrophysics Data System (ADS)

    Schmidt, K.; Natowitz, J. B.; Barbui, M.; Hagel, K.; Bonasera, A.; Giuliani, G.; Zheng, H.; Rodrigues, M.; Wada, R.; Huang, M.; Botosso, C.; Kowalski, S.

    2016-05-01

    There exists an intriguing problem when bosonic clusters as bound states of fermions are produced in the reaction, and the Bose character of the composite clusters competes with the fermionic properties of their constituents. In the analysis of 40Ca + 40Ca reactions at 35MeV/A we selected classes of projectile-like sources with exit channels consisting of only bosons, only fermions, only even-even nuclei, only odd - odd nuclei, only even - odd nuclei and only alpha-conjugate nuclei, respectively and searched for kinematic characteristics of these systems which might differ depending upon the type of matter selected. The distributions of various observables for the different classes of matter and comparisons between them will be presented and discussed.

  18. D meson mass increase by restoration of chiral symmetry in nuclear matter

    NASA Astrophysics Data System (ADS)

    Suzuki, Kei; Gubler, Philipp; Oka, Makoto

    2016-04-01

    Spectral functions of the pseudoscalar D meson in the nuclear medium are analyzed using QCD sum rules and the maximum entropy method. This approach enables us to extract the spectral functions without any phenomenological assumption, and thus to visualize in-medium modification of the spectral functions directly. It is found that the reduction of the chiral condensates of dimension 3 and 5 causes the masses of both D+ and D- mesons to grow gradually at finite density. Additionally, we construct charge-conjugate-projected sum rules and find a D+-D- mass splitting of about -15 MeV at nuclear saturation density.

  19. Energy-momentum tensor form factors of the nucleon in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chul; Schweitzer, Peter; Yakhshiev, Ulugbek

    2012-12-01

    The nucleon form factors of the energy-momentum tensor are studied in nuclear medium in the framework of the in-medium modified Skyrme model. We obtain a negative D-term, in agreement with results from other approaches, and find that medium effects make the value of d1 more negative.

  20. Properties of hadron matter. II - Dense baryon matter and neutron stars.

    NASA Technical Reports Server (NTRS)

    Leung, Y. C.; Wang, C. G.

    1971-01-01

    In this article we have provided certain details of a nuclear-matter computation, based on the Brueckner-Bethe-Goldstone theory of nuclear reaction, which leads to an equation of state for matter in the density region of 10 to 500 trillion g/cu cm. We also explore the possibilities that at very high baryon densities or for very short baryon separations, the net baryon-baryon interaction may be negligible so that the results of dynamical models, like the statistical bootstrap model and the dual-resonance model, may be applicable to the study of dense baryon matter. Several plausible equations of state are constructed, and their effect on the limiting mass of the neutron star is examined.

  1. Exploring the nuclear pasta phase in core-collapse supernova matter.

    PubMed

    Pais, Helena; Stone, Jirina R

    2012-10-12

    The core-collapse supernova phenomenon, one of the most explosive events in the Universe, presents a challenge to theoretical astrophysics. Of the large variety of forms of matter present in core-collapse supernova, we focus on the transitional region between homogeneous (uniform) and inhomogeneous (pasta) phases. A three-dimensional, finite temperature Skyrme-Hartree-Fock (3D-SHF)+BCS calculation yields, for the first time fully self-consistently, the critical density and temperature of both the onset of the pasta in inhomogeneous matter, consisting of neutron-rich heavy nuclei and a free neutron and electron gas, and its dissolution to a homogeneous neutron, proton, and electron liquid. We also identify density regions for different pasta formations between the two limits. We employ four different forms of the Skyrme interaction, SkM*, SLy4, NRAPR, and SQMC700 and find subtle variations in the low density and high density transitions into and out of the pasta phase. One new stable pasta shape has been identified, in addition to the classic ones, on the grid of densities and temperatures used in this work. Our results are critically compared to recent calculations of pasta formation in the quantum molecular dynamics approach and Thomas-Fermi and coexisting phase approximations to relativistic mean-field models. PMID:23102290

  2. Unprecedented Studies of the Low-energy Negatively Charged Kaons Interactions in Nuclear Matter by AMADEUS

    NASA Astrophysics Data System (ADS)

    Curceanu, C.; Piscicchia, K.; Bazzi, M.; Berucci, C.; Bosnar, D.; Bragadireanu, A. M.; Clozza, A.; Cargnelli, M.; D'Uffizi, A.; Fabbietti, L.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Iliescu, M.; Levi Sandri, P.; Marton, J.; Pietreanu, D.; Poli Lener, M.; Quaglia, R.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Skurzok, M.; Tucakovic, I.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    The AMADEUS experiment aims to provide unique quality data of $K^-$ hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the $\\Lambda(1405)$ state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon $K^-$ absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DA$\\Phi$NE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for $K^-$ nuclear capture on H, ${}^4$He, ${}^{9}$Be and ${}^{12}$C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest $K^-$ nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.

  3. Linear stochastic differential equations on the dual of a countably Hilbert nuclear space with applications to neurophysiology. Technical report, September 1984-August 1985

    SciTech Connect

    Christensen, S.K.

    1985-06-01

    Properties of the Ornstein-Uhlenbeck on the dual of a nuclear space are derived; stationarity and existence of unique invariant measure is proved, Radon-Nikodym derivative exhibited and the OU process is investigated for flicker noise. Existence and uniqueness of solutions to linear stochastic differential equations on the dual of a nuclear spaces established, and general conditions for the weak convergence on Skorohod space of solutions are given. Moreover, solutions are shown to be CADLAG semimartingales (for appropriate initial conditions). The results are applicable to solving stochastic partial differential equations. Finally, the results are applied to giving a rigorous representation and solutions of models in neurophysiology as well as to deriving explicit results for the weak convergence of these solutions.

  4. Cold nuclear matter effects on J/{psi} production as constrained by deuteron-gold measurements at {radical}(s{sub NN})=200 GeV

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kinney, E.; Seele, J.; Wysocki, M.; Adler, S. S.; Aronson, S. H.; Azmoun, B.; Belikov, S.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.

    2008-02-15

    We present a new analysis of J/{psi} production yields in deuteron-gold collisions at {radical}(s{sub NN})=200 GeV using data taken from the PHENIX experiment in 2003 and previously published in S. S. Adler et al. [Phys. Rev. Lett 96, 012304 (2006)]. The high statistics proton-proton J/{psi} data taken in 2005 are used to improve the baseline measurement and thus construct updated cold nuclear matter modification factors (R{sub dAu}). A suppression of J/{psi} in cold nuclear matter is observed as one goes forward in rapidity (in the deuteron-going direction), corresponding to a region more sensitive to initial-state low-x gluons in the gold nucleus. The measured nuclear modification factors are compared to theoretical calculations of nuclear shadowing to which a J/{psi} (or precursor) breakup cross section is added. Breakup cross sections of {sigma}{sub breakup}=2.8{sub -1.4}{sup +1.7} (2.2{sub -1.5}{sup +1.6}) mb are obtained by fitting these calculations to the data using two different models of nuclear shadowing. These breakup cross-section values are consistent within large uncertainties with the 4.2{+-}0.5 mb determined at lower collision energies. Projecting this range of cold nuclear matter effects to copper-copper and gold-gold collisions reveals that the current constraints are not sufficient to firmly quantify the additional hot nuclear matter effect.

  5. Implications of the Oklo Phenomenon in a Chiral Approach to Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Davis, Edward D.

    2015-09-01

    It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant α over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both α and the average m q of the u and d current quark masses, and which makes explicit the dependence on mass number A and atomic number Z. (Recent model independent results on hadronic -terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivity to changes in the pion mass of a single nucleon potential determined by an in-medium chiral perturbation theory (PT) calculation which includes virtual -excitations. Subject to some reasonable assumptions about low-energy constants, we confirm that the m q -contribution to resonance shifts is enhanced by a factor of 10 or so relative to the -term and deduce that the Oklo data for Sm imply that.

  6. Dense baryonic matter: Constraints from recent neutron star observations

    NASA Astrophysics Data System (ADS)

    Hell, Thomas; Weise, Wolfram

    2014-10-01

    Updated constraints from neutron star masses and radii impose stronger restrictions on the equation of state for baryonic matter at high densities and low temperatures. The existence of 2M⊙ neutron stars rules out many soft equations of state with prominent "exotic" compositions. The present work reviews the conditions required for the pressure as a function of baryon density to satisfy these constraints. Several scenarios for sufficiently stiff equations of state are evaluated. The common starting point is a realistic description of both nuclear and neutron matter based on a chiral effective field theory approach to the nuclear many-body problem. Possible forms of hybrid matter featuring a quark core in the center of the star are discussed using a three-flavor Polyakov-Nambu-Jona-Lasinio model. It is found that a conventional equation of state based on nuclear chiral dynamics meets the astrophysical constraints. Hybrid matter generally turns out to be too soft unless additional strongly repulsive correlations, e.g., through vector current interactions between quarks, are introduced. The extent to which strangeness can accumulate in the equation of state is also discussed.

  7. Probing the {rho} spectral function in hot and dense nuclear matter by dileptons

    SciTech Connect

    Cassing, W.; Bratkovskaya, E.L.; Rapp, R.; Wambach, J.

    1998-02-01

    We present a dynamical study of e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} production in proton-nucleus and nucleus-nucleus collisions at CERN-SPS energies on the basis of the covariant transport approach HSD employing a momentum-dependent {rho}-meson spectral function that includes the pion modifications in the nuclear medium as well as the polarization of the {rho} meson due to resonant {rho}-N scattering. We find that the experimental data from the CERES and HELIOS-3 Collaborations can be described equally well as within the dropping {rho}-mass scenario. Whereas corresponding dilepton q{sub T} spectra are found to be very similar, the inclusive dilepton yield in the invariant mass range 0.85{le}M{le}1.0 GeV should allow us to disentangle the two scenarios experimentally. {copyright} {ital 1998} {ital The American Physical Society}

  8. Neutron-star matter within the energy-density functional theory and neutron-star structure

    SciTech Connect

    Fantina, A. F.; Chamel, N.; Goriely, S.; Pearson, J. M.

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  9. Application of Perturbative and Lattice Techniques to the Analysis of Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Thomson, Richard Hamley

    Perturbative Quantum Chromodynamics (pQCD) is applied to nucleon Compton scattering. The calculations predict scattering cross section measured in experiments conducted at JLAB. Scattering of both real and virtual photons is analyzed. The calculations employ the Feynman gauge and the center-of-mass frame. The analysis is extended for the deeply virtual photon to employ the Light Front gauge and a frame where both incoming and outgoing photons are travelling in the same direction and all particles are approximately collinear. In this domain we demonstrate that handbag diagrams are dominant. Further, it is explained how the perturbative results can be used to predict the asymptotic form of the proton General Parton Distributions (GPDs), H(x,ζ ,t) and H˜(x, ζ, t). Lattice methods are used to analyze temperature dependent discretization errors in nuclear lattice simulations. The second virial coefficient is calculated to quantify the errors. Various modifications to the lattice action are considered to see what effect they have on the discretization errors. A local "well-tempered" lattice action is able to eliminate most of the error.

  10. Antistrange meson-baryon interaction in hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Cabrera, D.; Tolós, L.; Aichelin, J.; Bratkovskaya, E.

    2014-11-01

    We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at energies available at the Facility for Antiproton and Ion Research. Our results rely on a chiral unitary approach in coupled channels which incorporates the s and p waves of the kaon-nucleon interaction. The formalism, which is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons, and pion and kaon self-energies, has been improved to implement unitarization and self-consistency for both the s - and the p -wave interactions at finite temperature and density. This gives access to in-medium amplitudes in several elastic and inelastic coupled channels with strangeness content S =-1 . The obtained total cross sections mostly reflect the fate of the Λ (1405 ) resonance, which melts in the nuclear environment, whereas the off-shell transition probabilities are also sensitive to the in-medium properties of the hyperons excited in the p -wave amplitudes [Λ ,Σ , and Σ*(1385 ) ]. The single-particle potentials of these hyperons at finite momentum, density, and temperature are also discussed in connection with the pertinent scattering amplitudes. Our results are the basis for future implementations in microscopic transport approaches accounting for off-shell dynamics of strangeness production in nucleus-nucleus collisions.

  11. Effective Interactions in Neutron-Rich Matter

    SciTech Connect

    Sammarruca, F.; Krastev, P.; Barredo, W.

    2005-10-14

    We are generally concerned with probing the behavior of the isospin-asymmetric equation of state. In particular, we will discuss the one-body potentials for protons and neutrons obtained from our Dirac-Brueckner-Hartree-Fock calculations of neutron-rich matter properties. We will also present predictions of proton-proton and neutron-neutron cross sections in the isospin-asymmetric nuclear medium.

  12. Study of the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature

    SciTech Connect

    Coelho, Eduardo L.; Chiapparini, Marcelo; Bracco, Mirian E.

    2013-03-25

    Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.

  13. Probing Excited Nuclear Matter Using Particle Yields from Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Scott, Alan J.

    Nuclear fragment yields from central Au + Au collisions are presented at the Bevalac beam energies of 0.25, 0.4, 0.6, 0.8, 1.0, and 1.15A GeV using the EOS Time Projection Chamber. For these central events, we reconstruct almost all of the charge in the forward hemisphere, y _{cm}>0. The accuracy of yield measurements and particle identification performance can be improved by fully understanding the systematics of the energy loss signal provided by the detector. With appropriate corrections, excellent hydrogen and helium isotopic identification can be achieved. These measurements are compared with the predictions from two theoretical models. One of these models is based on a statistical disassembly and is called the Quantum Statistical Model (QSM). This model is used to extract an entropy per nucleon (S/A) as a function of bombarding energy. These entropy values were found to be most sensitive to the yields of light fragments and steadily increased up to an energy of 1.15A GeV. Methods to constrain the breakup densities are discussed with the hope to reduce the uncertainty in determining the S/A values. These yield measurements have also been compared to those predicted by the microscopic transport theory Quantum Molecular Dynamics (QMD). QMD is the only model that attempts the ambitious goal of dynamically simulating fragment formation. This model significantly underpredicts the yield of composite fragments and poorly reproduces the shape of their distribution as a function of rapidity. However, it does match the aggregate abundance of nucleons as a function of rapidity, especially for the higher energies. Furthermore, QMD performs better than the QSM model in predicting the abundance of heavier mass fragments (A > 4) for central collisions, especially at the higher energies.

  14. J/\\psi suppression in p-A collisions from charm quark energy loss in cold nuclear matter

    NASA Astrophysics Data System (ADS)

    Song, L. H.; Duan, C. G.

    2016-02-01

    The energy loss effect of charm quarks in cold nuclear matter on J/\\psi suppression in p-A collisions is studied. By means of two parametrizations of quark energy loss, the leading-order computations for J/\\psi production cross section ratios {R}W({{Fe})/{{Be}}}({x}F) are presented and compared with the selected E866 experimental data, with the c\\bar{c} remaining colored on its entire path in the medium. It is found that the energy loss of the color octet c\\bar{c} is an important effect in J/\\psi suppression; however, whether it is linear or quadratic with the path length cannot be determined. The successful description of J/\\psi suppression in 0.2\\lt {x}F\\lt 0.65 gives the charm quark mean energy loss per unit path length α =1.49+/- 0.37 {{GeV}}/fm. Using the same quark energy loss model, we further give the phenomenological analysis at the leading order for J/\\psi production cross section ratios as a function of y for the Large Hadron Collider experimental data.

  15. Solution of self-consistent equations for the N 3LO nuclear energy density functional in spherical symmetry. The program HOSPHE (v1.02)

    NASA Astrophysics Data System (ADS)

    Carlsson, B. G.; Dobaczewski, J.; Toivanen, J.; Veselý, P.

    2010-09-01

    We present solution of self-consistent equations for the N 3LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program HOSPHE (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave functions on the spherical harmonic oscillator basis. Program summaryProgram title: HOSPHE (v1.02) Catalogue identifier: AEGK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 45 809 No. of bytes in distributed program, including test data, etc.: 290 514 Distribution format: tar.gz Programming language: Fortran-90 Computer: PCs and workstations Operating system: Linux RAM: 50 MB Classification: 17.22 External routines: LAPACK ( http://www.netlib.org/lapack/), BLAS ( http://www.netlib.org/blas/) Nature of problem: The nuclear mean-field methods constitute principal tools of a description of nuclear states in heavy nuclei. Within the Local Density Approximation with gradient corrections up to N 3LO [1], the nuclear mean-field is local and contains derivative operators up to sixth order. The locality allows for an effective and fast solution of the self-consistent equations. Solution method: The program uses the spherical harmonic oscillator basis to expand single-particle wave functions of neutrons and protons for the nuclear state being described by the N 3LO nuclear energy density functional [1]. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonian, which depends non

  16. Hadronic matter and rapidly rotating compact stars

    SciTech Connect

    Weber, F.; Kettner, C.; Glendenning, N.K.

    1994-03-01

    In part one of this paper the authors review the present status of neutron star matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon populations, pion condensation, possible transition of baryon matter to quark matter). Part two deals with the theoretical determination of the minimum possible rotational periods of neutron stars, performed in the framework of general relativity, whose knowledge serves to distinguish between pulsars that can be understood as rotating neutron stars and those that cannot. Likely candidates for the latter are hypothetical strange stars. Their properties are discussed in the third part of this contribution.

  17. Seeking the Limits of Low-Temperature Nuclear Fusion: Sticking in Muon-Catalyzed Fusion, and Piezonuclear Fusion in Deuterium/condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    Studies seeking an upper limit of two types of low temperature nuclear fusion is presented. The upper limit for muon catalyzed fusion is generally considered to be the number of fusions per muon obtainable. The limiting factor has been found to be how often the muon remains bound to the alpha produced by the fusion, known as the "sticking fraction." Experiments directly measuring the sticking and determining the sticking using high tritium fractions are presented. In deuterium/condensed matter systems the question is nearly whether nuclear fusion proceeds at all. Experiments where neutrons around deuterided titanium and palladium are measured are presented.

  18. Nuclear symmetry energy in terms of single-nucleon potential and its effect on the proton fraction of β-stable npeμ matter

    NASA Astrophysics Data System (ADS)

    Sahoo, Babita; Chakraborty, Suparna; Sahoo, Sukadev

    2016-01-01

    Momentum and density dependence of single-nucleon potential u τ (k, ρ, β) is analyzed using a density dependent finite range effective interaction of the Yukawa form. Depending on the choice of the strength parameters of exchange interaction, two different trends of the momentum dependence of nuclear symmetry potential are noticed which lead to two opposite types of neutron and proton effective mass splitting. The 2nd-order and 4th-order symmetry energy of isospin asymmetric nuclear matter are expressed analytically in terms of the single-nucleon potential. Two distinct behavior of the density dependence of 2nd-order and 4th-order symmetry energy are observed depending on neutron and proton effective mass splitting. It is also found that the 4th-order symmetry energy has a significant contribution towards the proton fraction of β-stable npeμ matter at high densities.

  19. Quark matter in neutron stars and core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Sagert, Irina; Fischer, Tobias; Hempel, Matthias; Pagliara, Giuseppe; Schaffner-Bielich, Juergen; Rauscher, Thomas; Thielemann, Friedrich-K.; Kaeppeli, Roger; Martinez-Pinedo, Gabriel; Liebendoerfer, Matthias

    2011-10-01

    Recent neutron star mass measurements point to compact star maximum masses of at least 1.97±0.04 solar masses and represent thereby a challenge for soft nuclear equations of state, which often go hand in hand with the presence of hyperons or quarks. In this talk I will discuss such high neutron star masses regarding the nuclear equation of state from heavy ion experiments. Furthermore, I will introduce equations of state for core-collapse supernova and binary merger simulations, which include a phase transition to strange quark matter. As was recently shown, neutrino signals from supernova explosions can provide a probe for the low density appearance of quark matter. The compatibility of the latter with high neutron star masses is an interesting and important question and will be addressed in the talk.

  20. Solving the electron and electron-nuclear Schrodinger equations for the excited states of helium atom with the free iterative-complement-interaction method.

    PubMed

    Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi

    2008-04-21

    Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schrodinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schrodinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. The small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry. PMID:18433191

  1. Binding Energies of Hyperonic Matter and Applications to Neutron Stars

    SciTech Connect

    Uechi, Hiroshi; Uechi, Schun T.

    2011-10-21

    The conserving nonlinear, nonchiral {sigma}-{omega}-{rho} hadronic mean-field approximation is applied to saturation properties of nuclear and hyperonic matter, properties of hadron and hadron-quark neutron stars. Nonlinear interactions are renormalized self-consistently as effective coupling constants, effective masses, and sources of equations of motion by maintaining thermodynamic consistency to the mean-field approximation. The effective masses and coupling constants become density-dependent, and they simultaneously determine binding energies and saturation properties of nuclear matter and hyperonic matter. The conserving nonlinear {sigma}-{omega}-{rho} mean-field approximation with vacuum fluctuation corrections and strange quark matter defined by the MIT-bag model were employed to examine properties of hadron-(strange) quark stars. We found that hadron-quark stars become more stable at high densities compared to pure hadronic and strange quark stars.

  2. Critical study of type II supernovae: equations of state and general relativity

    SciTech Connect

    Kahana, S.

    1986-01-01

    The relevance of relativistic gravitation and of the properties of nuclear matter at high density to supernova explosions is examined in detail. The existing empirical knowledge on the nuclear equation of state at densities greater than saturation, extracted from analysis of heavy ion collisions and from the breathing mode in heavy nuclei, is also considered. Particulars of the prompt explosions recently obtained theoretically by Baron, Cooperstein, and Kahana are presented. 40 refs., 9 figs., 3 tabs.

  3. Variational Theory of Hot Dense Matter

    ERIC Educational Resources Information Center

    Mukherjee, Abhishek

    2009-01-01

    We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…

  4. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  5. The halo Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Racco, Davide; Riotto, Antonio

    2016-04-01

    Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.

  6. Nuclear Thermal Motion Driven Adiabatic Electron States Thermalization and the Induced Phase Transition From Insulator To Metal in Warm Dense Matters

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Hou, Yong; Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-05-01

    In warm dense matter(WDM), the thermal motion energy of a nucleus may be comparable to its coupling energy with the neighbor nuclei and comparable to the valence electronic orbital motion energy. As the much small mass of electrons, the fluctuations of the electron orbitals are almost adiabatic dynamical changes with nuclear motion. The electronic and nuclear structure of warm and dense He and Ar are simulated by using the density functional based molecular dynamics method. The nuclear thermal motion driven adiabatic thermalization of the electron states, depression of the energy band gap and even phase transitions of electron states from insulator to metal are predicted when the nuclear thermal motion energy is comparable to the coupling energy between the neighboring atoms as well as to the valence electronic orbital motion energy. These kind of nuclear thermal motion driven adiabatic electronic states from insulator to metal phase transition occurs at much lower temperatures than the normal thermal collision excitation in low density and high temperature gases.

  7. Strange-quark-matter stars

    SciTech Connect

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.

  8. Mixtures of Charged Bosons Confined in Harmonic Traps and Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reactions and Transmutation Processes in Condensed Matters

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-02-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.

  9. New equation of state for astrophysical simulations

    SciTech Connect

    Shen, G.; Horowitz, C. J.; Teige, S.

    2011-03-15

    We generate a new complete equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions ready for use in astrophysical simulations of supernovae and neutron star mergers. Our previous two papers tabulated the EOS at over 180 000 grid points in the temperature range T=0-80 MeV, the density range n{sub B}=10{sup -8}-1.6 fm{sup -3}, and the proton fraction range Y{sub P}=0-0.56. In this paper we combine these data points using a suitable interpolation scheme to generate a single EOS table on a finer grid. This table is thermodynamically consistent and conserves entropy during adiabatic compression tests. We present various thermodynamic quantities and the composition of matter in the new EOS, along with several comparisons with existing EOS tables. Our EOS table is available for download.

  10. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    PubMed

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative. PMID:27447427

  11. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    SciTech Connect

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2015-02-24

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  12. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    SciTech Connect

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; DeBlasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E. -J.; Kim, H. -J.; Kim, M.; Kim, Y. -J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J. -C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.

  13. QUARK MATTER IN MASSIVE COMPACT STARS

    SciTech Connect

    Weissenborn, Simon; Pagliara, Giuseppe; Schaffner-Bielich, Juergen; Sagert, Irina; Hempel, Matthias

    2011-10-10

    The recent observation of the pulsar PSR J1614-2230 with a mass of 1.97 {+-} 0.04 M{sub sun} gives a strong constraint on the quark and nuclear matter equations of state (EoS). We explore the parameter ranges for a parameterized EoS for quark stars. We find that strange stars, made of absolutely stable strange quark matter, comply with the new constraint only if effects from the strong coupling constant and color-superconductivity are taken into account. Hybrid stars, compact stars with a quark matter core and a hadronic outer layer, can be as massive as 2 M{sub sun}, but only for a significantly limited range of parameters. We demonstrate that the appearance of quark matter in massive stars crucially depends on the stiffness of the nuclear matter EoS. We show that the masses of hybrid stars stay below the ones of hadronic and pure quark stars, due to the softening of the EoS at the quark-hadron phase transition.

  14. A density functional equation of state for use in astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Olson, J. Pocahontas

    2015-10-01

    In this thesis, I present a new equation of state for use in simulating supernovae, black holes and neutron star mergers. It is the first such equation of state for astrophysical applications to use a density functional theory description for hadronic matter. The inclusion of thermal effects of matter enable nuclear Skyrme models, which have been highly tested and constrained at laboratory energy scales, to expand their domain to predictions of astronomical phenomena. Broadening the scope of these models can further confine parameter sets, using vastly different energy scales. The new equation of state, titled the Notre Dame-Livermore Equation of State (NDL EoS), allows for the creation of a pion condensate at high density and pair production of all known baryonic and mesonic states at high temperature. The description of matter also allows for the possibility of the formation of a net proton excess (Ye> 0:5). In addition to the density functional theory formulation for hadronic matter, the NDL EoS contains low and high density completions to better describe matter in these specific energy regimes. The low density description expands upon a Bowers and Wilson formulation, adding a transition through nuclear pasta phases, which are of particular importance in neutron star structure. These low density definitions have further been updated to include an improved treatment of the nuclear statistical equilibrium and the transition to heavy nuclei as the density approaches nuclear matter density. At high densities, matter is allowed to transition to a quark-gluon plasma (QGP) either as a first-order Gibbs transition, or a smooth crossover. Notre Dame-Livermore I identify predictions of the NDL EoS, contrasting them to existing equations of state and various Skyrme models of the NDL EoS. The observation of a heavy (two solar masses) neutron star restricts many descriptions of matter, and rules out several Skyrme parameter sets that had heretofore been entirely within the

  15. Solving the electron-nuclear Schrodinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method.

    PubMed

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2008-04-21

    Our previous paper [J. Chem. Phys. 127, 224104 (2007)] revealed that the Schrodinger equation in the fixed-nucleus approximation could be very accurately solved for helium atom and its isoelectronic ions (Z=1-10) with the free iterative-complement-interaction (ICI) method combined with the variation principle. In this report, the quantum effect of nuclear motion has further been variationally considered by the free ICI formalism for the Hamiltonian including mass-polarization operator. We obtained -2.903 304 557 729 580 294 733 816 943 892 697 752 659 273 965 a.u. for helium atom, which is over 40 digits in accuracy, similarly to the previous result for the fixed-nucleus level. Similar accuracy was also obtained for the helium isoelectronic ions. The present results may be regarded to be the nonrelativistic limits. We have further analyzed the physics of the free ICI wave function by applying it to an imaginary atom called "eneon," [e(-)e(10+)e(-)](8+), in which both of the quantum effect of nuclear motion and the three-particle collisions are differently important from the helium and its isoelectronic ions. This revealed the accurate physics automatically generated by the free ICI formalism. PMID:18433190

  16. Sensitivity of neutron star properties to the equation of state

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrooh

    2011-01-01

    The subject of this doctoral dissertation is to study the equations of state of nuclear and neutron-star matter. We tackle this problem by employing several models of the relativistic effective interactions. The relativistic effective interactions and their applications to the ground-state properties of medium to heavy nuclei have enjoyed enormous success for the past three decades. With just a few model parameters calibrated to the ground state properties of the closed-shell nuclei, these models exhibit and encode a great amount of physics. However, theses models are untested far away from their narrow window of applicability. In particular, while these models tend to agree on the saturation properties of symmetric nuclear matter, they largely disagree on its density and isospin dependence, especially in the region of high densities and large proton-neutron asymmetries. In order to better understand the properties of nuclear matter at these extreme regions of isospin asymmetry and high-densities, we will apply these models to predict several neutron star properties. Since the matter in the neutron stars are very neutron-rich, while the density of matter in neutron stars spans over a wide range of magnitudes, these compact objects remain unique laboratories for probing the equation of state of neutron-rich matter under conditions unattainable by terrestrial experiments. Thus it is expected that at least the following neutron star properties must be sensitive to the underlying equation of state: maximum mass, typical radii, moments of inertia (both total and crustal), redshifts, and cooling mechanism. We present numerical solutions and in some cases also analytical solutions to each of the properties above. In particular, the sensitivity of the stellar moment of inertia to the neutron-star matter equation of state is examined using accurately-calibrated relativistic mean-field models. We probe this sensitivity by tuning both the density dependence of the symmetry

  17. 75 FR 74750 - In the Matter of Toshiba America Nuclear Energy Corporation and All Other Persons Who Seek or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... Register (74 FR 28112), that requires applicants for a variety of licensing activities, including nuclear... entities required to protect SGI (73 FR 63546). The NRC is issuing this Order to Toshiba America Nuclear... entities participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72...

  18. 77 FR 11168 - In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... hearing was published in the Federal Register on July 7, 2011 (76 FR 39910). No comments or hearing... Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear Station, LLC; Nine Mile Point... Ventures), and Constellation Energy Nuclear Group, LLC (CENG), acting on behalf of itself, and the...

  19. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  20. From nuclear reactions to compact stars: A unified approach

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Roy Chowdhury, Partha; Mishra, Abhishek

    2014-04-01

    An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its slope agree well with experimentally extracted values. Folded microscopic potentials using this effective interaction, whose density dependence is determined from nuclear matter calculations, provide excellent descriptions for proton, alpha and cluster radioactivities, elastic and inelastic scattering. The nuclear deformation parameters extracted from the inelastic scattering of protons agree well with other available results. The high-density behavior of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using -equilibrated neutron star matter obtained from this effective interaction for a pure hadronic model agree with the recent observations of the massive compact stars such as PSR J1614-2230, but if a phase transition to quark matter is considered such agreement is no longer possible.

  1. Pools and fluxes of organic matter in a boreal landscape: implications for a safety assessment of a repository for nuclear waste.

    PubMed

    Kumblad, Linda; Söderbäck, Björn; Löfgren, Anders; Lindborg, Tobias; Wijnbladh, Erik; Kautsky, Ulrik

    2006-12-01

    To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co is carrying out site investigations, including extensive studies of different parts of the surface ecosystems, at two sites in Sweden. Here we use the output from detailed modeling of the carbon dynamics in the terrestrial, limnic and marine ecosystems to describe and compare major pools and fluxes of organic matter in the Simpevarp area, situated on the southeast coast of Sweden. In this study, organic carbon is used as a proxy for radionuclides incorporated into organic matter. The results show that the largest incorporation of carbon into living tissue occurs in terrestrial catchments. Carbon is accumulated in soil or sediments in all ecosystems, but the carbon pool reaches the highest values in shallow near-land marine basins. The marine basins, especially the outer basins, are dominated by large horizontal water fluxes that transport carbon and any associated contaminants into the Baltic Sea. The results suggest that the near-land shallow marine basins have to be regarded as focal points for accumulation of radionuclides in the Simpevarp area, as they receive a comparatively large amount of carbon as discharge from terrestrial catchments, having a high NPP and a high detrital accumulation in sediments. These focal points may constitute a potential risk for exposure to humans in a future landscape as, due to post-glacial land uplift, previous accumulation bottoms are likely to be used for future agricultural purposes. PMID:17334057

  2. New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies. From charged particle density to jet quenching

    NASA Astrophysics Data System (ADS)

    Nouicer, R.

    2016-03-01

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements: high- pT hadron suppression, dijet fragment azimuthal correlations, and heavy-flavor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly interacting medium is created in central Au+Au collisions at sqrt{s_{NN}} = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from Au+Au at sqrt{s_{NN}} = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, η/s≈ 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p+A, d+ Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both

  3. A corresponding-state approach to quark-cluster matter

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Lai, Xiao-Yu; Xu, Ren-Xin

    2014-05-01

    The state of super-dense matter is essential for us to understand the nature of pulsars; however, non-perturbative quantum chromodynamics makes it very difficult to make direct calculations of the state of cold matter at realistic baryon number densities inside compact stars. Nevertheless, from an observational point of view, it is conjectured that pulsars could be made up of quark clusters since the strong coupling between quarks might render the quarks to be grouped in clusters. In this paper, we attempt to find an equation of state of condensed quark-cluster matter in a phenomenological way. Supposing that the quark-clusters could be analogized to inert gases, we apply here the corresponding-state approach to derive the equation of state of quark-cluster matter, as was similarly demonstrated for nuclear and neutron-star matter in the 1970s. According to the calculations that we have presented, the quark-cluster stars, which are composed of quark-cluster matter, could have a high maximum mass that is consistent with observations and, in turn, further observations of pulsar mass could also place a constraint on the properties of quark-cluster matter. We will also briefly discuss the melting heat during the solid-liquid phase conversion and its related astrophysical consequences.

  4. Scale-invariant hidden local symmetry, topology change, and dense baryonic matter

    NASA Astrophysics Data System (ADS)

    Paeng, Won-Gi; Kuo, Thomas T. S.; Lee, Hyun Kyu; Rho, Mannque

    2016-05-01

    When scale symmetry is implemented into hidden local symmetry in low-energy strong interactions to arrive at a scale-invariant hidden local symmetric (HLS) theory, the scalar f0(500 ) may be interpreted as pseudo-Nambu-Goldstone (pNG) boson, i.e., dilaton, of spontaneously broken scale invariance, joining the pseudoscalar pNG bosons π and the matter fields V =(ρ ,ω ) as relevant degrees of freedom. Implementing the skyrmion-half-skyrmion transition predicted at large Nc in QCD at a density roughly twice the nuclear matter density found in the crystal simulation of dense skyrmion matter, we determine the intrinsically density-dependent "bare parameters" of the scale-invariant HLS Lagrangian matched to QCD at a matching scale ΛM. The resulting effective Lagrangian, with the parameters scaling with the density of the system, is applied to nuclear matter and dense baryonic matter relevant to massive compact stars by means of the double-decimation renormalization-group Vlow k formalism. We satisfactorily postdict the properties of normal nuclear matter and more significantly predict the equation of state of dense compact-star matter that quantitatively accounts for the presently available data coming from both the terrestrial and space laboratories. We interpret the resulting structure of compact-star matter as revealing how the combination of hidden-scale symmetry and hidden local symmetry manifests itself in compressed baryonic matter.

  5. Experimental realization of the Yang-Baxter Equation via NMR interferometry

    NASA Astrophysics Data System (ADS)

    Vind, F. Anvari; Foerster, A.; Oliveira, I. S.; Sarthour, R. S.; Soares-Pinto, D. O.; Souza, A. M.; Roditi, I.

    2016-02-01

    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.

  6. Experimental realization of the Yang-Baxter Equation via NMR interferometry.

    PubMed

    Vind, F Anvari; Foerster, A; Oliveira, I S; Sarthour, R S; Soares-Pinto, D O; Souza, A M; Roditi, I

    2016-01-01

    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation. PMID:26861686

  7. Experimental realization of the Yang-Baxter Equation via NMR interferometry

    PubMed Central

    Vind, F. Anvari; Foerster, A.; Oliveira, I. S.; Sarthour, R. S.; Soares-Pinto, D. O.; Souza, A. M.; Roditi, I.

    2016-01-01

    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation. PMID:26861686

  8. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGESBeta

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  9. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A. B.; Nygren, D.

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase o_ers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  10. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  11. The puzzles of dark matter searches

    SciTech Connect

    Khlopov, Maxim Yu.

    2010-06-23

    Positive results of dark matter searches in DAMA/NaI and DAMA/LIBRA experiments, being put together with negative results of other groups, imply nontrivial particle physics solutions for cosmological dark matter. Stable particles with charge -2 bind with primordial helium in O-helium 'atoms' (OHe), representing a specific Warmer than Cold nuclear-interacting form of dark matter. Slowed down in the terrestrial matter, OHe is elusive for direct methods of underground Dark matter detection like those used in CDMS experiment, but its reactions with nuclei can lead to annual variations of energy release in the interval of energy 2-6 keV in DAMA/NaI and DAMA/LIBRA experiments. Schrodinger equation for system of nucleus and OHe is considered and reduced to an equation of relative motion in a spherically symmetrical potential well, formed by the Yukawa tail of nuclear scalar isoscalar attraction potential, acting on He beyond the nucleus, and dipole Coulomb repulsion between the nucleus and OHe at distances from the nuclear surface, smaller than the size of OHe. The values of coupling strength and mass of meson, mediating scalar isoscalar nuclear potential, are rather uncertain. Within these uncertainties we find a narrow window of these parameters, at which the sodium and/or iodine nuclei have a few keV binding energy with OHe. The concentration of OHe in the matter of underground detectors is adjusted to the incoming flux of cosmic O-helium at the timescale less than few minutes. Therefore the rate of radiative capture of Na and/or I by OHe should experience annual modulations. Transitions to more energetic levels of Na+OHe (I+OHe) system imply tunneling through dipole Coulomb barrier that leads to suppression of annual modulation of events with MeV-tens MeV energy release in the correspondence with the results of DAMA experiments. The proposed explanation inevitably leads to prediction of abundance of anomalous Na (and/or I) corresponding to the signal, observed by DAMA

  12. The puzzles of dark matter searches

    NASA Astrophysics Data System (ADS)

    Khlopov, Maxim Yu.

    2010-06-01

    Positive results of dark matter searches in DAMA/NaI and DAMA/LIBRA experiments, being put together with negative results of other groups, imply nontrivial particle physics solutions for cosmological dark matter. Stable particles with charge -2 bind with primordial helium in O-helium ``atoms'' (OHe), representing a specific Warmer than Cold nuclear-interacting form of dark matter. Slowed down in the terrestrial matter, OHe is elusive for direct methods of underground Dark matter detection like those used in CDMS experiment, but its reactions with nuclei can lead to annual variations of energy release in the interval of energy 2-6 keV in DAMA/NaI and DAMA/LIBRA experiments. Schrodinger equation for system of nucleus and OHe is considered and reduced to an equation of relative motion in a spherically symmetrical potential well, formed by the Yukawa tail of nuclear scalar isoscalar attraction potential, acting on He beyond the nucleus, and dipole Coulomb repulsion between the nucleus and OHe at distances from the nuclear surface, smaller than the size of OHe. The values of coupling strength and mass of meson, mediating scalar isoscalar nuclear potential, are rather uncertain. Within these uncertainties we find a narrow window of these parameters, at which the sodium and/or iodine nuclei have a few keV binding energy with OHe. The concentration of OHe in the matter of underground detectors is adjusted to the incoming flux of cosmic O-helium at the timescale less than few minutes. Therefore the rate of radiative capture of Na and/or I by OHe should experience annual modulations. Transitions to more energetic levels of Na+OHe (I+OHe) system imply tunneling through dipole Coulomb barrier that leads to suppression of annual modulation of events with MeV-tens MeV energy release in the correspondence with the results of DAMA experiments. The proposed explanation inevitably leads to prediction of abundance of anomalous Na (and/or I) corresponding to the signal, observed by

  13. Using light emitted clusters as a probe of the symmetry energy in the nuclear equation of state

    NASA Astrophysics Data System (ADS)

    Youngs, Michael David

    The symmetry energy, and more specifically its density dependence, has been studied for quite some time from both a theoretical and experimental approach. In order to sufficiently constrain the symmetry energy, we need to experimentally measure observables sensitive to the symmetry energy within a reasonable uncertainty and compare those results to those of simulations of the same nuclear reactions. This dissertation aims to achieve both experimental measurements and compare them to the results of studies using the pBUU transport code. These studies using pBUU aim to find the sensitivity of different observables to different transport variables as well as the symmetry energy itself. Some of the predominant variables that have been investigated in this dissertation are the in-medium cross section between nucleons as well as the effect of cluster production. The specific observables upon which we report are the center of mass spectra of protons, neutrons, deuterons, tritons and finally 3He. In addition we investigate the n/p and t/3He single and double ratios which have been suggested as being sensitive to the symmetry energy. As an added check we also study the coalescence invariant n/p spectra and ratios. We also include a study of spectra for all charged particles up through mass A=4 emitted from reactions of 112Sn+112Sn and 124Sn+124Sn at both 50 and 120 MeV/A. The experiment to measure these reactions used the Large Area Silicon Strip Array to detect the charged particles and the MSU Miniball to detect charge particle multiplicity in order to select central collisions. Neutrons were also measured in this experiment using the Large Area Neutron Array along with two thin scintillators used as a start timer for the neutron walls and a charge particle veto to discern contamination in the neutron walls. The neutron analyses are not extensively reported in this dissertation as they were the focus of the dissertation of Daniel Coupland [1]. Finally, another

  14. Relativistic mean field model based on realistic nuclear forces

    SciTech Connect

    Hirose, S.; Serra, M.; Ring, P.; Otsuka, T.; Akaishi, Y.

    2007-02-15

    In order to predict properties of asymmetric nuclear matter, we construct a relativistic mean field (RMF) model consisting of one-meson exchange (OME) terms and point coupling (PC) terms. In order to determine the density dependent parameters of this model, we use properties of isospin symmetric nuclear matter in combination with the information on nucleon-nucleon scattering data, which are given in the form of the density dependent G-matrix derived from Brueckner calculations based on the Tamagaki potential. We show that the medium- and long-range components of this G-matrix can be described reasonably well by our effective OME interaction. In order to take into account the short-range part of the nucleon-nucleon interaction, which cannot be described well in this manner, a point coupling term is added. Its analytical form is taken from a model based on chiral perturbation theory. It contains only one additional parameter, which does not depend on the density. It is, together with the parameters of the OME potentials adjusted to the equation of state of symmetric nuclear matter. We apply this model for the investigation of asymmetric nuclear matter and find that the results for the symmetry energy as well as for the equation of state of pure neutron matter are in good agreement with either experimental data or with presently adopted theoretical predictions. In order to test the model at higher density, we use its equation of state for an investigation of properties of neutron stars.

  15. Thermal properties of supernova matter: The bulk homogeneous phase

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos; Muccioli, Brian; Prakash, Madappa; Lattimer, James M.

    2014-06-01

    We investigate the thermal properties of the potential model equation of state of Akmal, Pandharipande, and Ravenhall. This equation of state approximates the microscopic model calculations of Akmal and Pandharipande, which feature a neutral pion condensate. We treat the bulk homogeneous phase for isospin asymmetries ranging from symmetric nuclear matter to pure neutron matter and for temperatures and densities relevant for simulations of core-collapse supernovae, protoneutron stars, and neutron star mergers. Numerical results of the state variables are compared with those of a typical Skyrme energy density functional with similar properties at nuclear densities but which differ substantially at supranuclear densities. Analytical formulas, which are applicable to nonrelativistic potential models such as the equations of state we are considering, are derived for all state variables and their thermodynamic derivatives. A highlight of our work is its focus on thermal response functions in the degenerate and nondegenerate situations, which allow checks of the numerical calculations for arbitrary degeneracy. These functions are sensitive to the density-dependent effective masses of neutrons and protons, which determine the thermal properties in all regimes of degeneracy. We develop the "thermal asymmetry free energy" and establish its relation to the more commonly used nuclear symmetry energy. We also explore the role of the pion condensate at supranuclear densities and temperatures. Tables of matter properties as functions of baryon density, composition (i.e., proton fraction), and temperature are being produced which are suitable for use in astrophysical simulations of supernovae and neutron stars.

  16. Growth Points of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Faessler, Amand

    2002-01-01

    The XXVII. Mazurian Lakes School of Physics was mainly devoted to four different topics: (i) Medium modifications of the nucleon--nucleon interaction and the nucleon--nucleon cross-section, medium dependence of hadrons masses and the equation of state of nuclear matter studied in heavy ion collisions. (ii) Nuclear astrophysics with a special emphasis on cosmic ray's. (iii)New developments in neutrino physics. (iv) Future plans for the GSI in Darmstadt and the first results from RHIC in Brookhaven. I have to excuse, but I will due to time reasons not summarise the shorter evening seminars and I will only shortly mention the talks of this Saturday morning.

  17. Nuclear Energy Research Initiative Program (NERI) Quarterly Progress Report; New Design Equations for Swelling and Irradiation Creep in Generation IV Reactors

    SciTech Connect

    Wolfer, W G; Surh, M P; Garner, F A; Chrzan, D C; Schaldach, C; Sturgeon, J B

    2003-02-13

    The objectives of this research project are to significantly extend the theoretical foundation and the modeling of radiation-induced microstructural changes in structural materials used in Generation IV nuclear reactors, and to derive from these microstructure models the constitutive laws for void swelling, irradiation creep and stress-induced swelling, as well as changes in mechanical properties. The need for the proposed research is based on three major developments and advances over the past two decades. First, new experimental discoveries have been made on void swelling and irradiation creep which invalidate previous theoretical models and empirical constitutive laws for swelling and irradiation creep. Second, recent advances in computational methods and power make it now possible to model the complex processes of microstructure evolution over long-term neutron exposures. Third, it is now required that radiation-induced changes in structural materials over extended lifetimes be predicted and incorporated in the design of Generation IV reactors. Our approach to modeling and data analysis is a dual one in accord with both the objectives to simulate the evolution of the microstructure and to develop design equations for macroscopic properties. Validation of the models through data analysis is therefore carried out at both the microscopic and the macroscopic levels. For the microstructure models, we utilize the transmission electron microscopy results from steels irradiated in reactors and from model materials irradiated by neutrons as well as ion bombardments. The macroscopic constitutive laws will be tested and validated by analyzing density data, irradiation creep data, diameter changes of fuel elements, and post-irradiation tensile data. Validation of both microstructure models and macroscopic constitutive laws is a more stringent test of the internal consistency of the underlying science for radiation effects in structural materials for nuclear reactors.

  18. Cold-nuclear-matter effects on heavy-quark production in d+Au collisions at sqrt[S(NN)]=200 GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kinney, E; Kiss, A; Kistenev, E; Kleinjan, D; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S

    2012-12-14

    The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt[S(NN)]=200 GeV in the transverse-momentum range 0.85 ≤ p(T)(e) ≤ 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R(dA) at 1.5nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the π(0) and heavy-flavor-electron nuclear modification factors R(AA). PMID:23368311

  19. Particular Properties of Dense Supernova Matter

    NASA Astrophysics Data System (ADS)

    Takatsuka, T.; Nishizaki, S.; Hiura, J.

    1994-10-01

    Dense supernova matter composed of n, p, e-, e+, νe and bar{ν}e is investigated in detail by solving self-consistently a set of finite-temperature Hartree-Fock equations with an effective nucleon interaction. The effective interaction includes a phenomenological three-nucleon interaction to assure the saturation property of symmetric nuclear matter. Results of thermodynamic quantities and mixing ratios of respective components are analyzed and tabulated for wide region of density (ρ = (1 - 6)ρ0) and temperature (T = (10 - 40) MeV) by choosing the lepton fraction Yl = (0.3, 0.35, 0.4). We discuss particular properties of the matter such as the constancy of composition, the large proton fraction expressed by Yp =~ (2/3)Yl + 0.05 and the stiffened equation of state, and also discuss remarkable features of hot neutron stars at birth such as the fat density profile and the increasing temperature toward the center. It is shown that these features are caused essentially by the effects of neutrino trapping to generate the high and constant lepton fraction and isentropic nature, the effects which are absent in neutron star matter.

  20. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    DOEpatents

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  1. Solid state nuclear magnetic resonance spectroscopy in the evaluation of soil organic matter changes following thermal variations

    NASA Astrophysics Data System (ADS)

    de Pasquale, C.; Berns, A. E.; Kucerik, J.; Conte, P.; Alonzo, G.

    2009-04-01

    Soil organic matter (SOM) is an ubiquitous, complex material which is produced by the degradation of plant tissues and animal bodies. It is the major indicator of soil quality since it is directly involved in the maintenance of soil fertility, prevention of erosion and desert encroachment and provision of suitable environment for biological activity. Organic matter is an important driving force in environmental global change as it acts as both a source and sink of atmospheric carbon. However, SOM is subjected to rapid changes due to environmental transformations such as massive deforestations, fires, intensive land uses, temperature increases and so on. In the present work, a characterization of humic substances was done in order to obtain information about the transformation occurring to SOM as affected by temperature increases. For the first time variable temperature cross polarization magic angle spinning (CPMAS) 13C NMR spectroscopy was applied in combination with thermal analyses (TG and DSC) on environmentally relevant soil organic matter. The results show that the conformational changes occurring in humic substances as temperature is raised can be associated to melting of alkyl components connected with sublimation of some organic compounds. The simultaneous application of solid phase micro extraction GC-MS also allowed the identification of the components which were released by sublimation processes.

  2. 78 FR 29158 - In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... submit written comments was published in the Federal Register on February 20, 2013 (78 FR 11904). No... Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving Indirect Transfer of Control of Facility Operating Licenses I. ZionSolutions, LLC (ZS) is the licensee and owner of the...

  3. 77 FR 40914 - In the Matter of Indiana Michigan Power Company, D. C. Cook Nuclear Power Plant; Confirmatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... entities participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR... of Indiana Michigan Power Company, D. C. Cook Nuclear Power Plant; Confirmatory Order Modifying License (Effective Immediately) I Indiana Michigan Power Company (Licensee) is the holder of...

  4. 78 FR 28003 - In the Matter of Entergy Arkansas and Entergy Operations, Arkansas Nuclear One, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ...,'' was published in the Federal Register on January 3, 2013 (78 FR 328). No comments or hearing requests... the Director of the Office of Nuclear Reactor Regulation satisfactory documentary evidence that EAL... (Agencywide Documents Access and Management System (ADAMS) Accession No. ML13077A237), to reflect the...

  5. 75 FR 35846 - In the Matter of Babcock & Wilcox Nuclear Operations Group, Inc., Lynchburg, VA; Order Imposing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August 28... Civil Monetary Penalty I Babcock & Wilcox Nuclear Operations Group, Inc., (Licensee) is the holder of... Civil Penalty (Notice) was served upon the Licensee by letter dated February 23, 2010. The Notice...

  6. 78 FR 16894 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... notice that was published in the Federal Register (FR) on March 5, 2013 (78 FR 14361), regarding the....Bladey@nrc.gov . Correction In the FR of March 5, 2013, in FR Doc. 2013-05021, on page 14362, second... Proposed Internal Restructuring and Indirect Transfer of License; Correction AGENCY: Nuclear...

  7. Dynamics of fragment formation in the nuclear spinodal region

    SciTech Connect

    Baldo, M.; Burgio, G.F.; Rapisarda, A. )

    1995-01-01

    The Vlasov-Nordheim equation is solved numerically on a lattice for nuclear matter in two dimensions. We discuss the reliability of the model at normal density and then study the response of the system to small perturbations. We find deterministic chaos inside the spinodal zone where fragment formation occurs. We discuss in detail the dynamical features of this phenomenon in order to clarify the mechanisms leading to nuclear disassembly in heavy-ion collisions.

  8. High-sensitivity nuclear magnetic resonance at Giga-Pascal pressures: a new tool for probing electronic and chemical properties of condensed matter under extreme conditions.

    PubMed

    Meier, Thomas; Haase, Jürgen

    2014-01-01

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe. PMID:25350694

  9. 13C Nuclear Magnetic Resonance and Electron Paramagnetic Spectroscopic Comparison of Hydrophobic Acid, Transphilic Acid, and Reverse Osmosis May 2012 Isolates of Organic Matter from the Suwannee River

    PubMed Central

    Nwosu, Ugwumsinachi G.; Cook, Robert L.

    2015-01-01

    Abstract Dissolved organic matter (DOM) is found in most natural waters at concentrations low enough to make DOM isolation methodologies critical to full analytical characterization and preservation. During the last few decades, two major protocols have been developed for the extraction of DOM isolates from natural waters. These methods utilize XAD resins and reverse osmosis (RO). In this work, the hydrophobic acid (May 2012 HPOA) and transphilic acid (May 2012 TPIA) isolates from XAD-8 and XAD-4 resins, respectively, were compared with the RO (May 2012 RO) natural organic matter isolate of the Suwannee River water using 13C nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. 13C NMR analysis showed that the May 2012 RO isolate could be viewed as a hybrid of the more hydrophobic May 2012 HPOA isolate and more hydrophilic May 2012 TPIA isolate. The May 2012 HPOA isolate is shown to be higher in alkyl and aromatic moieties, while the May 2012 TPIA isolate is higher in O-alkyl moieties. EPR analysis revealed that the May 2012 TPIA and, in particular, May 2012 HPOA isolates had higher radical concentrations than the May 2012 RO isolate. It is postulated that some of the radical concentrations came from the use of base during the isolation procedures, especially in the XAD method. PMID:25565761

  10. Maximum pulsar mass, equation of state and structure of neutron-star cores

    NASA Astrophysics Data System (ADS)

    Haensel, P.; Zdunik, J. L.

    2016-01-01

    The structure of neutron stars is determined by the equation of state of dense matter in their interiors. Brief review of the equation of state from neutron star surface to its center is presented. Recent discovery of two two-solar-mass pulsars puts interesting constraints on the poorly known equation of state of neutron-star cores for densities greater than normal nuclear matter density. Namely, this equation of state has to be stiff enough to yield maximum allowable mass of neutron stars greater than two solar masses. There are many models of neutron stars cores involving exclusively nucleons that satisfy this constraint. However, for neutron-star models based on recent realistic baryon interaction, and allowing for the presence of hyperons, the hyperon softening of the equation of state yields maximum masses significantly lower than two solar masses. Proposed ways out from this ”hyperon puzzle” are presented. They require a very fine tuning of parameters of dense hadronic matter and quark matter models. Consequences for the mass-radius relation for neutron stars are illustrated. A summary of the present situation and possible perspectives/challenges, as well as possible observational tests, are given.

  11. Probing of compact baryonic configurations in nuclei in A(p,p¯)X reactions and antiproton formation length in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kiselev, Yu. T.; Sheinkman, V. A.; Akindinov, A. V.; Chumakov, M. M.; Martemyanov, A. N.; Smirnitsky, V. A.; Terekhov, Yu. V.; Paryev, E. Ya.

    2012-05-01

    Inclusive cross sections σA=Ed3σ(X,Pt2)/d3p of antiproton and negative pion production on Be, Al, Cu, and Ta targets hit by 10-GeV protons were measured at the laboratory angles of 10.5∘ and 59∘. Antiproton cross sections were obtained in both kinematically allowed and kinematically forbidden regions for antiproton production on a free nucleon. The antiproton cross-section ratio as a function of the longitudinal variable X exhibits three separate plateaus, which gives evidence for the existence of compact baryon configurations in nuclei—small-distance scaled objects of nuclear structure. The comparability of the measured cross-section ratios with those obtained in the inclusive electron scattering off nuclei suggests weak antiproton absorption in nuclei. Observed behavior of the cross-section ratios is interpreted in the framework of a model considering the hadron production as a fragmentation of quarks (antiquarks) into hadrons. It has been established that the antiproton formation length in nuclear matter can reach the magnitude of 4.5 fm.

  12. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    DOE PAGESBeta

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; et al

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression inmore » the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.« less

  13. Nuclear isoscaling and fair sampling

    NASA Astrophysics Data System (ADS)

    Lopez, Jorge

    2008-10-01

    The isoscaling phenomenon was first observed in nuclear multifragmentation experiments and has become a hot topic as it could provide a probe of the nuclear equation of state to understand nuclear matter at extreme condition of isospin such as in neutron stars. The present work studies isoscaling using 1) classical molecular dynamics simulations, 2) percolation and 3) probabilistic arguments, and determines that isoscaling is a general phenomenon that can exist independent of the nuclear reaction, and it is expected to occur in disassemblying systems with no more than fair sampling. In collaboration with Alan Davila, University of Texas at Austin; Claudio Dorso, Universidad de Buenos Aires; Carlos Hernandez, Universidad de Colima; Christian Escudero, University of Texas at El Paso; and Jorge Muñoz, CalTech.

  14. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    SciTech Connect

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-09-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M{sub Sun} progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star.

  15. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  16. The XENON100 Dark Matter Experiment: Design, Construction, Calibration and 2010 Search Results with Improved Measurement of the Scintillation Response of Liquid Xenon to Low-Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Plante, Guillaume

    An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to

  17. The equation of state at finite temperature: Structure and composition of protoneutron stars

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.; Baldo, M.; Chen, H.; Schulze, H.-J.

    2016-01-01

    We study the hadron-quark phase transition at finite temperature in the interior of protoneutron stars, combining the equation of state obtained within the Brueckner-Hartree-Fock approach for hadronic matter with the MIT bag and the Dyson-Schwinger models for quark matter. We discuss the dependence of the results on different nuclear three-body forces and on details of the quark model. We find that a maximum mass exceeding two solar masses can be obtained with a strong three-body force and suitable parameter values in the Dyson-Schwinger model.

  18. Nuclear Data Matters - The obvious case of a bad mixing ratio for 58Co

    SciTech Connect

    Hoffman, R. D.; Nesaraja, Caroline D.; Mattoon, Caleb

    2015-05-13

    We present results of modeled cross sections for neutron- and proton-induced reactions leading to the final product nucleus 58Co. In each case the gamma-cascade branching ratios given in the ENSDF database circa 2014 predict modeled nuclear cross sections leading to the ground and first excited metastable state that are incompatible with measured cross sections found in the NNDC experimental cross section database EXFOR. We show that exploring the uncertainty in the mixing ratio used to calculate the gamma-cascade branching ratios for the 53.15 keV 2nd excited state leads to changes in the predicted partial cross sections by amounts that give good agreement with measured data.

  19. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  20. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  1. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  2. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  3. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  4. Low Energy Nuclear Transmutation in Condensed Matter Induced by D2 Gas Permeation Through pd Complexes:. Correlation Between Deuterium Flux and Nuclear Products

    NASA Astrophysics Data System (ADS)

    Iwamura, Y.; Itoh, T.; Sakano, M.; Sakai, S.; Kuribayashi, S.

    2005-12-01

    Observations of low energy nuclear reactions induced by D2 gas permeation through Pd complexes (Pd/CaO/Pd) were presented at ICCF-91 and in a paper2 published in the Japanese Journal of Applied Physics. When Cs was added on the surface of a Pd complex, Pr emerged on the surface while Cs decreased after the Pd complex was subjected to D2 gas permeation. When Sr was added to the surface, Mo emerged while the Sr decreased after D2 gas permeation. The isotopic composition of the detected Mo was different from the natural abundance. In this paper, recent progress of our research is described. The detected Pr was confirmed by various methods such as TOF-SIMS, XANES, X-ray Fluorescence Spectrometry and ICP-MS. Analysis of the depth profile of Pr indicated that a very thin surface region up to 100 Å was the active transmutation zone. Many experimental results showed that the quantity of Pr was proportional to the deuterium flux through Pd complex. The cross-section of transmutation of Cs into Pr can be roughly estimated at 1 barn if we consider the deuterium flux as an ultra low energy deuteron beam.

  5. Nonrelativistic nucleon effective masses in nuclear matter: Brueckner-Hartree-Fock model versus relativistic Hartree-Fock model

    NASA Astrophysics Data System (ADS)

    Li, A.; Hu, J. N.; Shang, X. L.; Zuo, W.

    2016-01-01

    The density and isospin dependencies of nonrelativistic nucleon effective mass (mN*) are studied, which is a measure of the nonlocality of the single particle (s.p.) potential. It can be decoupled as the so-called k mass (mk*, i.e., the nonlocality in space) and E mass (mE*, i.e., the nonlocality in time). Both k mass and E mass are determined and compared by using the latest versions of the nonrelativistic Brueckner-Hartree-Fock (BHF) model and the relativistic Hartree-Fock (RHF) model. The latter is achieved based on the corresponding Schrödinger equivalent s.p. potential in a relativistic framework. We demonstrate the origins of different effective masses and discuss also their neutron-proton splitting in the asymmetric matter in different models. We find that the neutron-proton splittings of both the k mass and the E mass have the same asymmetry dependencies at the densities considered; namely, mk,n *>mk,p * and mE,p *>mE,n * . However, the resulting splittings of nucleon effective masses could have different asymmetry dependencies in these two models because they could be dominated either by the k mass (then we have mn*>mp* in the BHF model), or by the E mass (then we have mp*>mn* in the RHF model). The isospin splitting in the BHF model is more consistent with the recent analysis from the nucleon-nucleus-scattering data, while the small E mass mE* in the RHF case as a result of the missing ladder summation finally leads to an opposite splitting behavior.

  6. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    NASA Astrophysics Data System (ADS)

    Rogers, Forrest J.; Young, David A.

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.

  7. Warm and dense stellar matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Panda, P. K.; Providencia, C.

    2011-09-15

    We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino-free and neutrino-trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean-field nuclear model, including the possibility of hyperon formation, is considered. A density-dependent magnetic field with a magnitude of 10{sup 15} G at the surface and not more than 3x10{sup 18} G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that a hybrid protoneutron star will not evolve into a low-mass black hole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low-mass black hole.

  8. Teaching Equations.

    ERIC Educational Resources Information Center

    Nibbelink, William H.

    1990-01-01

    Proposed is a gradual transition from arithmetic to the idea of an equation with variables in the elementary grades. Vertical and horizontal formats of open sentences, the instructional sequence, vocabulary, and levels of understanding are discussed in this article. (KR)

  9. An intrinsically irreversible, neural-network-like approach to the Schrödinger equation and some results of application to drive nuclear synthesis research work

    SciTech Connect

    Abundo, Ugo

    2015-03-10

    An analogy is drawn among the irreversible evolution of a neural-network-based A.I., an information field associated to spacetime configurations and the behaviour of entities described by the Schrödinger equation.

  10. Set Equation Transformation System.

    Energy Science and Technology Software Center (ESTSC)

    2002-03-22

    Version 00 SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protectionmore » requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. Two auxiliary programs, SEP and FTD, are included. SEP performs the quantitative analysis of reduced Boolean equations (minimal cut sets) produced by SETS. The user can manipulate and evaluate the equations to find the probability of occurrence of any desired event and to produce an importance ranking of the terms and events in an equation. FTD is a fault tree drawing program which uses the proprietary ISSCO DISSPLA graphics software to produce an annotated drawing of a fault tree processed by SETS. The DISSPLA routines are not included.« less

  11. Reviews DVD: Nuclear Radiation Books: The Theoretical Minimum and Time Reborn Equipment: Cobra4 Data Logger Book: Stuff Matters Book: Hunting the Higgs Book: My Brief History Apps Web Watch

    NASA Astrophysics Data System (ADS)

    2014-01-01

    WE RECOMMEND Nuclear Radiation DVD is an excellent introduction to nuclear radiation WORTH A LOOK The Theoretical Minimum and Time Reborn Can mathematics be the key to reality? Cobra4 Data Logger Apparatus provides an extensive collection of sensors Stuff Matters Materials book deserves a wide readership Hunting the Higgs Higgs book a bit light on detail but good for visits to CERN My Brief History Hawking's book is readable but inconclusive APPS Using apps to help students visualize fields WEB WATCH Vintage film of Eric Laithwaite ... induction hobs as an example of electromagnetic induction ... the deconstruction of a CRO tube ... the Brocken spectre ... the Square Kilometre Array telescope

  12. Cold quark matter

    SciTech Connect

    Kurkela, Aleksi; Romatschke, Paul; Vuorinen, Aleksi

    2010-05-15

    We perform an O({alpha}{sub s}{sup 2}) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further nonperturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in (slowly rotating) compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M{approx}2M{sub {center_dot},} in agreement with current observations. For strange stars, we find maximal masses of M{approx}2.75M{sub {center_dot}}and conclude that confirmed observations of compact stars with M>2M{sub {center_dot}}would strongly favor the existence of stable strange quark matter.

  13. Influence of strange matter admixtures on macroscopic properties of neutron stars

    SciTech Connect

    Urbanec, M.; Stuchlik, Z.; Betak, E.

    2011-10-28

    We used the equations of state (EoS) of dense nuclear matter to construct the macroscopic properties of neutron stars and test them using available observational results. The Dirac-Brueckner-Hartree-Fock mean field calculations approximated by their parameterized form are the basis of our calculations for the star interior. We calculated the central pressure, density, radius and mass both without and with allowance for hyperons, and compared these results with astronomical observations.

  14. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  15. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  16. Integral equation model for warm and hot dense mixtures.

    PubMed

    Starrett, C E; Saumon, D; Daligault, J; Hamel, S

    2014-09-01

    In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant. PMID:25314550

  17. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  18. Quark matter and fermionic dark matter compact stars

    NASA Astrophysics Data System (ADS)

    Samanta, Chhanda; Mukhopadhyay, Somenath; Basu, Devasish Narayan

    2016-03-01

    Compact stars, made of quark matter and fermionic dark matter with arbitrary masses and interaction strengths, are studied by solving the Tolman-Oppenheimer-Volkoff equation of general relativity. The mass-radius relation for quark matter compact stars is obtained from the MIT bag model equation of state (EoS) with thin crust for different bag constants. The EoS of non-self-annihilating dark matter for an interacting Fermi gas with dark matter particle of 1-100 GeV mass is studied. For sufficiently strong interactions, the maximum stable mass of compact stars and its radius are controlled by the parameter of the interaction, both increasing linearly with the interaction strength. The mass-radius relation for compact stars made of strongly interacting fermions shows that the radius remains approximately constant for a wide range of compact stars.

  19. Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2015-07-01

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0=0.16 fm-3 . Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of 7.18 ±2.52 MeV. Such a large quartic term has broad ramifications in determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and neutron stars.

  20. Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d + Au collisions at √sNN = 200  GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, A; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S

    2014-06-27

    The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6  GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at √sNN = 200  GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d + Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter. PMID:25014805

  1. Beautiful equations

    NASA Astrophysics Data System (ADS)

    Viljamaa, Panu; Jacobs, J. Richard; Chris; JamesHyman; Halma, Matthew; EricNolan; Coxon, Paul

    2014-07-01

    In reply to a Physics World infographic (part of which is given above) about a study showing that Euler's equation was deemed most beautiful by a group of mathematicians who had been hooked up to a functional magnetic-resonance image (fMRI) machine while viewing mathematical expressions (14 May, http://ow.ly/xHUFi).

  2. Quark matter or new particles?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  3. Influence of the σ-ω meson interaction on neutron star matter

    NASA Astrophysics Data System (ADS)

    Shao, Guo-Yun; Liu, Yu-Xin

    2009-02-01

    Relativistic mean field theory with nonlinear scalar self-interaction and isoscalar scalar-vector cross-interaction is used to study the properties of neutron star matter in β equilibrium with and without hyperons. The influence of σ-ω meson cross-interaction on the properties of neutron star matter and the mass-radius relation of neutron stars is examined with attractive and repulsive Σ potential, respectively. The calculated result indicates that the cross-interaction softens the equation of state (EOS) of nuclear (hadronic) matter and reduces the maximum mass of neutron stars. It also decreases the densities for hyperonization to occur and lowers the center density of neutron stars. The increase of the cross-interaction strength enhances the softening effect of hyperons on the EOS. Meanwhile the repulsive Σ potential stiffens slightly the EOS and influences obviously the composition of neutron star matter.

  4. Constraining the equation of state of neutron stars from binary mergers.

    PubMed

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered. PMID:25215972

  5. CHIRAL MODEL FOR DENSE, HOT AND STRANGE HADRONIC MATTER

    SciTech Connect

    ZSCHIESCHE,D.; PAPAZOGLOU,P.; BECKMANN,C.W.; SCHRAMM,S.; SCHAFFNER-BIELICH,J.; STOCKER,H.; GREINER,W.

    1999-06-10

    Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One successfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models, where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting effective models. It has been shown that effective {sigma}-{omega}-models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] the authors have shown that an extended SU(3) x SU(3) chiral {sigma}-{omega} model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here they discuss the predictions of this model for dense, hot, and strange hadronic matter.

  6. Marcus equation

    DOE R&D Accomplishments Database

    1998-09-21

    In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.

  7. Marcus equation

    SciTech Connect

    1998-11-01

    In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.

  8. Heavy Ion Collisions and Tests of the Supernova Equation of State

    NASA Astrophysics Data System (ADS)

    Hagel, K.; Hempel, M.; Natowitz, J. B.; Röpke, G.; Typel, S.; Wuenschel, S.; Wada, R.; Barbui, M.; Schmidt, K.

    2015-10-01

    Understanding the evolution of core-collapse supernovae and the properties of the neutrinosphere requires systematic information on the properties of nuclear matter at a wide range of densities and temperatures. Central collisions in heavy ion reactions at intermediate energies produce nuclear matter on a microscopic scale that has a wide range of density and temperature and thus provide the possibility of probing conditions similar to those of core-collapse supernovae. Hot early reaction stage sources in violent collisions of heavy ion reactions, denoted as femtonovae, are identified and analyzed in the context of a coalescence model. The analysis yields various quantities indicate that temperature and density similar to those near the neutrinosphere are achieved. These results from these analyses are compared to the results of various supernovae simulations and thus provide insight into the supernova equation of state and thus indicate which ingredients in the simulations are important.

  9. Explicit integration of Friedmann's equation with nonlinear equations of state

    NASA Astrophysics Data System (ADS)

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong

    2015-05-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.

  10. Complete equation of state for neutron stars using the relativistic Hartree-Fock approximation

    SciTech Connect

    Miyatsu, Tsuyoshi; Cheoun, Myung-Ki; Yamamuro, Sachiko; Nakazato, Ken'ichiro

    2014-05-02

    We construct the equation of state in a wide-density range for neutron stars within relativistic Hartree-Fock approximation. The properties of uniform and nonuniform nuclear matter are studied consistently. The tensor couplings of vector mesons to baryons due to exchange contributions (Fock terms) are included, and the change of baryon internal structure in matter is also taken into account using the quark-meson coupling model. The Thomas-Fermi calculation is adopted to describe nonuniform matter, where the lattice of nuclei and the neutron drip out of nuclei are considered. Even if hyperons exist in the core of a neutron star, we obtain the maximum neutron-star mass of 1.95M{sub ⊙}, which is consistent with the recently observed massive pulsar, PSR J1614-2230. In addition, the strange vector (φ) meson also plays a important role in supporting a massive neutron star.

  11. Particulate Matter

    MedlinePlus

    ... Technology Laws & Regulations About EPA Contact Us Particulate Matter (PM) You are here: EPA Home Air & Radiation Six Common Pollutants Particulate Matter Announcements March 13, 2013 - An updated “Strategies ...

  12. Equation of state for neutron stars with hyperons using a variational method

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Hiyama, E.; Yamamoto, Y.; Takano, M.

    2016-03-01

    We investigate the effects of the odd-state part of bare Λ Λ interactions on the structure of neutron stars (NSs) by constructing equations of state (EOSs) for uniform nuclear matter containing Λ and Σ- hyperons with use of the cluster variational method. The isoscalar part of the Argonne v18 two-nucleon potential and the Urbana IX three-nucleon potential are employed as the interactions between nucleons, whereas, as the bare Λ N and even-state Λ Λ interactions, two-body central potentials that are determined so as to reproduce the experimental data on single- and double-Λ hypernuclei are adopted. In addition, the Σ-N interaction is constructed so as to reproduce the empirical single-particle potential of Σ- in symmetric nuclear matter. Since the odd-state part of the Λ Λ interaction is not known owing to lack of experimental data, we construct four EOSs of hyperonic nuclear matter, each with a different odd-state part of the Λ Λ interaction. The EOS obtained for NS matter becomes stiffer as the odd-state Λ Λ interaction becomes more repulsive, and correspondingly the maximum mass of NSs increases. It is interesting that the onset density of Σ- depends strongly on the repulsion of the odd-state Λ Λ interaction. Furthermore, we take into account the three-baryon repulsive force to obtain results that are consistent with observational data on heavy NSs.

  13. Langevin equation approach to reactor noise analysis: stochastic transport equation

    SciTech Connect

    Akcasu, A.Z. ); Stolle, A.M. )

    1993-01-01

    The application of the Langevin equation method to the study of fluctuations in the space- and velocity-dependent neutron density as well as in the detector outputs in nuclear reactors is presented. In this case, the Langevin equation is the stochastic linear neutron transport equation with a space- and velocity-dependent random neutron source, often referred to as the noise equivalent source (NES). The power spectral densities (PSDs) of the NESs in the transport equation, as well as in the accompanying detection rate equations, are obtained, and the cross- and auto-power spectral densities of the outputs of pairs of detectors are explicitly calculated. The transport-level expression for the R([omega]) ratio measured in the [sup 252]Cf source-driven noise analysis method is also derived. Finally, the implementation of the Langevin equation approach at different levels of approximation is discussed, and the stochastic one-speed transport and one-group P[sub 1] equations are derived by first integrating the stochastic transport equation over speed and then eliminating the angular dependence by a spherical harmonics expansion. By taking the large transport rate limit in the P[sub 1] description, the stochastic diffusion equation is obtained as well as the PSD of the NES in it. This procedure also leads directly to the stochastic Fick's law.

  14. Thermal effects in supernova matter

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos

    A crucial ingredient in simulations of core collapse supernova (SN) explosions is the equation of state (EOS) of nucleonic matter for densities extending from 10-7 fm-3 to 1 ffm-3, temperatures up to 50 MeV, and proton-to-baryon fraction in the range 0 to 1/2. SN explosions release 99% of the progenitor star's gravitational potential energy in the form of neutrinos and, additionally, they are responsible for populating the universe with elements heavier than 56Fe. Therefore, the importance of understanding this phenomenon cannot be overstated as it could shed light onto the underlying nuclear and neutrino physics. A realistic EOS of SN matter must incorporate the nucleon-nucleon interaction in a many-body environment. We treat this problem with a non-relativistic potential model as well as relativistic mean-field theoretical one. In the former approach, we employ the Skyrme-like Hamiltonian density constructed by Akmal, Pandharipande, and Ravenhall which takes into account the long scattering lengths of nucleons that determine the low density characteristics. In the latter, we use a Walecka-like Lagrangian density supplemented by non-linear interactions involving scalar, vector, and isovector meson exchanges, calibrated so that known properties of nuclear matter are reproduced. We focus on the bulk homogeneous phase and calculate its thermodynamic properties as functions of baryon density, temperature, and proton-to-baryon ratio. The exact numerical results are then compared to those in the degenerate and non-degenerate limits for which analytical formulae have been derived. We find that the two models bahave similarly for densities up to nuclear saturation but exhibit differences at higher densities most notably in the isospin susceptibilities, the chemical potentials, and the pressure. The importance of the correct momentum dependence in the single particle potential that fits optical potentials of nucleon-nucleus scattering was highlighted in the context of

  15. SETS. Set Equation Transformation System

    SciTech Connect

    Worrel, R.B.

    1992-01-13

    SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system.

  16. Centrality, Rapidity And Transverse-Momentum Dependence of Cold Nuclear Matter Effects on J/Psi Production in D Au, Cu Cu And Au Au Collisions at S(NN)**(1/2)

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2011-11-11

    We have carried out a wide study of Cold Nuclear Matter (CNM) effects on J/{Psi} = production in dAu, CuCu and AuAu collisions at {radical}s{sub NN} = 200 GeV. We have studied the effects of three different gluon-shadowing parameterizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/{Psi} is neglected as well as an exact kinematics for a 2 {yields} 2 process, namely g + g {yields} J/{psi} + g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its anti-shadowing peak, is systematically shifted toward larger rapidities in the 2 {yields} 2 kinematics, irrespective of which shadowing parameterization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of a 2 {yields} 2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of RCP in dAu collisions by the PHENIX collaboration.

  17. The Compressed Baryonic Matter Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Senger, Peter

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental

  18. Matter in general relativity

    NASA Technical Reports Server (NTRS)

    Ray, J. R.

    1982-01-01

    Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.

  19. Equations of motion in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.; Petrov, Alexander N.

    2015-06-01

    We make use of an effective field-theoretical approach to derive post-Newtonian equations of motion of hydrodynamical inhomogeneities in cosmology. The matter Lagrangian for the perturbed cosmological model includes dark matter, dark energy, and ordinary baryonic matter. The Lagrangian is expanded in an asymptotic Taylor series around a Friedmann-Lemaître-Robertson-Walker background. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the expansion series is gauge-invariant and all of them together form a basis for the successive post-Newtonian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Newtonian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background metric. Temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large-scale inhomogeneities of matter as those generated by the primordial cosmological perturbations in these two components with δρ/ρ ≤ 1. The small scale inhomogeneities are generated by the baryonic matter which is considered as a bare perturbation of the background gravitational field, dark matter and energy. Mathematically, the large scale structure inhomogeneities are given by the homogeneous solution of the post-Newtonian equations while the small scale inhomogeneities are described by a particular solution of these equations with the stress-energy tensor of the baryonic matter that admits δρ/ρ ≫ 1. We explicitly work out the field equations of the first post-Newtonian approximation in cosmology and derive the post-Newtonian equations of motion of the large and small scale inhomogeneities which generalize the covariant law of conservation of stress-energy-momentum tensor of matter in asymptotically-flat spacetime.

  20. Note on parallel processing techniques for algebraic equations, ordinary differential equations and partial differential equations

    SciTech Connect

    Allidina, A.Y.; Malinowski, K.; Singh, M.G.

    1982-12-01

    The possibilities were explored for enhancing parallelism in the simulation of systems described by algebraic equations, ordinary differential equations and partial differential equations. These techniques, using multiprocessors, were developed to speed up simulations, e.g. for nuclear accidents. Issues involved in their design included suitable approximations to bring the problem into a numerically manageable form and a numerical procedure to perform the computations necessary to solve the problem accurately. Parallel processing techniques used as simulation procedures, and a design of a simulation scheme and simulation procedure employing parallel computer facilities, were both considered.

  1. Properties of hyperonic matter in strong magnetic fields

    SciTech Connect

    Yue, P.; Yang, F.; Shen, H.

    2009-02-15

    We study the effects of strong magnetic fields on the properties of hyperonic matter. We employ the relativistic mean field theory, which is known to provide excellent descriptions of nuclear matter and finite nuclei. The two additional hidden-strangeness mesons, {sigma}* and {phi}, are taken into account, and some reasonable hyperon potentials are used to constrain the meson-hyperon couplings, which reflect the recent developments in hypernuclear physics. It is found that the effects of strong magnetic fields become significant only for magnetic field strength B>5x10{sup 18} G. The threshold densities of hyperons can be significantly altered by strong magnetic fields. The presence of hyperons makes the equation of state (EOS) softer than that in the case without hyperons, and the softening of the EOS becomes less pronounced with increasing magnetic field strength.

  2. Microscopically constrained mean-field models from chiral nuclear thermodynamics

    NASA Astrophysics Data System (ADS)

    Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.

    2016-06-01

    We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.

  3. New spectral features from bound dark matter

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  4. Dark Matters

    ScienceCinema

    Joseph Silk

    2010-01-08

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  5. Dark Matters

    SciTech Connect

    Joseph Silk

    2009-09-23

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  6. Dark matters

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    The observational evidence for dark matter in the universe is reviewed. Constraints on the baryon density from primordial nucleosynthesis are presented and compared to the dynamical estimates of the mass on various scales. Baryons can account for the observed luminous mass as well as some, perhaps most, of the 'observed' dark mass. However if, as inflation/naturalness suggest, the total density of the universe is equal to the critical density, then nonbaryonic dark matter is required. The assets and liabilities of, as well as the candidates for, hot and cold dark matter are outlined. At present, there is no completely satisfactory candidate for nonbaryonic dark matter.

  7. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  8. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect

    Catena, Riccardo

    2015-07-20

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  9. Entropy, matter, and cosmology.

    PubMed

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  10. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  11. Imperfect Dark Matter

    NASA Astrophysics Data System (ADS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  12. Dark matter versus Mach's principle.

    NASA Astrophysics Data System (ADS)

    von Borzeszkowski, H.-H.; Treder, H.-J.

    1998-02-01

    Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.

  13. Neutrino Propagation in Dense Magnetized Matter

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2009-01-01

    We obtained a complete system of solutions of the Dirac-Pauli equation for a massive neutrino interacting with dense matter and strong electromagnetic field. We demonstrated that these solutions can describe precession of the neutrino spin.

  14. Dark Matter, Waves, and Identification

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2011-10-01

    In 1994 I wrote article for Physics Essays (Waves in Dark Matter) showing how the solar system is organized and stabilized by dark matter standing waves from the dark matter oscillating sun. Wave velocity is apparently inversely proportional to the square root of the dark matter density. At the sun's surface the wave velocity is near 1.25 m/s. More recently I have found local dark matter waves that appear to travel near 25 m/s near April 1 and appear to organize plants. They travel between plants and artificial transmitters and receivers, and penetrate my local hill. From my measurements the local dark matter density is a function of the time of year. The data indicate that dark matter interacts much more than just with gravity as others have surmised. I present experimental proofs and a local dark matter density equation in terms of the measured velocity. The waves and the earth's location may be very important for nature's organization. The observed behavior appears to go a long way towards dark matter identification. These waves also may explain the rings of the gaseous planets in terms of oscillating layers. See the ring article on the web site Darkmatterwaves.com.

  15. Aspects of the momentum dependence of the equation of state and of the residual N N cross section, and their effects on nuclear stopping

    NASA Astrophysics Data System (ADS)

    Basrak, Z.; Eudes, P.; de la Mota, V.

    2016-05-01

    With the semiclassical Landau-Vlasov transport model we studied the stopping observable RE, the energy-based isotropy ratio, for the 129Xe+120Sn reaction at beam energies spanning 12 A to 100 A MeV. We investigated the impacts of the nonlocality of the nuclear mean field, of the in-medium modified nucleon-nucleon (N N ) cross section, and of the reaction centrality. A fixed set of model parameters yields RE values that favorably compare with the experimental ones, but only for energies below the Fermi energy EF. Above EF agreement is readily possible, but by a smooth evolution with energy of the parameter that controls the in-medium modification of N N cross section. By comparing the simulation correction factor F applied to the free N N cross section with the one deduced from experimental data [Phys. Rev. C 90, 064602 (2014), 10.1103/PhysRevC.90.064602], we infer that the zero-range mean field almost entirely reproduces it. Also, in accordance with what has been deduced from experimental data, around EF a strong reduction of the free N N cross section is found. In order to test the impact of sampling central collisions by multiplicity, an event generator (hipse) was used. We obtain that high multiplicity events are spread over a broad impact parameter range, but it turns out that this has a small effect on the observable RE and, thus, on F as well.

  16. What the Sun Has Taught Us About Basic Properties of Matter

    SciTech Connect

    Basu, Sarbani

    2012-03-07

    The Sun is an immensely large object formed out of many tons of gas. Yet the Sun can help us learn about some of the basic properties of matter. The structure of the Sun is governed not only by macrophysics such as hydrostatic equilibrium, convective and radiative heat transport, but also by microphysics such as nuclear reaction rates and the equation of state of the material that forms the Sun. Knowledge of the detailed structure of the Sun can therefore help us constrain the basic properties of matter. Helioseismology, the study of solar pulsations, has given us the means to get a detailed picture of the solar interior. In this talk I shall discuss how helioseismology has allowed us to determine details of solar structure, and in turn allowing us to study basic properties of matter.

  17. Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-04-01

    [This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  18. Dark-matter admixed neutron stars

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2011-11-01

    We study the hydrostatic equilibrium configuration of an admixture of degenerate dark matter and normal nuclear matter by using a general relativistic two-fluid formalism. We consider non-self-annihilating dark matter particles of mass ˜1GeV. The mass-radius relations and moments of inertia of these dark-matter admixed neutron stars are investigated and the stability of these stars is demonstrated by performing a radial perturbation analysis. We find a new class of compact stars which consists of a small normal matter core with radius of a few kilometers embedded in a ten-kilometer-sized dark matter halo. These stellar objects may be observed as extraordinarily small neutron stars that are incompatible with realistic nuclear matter models.

  19. Density-Dependent Relations among Properties of Hadronic Matter and Applications to Hadron-Quark Stars

    SciTech Connect

    Uechi, Hiroshi; Uechi, Schun T.

    2011-05-06

    Density-dependent relations among the saturation properties of symmetric nuclear matter and hyperonic matter, and properties of hadron-(strange) quark stars are shown by applying the conserving nonlinear {sigma}-{omega}-{rho} hadronic mean-field theory. Nonlinear interactions are renormalized self-consistently as effective coupling constants, effective masses, and sources of equations of motion by maintaining thermodynamic consistency to the mean-field approximation. Effective masses and coupling constants at the saturation point of symmetric nuclear matter simultaneously determine the binding energy and saturation properties of hyperonic matter. The coupling constants expected from the hadronic mean-field model and SU(6) quark model for the vector coupling constants are compared by calculating masses of hadron-quark neutron stars. The nonlinear {sigma}-{omega}-{rho} mean-field approximation with vacuum fluctuation corrections and strange quark matter defined by the MIT-bag model were employed to examine properties of hadron-(strange) quark stars. We found that hadron-(strange) quark stars become more stable at high densities compared to pure hadronic and strange quark stars.

  20. Entanglement interaction and the phase diagram of strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Tang, Z. D.; Di Toro, M.; Colonna, M.; Gao, X. Y.; Gao, N.; Zhao, Y. L.

    2015-12-01

    The entanglement interactions between the Polyakov loop and chiral condensate have been recently studied in the entangled Polyakov-loop Nambu-Jona-Lasinio model (EPNJL). The calculation shows that such an interaction plays an important role in the pseudocritical temperatures of deconfinement and chiral symmetry restoration. As a further study, here we construct a hadron-quark two-equation-of-state (two-EoS) model, based on the Walecka-quantum hadrodynamics and the EPNJL pictures, in order to study the equilibrium transition between hadronic and quark matter in heavy-ion collisions at finite densities and temperatures. We can explore the phase diagram of strongly interacting matter and the transition boundaries from nuclear to quark matter. We discuss the influence of the entanglement interaction on the critical point of the expected first-order phase transition in the two-EoS model. In particular, for charge asymmetric matter, we analyze the local asymmetry of the u , d quarks as a function of quark concentration in the hadron-quark mixed phase during the phase transition. We finally propose some related observables that are possibly measurable in heavy-ion collision experiments.