Science.gov

Sample records for nuclear medicine progress

  1. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  2. Converting energy to medical progress [nuclear medicine

    SciTech Connect

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  3. Nuclear Medicine

    MedlinePLUS

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  4. Nuclear Medicine

    MedlinePLUS

    ... for Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive ... NIBIB-funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that ...

  5. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  6. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Annual technical progress report, [1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologies who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second year has been on measurements of (1) chromosome aberrations in patients imaged with thallium-201, (2) mutant frequencies in patients imaged with technetium-99, (3) mutant frequencies in nuclear medicine technicians and physical therapists, (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described.

  7. Nuclear medicine

    SciTech Connect

    Wagner, H.N. Jr.

    1986-10-17

    In 1985 and 1986 nuclear medicine became more and more oriented toward in vov chemistry, chiefly as a result of advances in positron emission tomography (PET). The most important trend was the extension of PET technology into the care of patients with brain tumors, epilepsy, and heart disease. A second trend was the increasing use of single-photon emission computed tomography (SPECT).

  8. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation). Progress report, January 15, 1992--January 14, 1993

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ``Instrumentation and Quantitative Methods of Evaluation.`` Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  9. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine]. Technical progress report

    SciTech Connect

    Not Available

    1989-12-31

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides.

  10. Nuclear Medicine Program progress report for quarter ending June 30, 1993

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; Hsieh, B.T.; McPherson, D.W.; Mirzadeh, S.; Lambert, C.R.

    1993-07-01

    The ``IQNP`` agent is an antagonist for the cholinergic-muscarinic receptor. Since the IQNP molecule has two asymmetric centers and either cis or trans isomerism of the vinyl iodide, there are eight possible isomeric combinations. In this report, the systematic synthesis, purification and animal testing of several isomers of radioiodinated ``IQNP`` are reported. A dramatic and unexpected relation between the absolute configuration at the two asymmetric centers and the stereochemistry of the vinyl iodide on receptor specificity was observed. The E-(R)(R) isomer shows specific and significant localization (per cent dose/gram at 6 hours) in receptor-rich cerebral structures (i.e. Cortex = 1.38 + 0.31; Striatum = 1.22 + 0.20) and low uptake in tissues rich in the M{sub 2} subtype (Heart = 0.10; Cerebellum = 0.04). In contrast, the E-(R)(S) isomer shows very low receptor-specific uptake (Cortex = 0.04; Striatum = 0.02), demonstrating the importance of absolute configuration at the acetate center. An unexpected and important observation is that the stereochemistry of the vinyl iodine appears to affect receptor subtype specificity, since the Z-(R,S)(R) isomer shows much higher uptake in the heart (0.56 + 0.12) and cerebellum (0.17 + 0.04). Studies are now in progress to confirm these exciting results in vitro. Progress has also continued during this period with several collaborative programs. The first large-scale clinical tungsten-188/rhenium-188 generator prototype (500 mCi) was fabricated and supplied to the Center for Molecular Medicine and Immunology (CMMI), in Newark, New Jersey, for Phase I clinical trials of rhenium-188-labeled anti CEA antibodies for patient treatment. Collaborative studies are also continuing in conjunction with the Nuclear Medicine Department at the University of Massachusetts where a generator is in use to compare the biological properties of {open_quotes}direct{close_quotes} and {open_quotes}indirect{close_quotes} labeled antibodies.

  11. Nuclear medicine program progress report for quarter ending December 31, 1996

    SciTech Connect

    Knapp, F.F. Jr.; Beets, A.L.; Boll, R.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1997-03-20

    In this report the authors describe the use of an effective method for concentration of the rhenium-188 bolus and the results of the first Phase 1 clinical studies for bone pain palliation with rhenium-188 obtained from the tungsten-188/rhenium-188 generator. Initial studies with therapeutic levels of Re-188-HEDP at the Clinic for Nuclear Medicine at the University of Bonn, Germany, have demonstrated the expected good metastatic uptake of Re-188-HEDP in four patients who presented with skeletal metastases from disseminated prostatic cancer with good pain palliation and minimal marrow suppression. In addition, skeletal metastatic targeting of tracer doses of Re-188(V)-DMSA has been evaluated in several patients with metastases from prostatic cancer at the Department of Nuclear Medicine at the Canterbury and Kent Hospital in Canterbury, England. In this report the authors also describe further studies with the E-(R,R)-IQNP ligand developed in the ORNL Nuclear Medicine Program as a potential imaging agent for detection of changes which may occur in the cerebral muscarinic-cholinergic receptors (mAChR) in Alzheimer`s and other diseases.

  12. New imaging systems in nuclear medicine. Technical progress report, January 1, 1985-November 1, 1985

    SciTech Connect

    Brownell, G.L.

    1985-01-01

    Developments of improved imaging systems in nuclear medicine are reported with emphasis on development of positron emission tomographs that combine high resolution, with high sensitivity and high count rate capability. A second generation cylindrical analog positron camera design has provided excellent light collection with limited light spread, characteristics needed for high spatial and temporal resolution. Other aspects of the camera development include the design of associated electronics, and provision for data storage and processing. Utilizing the above camera basic studies have been performed to evaluate blood flow in the cat brain stem during auditory stimulation, ventilation in the dog using /sup 13/N and blood flow in the canine heart. 2 refs., 2 figs.

  13. Nuclear medicine program progress report for quarter ending September 30, 1993

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; Luo, H.; McPherson, D.W.; Mirzadeh, S.; Lambert, C.R.; Hsieh, B.T.

    1994-01-01

    Processing of enriched tungsten-186 oxide targets after long irradiations (> 2 cycles) in the ORNL High Flux Isotope Reactor (HFIR) has resulted in specific activities significantly lower than the theoretical values, with the concomitant formation of varying amounts of highly radioactive black insoluble material to total tungsten-188 yield, 5% sodium hypochlorite solution has been found to dissolve this black material. Yields for longer irradiation periods (> 2 cycles) have nearly doubled. As an alternative, more simple approach, enriched tungsten-186 metallic targets have also now been irradiated. Following irradiation, these targets were dissolved in hydrogen peroxide/NaOH solution with no evidence of any residual black insoluble material remaining. Yields for a 2-cycle (e.g. 42 days) HFIR irradiation have thus now significantly increased, for example, from 5--6 mCi {sup 188}W/mg of {sup 186}W, to 10 mCi/mg (43 days) and 12.9 mCi/mg (53 days). Large clinical scale (< 1 Ci) generators fabricated from tungsten-188 prepared from such metal targets have exhibited the expected high {sup 188}Re yield and low {sup 188}W breakthrough. Also during this period, a systematic evaluation of the production yields of a number of radioisotopes of current interest in nuclear medicine were evaluated by irradiation of targets in the Hydraulic Tube Facility (HT) of the ORNL High Flux Isotope Reactor (HFIR). Small samples were irradiated for short periods, and the radioactive contents of the sealed sources then analyzed by gamma spectroscopy.

  14. Technologists for Nuclear Medicine

    ERIC Educational Resources Information Center

    Barnett, Huey D.

    1974-01-01

    Physicians need support personnel for work with radioisotopes in diagnosing dangerous diseases. The Nuclear Medicine Technology (NMT) Program at Hillsborough Community College in Tampa, Florida, is described. (MW)

  15. Nuclear medicine program progress report for quarter ending September 30, 1995

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1995-12-31

    In this report, we describe the results for study of the production of lutetium-177 ({sup 177}Lu) in the High Flux Isotope Reactor (HFIR). Two pathways for production of {sup 177}Lu were studied which involved both direct neutron capture on enriched {sup 176}Lu, {sup 176}Lu (n,{gamma}){sup 177}Lu, reaction and by decay of ytterbium-177 ({sup 177}Yb) produced by the {sup 176}Yb(n,{gamma}){sup 177}Yb ({beta}{sup {minus}} {sup {yields}}) reaction. Although the direct route is more straight forward and does not involve any separation steps, the indirect method via {beta}{sup {minus}}-decay of {sup 177}Yb has the advantage of providing carrier-free {sup 177}Lu, which would be required for antibody radiolabeling and other applications where very high specific activity is required.Substrates required for preparation of tissue-specific agents and several radioisotopes were also provided during this period through several Medical Cooperative Programs. These include the substrate for preparation of the ``BMIPP`` cardiac imaging which was developed in the ORNL Nuclear Medicine Program, which was provided to Dr. A. Giodamo, M.D. and colleagues at the Catholic University Hospital in Rome, Italy. Tungsten-188 produced in the ORNL HFIR was also provided to the Catholic University Hospital for fabrication of a tungsten-188/rhenium-188 generator to provide carrier-free rhenium-188 which will be used for preparation of rhenium-188 labeled methylenediphosphonate (MDP) for initial clinical evaluation for palliative treatment of bone pain (L. Troncone, M.D.). Samples of substrates for preparation of the new ORNL ``IQNP`` agent for imaging of muscarinic-cholinergic receptors were provided to the Karolinska Institute in Stockholm, Sweden, for preparation of radioiodinated IQNP for initial imaging studies with this new agent in monkeys and for tissue binding studies with human brain samples obtained from autopsy (C. Halldin, Ph.D.).

  16. Nuclear Medicine Program progress report for quarter ending September 30, 1991

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1992-02-01

    Rat tissue distribution properties of IQNP,'' a new radioiodinated cholinergic-muscarinic receptor antagonist, are described. IQNP is the acronym for 1-azabicyclo(2.2.2)oct-3-yl {alpha}-hydroxy-{alpha}-phenyl-{alpha}(1-iodo-1-propen-3-yl) acetate, which is an analogue of the QNB muscarinic antagonist in which the p-iodophenyl moiety has been replaced with the 1-iodo-1-propen-3-yl moiety. The radioiodinated IQNP analogue is easier to prepare in much higher yields than QNB and is thus a candidate for the evaluation of muscarinic receptors by external imaging techniques. Studies in rats demonstrated that IQNP shows high uptake in those cerebral regions rich in muscarinic receptors QNB-treatment of rats either 1 h before (pre) or 2 h after (post) administration of radioiodinated IQNP resulted in significant displacement or blocking of cerebral specific IQNP uptake (% dose/gm) in the cortex and striatum. These studies demonstrate that IQNP has specificity for the cholinergic-muscarinic receptor and is a good candidate for further studies. Also during this period, several agents developed in the ORNL Nuclear Medicine Program were supplied to Medical Cooperative Programs for collaborative studies including the iodine-125-labeled BMIPP and DMIPP fatty acid analogues and the IPM antibody labeling agent. Tin-117m and gold-199 were produced in the ORNL High Flux Isotope Reactor (HFIR) and supplied to the OHER-supported program in the Medical Department at Brookhaven National Laboratory to aid in their research until the re-start of the High Flux Brookhaven Reactor.

  17. Nuclear Medicine Program progress report for quarter ending September 30, 1991

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1992-02-01

    Rat tissue distribution properties of ``IQNP,`` a new radioiodinated cholinergic-muscarinic receptor antagonist, are described. IQNP is the acronym for 1-azabicyclo[2.2.2]oct-3-yl {alpha}-hydroxy-{alpha}-phenyl-{alpha}(1-iodo-1-propen-3-yl) acetate, which is an analogue of the QNB muscarinic antagonist in which the p-iodophenyl moiety has been replaced with the 1-iodo-1-propen-3-yl moiety. The radioiodinated IQNP analogue is easier to prepare in much higher yields than QNB and is thus a candidate for the evaluation of muscarinic receptors by external imaging techniques. Studies in rats demonstrated that IQNP shows high uptake in those cerebral regions rich in muscarinic receptors QNB-treatment of rats either 1 h before (pre) or 2 h after (post) administration of radioiodinated IQNP resulted in significant displacement or blocking of cerebral specific IQNP uptake (% dose/gm) in the cortex and striatum. These studies demonstrate that IQNP has specificity for the cholinergic-muscarinic receptor and is a good candidate for further studies. Also during this period, several agents developed in the ORNL Nuclear Medicine Program were supplied to Medical Cooperative Programs for collaborative studies including the iodine-125-labeled BMIPP and DMIPP fatty acid analogues and the IPM antibody labeling agent. Tin-117m and gold-199 were produced in the ORNL High Flux Isotope Reactor (HFIR) and supplied to the OHER-supported program in the Medical Department at Brookhaven National Laboratory to aid in their research until the re-start of the High Flux Brookhaven Reactor.

  18. Nuclear Medicine Annual, 1989

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine.

  19. Revolution and progress in medicine.

    PubMed

    Goodwin, William

    2015-02-01

    This paper adapts Kuhn's conceptual framework to developmental episodes in the theory and practice of medicine. Previous attempts to understand the reception of Ignaz Semmelweis's work on puerperal fever in Kuhnian terms are used as a starting point. The author identifies some limitations of these attempts and proposes a new way of understanding the core Kuhnian notions of "paradigm," "progress," and "revolution" in the context of a socially embedded technoscience such as medicine. PMID:25663051

  20. Nuclear Medicine Program progress report for quarter ending June 30, 1991

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1991-09-01

    In this report the excitation functions for production of gallium-66 via {alpha}-induced nuclear reactions on enriched zinc-66 have been measured with E{sub {alpha}}{le}27.3 Mev and E{sub {alpha}}{le}43.7 MeV employing the stack thin-target technique. In addition, the induced activity of gallium-67 in the same sets of targets allowed an evaluation of the excitation functions of the corresponding nuclear reactions. These preliminary studies have demonstrated that sufficient levels of gallium-66 can be produced by {alpha}-induced reactions on enriched zinc targets. A series of radioiodinated analogues of 1-azabicyclo(2.2.2)oct-3-yl {alpha}-hydroxy-{alpha}, {alpha}-diphenylacetate (QNB) have been prepared. These new analogues include 1-azabicyclo-(2.2.2)oct-3-yl{alpha}-hydroxy-{alpha}-(4-iodophenyl)-{alpha}-methylacetate(2,I-WNA), 1-azabicyclo(2.2.2)oct-3-yl (3-iodo)-xanthene-9-carboxylate (3,I-QNX), and 1-azabicyclo(2.2.2)oct-3-yl {alpha}-hydroxy-{alpha}-(E-1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (4,I-QNP), which have also been radiolabeled with iodine-125 with high specific activity. The biodistribution, brain uptake, and receptor specificity of these new analogues are currently being studied. Shipments of radioactive agents made to collaborators during this period included. One shipment of iodine-125-labeled 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) and tungsten-188/rhenium-188 generator. 16 refs., 7 figs., 1 tab.

  1. Evaluative studies in nuclear medicine research. Progress report, October 1, 1979-June 30, 1980

    SciTech Connect

    Potchen, E.J.

    1980-07-01

    Effort since the last progress report (September 1979) has been directed toward assessing the potential short and long term benefits of continued development and application and medical research of emission computed tomograhy (ECT). This report contains a review of existing ECT technology, including functional descriptions of current and proposed image systems, for both sngle-photon ECT (SPECT) and positron ECT (PECT) approaches. Medical research and clinical topics to which ECT has been, or may be, applied are presented. One such area of investigation involves the effects of stroke. The application of ECT to laboratory research, and to clinical diagnosis and prognosis, of stroke may result in improved management of the disease. An illustration of the potential savings in the cost of management of stroke due to the effects of applied ECT research is included. The results represent a compilation of data collected from conversations with, and conference presentations by, ECT users, researchers and image system designers, and from a review of the literature.

  2. Nuclear Medicine Program progress report for quarter ending September 30, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.

    1992-12-01

    The radioiodination and in vivo evaluation of p-iodocaramiphen a muscarinic antagonist which binds with high affinity to the M{sub 1} receptor subtype in vitro are described. Biodistribution studies in female Fischer rats demonstrated that [{sup 125}I]-piodocaraminphen had significant cerebral localization, but the uptake did not demonstrate specific uptake in those cerebral regions rich in muscarinic receptors, and radioactivity washed out rapidly from the brain. In addition there was no significant blockage of activity when the rats were preinjected with quinuclidinyl benzilate. These results suggest that p-iodocaramiphen is not a good candidate for the in vivo study of M{sub 1} muscarinic receptor populations by SPECT. Because of the widespread interest and expected importance of the availability of large amounts of tungsten-188 required for the tungsten-188/rhenium-188 generator systems, we have investigated the large-scale production of tungsten-188 in the ORNL HFIR. We have also compared our production data with the theoretical production values and with experimental data available in the literature from other reactors. Tungsten-188 is produced in a fission nuclear reactor by double neutron capture of tungsten-186. The experimental yield of tungsten-188 is approximately 4 mCi/mg of tungsten-186 at the end of bombardment (EOB) in the HFIR operating at 85 MWt power for a one cycle irradiation ({approximately}21 days) at a thermal neutron flux of 2 {times} 10{sup 15} n.s{sup {minus}1}cm{sup {minus}2}.

  3. Nuclear Medicine Program progress report for quarter ending September 30, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.

    1992-12-01

    The radioiodination and in vivo evaluation of p-iodocaramiphen a muscarinic antagonist which binds with high affinity to the M[sub 1] receptor subtype in vitro are described. Biodistribution studies in female Fischer rats demonstrated that [[sup 125]I]-piodocaraminphen had significant cerebral localization, but the uptake did not demonstrate specific uptake in those cerebral regions rich in muscarinic receptors, and radioactivity washed out rapidly from the brain. In addition there was no significant blockage of activity when the rats were preinjected with quinuclidinyl benzilate. These results suggest that p-iodocaramiphen is not a good candidate for the in vivo study of M[sub 1] muscarinic receptor populations by SPECT. Because of the widespread interest and expected importance of the availability of large amounts of tungsten-188 required for the tungsten-188/rhenium-188 generator systems, we have investigated the large-scale production of tungsten-188 in the ORNL HFIR. We have also compared our production data with the theoretical production values and with experimental data available in the literature from other reactors. Tungsten-188 is produced in a fission nuclear reactor by double neutron capture of tungsten-186. The experimental yield of tungsten-188 is approximately 4 mCi/mg of tungsten-186 at the end of bombardment (EOB) in the HFIR operating at 85 MWt power for a one cycle irradiation ([approximately]21 days) at a thermal neutron flux of 2 [times] 10[sup 15] n.s[sup [minus]1]cm[sup [minus]2].

  4. Pediatric nuclear medicine

    SciTech Connect

    Not Available

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  5. (Cardiology and nuclear medicine)

    SciTech Connect

    Knapp, F.F. Jr.

    1988-10-27

    The traveler was invited to serve as an external examiner for a doctoral thesis entitled Analysis of Myocardial Time-Activity Curves Related to Radiolabeled Free Fatty Acid Metabolism'' in the Cardiology Department at the Free University of Amsterdam, The Netherlands. The traveler also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, the Department of Nuclear Medicine in Aachen, West Germany, and the Cyclotron Research Center in Liege, Belgium. He led discussions, reviewed data, and coordinated further collaboration on the preclinical studies and clinical testing of radiopharmaceuticals being developed by the traveler's research group at the Oak Ridge National Laboratory (ORNL).

  6. Nuclear medicine annual, 1987

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1987-01-01

    Radionuclide evaluation of brain death, bone imaging with SPECT, and lymphoscintigraphy are among the topics covered in Nuclear Medicine Annual, 1987. In addition, the book includes reviews of the role of nuclear medicine in the diagnosis of the Acquired Immunodeficiency Syndrome (AIDS) and in the management of patients with acute myocardial infarction. Reports describe advances in radionuclide and magnetic resonance imaging of the adrenal gland and assess the current status of diuretic renography. Also included are articles on changes in functional imaging with aging, on radionuclide evaluation of the lower genitourinary tract in children, and on cholescintigraphy in children.

  7. Whistleblowers and nuclear medicine.

    PubMed

    Rysavy, C F; Donald, J W

    1999-01-01

    Healthcare facilities that practice nuclear medicine are subject to federal "whistleblower" protection laws when an employee reports a potentially unsafe radiological condition. This article addresses enforcement of the applicable sections of the Atomic Energy Act and the Nuclear Regulatory Commission's regulations in order to help such facilities avoid running afoul of those laws, which can result in fines, generate civil lawsuits by the claimant, and significantly disrupt the operation of a healthcare facility. PMID:10538012

  8. General Nuclear Medicine

    MedlinePLUS

    ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, , also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  9. Children's (Pediatric) Nuclear Medicine

    MedlinePLUS

    ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, , also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  10. Nuclear medicine case studies

    SciTech Connect

    Wagner, H.N. Jr.

    1986-01-01

    This text presents case studies in nuclear medicine which emphasize the diagnosis of the patient's problem rather than the technical performance of the procedure. The book is arranged by organ systems and each section begins with a description of the technique and findings in a normal study.

  11. Pediatric nuclear medicine

    SciTech Connect

    Treves, S.T.

    1985-01-01

    This book discusses the diagnostic techniques of nuclear medicine as applied in pediatric patients. Particular emphasis is placed on the subject of scintigraphy of organ systems for diagnostic purposes. The topics covered are: scintigraphy of skeleton, bone marrow spleen, liver, thyroid, lungs, urinary tract, brain, heart and cerebrospinal fluid. The pathology and scintigraphy of lacrimal glands is also covered. Other diagnostic techniques of radiology in pediatrics are also briefly discussed for comparative evaluation.

  12. Nuclear medicine in oncology

    SciTech Connect

    Murphy, J.

    1996-12-31

    Radioactivity was discovered in the late 1890s, and as early as 1903, Alexander Graham Bell advocated that radioactivity be used to treat tumors. In 1913, the first paper describing therapeutic uses of radium was published; in 1936, {sup 24}Na was administered as a therapy to a leukemia patient. Three years later, uptake of {sup 89}Sr was noted in bone metastases. During the 1940s, there was increasing use of iodine therapy for thyroid diseases, including thyroid cancer. Diagnostic {open_quotes}imaging{close_quotes} with radioisotopes was increasingly employed in the 1930s and 40s using probes and grew in importance and utility with the development of scintillation detectors with photorecording systems. Although coincidence counting to detect positron emissions was developed in 1953, the first medical center cyclotron was not installed until 1961. The 1960s saw the development of {sup 99m}Tc-labeled radiopharmaceuticals, emission reconstruction tomography [giving rise to single photon emission computed tomography (SPECT) and positron emission tomography (PET)], and {sup 64}Ga tumor imaging. Nuclear medicine was recognized as a medical specialty in 1971. Radiolabeled antibodies targeting human tumors in animals was reported in 1973; antibody tumor imaging in humans was reported in 1978. Technology has continued to advance, including the development of SPECT cameras with coincidence detection able to perform FDG/PET imaging. With this overview as as backdrop, this paper focuses on the role of nuclear medicine in oncology from three perspectives: nonspecific tumor imaging agents, specific tumor imaging agents, and radioisotopes for tumor therapy. In summary, while tumor diagnosis and treatment were among the first uses explored for radioactivity, these areas have yet to reach their full potential. Development of new radioisotopes and new radiopharmaceuticals, coupled with improvements in technology, make nuclear oncology an area of growth for nuclear medicine.

  13. Coordination compounds in nuclear medicine

    SciTech Connect

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma )

    1993-05-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs.

  14. Nuclear medicine annual

    SciTech Connect

    Freeman, L.M.

    1988-01-01

    This book features a state-of-the-art report on single photon emission computed tomography (SPECT) in abdominal imaging, which highlights the emergency of /sup 99m/Tc-red cell imaging as the procedure of choice for diagnosing heptatic hemangioma. In addition, the use of captropril scinitigraphy in the study of suspected renovascular hypertension is reviewed. Articles survey research on radiolabeled monoclonal antibodies and assess the clinical experience with bone scanning for osseous metastases from breast carcinoma. An article on the role of nuclear medicine in the management of osteoporosis examines the problems that must be overcome before the bone mineral analysis with dual photon absorptiometry gains widespread clinical acceptance.

  15. [Nuclear medicine and radiopharmaceuticals].

    PubMed

    Sopena Novales, P; Plancha Mansanet, M C; Martinez Carsi, C; Sopena Monforte, R

    2014-06-01

    Nuclear Medicine is a medical specialty that allows modern diagnostics and treatments using radiopharmaceuticals original radiotracers (drugs linked to a radioactive isotope). In Europe, radiopharmaceuticals are considered a special group of drugs and thus their preparation and use are regulated by a set of policies that have been adopted by individual member countries. The radiopharmaceuticals used in diagnostic examinations are administered in very small doses. So, in general, they have no pharmacological action, side effects or serious adverse reactions. The biggest problem associated with their use are the alterations in their biodistribution that may cause diagnostic errors. Nuclear Medicine is growing considerably influenced by the appearance and development of new radiopharmaceuticals in both the diagnostic and therapeutic fields and primarily to the impact of new multimodality imaging techniques (SPECT-CT, PET-CT, PET-MRI, etc.). It's mandatory to know the limitations of these techniques, distribution and eventual physiological alterations of radiopharmaceuticals, contraindications and adverse reactions of radiological contrasts, and the possible interference of both. PMID:25304301

  16. Nuclear medicine annual 1990

    SciTech Connect

    Freeman, L.M. )

    1990-01-01

    Two of the major areas of cutting-edge nuclear medicine research, single-photon emission computed tomography (SPECT) functional brain imaging and monoclonal antibody studies receive attention in this volume. Advances in these areas are critical to the continued growth of our specialty. Fortunately, the current outlook in both areas remains quite optimistic. As has been the policy in the first decade of publication, thorough state-of-the-art reviews on existing procedures are interspersed with chapters dealing with research developments. The editor wishes to express a particular note of appreciation to a very supportive British colleague, Dr. Ignac Fogelman, who is becoming a regular contributor. His exhaustive review of the role of nuclear medicine in the evaluation of osteoporotic patients is packed with extremely useful information that will prove to be fruitful to all readers. The author would like to thank the readers and colleagues who have taken the time to offer useful and constructive comments over the past ten years. The author continue to welcome suggestions that will help to further improve this Annual.

  17. Trends in nuclear medicine in developing countries.

    PubMed

    Dondi, Maurizio; Kashyap, Ravi; Paez, Diana; Pascual, Thomas; Zaknun, John; Bastos, Fernando Mut; Pynda, Yaroslav

    2011-12-01

    This article describes trends in nuclear medicine in the developing world as noted by nuclear medicine professionals at the International Atomic Energy Agency (IAEA). The trends identified are based on data gathered from several sources, including information gathered through a database maintained by the IAEA; evaluation of country program frameworks of various IAEA Member States; personal interactions with representatives in the nuclear medicine field from different regions of the world; official proceedings and meeting reports of the IAEA; participation in numerous national, regional, and international conferences; discussions with the leadership of major professional societies; and relevant literature. The information presented in this article relied on both objective and subjective observations. The aims of this article were to reflect on recent developments in the specialty of nuclear medicine and to envision the directions in which it is progressing. These issues are examined in terms of dimensions of practice, growth, and educational and training needs in the field of nuclear medicine. This article will enable readers to gain perspective on the status of nuclear medicine practice, with a specific focus on the developing world, and to examine needs and trends arising from the observations. PMID:22144549

  18. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  19. Your Radiologist Explains Nuclear Medicine

    MedlinePLUS

    ... any allergies. You may have some concerns about nuclear medicine. However, because the amount of radiotracer used is small, the level of radiation exposure is relatively low and the benefit of ...

  20. The role of general nuclear medicine in breast cancer

    PubMed Central

    Greene, Lacey R; Wilkinson, Deborah

    2015-01-01

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer. PMID:26229668

  1. The role of general nuclear medicine in breast cancer

    SciTech Connect

    Greene, Lacey R; Wilkinson, Deborah

    2015-03-15

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer.

  2. Boron in nuclear medicine: New synthetic approaches to PET and SPECT. Progress report, March 1, 1992--February 28, 1993

    SciTech Connect

    Kabalka, G.W.

    1992-09-01

    This annual progress report describes new methods of incorporation of radioiodine into physiologically active compounds (amphetamines), and the use of organoboranes to labeled radiopharmaceuticals with Oxygen- 15, Nitrogen-13, carbon-11 and fluorine-18. Preclinical studies are also reported on evaluation of butyothiophenones as agents acting at dopaminergic or serotonic synapses.

  3. Introductory physics of nuclear medicine. Third edition

    SciTech Connect

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine.

  4. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science). Progress report, January 1, 1992--December 31, 1992

    SciTech Connect

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of [F18]fluorinated benzamides (dopamine D-2 receptor tracers), [F18]fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of [F18]-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.

  5. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  6. Data resources for nuclear medicine

    SciTech Connect

    Bhat, M.R.; Lemmel, H.D.

    1995-07-01

    The objective of this article is to list data resources needed for nuclear medicine and provide information on how to access them. This list will include publications of data compilations or evaluations, databases, and data processing codes for both nuclear structure and decay, as well as reaction data. Sources of bibliographic and related information on nuclear data are also be listed. The authors of this article have used their judgement in choosing a representative list of data sources; a more complete listing may be found in the references.

  7. 1986 yearbook of nuclear medicine

    SciTech Connect

    Hoffer, P.B.; Gore, J.C.; Zaret, B.L.; Gottschalk, A.; Sostman, D.

    1986-01-01

    This year's edition summarizes recent published articles about nuclear medicine in major medical journals. The book starts with a review on quantitative analysis of thallium-201 scintigraphy. Chapters then follow on magnetic resonance imaging, the cardiovascular system, peripheral vasculature, the pulmonary system, physics and instrumentation, radiochemistry, and radiopharmacology, health physics and radiation biology, oncology, infection, bone, joints and muscles, the endocrine system, the genitourinary system, the gastrointestinal tract, hemotology, and the central nervous system.

  8. Nuclear medicine applications for the diabetic foot

    SciTech Connect

    Hartshorne, M.F.; Peters, V.

    1987-04-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described.

  9. Diagnostic interventions in nuclear medicine

    SciTech Connect

    Thrall, J.H.; Swanson, D.P.

    1989-01-01

    Diagnostic interventions in nuclear medicine may be defined as the coadministration of a nonradioactive drug or application of a physical stimulus or physiologic maneuver to enhance the diagnostic utility of a nuclear medicine test. The rationale for each interventional maneuver follows from the physiology or metabolism of the particular organ or organ system under evaluation. Diagnostic inference is drawn from the pattern of change in the biodistribution of the tracer in response to the intervention-induced change in metabolism or function. In current practice, the most commonly performed interventional maneuvers are aimed at studies of the heart, genitourinary system, hepatobiliary system, and gastrointestinal tract. The single most commonly performed interventional study in the United States is the stress Thallium-201 myocardial perfusion scan aimed at the diagnosis of coronary artery disease. The stress portion of the study is accomplished with dynamic leg exercise on a treadmill and is aimed at increasing myocardial oxygen demands. Areas of myocardium distal to hemodynamically significant lesions in the coronary arteries become ischemic at peak stress due to the inability of the stenotic vessel to respond to the oxygen demand/blood flow needs of the myocardium. Ischemic areas are readily recognized as photopenic defects on scans obtained immediately after exercise, with normalization upon delayed imaging. Diuresis renography is aimed at the differential diagnosis of hydroureteronephrosis. By challenging the urinary tract collecting structures with an augmented urine flow, dilated, unobstructed systems can be differentiated from systems with significant mechanical obstruction. 137 references.

  10. [Nuclear medicine entangled by administrative regulations].

    PubMed

    Meyer, G J

    2013-01-01

    Nuclear medicine is increasingly affected by administrative regulations. Besides radiation safety measurements and controls, nuclear medicine faces increasing burdens from regulations on handling and preparation of radiopharmaceuticals. These result from general regulatory measurements on the safety of pharmaceuticals. This article tries to demonstrate the puzzling interactions of regulatory bodies and institutions which lead to the regulatory framework, with focus on Germany. PMID:23503760

  11. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  12. New Trends and Possibilities in Nuclear Medicine

    SciTech Connect

    Schmidt, H.A.E.; Csernay, L

    1988-01-01

    New Trends and Possibilities in Nuclear Medicine provides an examination of the latest developments in the field of nuclear medicine. This volume reviews advances made in imaging techniques and presents a detailed overview of many new imaging procedures and their clinical applications, e.g.,the oncological applications of immunoscintigraphy. This book also elucidates the various diagnostic capabilities of nuclear imaging in a wide range of disciplines, including cardiology, neurology, pulmonology, gastroenterology, nephrology, oncology, and hematology.

  13. Enhancing laboratory activities in nuclear medicine education.

    PubMed

    Grantham, Vesper; Martin, Chris; Schmitz, Casey

    2009-12-01

    Hands-on or active learning is important in nuclear medicine education. As more curricula start to require greater standards and as distance education expands, the effective use of laboratories in nuclear medicine education remains important in physics, instrumentation, and imaging but is often overlooked or underutilized. Laboratory exercises are a unique opportunity for nuclear medicine educators to facilitate students' critical thinking and problem-solving skills in a manner that often cannot occur in lectures or during online education. Given the lack of current laboratory tools and publications, there exists a requirement for nuclear medicine educators to develop, enhance, and monitor educational tools for laboratory exercises. Expanding technologies, variations in imaging and measurement systems, and the need to ensure that the taught technology is relevant to nuclear medicine students are issues faced by nuclear medicine educators. This article, based on principles of instructional design, focuses on the components and development of effective and enhanced nuclear medicine laboratories in our current educational environment. PMID:19914977

  14. Nuclear medicine applications: Summary of Panel 4

    SciTech Connect

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab.

  15. Brief overview of nuclear medicine in China

    SciTech Connect

    Wang, S.C.; Chou, C.E.

    1989-04-01

    The year 1956 witnessed the birth of Nuclear Medicine in China, when the first course, Biomedical Applications of Isotopes, was offered in our country by the Peking Union Medical College (PUMC). This course was preceded by a training course in nuclear instruments in which students learned to construct the radiation detection devices required for performing experiments using radioisotopes. In 1958, several courses in clinical nuclear medicine brought up the first generation of nuclear medicine physicians in China. Historically, some of the chief events include: (1) operation of the first reactor, producing 33 radioactive isotopes in 1958; (2) first linear scanner built in 1960; (3) setting up an organization for the control of radiopharmaceuticals in 1961; (4) distribution of the first batch of cyclotron-produced isotopes in 1963; (5) development and use of the first radioimmunoassay (RIA) procedure in 1963; (6) production of tritium in 1964; (7) production of 99.8% enriched heavy water in 1965; (8) supply of 99mTc and 113mIn generators in 1972; (9) first gamma camera imported in 1972 and first homemade gamma camera installed in 1977; (10) founding of Chinese Society of Nuclear Medicine (CSNM) in 1980; (11) publication of the Chinese Journal of Nuclear Medicine beginning in 1981; (12) first single photon emission computed tomography (SPECT) imported in 1983. At present, there are 556 nuclear medicine departments in China with 4,000 staff.

  16. An overview of nuclear medicine imaging procedures.

    PubMed

    Hogg, Peter; Lawson, Richard

    2015-11-25

    Nuclear medicine imaging is not generally well understood by nurses who work outside this area. Consequently, nurses can find themselves unable to answer patients' questions about nuclear medicine imaging procedures or give them proper information before they attend for a test. This article aims to explain what is involved in some common diagnostic nuclear medicine imaging procedures so that nurses are able to discuss this with patients. It also addresses some common issues about radiation protection that nurses might encounter in their usual working routine. The article includes links to videos showing some typical nuclear medicine imaging procedures from a patient's point of view and links to an e-Learning for Healthcare online resource that provides detailed information for nurses. PMID:26602680

  17. [Aa DICOM based PACS for nuclear medicine].

    PubMed

    Lassmann, M; Reiners, Chr

    2002-02-01

    The installation of a Radiology Information System (RIS) connected to a Hospital Information System (HIS) and a Picture Archiving and Communications System (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Wrzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adopted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested. PMID:11917350

  18. [Potential radiation hazard in nuclear medicine].

    PubMed

    Guilabert, Nadine; Ricard, Marcel; Chamoulaud, Karen; Mazelier, Carole; Schlumberger, Martin

    2015-01-01

    Nuclear medicine uses unsealed radioisotopes. The potential radiation hazards depend on the amount of radioactivity administered and the type of radionucleide. Thus, radiation safety instructions will minimize radiation exposure and contamination as low as reasonably achievable. National nuclear safety authority requires rules, regulations and exposure limits for both patients and workers. Good practices and training staff contribute to optimize the radioprotection. PMID:25842441

  19. A Training Manual for Nuclear Medicine Technologists.

    ERIC Educational Resources Information Center

    Simmons, Guy H.; Alexander, George W.

    This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)

  20. Applications of nuclear medicine in genitourinary imaging

    SciTech Connect

    Blaufox, M.D.; Kalika, V.; Scharf, S.; Milstein, D.

    1982-01-01

    Major advances in nuclear medicine instrumentation and radiopharmaceuticals for renal studies have occurred during the last decade. Current nuclear medicine methodology can be applied for accurate evaluation of renal function and for renal imaging in a wide variety of clinical situations. Total renal function can be estimated from the plasma clearance of agents excreted by glomerular filtration or tubular secretion, and individual function can be estimated by imaging combined with renography. A major area of radionuclide application is in the evaluation of obstructive uropathy. The introduction of diuretic renography and the use of computer-generated regions of interest offer the clinician added useful data which may aid in diagnosis and management. Imaging is of proven value also in trauma, renovascular hypertension, and acute and chronic renal failure. Methods for the evaluation of residual urine, vesicoureteral reflux, and testicular torsion have achieved increasing clinical use. These many procedures assure a meaningful and useful role for the application of nuclear medicine in genitourinary imaging.

  1. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    This report describes progress in the experimental nuclear physics program of the University of Tennessee, Knoxville. It presents findings related to properties of high-spin states, low-energy levels of nuclei far from stability, and high-energy heavy-ion physics, as well as a brief description of the Joint Institute of Heavy Ion Research (a collaboration between the University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory) and its activities (particularly those of the last few years), and a list of publications. 89 refs., 18 figs., 5 tabs.

  2. Nuclear physics in medicine, minefield and kitchen

    NASA Astrophysics Data System (ADS)

    Moskal, Pawe?

    2011-01-01

    Plethora of phenomena discovered and investigated in the Maria Curie laboratories constitute nowadays basis of functioning of various advanced devices used in modern science, industry and medicine. In this article we briefly describe few examples of nuclear physics applications, such as: non-invasive imaging of living organisms by means of Positron Emission Tomography, remote identification of explosives and other dangerous substances, using the technique of atometry, and preservation of food by its exposure to nuclear radiation.

  3. Radiopharmaceuticals in nuclear medicine practice

    SciTech Connect

    Kowalsky, R.J.; Perry, J.R.

    1987-01-01

    This book discusses the basic principles and clinical applications of radiopharmaceuticals. Topics include atomic physics as applied to radiopharmaceuticals, radionuclide generator function, nuclear pharmacy and safety, and radiopharmaceutical use in evaluating the major organ systems of the body. For each body system the author explains rationale for use, typical procedures, current agents of choice, and interpretation of results. Images, tables, and graphs illustrate normal and abnormal studies.

  4. Sports medicine: a century of progress.

    PubMed

    Tipton, C M

    1997-05-01

    According to the international Olympic Committee, it is the responsibility of the sports medicine profession to care for the health and welfare of Olympic athletes, treat and prevent injuries, conduct medical examinations, evaluate performance capacity, provide nutritional advice, prescribe and supervise training programs, and to monitor substance use. Implicit in these functions is to assist Olympic athletes in achieving the objectives of the Olympic Motto (Citius, Altius, Fortius), which is to become faster, higher, and stronger. During the past Olympiads, athletic performance has increased, as indicated by times for the men's marathon (-28%) or by the distance covered in the women's javelin throw (+80%). However, the fulfillment of these responsibilities was a slow and protracted process, as demonstrated by the facts that medical examinations were not required until 1920, that 28 years elapsed before an official team physician was appointed, and that women had to wait until 1984 before sanction was given to compete in the marathon race. Doping was not defined until 1964, and monitoring of substance abuse did not materialize until after 1972. Although individuals have prepared for athletic competition since the ancient Olympics, the scientific foundations for various training prescriptions were not firmly established until the 1960s and 1970s. It was speculated that performance records will continue to improve in the next century because more scientific sports medicine information would be available and because such information would be better disseminated to athletes. PMID:9164256

  5. Perspectives in nuclear medicine: pulmonary studies

    SciTech Connect

    Budinger, T.F.; McNeil, B.J.; Alderson, P.O.

    1982-01-01

    Since the introduction of I-131 labeled macroaggregates in 1964, noninvasive techniques involving injection of radiolabeled agents and remote detection of emitted radiation have become well established in detecting pulmonary disorders in routine clinical medicine. In the past, pulmonary nuclear medicine has been dominated by studies that depict the distribution of pulmonary perfusion and/or ventilation-perfusion balance (e.g., for the detection of pulmonary embolism, obstructive airway disease, lung carcinoma). With the recent development of emission tomography and the potential for new, function-oriented radiopharmaceuticals, however, pulmonary nuclear medicine is entering a new era. The status of contemporary pulmonary nuclear medicine is briefly reviewed in several areas of major interest and applications and focus on areas where new developments are needed and seem feasible in the near future. Several important regional physiological processes measurable by these techniques include: (a) the presence or absence of pulmonary embolism, (b) relative pulmonary blood flow, (c) permeability to specific molecules, (d) lung tissue metabolism, (e) ventilation distribution and (f) the relationship between ventilation and blood flow (perfusion). (JMT)

  6. Progress toward personalized medicine for glaucoma

    PubMed Central

    Moroi, Sayoko E; Raoof, Duna A; Reed, David M; Zllner, Sebastian; Qin, Zhaohui; Richards, Julia E

    2013-01-01

    How will you respond when a patient asks, Doctor, what can I do to prevent myself from going blind from glaucoma like mom?. There is optimism that genetic profiling will help target patients to individualized treatments based on validated disease risk alleles, validated pharmacogenetic markers and behavioral modification. Personalized medicine will become a reality through identification of disease and pharmacogenetic markers, followed by careful study of how to employ this information in order to improve treatment outcomes. With advances in genomic technologies, research has shifted from the simple monogenic disease model to a complex multigenic and environmental disease model to answer these questions. Our challenges lie in developing risk models that incorporate genegene interactions, gene copy-number variations, environmental interactions, treatment effects and clinical covariates. PMID:23914252

  7. Potentials for progress in laser medicine.

    PubMed Central

    Parrish, J. A.; Walsh, J. T.

    1985-01-01

    Lasers could come to occupy a highly important position in the armament of medicine. They are the brightest known sources of light, man-made or natural, and emit light having such properties as coherence and monochromaticity. Furthermore, lasers have the ability to deliver very brief pulses of light which can cause unique alterations in biological materials. The major obstacle to the increased use of lasers in medicine and surgery is not the availability of laser devices, but the dearth of basic information about laser-tissue interactions. We have recently demonstrated that, even in turbid tissue such as the dermis, it is possible simultaneously to induce microscopically selective thermal damage, localized to millions of selectively absorbing targets, while sparing surrounding tissues. These "targets" may be as small as organelles or as large as blood vessels. Such localized thermal damage is truly unique to pulsed laser exposures. The scope and medical utility of these lesions has yet to be fully understood. Thus, there is much research to be done in describing and characterizing laser-induced injury. There is, however, ample evidence that several laser therapies could be improved by using selectively absorbed, short pulses that lead to the spatial confinement of thermal injury. Treatment of port wine stains, pigmented lesions, atheromatous arterial plaques, and the fragmentation of kidney and gall stones are examples. It should also be possible to use a variety of systems to deliver exogenous laser targets on or within individual types of cells or organelles. Such chromophores may lead to new forms of cancer therapy, for example. PMID:3832665

  8. Coded-aperture imaging in nuclear medicine

    NASA Technical Reports Server (NTRS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  9. Coded-aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  10. Solid state detectors in nuclear medicine.

    PubMed

    Darambara, D G; Todd-Pokropek, A

    2002-03-01

    Since Nuclear Medicine diagnostic applications are growing fast, room temperature semiconductor detectors such CdTe and CdZnTe either in the form of single detectors or as segmented monolithic detectors have been investigated aiming to replace the NaI scintillator. These detectors have inherently better energy resolution that scintillators coupled to photodiodes or photomultiplier tubes leading to compact imaging systems with higher spatial resolution and enhanced contrast. Advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems are discussed and efforts to develop semiconductor-based planar and tomographic cameras as well as nuclear probes are presented. PMID:12072840

  11. Impact of obesity on nuclear medicine imaging.

    PubMed

    Ghanem, Mohammad A; Kazim, Nafeesa A; Elgazzar, Abdelhamid H

    2011-03-01

    Obesity, with its alarming increase among adults and children, represents a significant health problem with serious medical, social, psychologic, and economic reverberations. The burden of this problem significantly affects the medical care system, including medical imaging. The effect of obesity on nuclear medicine imaging spans many aspects, from preimaging patient preparation to radiotracer administration, image acquisition, and image interpretation. The acquired images may be suboptimal because of artifacts due to soft-tissue attenuation and incomplete whole-body coverage, and quantification may be suboptimal, especially for PET. Other difficulties include mechanical problems such as the weight limit of the imaging table and the bore size of the PET or SPECT/CT scanner and the need to alter the timing, duration, or protocol of many imaging procedures. These issues are discussed in this review, which clarifies the impact of this epidemic health problem on nuclear medicine services and proposes possible solutions to overcome obesity-related difficulties encountered in nuclear medicine practice. PMID:21321247

  12. A nuclear chocolate box: the periodic table of nuclear medicine.

    PubMed

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry. PMID:25406520

  13. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  14. Nanotechnology and nuclear medicine; research and preclinical applications.

    PubMed

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome. PMID:21761018

  15. Evidence-based medicine and progress in the medical sciences.

    PubMed

    De Vreese, Leen

    2011-10-01

    The question what scientific progress means for a particular domain such as medicine seems importantly different from the question what scientific progress is in general. While the latter question received ample treatment in the philosophical literature, the former question is hardly discussed. I argue that it is nonetheless important to think about this question in view of the methodological choices we make. I raise specific questions that should be tackled regarding scientific progress in the medical sciences and demonstrate their importance by means of an analysis of what evidence-based medicine (EBM) has, and has not, to offer in terms of progress. I show how critically thinking about EBM from the point of view of progress can help us in putting EBM and its favoured methodologies in the right perspective. My conclusion will be that blindly favouring certain methods because of their immediately tangible short-term benefits implies that we parry the important question of how best to advance progress in the long run. This leads us to losing sight of our general goals in doing research in the medical sciences. PMID:21848941

  16. Development of Scintillators in Nuclear Medicine.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  17. Nuclear medicine training and practice in Poland.

    PubMed

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular postgraduate training for physicians working in NM. Educational programs are comprehensive, covering both diagnostics and current forms of radioisotope therapy. They are aimed not only at physicians specialized/specializing in NM, but also at other medical professionals employed in radionuclide departments as well as physicians of other specialties. PMID:25091218

  18. Development of Scintillators in Nuclear Medicine

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce lutetium aluminum garnet activated by cerium CRY018 CRY019 lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  19. Theoretical nuclear structure. Progress report for 1997

    SciTech Connect

    Nazarewicz, W.; Strayer, M.R.

    1997-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops.

  20. Stereoscopic full aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Strocovsky, Sergio G.; Otero, Dino

    2011-06-01

    Images of planar scintigraphy and single photon emission computerized tomography (SPECT) used in nuclear medicine are often low quality. They usually appear to be blurred and noisy. This problem is due to the low spatial resolution and poor sensitivity of the acquisition technique with the gamma camera (GC). Other techniques, such as coded aperture imaging (CAI) reach higher spatial resolutions than GC. However, CAI is not frequently used for imaging in nuclear medicine, due to the decoding complexity of some images and the difficulty in controlling the noise magnitude. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. A novel technique, full aperture Imaging (FAI), also uses gamma ray-encoding to obtain images, but the coding system and the method of images reconstruction are simpler than those used in CAI. In addition, FAI also reaches higher spatial resolution than GC. In this work, the principles of FAI technique and the method of images reconstruction are explained in detail. The FAI technique is tested by means of Monte Carlo simulations with filiform and spherical sources. Spatial resolution tests of GC versus FAI were performed using two different source-detector distances. First, simulations were made without interposing any material between the sources and the detector. Then, other more realistic simulations were made. In these, the sources were placed in the centre of a rectangular prismatic region, filled with water. A rigorous comparison was made between GC and FAI images of the linear filiform sources, by means of two methods: mean fluence profile graphs and correlation tests. Finally, three-dimensional capacity of FAI was tested with two spherical sources. The results show that FAI technique has greater sensitivity (>100 times) and greater spatial resolution (>2.6 times) than that of GC with LEHR collimator, in both cases, with and without attenuating material and long and short-distance configurations. The FAI decoding algorithm reconstructs simultaneously four different projections which are located in separate image fields on the detector plane, while GC produces only one projection per acquisition. Simulations have allowed comparison of both techniques under ideal identical conditions. Our results show it is possible to apply an extremely simple encoded imaging technique, and get three-dimensional radioactivity information for simplistic geometry sources. The results are promising enough to evaluate the possibility of future research with more complex sources typical of nuclear medicine imaging.

  1. IAEA programs in empowering the nuclear medicine profession through online educational resources.

    PubMed

    Pascual, Thomas Nb; Dondi, Maurizio; Paez, Diana; Kashyap, Ravi; Nunez-Miller, Rodolfo

    2013-05-01

    The International Atomic Energy Agency's (IAEA) programme in human health aims to enhance the capabilities in Member States to address needs related to the prevention, diagnosis, and treatment of diseases through the application of nuclear techniques. It has the specific mission of fostering the application of nuclear medicine techniques as part of the clinical management of certain types of diseases. Attuned to the continuous evolution of this specialty as well as to the advancement and diversity of methods in delivering capacity building efforts in this digital age, the section of nuclear medicine of the IAEA has enhanced its program by incorporating online educational resources for nuclear medicine professionals into its repertoire of projects to further its commitment in addressing the needs of its Member States in the field of nuclear medicine. Through online educational resources such as the Human Health Campus website, e-learning modules, and scheduled interactive webinars, a validation of the commitment by the IAEA in addressing the needs of its Member States in the field of nuclear medicine is strengthened while utilizing the advanced internet and communications technology which is progressively becoming available worldwide. The Human Health Campus (www.humanhealth.iaea.org) is the online educational resources initiative of the Division of Human Health of the IAEA geared toward enhancing professional knowledge of health professionals in radiation medicine (nuclear medicine and diagnostic imaging, radiation oncology, and medical radiation physics), and nutrition. E-learning modules provide an interactive learning environment to its users while providing immediate feedback for each task accomplished. Webinars, unlike webcasts, offer the opportunity of enhanced interaction with the learners facilitated through slide shows where the presenter guides and engages the audience using video and live streaming. This paper explores the IAEA's available online educational resources programs geared toward the enhancement of the nuclear medicine profession as delivered by the section of nuclear medicine of the IAEA. PMID:23561452

  2. The impact of nuclear science on medicine

    NASA Astrophysics Data System (ADS)

    Kraft, G.

    From the very beginning, i.e. from the discovery of the natural radioactivity by H. Becquerel and the production of radium by M. Curie, nuclear physics had a strong impact on medicine: Radioactive sources were immediately made use of in tumor therapy long before the action mechanisms of ionizing radiation were understood. The invention of the tracer technique by G. Hevesy opened a new field for the study of chemokinetics as well as for the in-vivo measurement of various organ functions. In the percutane tumor therapy hadrons like neutrons, pions, protons and heavier ions were tested. Presently, proton therapy is a great success and is spreading all over the world. The new techniques of target-conform treatment using heavy ions for an improved tumor targeting and control represent the latest great improvement of radiation tumor therapy.

  3. Computer Information System For Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Cahill, P. T.; Knowles, R. J.....; Tsen, O.

    1983-12-01

    To meet the complex needs of a nuclear medicine division serving a 1100-bed hospital, a computer information system has been developed in sequential phases. This database management system is based on a time-shared minicomputer linked to a broadband communications network. The database contains information on patient histories, billing, types of procedures, doses of radiopharmaceuticals, times of study, scanning equipment used, and technician performing the procedure. These patient records are cycled through three levels of storage: (a) an active file of 100 studies for those patients currently scheduled, (b) a temporary storage level of 1000 studies, and (c) an archival level of 10,000 studies containing selected information. Merging of this information with reports and various statistical analyses are possible. This first phase has been in operation for well over a year. The second phase is an upgrade of the size of the various storage levels by a factor of ten.

  4. Lossy compression in nuclear medicine images.

    PubMed Central

    Rebelo, M. S.; Furuie, S. S.; Munhoz, A. C.; Moura, L.; Melo, C. P.

    1993-01-01

    The goal of image compression is to reduce the amount of data needed to represent images. In medical applications, it is not desirable to lose any information and thus lossless compression methods are often used. However, medical imaging systems have intrinsic noise associated to it. The application of a lossy technique, which acts as a low pass filter, reduces the amount of data at a higher rate without any noticeable loss in the information contained in the images. We have compressed images of nuclear medicine using the discrete cosine transform algorithm. The decompressed images were considered reliable for visual inspection. Furthermore, a parameter was computed from these images and no discernible change was found from the results obtained using the original uncompressed images. PMID:8130593

  5. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  6. Common uses of nonradioactive drugs in nuclear medicine

    SciTech Connect

    Ponto, J.A.; Hladik, W.B.

    1984-06-01

    A variety of nonradioactive pharmaceuticals commonly used in patients who receive nuclear medicine diagnostic tests are described. Nonradioactive drugs used in thyroid, brain, hepatobiliary, cardiac, renal, Meckel's diverticulum, gallium, adrenal, and hematological studies are described. Pharmaceutical necessities used as disinfectants, diluents, and anticoagulants are also described. Hospital pharmacists should be familiar with the uses of commonly prescribed nonradioactive drugs in nuclear medicine studies.

  7. Source Book of Educational Materials for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  8. [Research progress on mechanisms of modern medicine in cancer metastasis].

    PubMed

    Chen, Hui; Qu, Jing-Lian; Gong, Jie-Ning

    2014-08-01

    Cancer metastasis is the most dangerous stage of tumorigenesis and evolution, the primary cause of death in cancer patients. Clinically, more than 60% of cancer patients have found metastasis at the time of examination. Modern medicine has made significant progress on the mechanisms of cancer metastasis in recent years, from the simple "anatomy and machinery" theory forward to the "seed and soil" theory, then to the "microenvironmental" theory and the "cancer stem cell" theory. The emerging "cancer stem cell" theory successfully explains phenomenon such as tumor genetic heterogeneity, anoikis resistance, tumor dormancy, providing more new targets and ideas for the diagnosis and treatment of cancer metastasis. PMID:25423816

  9. [Research progress on mechanisms of modern medicine in cancer metastasis].

    PubMed

    Chen, Hui; Qu, Jing-Lian; Gong, Jie-Ning

    2014-08-01

    Cancer metastasis is the most dangerous stage of tumorigenesis and evolution, the primary cause of death in cancer patients. Clinically, more than 60% of cancer patients have found metastasis at the time of examination. Modern medicine has made significant progress on the mechanisms of cancer metastasis in recent years, from the simple "anatomy and machinery" theory forward to the "seed and soil" theory, then to the "microenvironmental" theory and the "cancer stem cell" theory. The emerging "cancer stem cell" theory successfully explains phenomenon such as tumor genetic heterogeneity, anoikis resistance, tumor dormancy, providing more new targets and ideas for the diagnosis and treatment of cancer metastasis. PMID:25507538

  10. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    SciTech Connect

    Kelsey, K.T.

    1991-01-01

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologies who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second year has been on measurements of (1) chromosome aberrations in patients imaged with thallium-201, (2) mutant frequencies in patients imaged with technetium-99, (3) mutant frequencies in nuclear medicine technicians and physical therapists, (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described.

  11. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    SciTech Connect

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine.

  12. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  13. Progress in oral personalized medicine: contribution of ‘omics’

    PubMed Central

    Glurich, Ingrid; Acharya, Amit; Brilliant, Murray H.; Shukla, Sanjay K.

    2015-01-01

    Background Precision medicine (PM), representing clinically applicable personalized medicine, proactively integrates and interprets multidimensional personal health data, including clinical, ‘omics’, and environmental profiles, into clinical practice. Realization of PM remains in progress. Objective The focus of this review is to provide a descriptive narrative overview of: 1) the current status of oral personalized medicine; and 2) recent advances in genomics and related ‘omic’ and emerging research domains contributing to advancing oral-systemic PM, with special emphasis on current understanding of oral microbiomes. Design A scan of peer-reviewed literature describing oral PM or ‘omic’-based research conducted on humans/data published in English within the last 5 years in journals indexed in the PubMed database was conducted using mesh search terms. An evidence-based approach was used to report on recent advances with potential to advance PM in the context of historical critical and systematic reviews to delineate current state-of-the-art technologies. Special focus was placed on oral microbiome research associated with health and disease states, emerging research domains, and technological advances, which are positioning realization of PM. Results This review summarizes: 1) evolving conceptualization of personalized medicine; 2) emerging insight into roles of oral infectious and inflammatory processes as contributors to both oral and systemic diseases; 3) community shifts in microbiota that may contribute to disease; 4) evidence pointing to new uncharacterized potential oral pathogens; 5) advances in technological approaches to ‘omics’ research that will accelerate PM; 6) emerging research domains that expand insights into host–microbe interaction including inter-kingdom communication, systems and network analysis, and salivaomics; and 7) advances in informatics and big data analysis capabilities to facilitate interpretation of host and microbiome-associated datasets. Furthermore, progress in clinically applicable screening assays and biomarker definition to inform clinical care are briefly explored. Conclusion Advancement of oral PM currently remains in research and discovery phases. Although substantive progress has been made in advancing the understanding of the role of microbiome dynamics in health and disease and is being leveraged to advance early efforts at clinical translation, further research is required to discern interpretable constituency patterns in the complex interactions of these microbial communities in health and disease. Advances in biotechnology and bioinformatics facilitating novel approaches to rapid analysis and interpretation of large datasets are providing new insights into oral health and disease, potentiating clinical application and advancing realization of PM within the next decade. PMID:26344171

  14. What You Should Know About Pediatric Nuclear Medicine and Radiation Safety

    MedlinePLUS

    What You Should Know About Pediatric Nuclear Medicine and Radiation Safety www.imagegently.org What is nuclear medicine? Nuclear medicine uses radioactive isotopes to create pictures of the human body. These pictures ...

  15. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  16. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  17. Computer Generated Cardiac Model For Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  18. Determination of efficacy of nuclear medicine procedures

    SciTech Connect

    Saenger, E.L.; Buncher, C.R.; Specker, B.; McDevitt, R.A.

    1984-01-01

    Nuclear medicine, a high technology field, is evaluated as to its usefulness. This paper describes the SNM study of 2023 patients comparing two methods evaluating efficacy for lung scanning (LS). Only the referring physicians determined the probabilities of the most important (MI) and most likely (ML) diagnoses and management before and after lung scanning. A logistic regression model was developed for probability of a signout diagnosis of PE. Equal patient groups tested the validity of the regression equations for the probability of PE as MI or ML. The models developed on Group I (G-I) and used on Group II (G-II) gave similar results. This shows that LS classifies PE and NOT PE categories where PE was considered both MI and ML. Entropy minimax pattern detection (EMPD) attempts prediction of signout diagnosis and management from prior patient attributes. In 2023 cases, attributes alone could not eliminate the use of LS for all patients. Comparing the two methods, the predictive values, sensitivity and specificity of each method are similar. EMPD predicts on a relatively small percent (40% before LS, 71% post LS) while the logistic equation predicts on 100% of the cases. An advantage of EMPD is that it does not require estimates of prior probability. However, LR, uses this estimate, thus incorporating intuitive knowledge not evaluated by EMPD. These methods are unique in showing that LS can direct the referring physician toward or away from anticoagulant therapy based on findings of the lung scan.

  19. Contemporary nuclear medicine imaging of neuroendocrine tumours.

    PubMed

    Wong, K K; Waterfield, R T; Marzola, M C; Scarsbrook, A F; Chowdhury, F U; Gross, M D; Rubello, D

    2012-11-01

    Neuroendocrine tumours (NETs) are rare, heterogeneous, and often hormonally active neoplasms. Nuclear medicine (NM) imaging using single photon- and positron-emitting radiopharmaceuticals allows sensitive and highly specific molecular imaging of NETs, complementary to anatomy-based techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI). Somatostatin-receptor scintigraphy is a whole-body imaging technique widely used for diagnosis, staging and restaging of NETs. The increasing availability of hybrid single-photon emission CT (SPECT)/CT cameras now offers superior accuracy for localization and functional characterization of NETs compared to traditional planar and SPECT imaging. The potential role of positron-emission tomography (PET) tracers in the functional imaging of NETs isalso being increasingly recognized. In addition to 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG), newer positron-emitting radiopharmaceuticals such as (18)F-dihydroxyphenylalanine (DOPA) and (68)Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) peptides, show promise for the future. This article will summarize the role of current and emerging radiopharmaceuticals in NM imaging of this rare but important group of tumours. PMID:22633086

  20. Nuclear medicine imaging in the evaluation of endocrine hypertension

    PubMed Central

    Sharma, Punit; Kumar, Rakesh

    2012-01-01

    Endocrine hypertension forms a small (< 5%) but curable subset of patients with hypertension. Common endocrine causes of hypertension include pheochromocytoma, Cushing's syndrome, primary hyperaldosteronism, and thyroid disorders. Nuclear medicine imaging plays an important role in evaluation of patients with endocrine hypertension. It has established role in patients of pheochromocytoma/paraganglioma, Cushing's syndrome, aldosteronism, and thyroid disorders. We present a brief overview of role of nuclear medicine imaging in endocrine hypertension. Development of newer radiotracers might further broaden the role of nuclear medicine in these patients. PMID:23087853

  1. The development of nuclear medicine in Slovenia and Ljubljana; half a century of nuclear medicine in Slovenia

    PubMed Central

    Slavec, Zvonka Zupanic; Gaberscek, Simona; Slavec, Ksenija

    2012-01-01

    Background Nuclear medicine began to be developed in the USA after 1938 when radionuclides were introduced into medicine and in Europe after radionuclides began to be produced at the Harwell reactor (England, 1947). Slovenia began its first investigations in the 1950s. This article describes the development of nuclear medicine in Slovenia and Ljubljana. The first nuclear medicine interventions were performed in Slovenia at the Internal Clinic in Ljubljana in the period 1954–1959. In 1954, Dr Jože Satler started using radioactive iodine for thyroid investigations. In the same year, Dr Bojan Varl, who is considered the pioneer of nuclear medicine in Slovenia, began systematically introducing nuclear medicine. The first radioisotope laboratories were established in January 1960 at the Institute of Oncology and at the Internal Clinic. Under the direction of Dr. Varl, the laboratory at the Internal Clinic developed gradually and in 1973 became the Clinic for Nuclear Medicine with departments for in vivo and in vitro diagnostics and for the treatment of inpatients and outpatients at the thyroid department. The Clinic for Nuclear Medicine became a teaching unit of the Medical Faculty and developed its own post-graduate programme – the first student enrolled in 1972. In the 1960s, radioisotope laboratories opened in the general hospitals of Slovenj Gradec and Celje, and in the 1970s also in Maribor, Izola and Šempeter pri Novi Gorici. Conclusions Nowadays, nuclear medicine units are modernly equipped and the staff is trained in morphological, functional and laboratory diagnostics in clinical medicine. They also work on the treatment of cancer, increased thyroid function and other diseases. PMID:22933984

  2. Chinese Herbal Medicine on Dyslipidemia: Progress and Perspective

    PubMed Central

    Guo, Ming; Liu, Yue; Gao, Zhu-Ye; Shi, Da-zhuo

    2014-01-01

    Dyslipidemia is an independent risk factor of cardiovascular diseases. The statins are a milestone in the primary and second prevention of cardiovascular diseases and significantly improved its prognosis. Along with the long-term treatment with statins in combination with other hypolipidemic drugs or alone, its safety has attracted a particular attention in clinic, such as the elevation of transaminase and rhabdomyolysis, which have raised an idea of developing the other types of lipid-lowering agents from botanic materials. Traditional Chinese medicine (TCM) has been used in clinical practice for more than 2000 years in China and showed some beneficial effects for human health and many diseases. Recently, many studies demonstrated a favorable effect of TCM for treating dyslipidemia; however, its mechanism remains unclear or totally unknown. The progress and perspective of studies on dyslipidemia with single Chinese herb and its monomers or effective extracts during the past 10 years are discussed in the present review. PMID:24688589

  3. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  4. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    SciTech Connect

    Kelsey, K.T.

    1991-01-01

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail.

  5. Radiation safety audit of a high volume Nuclear Medicine Department

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-01-01

    Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361

  6. [Research progress of genetic engineering on medicinal plants].

    PubMed

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants. PMID:26137675

  7. IAEA support to medical physics in nuclear medicine.

    PubMed

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a priority for healthcare providers in many countries. The IAEA's response to meet the increasing needs for training has been 2-folds. Through its regular program, a priority is given to the development of standardized syllabi and education and clinical training guides. Through its technical cooperation programme, support is given for setting up national medical physics education and clinical training programs in countries. In addition, fellowships are granted for professionals working in the field for specialized training, and workshops are organized at the national and regional level in specialized topics of nuclear medicine physics. So as to support on-the-job training, the IAEA has also setup a gamma camera laboratory in Seibersdorf, Austria. The laboratory is also equipped with QC tools and equipments, and radioisotopes are procured when training events are held. About 2-3 specialized courses are held every year for medical physicists at the IAEA gamma camera laboratory. In the area of research and development, the IAEA supports, through its coordinated research projects, new initiatives in quantitative nuclear medicine and internal dosimetry. The future of nuclear medicine is driven by advances in instrumentation, by the ever increasing availability of computing power and data storage, and by the development of new radiopharmaceuticals for molecular imaging and therapy. Future developments in nuclear medicine are partially driven by, and will influence, nuclear medicine physics and medical physics. To summarize, the IAEA has established a number of programs to support nuclear medicine physics and will continue to do so through its coordinated research activities, education and training in clinical medical physics, and through programs and meetings to promote standardization and harmonization of QA or QC procedures for imaging and treatment of patients. PMID:23561455

  8. Applications of CdTe to nuclear medicine. Final report

    SciTech Connect

    Entine, G.

    1985-05-07

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals. (ACR)

  9. Nuclear oncology, a fast growing field of nuclear medicine

    NASA Astrophysics Data System (ADS)

    Olivier, Pierre

    2004-07-01

    Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as 111In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while 131I- and 123I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of 99mTc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of 18F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a 90Y-labelled anti-CD20 antibody ( 90Y-ibritumomab tiuxetan (Zevalin )) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with 153Sm-EDTMP, 186Re-HEDP or 89Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with 90Y, 111In or 177Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined developments of radiopharmaceuticals and instrumentation.

  10. Development of more efficacious {Tc}-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceuticals. Annual technical progress report, September 1, 1992--August 31, 1993

    SciTech Connect

    Heineman, W.R.

    1993-05-03

    This research program is detailed at development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents to provide diagnostic information concerning a given pathological condition. Analytical techniques are being developed to enable complete analysis of radiopharmaceutical preparations so that individual complexes can be characterized with respect to imaging efficacy and to enable a radiopharmaceutical to be monitored after injection into a test animal to determine the species that actually accumulates in an organ to provide the image. Administration of the isolated, single most effective imaging complex, rather than a mixture of technetium-containing complexes, wi-11 minimize radiation exposure to the patient and maximize diagnostic information available to the clinician. This report specifically describes the development of capillary electrophoresis (CE) for characterizating diphosphonate skeletal imaging agents. Advances in the development of electrochemical and fiber optic sensors for Tc and Re imaging agents are described. These sensors will ultimately be capable of monitoring a specific chemical state of an imaging agent in vivo after injection into a test animal by implantation in the organ of interest.

  11. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures. Progress report, September 1, 1989--January 31, 1992

    SciTech Connect

    Heineman, W.R.

    1992-01-24

    The long-range objective of this research program is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents, each of which has properties optimized to provide diagnostic information concerning a given pathological condition. The specific objectives during the period (9/1/89 to 8/31/92) include: (1) Development of strategies for improving yields of specific Tc-diphosphonate complexes with optimum imaging properties; (2) Development of electrodes for rapid in situ electrochemical generation of skeletal imaging agents; (3) Development of electrochemical sensors for {Tc} and Re imaging agents; (4) Characterization of stable {Tc}- and Re-diphosphonate complexes obtainable in high yield by structural studies with techniques such as NMR, EXAFS, and Raman spectroscopy; (5) Development of improved separation techniques for the characterization of diphosphonate skeletal imaging agents; (6) Evaluation of the effect of the biological milieu on {Tc}-diphosphonate complexes; and (7) Electrochemical studies of technetium and rhenium complexes synthesized by Professor Deutsch`s research group for heart and brain imaging.

  12. Nuclear weapons and medicine: some ethical dilemmas.

    PubMed

    Haines, A; de B White, C; Gleisner, J

    1983-12-01

    The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war. PMID:6668585

  13. Nuclear weapons and medicine: some ethical dilemmas.

    PubMed Central

    Haines, A; de B White, C; Gleisner, J

    1983-01-01

    The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war. PMID:6668585

  14. [Research in theoretical nuclear physics]. Progress report

    SciTech Connect

    Not Available

    1989-12-31

    Research in progress and plans for future investigations are summarized briefly for the following topics: microscopic cluster or resonating-group theory (multiconfiguration studies, effects of antisymmetrization in the nucleon-nucleus interaction, application to p + {alpha} bremsstrahlung), RPA ground state correlations, collisions of deformed nuclei, energy dependence of charge-pickup reactions, alpha-capture reactions in medium-weight nuclei, quantum hydrodynamic approach to nuclear matter, neutron stars and pulsars, transverse momentum distributions, intermittency and other correlations, photon and dilepton production, electroweak theory at high temperature, and fractional statistics.

  15. Proceedings of a workshop on molecular nuclear medicine

    SciTech Connect

    Reba, R.C. )

    1992-01-01

    The Office of Health and Environmental Research (OHER) of the Department of Energy (DOE) has increased the emphasis on research in structural biology and molecular biology. The Department has increased support substantially in the area of basic molecular and structural biology research. To exploit the advances in these fields, OHER has sought to apply those advances in their other areas of responsibility, e.g., health effects research, environmental biology, and, in particular, nuclear medicine. The applications of biotechnology have contributed greatly to the productive research efforts of molecular biology. These techniques include gene manipulation for targeted gene delivery; characterization of molecular probes for hormone, tumor, and neuroreceptors; the receptor-agonist/antagonist binding interactions; studies of mechanisms of cellular communication; and the development of in vitro diagnostics such as molecular probes for studying the aging process and patients with mental disorders, cancer, and atherosclerosis. The importance of this work is the reasonable expectation that mainly, through an appreciation of the molecular basis of disease, will the most effective and rapid progress be made toward understanding, identifying, solving, and preventing specific disease processes. Critical questions arising before and during the Workshop are how the following technologies can be applied in a practical clinical research or patient management setting: the recombinant DNA methodology, the technology of engineered monoclonal antibodies, the new methods for protein production and purification, and the production of transgenic animals.

  16. Training requirements for chemists in radiotracer development for nuclear medicine

    SciTech Connect

    Finn, R.; Fowler, J.

    1988-01-01

    This panel was organized to address the current and anticipated future shortage of chemists with advanced training to fill positions in the nuclear medicine field. Although hard data and statistics are difficult to acquire, we will attempt to highlight the impact of chemistry on nuclear medicine and to describe the growth of the field which has led to an increasing need for chemists resulting in the current manpower shortage. We also will make recommendations for attracting Ph.D. chemists to careers in nuclear medicine research and possible mechanisms for postgraduate training. Solving this problem and establishing a long term committment and mechanism for advanced training is critically important to meet the current needs of the profession and to assure future growth and innovation. 3 tabs.

  17. Progress in Nuclear Nonproliferation Education in Russia

    SciTech Connect

    Killinger, Mark H.

    2005-08-01

    The U.S. Department of Energy actively supports the development of Russian nuclear nonproliferation expertise through education and training. This support includes assistance to Russian academic institutions in offering courses in safeguards and in nonproliferation policy. In particular, DOE has assisted the Moscow Engineering Physics Institute (MEPhI) in establishing a masters degree program in nuclear material protection, control, and accounting (MPC&A), the first such program in the world. DOE is currently helping MEPhI develop a 5 year engineering degree program in MPC&A, which is tailored to the needs of Russian nuclear facilities. Further, DOE is supporting nonproliferation curriculum at the high school level and the development of nonproliferation courses in Russian universities in Novouralsk, Tomsk, Seversk, Ozersk, Sarov, and Snezhinsk. DOE is beginning to also assist Tomsk Polytechnic University in developing its new engineering degree program in MPC&A. The Tomsk program is oriented toward serving students east of the Ural Mountains, while the MEPhI engineering degree program tends to serve students west of the Urals. DOEs goal is to foster interest and knowledge in nonproliferation and support the establishment of self-sustaining degree programs that produce the next generation of safeguards experts. This paper describes progress on these education programs and our vision for the future.

  18. Lung Cancer Precision Medicine Trials: Adapting to Progress

    Cancer.gov

    Patients with lung cancer are benefiting from the boom in targeted and immune-based therapies. With a series of precision medicine trials, NCI is keeping pace with the rapidly changing treatment landscape for lung cancer.

  19. Nuclear Waste Management. Semiannual progress report, April 1984-September 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-12-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; and supporting studies. 33 figures, 13 tables.

  20. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  1. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-06-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  2. Application of Technetium and Rhenium in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Alberto, Roger

    2012-06-01

    Technetium and Rhenium are the two lower elements in the manganese triad. Whereas rhenium is known as an important part of high resistance alloys, technetium is mostly known as a cumbersome product of nuclear fission. It is less known that its metastable isotope 99mTc is of utmost importance in nuclear medicine diagnosis. The technical application of elemental rhenium is currently complemented by investigations of its isotope 188Re, which could play a central role in the future for internal, targeted radiotherapy. This article will briefly describe the basic principles behind diagnostic methods with radionuclides for molecular imaging, review the 99mTc-based radiopharmaceuticals currently in clinical routine and focus on the chemical challenges and current developments towards improved, radiolabeled compounds for diagnosis and therapy in nuclear medicine.

  3. Society of Nuclear Medicine--57th annual meeting.

    PubMed

    Searle, Ben

    2010-08-01

    The 57th Annual Meeting of the Society of Nuclear Medicine, held in Salt Lake City, UT, USA, included topics covering new developments in imaging agents and radiopharmaceutical therapies in the field of nuclear medicine. This conference report highlights selected presentations related to imaging of the brain, the prediction of heart disease, and the detection and treatment of various cancers. Investigational drugs discussed include TF-2 plus [68Ga]IMP-288 and TF-2 plus [111In]IMP-288 (both Immunomedics Inc), [11C]PBR-170 (Royal Prince Alfred Hospital/Australian Nuclear Science & Technology Organization), [11C]LY-2795050 (Eli Lilly & Co), yttrium (90Y) clivatuzumab tetraxetan (Garden State Cancer Center/Immunomedics Inc), [18F]LMI-1195 (Lantheus Medical Imaging Inc), fluciclovine (18F) (GE Healthcare/Nihon Medi-Physics Co Ltd), [99mTc]MIP-1340 and [99mTc]MIP-1407 (both Molecular Insight Pharmaceuticals Inc). PMID:20721816

  4. Discharges of nuclear medicine radioisotopes in Spanish hospitals.

    PubMed

    Krawczyk, E; Piero-Garca, F; Ferro-Garca, M A

    2013-02-01

    Given the increasing use of radiopharmaceuticals in medicine, the aim of this paper is to determine radioactivity levels in the effluents of hospitals with Nuclear Medicine Departments. The radiological study of hospital discharges was carried out by gamma spectrometry, and liquid scintillation spectrometry to determine (14)C and (3)H contents. On March 9th and April 19th, 2010, daily radioactivity levels were monitored from 8:30 a.m. to 7:30 p.m. Each sample was collected at a specific control point of two major public hospitals in Granada (Spain). The analytical results show the presence of radionuclides such as (99m)Tc, (131)I, (67)Ga, and (111)In.They are frequently used in nuclear medicine for diagnostic and/or therapeutic purposes. This study shows the differences between direct and after-storage discharges and also justifies the need of storage tanks in hospitals with nuclear medicine departments. Moreover, monitoring of (99m)Tc released at hospital control points can be a useful tool for optimizing the safety conditions of storage tanks and discharge of radionuclides. PMID:23103581

  5. Current procedural terminology coding of nuclear medicine procedures.

    PubMed

    McKusick, K A; Quaife, M A

    1993-01-01

    The future of nuclear medicine is dependent on payment for new procedures. Today, the basis of payment by the federal government is a relative value unit (RVU) system; the RVUS employed in this system are for medical services and procedures listed and described in Physicians' Current Procedural Terminology, fourth edition. Current procedural terminology (CPT) is maintained by the AMA; annual revisions include adding new codes or revised or deleted old codes. This process involves all national medical specialty societies. Starting in 1992 a new process, the Relative Updating Committee, which was initiated by the AMA, organized medicine to formalize a method for recommending relative values for physician procedures and services. In this rapidly changing scenario, all nuclear medicine procedure codes are under review by the coding and nomenclature committees of the medical societies interested in imaging. Significant CPT changes and additions were made in the cardiovascular nuclear medicine codes in 1992, reflecting the current imaging protocols and pharmacological agents for performing cardiac stress testing and new codes that recognize combinations of ventricular function measurements in patients undergoing myocardial perfusion imaging with technetium-99m agents. PMID:8469995

  6. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1990-01-01

    Further progress has been made on improving the uniformity and stability of PCR-I, the single ring analog coded tomograph. This camera has been employed in a wide range of animal studies described below. Data from PCR-I have been used in various image processing procedures. These include motion pictures of dog heart, comparison of PET and MRI image in dog heart and rat brain and quantitation of tumor metabolism in the nude mouse using blood data from heart images. A SUN workstation with TAAC board has been used to produce gated three-dimensional images of the dog heart. The ANALYZE program from the Mayo Clinic has also been mounted on a SUN workstation for comparison of images and image processing. 15 refs., 6 figs.

  7. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  8. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  9. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  10. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  11. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  12. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  13. MEDICAL PROGRESS: ISOTOPES IN CLINICAL AND EXPERIMENTAL MEDICINE

    PubMed Central

    Dougherty, Ellsworth C.; Lawrence, John H.

    1948-01-01

    This is Part II of an article in two parts. Part I appeared in the July issue of California Medicine, and with it were the list of references for the entire article and the Table 1 referred to in the following text. PMID:18731514

  14. The progress test of medicine: the Dutch experience.

    PubMed

    Tio, Ren A; Schutte, Bert; Meiboom, Ariadne A; Greidanus, Janke; Dubois, Eline A; Bremers, Andre J A

    2016-02-01

    Progress testing in the Netherlands has a long history. It was first introduced at one medical school which had a problem-based learning (PBL) curriculum from the start. Later, other schools with and without PBL curricula joined. At present, approximately 10,000 students sit a test every three months. The annual progress exam is not a single test. It consists of a series of 4 tests per annum which are summative in the end. The current situation with emphasis on the formative and summative aspects will be discussed. The reader will get insight into the way progress testing can be used as feedback for students and schools. PMID:26754310

  15. Nuclear medicine in clinical neurology: an update

    SciTech Connect

    Oldendorf, W.H.

    1981-01-01

    Isotope scanning using technetium 99m pertechnetate has fallen into disuse since the advent of x-ray computerized tomography. Regional brain blood flow studies have been pursued on a research basis. Increased regional blood flow during focal seizure activity has been demonstrated and is of use in localizing such foci. Cisternography as a predictive tool in normal pressure hydrocephalus is falling into disuse. Positron tomographic scanning is a potent research tool that can demonstrate both regional glycolysis and blood flow. Unfortunately, it is extremely expensive and complex to apply in a clinical setting. With support from the National Institutes of Health, seven extramural centers have been funded to develop positron tomographic capabilities, and they will greatly advance our knowledge of stroke pathophysiology, seizure disorders, brain tumors, and various degenerative diseases. Nuclear magnetic resonance imaging is a potentially valuable tool since it creates tomographic images representing the distribution of brain water. No tissue ionization is produced, and images comparable to second-generation computerized tomographic scans are already being produced in humans.

  16. Nuclear structure at intermediate energies. Progress report

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1992-07-15

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS {bar p} experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance.

  17. [Hodgkin's lymphoma in nuclear medicine: diagnostic and therapeutic aspects].

    PubMed

    Staak, J O; Dietlein, M; Engert, A; Weihrauch, M R; Schomcker, K; Fischer, Th; Eschner, W; Borchmann, P; Diehl, V; Schicha, H; Schnell, R

    2003-02-01

    Today, diagnostic and therapeutic strategies of Hodgkin lymphoma (HL) with positron emission tomography and radioimmunotherapy include state-of-the-art nuclear medicine which require the cooperation between oncology and nuclear medicine. The benefit of FDG-PET in HL patients with residual tumor masses consists of its high negative predictive value in the therapy control of the disease. The concept of waitful watching in patients with PET-negative residual masses after BEACOPP-chemotherapy will be evaluated in a large multicenter trial of the GHSG (German Hodgkin Study Group). Radioimmunotherapy has been performed in patients with CD20-positive Non-Hodgkin lymphoma for 10 years with promising results. HL is also an excellent target for immunotherapy due to the expression of antigens such as CD25 and CD30. Thus, a new radioimmunoconstruct consisting of the murine anti-CD30 antibody Ki-4 labeled with iodine-131 was developed for patients with relapsed or refractory HL. PMID:12601450

  18. Forensic Medicine: Age Written in Teeth by Nuclear Bomb Tests

    SciTech Connect

    Lawrence Livermore National Laboratory

    2005-05-04

    Establishing the age of individuals is an important step in identification and a frequent challenge in forensic medicine. This can be done with high precision up to adolescence by analysis of dentition, but establishing the age of adults has remained difficult. Here we show that measuring {sup 14}C from nuclear bomb tests in tooth enamel provides a sensitive way to establish when a person was born.

  19. Initial experience with a nuclear medicine viewing workstation

    NASA Astrophysics Data System (ADS)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  20. Liver phantom for quality control and training in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Lima Ferreira, Fernanda Carla; Souza, Divanizia do Nascimento

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  1. Assessment of OEP health's risk in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M.

    2012-10-01

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  2. Assessment of OEP health's risk in nuclear medicine

    SciTech Connect

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M.

    2012-10-23

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 {+-} 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  3. American College of Nuclear Physics 1991 DOE day symposium: Aids and nuclear medicine

    SciTech Connect

    1991-12-31

    Since first described in 1981, the acquired immunodeficiency syndrome (AIDS) has become the medical dilemma of the century. AIDS retrovirus, and the economic consequences of this exposure are staggering. AIDS has been the topic of conferences and symposia worldwide. This symposium, to be held on January 25, 1991, at the 17th Annual Meeting and Scientific Sessions of the American College of Nuclear Physicians, will expose the Nuclear Medicine Physicians/Radiologists to their role in the diagnosis of AIDS, and will educate them on the socio-economic and ethical issues related to this problem. In addition, the Nuclear Medicine Physicians/Radiologists must be aware of their role in the management of their departments in order to adequately protect the health care professionals working in their laboratories. Strategies are currently being developed to control the spread of bloodborne diseases within the health care setting, and it is incumbent upon the Nuclear Medicine community to be aware of such strategies.

  4. Pluripotent stem cells in regenerative medicine: challenges and recent progress

    PubMed Central

    Tabar, Viviane; Studer, Lorenz

    2015-01-01

    After years of incremental progress, several recent studies have succeeded in deriving disease-relevant cell types from human pluripotent stem cell (hPSC) sources. The prospect of an unlimited cell source, combined with promising preclinical data, indicates that hPSC technology may be on the verge of clinical translation. In this Review, we discuss recent progress in directed differentiation, some of the new technologies that have facilitated the success of hPSC therapies and the remaining hurdles on the road towards developing hPSC-based cell therapies. PMID:24434846

  5. Antimalarial Drug Discovery: Approaches and Progress towards New Medicines

    PubMed Central

    Flannery, Erika L.; Chatterjee, Arnab K.; Winzeler, Elizabeth A.

    2014-01-01

    Malaria elimination has recently been reinstated as a global health priority but current therapies seem to be insufficient for the task. Elimination efforts require new drug classes that alleviate symptoms, prevent transmission and provide a radical cure. To develop these next generation medicines, public-private partnerships are funding innovative approaches to identify compounds that target multiple parasite species at multiple stages of the parasite lifecycle. Here, we review the cell-, chemistry- and target-based approaches used to discover new drug candidates that are currently in clinical trials or undergoing preclinical testing. PMID:24217412

  6. Nano Traditional Chinese Medicine: Current Progresses and Future Challenges.

    PubMed

    Huang, Yi; Zhao, Yinglan; Liu, Fang; Liu, Songqing

    2015-01-01

    Nano traditional Chinese medicine (nano TCM) refers to bioactive ingredients, bioactive parts, medicinal materials or complex prescription, being approximately 100 nm in size, which are processed by nanotechnology. Nano TCM is a product of the TCM modernization, and is an application of nanotechnology in the field of TCM. This article reviews literatures on researches of nano TCM, which were published in the past 15 years. Different nanotechnologies have been used in preparation of Nano TCM in view of the varying aims of the study. The mechanical crushing technology is the main approach for nanolization of TCM material and complex prescription, and nanoparticulate drug delivery systems is the main approach for nanolization of bioactive ingredients or bioactive parts in TCM. Nano TCM has a number of advantages, for example, enhancing the bioavailability of TCM, reducing the adverse effects of TCM, achieving sustained release, attaining targeted delivery, enhancing pharmacological effects and improving the administration route of TCM. However, there are still many problems that must be resolved in nano TCM research. The main challenges to nano TCM include the theory system of TCM modernization, preparation technology, safety and stability, etc. PMID:25751006

  7. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Final performance report, January 1, 1989--December 31, 1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail.

  8. Education and training in family medicine: progress and a proposed national vision for 2030

    PubMed Central

    Goh, Lee Gan; Ong, Chooi Peng

    2014-01-01

    This review provides an update of education and training in family medicine in Singapore and worldwide. Family medicine has progressed much since 1969 when it was recognised as the 20th medical discipline in the United States. Three salient changes in the local healthcare landscape have been noted over time, which are of defining relevance to family medicine in Singapore, namely the rise of noncommunicable chronic diseases, the care needs of an expanding elderly population, and the care of a larger projected population in 2030. The change in the vision of family medicine into the future refers to a new paradigm of one discipline in many settings, and not limited to the community. Family medicine needs to provide a patient-centred medical home, and the disciplines education and training need to be realigned. The near-term training objectives are to address the service, training and research needs of a changing and challenging healthcare landscape. PMID:24664375

  9. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  10. Center of Excellence in laser medicine. Progress performance report

    SciTech Connect

    Parrish, J.A.

    1993-04-29

    Achievements during the last 12 months of funding to initiate a Center of Excellence in biomedical laser development include: seven specific research projects within the Center`s three broad interest areas, and program development to establish the MGH Laser Center and its activities. Progress in the three interest areas namely new medical laser systems development, optical diagnostics and photo sensitization is reported. Feasibility studies and prototype development were emphasized, to enhance establishing a substantial Center through future support. Specific projects are outlined below. In addition, the interdepartmental MGH Laser Center`s activities and accomplishments.

  11. Tissue engineering and regenerative medicine: history, progress, and challenges.

    PubMed

    Berthiaume, Franois; Maguire, Timothy J; Yarmush, Martin L

    2011-01-01

    The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured tissues. A significant portion of this effort has been translated to actual therapies, especially in the areas of skin replacement and, to a lesser extent, cartilage repair. A good amount of thoughtful work has also yielded prototypes of other tissue substitutes such as nerve conduits, blood vessels, liver, and even heart. Forward movement to clinical product, however, has been slow. Another offshoot of these efforts has been the incorporation of some new exciting technologies (e.g., microfabrication, 3D printing) that may enable future breakthroughs. In this review we highlight the modest beginnings of the field and then describe three application examples that are in various stages of development, ranging from relatively mature (skin) to ongoing proof-of-concept (cartilage) to early stage (liver). We then discuss some of the major issues that limit the development of complex tissues, some of which are fundamentals-based, whereas others stem from the needs of the end users. PMID:22432625

  12. Role of nuclear medicine in chemotherapy of malignant lesions

    SciTech Connect

    Kim, E.E.; Haynie, T.P.

    1985-01-01

    The major role of nuclear medicine in clinical oncology is in tumor imaging, which includes evaluating specific organs or the entire body for the presence of tumor. Nuclear medicine studies have been used clinically in the initial evaluation of the tumor extent and in the subsequent management of the cancer patient to assess response to treatment, to detect early relapse, and to assist in making decisions concerning follow-up treatment. Technetium-99m macroaggregated albumin perfusion study for intraarterial chemotherapy has been helpful in monitoring the catheter tip, providing a map of regional perfusion at the capillary level (tumor vascularity), evaluating the degree of arteriovenous shunt in tumor bed, and optimizing division of the dose of chemotherapeutic agent when bilateral arterial catheters are used. Quantitative and serial radionuclide angiocardiography has been useful in assessing doxorubicin (Adriamycin, Adria Laboratories, Columbus, Ohio) toxicity, and /sup 67/Ga-citrate imaging has been used to monitor chemotherapy effect on lungs and kidneys. Radionuclide venography can demonstrate suspected thrombus, and the delineation of the vascular anatomy also allows proper placement of another catheter for continuous effective chemotherapy. Serial bone scans have been the primary modality to assess the response of bone metastasis to systemic therapy in breast cancer patients, and nuclear hepatic imaging may show tumor response, hepatocellular dysfunction, and cholecystitis related to chemotherapeutic agents. 41 references.

  13. Center of excellence in laser medicine. Progress report

    SciTech Connect

    Parrish, J.A.

    1992-09-01

    Achievements during the first six months of funding to prepare for a Center of Excellence in biomedical laser development include limited specific research projects within the Center`s three broad interest areas, and program development to establish the Center and its activities. Progress in the three interest areas -- new medical laser systems development, optical diagnostics, and photosensitization, is reported. Feasibility studies and prototype development were emphasized, to enhance establishing a substantial Center through future support. Specific projects are an optimized laser-catheter system for reversal of vasospasm; optical detection of major skin burn depth and cancers using fluorescent drugs, and photosensitization of vascular tissues. In addition, an interdepartmental Laser Center was established at MGH to enhance collaborations and institutional committment to the Center of Excellence. Competitive postdoctoral research fellowships, with provision for matching funds from other departments, have been announced.

  14. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine.

    PubMed

    Lee, Kuo-Hsiung; Morris-Natschke, Susan L; Yang, Xiaoming; Huang, Rong; Zhou, Ting; Wu, Shou-Fang; Shi, Qian; Itokawa, Hideji

    2012-04-01

    This article will review selected herbal products used in traditional Chinese medicine, including medicinal mushrooms ( b? x? m g?; Agaricus blazei, yn zh?; Coriolus versicolor, lng zh?; Ganoderma lucidum, xi?ng xn; shiitake, Lentinus edodes, ni zh?ng zh?; Taiwanofungus camphoratus), Cordyceps ( d?ng chng xi c?o), pomegranate ( sh li; Granati Fructus), green tea ( l? ch; Theae Folium Non Fermentatum), garlic ( d sun; Allii Sativi Bulbus), turmeric ( ji?ng hung; Curcumae Longae Rhizoma), and Artemisiae Annuae Herba ( q?ng h?o; sweet wormwood). Many of the discussed herbal products have gained popularity in their uses as dietary supplements for health benefits. The review will focus on the active constituents of the herbs and their bioactivities, with emphasis on the most recent progress in research for the period of 2003 to 2011. PMID:24716120

  15. Interface requirements in nuclear medicine devices and systems

    SciTech Connect

    Maguire, G.Q. Jr.; Brill, A.B.; Noz, M.E.

    1982-01-01

    Interface designs for three nuclear medicine imaging systems, and computer networking strategies proposed for medical imaging departments are presented. Configurations for two positron-emission-tomography devices (PET III and ECAT) and a general-purpose tomography instrument (the UNICON) are analyzed in terms of specific performance parameters. Interface designs for these machines are contrasted in terms of utilization of standard versus custom modules, cost, and ease of modification, upgrade, and support. The requirements of general purpose systems for medical image analysis, display, and archiving, are considered, and a realizable state-of-the-art system is specfied, including a suggested timetable.

  16. Application of pet radionuclides for nuclear medicine targeted therapies

    SciTech Connect

    Finn, R.D.; Macapinlac, H.; Humm, J.; Pentlow, K.; McDevitt, M.; Tjuvajev, J.; Blasberg, R.; Scheinberg, D.; Larson, S.; Zweit, J.

    1997-02-01

    Nuclear medicine is the specialty of medical imaging which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts in this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radio-labeled tracers necessary to achieve the time-dependent molecular image. Preliminary results from our laboratory directed at oncologic applications include the preparation of specific PET radionuclides which allow an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. Illustrative examples and operational considerations of specific accelerator-produced radionuclides are presented. {copyright} {ital 1997 American Institute of Physics.}

  17. Anniversary Paper: Nuclear medicine: Fifty years and still counting

    PubMed Central

    Williams, Lawrence E.

    2008-01-01

    The history, present status, and possible future of nuclear medicine are presented. Beginning with development of the rectilinear scanner and gamma camera, evolution to the present forms of hybrid technology such as single photon emission computed tomography∕computed tomography (CT) and positron emission tomography∕CT is described. Both imaging and therapy are considered and the recent improvements in dose estimation using hybrid technologies are discussed. Future developments listed include novel radiopharmaceuticals created using short chains of nucleic acids and varieties of nanostructures. Patient-specific radiotherapy is an eventual outcome of this work. Possible application to proving the targeting of potential chemotherapeutics is also indicated. PMID:18697524

  18. Nuclear Medicine in Thyroid Diseases in Pediatric and Adolescent Patients

    PubMed Central

    Volkan-Salancı, Bilge; Özgen Kıratlı, Pınar

    2015-01-01

    Both benign and malignant diseases of the thyroid are rare in the pediatric and adolescent population, except congenital hypothyroidism. Nuclear medicine plays a major role, both in the diagnosis and therapy of thyroid pathologies. Use of radioactivity in pediatric population is strictly controlled due to possible side effects such as secondary cancers; therefore, management of pediatric patients requires detailed literature knowledge. This article aims to overview current algorithms in the management of thyroid diseases and use of radionuclide therapy in pediatric and adolescent population. PMID:26316469

  19. Anniversary Paper: Nuclear medicine: Fifty years and still counting

    SciTech Connect

    Williams, Lawrence E.

    2008-07-15

    The history, present status, and possible future of nuclear medicine are presented. Beginning with development of the rectilinear scanner and gamma camera, evolution to the present forms of hybrid technology such as single photon emission computed tomography/computed tomography (CT) and positron emission tomography/CT is described. Both imaging and therapy are considered and the recent improvements in dose estimation using hybrid technologies are discussed. Future developments listed include novel radiopharmaceuticals created using short chains of nucleic acids and varieties of nanostructures. Patient-specific radiotherapy is an eventual outcome of this work. Possible application to proving the targeting of potential chemotherapeutics is also indicated.

  20. The birth of nuclear medicine instrumentation: Blumgart and Yens, 1925.

    PubMed

    Patton, Dennis D

    2003-08-01

    In 1925, Hermann Blumgart performed the first diagnostic procedure using radioactive indicators on humans; this first is well recognized. Less well recognized is the fact that Blumgart and his coworker Otto C. Yens, then a medical student, developed the first instrumentation used in a diagnostic procedure involving radioactive indicators. The instrumentation, a modified Wilson cloud chamber, turned out to be the detector most suitable for their purpose. Blumgart also showed remarkable foresight in outlining the requirements both for a satisfactory indicator (tracer) and for a satisfactory detector--requirements that still hold true today. The Blumgart-Yens modified cloud chamber was the birth of nuclear medicine instrumentation. PMID:12902429

  1. Evolving Important Role of Lutetium-177 for Therapeutic Nuclear Medicine.

    PubMed

    Pillai, Ambikalmajan M R; Knapp, Furn F Russ

    2015-01-01

    Lutetium-177 ((177)Lu) is a late entrant into the nuclear medicine therapy arena but is expected to become one of the most widely used therapeutic radionuclides. This paper analyses the reason for the increasing preference of (177)Lu as a therapeutic radionuclide. While the radionuclidic properties favor its use for several therapeutic applications, the potential for large scale production of (177)Lu is also an important aspect for its acceptability as a therapeutic radionuclide. This introductory discussion also summarizes some developing clinical uses and suggested future directions for applications of (177)Lu. PMID:25771380

  2. Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing

    PubMed Central

    Ong, Frank S; Das, Kingshuk; Wang, Jay; Vakil, Hana; Kuo, Jane Z; Blackwell, Wendell-Lamar B; Lim, Stephen W; Goodarzi, Mark O; Bernstein, Kenneth E; Rotter, Jerome I; Grody, Wayne W

    2012-01-01

    In the field of oncology, clinical molecular diagnostics and biomarker discoveries are constantly advancing as the intricate molecular mechanisms that transform a normal cell into an aberrant state in concert with the dysregulation of alternative complementary pathways are increasingly understood. Progress in biomarker technology, coupled with the companion clinical diagnostic laboratory tests, continue to advance this field, where individualized and customized treatment appropriate for each individual patient define the standard of care. Here, we discuss the current commonly used predictive pharmacogenetic biomarkers in clinical oncology molecular testing: BRAF V600E for vemurafenib in melanoma; EML4–ALK for crizotinib and EGFR for erlotinib and gefitinib in non-small-cell lung cancer; KRAS against the use of cetuximab and panitumumab in colorectal cancer; ERBB2 (HER2/neu) for trastuzumab in breast cancer; BCR–ABL for tyrosine kinase inhibitors in chronic myeloid leukemia; and PML/RARα for all-trans-retinoic acid and arsenic trioxide treatment for acute promyelocytic leukemia. PMID:22845480

  3. Image Reconstruction for Prostate Specific Nuclear Medicine imagers

    SciTech Connect

    Mark Smith

    2007-01-11

    There is increasing interest in the design and construction of nuclear medicine detectors for dedicated prostate imaging. These include detectors designed for imaging the biodistribution of radiopharmaceuticals labeled with single gamma as well as positron-emitting radionuclides. New detectors and acquisition geometries present challenges and opportunities for image reconstruction. In this contribution various strategies for image reconstruction for these special purpose imagers are reviewed. Iterative statistical algorithms provide a framework for reconstructing prostate images from a wide variety of detectors and acquisition geometries for PET and SPECT. The key to their success is modeling the physics of photon transport and data acquisition and the Poisson statistics of nuclear decay. Analytic image reconstruction methods can be fast and are useful for favorable acquisition geometries. Future perspectives on algorithm development and data analysis for prostate imaging are presented.

  4. Avoidable challenges of a nuclear medicine facility in a developing nation

    PubMed Central

    Adedapo, Kayode Solomon; Onimode, Yetunde Ajoke; Ejeh, John Enyi; Adepoju, Adewale Oluwaseun

    2013-01-01

    The role of nuclear medicine in disease management in a developing nation is as impactful as it is in other regions of the world. However, in the developing world, the practice of nuclear medicine is faced with a myriad of challenges, which can be easily avoided. In this review, we examine the many avoidable challenges to the practice of nuclear medicine in a developing nation. The review is largely based on personal experiences of the authors who are the pioneers and current practitioners of nuclear medicine in a typical developing nation. If the challenges examined in this review are avoided, the practice of nuclear medicine in such a nation will be more effective and practitioners will be more efficient in service delivery. Hence, the huge benefits of nuclear medicine will be made available to patients in such a developing nation. PMID:24379527

  5. Select the optimized effective dose to reduce nuclear radiations in pediatric nuclear medicine.

    PubMed

    Bai, Ying; Wang, Dali

    2014-01-01

    Many techniques and research models on calculating and reducing the nuclear radiation dose on pediatric nuclear medicine procedure have been developed and reported in recent years. However, most those models either utilized simple shapes to present the organs or used more realistic models to estimate the nuclear dose applied on pediatric patients. The former are too simple to provide accurate estimation results, and the latter are too complicated to intensively involve complex calculations. In this study, a simple but practical model is developed to enable physicians to easily and quickly calculate and select the average optimal effective nuclear dose for the given age and body-size of the pediatric patients. This model is built based on one research result reported by Frederic Fahey, et al and it can be easily implemented in most common pediatric nuclear medicine procedures. This is the first research of using fuzzy inference system to calculate the optimal effective dose applied in the nuclear medicine for pediatric patients. PMID:25191111

  6. Select the Optimized Effective Dose to Reduce Nuclear Radiations in Pediatric Nuclear Medicine

    PubMed Central

    Bai, Ying; Wang, Dali

    2014-01-01

    Many techniques and research models on calculating and reducing the nuclear radiation dose on pediatric nuclear medicine procedure have been developed and reported in recent years. However, most those models either utilized simple shapes to present the organs or used more realistic models to estimate the nuclear dose applied on pediatric patients. The former are too simple to provide accurate estimation results, and the latter are too complicated to intensively involve complex calculations. In this study, a simple but practical model is developed to enable physicians to easily and quickly calculate and select the average optimal effective nuclear dose for the given age and body-size of the pediatric patients. This model is built based on one research result reported by Frederic Fahey, et al and it can be easily implemented in most common pediatric nuclear medicine procedures. This is the first research of using fuzzy inference system to calculate the optimal effective dose applied in the nuclear medicine for pediatric patients. PMID:25191111

  7. Nuclear Medicine in Diagnosis of Prosthetic Valve Endocarditis: An Update

    PubMed Central

    Musso, Maria; Petrosillo, Nicola

    2015-01-01

    Over the past decades cardiovascular disease management has been substantially improved by the increasing introduction of medical devices as prosthetic valves. The yearly rate of infective endocarditis (IE) in patient with a prosthetic valve is approximately 3 cases per 1,000 patients. The fatality rate of prosthetic valve endocarditis (PVE) remains stable over the years, in part due to the aging of the population. The diagnostic value of echocardiography in diagnosis is operator-dependent and its sensitivity can decrease in presence of intracardiac devices and valvular prosthesis. The modified Duke criteria are considered the gold standard for diagnosing IE; their sensibility is 80%, but in clinical practice their diagnostic accuracy in PVE is lower, resulting inconclusively in nearly 30% of cases. In the last years, these new imaging modalities have gained an increasing attention because they make it possible to diagnose an IE earlier than the structural alterations occurring. Several studies have been conducted in order to assess the diagnostic accuracy of various nuclear medicine techniques in diagnosis of PVE. We performed a review of the literature to assess the available evidence on the role of nuclear medicine techniques in the diagnosis of PVE. PMID:25695043

  8. Problems in detection and measurement in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Aysun Ugur, Fatma

    2015-07-01

    Nuclear Medicine studies are performed with a variety of types of radiation measurement instruments, depending on the kind of radiation source that is being measured and the type of information sought. For example, some instruments are designed for in vitro measurements on blood samples, urine specimens, and so forth. Others are designed for in vivo measurements of radioactivity in patients. All these instruments have special design characteristics to optimize them for their specific tasks, as described in this study; however, some considerations of design characteristics and performance limitations are common to all of them. An important consideration for any radiation measurement instrument is its detection efficiency. Maximum detection efficiency is desirable because one thus obtains maximum information with a minimum amount of radioactivity. Also important are instrument's counting rate limitations. There are finite counting rate limits for all counting and imaging instruments used in nuclear medicine, above which accurate results are obtained because of data losses and other data distortions. Non penetrating radiations, such as particles, have special detection and measurement problems. In this study, some of these general considerations have been discussed.

  9. Recent progress on nuclear parton distribution functions

    SciTech Connect

    Hirai, M.; Saito, K.; Kumano, S.

    2011-09-21

    We report current status of global analyses on nuclear parton distribution functions (NPDFs). The optimum NPDFs are determined by analyzing high-energy nuclear reaction data. Due to limited experimental measurements, antiquark modifications have large uncertainties at x > 0.2 and gluon modifications cannot be determined. A nuclear modification difference between u and d quark distributions could be an origin of the long-standing NuTeV sin{sup 2}{theta}{sub w} anomaly. There is also an issue of nuclear modification differences between the structure functions of charged-lepton and neutrino reactions. Next, nuclear clustering effects are discussed in structure functions F{sub 2}{sup A} as a possible explanation for an anomalous result in the {sup 9}Be nucleus at the Thomas Jefferson National Accelerator Facility (JLab). Last, tensor-polarized quark and antiquark distribution functions are extracted from HERMES data on the polarized structure function b{sub 1} of the deuteron, and they could be used for testing theoretical models and for proposing future experiments, for example, the one at JLab. Such measurements could open a new field of spin physics in spin-one hadrons.

  10. Progress in noise thermometry for nuclear applications

    SciTech Connect

    Lopez, A. L.; Villard, J. F.

    2011-07-01

    The effects of nuclear radiations on conventional thermocouples (type K, C and N) mainly used in irradiation experiments may create significant drifts of the signals. In order to solve these difficulties, the CEA (French Nuclear Energy Commission) has developed and qualified in laboratory conditions miniature devices, which combine a noise thermometer and intrinsic thermocouples (NT-TC), for future application in a research reactor. In this paper, a particular approach of combined NT-TC sensors is described. Present measurements, based on a correlation and a comparison technique, have been performed in a typical laboratory environment between 200 and 400 deg. C which are typical temperatures in materials irradiation experiments. (authors)

  11. [Research progress on medicinal resources of Mylabris and close origin species].

    PubMed

    Zhang, Jianhui; Chen, Jianwei; Li, Xiang

    2009-03-01

    The paper summarizes the research progress on the medicinal resources of Mylabris and close origin species in recent years. Besides the 45 species in 7 genus within Meloidae insects which contain cantharidin, there are also more 9 species in 7 close origin genus containing cantharidin which include Zanna, Fulgora and Lycorma within Fulgoridae of Homoptera, Oxocopis, Heliocis Xanthochroa and Oedemera within Oedemeridae of Coleoptera. New medicinal resources of cantharidin are redundant, there are biological relationships in the biosynthesis of cantharidin, the emerge of cantharidin is related to ecology and there is more attention on the new methods of utilizing Mylabris resources such as living body extraction. PMID:19623996

  12. Measurement of doses to the extremities of nuclear medicine staff

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled therapeutic 131I (2.5 mSv). In conclusion, the maximum expected annual dose to extremities is less than the annual limit (500 mSv/y).

  13. Photons across medicine: relating optical and nuclear imaging

    PubMed Central

    Nordstrom, Robert; Cherry, Simon; Azhdarinia, Ali; Sevick-Muraca, Eva; VanBrocklin, Henry

    2013-01-01

    The Optics in the Life Sciences conference sponsored by the Optical Society of America was held in Waikoloa Beach, HI on April 14 – 18, 2013. Papers were presented in the areas of Bio-Optics: Design & Application, Novel Techniques in Microscopy, Optical Molecular Probes, Imaging & Drug Delivery, and Optical Trapping Applications. A focal point of the meeting was a special symposium entitled “Photons Across Medicine”, organized by Adam Wax, Duke University, highlighting activities of joint interest between the Optical Society of America (OSA) and the Society for Nuclear Medicine and Molecular Imaging (SNMMI). This paper is a synopsis of the presentations made at this joint symposium. Central to the special symposium presentations was the fact that the optical and nuclear imaging communities share common interests and challenges. These are highlighted in this article. Also discussed was the fact that the nuclear technologies in imaging have found their way into general clinical utility, a feat that has yet to be achieved by optical methods. Because of the common ground shared by the two technologies, coordination between the two societies should be planned. PMID:24409377

  14. Nuclear rocket propulsion: NASA plans and progress - FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space exploration initiative (SEI) human and robotic missions to the Moon and to Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  15. Nuclear rocket propulsion. NASA plans and progress, FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space explorer initiative (SEI) human and robotic missions to the moon and Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  16. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  17. Nuclear medicine technology. Progress report, quarter ending March 31, 1980

    SciTech Connect

    Knapp, F.F. Jr.

    1980-10-01

    The successful detection of experimentally produced myocardial infarctions in rats and dogs using /sup 123m/Te-9-telluraheptadecanoic acid (9-(/sup 123m/Te)-THDA) is described. Preferential localization of radioactivity in normal myocardial tissue of rats that had experimentally produced infarctions was also demonstrated by tissue distribution studies following injection of 9-(/sup 123m/Te)-THDA. The effects of chain length on the myocardial uptake of /sup 75/Se-labeled long-chain fatty acids was also studied further. Selenium-75-labeled 13-selenaheneicosonic acid (H/sub 3/C-(CH/sub 2/)/sub 7/-/sup 75/Se-(CH/sub 2/)/sub 11/-COOH, 13-(/sup 75/Se)-SHCA) shows the highest heart uptake in rats of the agents studied. These results indicate that myocardial imaging may be possible with 13-(/sup 75/Se)-SHCA and also suggest that potential positron emission tomography of the myocardium with the /sup 73/Se-labeled agent should be explored. The results of continuing studies with /sup 11/C and /sup 195m/Pt-labeled agents are also described. A variety of /sup 11/C-labeled amino acids were prepared and tested as pancreas and tumor localizing agents in a Medical Cooperative Program with the Oak Ridge Associated Universities. The microscale synthesis of /sup 195m/Pt-labeled cis-dichloro-trans-dihydroxy-bis-(isopropylamine)platinum(IV) (/sup 195m/Pt-CHIP) was developed further and preliminary tissue distribution studies with this important second-generation antitumor drug were completed in rats. Platinum-195m-labeled cis-dichlorodiammineplatinum(II) (/sup 195m/Pt-cis-DDP) was supplied for testing to a number of Medical Cooperative Programs. Studies of arsenic trioxide (As/sub 2/O/sub 3/) toxicity for human cells in the diffusion chamber assay system have continued. Further investigation of this arsenic-induced cytotoxicity has demonstrated a linear dose-response relationship and a difference in the permanence of the growth inhibitory effect using different doses.

  18. Nuclear Medicine Program progress report, quarter ending March 31, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.; Rice, D.E.

    1992-07-01

    We describe the design synthesis and initial animal testing of a new iodine-131-labeled triglyceride analogue for the potential evaluation of clinical pancreatic insufficiency. The new agent is 1,2-dipalmitoyl-3-[(15-p-iodophenyl)pentadecanoyl] rac-glycerol(1,2-Pal-3-IPPA). Following oral administration of the iodine-125-labeled agent to rats, 34.5+8.8% of the administered activity was excreted in the urine within one day, demonstrating that radioiodinated IPPA is absorbed in the intestine after release from the triglyceride by pancreatic lipase. The final catabolic product of IPPA is then conjugated and excreted via the urinary bladder. Urine analysis following oral administration of this new agent to patients may thus be a new, simple method for the clinical evaluation of various gastrointestinal diseases. The synthesis and the initial biological evaluation of the 3R-isomer of [{sup 125}I]IQNP are also described.

  19. Nuclear Medicine Program progress report, quarter ending March 31, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.; Rice, D.E.

    1992-07-01

    We describe the design synthesis and initial animal testing of a new iodine-131-labeled triglyceride analogue for the potential evaluation of clinical pancreatic insufficiency. The new agent is 1,2-dipalmitoyl-3-((15-p-iodophenyl)pentadecanoyl) rac-glycerol(1,2-Pal-3-IPPA). Following oral administration of the iodine-125-labeled agent to rats, 34.5+8.8% of the administered activity was excreted in the urine within one day, demonstrating that radioiodinated IPPA is absorbed in the intestine after release from the triglyceride by pancreatic lipase. The final catabolic product of IPPA is then conjugated and excreted via the urinary bladder. Urine analysis following oral administration of this new agent to patients may thus be a new, simple method for the clinical evaluation of various gastrointestinal diseases. The synthesis and the initial biological evaluation of the 3R-isomer of ({sup 125}I)IQNP are also described.

  20. Nuclear medicine progress report, quarter ending September 30, 1983

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Butler, T.A.; Goodman, M.M.; Srivastava, P.C.

    1984-01-01

    The results of a systematic evaluation of adsorbents for potential use in the /sup 191/Os//sup 191m/Ir medical radionuclide generator are described. The adsorbents included 39 inorganic materials broadly classified as oxides, antimonates, ferro-ferricyanides, phosphates, sulfides, and miscellaneous materials, and the organic anion-exchanger AGMP-1. The uptake of /sup 191/Os in oxidation states (VI), (IV) and (III) was measured and the adsorbents having a high /sup 191/Os uptake were evaluated for /sup 191m/Ir elution yield using three physiologically compatible eluents. The synthesis and evaluation of a variety of radiolabeled fatty acids as potential myocardial imaging agents has continued. Because of interest in the use of radiobrominated fatty acids for positron emission tomographic evaluation (PET) of myocardial disease, several bromine-82 labeled agents were prepared and studied. These include both cis (Z) and trans (E) 18-(/sup 82/Br)bromo-5-tellura-17-octadecenoic acid and 17-(/sup 82/Br)bromo-9-telluraphetadecanoic acid. A variety of telluraheptadecanoic acid (THDA) analogs and other fatty acids have been evaluated using the rat myoblast assay system. In the most recent studies 11-THDA, 18-bromo-9-THDA and 15-(iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP), were evaluated for myoblast uptake and retention.

  1. Nuclear medicine progress report for quarter ending September 30, 1984

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Goodman, M.M.; Srivastava, P.C.

    1984-12-01

    The preparation and animal testing of a new radio-iodinated p-iodophenylamine-linked dihydropyridine system is described. The model agent, 1-methyl-3-(N-(..beta..-(4-(/sup 125/I)iodophenyl)ethyl)carbamoyl)-1,4-dihydropyridine, was prepared by coupling 4-(/sup 125/I)iodoaniline with the methiodide salt succinimidyl ester of nicotinic acid followed by dithionite reduction to the lipid soluble product. The dihydropyridine agent showed good brain uptake in rats (5 min, 1.14% injected dose/gm; 60 min, 1.12% dose/gm) and good brain to blood ratios (5 min 3.9:1, 60 min, 3.5:1). In contrast the quaternary ammonium compound, prior to reduction, showed only moderate brain uptake (5 min, 0.63; 60 min, 0.46) and low brain to blood ratios (5 min, 0.05; 60 min, 0.06). Also described is further investigation of the effects of fasting on the relative myocardial retention of straight-chain iodovinyl fatty acids. 18-(/sup 125/)Iodo-17-octadecenoic acid showed good retention in unfasted rats. Studies have now been reported for fasted rats where this agent showed rapid myocardial wash-out. In fasted rats, approx. 70% wash-out at 30 min, and in unfasted rats, approx. 15% wash-out at 30 min was observed. During this period several shipments were made to Medical Cooperative investigators including three samples of /sup 191/Os-potassium osmate (Children's Hospital, Boston, and the University of Liege, Belgium) and 15-(p-(/sup 131/I)iodophenyl)-3-R,S-methylpentadecanoic acid (University of Massachusetts and Brookhaven National Laboratory).

  2. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  3. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F.A.; Packer, S.; Slatkin, D.N.

    1996-12-10

    A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.

  4. NMINT--introductory courseware for nuclear medicine: database design.

    PubMed Central

    Mankovich, N. J.; Verma, R. C.; Yue, A.; Veyne, D.; Ratib, O.; Bennett, L. R.

    1991-01-01

    Computer-Aided Instruction (CAI) provides a dynamic and self-paced learning experience to the medical trainee. Microcomputer based hypermedia systems integrate text, graphics, and image information. We present the design of an introductory CAI course for nuclear medicine called NMINT and elaborate on the underlying relational database that contains clinically relevant information and links to local or remote image storage over high speed networks. The IBM PS/2 Windows system uses Toolbook software augmented by C language modules for image and image-overlay database access. The current implementation stores text, graphical lesson material, and image index information on microcomputer magnetic disk; image data are stored on the attached optical disk. The storage architecture is described in detail. We emphasize its multi-access methods and its expandability into department-wide image networks. PMID:1807706

  5. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.

  6. Nuclear medicine in acute and chronic renal failure

    SciTech Connect

    Sherman, R.A.; Byun, K.J.

    1982-07-01

    The diagnostic value of renal scintiscans in patients with acute or chronic renal failure has not been emphasized other than for the estimation of renal size. /sup 131/I OIH, /sup 67/gallium, /sup 99m/TcDTPA, glucoheptonate and DMSA all may be valuable in a variety of specific settings. Acute renal failure due to acute tubular necrosis, hepatorenal syndrome, acute interstitial nephritis, cortical necrosis, renal artery embolism, or acute pyelonephritis may be recognized. Data useful in the diagnosis and management of the patient with obstructive or reflux nephropathy may be obtained. Radionuclide studies in patients with chronic renal failure may help make apparent such causes as renal artery stenosis, chronic pyelonephritis or lymphomatous kidney infiltration. Future correlation of scanning results with renal pathology promises to further expand nuclear medicine's utility in the noninvasive diagnosis of renal disease.

  7. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  8. The A-bomb, 50 years later: The evolution of nuclear medicine

    SciTech Connect

    Kotz, D.

    1995-08-01

    In the wake of the Hiroshima and Nagasaki bombings, the U.S. government began to invest heavily in its nuclear program. Nuclear medicine stood to gain from these postwar policies, but it also suffered some setbacks. Fifty years ago this month, two atomic bombs were dropped on Japan, killing thousands of civilians and ushering in a quick and final end to World War II. The beginning of the post-war era signaled the birth of nuclear medicine as it is widely applied today. In fact, the same nuclear reactor that produced elements for the A-bomb project was turned over for the mass production of radionuclides for medicine and industry. The link between the A-bomb and nuclear medicine, however, has always been a sensitive subject among nuclear physicians whose patients may associate radionuclide injections with mushroom clouds. Although this link is not justified, the government`s interest in developing nuclear technology following World War II did have a significant impact on nuclear medicine: on the upside, millions of federal dollars were funneled into the production of radionuclides for research and medicine. On the downside, Congress established the Atomic Energy Commission (AEC)-which later became the Nuclear Regulatory Commission (NRC)-to oversee safety issues, making nuclear medicine the only medical field regulated by a federal agency.

  9. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic.

    PubMed

    Whiting, Paul; Kerby, Julie; Coffey, Peter; da Cruz, Lyndon; McKernan, Ruth

    2015-10-19

    Since the first publication of the derivation of human embryonic stem cells in 1998, there has been hope and expectation that this technology will lead to a wave of regenerative medicine therapies with the potential to revolutionize our approach to managing certain diseases. Despite significant resources in this direction, the path to the clinic for an embryonic stem-cell-based regenerative medicine therapy has not proven straightforward, though in the past few years progress has been made. Here, with a focus upon retinal disease, we discuss the current status of the development of such therapies. We also highlight some of our own experiences of progressing a retinal pigment epithelium cell replacement therapy towards the clinic. PMID:26416684

  10. (In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine)

    SciTech Connect

    Not Available

    1989-01-01

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides.

  11. Theoretical nuclear structure and astrophysics. Progress report for 1996

    SciTech Connect

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops.

  12. Nuclear structure research. Annual progress report

    SciTech Connect

    Wood, J.L.

    1996-12-31

    The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA ({alpha} decay of very neutron-deficient Bi isotopes); MSU/NSCL ({beta} decay of {sup 56}Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; {beta} decay of {sup 58}Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling.

  13. Quantitative study of ductal breast cancer progression: nuclear signatures for evaluation of progression grade.

    PubMed

    Mombello, A; Mariuzzi, L; Morelli, L; Granchelli, G; Rucco, V; Tarocco, E; da Silva, V D; Thompson, D; Bartels, H G; Bartels, P H; Mariuzzi, G

    2001-07-01

    The evaluation of progressive morphological changes, with 93 morphometric parameters in tissue lesions representative of ductal breast cancer progression, has been performed in order to define in great detail the profile of chromatin texture (nuclear signature) changes. A gradual, distinctive increase in nuclear signature alterations from hyperplasia to infiltrating carcinoma has been found. The nuclear signatures' analysis of microinfiltrating foci in comedo DCIS showed sharp differences compared with those of comedo DCIS they derived from: these foci consist of cells with smaller and also more homogeneous nuclei. Opposite to the prominent heterogeneity of those of comedo DCIS: they appear to express a reduced clonality in the new, more progressed, cell population. Digital analysis of chromatin patterns seems to be useful, beyond mere extraction of individual features of value, in getting objective data for individual grading and prognosis of breast cancer. PMID:11753877

  14. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine

    PubMed Central

    Lee, Kuo-Hsiung; Morris-Natschke, Susan L.; Yang, Xiaoming; Huang, Rong; Zhou, Ting; Wu, Shou-Fang; Shi, Qian; Itokawa, Hideji

    2012-01-01

    This article will review selected herbal products used in traditional Chinese medicine, including medicinal mushrooms (巴西蘑菇 bā xī mó gū; Agaricus blazei, 雲芝 yún zhī; Coriolus versicolor, 靈芝 líng zhī; Ganoderma lucidum, 香蕈 xiāng xùn; shiitake, Lentinus edodes, 牛樟芝 niú zhāng zhī; Taiwanofungus camphoratus), Cordyceps (冬蟲夏草 dōng chóng xià cǎo), pomegranate (石榴 shí liú; Granati Fructus), green tea (綠茶 lǜ chá; Theae Folium Non Fermentatum), garlic (大蒜 dà suàn; Allii Sativi Bulbus), turmeric (薑黃 jiāng huáng; Curcumae Longae Rhizoma), and Artemisiae Annuae Herba (青蒿 qīng hāo; sweet wormwood). Many of the discussed herbal products have gained popularity in their uses as dietary supplements for health benefits. The review will focus on the active constituents of the herbs and their bioactivities, with emphasis on the most recent progress in research for the period of 2003 to 2011. PMID:24716120

  15. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    PubMed

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training. PMID:21571791

  16. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    PubMed

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training. PMID:21636052

  17. [Investigation of radiation safety management of nuclear medicine facilities in Japan; contamination of radioactivity in the draining-water system. A Working Group of Japanese Society of Nuclear Medicine for the Guidelines of Nuclear Medicine Therapy].

    PubMed

    Endo, K; Koizumi, M; Kinoshita, F; Nakazawa, K

    1999-12-01

    Radiation safety management condition in Japanese nuclear medicine facilities were investigated by the questionnaire method. The first questionnaire was asked in all Japanese 1,401 Nuclear Medicine facilities. Answers from 624 institutes (44.5%) were received and analyzed. The radiation-safety management in nuclear medicine institutes was considered to be very well performed everyday. Opinion for the present legal control of nuclear medicine institutes was that the regulation in Japan was too strict for the clinical use of radionuclides. The current regulation is based on the assumption that 1% of all radioactivity used in nuclear medicine institutes contaminates into the draining-water system. The second questionnaire detailing the contamination of radioactivity in the draining-water system was sent to 128 institutes, and 64 answers were received. Of them, 42 institutes were considered to be enough to evaluate the contamination of radioactivity in the draining-water system. There was no difference between 624 institutes answered to the first questionnaire and 42 institutes, where the radioactivity in the draining-water system was measured, in the distribution of the institute size, draining-water system equipment and the radioactivity measuring method, and these 42 institutes seemed to be representative of Japanese nuclear medicine institutes. Contamination rate of radioactivity into the draining system was calculated by the value of radioactivity in the collecting tank divided by the amount of radionuclides used daily in each institute. The institutes were divided into two categories on the basis of nuclear medicine practice pattern; type A: in-vivo use only and type B: both in-vivo and in-vitro use. The contamination rate in 27 type A institutes did not exceed 0.01%, whereas in 15 type B institutes the contamination rate distributed widely from undetectable to above 1%. These results indicated that the present regulation for the draining-water system, which assumed that 1% of all radioactivity used in nuclear medicine institutes contaminated into draining-water system, should be reconsidered in nuclear medicine facilities where radionuclides are used only in in-vivo studies. PMID:10659587

  18. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  19. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    NASA Astrophysics Data System (ADS)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  20. Radiation protection and regulations for the nuclear medicine physician.

    PubMed

    Chen, Man Yu

    2014-05-01

    As authorized users of radioactive material, nuclear medicine (NM) physicians play a leading role in the use and management of these agents. Regarding patient management, NM physicians are responsible for ensuring both the appropriateness of exams and the associated patient doses. Along with radiologists, NM physicians are the ones developing and implementing processes that provide guidance to and dialog with referring physicians to ensure that patients receive the most appropriate type of imaging exams. Regarding regulatory compliance, in collaboration with radiation safety officers, NM physicians are the ones educating their staff about principles of radiation protection and radiation safety with adherence to regulations from agencies such as the Nuclear Regulatory Commission, the Department of Transportation, the Environmental Protection Agency, and the Food and Drug Administration. On occasion, these regulations and standards can be difficult to comprehend. This article is intended to serve as a condensed guide for NM physicians who are in the process of applying for a radioactive materials license, establishing a new radiation protection program, or want to ensure continued compliance and maintenance of safety and security of licensed materials in the clinical or research settings. PMID:24832587

  1. Nuclear structure research. Annual progress report

    SciTech Connect

    Wood, J.L.

    1993-10-31

    The most significant development this year has been the successful elucidation of the low-energy systematics of the very neutron-deficient Pr, Nd, Pm, and Sm isotopes. This includes an extensive set of Nilsson bandheads in {sup 133}Nd. Some serious errors in earlier decay scheme work were found. The results require some significant reassessments of mean-field calculations in this region. Part of our program continues to focus on shape coexistence and electric monopole (E0) transitions in nuclei. Following the discovery of coexisting ``gamma`` bands connected by E0 transitions in {sup 184}Pt, a similar behavior in {sup 186}Pt was established from {sup 186}Au decay data. This includes a pure E0 transition between states with J{sup {pi}} = 3{sup +}, just as was seen in {sup 184}Pt. Progress has been made in elucidating the low-energy systematics of the neutron-deficient Ir isotopes. A search for the population of the superdeformed band in {sup 194}Pb in the decay of {sup 194}Bi was unsuccessful. An extensive program of systematics for nuclei at and near N = Z has been initiated.

  2. Nuclear structure research. Annual progress report

    SciTech Connect

    Wood, J.L.

    1995-07-31

    The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using {alpha} decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year.

  3. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  4. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    NASA Astrophysics Data System (ADS)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their research and results to more than 150 participants from 14 countries. During the conference, exhibitors presented medical equipment used in nuclear medicine. We gratefully acknowledge the financial support of the Cyprus Research Promotion Foundation, the European Regional Development Fund and the Cyprus Biomedical Research Foundation. Also, we appreciate the support of the various local sponsors listed in the conference programme. We would like to express our sincere thanks and gratitude to the organising committee, the scientific committee and the supporting professional organizations for the success of the conference. We also thank all of speakers for their excellent contributions, all the participants for their input, and the exhibitors for their valuable presentations. Special thanks go to Demetris Kaolis, Maria Christofidou, Isabelle Chrysanthou, Charalambos Yiannakkaras, Ourania Demetriadou, and Elena Christofidou for their invaluable contribution to the conference. The conference volume consists of 26 selected proceedings papers. We would like to thank all of the authors for their time and genuine efforts and the reviewers for their fruitful comments. The Conference Chairpersons Stelios Christofides and Yiannis Parpottas

  5. Space nuclear safety program: Progress report, April-June 1987

    SciTech Connect

    George, T.G.

    1988-07-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  6. Space Nuclear Safety Program: Progress report, January-March 1987

    SciTech Connect

    Lewin, R.; George, T.G.

    1988-07-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, which were carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  7. Space nuclear safety program. Progress report, October-December 1984

    SciTech Connect

    George, T.G.

    1986-05-01

    This quarterly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  8. Space nuclear safety program: Progress report, July--September 1987

    SciTech Connect

    George, T.G.

    1989-02-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. The studies discussed are ongoing; the results and conclusions described may change as the work progresses. 20 figs., 4 tabs.

  9. Inadequate Progress for Women in Academic Medicine: Findings from the National Faculty Study

    PubMed Central

    Gunn, Christine M.; Kaplan, Samantha A.; Raj, Anita; Freund, Karen M.

    2015-01-01

    Abstract Background: Women have entered academic medicine in significant numbers for 4 decades and now comprise 20% of full-time faculty. Despite this, women have not reached senior positions in parity with men. We sought to explore the gender climate in academic medicine as perceived by representatives to the Association of American Medical Colleges (AAMC) Group on Women in Medicine and Science (GWIMS) and Group on Diversity and Inclusion (GDI). Methods: We conducted a qualitative analysis of semistructured telephone interviews with GWIMS and GDI representatives and other senior leaders at 24 randomly selected medical schools of the 1995 National Faculty Study. All were in the continental United States, balanced for public/private status and AAMC geographic region. Interviews were audiotaped, transcribed, and organized into content areas before an inductive thematic analysis was conducted. Themes that were expressed by multiple informants were studied for patterns of association. Results: Five themes were identified: (1) a perceived wide spectrum in gender climate; (2) lack of parity in rank and leadership by gender; (3) lack of retention of women in academic medicine (the leaky pipeline); (4) lack of gender equity in compensation; and (5) a disproportionate burden of family responsibilities and work-life balance on women's career progression. Conclusions: Key informants described improvements in the climate of academic medicine for women as modest. Medical schools were noted to vary by department in the gender experience of women, often with no institutional oversight. Our findings speak to the need for systematic review by medical schools and by accrediting organizations to achieve gender equity in academic medicine. PMID:25658907

  10. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  11. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  12. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  13. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  14. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  15. Benchmarking progress in tackling the challenges of intellectual property, and access to medicines in developing countries.

    PubMed

    Musungu, Sisule F

    2006-05-01

    The impact of intellectual property protection in the pharmaceutical sector on developing countries has been a central issue in the fierce debate during the past 10 years in a number of international fora, particularly the World Trade Organization (WTO) and WHO. The debate centres on whether the intellectual property system is: (1) providing sufficient incentives for research and development into medicines for diseases that disproportionately affect developing countries; and (2) restricting access to existing medicines for these countries. The Doha Declaration was adopted at WTO in 2001 and the Commission on Intellectual Property, Innovation and Public Health was established at WHO in 2004, but their respective contributions to tackling intellectual property-related challenges are disputed. Objective parameters are needed to measure whether a particular series of actions, events, decisions or processes contribute to progress in this area. This article proposes six possible benchmarks for intellectual property-related challenges with regard to the development of medicines and ensuring access to medicines in developing countries. PMID:16710545

  16. Benchmarking progress in tackling the challenges of intellectual property, and access to medicines in developing countries.

    PubMed Central

    Musungu, Sisule F.

    2006-01-01

    The impact of intellectual property protection in the pharmaceutical sector on developing countries has been a central issue in the fierce debate during the past 10 years in a number of international fora, particularly the World Trade Organization (WTO) and WHO. The debate centres on whether the intellectual property system is: (1) providing sufficient incentives for research and development into medicines for diseases that disproportionately affect developing countries; and (2) restricting access to existing medicines for these countries. The Doha Declaration was adopted at WTO in 2001 and the Commission on Intellectual Property, Innovation and Public Health was established at WHO in 2004, but their respective contributions to tackling intellectual property-related challenges are disputed. Objective parameters are needed to measure whether a particular series of actions, events, decisions or processes contribute to progress in this area. This article proposes six possible benchmarks for intellectual property-related challenges with regard to the development of medicines and ensuring access to medicines in developing countries. PMID:16710545

  17. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges

    PubMed Central

    Bianchi, Diana W

    2015-01-01

    Thus far, the focus of personalized medicine has been the prevention and treatment of conditions that affect adults. Although advances in genetic technology have been applied more frequently to prenatal diagnosis than to fetal treatment, genetic and genomic information is beginning to influence pregnancy management. Recent developments in sequencing the fetal genome combined with progress in understanding fetal physiology using gene expression arrays indicate that we could have the technical capabilities to apply an individualized medicine approach to the fetus. Here I review recent advances in prenatal genetic diagnostics, the challenges associated with these new technologies and how the information derived from them can be used to advance fetal care. Historically, the goal of prenatal diagnosis has been to provide an informed choice to prospective parents. We are now at a point where that goal can and should be expanded to incorporate genetic, genomic and transcriptomic data to develop new approaches to fetal treatment. PMID:22772565

  18. Motion estimation for nuclear medicine: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Smith, Rhodri; Abd. Rahni, Ashrani Aizzuddin; Jones, John; Tahavori, Fatemeh; Wells, Kevin

    2014-03-01

    Accurate, Respiratory Motion Modelling of the abdominal-thoracic organs serves as a pre-requisite for motion correction of Nuclear Medicine (NM) Images. Many respiratory motion models to date build a static correspondence between a parametrized external surrogate signal and internal motion. Mean drifts in respiratory motion, changes in respiratory style and noise conditions of the external surrogate signal motivates a more adaptive approach to capture non-stationary behavior. To this effect we utilize the application of our novel Kalman model with an incorporated expectation maximization step to allow adaptive learning of model parameters with changing respiratory observations. A comparison is made with a popular total least squares (PCA) based approach. It is demonstrated that in the presence of noisy observations the Kalman framework outperforms the static PCA model, however, both methods correct for respiratory motion in the computational anthropomorphic phantom to < 2mm. Motion correction performed on 3 dynamic MRI patient datasets using the Kalman model results in correction of respiratory motion to ≍ 3mm.

  19. Nuclear medicine in problems of fertility and impotence.

    PubMed

    Zuckier, L S; Strober, M D

    1992-04-01

    Nuclear medicine techniques may be used to test fallopian tube patency and penile vascular inflow and outflow. Radionuclide hysterosalpingography (HSP) is a readily performed method of evaluating fallopian tube patency, and is believed to be more physiologic and functionally informative than the accepted radiologic method of contrast HSP. The test is simple to perform and interpret and offers an accurate alternative to the contrast examination. For scintigraphic evaluation of impotence, blood pool studies are most useful in assessing the integrity of arterial inflow, but may also be used to generate indices of venous leak. Washout of xenon after subcutaneous injection, in the flaccid state, has been used as a measure of baseline penile perfusion, as has intracavernosal injections in the flaccid penis. Intracavernosal xenon washout during erection seems the most useful method of testing venous integrity. Washout using technetium-99m (99mTc)-labeled red blood cells (99mTc-RBC) may emerge as a convenient alternative to the more technically difficult xenon examinations. PMID:1589811

  20. Importance of Bladder Radioactivity for Radiation Safety in Nuclear Medicine

    PubMed Central

    Gltekin, Salih Sinan; ?ahmaran, Turan

    2013-01-01

    Objective: Most of the radiopharmaceuticals used in nuclear medicine are excreted via the urinary system. This study evaluated the importance of a reduction in bladder radioactivity for radiation safety. Methods: The study group of 135 patients underwent several organ scintigraphies [40/135; thyroid scintigraphy (TS), 30/135; whole body bone scintigraphy (WBS), 35/135; myocardial perfusion scintigraphy (MPS) and 30/135; renal scintigraphy (RS)] by a technologist within 1 month. In full and empty conditions, static bladder images and external dose rate measurements at 0.25, 0.50, 1, 1.5 and 2 m distances were obtained and decline ratios were calculated from these two data sets. Results: External radiation dose rates were highest in patients undergoing MPS. External dose rates at 0.25 m distance for TS, TKS, MPS and BS were measured to be 56, 106, 191 and 72 ?Sv h-1 for full bladder and 29, 55, 103 and 37 ?Sv h-1 for empty bladder, respectively. For TS, WBS, MPS and RS, respectively, average decline ratios were calculated to be 52%, 55%, 53% and 54% in the scintigraphic assessment and 49%, 51%, 49%, 50% and 50% in the assessment with Geiger counter. Conclusion: Decline in bladder radioactivity is important in terms of radiation safety. Patients should be encouraged for micturition after each scintigraphic test. Spending time together with radioactive patients at distances less than 1 m should be kept to a minimum where possible. Conflict of interest:None declared. PMID:24416625

  1. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525525 25 ?m square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be 80 ?m and the system spatial resolution measured with a slit was 450 ?m. The second sensor, On Pixel Intelligent CMOS (OPIC), had 6472 40 ?m pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520520 25 ?m pixels and a measured system noise of 25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  2. Therapeutic radionuclides in nuclear medicine: current and future prospects

    PubMed Central

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-01-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374

  3. New filter for iodine applied in nuclear medicine services.

    PubMed

    Ramos, V S; Crispim, V R; Brando, L E B

    2013-12-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system (where doses of radioiodine are handled within fume hoods, and new filters will be installed at their exit), using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon and silver impregnated silica are effective for I2 capture with large or small amounts of substrate but the use of activated carbon is restricted due to its low flash point (423 K). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH3I gas, it was necessary to use natural activated carbon since it was not absorbed by SiO2+Ag crystals. We concluded that, for an exhaust flow range of (145 2)m(3)/h, a double stage filter using SiO2+Ag in the first stage and natural activated carbon in the second stage is sufficient to meet radiological safety requirements. PMID:23974306

  4. High transparency coded apertures in planar nuclear medicine imaging.

    PubMed

    Starfield, David M; Rubin, David M; Marwala, Tshilidzi

    2007-01-01

    Coded apertures provide an alternative to the collimators of nuclear medicine imaging, and advances in the field have lessened the artifacts that are associated with the near-field geometry. Thickness of the aperture material, however, results in a decoded image with thickness artifacts, and constrains both image resolution and the available manufacturing techniques. Thus in theory, thin apertures are clearly desirable, but high transparency leads to a loss of contrast in the recorded data. Coupled with the quantization effects of detectors, this leads to significant noise in the decoded image. This noise must be dependent on the bit-depth of the gamma camera. If there are a sufficient number of measurable values, high transparency need not adversely affect the signal-to-noise ratio. This novel hypothesis is tested by means of a ray-tracing computer simulator. The simulation results presented in the paper show that replacing a highly opaque coded aperture with a highly transparent aperture, simulated with an 8-bit gamma camera, worsens the root-mean-square error measurement. However, when simulated with a 16-bit gamma camera, a highly transparent coded aperture significantly reduces both thickness artifacts and the root-mean-square error measurement. PMID:18002997

  5. Nuclear iASPP may facilitate prostate cancer progression

    PubMed Central

    Morris, E V; Cerundolo, L; Lu, M; Verrill, C; Fritzsche, F; White, M J; Thalmann, G N; ten Donkelaar, C S; Ratnayaka, I; Salter, V; Hamdy, F C; Lu, X; Bryant, R J

    2014-01-01

    One of the major challenges in prostate cancer (PCa) research is the identification of key players that control the progression of primary cancers to invasive and metastatic disease. The majority of metastatic PCa express wild-type p53, whereas loss of p63 expression, a p53 family member, is a common event. Here we identify inhibitor of apoptosis-stimulating protein of p53 (iASPP), a common cellular regulator of p53 and p63, as an important player of PCa progression. Detailed analysis of the prostate epithelium of iASPP transgenic mice, iASPP?8/?8 mice, revealed that iASPP deficiency resulted in a reduction in the number of p63 expressing basal epithelial cells compared with that seen in wild-type mice. Nuclear and cytoplasmic iASPP expression was greater in PCa samples compared with benign epithelium. Importantly nuclear iASPP associated with p53 accumulation in vitro and in vivo. A pair of isogenic primary and metastatic PCa cell lines revealed that nuclear iASPP is enriched in the highly metastatic PCa cells. Nuclear iASPP is often detected in PCa cells located at the invasive leading edge in vivo. Increased iASPP expression associated with metastatic disease and PCa-specific death in a clinical cohort with long-term follow-up. These results suggest that iASPP function is required to maintain the expression of p63 in normal basal prostate epithelium, and nuclear iASPP may inactivate p53 function and facilitate PCa progression. Thus iASPP expression may act as a predictive marker of PCa progression. PMID:25341046

  6. Nuclear waste management. Quarterly progress report, October-December 1979

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  7. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    ScienceCinema

    Budinger, Thomas [LBNL, Center for Functional Imaging

    2011-10-04

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  8. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    PubMed

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160. PMID:24179182

  9. The Concept of Mainstream Medicine for All Californians—Part III (Conclusion) Fifth Progress Report of the Committee on Role of Medicine in Society

    PubMed Central

    1970-01-01

    This Fifth Progress Report is being printed in three parts in California Medicine. Following the appearance of Part III the report will be bound in a pamphlet which may be ordered at $1 a copy from 693 Sutter Publications, Inc., 693 Sutter Street, San Francisco, California 94102. PMID:4908202

  10. Application of TlBr to nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard; Kim, Hadong; Kargar, Alireza; Churilov, Alexei V.; Ciampi, Guido; Higgins, William; Kim, Suyoung; Barber, Bradford; Haston, Kyle; Shah, Kanai

    2012-10-01

    Thallium bromide (TlBr) has been under development for room temperature gamma ray spectroscopy due to high density, high Z and wide bandgap of the material. Furthermore, its low melting point (460 C), cubic crystal structure and congruent melting with no solid-solid phase transitions between the melting point and room temperature, TlBr can be grown by relatively simple melt based methods. As a result of improvements in material processing and detector fabrication over the last several years, TlBr with electron mobility-lifetime products (?e?e) in the mid 10-3 cm2/V range has been obtained. In this paper we are going to report on our unipolar charging TlBr results for the application as a small animal imaging. For SPECT application, about 5 mm thick pixellated detectors were fabricated and tested. About 1 % FWHM at 662 keV energy resolution was estimated at room temperature. By applying the depth correction technique, less than 1 % energy resolution was estimated. We are going to report the results from orthogonal strip TlBr detector for PET application. In this paper we also present our latest detector highlights and recent progress made in long term stability of TlBr detectors at or near room temperature. This work is being supported by the Domestic Nuclear Detection Office (DNDO) and the Department of Energy (DOE).

  11. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  12. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  13. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  14. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  15. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  16. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea.

    PubMed

    Kim, Byung Il

    2016-02-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the "Institute for Quality Management of Nuclear Medicine", and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization. PMID:26908990

  17. Designing HIGH-COST medicine: hospital surveys, health planning, and the paradox of progressive reform.

    PubMed

    Perkins, Barbara Bridgman

    2010-02-01

    Inspired by social medicine, some progressive US health reforms have paradoxically reinforced a business model of high-cost medical delivery that does not match social needs. In analyzing the financial status of their areas' hospitals, for example, city-wide hospital surveys of the 1910s through 1930s sought to direct capital investments and, in so doing, control competition and markets. The 2 national health planning programs that ran from the mid-1960s to the mid-1980s continued similar strategies of economic organization and management, as did the so-called market reforms that followed. Consequently, these reforms promoted large, extremely specialized, capital-intensive institutions and systems at the expense of less complex (and less costly) primary and chronic care. The current capital crisis may expose the lack of sustainability of such a model and open up new ideas and new ways to build health care designed to meet people's health needs. PMID:20019312

  18. Designing HIGH-COST Medicine Hospital Surveys, Health Planning, and the Paradox of Progressive Reform

    PubMed Central

    2010-01-01

    Inspired by social medicine, some progressive US health reforms have paradoxically reinforced a business model of high-cost medical delivery that does not match social needs. In analyzing the financial status of their areas’ hospitals, for example, city-wide hospital surveys of the 1910s through 1930s sought to direct capital investments and, in so doing, control competition and markets. The 2 national health planning programs that ran from the mid-1960s to the mid-1980s continued similar strategies of economic organization and management, as did the so-called market reforms that followed. Consequently, these reforms promoted large, extremely specialized, capital-intensive institutions and systems at the expense of less complex (and less costly) primary and chronic care. The current capital crisis may expose the lack of sustainability of such a model and open up new ideas and new ways to build health care designed to meet people's health needs. PMID:20019312

  19. Current progress of nuclear astrophysics experiments at CIAE

    SciTech Connect

    Liu Weiping; Li Zhihong; Su Jun; Bai Xixiang; Wang Youbao; Lian Gang; Guo Bing; Zeng Sheng; Yan Shengquan; Wang Baoxiang; Shu Nengchuan; Chen Yongshou

    2006-07-12

    This paper described current progress of nuclear astrophysical studies using the unstable ion beam facility GIRAFFE. We measured the angular distributions for some low energy reactions, such as 11C(d,n)12N, 8Li(d,p)9Li and 17F(d,n)18Ne in inverse kinematics, and indirectly derived the astrophysical S-factors or reaction rates of 11C(p,{gamma})12N, 8Li(n,{gamma})9Li, 8B(p,{gamma})9C at astrophysically relevant energies.

  20. Recent progress and some open questions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Langanke, K.; Martnez-Pinedo, G.

    2015-11-01

    We discuss recent advances in modelling two topics of current interest in nuclear astrophysics: electron capture onto nuclei in core-collapse supernovae and simulations of the astrophysical r-process in neutron-star mergers. Despite this progress open questions remain. The answers to these questions will highly benefit from experimental data expected from current and future radioactive ion beam facilities, in particular from the Facility for Antiproton and Ion Research which is currently under construction at the GSI Helmholtzzentrum fr Schwerionenforschung in Darmstadt, Germany.

  1. Chemotherapy-induced peripheral neurotoxicity and complementary and alternative medicines: progress and perspective

    PubMed Central

    Cheng, Xiao L.; Liu, Hong Q.; Wang, Qi; Huo, Jie G.; Wang, Xiao N.; Cao, Peng

    2015-01-01

    Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe and dose-limiting side effect of antineoplastic drugs. It can cause sensory, motor and autonomic system dysfunction, and ultimately force patients to discontinue chemotherapy. Until now, little is understood about CIPN and no consistent caring standard is available. Since CIPN is a multifactorial disease, the clinical efficacy of single pharmacological drugs is disappointing, prompting patients to seek alternative treatment options. Complementary and alternative medicines (CAMs), especially herbal medicines, are well known for their multifaceted implications and widely used in human health care. Up to date, several phytochemicals, plant extractions, and herbal formulas have been evaluated for their potential therapeutic benefit of preventing the onset and progression of CIPN in experimental models. Clinical acupuncture has also been shown to improve CIPN symptoms. In this review, we will give an outline of our current knowledge regrading the advanced research of CIPN, the role of CAMs in alleviating CIPN and possible lacunae in research that needs to be addressed. PMID:26557088

  2. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea

    PubMed Central

    2016-01-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the “Institute for Quality Management of Nuclear Medicine”, and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization. PMID:26908990

  3. Medicines

    MedlinePLUS

    ... better. In the United States, the Food and Drug Administration is in charge of assuring the safety ... prescription and over-the-counter medicines. Even safe drugs can cause unwanted side effects or interactions with ...

  4. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  5. Recent Progress on the Standardized DOE Spent Nuclear Fuel Canister

    SciTech Connect

    Morton, Dana Keith; Snow, Spencer David; Rahl, Tommy Ervin; Hill, Thomas Johnathan; Morissette, R. P.

    2002-08-01

    The Department of Energy (DOE) has developed a set of containers for the handling, interim storage, transportation, and disposal in the national repository of DOE spent nuclear fuel (SNF). This container design, referred to as the standardized DOE SNF canister or standardized canister, was developed by the Department's National Spent Nuclear Fuel Storage Program (NSNFP) working in conjunction with the Office of Civilian Radioactive Waste Management (OCRWM) and the DOE spent fuel sites. This canister had to have a standardized design yet be capable of accepting virtually all of the DOE SNF, be placed in a variety of storage and transportation systems, and still be acceptable to the repository. Since specific design details regarding the storage, transportation, and repository disposal of DOE SNF were not finalized, the NSNFP recognized the necessity to specify a complete DOE SNF canister design. This allowed other evaluations of canister performance and design to proceed as well as providing standardized canister users adequate information to proceed with their work. This paper is an update of a paper presented to the 1999 American Nuclear Society of Mechanical Engineers (ASME) Pressure Vessels and Piping (PVP) Conference. It discusses recent progress achieved in various areas to enhance acceptance of this canister not only by the DOE complex but also fabricators and regulatory agencies.

  6. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    NASA Astrophysics Data System (ADS)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  7. Sources and magnitude of occupational and public exposures from nuclear medicine procedures

    SciTech Connect

    1996-03-11

    This Report addresses the sources of exposures incurred in the practice of nuclear medicine and provides the necessary data to evaluate the magnitude of exposures to those directly associated with that practice and to those who provide nursing care to the patients containing radiopharmaceuticals. Exposure to members of the public are also addressed. The primary emphasis of this Report is on these individuals and not on the patient, since the patient receives the direct benefit from the nuclear medicine procedure. It is recognized that the patient also receives the bulk of any potential radiation decrement.

  8. Nuclear medicine dose equivalent a method for determination of radiation risk

    SciTech Connect

    Huda, W.

    1986-12-01

    Conventional nuclear medicine dosimetry involves specifying individual organ doses. The difficulties that can arise with this approach to radiation dosimetry are discussed. An alternative scheme is described that is based on the ICRP effective dose equivalent, H/sub E/, and which is a direct estimate of the average radiation risk to the patient. The mean value of H/sub E/ for seven common /sup 99m/Tc nuclear medicine procedures is 0.46 rem and the average radiation risk from this level of exposure is estimated to be comparable to the risk from smoking approx. 28 packs of cigarettes or driving approx. 1300 miles.

  9. Internal radiation therapy: a neglected aspect of nuclear medicine in the molecular era

    PubMed Central

    Lin, Yansong

    2015-01-01

    Abstract With increasing evidence, internal radiation therapy, also known as brachytherapy, has become a neglected aspect of nuclear medicine in the molecular era. In this paper, recent developments regarding internal radiation therapy, including developments in radioiodine-131 (131I) and thyroid, radioimmunotherapy (RIT) for non-Hodgkin lymphoma (NHL), and radiopharmaceuticals for bone metastases. Relevant differences and status of their applications in China were mentioned as well. These molecular mediated internal radiation therapies are gaining increasing importance by providing palliative and curative treatments for an increasing number of diseases and becoming one of the important parts of molecular nuclear medicine. PMID:26445567

  10. Tracking patient radiation exposure: challenges to integrating nuclear medicine with other modalities.

    PubMed

    Mercuri, Mathew; Rehani, Madan M; Einstein, Andrew J

    2012-10-01

    The cumulative radiation exposure to the patient from multiple radiological procedures can place some individuals at significantly increased risk for stochastic effects and tissue reactions. Approaches, such as those in the International Atomic Energy Agency's Smart Card program, have been developed to track cumulative radiation exposures to individuals. These strategies often rely on the availability of structured dose reports, typically found in the DICOM header. Dosimetry information is currently readily available for many individual x-ray-based procedures. Nuclear medicine, of which nuclear cardiology constitutes the majority of the radiation burden in the US, currently lags behind x-ray-based procedures with respect to reporting of radiation dosimetric information. This article discusses qualitative differences between nuclear medicine and x-ray-based procedures, including differences in the radiation source and measurement of its strength, the impact of biokinetics on dosimetry, and the capability of current scanners to record dosimetry information. These differences create challenges in applying, monitoring, and reporting strategies used in x-ray-based procedures to nuclear medicine, and integrating dosimetry information across modalities. A concerted effort by the medical imaging community, dosimetry specialists, and manufacturers of imaging equipment is required to develop strategies to improve the reporting of radiation dosimetry data in nuclear medicine. Some ideas on how to address this issue are suggested. PMID:22695788

  11. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  12. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    NASA Astrophysics Data System (ADS)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-04-01

    Jinping Underground laboratory for Nuclear Astrophysics (JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of 25Mg(p, γ)26Al, 19F(p, α)16O, 13C(α, n)16O and 12C(α, γ)16O reactions. The experimental setup, which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  13. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    NASA Astrophysics Data System (ADS)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-02-01

    Jinping Underground lab for Nuclear Astrophysics (JUNA) will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  14. The IAEA technical cooperation programme and nuclear medicine in the developing world: objectives, trends, and contributions.

    PubMed

    Casas-Zamora, Juan Antonio; Kashyap, Ridhi

    2013-05-01

    The International Atomic Energy Agency's technical cooperation (TC) programme helps Member States in the developing world with limited infrastructure and human resource capacity to harness the potential of nuclear technologies in meeting socioeconomic development challenges. As a part of its human health TC initiatives, the Agency, through the TC mechanism, has the unique role of promoting nuclear medicine applications of fellowships, scientific visits, and training courses, via technology procurement, and in the past decade has contributed nearly $54 million through 180 projects in supporting technology procurement and human resource capacity development among Member States from the developing world (low- and middle-income countries). There has been a growing demand in nuclear medicine TC, particularly in Africa and ex-Soviet Union States where limited infrastructure presently exists, based on cancer and cardiovascular disease management projects. African Member States received the greatest allocation of TC funds in the past 10 years dedicated to building new or rehabilitating obsolete nuclear medicine infrastructure through procurement support of single-photon emission computed tomography machines. Agency support in Asia and Latin America has emphasized human resource capacity building, as Member States in these regions have already acquired positron emission tomography and hybrid modalities (positron emission tomography/computed tomography and single-photon emission computed tomography/computed tomography) in their health systems. The strengthening of national nuclear medicine capacities among Member States across different regions has enabled stronger regional cooperation among developing countries who through the Agency's support and within the framework of regional cooperative agreements are sharing expertise and fostering the sustainability and productive integration of nuclear medicine within their health systems. PMID:23561454

  15. Nuclear medicine in the 1990s: a quantitative physiological approach.

    PubMed

    Ott, R J

    1989-05-01

    This paper describes the potential advantages to medical diagnosis and treatment that might be obtained from the wider application of positron emission tomography as a clinical tool. Developments along the lines suggested here will require a radical change in thinking from both clinicians and the medically related scientific community in the UK and some enlightened and resourceful funding from a mixture of charitable, industrial and government sources. If these ideas are to be pursued successfully, then the work must start now on a much wider scale than is presently perceived in the UK, and close collaboration between physicists, engineers, chemists, biochemists, clinicians and industrialists is needed. Furthermore, it is imperative that the scientific developments now underway in silicon technology, parallel data processors, biochemical and pharmacological processes and even high-temperature superconductors be kept under close and constant review by those associated with the technological advancements of medicine, so that the value of such developments is rapidly transferred to applications to medicine. This must include closer relationships between academic medicine and science than is the general rule in the UK at present. In conclusion, the scenario presented here includes the installation of regional cyclotron facilities to provide a large number of institutions in the UK with positron-emitter labelled radiopharmaceuticals. Additionally, agents labelled with radionuclides from in-house generators and other already existing higher-energy cyclotrons will provide a versatile and valuable range of radiopharmaceuticals for the study of human disease. These developments must be supported by the manufacture of lower-cost positron camera systems, as suggested here, connected to high-data-rate parallel processors to provide images of body function and to determine the effects brought about by disease. These images may then be processed using algorithms based on kinetic models of the body systems to provide information about the basic biochemical and physiological processes of the body. Such a development could have a profound effect on our knowledge of human disease and on our ability to control and treat it successfully. PMID:2785428

  16. Solid Tumor-Targeting Theranostic Polymer Nanoparticle in Nuclear Medicinal Fields

    PubMed Central

    Makino, Akira; Kimura, Shunsaku

    2014-01-01

    Polymer nanoparticles can be prepared by self-assembling of amphiphilic polymers, and various types of molecular assemblies have been reported. In particular, in medicinal fields, utilization of these polymer nanoparticles as carriers for drug delivery system (DDS) has been actively tried, and some nanoparticulate drugs are currently under preclinical evaluations. A radionuclide is an unstable nucleus and decays with emission of radioactive rays, which can be utilized as a tracer in the diagnostic imaging systems of PET and SPECT and also in therapeutic purposes. Since polymer nanoparticles can encapsulate most of diagnostic and therapeutic agents with a proper design of amphiphilic polymers, they should be effective DDS carriers of radionuclides in the nuclear medicinal field. Indeed, nanoparticles have been recently attracting much attention as common platform carriers for diagnostic and therapeutic drugs and contribute to the development of nanotheranostics. In this paper, recent developments of solid tumor-targeting polymer nanoparticles in nuclear medicinal fields are reviewed. PMID:25379530

  17. Mitochondrial and nuclear genomics and the emergence of personalized medicine

    PubMed Central

    2012-01-01

    Developing early detection biosensors for disease has been the long‒held goal of the Human Genome Project, but with little success. Conversely, the biological properties of the mitochondrion coupled with the relative simplicity of the mitochondrial genome give this organelle extraordinary functionality as a biosensor and places the field of mitochondrial genomics in a position of strategic advantage to launch significant advances in personalized medicine. Numerous factors make the mitochondrion organelle uniquely suited to be an early detection biosensor with applications in oncology as well as many other aspects of human health and disease. Early detection of disease translates into more effective, less expensive treatments for disease and overall better prognoses for those at greater risk for developing diseases. PMID:23244780

  18. Radioactivity appearing at landfills in household trash of nuclear medicine patients: much ado about nothing?

    PubMed

    Siegel, Jeffry A; Sparks, Richard B

    2002-03-01

    The U.S. NRC in 1997 removed its arbitrary 1.11 GBq (30 mCi) rule, which had been in existence for almost 50 y, and now many more patients receiving radionuclide therapy in nuclear medicine can be treated as outpatients. However, another problem has the potential to limit the short-lived reality of outpatient treatment unless nuclear medicine practitioners and the health physics community gets involved. Radioactive articles in the household trash of nuclear medicine patients are appearing at solid waste landfills that have installed radiation monitors to prevent the entry of any detectable radioactivity, and alarms are going off around the country. These monitors are set to alarm at extremely low activity levels. Some states may actually hold licensees responsible if a patient's radioactive household trash is discovered in a solid waste stream; this is another major reason [along with continued use of the 1.11 GBq (30 mCi) rule] why many licensees are still not releasing their radionuclide therapy patients. This is in spite of the fact that the radioactivity contained in released nuclear medicine therapy patients, let alone the much lower activity level contained in their potentially radioactive household wastes, poses a minimal hazard to the public health and safety or to the environment. Currently, there are no regulations governing the disposal of low-activity, rapidly-decaying radioactive materials found in the household trash of nuclear medicine patients, the performance of landfill radiation monitors, or the necessity of spectrometry equipment. Resources are, therefore, being unnecessarily expended by regulators and licensees in responding to radiation monitor alarms that are caused by these unregulated short-lived materials that may be mixed with municipal trash. Recommendations are presented that would have the effect of modifying the existing landfill regulations and practices so as to allow the immediate disposal of such wastes. PMID:11845839

  19. Evaluation of internal exposure of nuclear medicine staff through in vivo and in vitro bioassay techniques.

    PubMed

    Lucena, E A; Rebelo, A M O; Arajo, F; Sousa, W O; Dantas, A L A; Dantas, B M; Corbo, R

    2007-01-01

    The manipulation of a wide variety of unsealed sources in Nuclear Medicine results in a significant risk of internal exposure of the workers. 131I should be highlighted among the most frequently used radionuclides because of its large application for diagnosis and therapy of thyroid diseases. The increasing use of radionuclides for medical purposes creates a demand for feasible methodologies to perform occupational control of internal contamination. Currently in Brazil, there are approximately 300 nuclear medicine centres in operation but individual monitoring is still restricted to the control of external exposure. This work presents the development of in vivo and in vitro bioassay techniques aimed to quantify incorporation of radionuclides used in Nuclear Medicine. It is also presented the results of a preliminary survey of internal exposure of a group of workers involved in the preparation of therapeutic doses of 131I. Workers were monitored with a gamma camera available in the Nuclear Medicine Service of the University Hospital of Rio de Janeiro and at the Institute of Radiation Protection and Dosimetry Whole-Body Counter (IRD-WBC). The in vivo detection systems were calibrated with a neck-thyroid phantom developed in IRD. Urine samples from radiopharmacy workers were collected after preparation and administration of therapeutic doses (10-250 mCi) of 131I and measured with a HPGe detection system available in the Bioassay Laboratory of IRD. The results show that the bioassay methods developed in this work present enough sensitivity for routine monitoring of nuclear medicine workers. All workers monitored in this survey presented positive results for 131I in urine samples and two workers presented detectable activities in thyroid when measured at the IRD-WBC. The highest committed effective dose per preparation was estimated to be 17 microSv. PMID:17681960

  20. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.

  1. Self-assessment of current knowledge in nuclear medicine (second edition)

    SciTech Connect

    Selby, J.B.; Frey, G.D.; Cooper, J.F.; Klobukoski, C.J.

    1981-01-01

    In this updated second edition, the order of contents of the textbook has been reorganized. It has been divided into main parts: Basic Science and Clinical Nuclear Medicine. Basic Science, Part I, encompasses basic physics, radiation protection, interaction of radiation with matter and radiation detection, imaging, nuclear pharmacy, and radiation biology. Part II, Clinical Nuclear Medicine, covers the central nervous system, bone, gastroenterology (liver/spleen), cardiovascular system, pulmonary system, genitourinary system, thyroid and endocrine systems, gallium studies, radioassay, hematology, and therapy. The total number of pages of the current edition is increased to 250 from the 213 of the first edition but there are fewer questions because those in the basic science area have been carefully selected to 60 of the original 98 questions. Compared with the previous edition, there are two advantages in the current one: (1) the addition of explanatory answers; and (2) the inclusion of up-to-date scintiphotos replacing rectilinear scan illustrations.

  2. The Physician and His Practice—1980 to 2000 Sixth Progress Report of the Committee on Role of Medicine in Society

    PubMed Central

    1972-01-01

    Members of the Committee on the Role of Medicine in Society, together with medical student representatives of the medical schools in California worked for a period of close to two years preparing this Sixth Progress Report. Names of the committee members, ex-officio members, consultants and medical student members who served during the discussions and the drafting of the report are listed on the final page. PMID:5019110

  3. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project, part 1-statement of the issue and a review of available resources.

    PubMed

    Fahey, Frederic H; Bom, Henry Hee-Seong; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2015-04-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI were to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. This article presents part 1 of the final report of this initial project of the NMGI. It provides a review of the value of pediatric nuclear medicine, the current understanding of the carcinogenic risk of radiation as it pertains to the administration of radiopharmaceuticals in children, and the application of dosimetric models in children. A listing of pertinent educational and reference resources available in print and online is also provided. The forthcoming part 2 report will discuss current standards for administered activities in children and adolescents that have been developed by various organizations and an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of nuclear medicine clinics and centers. Lastly, the part 2 report will recommend a path forward toward global standardization of the administration of radiopharmaceuticals in children. PMID:25766899

  4. Nuclear medicine and imaging research: Quantitative studies in radiopharmaceutical science

    SciTech Connect

    Copper, M.; Beck, R.N.

    1991-06-01

    During the past three years the program has undergone a substantial revitalization. There has been no significant change in the scientific direction of this grant, in which emphasis continues to be placed on developing new or improved methods of obtaining quantitative data from radiotracer imaging studies. However, considerable scientific progress has been made in the three areas of interest: Radiochemistry, Quantitative Methodologies, and Experimental Methods and Feasibility Studies, resulting in a sharper focus of perspective and improved integration of the overall scientific effort. Changes in Faculty and staff, including development of new collaborations, have contributed to this, as has acquisition of additional and new equipment and renovations and expansion of the core facilities. 121 refs., 30 figs., 2 tabs.

  5. Nuclear theory progress report, April 1991--April 1992

    SciTech Connect

    Not Available

    1992-01-01

    This report discusses research in nuclear theory on the following topics: nuclear astrophysics; quantum chromodynamics; quark matter; symmetry breaking; heavy ion reactions; hadronic form factors; neutrino processes; nuclear structure; weak interaction physics; and other related topics. (LSP)

  6. Nuclear theory progress report, April 1991--April 1992

    SciTech Connect

    Not Available

    1992-07-01

    This report discusses research in nuclear theory on the following topics: nuclear astrophysics; quantum chromodynamics; quark matter; symmetry breaking; heavy ion reactions; hadronic form factors; neutrino processes; nuclear structure; weak interaction physics; and other related topics. (LSP)

  7. Radiation risk and nuclear medicine: An interview with a Nobel Prize winner

    SciTech Connect

    Yalow, R.S.

    1995-12-01

    In a speech given years ago at the Veterans Administration Medical Center, Bronx, NY, Rosalyn S. Yalow, 1977 Nobel Prize recipient for her invention of radioimmunoassay, made several salient points on the perception of fear or hazards from exposure to low-level radiation and low-level radioactive wastes. For the past three years, Yalow has been concerned with the general fear of radiation. In this interview, Newsline solicited Yalow`s views on public perceptions on radiation risk and what the nuclear medicine community can do to emphasize the fact that, if properly managed, the use of isotopes in medicine and other cases is not dangerous.

  8. Nuclear medicine in urological cancers: what is new?

    PubMed

    Nanni, Cristina; Zanoni, Lucia; Fanti, Stefano

    2014-10-01

    The diffusion of PET/computed tomography has opened up a new role for nuclear imaging in urological oncology. Prostate cancer is evaluated with choline ((11)C or (18)F) PET due to a lack of sensitivity of (18)F-fluorodeoxyglucose (FDG). However, many new tracers, such as (18)F-fluorocyclobutane-1-carboxylic acid and (68)Ga-prostate-specific membrane antigen, are under investigation, offering promising results in the particular setting of radically treated patients with biochemical relapse. The performance of (18)F-FDG depends on the histological type; indeed, renal cell cancer may present variable metabolic uptake. In this field, mainly antibodies labeled with positron emitters are under clinical evaluation. Finally, (18)F-FDG PET/computed tomography has been proven to show good accuracy in detecting metastatic testicular and bladder cancers, despite not having valid results in detecting local disease. The urological cancer diagnostic process is currently under continuous development. PMID:25396777

  9. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  10. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine.

    PubMed

    Li, Ling; Bonneton, Franois; Chen, Xiao Yong; Laudet, Vincent

    2015-02-01

    Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network. PMID:25449417

  11. Applied nuclear data research and development. Semiannual progress report, April 1-September 30, 1983

    SciTech Connect

    Arthur, E.D.

    1984-06-01

    This progress report describes the activities of the Los Alamos Nuclear Data Group for April 1, 1983 through September 30, 1983. Topics covered include theory and evaluation of nuclear cross sections; nuclear cross-section processing and testing; neutron activation; fission products, and actinides; and core neutronics code development in support of LMFBR carbide core assessment. (GHT)

  12. Urology in Stettin (Szczecin). The impact of political changes on progress in urology and medicine.

    PubMed

    Zajaczkowski, Tadeusz; Wojewska-Zajaczkowska, Elzbieta

    2012-01-01

    The history of modern hospitals in Stettin is about 280 years long. The history of urology in Stettin (Szczecin), like in Europe, is closely associated with the construction of the useful cystoscope, discovery of X-rays, and progress in radiology and endoscopy. In Stettin, like in many other cities, patients with urological diseases were treated at departments of surgery or departments of internal medicine. On March 1It, 1919, a specialized urology ward with 27 beds was opened in the Municipal Hospital in Stettin. Dr. Felix Hagen from Berlin was the first head of this ward. The main duty of the urology ward at that time was to conduct differential diagnosis and to offer conservative treatment to patients not needing surgery. Cystoscopy, chromocystoscopy, and radiographs were done in the beginning. Later on, retroperitoneal pneumography, pneumopyelography, and retrograde pyelography were added. Urography in the final period enabled a more precise assessment of the kidney prior to surgery. The preparation of patients with benign prostate hyperplasia for surgery was an important element. Therapeutic activities of the urology ward included transurethral procedures such as lithotripsy of bladder stones and treatment of bladder cancer. Urological surgery was done at the surgery ward. Patients with tuberculosis were usually referred to the Tuberculosis Hospital in Hohenkrug (Zdunowo). In 1935, the urology ward in Stettin was closed and incorporated into the surgery ward. During the World War II, just as during the World War I, the Municipal Hospital in Stettin was transformed into a field hospital. The end of the World War II created a new political situation in Europe. Stettin (Szczecin) and West Pomerania became part of Poland. In 1948, the Polish government established the Pomeranian Medical Academy (PAM) in Stettin. During the first 10 years of its existence all urological operations were performed at surgery wards. In August 1955, a 30-bed urology ward affiliated with the Second Department of Surgery was opened in the district of Pomorzany. The head of the new ward was Dr. Alfons Wojewski (1912-1992), surgeon and urologist from Gda?sk (Danzig). In 1962, the ward was transformed into a separate Department of Urology with 62 beds. Prof. Wojewski organized the Department from its foundations, leading it quickly to the level of modern departments in the area of research, teaching, and therapy. After the retirement of Prof. Wojewski, the acting head of the department was Dr. Stanis?aw Kraso? until his death in 1986. He was followed for almost one year by Dr. Stanis?awa Spoz. Since May 1987, the head of the Department is Prof. Andrzej Sikorski from ?d?. PMID:23767186

  13. Delivery and collection of radioactive packages to and from UK hospital nuclear medicine departments.

    PubMed

    Lawson, Richard S; Davies, Glyn; Hesslewood, Stuart R; Hinton, Paul J; Maxwell, Alan

    2004-12-01

    Under radiation protection legislation in the UK, employers have a duty to maintain appropriate records to account for radioactive materials in their possession and to ensure security of these materials. This applies to radioactive packages, containing items such as technetium generators, which are regularly delivered to hospital nuclear medicine departments. It also applies to the collection of packages, such as those containing used generators for return to the supplier. This article has been written by the professional bodies representing nuclear medicine in the UK in order to provide guidance to hospitals on appropriate procedures that will comply with the legislation. General principles, which should be met by any acceptable protocol, are stated, and practical guidance on how these may be implemented is given. Some example scenarios are outlined. PMID:15640773

  14. Nuclear DNA Amounts in Angiosperms: Progress, Problems and Prospects

    PubMed Central

    BENNETT, M. D.; LEITCH, I. J.

    2005-01-01

    CONTENTSINTRODUCTION45PROGRESS46    Improved systematic representation (species and families)46        (i) First estimates for species46        (ii) First estimates for families47PROBLEMS48    Geographical representation and distribution48    Plant life form48    Obsolescence time bomb49    Errors and inexactitudes49    Genome size, ‘complete’ genome sequencing, and, the euchromatic genome50    The completely sequenced genome50    Weeding out erroneous data52    What is the smallest reliable C-value for an angiosperm?52    What is the minimum C-value for a free-living angiosperm and other free-living organisms?53PROSPECTS FOR THE NEXT TEN YEARS54    Holistic genomics55LITERATURE CITED56APPENDIX59    Notes to the Appendix59    Original references for DNA values89 • Background The nuclear DNA amount in an unreplicated haploid chromosome complement (1C-value) is a key diversity character with many uses. Angiosperm C-values have been listed for reference purposes since 1976, and pooled in an electronic database since 1997 (http://www.kew.org/cval/homepage). Such lists are cited frequently and provide data for many comparative studies. The last compilation was published in 2000, so a further supplementary list is timely to monitor progress against targets set at the first plant genome size workshop in 1997 and to facilitate new goal setting. • Scope The present work lists DNA C-values for 804 species including first values for 628 species from 88 original sources, not included in any previous compilation, plus additional values for 176 species included in a previous compilation. • Conclusions 1998–2002 saw striking progress in our knowledge of angiosperm C-values. At least 1700 first values for species were measured (the most in any five-year period) and familial representation rose from 30 % to 50 %. The loss of many densitometers used to measure DNA C-values proved less serious than feared, owing to the development of relatively inexpensive flow cytometers and computer-based image analysis systems. New uses of the term genome (e.g. in ‘complete’ genome sequencing) can cause confusion. The Arabidopsis Genome Initiative C-value for Arabidopsis thaliana (125 Mb) was a gross underestimate, and an exact C-value based on genome sequencing alone is unlikely to be obtained soon for any angiosperm. Lack of this expected benchmark poses a quandary as to what to use as the basal calibration standard for angiosperms. The next decade offers exciting prospects for angiosperm genome size research. The database (http://www.kew.org/cval/homepage) should become sufficiently representative of the global flora to answer most questions without needing new estimations. DNA amount variation will remain a key interest as an integrated strand of holistic genomics. PMID:15596457

  15. The development and use of radionuclide generators in nuclear medicine -- recent advances and future perspectives

    SciTech Connect

    Knapp, F.F. Jr.

    1998-03-01

    Although the trend in radionuclide generator research has declined, radionuclide generator systems continue to play an important role in nuclear medicine. Technetium-99m obtained from the molybdenum-99/technetium-99m generator system is used in over 80% of all diagnostic clinical studies and there is increasing interest and use of therapeutic radioisotopes obtained from generator systems. This paper focuses on a discussion of the major current areas of radionuclide generator research, and the expected areas of future research and applications.

  16. Nuclear medicine applications in the clinical setting. Imaging studies aid disease staging and management.

    PubMed

    Middleton, Michael L; Shell, Eddie G

    2002-05-01

    Over the last decade, advances in instrumentation have improved the accuracy and quality of conventional nuclear medicine studies. In addition, the approval of many new radiopharmaceuticals has helped integrate cutting-edge imaging techniques into the clinical setting. In this article, Drs Middleton and Shell discuss the latest applications of positron emission tomography (PET), radiolabeled antibody imaging, radioisotope lymphatic mapping, and radiolabeled receptor imaging. PMID:12040867

  17. Applications of CdTe to nuclear medicine. Annual report, February 1, 1979-January 31, 1980

    SciTech Connect

    Entine, G

    1980-01-01

    The application of CdTe gamma detectors in nuclear medicine is reported on. An internal probe was developed which can be inserted into the heart to measure the efficiency of various radiopharmaceuticals in the treatment of heart attacks. A second application is an array of detectors which is light enough to be worn by ambulatory patients and can measure the change in cardiac output over an eight hour period during heart attack treatment. The instrument includes an on board tape recorder. (ACR)

  18. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine

    PubMed Central

    Ballinger, J R

    2010-01-01

    Most nuclear medicine studies use 99Tcm, which is the decay product of 99Mo. The world supply of 99Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of 99Mo supply will rely on a combination of replacing conventional reactors and developing new technologies. PMID:20965898

  19. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    SciTech Connect

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-02-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ``neutron rich`` and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail.

  20. Refurbishing of a Freeze Drying Machine, used in Nuclear Medicine for Radiopharmaceuticals Production

    NASA Astrophysics Data System (ADS)

    Gaytán-Gallardo, E.; Desales-Galeana, G.

    2006-09-01

    The refurbishing of a freeze drying machine used in the radiopharmaceuticals production, applied in nuclear medicine in the Radioactive Materials Department of the Nuclear Research National Institute in México (ININ in Spanish), is presented. The freeze drying machine was acquired in the 80's decade and some components started having problems. Then it was necessary to refurbish this equipment by changing old cam-type temperature controllers and outdated recording devices, developing a sophisticated software system that substitutes those devices. The system is composed by a freeze drying machine by Hull, AC output modules for improved temperature control, a commercial data acquisition card, and the software system.

  1. Refurbishing of a Freeze Drying Machine, used in Nuclear Medicine for Radiopharmaceuticals Production

    SciTech Connect

    Gaytan-Gallardo, E.; Desales-Galeana, G.

    2006-09-08

    The refurbishing of a freeze drying machine used in the radiopharmaceuticals production, applied in nuclear medicine in the Radioactive Materials Department of the Nuclear Research National Institute in Mexico (ININ in Spanish), is presented. The freeze drying machine was acquired in the 80's decade and some components started having problems. Then it was necessary to refurbish this equipment by changing old cam-type temperature controllers and outdated recording devices, developing a sophisticated software system that substitutes those devices. The system is composed by a freeze drying machine by Hull, AC output modules for improved temperature control, a commercial data acquisition card, and the software system.

  2. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    PubMed Central

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  3. A Poisson resampling method for simulating reduced counts in nuclear medicine images

    NASA Astrophysics Data System (ADS)

    White, Duncan; Lawson, Richard S.

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  4. Integrated package for interactive analysis and interpretation of nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Silva, Augusto F. d.; Sousa Pereira, Antonio; Botelho, M. F.; de Lima, J. J.

    1992-06-01

    This paper describes a software package based on a set of integrated tools intended to be used in nuclear medicine imaging environments. These tools, following a functionally consistent and open architecture, aim to provide an efficient and user-friendly way for handling the analysis and interpretation of nuclear medicine images in a broad range of applications. The Image, Graphics, and Colors tools are the basic building blocks. Besides basic image handling facilities, the Image tool was designed to accomplish both conventional and special purposed processing tasks. Among these, the interactive definition of organ shaped regions of interest, functional imaging (e.g., mean transit time images in ventilatory lung studies) and activity quantitation should be pointed out as the most intensively used facilities. The Graphics tool is used mainly to display and analyze the activity/time curves resulting from parametric related studies. As intensity color coding has gained wide acceptance in nuclear medicine it was thought convenient to implement a Colors tool intended to provide interactive intensity manipulation. The X Window graphics interface system is the basis for the implementation of this set of independent but intercommunicating tools which are intended to run on all UNIX workstations provided with, at least, an 8 bit depth frame buffer.

  5. Improving efficiency management of radiopharmaceutical materials at a nuclear medicine department.

    PubMed

    Al Ahmed, Ali; Al-Surimi, Khaled

    2015-01-01

    The cost of radiopharmaceutical materials is highly expensive compared with other resources employed in nuclear medicine department. Hence, inefficient utilization of these costly materials will lead to waste and more financial burden on the healthcare system, increasing the patient waiting list for important diagnostic procedures, especially in those with need urgent care on time. The available data for the previous 12 months about positron emission tomography / computed tomography (PET/CT) unit at nuclear medicine departments showed that over 16% of radiopharmaceutical materials were not utilized and being wasted due to increased number of cancelled or rescheduled oncology patients. The overall financial cost for the underutilized radiopharmaceutical materials due to cancelled and rescheduled procedures for 142 patient were about 39,760 US dollar. Most of these are the oncology patients with diabetes arriving at the nuclear medicine department with high blood glucose level and so are not fit for the procedure. This project aims to improve the oncology diabetic patients preparation for PET/CT procedure to avoid wasting the radiopharmaceutical materials. After implementing the PDSA cycles on 14 oncology patients we found that the quantity of not utilized radiopharmaceuticals were significantly reduced. On the other hand, majority of oncology diabetic patients became more aware about the importance of following the required preparation instruction. PMID:26734451

  6. Improving efficiency management of radiopharmaceutical materials at a nuclear medicine department

    PubMed Central

    Al Ahmed, Ali; Al-Surimi, Khaled

    2015-01-01

    The cost of radiopharmaceutical materials is highly expensive compared with other resources employed in nuclear medicine department. Hence, inefficient utilization of these costly materials will lead to waste and more financial burden on the healthcare system, increasing the patient waiting list for important diagnostic procedures, especially in those with need urgent care on time. The available data for the previous 12 months about positron emission tomography / computed tomography (PET/CT) unit at nuclear medicine departments showed that over 16% of radiopharmaceutical materials were not utilized and being wasted due to increased number of cancelled or rescheduled oncology patients. The overall financial cost for the underutilized radiopharmaceutical materials due to cancelled and rescheduled procedures for 142 patient were about 39,760 US dollar. Most of these are the oncology patients with diabetes arriving at the nuclear medicine department with high blood glucose level and so are not fit for the procedure. This project aims to improve the oncology diabetic patients preparation for PET/CT procedure to avoid wasting the radiopharmaceutical materials. After implementing the PDSA cycles on 14 oncology patients we found that the quantity of not utilized radiopharmaceuticals were significantly reduced. On the other hand, majority of oncology diabetic patients became more aware about the importance of following the required preparation instruction. PMID:26734451

  7. Nuclear physics for medicine: how nuclear research is improving human health

    NASA Astrophysics Data System (ADS)

    Bracco, Angela

    2015-05-01

    The Nuclear Physics European Collaboration Committee (NuPECC) is an associated Committee of the European Science Foundation (ESF). Its mission is to strengthen European Collaboration in nuclear science through the promotion of nuclear physics, and its trans-disciplinary use and application in collaborative ventures between research groups.

  8. SUS in nuclear medicine in Brazil: analysis and comparison of data provided by Datasus and CNEN*

    PubMed Central

    Pozzo, Lorena; Coura Filho, George; Osso Jnior, Joo Alberto; Squair, Peterson Lima

    2014-01-01

    Objective To investigate the outpatient access to nuclear medicine procedures by means of the Brazilian Unified Health System (SUS), analyzing the correspondence between data provided by this system and those from Comisso Nacional de Energia Nuclear (CNEN) (National Commission of Nuclear Energy). Materials and Methods Data provided by Datasus regarding number of scintillation chambers, outpatient procedures performed from 2008 to 2012, administrative responsibility for such procedures, type of service providers and outsourced services were retrieved and evaluated. Also, such data were compared with those from institutions certified by CNEN. Results The present study demonstrated that the system still lacks maturity in terms of correct data input, particularly regarding equipment available. It was possible to list the most common procedures and check the growth of the specialty along the study period. Private centers are responsible for most of the procedures covered and reimbursed by SUS. However, many healthcare facilities are not certified by CNEN. Conclusion Datasus provides relevant data for analysis as done in the present study, although some issues still require attention. The present study has quantitatively depicted the Brazilian reality regarding access to nuclear medicine procedures offered by/for SUS. PMID:25741070

  9. Pictorial review of SPECT/CT imaging applications in clinical nuclear medicine

    PubMed Central

    Bhargava, Peeyush; He, Guocheng; Samarghandi, Amin; Delpassand, Ebrahim S

    2012-01-01

    Integrated SPECT/CT scanners are gaining popularity as hybrid molecular imaging devices which can acquire SPECT and CT in a single exam. CT can be a low dose non-contrast enhanced scan for attenuation correction and anatomical localization, or a contrast enhanced diagnostic quality scan for additional anatomical characterization. We present a pictorial review highlighting the usefulness of this emerging technology. We present SPECT/CT images of 13 patients where additional information was provided by the co-registered low dose non-contrast enhanced CT scan. They belong to 12 male and 1 female patients with age ranging from 28 to 76 yrs, who were referred to the Nuclear Medicine Department for various indications. We describe these cases under in the following categories: bone scintigraphy (2), leukocyte scintigraphy (2), nuclear oncology (5), nuclear cardiology (1), and general nuclear medicine (3). Additional information provided by the co-registered low dose CT improves the diagnostic confidence in image interpretation of SPECT imaging. PMID:23133813

  10. Ensuring safe and quality medication use in nuclear medicine: a collaborative team achieves compliance with medication management standards.

    PubMed

    Beach, Trent A; Griffith, Karen; Dam, Hung Q; Manzone, Timothy A

    2012-03-01

    As hospital nuclear medicine departments were established in the 1960s and 1970s, each department developed detailed policies and procedures to meet the specialized and specific handling requirements of radiopharmaceuticals. In many health systems, radiopharmaceuticals are still unique as the only drugs not under the control of the health system pharmacy; however, the clear trend--and now an accreditation requirement--is to merge radiopharmaceutical management with the overall health system medication management system. Accomplishing this can be a challenge for both nuclear medicine and pharmacy because each lacks knowledge of the specifics and needs of the other field. In this paper we will first describe medication management standards, what they cover, and how they are enforced. We will describe how we created a nuclear medicine and pharmacy team to achieve compliance, and we will present the results of their work. We will examine several specific issues raised by incorporating radiopharmaceuticals in the medication management process and describe how our team addressed those issues. Finally, we will look at how the medication management process helps ensure ongoing quality and safety to patients through multiple periodic reviews. The reader will gain an understanding of medication management standards and how they apply to nuclear medicine, learn how a nuclear medicine and pharmacy team can effectively merge nuclear medicine and pharmacy processes, and gain the ability to achieve compliance at the reader's own institution. PMID:22279239

  11. Nuclear envelope influences on cell-cycle progression.

    PubMed

    Srsen, Vlastimil; Korfali, Nadia; Schirmer, Eric C

    2011-12-01

    The nuclear envelope is a complex double membrane system that serves as a dynamic interface between the nuclear and cytoplasmic compartments. Among its many roles is to provide an anchor for gene regulatory proteins on its nucleoplasmic surface and for the cytoskeleton on its cytoplasmic surface. Both sets of anchors are proteins called NETs (nuclear envelope transmembrane proteins), embedded respectively in the inner or outer nuclear membranes. Several lines of evidence indicate that the nuclear envelope contributes to cell-cycle regulation. These contributions come from both inner and outer nuclear membrane NETs and appear to operate through several distinct mechanisms ranging from sequestration of gene-regulatory proteins to activating kinase cascades. PMID:22103518

  12. A Review on Bioactivities of Perilla: Progress in Research on the Functions of Perilla as Medicine and Food

    PubMed Central

    2013-01-01

    Perilla is a useful pharmaceutical and food product and is empirically consumed by humans. However, its properties have not been evaluated extensively. In this review, we summarize the progress made in research, focusing on the bioactivities of perilla. There are many in vitro and animal studies on the cytostatic activity and antiallergic effects, respectively, of perilla and its constituents. However, its influence on humans remains unclear. Hence, investigating and clarifying the physiological effects of perilla and its constituents on humans are imperative in the future to adhere to the ideals of evidence-based medicine. PMID:24319488

  13. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    SciTech Connect

    Ulm, Franz-Josef

    2000-03-31

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  14. A background to nuclear transfer and its applications in agriculture and human therapeutic medicine*

    PubMed Central

    Campbell, Keith HS

    2002-01-01

    The development of a single celled fertilized zygote to an animal capable of reproduction involves not only cell division but the differentiation or specialization to numerous cell types forming each tissue and organ of the adult animal. The technique of nuclear transfer allows the reconstruction of an embryo by the transfer of genetic material from a single donor cell, to an unfertilized egg from which the genetic material has been removed. Successful development of live offspring from such embryos demonstrates that the differentiated state of the donor nucleus is not fixed and can be reprogrammed by the egg cytoplasm to control embryo and fetal development. Nuclear transfer has many applications in agriculture and human medicine. This article will review some of the factors associated with the success of embryo development following nuclear transfer and outline the potential uses of the technology. PMID:12033731

  15. Five-year follow-up of angiographic disease progression after medicine, angioplasty, or surgery

    PubMed Central

    2010-01-01

    Background Progression of atherosclerosis in coronary artery disease is observed through consecutive angiograms. Prognosis of this progression in patients randomized to different treatments has not been established. This study compared progression of coronary artery disease in native coronary arteries in patients undergoing surgery, angioplasty, or medical treatment. Methods Patients (611) with stable multivessel coronary artery disease and preserved ventricular function were randomly assigned to CABG, PCI, or medical treatment alone (MT). After 5-year follow-up, 392 patients (64%) underwent new angiography. Progression was considered a new stenosis of ≥ 50% in an arterial segment previously considered normal or an increased grade of previous stenosis > 20% in nontreated vessels. Results Of the 392 patients, 136 underwent CABG, 146 PCI, and 110 MT. Baseline characteristics were similar among treatment groups, except for more smokers and statin users in the MT group, more hypertensives and lower LDL-cholesterol levels in the CABG group, and more angina in the PCI group at study entry. Analysis showed greater progression in at least one native vessel in PCI patients (84%) compared with CABG (57%) and MT (74%) patients (p < 0.001). LAD coronary territory had higher progression compared with LCX and RCA (P < 0.001). PCI treatment, hypertension, male sex, and previous MI were independent risk factors for progression. No statistical difference existed between coronary events and the development of progression. Conclusion The angioplasty treatment conferred greater progression in native coronary arteries, especially in the left anterior descending territories and treated vessels. The progression was independently associated with hypertension, male sex, and previous myocardial infarction. PMID:20977758

  16. The Progress of Emergency Medicine in Taiwan, China, and Hong Kong: Perspective from Publications in Emergency Medicine Journals, 1992–2011

    PubMed Central

    Lee, Ching-Hsing; Chaou, Chung-Hsien; Lin, Chih-Chuan

    2014-01-01

    Study Objective. The progress of emergency medicine (EM) in Taiwan, China, and Hong Kong was evaluated from the perspective of publications in EM journals. Methods. This was a retrospective study. All articles published from 1992 to 2011 in all journals in the EM category in the 2010 Journal Citation Reports (JCR) were included. A computerized literature search was conducted using the SciVerse Scopus database. The slope (β) of the linear regression was used to evaluate the trends in the numbers of articles as well as the ratios to the total number of EM journal articles. Results. The trends in the numbers of articles from Taiwan, China, and Hong Kong were 6.170, 1.908, and 2.835 and the trends in the ratios of their publication numbers to the total number of EM journal articles were 15.0 × 10−4, 4.60 × 10−4, and 6.80 × 10−4, respectively. All P-values were <0.01. The mean, median, and 75th percentiles of the number of citations in all EM journals were greater than those of these three areas. Conclusions. The publications from Taiwan, China, and Hong Kong have increased at a higher rate than those of the overall EM field in the past 20 years and indicated the rapid progress in these three areas. PMID:24707496

  17. Nuclear waste programs; Semiannual progress report, October 1991--March 1992

    SciTech Connect

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Finn, P.A.; Gerding, T.J.; Hoh, J.C.

    1993-11-01

    This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1991-March 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories

  18. Nuclear Waste Programs semiannual progress report, April--September 1992

    SciTech Connect

    Bates, J.K.; Bradley, C.R.; Buck, E.C.

    1994-05-01

    This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period April--September 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  19. Progress in bright ion beams for industry, medicine and fusion at LBNL

    SciTech Connect

    Kwan, Joe W.

    2002-05-31

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs.

  20. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR...

  1. Nuclear Data Covariances in the Indian Context – Progress, Challenges, Excitement and Perspectives

    SciTech Connect

    Ganesan, S.

    2015-01-15

    We present a brief overview of progress, challenges, excitement and perspectives in developing nuclear data covariances in the Indian context in relation to target accuracies and sensitivity studies that are of great importance to Bhabha's 3-stage nuclear programme for energy and non-energy applications.

  2. Applied Nuclear Science Research and Development progress report, June 1, 1984-May 31, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1985-09-01

    This progress report describes the activities of the Los Alamos Applied Nuclear Science Group for June 1, 1984 through May 31, 1985. The topical content includes the theory and evaluation of nuclear cross sections; neutron cross section processing and testing; neutron activation, fission products and actinides; and core neutronics code development and application. 70 refs., 31 figs., 15 tabs. (WRF)

  3. Nuclear Data Covariances in the Indian Context - Progress, Challenges, Excitement and Perspectives

    NASA Astrophysics Data System (ADS)

    Ganesan, S.

    2015-01-01

    We present a brief overview of progress, challenges, excitement and perspectives in developing nuclear data covariances in the Indian context in relation to target accuracies and sensitivity studies that are of great importance to Bhabha's 3-stage nuclear programme for energy and non-energy applications.

  4. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  5. Progress report on nuclear propulsion for space exploration and science

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-06-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  6. Traditional Chinese medicine for treatment of liver diseases: progress, challenges and opportunities.

    PubMed

    Zhao, Chang-qing; Zhou, Yang; Ping, Jian; Xu, Lie-ming

    2014-09-01

    Traditional Chinese medicine (TCM) is commonly used in treating liver diseases worldwide, especially in China. The advantages of using TCM for treatment of liver diseases include: protecting hepatocytes, inhibiting hepatic inflammation and antifibrosis in the liver. In this article, we introduce TCM herbal preparations from the Chinese materia medica (such as Fuzheng Huayu) that are typically used for the treatment of liver diseases. Literature surrounding the mechanisms of TCM therapy for treatment of liver diseases is presented and discussed. We propose that side effects of herbal compounds are often under-appreciated, and that more care should be taken in the prescription of potentially hepatotoxic medicines. Further, to deepen the understanding of TCM mechanisms, new techniques and methodologies must be developed. Future studies will lead to the enhancement of clinical outcomes of TCM. As complementary and alternative therapies, TCMs will play an expanding role in the future of liver disease treatment. PMID:25292339

  7. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    SciTech Connect

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  8. Nuclear structure from radioactive decay. Annual progress report

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  9. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    SciTech Connect

    Jacques, S.L.; Welch, A.J.; Motamedi, M.; Rastegar, S.; Tittel, F.; Esterowitz, L.

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  10. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    SciTech Connect

    Jacques, S.L.; Welch, A.J.; Motamedi, M.; Rastegar, S.; Tittel, F.; Esterowitz, L.

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  11. Nuclear research with the electromagnetic probe. Final progress report

    SciTech Connect

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD.

  12. Applied nuclear science research and development progress report, June 1, 1985-November 30, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1986-04-01

    This six month progress report reviews activities in nuclear reaction research. Specific content includes theory and evaluation of nuclear cross sections for neutron, proton, and deuteron reactions for a number of isotopes; the processing and testing of nuclear cross section data; studies of neutron activation, fission products and actinides; and short notes on applications. Data are included in graphic and tabular form and include experimental, evaluated, and theoretical calculations and spectra. 136 refs., 81 figs., 17 tabs. (DWL)

  13. Role of nuclear medicine bone scans in evaluating pain in athletic injuries

    SciTech Connect

    Martire, J.R.

    1987-10-01

    The utilization of nuclear medicine bone scanning examinations early in the diagnostic process allows physicians to render prompt and correct treatment in urgent or difficult athletic cases. Bone scanning should be performed for athletic injuries whenever (1) x-rays are normal but bone or joint pain persists; (2) x-rays are positive but it cannot be determined if the findings are acute or chronic; (3) soft-tissue injuries present and x-rays are not useful; and (4) bone pain or joint impairment present without a history of trauma.89 references.

  14. Detection of thoracic infections by nuclear medicine techniques in the acquired immunodeficiency syndrome

    SciTech Connect

    Kramer, E.L.; Sanger, J.J. )

    1989-11-01

    The challenge of the acquired immunodeficiency syndrome (AIDS) for nuclear medicine has been the early detection of related intrathoracic opportunistic infections, inflammatory conditions, and neoplasms. Gallium-67 citrate scanning has proved a sensitive test not only for Pneumocystis carinii pneumonia but for many of the other opportunistic infections and malignancies, including mycobacterial infections and lymphoma. Patterns and intensity of gallium uptake may suggest more specific diagnoses. Indium-111-labeled white blood cells may also be a valuable diagnostic tool in the AIDS patient.41 references.

  15. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  16. Efficacy of Abbreviated Progressive Muscle Relaxation Training: A Quantitative Review of Behavioral Medicine Research.

    ERIC Educational Resources Information Center

    Carlson, Charles R.; Hoyle, Rick H.

    1993-01-01

    Conducted quantitative review of research in which abbreviated progressive muscle relaxation training (APRT) was used as intervention for psychophysiological and stress-related disorders. Calculated strength of association between APRT and outcome measures for 29 experiments published after 1980. APRT was most strongly associated with improvement

  17. Space nuclear safety program. Progress report, August 1983

    SciTech Connect

    Bronisz, S.E.

    1984-01-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  18. [Research in theoretical nuclear and subnuclear physics]. Progress report

    SciTech Connect

    1997-12-31

    Sergei Ananyan has completed one nice piece of nuclear physics on ``Electroweak Processes Involving (0{sup +}0) Excitations in Nuclei`` and has written this work up for publication. He is well into his main thesis problem on weak axial vector exchange currents and already has some very interesting new results. Bryan Barmore is now finishing numerical calculations on the problem of radiating meson fields in relativistic heavy ion collisions. Gary Prezeau has just started on the problem of chiral QHD with vector mesons. Gary should finish his Ph.D. in 1998. A PC has been purchased for the group through CEBAF and they are now tied into the CEBAF computer system., They have organized a Nuclear Theory Study Group in the Department and last year they worked through the books on ``Computational Nuclear Physics.`` Next year they will run a series on effective field theories and chiral perturbation theory. Tod Bachman just completed a senior thesis on relativistic Hartree calculations of the newly-found doubly magic nuclei {sup 100}Sn and {sup 132}Sn. The book on ``Theoretical Nuclear and Subnuclear Physics`` has now been published by Oxford Press. Also included here is the proposal for renewal of the contract.

  19. Space Nuclear Safety Program. Progress report, June 1984

    SciTech Connect

    George, T.G.

    1985-11-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work continues. 36 figs.

  20. Recent Progress in Nuclear Lattice Simulations with Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Lee, D.

    2007-10-01

    This proceedings article summarizes recent work presented at Chiral Dynamics 2006 on nuclear lattice simulations with chiral effective field theory for light nuclei. This work has been done in collaboration with Bubar {gra} Borasoy , Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meißner.

  1. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPAR?,...

  2. Space Nuclear Safety Program. Progress report, April 1984

    SciTech Connect

    George, T.G.

    1985-10-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Covered are: general-purpose heat source testing and recovery, and safety technology program (biaxial testing, iridium chemistry).

  3. Space Nuclear Safety Program. Progress report, March 1984

    SciTech Connect

    Zocher, R.W.; George, T.G.

    1985-08-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos Laboratory. They are divided into: general-purpose heat source, lightweight radioisotope heater unit, and safety technology program. 43 figs., 2 tabs.

  4. Space nuclear-safety program. Progress report, January 1983

    SciTech Connect

    Bronisz, S.E.

    1983-06-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  5. Space nuclear safety program. Progress report, October 1983

    SciTech Connect

    Bronisz, S.E.

    1984-03-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory.

  6. Space nuclear-safety program, November 1982. Progress report

    SciTech Connect

    Bronisz, S.E.

    1983-05-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  7. Space nuclear safety program. Progress report, July 1983

    SciTech Connect

    Bronisz, S.E.

    1983-11-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  8. Space nuclear safety program. Progress report, January 1984

    SciTech Connect

    Bronisz, S.E.

    1984-07-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  9. Nuclear Physics Laboratory, University of Colorado, Final Progress Report

    SciTech Connect

    Kinney, E.R., ed.

    2004-05-12

    OAK-B135 The results and progress of research funded by DOE grant number DOE-FG03-95ER40913 at the University of Colorado at Boulder is described. Includes work performed at the HERMES experiment at DESY to study the quark structure of the nucleon and the hadronization process in nuclei, as well as hadronic reactions studied at LAMPF, KEK, and Fermilab.

  10. Paradigm shifts in critical care medicine: the progress we have made

    PubMed Central

    2015-01-01

    There have really been no single, major, advances in critical care medicine since the specialty came into existence. There has, however, been a gradual, continuous improvement in the process of care over the years, which has resulted in improved patient outcomes. Here, we will highlight just a few of the paradigm shifts we have seen in processes of critical care, including the move from small, closed units to larger, more open ICUs; from a paternal "dictatorship" to more "democratic" team-work; from intermittent to continuous, invasive to less-invasive monitoring; from "more" interventions to "less" thus reducing iatrogenicity; from consideration of critical illness as a single event to realization that it is just one part of a trajectory; and from "four walls" to "no walls" as we take intensive care outside the physical ICU. These and other paradigm shifts have resulted in improvements in the whole approach to patient management, leading to more holistic, humane care for patients and their families. As critical care medicine continues to develop, further paradigm shifts in processes of care are inevitable and must be embraced if we are to continue to provide the best possible care for all critically ill patients. PMID:26728199

  11. Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress

    PubMed Central

    2012-01-01

    The pace of exome and genome sequencing is accelerating, with the identification of many new disease-causing mutations in research settings, and it is likely that whole exome or genome sequencing could have a major impact in the clinical arena in the relatively near future. However, the human genomics community is currently facing several challenges, including phenotyping, sample collection, sequencing strategies, bioinformatics analysis, biological validation of variant function, clinical interpretation and validity of variant data, and delivery of genomic information to various constituents. Here we review these challenges and summarize the bottlenecks for the clinical application of exome and genome sequencing, and we discuss ways for moving the field forward. In particular, we urge the need for clinical-grade sample collection, high-quality sequencing data acquisition, digitalized phenotyping, rigorous generation of variant calls, and comprehensive functional annotation of variants. Additionally, we suggest that a 'networking of science' model that encourages much more collaboration and online sharing of medical history, genomic data and biological knowledge, including among research participants and consumers/patients, will help establish causation and penetrance for disease causal variants and genes. As we enter this new era of genomic medicine, we envision that consumer-driven and consumer-oriented efforts will take center stage, thus allowing insights from the human genome project to translate directly back into individualized medicine. PMID:22830651

  12. A methodology for auto-monitoring of internal contamination by 131I in nuclear medicine workers.

    PubMed

    Vidal, M V S; Dantas, A L A; Dantas, B M

    2007-01-01

    The manipulation of 131I in Nuclear Medicine involves significant risks of internal contamination of the staff. In the event of an accidental contamination, or when the Radiological Protection Program includes routine individual monitoring of internal contamination, it is necessary to implement internal dose estimation through in vivo and in vitro bioassay techniques. Due to the huge extension of the Brazilian country, this type of monitoring becomes unfeasible if all measurements have to be performed at the institutes of the CNEN. Thus, if the Nuclear Medicine Centres (NMC) become able to conduct the monitoring of their employees, this skill would be of great significance. The methodology proposed in this work consists in a simple and inexpensive protocol for auto-monitoring the internal contamination by 131I, using the resources available at the NMC. In order to verify the influence of the phantom in the calibration factor for the measurement of 131I in thyroid, it was performed a comparison among a variety of phantoms commercially available, including the Neck-Thyroid Phantom developed in IRD. A protocol for performing in vivo and in vitro measurements by the NMC was established. The applicability of the individual monitoring techniques was also evaluated by comparing the detection limits with the derived limits associated with the annual dose limits for workers. PMID:17766259

  13. Automated motion correction based on target tracking for dynamic nuclear medicine studies

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Tetrault, Tracy; Fahey, Fred; Treves, Ted

    2008-03-01

    Nuclear medicine dynamic studies of kidneys, bladder and stomach are important diagnostic tools. Accurate generation of time-activity curves from regions of interest (ROIs) requires that the patient remains motionless for the duration of the study. This is not always possible since some dynamic studies may last from several minutes to one hour. Several motion correction solutions have been explored. Motion correction using external point sources is inconvenient and not accurate especially when motion results from breathing, organ motion or feeding rather than from body motion alone. Centroid-based motion correction assumes that activity distribution is only inside the single organ (without background) and uniform, but this approach is impractical in most clinical studies. In this paper, we present a novel technique of motion correction that first tracks the organ of interest in a dynamic series then aligns the organ. The implementation algorithm for target tracking-based motion correction consists of image preprocessing, target detection, target positioning, motion estimation and prediction, tracking (new search region generation) and target alignment. The targeted organ is tracked from the first frame to the last one in the dynamic series to generate a moving trajectory of the organ. Motion correction is implemented by aligning the organ ROIs in the image series to the location of the organ in the first image. The proposed method of motion correction has been applied to several dynamic nuclear medicine studies including radionuclide cystography, dynamic renal scintigraphy, diuretic renography and gastric emptying scintigraphy.

  14. SiPM MEPhI Megagrant Developments in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Popova, E. V.; Belyaev, V. N.; Berdnikov, V. V.; Buzhan, P. Zh.; Ilyin, A. L.; Lazarenko, E. O.; Philippov, D. E.; Skryabin, A. A.; Stifutkin, A. A.

    Three projects has been started in our laboratory as part of megagrant "High energy physics and nuclear medicine with silicon photomultiplier detectors" in NRNU MEPHI. The goal of these projects is development of devices for nuclear medicine in which replacement of photomultiplier tubes (PMT) with solid-state silicon photomultipliers promises various advantages. The first project is full-body SPECT, where replacement of PMT's could reduce size of the detector module and improve spatial resolution while keeping other parameters. The second project is development of a TOF-PET module. Replacement of PMTs with silicon photomultipliers makes it possible to use that detector not only in high magnetic fields but also for Time-of-Flight measurements (higher signal-to-noise ratio on final image) due to very high timing resolution of a SiPM. And the last project is the SiPM-based position-sensitive Gamma-spectrometer for dose monitoring in neutron-capture therapy based on SiPM's.

  15. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals

    PubMed Central

    Novruzov, Fuad; Vinjamuri, Sobhan

    2014-01-01

    Large-scale radiation accidents are few in number, but those that have occurred have subsequently led to strict regulation in most countries. Here, different accident scenarios involving exposure to radiation have been reviewed. A triage of injured persons has been summarized and guidance on management has been provided in accordance with the early symptoms. Types of casualty to be expected in atomic blasts have been discussed. Management at the scene of an accident has been described, with explanation of the role of the radiation protection officer, the nature of contaminants, and monitoring for surface contamination. Methods for early diagnosis of radiation injuries have been then described. The need for individualization of treatment according to the nature and grade of the combined injuries has been emphasized, and different approaches to the treatment of internal contamination have been presented. The role of nuclear medicine professionals, including physicians and physicists, has been reviewed. It has been concluded that the management of radiation accidents is a very challenging process and that nuclear medicine physicians have to be well organized in order to deliver suitable management in any type of radiation accident. PMID:25004166

  16. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals.

    PubMed

    Bomanji, Jamshed B; Novruzov, Fuad; Vinjamuri, Sobhan

    2014-10-01

    Large-scale radiation accidents are few in number, but those that have occurred have subsequently led to strict regulation in most countries. Here, different accident scenarios involving exposure to radiation have been reviewed. A triage of injured persons has been summarized and guidance on management has been provided in accordance with the early symptoms. Types of casualty to be expected in atomic blasts have been discussed. Management at the scene of an accident has been described, with explanation of the role of the radiation protection officer, the nature of contaminants, and monitoring for surface contamination. Methods for early diagnosis of radiation injuries have been then described. The need for individualization of treatment according to the nature and grade of the combined injuries has been emphasized, and different approaches to the treatment of internal contamination have been presented. The role of nuclear medicine professionals, including physicians and physicists, has been reviewed. It has been concluded that the management of radiation accidents is a very challenging process and that nuclear medicine physicians have to be well organized in order to deliver suitable management in any type of radiation accident. PMID:25004166

  17. Nuclear medicine computing. Where we have been, where we are and where we are going.

    PubMed

    Kirch, D L

    1976-01-01

    Demand for the newest and most elaborate Nuclear Medicine equipment is at an all time high. Never has there been more to offer than now with such improvements as large field of view, high resolution, whole-body capability and so on. The dedicated minicomputer systems that are available to go with these latest imaging devices are equally impressive. Still, the headaches associated with putting together a full capability camera/computer system are numerous. Things just do not seem to go together the way they ought to. If we are to truly get the most value out of our new equipment, we must put tremendous work loads on our clinical staff by expecting them to use very awkward and poorly configured systems in which several complicated steps are required to to produce the finished product ready for the reading room. The relatively low usage factor which most clinical Nuclear Medicine computer systems experience is not surprising when we consider the ridiculous way in which these systems are configured. It is time for a little human engineering to be introduced into the design process. Unfortunately, this proliferation of equipment is wasteful of money as well as the operator's time. It would make more sense to consolidate the multitude of displays and controlling elements into a single console which would allow a single operator to perform all necessary data processing operations quickly and interactively. PMID:1030828

  18. Russian practical guidance on radiological support for justification of X-ray and nuclear medicine examinations.

    PubMed

    Balonov, M; Golikov, V; Kalnitsky, S; Zvonova, I; Chipiga, L; Sarycheva, S; Shatskiy, I; Vodovatov, A

    2015-07-01

    An important part of the justification process is assessment of the radiation risks caused by exposure of a patient during examination. The authors developed official national methodology both for medical doctors and sanitary inspectors called 'assessment of radiation risks of patients undergoing diagnostic examinations with the use of ionizing radiation'. The document addresses patients of various age groups and a wide spectrum of modern X-ray and nuclear medicine examinations. International scale of risk categorisation was implemented by the use of effective dose with account for age dependence of radiation risk. The survey of effective doses in radiology, including CT, mammography, and intervention radiology, and nuclear medicine, including single-photon emission tomography and positron emission tomography, for patients of various age groups from several regions of Russia was used for the risk assessment. The output of the methodology is a series of tables for each diagnostic technology with lists of examinations for three age groups (children/adolescents, adults and seniors) corresponding to various radiation risk categories. PMID:25862538

  19. The role of ultrasound and nuclear medicine methods in the preoperative diagnostics of primary hyperparathyroidism

    PubMed Central

    Cacko, Marek; Królicki, Leszek

    2015-01-01

    Primary hyperparathyroidism (PH) represents one of the most common endocrine diseases. In most cases, the disorder is caused by parathyroid adenomas. Bilateral neck exploration has been a widely used treatment method for adenomas since the 20's of the twentieth century. In the last decade, however, it has been increasingly replaced by a minimally invasive surgical treatment. Smaller extent, shorter duration and lower complication rate of such a procedure are emphasized. Its efficacy depends on a precise location of parathyroid tissue during the preoperative imaging. Scintigraphy and ultrasound play a major role in the diagnostic algorithms. The efficacy of both methods has been repeatedly verified and compared. The still-current guidelines of the European Association of Nuclear Medicine (2009) emphasize the complementary role of scintigraphy and ultrasonography in the preoperative diagnostics in patients with primary hyperparathyroidism. At the same time, attempts are made to improve both these techniques by implementing new study protocols or innovative technologies. Publications have emerged in the recent years in the field of ultrasonography, whose authors pointed out the usefulness of elastography and contrast media. Nuclear medicine studies, on the other hand, focus mainly on the assessment of new radiotracers used in the positron emission tomography (PET). The aim of this article is to present, based on literature data, the possibilities of ultrasound and scintigraphy in the preoperative diagnostics in patients with primary hyperparathyroidism. Furthermore, the main directions in the development of imaging techniques in PH patients were evaluated. PMID:26807297

  20. Depicting Medullary Thyroid Cancer Recurrence: The Past and the Future of Nuclear Medicine Imaging

    PubMed Central

    Skoura, Evangelia

    2013-01-01

    Context: Inherited and sporadic medullary thyroid cancer (MTC) is an uncommon and medically challenging malignancy. Even if the extent of initial surgery is deemed adequate, the recurrence rate remains high, up to 50% in most series. Measurement of serum calcitonin is important in the follow-up of patients with MTC, and reliably reflects the existence of the disease. Evidence Acquisition: There is no single sensitive diagnostic imaging method to reveal all MTC recurrences or metastases. Conventional morphologic imaging methods (U/S, CT, and MRI) and several methods of nuclear medicine have been used for this purpose with variable accuracy. Results: The main role of nuclear medicine imaging is the detection of residual or recurrent tumor in the postoperative follow-up. In this review we present the radiopharmaceuticals used in the diagnosis of MTC recurrence, and comparison among them. Conclusions: The most used radiopharmaceuticals labelled with ? emitters are: Metaiodobenzylguanidine (MIBG), labelled with 131I or 123I, 111In-pentetreotide (Octreoscan), 99mTc-pentavalent dimercaptosuccinic acid (99mTc(V)-DMSA), and 99mTc-EDDA/HYNIC-Tyr3-Octreotide ( Tektrotyd). The radiopharmaceuticals labelled with a positron-emitting radionuclide (?+), suitable for positron emission tomography (PET) imaging are: 18F-fluorodeoxyglucose (18F-FDG), 18F-fluorodihydroxyphenylalanine (18F-DOPA), and 68Ga-labelled somatostatin analogues (68Ga-DOTATATE or DOTATOC). PMID:24719630

  1. BOOK REVIEW: Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Coulot, J.

    2003-08-01

    H Zaidi and G Sgouros (eds) Bristol: Institute of Physics Publishing (2002) £70.00, ISBN: 0750308168 Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with `therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique involved in dosimetry (for instance activity quantitation). Nevertheless, there are some minor remarks to be made, about the goal and general organization of the discussion. First, the book could not be considered to be strictly about the Monte Carlo method, but maybe also internal dosimetry and related Monte Carlo issues. Then, it must be noted that the discussion would sometimes have been clearer if SI units had been used instead of rad, or mCi, especially for European readers. There are some confusing features, which could lead to misconceptions, since sometimes authors refer to treatment planning softwares as Monte Carlo codes. If the precious contribution of a software like MIRDOSE to the field of radiation protection dosimetry must be underlined, it should not be considered, strictly speaking, as a Monte Carlo code. It would have been more interesting and relevant to provide a more exhaustive review of Monte Carlo codes (history of the code, transport algorithm, pros and cons), and to make a separate chapter for treatment planning and radiation protection softwares (3D-ID, MABDOS, MIRDOSE3) which are of clinical routine interest. However, this book is very interesting, of practical interest, and it should have its utility in all modern nuclear medicine departments interested in dosimetry, providing up-to-date data and references. It should be viewed as a good and well-documented handbook, or as a general introduction for beginners and students.

  2. "Nuclear" medicine physicians as communicators: their point of view on the aftermath of "nuclear" disaster.

    PubMed

    Staudenherz, Anton; Sinzinger, Helmut

    2012-02-01

    On March 11th, 2011 earthquakes and a subsequent tsunami devastated northern Japan. The consecutive technical catastrophe in the Fukushima Daiichi nuclear power plant was not only an additional local tragedy, it also turned out to be a global disaster. In this review we intend to discuss emerging problems and enlighten a way to communicate in such events, tell people how to react in such scenarios and prevent panic by providing rational information. PMID:22476594

  3. [Somatic mutations in nuclear and mitochondrial DNA]. Progress report

    SciTech Connect

    Not Available

    1992-09-01

    The study is concerned the design of new assays that may detect rare somatic mutations in nuclear and mitochondrial DNA, which may increase upon exposure to mutagens, and thus become a marker of human exposure to such mutagens. Two assays for somatic mutation were presented, one for mitochondrial DNA deletions which was developed by the author, and one for deletions of the ADA gene which resides in the nucleus.

  4. Space Nuclear Safety Program. Progress report, November 1983

    SciTech Connect

    Bronisz, S.E.

    1984-06-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Topics discussed include: safety-verification impact tests; explosion test; fragment test; leaking fueled clads; effects of fresh water and seawater or PuO/sub 2/ pellets; and impact tests of 5 watt radioisotope thermoelectric generator.

  5. Nuclear waste management. Quarterly progress report, January-March 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  6. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect

    1992-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  7. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  8. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect

    Not Available

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  9. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  10. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  11. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  12. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    PubMed Central

    Xiao, Li; Nasu, Masanori

    2014-01-01

    Adult mesenchymal stem cells (MSCs) and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs), and mesenchymal stem cells from gingiva (GMSCs). They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentinpulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined. PMID:25506228

  13. The nuclear medicine therapy care coordination service: a model for radiologist-driven patient-centered care.

    PubMed

    Moncayo, Valeria M; Applegate, Kimberly E; Duszak, Richard; Barron, Bruce J; Fitz, Jim; Halkar, Raghuveer K; Lee, Daniel J; Schuster, David M

    2015-06-01

    We developed a longitudinal care coordination service to proactively deliver high-quality and family-centered care in patients receiving radioiodine therapy for thyroid cancer. In an iterative, multidisciplinary team manner, a pretherapy consultation service, which included scripted interactions, documentation, and checklists for quality control, evolved over time into a robust patient-centered longitudinal care coordination nuclear medicine service. Radiation safety precautions, the rationale for therapy, and management of patient expectations were addressed through the initial consultation, and discharge and posttreatment care were managed during subsequent follow-up. The patient-physician relationship created during longitudinal nuclear medicine therapy care is one tool to help counteract the growing commoditization of radiology. This article describes the process that the nuclear medicine specialists in our department established to enhance radiologist value by providing both exceptional thyroid cancer treatment and continuity of care. PMID:25766086

  14. Joint CDRH (Center for Devices and Radiological Health) and state quality-assurance surveys in nuclear medicine: Phase 2 - radiopharmaceuticals

    SciTech Connect

    Hamilton, D.R.; Evans, C.D.

    1986-08-01

    The report discusses survey results on aspects of the quality assurance of radio-pharmaceuticals from 180 nuclear-medicine facilities in the United States. Data were collected from facilities in 8 states. Demographic information about nuclear-medicine operations and quality-assurance programs was gathered by state radiation-control-program personnel. The data collected from the survey show an incomplete acceptance of quality-assurance practices for radiopharmaceuticals. Most of the facilities in the survey indicated that, because an inferior radiopharmaceutical was prepared so infrequently, they did not believe it was cost-effective to perform extensive quality-assurance testing. The Center for Devices and Radiological Health hopes that the information from the survey will stimulate nuclear-medicine professionals and their organizations to encourage appropriate testing of all radiopharmaceuticals.

  15. Radiation doses of employees of a Nuclear Medicine Department after implementation of more rigorous radiation protection methods.

    PubMed

    Piwowarska-Bilska, Hanna; Supinska, Aleksandra; Listewnik, Maria H; Zorga, Piotr; Birkenfeld, Bozena

    2013-11-01

    The appropriate radiation protection measures applied in departments of nuclear medicine should lead to a reduction in doses received by the employees. During 1991-2007, at the Department of Nuclear Medicine of Pomeranian Medical University (Szczecin, Poland), nurses received on average two-times higher (4.6 mSv) annual doses to the whole body than those received by radiopharmacy technicians. The purpose of this work was to examine whether implementation of changes in the radiation protection protocol will considerably influence the reduction in whole-body doses received by the staff that are the most exposed. A reduction in nurses' exposure by ~63 % took place in 2008-11, whereas the exposure of radiopharmacy technicians grew by no more than 22 % in comparison with that in the period 1991-2007. Proper reorganisation of the work in departments of nuclear medicine can considerably affect dose reduction and bring about equal distribution of the exposure. PMID:23615359

  16. Internal dosimetry of nuclear medicine workers through the analysis of (131)I in aerosols.

    PubMed

    Carneiro, Luana Gomes; de Lucena, Eder Augusto; Sampaio, Camilla da Silva; Dantas, Ana Letícia Almeida; Sousa, Wanderson Oliveira; Santos, Maristela Souza; Dantas, Bernardo Maranhão

    2015-06-01

    (131)I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of (131)I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of (131)I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of (131)I are handled. Samples were collected over 1h using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high-purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, (131)I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4Bq/m(3). This value is about three orders of magnitude below the Derived Air Concentration (DAC) of 8.4kBq/m(3). Assuming that the worker is exposed by inhalation of iodine vapor during 1h, (131)I concentration detected corresponds to an intake of 3.6Bq which results in a committed effective dose of 7.13×10(-5)mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of (131)I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific workplace. Thus, it is suggested to apply the methodology developed in this work to other nuclear medicine services where significant activities of (131)I are routinely handled as an effective means to optimize individual exposures and improve occupational radiation protection safety. PMID:25523310

  17. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation. PMID:26982626

  18. Review of progress in the Canadian nuclear fuel waste management program

    SciTech Connect

    Lyon, R.B.; Johnson, L.H.

    1986-01-01

    The Canadian Nuclear Fuel Waste Management Program is reviewed, illustrating the progress that has been made in assessing the concept of disposal of nuclear fuel waste in plutonic rock of the Canadian Shield. Research is being conducted into used fuel storage and transportation, fuel waste immobilization, site characterization and selection methods, and performance assessment modelling. Details of achievements in these areas are outlined, and results of the most recent interim assessment are discussed.

  19. Progress in Understanding the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas; P.A.M. Guichon

    2007-01-03

    At the present time there is a lively debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We outline the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently, to density dependent effective interactions.

  20. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  1. Nuclear waste management. Quarterly progress report, April-June 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  2. Research in nuclear chemistry. Progress report. [Bio Rex-70

    SciTech Connect

    Choppin, Gregory R.

    1980-01-01

    The research is concerned primarily with complexes in aqueous solution of actinide elements. Actinides in the trivalent oxidation state have been studied more than species in other valence states. Similar systems have also been investigated for the trivalent lanthanides. Since 15 lanthanides can be studied using a wider variety of techniques than feasible with the actinides (e.g., NMR), comparison of these closely related families of elements using the greater amount and variety of lanthanide data provides better understanding of actinide behavior. The studies have included measurements of the thermodynamic parameters of complexation for both inorganic and organic ligands, of the kinetics of complexation, of the spectroscopic properties of complex species using f reverse arrow f electronic transitions, of the nuclear magnetic resonance spectroscopy of the complexed ligands and of binding to natural polyelectrolytes such as humic acid.

  3. Progress of Covariance Evaluation at the China Nuclear Data Center

    SciTech Connect

    Xu, R.; Zhang, Q.; Zhang, Y.; Liu, T.; Ge, Z.; Lu, H.; Sun, Z.; Yu, B.; Tang, G.

    2015-01-15

    Covariance evaluations at the China Nuclear Data Center focus on the cross sections of structural materials and actinides in the fast neutron energy range. In addition to the well-known Least-squares approach, a method based on the analysis of the sources of experimental uncertainties is especially introduced to generate a covariance matrix for a particular reaction for which multiple measurements are available. The scheme of the covariance evaluation flow is presented, and an example of n+{sup 90}Zr is given to illuminate the whole procedure. It is proven that the accuracy of measurements can be properly incorporated into the covariance and the long-standing small uncertainty problem can be avoided.

  4. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    SciTech Connect

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of {sup 3}H and {sup 3}He. Special attention is given to the eta meson, its production using photons, electrons, {pi}{sup {plus_minus}}, and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4{pi} acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us.

  5. [Leprosy and medicine II--progress and establishment of an absolute isolation policy].

    PubMed

    Mori, Shuichi; Ishii, Norihisa

    2007-02-01

    The leprosy policy of Japan began from when the government enacted "law No. 11 (The leprosy prevention act)" in 1907 (Meiji 40) and several leprosy sanatoriums were built to receive previously homeless patients. Then, with the rise of totalitarianism, the isolation policy of Japan gained national support under the slogan "Patient Relief", which would become a major factor behind the enactment of "Leprosy Prevention Law" in 1931 (Showa 6) by which the leprosy policy was changed to one of absolute isolation aimed at the internment of all leprosy patients. From recent research on the leprosy policy of Japan, the internment of all leprosy patients, isolation for life, social defense, and neglect of patients' human-rights had tragic results in many cases. However, there is little research which can reply clearly to the question of whether the leprosy policy of Japan was really original and what factors led to the formation of the absolute isolation policy. This paper focuses on the relation between leprosy policy and treatment, and from this, I make clear the similarities, or peculiarities, of the isolation policy between Japan and the rest of the world, while clarifying the factors associated with the progress of the absolute isolation policy. The processes involved were historical and medical historical in that the relation between the formation of a national health system and the progress of the isolation policy of Meiji Era, the proposal of the isolation policy by Dr. Keizo Dohi, Dr. Shibasaburo Kitasato, and Dr. Masatsugu Yamane; the practical application of this policy by Dr. Kensuke Mitsuda, and the decision to enact this policy and its support by the Health and Medical Bureau and the Department of the Interior, as well as many other factors, all contributed to the final implementation of the absolute isolation policy. PMID:17315749

  6. Assessment of metabolic bone disease: review of new nuclear medicine procedures

    SciTech Connect

    Wahner, H.W.

    1985-12-01

    In the management of patients with metabolic bone disease, nuclear medicine laboratories offer two nontraumatic procedures of potential clinical importance: bone mineral measurements and bone scintigraphy. Bone mineral measurements from the radius, lumbar spine, and hip obtained with use of absorptiometry or computed tomography can be used to predict the risk of fracture at these skeletal sites, can determine the severity of bone loss for the assessment of a benefit-versus-risk ratio on which appropriate therapy can be based, and can substantiate the effectiveness of therapy over time. Bone scintigraphy with use of labeled diphosphonate allows assessment of focal and, in defined circumstances, of total skeletal bone turnover in patients with normal kidney function. Both of these techniques have been used successfully in studies of population groups for the evaluation of trends. Their application to the management of individual patients is currently being evaluated. 41 references.

  7. Beta and electron dose calculations to skin due to contamination by common nuclear medicine radionuclides

    SciTech Connect

    McGuire, E.L.; Dalrymple, G.V. )

    1990-04-01

    We present dose calculations to the basal cell layer of the epidermis resulting from skin contamination by radionuclides used in nuclear medicine. Dose calculations were made using the computer code VARSKIN, as modified by us to include these radionuclides and to account for their monoenergetic electron emissions. Results indicate that basal skin doses (taken to be at a depth of 0.007 cm) are approximately 1 cGy h-1 per 3.7 X 10(-4) Bq cm-2 (1 rad h-1 per muCi cm-2) from {sup 99m}Tc, {sup 111}In and {sup 201}Tl, implying that established limits may be approached under certain circumstances. The implication of these results for small areas of contamination is also discussed.

  8. A new nuclear medicine scintillation camera based on image-intensifier tubes.

    PubMed

    Mulder, H; Pauwels, E K

    1976-11-01

    A large-field scintilation camera for nuclear medicine application has recently been developed by Old Delft. The system is based on a large-field image-intensifier tube preceded by a scintillator mosaic. A comparison is made with present state-of-the-art scintillation cameras in terms of modulation transfer function (MTF) and sensitivity. These parameters, which determine the performance of scintillation cameras, are not independent of each other. Therefore, a comparative evaluation should be made under well-defined and identical conditions. The new scintillation camera achieves considerable improvement in image quality. In fact, the intrinsic MTF of the new camera is rather close to unity in the spatial frequency range up to 1 line pair per centimeter (1p/cm). Further improvement would require a fundamentally new approach to gamma imaging, free of the limitations of conventional collimators (e.g., coded-aperture imaging techniques). PMID:978249

  9. Energy response and resolution of YAP:Ce matrix for imaging applications in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Malatesta, T.; Vittori, F.; de Notaristefani, F.; Pani, R.

    1997-02-01

    In order to design an accurate imaging detector for Nuclear Medicine, the energy performances of several YAP:Ce crystal arrays were investigated upon. Indeed, the new multipillar configuration used for the crystal gamma detector, needs an attentive pillars dimensions study in order to optimize the light yield, the detection efficiency and the spatial linearity. At first, the YAP:Ce matrix were coupled with a EMI 9765 traditional phototube; measurements of light yield and energy linearity were taken by irradiating the crystals with Am241, Ba133 and Cs137 point-like sources. Then, the energy response and resolution of a 40mmx40mm detection area YAP:Ce matrix coupled with a Hamamatsu R2486 Position Sensitive PMT were attentively analyzed. Differences were found in the energy response on the whole detection area, but with an adequate equalization procedure it is possible to recover the response homogeneity as well as improving the detector energy resolution.

  10. Determination of clinical efficacy: nuclear medicine as applied to lung scanning

    SciTech Connect

    Saenger, E.L.; Buncher, C.R.; Specker, B.L.; McDevitt, R.A.

    1985-07-01

    This paper describes a Society of Nuclear Medicine sponsored study of 2023 patients which compares two methods, logistic regression (LR) and entropy minimax pattern detection (EMPD), to evaluate efficacy. Lung scans, used in determining or excluding a diagnosis of pulmonary embolism (PE), were utilized to create the data set. The LR analysis, presented here, shows that lung scan findings have significant influence on the referring physician's diagnostic thinking. Models were developed for the probability of a signout diagnosis of PE, and equal patient groups tested the validity of these regression equations. A comparison of the sensitivity, specificity, and predictive values of EMPD and LR was done. EMPD predicts a signout diagnosis on only 41% of cases before lung scan and 71% after lung scan; LR provides a prediction of the signout diagnosis on 100% of cases. An advantage of EMPD is that it does not require poor probability estimates.

  11. Nuclear Medicine Imaging of Infection in Cancer Patients (With Emphasis on FDG-PET)

    PubMed Central

    Vos, Fidel J.; van der Graaf, Winette T.A.; Oyen, Wim J.G.

    2011-01-01

    Infections are a common cause of death and an even more common cause of morbidity in cancer patients. Timely and adequate diagnosis of infection is very important. This article provides clinicians as well as nuclear medicine specialists with a concise summary of the most important and widely available nuclear medicine imaging techniques for infectious and inflammatory diseases in cancer patients with an emphasis on fluorodeoxyglucose positron emission tomography (FDG-PET). 67Ga-citrate has many unfavorable characteristics, and the development of newer radiopharmaceuticals has resulted in the replacement of 67Ga-citrate scintigraphy by scintigraphy with labeled leukocytes or FDG-PET for the majority of conditions. The sensitivity of labeled leukocyte scintigraphy in non-neutropenic cancer patients is comparable with that in patients without malignancy. The specificity, however, is lower because of the uptake of labeled leukocytes in many primary tumors and metastases, most probably as a result of their inflammatory component. In addition, labeled leukocyte scintigraphy cannot be used for febrile neutropenia because of the inability to harvest sufficient peripheral leukocytes for in vitro labeling. FDG-PET has several advantages over these conventional scintigraphic techniques. FDG-PET has shown its usefulness in diagnosing septic thrombophlebitis in cancer patients. It has also been shown that imaging of infectious processes using FDG-PET is possible in patients with severe neutropenia. Although larger prospective studies examining the value of FDG-PET in cancer patients suspected of infection, especially in those with febrile neutropenia, are needed, FDG-PET appears to be the most promising scintigraphic technique for the diagnosis of infection in this patient group. PMID:21680576

  12. Development of a patient-specific dosimetry estimation system in nuclear medicine examination

    SciTech Connect

    Lin, H. H.; Dong, S. L.; Yang, H. J.; Chen, S.; Shih, C. T.; Chuang, K. S.; Lin, C. H.; Yao, W. J.; Jan, M. L.

    2011-07-01

    The purpose of this study is to develop a patient-specific dosimetry estimation system in nuclear medicine examination using a SimSET-based Monte Carlo code. We added a dose deposition routine to store the deposited energy of the photons during their flights in SimSET and developed a user-friendly interface for reading PET and CT images. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The S values for {sup 99m}Tc, {sup 18}F and {sup 131}I obtained by the system were compared to those from the MCNP4C code and OLINDA. The ratios of S values computed by this system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which are comparable to that obtained from MCNP4C code (0.94 to 1.20). The average ratios of S value were 0.99{+-}0.04, 1.03{+-}0.05, and 1.00{+-}0.07 for isotopes {sup 131}I, {sup 18}F, and {sup 99m}Tc, respectively. The simulation time of SimSET was two times faster than MCNP4C's for various isotopes. A 3D dose calculation was also performed on a patient data set with PET/CT examination using this system. Results from the patient data showed that the estimated S values using this system differed slightly from those of OLINDA for ORNL phantom. In conclusion, this system can generate patient-specific dose distribution and display the isodose curves on top of the anatomic structure through a friendly graphic user interface. It may also provide a useful tool to establish an appropriate dose-reduction strategy to patients in nuclear medicine environments. (authors)

  13. Nuclear waste management. Quarterly progress report, January-March, 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  14. Radiation effects in nuclear waste materials. 1997 annual progress report

    SciTech Connect

    Weber, W.J.; Corrales, L.R.

    1997-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding at the atomic, microscopic, and macroscopic levels of radiation effects in glass and ceramics. This research will provide the underpinning science and models for evaluation and performance assessments of glass and ceramic waste forms for the immobilization and disposal of high-level tank waste, plutonium residues and scrap, and excess weapons plutonium. Studies will focus on the effects of ionization and elastic collision interactions on defect production, defect interactions, diffusion, solid-state phase transformations, and gas accumulation using actinide-containing materials, gamma irradiation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of a-decay and p-decay on nuclear waste glasses and ceramics. This program will exploit a variety of structural, optical, and spectroscopic probes to characterize the nature and behavior of the defects, defect aggregates, and phase transforma-tions. Computer simulation techniques will be used to determine defect production, calculate defect stability, defect energies, damage processes within an a-recoil cascade, and defect/gas diffusion and interactions. A number of irradiation facilities and capabilities will be used, including user facilities at several national laboratories, to study the effects of irradiation under different conditions.'

  15. Genetic Variants in Nuclear-Encoded Mitochondrial Genes Influence AIDS Progression

    PubMed Central

    Hendrickson, Sher L.; Lautenberger, James A.; Chinn, Leslie Wei; Malasky, Michael; Sezgin, Efe; Kingsley, Lawrence A.; Goedert, James J.; Kirk, Gregory D.; Gomperts, Edward D.; Buchbinder, Susan P.; Troyer, Jennifer L.; O'Brien, Stephen J.

    2010-01-01

    Background The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. Methodology/Principal Findings Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI) on chromosome 6. Conclusions Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis. PMID:20877624

  16. Risk management of biosimilars in oncology: each medicine is a work in progress.

    PubMed

    Vulto, Arnold G; Crow, Stacy A

    2012-03-01

    Drug licensing and drug safety monitoring for standard chemical entities have been established and are routinely used. These have resulted in a solid foundation of knowledge from which confident therapeutic decisions can be made. For many chemical entities, this advanced level of experience is also present for the generic products. The expertise surrounding the development of biosimilar competitor versions is increasing and progress is encouraging. To address the re-engineering and comparability complexities of biosimilars, the European Union imposed a requirement that risk management plans be included in the medications' marketing applications. This paper summarizes and discusses the circumstances complicating the public's view of drug safety, historical incidents during the transition from innovative to competitor products, as well as retrospective assessments of the development and post-marketing experiences thus far with two biosimilars. Through assessing the market entries and post-marketing experiences of biosimilars used in oncology, the healthcare field can better prepare for the next wave of comparator-products: biosimilar monoclonal antibodies. PMID:22274817

  17. Risk Biomarker Assessment for Breast Cancer Progression: Replication Precision of Nuclear Morphometry

    PubMed Central

    Poulin, N.; Frost, A.; Carraro, A.; Mommers, E.; Guillaud, M.; van Diest, P.J.; Grizzle, W.; Beenken, S.

    2003-01-01

    Nuclear morphometry is a method for quantitative measurement of histopathologic changes in the appearance of stained cell nuclei. Numerous studies have indicated that these assessments may provide clinically relevant information related to the degree of progression and malignant potential of breast neoplasia. Nuclear features are derived from computerized analysis of digitized microscope images, and a quantitative Feulgen stain for DNA was used. Features analyzed included: (1) DNA content; (2) nuclear size and shape; and (3) texture features, describing spatial features of chromatin distribution. In this study replicated measurements are described on a series of 54 breast carcinoma specimens of differing pathologic grades. Duplicate measurements were performed using two serial sections, which were processed and analyzed separately. The value of a single feature measurement, the nuclear area profile, was shown to be the strongest indicator of progression. A quantitative nuclear grade was derived and shown to be strongly correlated with not only the pathologic nuclear grade, but also with tubule formation, mitotic grade, and with the overall histopathologic grade. Analysis of replication precision showed that the standard methods of the histopathology laboratory, if practiced in a uniform manner, are sufficient to ensure reproducibility of these assessments. We argue that nuclear morphometry provides a standardized and reproducible framework for quantitative pathologic assessments. PMID:12775917

  18. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    SciTech Connect

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  19. Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1992--June 30 , 1993

    SciTech Connect

    Griffin, J.J.; Cohen, T.D.

    1993-07-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon`s mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon`s mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e{sup +}e{sup {minus}}) problem and heavy-on dynamics. In particular, the sharp electrons observed in {beta}{sup +} irradiation of heavy atoms have recently been subsumed into the ``Composite Particle Scenario,`` generalizing the ``(e{sup +}e{sup {minus}}-Puzzle`` of the pairs from heavy ion collisions to the ``Sharp Lepton Problem.``

  20. trnp: A conserved mammalian gene encoding a nuclear protein that accelerates cell-cycle progression.

    PubMed

    Volpe, Marina; Shpungin, Sally; Barbi, Chany; Abrham, Galya; Malovani, Hanna; Wides, Ron; Nir, Uri

    2006-06-01

    We herein describe a novel protein encoded by a single exon in a single-copy conserved mammalian gene. This protein, termed TMF regulated nuclear protein (TRNP), was identified in a yeast "two-hybrid" screen in which the "BC box" containing protein-TMF/ARA160 served as a bait. TRNP is a basic protein which accumulates in an insoluble nuclear fraction in mammalian cells. It is 227 aa long in humans and chimps and 223 aa long in mice. Enforced expression of TRNP in cells that do not express this protein significantly increased their proliferation rate by enhancing their cell-cycle progression from the G0/G1 to the S phase. Like another proliferation promoting factor, Stat3, TRNP was directed to proteasomal degradation by TMF/ ARA160. Thus, the trnp gene encodes a novel mammalian conserved nuclear protein that can accelerate cellcycle progression and is regulated by TMF/ARA160. PMID:16792503

  1. Self-irradiation of the blood from selected nuclides in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Hnscheid, H.; Fernndez, M.; Eberlein, U.; Lassmann, M.

    2014-03-01

    Nuclear medicine dosimetry and research in biodosimetry often require the knowledge of the absorbed dose to the blood. This study provides coefficients for the absorbed dose rates to the blood related to the activity concentration in the blood as a function of the vessel radius for radionuclides commonly used in targeted radiotherapy and in PET-diagnostics: C-11, F-18, Ga-68, Y-90, Tc-99 m, I-124, I-131, and Lu-177. The energy deposition patterns after nuclear disintegrations in blood vessel lumina (cylinders homogeneously filled with blood) with radii from 0.01 to 25.0 mm were simulated with the Monte-Carlo radiation transport code MCNPX. An additional contribution from photon radiation from activity in blood in the remainder of the body was taken into account based on a reasonable blood distribution model. The fraction of energy absorbed from non-penetrating radiation in the blood is low in thin blood vessels but approaches the total energy emitted by particles with increasing lumen radius. For photon radiation, irradiation to blood in small vessels is almost completely due to radioactive decays in distant blood distributed throughout the body, whereas the contribution from activity in the vessel becomes dominant for lumen radii exceeding 13 mm. The dependences of the absorbed dose rates on the lumen radius can be described with good accuracy by empirical functions which can be used to determine the absorbed doses to the blood and to the surrounding tissue.

  2. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, April 1-September 30, 1987

    SciTech Connect

    Bari, R.A.; Boccio, J.L.; Carew, J.F.; Czajkowski, C.J.; Fitzpatrick, R.; Ginsberg, T.; Greene, G.A.; Guppy, J.G.; Hall, R.E.; Khatib-Rahbar, M.; Luckas, W.J. Jr.; Perkins, K.R.; Philippacopoulos, A.J.; Pratt, W.T.; Rohatgi, U.S.; Taylor, J.H.; van Tuyle, G.J.; Unwin, S.D.; Wulff, W.; Weiss, A.J.

    1988-06-01

    The Advanced and Water Reactor Safety Research Programs Quarterly Progress Reports have been combined and are included in this report entitled, ''Safety Research Programs Sponsored by the Office of Nuclear Regulatory Research/endash/Progress Report.'' This progress report will describe current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Reactor Accident Analysis, and Division of Reactor and Plant Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in February 1987. 38 refs., 82 figs., 26 tabs.

  3. Annual progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Not Available

    1980-01-01

    Research progress is reported for the year 1979-1980. The report is divided into sections dealing individually with the divisions of Biomolecular and Cellular Science, Environmental Biology, and Nuclear Medicine. The sections have been individually entered into EDB. (ACR)

  4. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    SciTech Connect

    Avila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; Gamboa de Buen, I.; Buenfil, A. E.; Brandan, M. E.

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  5. The continuing important role of radionuclide generator systems for nuclear medicine.

    PubMed

    Knapp, F F; Mirzadeh, S

    1994-10-01

    In this review, the continuing importance and status of development of radionuclide generator systems for nuclear medicine are discussed. Radioisotope costs and availability are two important factors, and both nuclear reactors and accelerator facilities are required for production of the parent radioisotopes. Radionuclide generator research is currently focused on the development of generators which provide radioisotopes for positron emission tomography (PET) applications and daughter radioisotopes for various therapeutic applications which decay primarily by particle emission. Generator research continues to be influenced by developments and requirements of complementary technologies, such as the increasing availability of PET. In addition, the availability of a wide spectrum of tumor-specific antibodies, fragments, and peptides for radioimmunodiagnosis and radioimmunotherapy has stimulated the need for generator-derived radioisotopes. The advantages of treatment of arthritis of the synovial joints with radioactive particles (radiation synovectomy) may be expected to be of increasing importance as the elderly population increases, and many of these agents are prepared using generator-derived radioisotopes such as yttrium-90 and rhenium-188. Therapeutic use of the "in vivo generator" is a new approach, where the less radiotoxic parent radioisotope is used to prepare tissue-specific therapeutic agents. Following in vivo site localization, decay of the parent provides the daughter for therapy at the target site. The principal foundation of most diagnostic agents will continue to require technetium-99m from the molybdenum-99/technetium-99m ("Moly") generator. With the limited availability of nuclear reactors and facilities necessary for production and processing of fission 99mTc and the significant issues and problems associated with radioactive waste processing, however, the possibility of utilizing lower specific activity 99Mo produced from neutron activation of enriched 98Mo may become practical in the future. PMID:7828627

  6. Pharmacokinetic herb-drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research.

    PubMed

    Ma, Bing-Liang; Ma, Yue-Ming

    2016-02-01

    Traditional Chinese medicine (TCM) has a long history of medical use in China and is still used worldwide. Unexpected herb-drug interactions (HDIs) may lead to adverse drug reactions or loss of therapeutic efficacy of the victim drug. Here, based on searches of Medline, EBSCO, Science Direct and Web of Science using various keywords, we summarize the TCM-derived pharmacokinetic HDIs that were reported from 1990 to 2015 and discuss the underlying mechanisms. In general, many pre-clinical and clinical pharmacokinetic HDIs have been reported. Our searches show that TCMs cause pharmacokinetic interactions with therapeutic drugs mainly by inhibiting or inducing drug-metabolizing enzymes and transporters. However, most of the interactions result from a small number of prescription medications and the actual potential for harm is low. Moreover, such HDIs can be avoided by discontinuing the TCMs. Despite the extensive number of reports on TCM-derived HDIs, the findings are frequently conflicting and can be confusing. The causes of the conflicts vary, but we classified them into three basic categories as follows: (1) complicated nature and poor quality control of TCMs, (2) different responses of various test systems to TCM exposure and (3) diverse study designs. Accordingly, we propose rational study designs for future HDI research. We also propose that a specific authoritative guide be established that provides recommendations for HDI studies. This review provides insights into the progress and challenges in TCM-derived pharmacokinetic HDI research. PMID:26915920

  7. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database.

    PubMed

    Nakajima, Kenichi; Matsumoto, Naoya; Kasai, Tokuo; Matsuo, Shinro; Kiso, Keisuke; Okuda, Koichi

    2016-04-01

    As a 2-year project of the Japanese Society of Nuclear Medicine working group activity, normal myocardial imaging databases were accumulated and summarized. Stress-rest with gated and non-gated image sets were accumulated for myocardial perfusion imaging and could be used for perfusion defect scoring and normal left ventricular (LV) function analysis. For single-photon emission computed tomography (SPECT) with multi-focal collimator design, databases of supine and prone positions and computed tomography (CT)-based attenuation correction were created. The CT-based correction provided similar perfusion patterns between genders. In phase analysis of gated myocardial perfusion SPECT, a new approach for analyzing dyssynchrony, normal ranges of parameters for phase bandwidth, standard deviation and entropy were determined in four software programs. Although the results were not interchangeable, dependency on gender, ejection fraction and volumes were common characteristics of these parameters. Standardization of (123)I-MIBG sympathetic imaging was performed regarding heart-to-mediastinum ratio (HMR) using a calibration phantom method. The HMRs from any collimator types could be converted to the value with medium-energy comparable collimators. Appropriate quantification based on common normal databases and standard technology could play a pivotal role for clinical practice and researches. PMID:26897008

  8. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    PubMed

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on atherosclerosis imaging with PET. PMID:26678270

  9. The American College of nuclear physicians 18th annual meeting and scientific sessions DOE day: Substance abuse and nuclear medicine abstracts

    SciTech Connect

    Not Available

    1992-02-01

    Despite the enormous personal and social cost Of substance abuse, there is very little knowledge with respect to the mechanisms by which these drugs produce addiction as well as to the mechanisms of toxicity. Similarly, there is a lack of effective therapeutic intervention to treat the drug abusers. In this respect, nuclear medicine could contribute significantly by helping to gather information using brain imaging techniques about mechanisms of drug addiction which, in turn, could help design better therapeutic interventions, and by helping in the evaluation and diagnosis of organ toxicity from the use of drugs of abuse. This volume contains six short descriptions of presentations made at the 18th Meeting of the American College of Nuclear Physicians -- DOE Day: Substance Abuse and Nuclear Medicine.

  10. Radiation exposure to nuclear medicine personnel handling positron emitters from Ge-68/Ga-68 generator

    PubMed Central

    Dwivedi, Durgesh Kumar; Snehlata; Dwivedi, Alok Kumar; Lochab, Satya Pal; Kumar, Rakesh; Naswa, Niraj; Sharma, Punit; Malhotra, Arun; Bandopadhayaya, Guru Pad; Bal, Chandrashekhar; Pant, Gauri Shankar

    2011-01-01

    Objective: To measure the radiation exposure to nuclear medicine personnel during synthesis and injection to the patients of Ga-68 1,4,7,10-tetraazacyclododecane-N,N′,N″,N″′-tetraacetic acid (DOTA)-1-Nal3-octreotide (NOC)- (DOTA-NOC) using ring thermoluminescence dosimeters (TLDs). Materials and Methods: Synthesis of Ga-68 DOTA-NOC was done on a semi-automated system. Finger doses were measured during synthesis and injection of Ga-68 DOTA-NOC. The occupational workers wore TLDs at the base of ring finger of both hands. The finger doses of two radio chemists were measured during synthesis of Ga-68 DOTA-NOC while that of a physician during its injection to the patients. Results: Duration of the study was eight months and a total of 20 samples were prepared. During synthesis, the mean dose to base of left ring finger was 3.02 ± 1.01 mSv and to base of right ring finger was 1.96 ± 0.86 mSv. Mean dose to base of left ring finger was 1.26 ± 0.35 mSv while that to base of right ring finger was 1.03 ± 0.13 mSv during injection. The mean dose was observed to be higher during synthesis than injection. However, the difference was not significant (P = 0.27 and P = 0.18, respectively). Overall mean finger dose of left hand was 2.43 ± 1.21 mSv, whereas for the right hand the same was 1.65± 0.82 mSv. Conclusion: Finger doses to radio chemists during semi-automated synthesis of Ga-68 DOTA-NOC and that to the physician involved in injection of Ga-68 DOTA-NOC were found to be within permissible limits. Ring dosimeters must be worn for the safety of the nuclear medicine personnel involved in synthesis and injection of Ga-68 DOTA-NOC. PMID:22174513

  11. Nuclear medicine techniques in Merkel cell carcinoma: A case report and review of the literature

    PubMed Central

    KRITIKOS, NIKOLAOS; PRIFTAKIS, DIMITRIOS; STAVRINIDES, STAVROS; KLEANTHOUS, STEFANOS; SARAFIANOU, ELENI

    2015-01-01

    Merkel cell carcinoma (MCC) is a rare and aggressive type of neuroendocrine cancer of the skin. It predominantly affects the elderly, with a predilection for the sun-exposed skin of the head and neck. Risk factors include immune-suppressing diseases, such as human immunodeficiency virus (HIV), chronic lymphocytic leukemia and multiple myeloma, organ transplantation, and the presence of the newly-identified Merkel cell polyomavirus (MCPyV). Diagnosis is based on pathological findings, primarily the immunohistochemical determination of cytokeratin 20 positivity. By contrast, staging relies on conventional imaging methods, such as ultrasonography, computed tomography (CT) and magnetic resonance imaging, and nuclear medicine techniques, such as sentinel lymph node scintigraphy, somatostatin receptor scintigraphy (SRS), and positron emission tomography (PET)/CT with 18F-fluorodeoxyglucose (FDG) or alternative radiopharmaceuticals. The treatment of MCC is primarily surgical, with possible adjuvant radiation, while the use of chemotherapy appears to be an alternative therapeutic option that is used only in specific cases. The present study describes the case of a 43-year-old HIV-positive Caucasian man with MCC located on the posterior surface of the left thigh, which was identified by cytological and histological examination of tissue sampled by fine needle aspiration and biopsy performed under CT. SRS demonstrated a high uptake of 111In-diethylene triamine pentaacetic acid-octreotide at the affected site. Therefore, the lesion was surgically excised, and the patient received chemotherapy and adjuvant radiotherapy. Three months subsequent to treatment, the patient underwent a PET/CT scan with 18F-FDG that demonstrated uptake in the cervical lymph nodes and the area of the excised lesion. These findings indicated that the disease was in remission. The aim of the present study was to highlight the value and contribution of nuclear medicine in the diagnosis, staging and follow-up, using PET/CT, octreoscan and sentinel lymph node scintigraphy, of patients with MCC, as well as the therapeutic strategy of radiolabelled somatostatin analogue scintigraphy. PMID:26622719

  12. Nuclear Physics Research at the University of Richmond progress report, November 1, 1992--October 31, 1993

    SciTech Connect

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1993-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1992 to October 31, 1993 under Contract Number DE-FG05-88ER40459. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focussed on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and the University of Pennsylvania.

  13. Theoretical nuclear structure and astrophysics. Progress report for 1993--1995

    SciTech Connect

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-12-31

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops.

  14. Dose received by occupationally exposed workers at a nuclear medicine department

    SciTech Connect

    Avila, O.; Sanchez-Uribe, N. A.; Rodriguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-23

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of 'Instituto Nacional de Cancerologia' (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are {sup 131}I, {sup 18}F, {sup 68}Ga, {sup 99m}Tc, {sup 111}In and {sup 11}C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of 'Instituto Nacional de Investigaciones Nucleares' (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the {sup R}eglamento General de Seguridad Radiologica{sup ,} Mexico (50 mSv), as well as within the lower limit recommended by the 'International Commission on Radiation Protection' (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  15. Current Status of Nuclear Medicine Practice in Latin America and the Caribbean.

    PubMed

    Pez, Diana; Orellana, Pilar; Gutirrez, Claudia; Ramirez, Ral; Mut, Fernando; Torres, Leonel

    2015-10-01

    The practice of nuclear medicine (NM) in the Latin American and Caribbean region has experienced important growth in the last decade. However, there is great heterogeneity among countries regarding the availability of technology and human resources. According to data collected through June 2014 by the International Atomic Energy Agency (IAEA), the total number of ? cameras in the region is 1,231, with an average of 2.16 per million inhabitants. Over 90% of the equipment is SPECT cameras; 7.6% of which have hybrid technology. There are 161 operating PET or PET/CT cameras in 12 member states, representing a rate of 0.3 per million people. Most NM centers belong to the private health system and are in capitals or major cities. Only 4 countries have the capability of assembling 99Mo-99mTc generators, and 2 countries produce 99mTc from nuclear reactors. Cold kits are produced in some countries, and therapeutic agents are mostly imported from outside the region. There are 35 operative cyclotrons. In relation to human resources: there is 1 physician per ? camera, 1.6 technologists per ? camera, 0.1 medical physicist per center, and approximately 0.1 radiochemist or radiopharmacist per center. Nearly 94% of the procedures are diagnostic. PET studies represent about 4% of the total. The future of NM in the Latin American and Caribbean region is promising, with great potential and possibilities. Some of the most important factors driving the region toward greater homogeneity in the availability and application of NM, and bridging the gaps between countries, are clinician awareness of the importance of NM in managing diseases prevalent in the region, increased building of capacity, continuous and strong support from international organizations such as the IAEA through national and regional projects, and strong public-private partnerships and government commitment. PMID:26229143

  16. Dose received by occupationally exposed workers at a nuclear medicine department

    NASA Astrophysics Data System (ADS)

    vila, O.; Snchez-Uribe, N. A.; Rodrguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-01

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of "Instituto Nacional de Cancerologa" (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131I, 18F, 68Ga, 99mTc, 111In and 11C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of "Instituto Nacional de Investigaciones Nucleares" (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the "Reglamento General de Seguridad Radiolgica", Mxico (50 mSv), as well as within the lower limit recommended by the "International Commission on Radiation Protection" (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  17. New principles in nuclear medicine imaging: a full aperture stereoscopic imaging technique.

    PubMed

    Strocovsky, Sergio G; Otero, Dino

    2010-01-01

    In nuclear medicine, images of planar scintigraphy and single photon emission computerized tomography (SPECT) obtained through gamma camera (GC) appear to be blurred. Alternatively, coded aperture imaging (CAI) can surpass the quality of GC images, but still it is not extensively used due to the decoding complexity of some images and the difficulty in controlling the noise. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. Here we present a full aperture imaging (FAI) technique which overcomes the problems of CAI ordinary systems. The gamma radiation transmitted through a large single aperture is edge-encoded, taking advantage of the fact that nuclear radiation is spatially incoherent. The novel technique is tested by means of Monte Carlo method with simple and complex sources. Spatial resolution tests and parallax tests of GC versus FAI were made, and three-dimensional capacities of GC versus FAI were analyzed. Simulations have allowed comparison of both techniques under ideal, identical conditions. The results show that FAI technique has greater sensitivity (approximately 100 times) and greater spatial resolution (>2.6 times at 40 cm source-detector distance) than that of GC. FAI technique allows to obtain images with typical resolution of GC short source-detector distance but at longer source-detector distance. The FAI decoding algorithm simultaneously reconstructs four different projections, while GC produces only one projection per acquisition. Our results show it is possible to apply an extremely simple encoded imaging technique, and get three-dimensional radioactivity information. Thus GC-based systems could be substituted, given that FAI technique is simple and it produces four images which may feed stereoscopic systems, substituting in some cases, tomographic reconstructions. PMID:21096848

  18. Nuclear medicine program progress report for quarter ending March 31, 1996

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Guhlke, S.; Luo, H.; McPherson, D.W.; Mirzadeh, S.; Mokler, F.

    1996-10-01

    Biodistribution studies with the radioiodinated 3(R)- and 3(S)-BMIPP isomers in rats have shown that 3(R)-BMIPP has 20-25% higher heart uptake (15-180 min) than 3(S)-BMIPP, while uptake in other tissues examined is similar. To evaluate the possible differences in metabolic fate of the two isomers, a mixture of [I-125]-3(R)/[I-131]- 3(S)-BMIPP was administered to fasted female Fisher rats. Groups (n=3 rats per group) were sacrificed after 15, 60 and 180 min, and urine and feces collected from another group. Samples of blood, heart, liver, lungs, kidney, and urine were Folch-extracted. The distribution of I-125 and I-131 in the organic, aqueous, and pellet samples were determined. Organic samples were then analyzed by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC). The relative distribution of I-125/I-131 in the lipid, aqueous, and pellet samples was similar for both isomers. Distribution of I-125/I-131 in the various components of the lipid extracts observed by TLC was similar, with principal incorporation into the free fatty acid (FFA) and triglyceride (TG) pools. HPLC analyses (Cl8) of the FFA fraction showed similar I-125/I-131 profiles, corresponding to BMIPP, and the {alpha}-methyl-C,4 (PIPA) and C12, Cl0 and C6 carbon chain-length catabolites. By TLC, urine I-125/I-131 chromatographed with hippuric acid. HPLC analyses (Cl 8) of acid-hydrolyzed urine gave a single I-125/I-131 component with the same RRT as 2-({beta}-iodophenyl)acetic acid, the final {alpha}/{beta}-oxidative BMIPP catabolite. Unexpectedly, HPLC of lipids from base hydrolyzed TG from the heart tissue, showed I-125/I-125 co-chromatographing with short-chain fatty acids, with only levels in BMIPP. These unexpected results demonstrate that the 3(R)-BMIPP and 3(S)-BMIPP isomers are metabolized similarly in rat tissues, and that the higher myocardial extraction observed for the 3(R)-BMIPP may reflect differences in the relative membrane transport of the two isomers.

  19. Nuclear medicine program progress report for quarter ending December 31, 1991

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1992-04-01

    This report presents information on (1) a new improved synthesis of carrier-free rhenium-188-labeled Re(V) dimercaptosuccinic acid (DMSA) complex as a potential therapeutic agent for treatment of thyroid medullary carcinoma; and (2) the synthesis and evaluation of a series of iodine-125-labeled analogues of altanserine for imaging of serotonin receptors.

  20. Nuclear Medicine Program progress report for quarter ending March 31, 1993

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Lambert, C.R.

    1993-04-01

    We have exploring the possibility of measuring urinary radioactivity as an index of pancreatic lipase activity after oral administration of a new triglyceride containing a radioactive iodine-1 25-labeled fatty acid moiety. The new agent, 1,2-dipalmitoyl-3[15-(p-iodophenyl)pentandecan-l-oyl]-racglycerol (1,2-Pal-3-IPPA), was prepared by the thallation-iodide displacement method. Following oral gavage of the radioiodinated triglyceride to rats, about 30% of the administered activity was excreted in 24 hours in the urine. In normal human controls an higher urinary excretion (of about 75% was observed. In this report, we describe an evaluation of the metabolites excreted in the urine and the chemical species stored in adipose from rats. The urine activity co-chromatographed with hippuric acid by TLC indicating conjugation of the IPPA metabolites. Release of the acidic components from the conjugated excretory products by acid hydrolysis of the urine provided the radioactive acidic IPPA metabolites. Analysis of the Folch extracts of fat samples from rats demonstrated that the radioactive components co-chromatographed In the triglyceride region. Recent studies in patients with compromised pancreatic exocrine function have demonstrated significantly decreased 24 hr. urinary excretion of about 25%, following oral administration of [1 -1 31]-1,2-Pal-3-IPPA. Thus, urine analysis after oral administration of [I -1 31]-1,2-Pal-3-IPPA may be a simple, non-invasive tool for the clinical evaluation of various diseases involving dietary fat digestion.

  1. Nuclear Medicine Program progress report for quarter ending September 30, 1990

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Allred, J.F.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1991-02-01

    An evaluation of the Oak Ridge National Laboratory (ORNL) alumina-based tungsten-188/rhenium-188 (W-188/Re-188) generator system has continued. Our goal is to develop a prototype system which will provide sufficient levels of Re-188 for radiolabeling of tumor-specific antibodies for radioimmunotherapy. During this review period several samples were supplied for collaborative studies. Samples of rhenium-188 from the ORNL W-188/Re-188 generators were supplied to the National Institutes of Standards and Technology (NIST) as a calibration standard. Iodine-125-labeled IMP protein labeling agent was supplied to the University of Michigan for antibody radiolabeling studies (D. Buchsbaum, Ph.D.). The iodine-123-labeled BMIPP fatty acid analogue developed at ORNL was also supplied to collaborators at BNL for SPECT imaging studies of the effects of cocaine intoxication on myocardial fatty acid uptake in a canine model. Iodine-125-BMIPP was also supplied to the University of Bonn, Germany for continuing metabolic studies in an isolated heart model. In this report the resumption of radioisotope production in the HFIR following the restart of this important facility in July 1990 and the preparation and review and evaluation of issues for the DOE Tiger Team visit to ORNL on November 1--December 7 are also discussed. 2 figs., 1 tab.

  2. [Radiopharmacokinetics: Utilization of nuclear medicine]. Comprehensive progress report, [1986--1989

    SciTech Connect

    Wolf, W.

    1989-12-31

    The work performed in the 1986/1989 period can be characterized as one of testing and documenting that the Radiopharmacokinetic technique is both feasible and applicable to human studies, as well as developing spectroscopic methods for undertaking noninvasive human studies. Main accomplishments include studies which: show that drug targeting can be monitored noninvasively using radiolabeled drugs. The study that documented this finding involved an analysis of the comparative kinetics of biodistribution of {sup 195m}Pt-cisplatin to brain tumors, when administered intravenously and intra-arterially; show that such differential targeting of Platinum represents a differential quantity of drug and a differential amount of the active component reaching the target site; show that in vivo NMRS studies of drugs are possible, as documented by our studies of 5-fluorouracil; show that 5-fluorouracil can be trapped in tumors, and that such trapping may be directly correlatable to patient response; show that the radiopharmacokinetic technique can also be used effectively for the study of radiopharmaceuticals used for imaging, as documented in our studies with {sup 99m}T{sub c}-DMSA.

  3. Nuclear medicine program progress report for quarter ending December 31, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.

    1993-03-01

    We describe the synthesis of the cis- and trans-iodovinyl isomers of the new ORNL cholinergic-muscarinicreceptorligand, 1 -azabicyclo[2.2-2]oct-3-yl{alpha}-hydroxy-{alpha}-(1-iodo-l-propen-3-yl)-{alpha}-phenylacetate (``IQNP``). This agent is prepared in high radiochemical yield, and the racemic mixture shows high specificity and selectivity for the cerebral and myocardial receptors. Since two chiral centers are present in this molecule, it is important to evaluate the importance of the absolute configuration of the two centers on receptor specificity. The tributyltin substrates were carefully separated by column chromatography, converted to the iodine-125 analogues by iododestannylation, and evaluated in rats in vivo. While the ``E`` (trans) isomer cleared rapidly from the receptor-rich areas of rat brain, the ``Z`` (cis) isomer showed high uptake in these areas but also high concentration in the cerebellum. In contrast, the E,Z-isomeric mixture showed good uptake and retention in the receptor rich areas. Also described in this report is a description of neutron flux measurements in the hydraulic tube position at the ORNL High Flux Isotope Reactor (HFIR). Also during this period, samples of [l-125]- and [l-131]-labeled racemic ``IQNP`` were supplied through a collaborative program with the Brookhaven National Laboratory for high resolution autoradiographic studies in rat tissues.

  4. Nuclear medicine program. Progress report for quarter ending June 30, 1995

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.

    1995-09-01

    In this report we describe the first synthesis of the (-)(-) and (-)(+) isomers of 1-azabicyclo oct-3-yl {alpha}-(1-fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate ({open_quotes}FQNPe{close_quotes}). Earlier studies with the racemic FQNPe mixture had demonstrated high in vitro binding affinity for the muscarinic-cholinergic receptor and showed that pre-treatment of rats with this new agent significantly blocked receptor localization of subsequently injected -Z-(-,-)-IQNP. Because of the potential important use of fluorine-18-labeled analogues for clinical evaluation of changes in muscarinic-cholinergic receptors by positron emission tomography (PET), we have now synthesized the diastereomeric isomers of FQNPe. Multi-gram quantities of ethyl-{alpha}- (1-chloropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate were prepared and then saponified into the racemic {alpha}-(1-chloropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetic acid mixture. The racemic acid was resolved into (-)- and (+)-{alpha}-(1-chloropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetic acid enantiomers by isolation of the (-) salt of (S-)-(-)-{alpha}-methylbenzylamine and the (+) salt of (R)-(+)-{alpha}-methylbenzylamine. The resolved (-)- ([{alpha}]{sub D} = -12.1{degrees}, c = 5.8, chloroform) and (+)-acetic acids ([{alpha}]{sub D} = + 11.6{degrees}, c = 6.0, chloroform) were fully characterized and then converted to the enantiomeric ethyl-{alpha}-(1-fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetates by a four-step reaction sequence. The (-)- and (+)-ethyl-{alpha}-(1-fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetates were then each transesterified with (-)-quinuclidinol to form the (-)(-) FQNPe and (-)(+) FQNPe diastereomers. These diastereomeric esters will now be evaluated in in vitro studies. The availability of the substrates for preparation of the fluorine-18-labeled enantiomers will now allow evaluation of the radiolabeled compounds in animals.

  5. Nuclear medicine program progress report for quarter ending March 31, 1995

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1995-06-01

    In this report the conditions for ``direct`` labeling of the anti-granulocyte (MAb) BW 250/183 monoclonal antibody with rhenium-188 (Re-188) from a generator are described. Re-188-BW 250/183 is of interest for potential use for bone marrow ablation. The labeling time, temperature, pH, and the amount of tin and citric acid were optimized utilizing IgG. Radiolabeling yields of greater than 97% were achieved using 1 mL of a phthalate/tartrate buffer (pH 5.{und M}=?), 250 {micro} g BW 250/183, 1.0 mg citric acid, 400 {micro} g tin (II) chloride, and 1 mL of the tungsten-188/rhenium-188 generator eluent (200--800 {micro} Ci of Re-188). Analysis of the Re-188-labeled IgG and BW 250/183 was performed by Instant Thin Layer Chromatography (ITLC), Sephadex purification and High Performance Liquid Chromatography (HPLC). When the labeling was performed at room temperature or 37 C, in vitro stability studies performed in HSA solution, cysteine solution, 6 {und M} urea solution and a 1% casein solution showed that the Re-188 label demonstrated a similar stability profile in all solutions. Initial studies indicate that Re-188-BW 250/183 retained {approximately} 90% of immunoreactivity when compared to the technetium-99m labeled antibody prepared from the same kit. During this period, several radioisotopes prepared in the ORNL HFIR were also supplied on a cost-recovery basis or provided to collaborators for ongoing collaborative projects. These include tin-117m, processed tungsten-188 and the ORNL alumina-based tungsten-188/rhenium-188 generators.

  6. Nuclear medicine program progress report for quarter ending March 31, 1994

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Lambert, C.R.; McPherson, D.W.; Mirzadeh, S.; Luo, H.

    1994-05-01

    The authors` new radioiodinated ``IQNP`` agent, an analogue of ``4-IQNB``, has a high affinity for the muscarinic-cholinergic receptor (m-AChR). Iodine is stabilized in ``IQNP`` by attachment as a vinyl iodide. To evaluate the potential usefulness of a [Br-76]-labeled analogue as a candidate for positron emission tomography (PET), they have synthesized the trans-3-bromopropenyl analogue (BrQNP) and evaluated its ability in vivo to block uptake of [I-125]-Z-(R,R)-IQNP. Reaction of bromine with the trans-tributylstannyl substrate prepared from ethyl -{alpha}-hydroxy -{alpha}-phenyl-{alpha}-(1-propyn-3-yl)acetate, followed by column purification and transesterification with (R,S)-3-quinuclidinol gave BrQNP. Female rats were pre-treated with the oxalate salt of BrQNP one hour prior to I.V. injection of [I-125]-IQNP. While the brain and heart uptake in BrQNP pre-treated animals was significantly decreased, the control animals showed the expected high uptake of IQNP in these tissues. The ease of preparation and ability to block m-AChR suggest that [Br-76]-labeled BrQNP is a potential candidate for PET studies. In this report, the authors also summarize their current on-going collaborative studies assessing the usefulness of various rhenium-188-labeled therapeutic agents. In addition, collaborative programs have been established to evaluate rhenium-188-labeled particles for treatment of arthritis (synovectomy), treatment of bone pain resulting from cancer metastheses with rhenium-188-phosphonates (palliation), and other applications.

  7. Nuclear medicine program progress report for quarter ending December 31, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.

    1993-03-01

    We describe the synthesis of the cis- and trans-iodovinyl isomers of the new ORNL cholinergic-muscarinicreceptorligand, 1 -azabicyclo[2.2-2]oct-3-yl[alpha]-hydroxy-[alpha]-(1-iodo-l-propen-3-yl)-[alpha]-phenylacetate ( IQNP''). This agent is prepared in high radiochemical yield, and the racemic mixture shows high specificity and selectivity for the cerebral and myocardial receptors. Since two chiral centers are present in this molecule, it is important to evaluate the importance of the absolute configuration of the two centers on receptor specificity. The tributyltin substrates were carefully separated by column chromatography, converted to the iodine-125 analogues by iododestannylation, and evaluated in rats in vivo. While the E'' (trans) isomer cleared rapidly from the receptor-rich areas of rat brain, the Z'' (cis) isomer showed high uptake in these areas but also high concentration in the cerebellum. In contrast, the E,Z-isomeric mixture showed good uptake and retention in the receptor rich areas. Also described in this report is a description of neutron flux measurements in the hydraulic tube position at the ORNL High Flux Isotope Reactor (HFIR). Also during this period, samples of [l-125]- and [l-131]-labeled racemic IQNP'' were supplied through a collaborative program with the Brookhaven National Laboratory for high resolution autoradiographic studies in rat tissues.

  8. Nuclear medicine program progress report for quarter ending June 30, 1994

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Lambert, C.R.; McPherson, D.W.; Mirzadeh, S.; Luo, H.

    1994-08-01

    In this report we describe tile first successful synthesis and in vivo evaluation of a fluorinated analogue of the IQNP muscarinic-cholinergic receptor ligand. Unanticipated synthetic hurdles lead to several unsuccessful approaches before the synthesis of a model compound was achieved. The successful route involved introduction of the fluoroethyl moiety at an early stage of the synthesis by alkylation of ethyl 1,3-dithiane-2-carboxylate with 1-fluoro-2-bromoethane. Subsequent unmasking of the carbonyl, followed by introduction of the phenyl group with phenylmagnesium bromide and subsequent transesterification with racemic quinuclidinol afforded the target compound, 1-azabicyclo[2.2.2]oct-3-yl {alpha}-(1-fluoroethan-2-yl)-{alpha}-hydroxy-{alpha}-phenylacetate (QNF). Pretreatment of Fisher rats with QNF one hour prior to the intravenous administration of the [I-131]-Z-(R,R) IQNP isomer demonstrated that the new fluoro analogue blocked uptake of iodine-131 in those regions of the brain rich in muscarinic-cholinergic receptors measured three hours after injection. As an example, the control values for group of nontreated animals were (5 animals; mean {+-} SD): cortex, 1.20{+-}0.27; striatum, 0.73{+-}0.19; pons, 0.70{+-}0.20; cerebellum, 0.43{+-}0.114. Brains from animals pretreated with the fluoro analogue had the following values (mean{+-}SD; % decrease): cortex, 0.67{+-}0.15 (65%); striatum, 0.35{+-}0.114 (52%); pons, 0.40{+-}0.08 (43%); cerebellum, 0.16{+-}0.09(63%). Also during this period several tungsten-188/rhenium-188 generators and tin-117m samples were provided for collaborative studies.

  9. Nuclear medicine program progress report for quarter ending September 30, 1996

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Boll, R.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1997-01-01

    The reactor production yields of tungsten-188 produced by neutron capture by enriched tungsten-186 in the HFIR and other reactors are nearly an order of magnitude lower than expected by calculation using established cross section values. Since neutron capture of tungsten-188 may be the major factor which significantly reduces the observed yields of tungsten-188, the authors have evaluated the possible burn-up cross section of the tungsten-188 product. Tungsten-189 was produced by irradiating a radioactive target containing a known amount of {sup 188}W. In order to reduce the radiation level to an acceptable level (<20% detector dead time), the authors chemically removed >90% of {sup 188}Re, which is the decay product of {sup 188}W, prior to irradiation. They were able to confirm the two predominant {gamma}-rays in the decay of {sup 189}W, 260.1 {+-} 1.4 and 421.5 {+-} 1.6 keV. By following the decay of these {gamma}-rays in two sets of experiments, a half-life of 10.8 {+-} 0.3 m was obtained for {sup 189}W. Based on a knowledge of the {sup 188}W content of target (52.6 mBq), neutron flux of 5 {times} 10{sup 13} n {center_dot} s{sup {minus}1} {center_dot} cm{sup {minus}2}, irradiation time of 10 min and with the assumption of 100% intensity for 260.1 and 421.5 keV {gamma}-rays, a cross-section of 12.0 {+-} 2.5 b was calculated for burn-up cross-section of {sup 188}W, which helps explain the greatly reduced production yields of {sup 188}W.

  10. Nuclear medicine program progress report for quarter ending December 31, 1995

    SciTech Connect

    Knapp, F.F., Jr.; Ambrose, K.R.; Beets, A.L.; Luo, H.; McPherson, D.W.; Mirzadeh, S.; Mokler, F

    1995-12-31

    In this report we describe the first resolution of the 3R-(+)-and 3S- ({minus})-methyl BMIPP methyl-branched fatty acid stereoisomers and biodistribution of the radioiodinated isomers in rats to investigate the effects of the configuration of the 3({beta})-methyl group on the organ distribution and myocardial uptake and release kinetics. Synthesesis of 3R-(+)BMIPP was accompanied by initial acylation of the thiophene template with the acid chloride of ethyl 3R- methylglutarate. The amide of the synthetic 3R-BMIPP isomer prepared S-(-)-{alpha}-methylbenzylamine exhibited identical spectral and chromatographic properties with the chromatographically more polar isomer (TLC and HPLC) which was separated from the mixture of amides prepared from reaction of the acid chloride of racemic BMIPP with the S-(-)-{alpha}-methylbenzylamine. The second less chromatographically polar amide isomer was assigned the 3S-(-)-methyl configuration. The free acids were obtained by acid hydrolysis of the amides and converted to the radioiodinated analogues. While biodistribution studies in separate groups of rats demonstrated greater myocardial uptake of 3R-BMIPP compared with the 3S-isomer values for most other tissues evaluated (blood, lungs, kidneys and thyroid) were similar, whereas the 3S-BMIPP isomer consistently showed higher liver uptake. These results were confirmed in a [l-131]-3S-BMIPP/[l-125]-3R-BMIPP dual label study and both isomers had similar myocardial wash-out curves (5-180 min). These studies suggest that [l-123]-3R-BMIPP is a candidate for clinical evaluation and may show greater myocardial uptake than the 3S-isomer and thus may require a reduced injected dose compared to racemic BMIPP.

  11. Nuclear medicine program progress report for quarter ending December 31, 1994

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Lambert, C.R.; McPherson, D.W.; Mirzadeh, S.; Luo, H.

    1995-02-01

    1-Azabicyclo[2.2.2]oct-3-yl {alpha}-(l-fluoropentan-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate (PQNPe) has been prepared and evaluated as a new candidate for the determination of muscarinic cholinergic receptor density by positron emission tomography (PET). The results of in vitro binding assays demonstrated that FONPe has high affinity for m{sub l} and M{sub 2} muscarinic receptor subtypes. Pretreatment of female Fisher rats with unlabeled FQNPe one hour prior to the intravenous administration of radioiodinated Z-(R,R)-IQNP, a high affinity muscarinic ligand, demonstrated FONPE significantly blocked the uptake of radioactivity in the brain and heart measured three hours post-injection of the radiolabeled ligand. These results demonstrate that this new fluoro analogue of QNB has high affinity for the muscarinic receptor and is able to effectively pass the blood-brain-barrier and localize in tissues rich in muscarinic receptors. The fluorine-18-labeled analogue thus represents an important target ligands for evaluation as potential receptor imaging agents in conjunction with PET. During this period several radioisotopes were provided to collaborators. Tungsten-188/rhenium-188 generators were provided as part of a CRADA project.

  12. Nuclear Medicine Program progress report for quarter ending September 30, 1994

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Lambert, C.R.; McPherson, D.W.; Mirzadeh, S.; Luo, H.

    1995-01-01

    In this report we describe the synthesis of the Z (cis) isomers of R-l-azabicyclo [2.2.2] oct-3-yl R-and S-{alpha}-hydroxy-{alpha}-(liodo-l-propen-3-yl) - {alpha}-phenylacetate. We also report the results of the in vitro binding assays of the E and Z isomers of the (R, R)- and (R, S)-isomers of IQNP. The Z isomers of IQNP were prepared by there action of (R, R)- or (R, S)-l-azabicyclo [2.2.2] oct-3-yl - {alpha} - hydroxy - {alpha} - phenyl - {alpha} - (l-propyn-3-yl) acetate with tributyltin hydride in HMPA followed by subsequent reaction of the cis tributylstannyl substrate with iodine. In an attempt to increase the yield of the Z isomers, the preparation of the Z isomers of the R-or S-ethyl {alpha}-hydroxy-{alpha}-phenyl-{alpha}-(l-propyn-3-yl)acetate was also investigated under a variety of reaction conditions. Results of the in vitro binding assays demonstrated that although all the isomers showed high affinity for the muscarinic receptor, the E-(R, R)-IQNP isomer had a 100 times greater higher affinity for m{sub 1} and m{sub 3} receptor subtypes as compared to m{sub 2} subtype. We are currently evaluating the in vivo biodistribution properties and pharmocokinetic and autoradiographic analyses of these promising new ligands in detail for potential use of the iodine-123-labeled agents to study muscarinic receptors by Single Photon Emission Computed Tomography (SPECT).

  13. Nuclear medicine technology progress report for quarter ending June 30, 1980

    SciTech Connect

    Knapp, Jr., F. F.

    1981-01-01

    Results of experiments demonstrated that the alkyl portion of 9-telluraheptadecanoic acid (9-THDA) is retained in the myocardial tissue of rats to the same extent as radioactivity from /sup 123m/Te-9-THDA. Tissue distribution experiments in rats one hr after injection of 10-(/sup 14/C)-9-telluraheptadecanoic acid were compared with the results of a parallel study using /sup 123m/Te-9-THDA. The results indicate that the alkyl region of 9-THDA is retained in the myocardium and that labeling of this portion of the 9-THDA molecule with radiohalogens such as /sup 123/I may be an attractive approach for evaluation of myocardial function. Results of preliminary studies for the development of radiolabeled barbiturates as a new class of agents for the measurement of regional blood perfusion in the brain are also described. Several new barbiturates substituted at the C-5 position were prepared and characterized. These compounds will be labeled with /sup 117m/Sn, /sup 75/Se, and /sup 123m/Te and brain uptake studies performed in rats. Studies of arsenic trioxide (As/sub 2/O/sub 3/) toxicity for human cells in the diffusion chamber assay system have continued. Studies employing /sup 74/As/sub 2/O/sub 3/ have demonstrated that uptake of radioactivity from test substances administered to rats can be detected in cells taken from the intraperitoneally-implanted diffusion chambers. Preliminary synthetic studies of gold-based antirheumatoid complexes are also reported. Several /sup 11/C-labeled amino acids have been prepared for clinical testing. Platinum-195m-labeled-cis-dichlorodiammine-platinum(II) was supplied to collaborators for further testing and /sup 75/Se- and /sup 123m/Te-labeled long-chain fatty acids were supplied to several medical investigators for the evaluation of myocardial function in experimental animals. (ERB)

  14. Nuclear Medicine Program progress report for quarter ending June 30, 1996

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Guhlke, S.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1996-12-31

    The four stereoisomers of 1-azabicyclo[2.2.2]oct-3-yl {alpha}-(1fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe, 4) have been resolved and were evaluated as potential candidates for PET imaging agents. Labeling with fluorine-18 involved a two-step synthesis via fluoride displacement of a mesylate intermediate at the ethyl ester stage followed by transesterification with (R)-quinuclidinol. In vitro data utilizing cloned human receptor subtypes demonstrated that while the (+,+)-isomer did not have significant receptor binding, the other stereoisomers of FNPe bound with high affinity to the various mA ChR subtypes tested (K{sub i}, nm: m1, ({minus},{minus}), 0.33; ({minus},+), 1.4; (+,{minus}), 3.8; m2, ({minus},{minus}), 0.1; ({minus},+), 4.2; +,{minus}), < 75% binding; m3, ({minus},{minus}), 0.34; ({minus},+), 3.1; (+;{minus}), 7.6. [{sup 18}F]-({minus},{minus})- and [{sup 18}F]-({minus},+)-FQNPe (4) were prepared in decay corrected radiochemical yields of 14% ([{sup 18}F]-({minus},{minus})-4) and 8% ([{sup 18}F]-({minus},+)-4). In vivo biodistribution studies were conducted in female rats with [18F]-({minus},{minus})- and (+,{minus})-FQNPe (4). [{sup 18}F]({minus},{minus})-4 demonstrated high uptake in mA ChR regions of the brain up to 3 hours post injection and low accumulation of radioactivity in the bone indicated good in vivo stability.

  15. Nuclear Medicine Program progress report for quarter ending June 30, 1990

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Allred, J.F.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1990-08-01

    In this a report novel electrochemical method is described for the separation of copper-64 and copper-67 following the irradiation of zinc targets. This method is based on the spontaneous electrodeposition of copper on a platinum electrode immersed in the zinc target solution without requiring an external electromotive force (EMF). No-carrier-added N-(2-(3-({sup 125}I)iodo-4-hydroxyphenyl)ethyl)-maleimide has been prepared by direct iodination of N-(2-(4-hydroxyphenyl)ethyl)-maleimide with (Na({sup 125}I)-chloramine-T). The precursor was prepared by condensation of tyramine with maleic anhydride followed by ring annulation. Studies in rats showed low thyroid uptake of radioactivity which reached a plateau after 4 h, indicating in vivo stability. This new radioiodinated maleimide analogue reacts with bovine serum albumin (BSA) under mild conditions and has been used for labeling a lung-endothelial-cell-specific antibody (411-201B). The ({sup 125}I)-labeled antibodies are currently being evaluated for immunoreactivity and tumor specificity. During this period several agents were also supplied to Medical Cooperative investigators, including iodine-123-labeled and iodine-131-labeled fatty acid analogues for studies at the Brookhaven National Laboratory, the Cardiology Department at the Free University of Amsterdam, and the University of Bonn, West Germany. A tungsten-188/rhenium-188 generator was supplied to the University of Massachusetts, and osmium-191 was supplied for fabrication of generators for patient studies in Finland. 4 refs., 5 figs., 5 tabs.

  16. Nuclear medicine program: Progress report for quarter ending June 30, 1988

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, A.P.; Callahan, A.P.; Allred, J.F.; Blystone, S.L.; Lisic, E.C.; McPherson, D.W.; Srivastava, P.C.; Rice, D.E.; Rogers, C.J.; Umbricht, G.

    1989-02-01

    This report describes our initial studies on developing techniques of attaching radioisotopes of copper (Cu-64 and Cu-67) and rhenium (Re-186 and Re-188) to proteins. Our work has focussed on the synthesis of para-carboxyalkylphenylglyoxal-bis-(N/sub 4/-methylthiosemi-carbazone) ligands (TSC). Because of the strong binding of Cu(II) to the bis-TSC ligand, the development of bifunctional chelates for attachment of radioisotopes of copper to antibodies is of interest. We have developed an improved synthesis of the requisite ..cap alpha..-ketoaldehyde and 1,2-diketone substrates used for derivatization to the bis-TSC ligand chelates. This approach uses the ''Kornbloom'' method which provides a simple alternative to the usual method for fabrication of the 1,2-bis-thiosemicarbazone compounds and avoids the use of selenium dioxide for oxidation of substituted acetophenones. Acylation of the -phenyl carboxylic acid with bromoacetyl chloride or 2-bromopropionyl chloride followed by treatment with silver nitrate readily provides the nitrate esters. Oxidative elimination with sodium acetate in DMSO then provides the ..cap alpha..-ketoaldehyde or 1,2-diketo products. The overall yields are in the 40-60% range. Also in this report are the results of studies with the Langendorff-perfused rat heart system. Comparison of the incorporation of (I-131)IPPA and (I-125)BMIPP in dual-labeled studies under normoxia and hypoxia (pO/sub 2/ > 120 mm) clearly showed the expected preferential incorporation into triglyceride (TG) storage products. Basic hydrolysis of the TG fraction purified by chromatography showed release of the radioactivity into products chromatographing in the free fatty acid fraction.

  17. Nuclear medicine program progress report for quarter ending December 31, 1993

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; Luo, H.; McPherson, D.W.; Mirzadeh, S.; Lambert, C.R.

    1994-02-01

    The results of preliminary in vivo metabolic studies of the iodine-125-labeled E-(R,R)-IQNP in rats are described. The E-(R,R) isomer demonstrates highly selective and specific localization in cerebral regions rich in the m{sub 1} and m{sub 4} muscarinic-cholinergic receptor subtypes and is a good candidate for potential human studies. Since the external evaluation of receptor-ligand complexes requires that only uptake of the unmetabolized agent is measured, these studies were performed to evaluate the metabolism of the radioiodinated ligand in the whole brain, heart, liver and serum from rats at several time points after intravenous administration. Radioactivity was very rapidly excreted in the first 24-hour period (urine = 46; feces = 26). Folch extracts of the different tissue samples showed that the lipid-soluble extract from brain tissue contained 87 of the activity at 24 hours. In the heart, 62 of the activity was extracted in the lipid soluble extract after 30 minutes and decreased to 51 after 4 hours. Thin-layer chromatographic analysis of the lipid soluble extracts indicated that only the unmetabolized E-(R,R)-IQNP was detected in brain extracts. Also in this report, the predicted medical radioisotope production capabilities of the proposed Advanced Neutron Source (ANS) are discussed.

  18. Nuclear magnetic resonance studies of granular flows: Technical progress report, quarter ending 09/30/93

    SciTech Connect

    Not Available

    1993-10-27

    This Technical Progress Report for the quarter ending 09/30/93 describes work on two tasks which are part of nuclear magnetic resonance studies of granular flows. (1) Research has been directed toward improving concentration measurements under reasonably fast conditions. (2) The process continues of obtaining comprehensive velocity, concentration, and diffusion information at several angular velocities of the cylinder for seeds (mustard, sesame, and sunflower seeds) flowing in a half-filled cylinder.

  19. The development of new radionuclide generator systems for nuclear medicine applications

    SciTech Connect

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S. ); Brihaye, C.; Guillaume, M. . Cyclotron Research Center)

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs.

  20. Production of 99Mo for Nuclear Medicine by 100Mo(n,2n)99Mo

    NASA Astrophysics Data System (ADS)

    Nagai, Yasuki; Hatsukawa, Yuichi

    2009-03-01

    We have proposed a new route to produce 99Mo for nuclear medicine by the 100Mo(n,2n)99Mo reaction. The reaction cross section is known to be 1.5 b in the neutron energy, En, range from 12 to 17 MeV: 10-times larger than the thermal-neutron capture cross section of 98Mo. By irradiating an enriched 100Mo target for 198 h with neutrons of 1013 n/(cm2 s) at En 14 MeV, one can produce 79 GBq/g specific activity of 99Mo. Since the cross sections for 100Mo(n, p)100Nb, 100Mo(n,n p)99Nb and 100Mo(n,?)97Zr at 12? En? 17 MeV are small, less than a few mb, radioactive waste during and/or after chemical processing of 99Mo would not be a serious problem. The proposed route could bring a major breakthrough in the solution of ensuring a constant and reliable supply of 99Mo without using highly enriched 235U.

  1. Investigation of public exposure resulted from the radioiodine delay tank facility of nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Ali, Abdul Muhaimin Mat; Abdullah, Reduan; Idris, Abdullah Waidi

    2016-01-01

    The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the 131I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patient and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of 131I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.

  2. A Spartan 6 FPGA-based data acquisition system for dedicated imagers in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Fysikopoulos, E.; Loudos, G.; Georgiou, M.; David, S.; Matsopoulos, G.

    2012-12-01

    We present the development of a four-channel low-cost hardware system for data acquisition, with application in dedicated nuclear medicine imagers. A 12 bit octal channel high-speed analogue to digital converter, with up to 65 Msps sampling rate, was used for the digitization of analogue signals. The digitized data are fed into a field programmable gate array (FPGA), which contains an interface to a bank of double data rate 2 (DDR2)-type memory. The FPGA processes the digitized data and stores the results into the DDR2. An ethernet link was used for data transmission to a personal computer. The embedded system was designed using Xilinx's embedded development kit (EDK) and was based on Xilinx's Microblaze soft-core processor. The system has been evaluated using two different discrete optical detector arrays (a position-sensitive photomultiplier tube and a silicon photomultiplier) with two different pixelated scintillator arrays (BGO, LSO:Ce). The energy resolution for both detectors was approximately 25%. A clear identification of all crystal elements was achieved in all cases. The data rate of the system with this implementation can reach 60 Mbits s-1. The results have shown that this FPGA data acquisition system is a compact and flexible solution for single-photon-detection applications. This paper was originally submitted for inclusion in the special feature on Imaging Systems and Techniques 2011.

  3. Applicability of radioactive 99mTc-O4- magnetic fluid to nuclear medicine

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hee; Kim, Seong-Min; Kim, Keun-Ho; Kim, Chong-Oh

    2011-01-01

    Magnetite nanoparticles were synthesized with solution of ferrous and ferric chlorides and ammonia water by sonochemical method. The hydrophilically radioactive magnetic fluids were prepared by labeling technetium pertechnetate (99mTc-O4-) and then adsorbing alginic acid on the magnetite particles. In order to measure some properties of the dispersed particles, the magnetic fluids were freezed down to -70 oC, and were dried in vacuum. The total size of the particles was about 15 nm with the core diameter of 12 nm and their superparamagnetic saturation magnetization was 63 emu/g for the core-shell of Fe3O4/Algin and 52 emu/g for that of Fe3O4/99mTc-O4-/Algin. The labeling of radioactive 99mTc-O4- to the magnetite particles was efficient to about 70 %. The fluid of magnetic particles on which the radioisotopic substance is labeled with such an efficiency level may be applied as a tracer for diagnosis in nuclear medicine.

  4. Role of nuclear medicine in neuroHIV: PET, SPECT, and beyond.

    PubMed

    Sathekge, Mike; McFarren, Alicia; Dadachova, Ekaterina

    2014-08-01

    HIV-associated neurocognitive disorders (HAND) remain among the most common clinical disorders encountered in people infected with HIV despite widespread use of antiretroviral therapy. There is an enormous need for further evaluation and early diagnosis of HAND. The variety of PET agents such as FDG, C-PiB and [C]-R-PK11195 as well as SPECT agents Tc-HMPAO, I-FP-CIT and I-IBZM have been investigated for the diagnosis of HAND, for distinguishing between demented and nondemented HIV patients, for differentiation between HAND and nonHIV related dementia, as well as for assessing the influence of coinfection with the other viral pathogens on the brain functionality. In spite of some interesting results, none of these tracers have been specifically created for HAND and none can be recommended for HAND diagnosis. Specialized tracers need to be developed for better diagnosis and management of HAND. The potential role of therapeutic nuclear medicine as part of the curative strategies for HIV is also discussed. PMID:24781008

  5. Simulation of beta radiator handling procedures in nuclear medicine by means of a movable hand phantom.

    PubMed

    Blunck, Ch; Becker, F; Urban, M

    2011-03-01

    In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement. PMID:21044994

  6. Scene setting: criteria for acceptability and suspension levels in diagnostic radiology, nuclear medicine and radiotherapy.

    PubMed

    Malone, Jim; Faulkner, Keith; Christofides, Stelios; Lillicrap, Stephen; Horton, Patrick

    2013-02-01

    The EC (European Commission) Directive on radiation protection of patients requires that Criteria for Acceptability of Equipment in Diagnostic Radiology, Nuclear Medicine and Radiotherapy be established throughout the member states. This paper reviews the background to this requirement and to its implementation in practice. It notes parallel requirements in the EC medical devices directive and International Electrotechnical Commission standards. It is also important to be aware and that both sets of requirements should ideally be harmonised due to the global nature of the equipment industry. The paper further reviews the type of criteria that can be well applied for the above purposes, and defines qualitative criteria and suspension levels suitable for application. Both are defined and relationships with other acceptance processes are considered (including acceptance testing at the time of purchase, commissioning and the issue of second-hand equipment). Suspension levels are divided into four types, A, B, C and D, depending on the quality of evidence and consensus on which they are based. Exceptional situations involving, for example, new or rapidly evolving technology are also considered. The publication and paper focuses on the role of the holder of the equipment and related staff, particularly the medical physics expert and the practitioner. Advice on how the criteria should be created and implemented and how this might be coordinated with the supplier is provided for these groups. Additional advice on the role of the regulator is provided. PMID:23173218

  7. Estimating the population dose from nuclear medicine examinations towards establishing diagnostic reference levels

    PubMed Central

    Niksirat, Fatemeh; Monfared, Ali Shabestani; Deevband, Mohammad Reza; Amiri, Mehrangiz; Gholami, Amir

    2016-01-01

    Purpose of the Study: This study conducted a review on nuclear medicine (NM) services in Mazandaran Province with a view to establish adult diagnostic reference levels (DRLs) and provide updated data on population radiation exposure resulting from diagnostic NM procedures. Materials and Methods: The data were collected from all centers in all cities of Mazandaran Province in the North of Iran from March 2014 to February 2015. The 75th percentile of the distribution and the average administered activity (AAA) were calculated and the average effective dose per examination, collective effective dose to the population and annual effective dose per capita were estimated using dose conversion factors. The gathered data were analyzed via SPSS (version 18) software using descriptive statistics. Results: Based on the data of this study, the collective effective dose was 95.628 manSv, leading to a mean effective dose of 0.03 mSv per capita. It was also observed that the myocardial perfusion was the most common procedure (50%). The 75th percentile of the distribution of administered activity (AA) represents the DRL. The AAA and the 75th percentile of the distribution of AA are slightly higher than DRL of most European countries. Conclusions: Myocardial perfusion is responsible for most of the collective effective dose and it is better to establish national DRLs for myocardial perfusion and review some DRL values through the participation of NM specialists in the future. PMID:26917891

  8. A Perspective of the Future of Nuclear Medicine Training and Certification.

    PubMed

    Arevalo-Perez, Julio; Paris, Manuel; Graham, Michael M; Osborne, Joseph R

    2016-01-01

    Nuclear Medicine (NM) has evolved from a medical subspecialty using quite basic tests to one using elaborate methods to image organ physiology and has truly become "Molecular Imaging." Concurrently, there has also been a timely debate about who has to be responsible for keeping pace with all of the components of the developmental cycle-imaging, radiopharmaceuticals, and instrumentation. Since the foundation of the American Board of NM, the practice of NM and the process toward certification have undergone major revisions. At present, the debate is focused on the inevitable future convergence of Radiology and NM. The potential for further cooperation or fusion of the American Board of Radiology and the American Board of NM is likely to bring about a new path for NM and Molecular Imaging training. If the merger is done carefully, respecting the strengths of both partners equally, there is an excellent potential to create a hybrid NM-Radiology specialty that combines Physiology and Molecular Biology with detailed anatomical imaging that sustains the innovation that has been central to NM residency and practice. We introduce a few basic trends in imaging use in the United States. These trends do not predict future use, but highlight the need for an appropriately credentialed practitioner to interpret these examination results and provide value to the health care system. PMID:26687859

  9. Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities.

    PubMed

    Vassiliou, V; Andreopoulos, D; Frangos, S; Tselis, N; Giannopoulou, E; Lutz, S

    2011-11-01

    Radiological and nuclear medicine imaging modalities used for assessing bone metastases treatment response include plain and digitalised radiography (XR), skeletal scintigraphy (SS), dual-energy X-ray absorptiometry (DEXA), computed tomography (CT), magnetic resonance imaging (MRI), [(18)F] fluorodeoxyglucose positron emission tomography (FDG-PET) and PET/CT. Here we discuss the advantages and disadvantages of these assessment modalities as evident through different clinical trials. Additionally, we present the more established response criteria of the International Union Against Cancer and the World Health Organization and compare them with newer MD Anderson criteria. Even though serial XR and SS have been used to assess the therapeutic response for decades, several months are required before changes are evident. Newer techniques, such as MRI or PET, may allow an earlier evaluation of response that may be quantified through monitoring changes in signal intensity and standard uptake value, respectively. Moreover, the application of PET/CT, which can follow both morphological and metabolic changes, has yielded interesting and promising results that give a new insight into the natural history of metastatic bone disease. However, only a few studies have investigated the application of these newer techniques and further clinical trials are needed to corroborate their promising results and establish the most suitable imaging parameters and evaluation time points. Last, but not least, there is an absolute need to adopt uniform response criteria for bone metastases through an international consensus in order to better assess treatment response in terms of accuracy and objectivity. PMID:21530193

  10. Clinical use of differential nuclear medicine modalities in patients with ATTR amyloidosis.

    PubMed

    Noordzij, Walter; Glaudemans, Andor W J M; Slart, Riemer H J A; Dierckx, Rudi A; Hazenberg, Bouke P C

    2012-12-01

    Histological proof remains the gold standard for the diagnosis of amyloidosis. Nuclear medicine imaging techniques are able to determine the amyloid load in the body. Currently, the best imaging modality is (123)I-SAP scintigraphy. This modality has high sensitivity for detecting amyloid deposits in all amyloid subtypes. Involvement of liver and spleen can be visualized before clinical signs are present. The addition of single photon emission computed tomography improves the differentiation of overlying organs. However, (123)I-SAP is not FDA approved. Its availability is limited to two centres in Europe. Furthermore, it is not suitable for imaging cardiac involvement of amyloidosis, due to movement, blood-pool content and lack of fenestrated endothelial in the myocardium. Phosphate derivates labelled with (99m)Tc, are able to detect calcium compounds in cardiac amyloidosis. Finally, (123)I-MIBG, an analogue of norepinephrine, can detect cardiac sympathetic innervation abnormalities as a consequence of amyloid deposits. Both these last techniques seem to be able to detect cardiac involvement before echocardiographic parameters are present. We illustrate the clinical use of these modalities with two patients with ATTR type amyloidosis. PMID:22913327

  11. Epidemiology of the breast cancer patients registered at Institute of Radiotherapy and Nuclear Medicine, Peshawar, Pakistan.

    PubMed

    Hussain, A; Ahmad, S Bilal; Muhammad, W; Kakakhail, M B; Matiullah

    2008-09-01

    In Pakistan, malignant diseases are increasing day by day, but no epidemiological cancer study on large scale has been designed. The main objective of this study was to provide a baseline data on frequency, morphological types, gender and age distribution etc., of breast cancer in North-West Frontier Province and Federally Administered Tribal Areas of Pakistan, and to compare it with the published data. In this context, 2134 breast cancer patients (2059 female and 75 male) registered at Institute of Radiotherapy and Nuclear Medicine, Peshawar from 1995 to 2001, were studied. Crude incidence, standardized incidence ratios (SIR, world) and age-specific incidence rates (ASIR) were determined both for male and female patients. Same morphological distribution was found in both genders. Moreover, breast cancer was found to be the most common malignancy among the women (96.49%). Male to female breast cancer ratio was found to be 3.5 times higher than the reported data. The highest ASIR of approximately 10.6/100,000 per year among women was observed in the age group of 55-59 years. In men, the highest ASIR of 0.84/100,000 per year was observed in the age group of 65-69 years. The SIR (world) for women was 3.15/100,000 per year, while for male this was 0.13/100,000 per year. PMID:18564287

  12. A program in medium energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    SciTech Connect

    Berman, B.L.; Dhuga, K.S.

    1995-10-01

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the {rho} Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline.

  13. Agency for Nuclear Projects/Nuclear Waste Project Office final progress report

    SciTech Connect

    1992-12-31

    The Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) was formally established by Executive Policy in 1983 following passage of the federal Nuclear Waste Policy Act of 1982 (Act). That Act provides for the systematic siting, construction, operation, and closure of high-level radioactive defense and research by-products and other forms of high-level radioactive waste from around the country which will be stored at such repositories. In 1985 the Nevada legislature formally established the NWPO as a distinct and statutorily authorized agency to provide support to the Governor and State Legislature on matters concerning the high-level nuclear waste programs. The NWPO utilized a small, central staff supplemented by contractual services for needed technical and specialized expertise in order to provide high quality oversight and monitoring of federal activities, to conduct necessary independent studies, and to avoid unnecessary duplication of efforts. This report summarizes the results of this ongoing program to ensure that risks to the environment and to human safety are minimized. It includes findings in the areas of hydrogeology, geology, quality assurance activities, repository engineering, legislature participation, socioeconomic affects, risk assessments, monitoring programs, public information dissemination, and transportation activities. The bulk of the reporting deals with the Yucca Mountain facility.

  14. Highlights of the 25th Anniversary EANM Congress Milan 2012: nuclear medicine and molecular imaging at its best.

    PubMed

    Langsteger, Werner; Beheshti, Mohsen

    2013-09-01

    The European Association of Nuclear Medicine (EANM) celebrated its 25th Anniversary Congress in Milan under the chairmanship of Professor Emilio Bombardieri and the auspices of the Italian Society of Nuclear Medicine. As always, the Congress was a great success: more than 5,530 participants from 88 countries came from Europe and beyond. In spite of limited budgets, industry again made an important contribution: New innovative equipment and tracers demonstrating the latest technology and innovations were presented by 122 companies. This review is a brief summary of the major scientific contributions made in the fields of oncology, multimodality imaging, cardiovascular science, neurology and psychiatry, technological innovation and novel tracers, and in other clinical sciences as well as in radionuclide therapy, which all show promising and great innovations. PMID:23917722

  15. Application of the ARRAMIS Risk and Reliability Software to the Nuclear Accident Progression

    SciTech Connect

    Wyss, Gregory D.; Daniel, Sharon L.; Hays, Kelly M.; Brown, Thomas D.

    1997-06-01

    The ARRAMIS risk and reliability analysis software suite developed by Sandia National Laboratories enables analysts to evaluate the safety and reliability of a wide range of complex systems whose failure results in high consequences. This software was originally designed to model the systems, responses, and phenomena associated with potential severe accidents at commercial nuclear power reactors by solving very large fault tree and event tree models. However, because of its power and versatility, ARRAMIS and its constituent analysis engines have recently been used to evaluate a wide variety of systems, including nuclear weapons, telecommunications facilities, robotic material handling systems, and aircraft systems using hybrid fault tree event tree analysis techniques incorporating fully integrated uncertainty analysis capabilities. This paper describes recent applications in the area of nuclear reactor accident progression analysis using a large event tree methodology and the ARRAMIS package.

  16. A study of professional radiation hazards in CT scan and nuclear medicine workers using GTG-banding and solid stain

    PubMed Central

    Changizi, Vahid; Alizadeh, Mohammad Hossein; Mousavi, Akbar

    2015-01-01

    Background: CT scan and nuclear medicine exams deliver a great part of medical exposures. This study examined professional radiation hazards in CT scan and nuclear medicine workers. Methods: In a cross sectional study 30 occupationally exposed workers and 7 controls (all from personnel of a laboratory) were selected. Physical dosimetry was performed for exposed workers. Blood samples were obtained from the experimental and control groups. Three culture mediums for each one were prepared in due to routine chromosome analysis using G-banding and solid stain. Results: There were significant increased incidence of chromatid gap (ctg) and chromatid break (ctb) with meanSD frequencies of 30.84 and 3.11.40 per 100 cells respectively in the nuclear medicine workers versus controls with meanSD frequencies of 1.90.69 and 1.30.84 for ctg and ctb, respectively. Chromosome gaps (chrg) were higher significantly in the nuclear medicine population (2.470.91) than in controls (1.40.9) (p< 0.05). In CT scan group the ctg and ctb were increased with a meanSD frequency of 2.70.79 and 2.60.91 per 100 cells respectively compared with control group. The meanSD frequencies of the chrb were 2.00.75 and 0.860.690 per 100 cells for exposed workers and control group, respectively. Conclusion: This study showed chromosome aberrations in peripheral lymphocytes using solid stain method are reasonable biomarker reflecting personnel radiation damage. PMID:26157718

  17. Proceedings of the DOE workshop on the role of a high-current accelerator in the future of nuclear medicine

    SciTech Connect

    Moody, D.C.; Peterson, E.J.

    1989-05-01

    The meeting was prompted by recent problems with isotope availability from DOE accelerator facilities; these difficulties have resulted from conflicting priorities between physics experiments and isotope production activities. The workshop was a forum in which the nuclear medicine community, isotope producers, industry, and other interested groups could discuss issues associated with isotope availability (including continuous supply options), the role of DOE and industry in isotope production, and the importance of research isotopes to the future of nuclear medicine. The workshop participants endorsed DOE's presence in supplying radioisotopes for research purposes and recommended that DOE should immediately provide additional support for radionuclide production in the form of personnel and supplies, DOE should establish a policy that would allow income from sales of future ''routine'' radionuclide production to be used to support technicians, DOE should obtain a 70-MeV, 500-/mu/A variable-energy proton accelerator as soon as possible, and DOE should also immediately solicit proposals to evaluate the usefulness of a new or upgraded high-energy, high-current machine for production of research radionuclides. This proceedings volume is a summary of workshop sessions that explored the future radionuclide needs of the nuclear medicine community and discussed the DOE production capabilities that would be required to meet these needs.

  18. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital

    PubMed Central

    Hada, Mahesh Singh; Chakravarty, Abhijit; Mukherjee, Partha

    2014-01-01

    Context: Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. Aim: The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. Materials and Methods: A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. Results: The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. Conclusion: ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments. PMID:25400363

  19. New Perspectives Offered by Nuclear Medicine for the Imaging and Therapy of Multiple Myeloma

    PubMed Central

    Mesguich, Charles; Zanotti-Fregonara, Paolo; Hindié, Elif

    2016-01-01

    The management of multiple myeloma has fundamentally changed over the years and imaging techniques able to match the therapeutic advances are now much needed. Although many patients now achieve complete response after first-line treatment, relapse is common. Therefore, it would be important to improve the initial prognostic stratification and to detect minimal residual disease after treatment. 18F-FDG-PET/CT is a useful imaging tool which has a high prognostic value at baseline evaluation and can effectively differentiate active from inactive lesions during induction treatment or after autologous stem-cell transplantation. In combination with biological data, it improves the prediction of relapse. Other PET tracers may soon enter clinical practice and overcome some of the limitations of 18F-FDG, such as the low sensitivity in detecting early bone marrow infiltration. Excellent results with 11C-Methionine are reported by Lapa and colleagues in this issue of the Journal. 11C-Methionine uptake reflects the increased protein synthesis of malignant plasmocytes and correlates well with bone marrow infiltration. Other promising PET ligands include lipid tracers, such as 11C-Choline or 11C-acetate, and some peptide tracers, such as 68Ga-Pentixafor, that targets CXCR4 (chemokine receptor-4), which is often expressed with high density by myeloma cells. Malignant plasma cells are radiosensitive and thus potentially amenable to systemic radionuclide therapy. Indeed, excellent preclinical results were obtained with radioimmunotherapy targeting CD38. Also, preliminary clinical results with peptides targeting CXCR4 (e.g. 177Lu- or 90Y-Pentixather) are encouraging. Multiple myeloma may represent a renewal of the already strong partnership between hematologists and nuclear medicine physicians. PMID:26877786

  20. New Perspectives Offered by Nuclear Medicine for the Imaging and Therapy of Multiple Myeloma.

    PubMed

    Mesguich, Charles; Zanotti-Fregonara, Paolo; Hindié, Elif

    2016-01-01

    The management of multiple myeloma has fundamentally changed over the years and imaging techniques able to match the therapeutic advances are now much needed. Although many patients now achieve complete response after first-line treatment, relapse is common. Therefore, it would be important to improve the initial prognostic stratification and to detect minimal residual disease after treatment. (18)F-FDG-PET/CT is a useful imaging tool which has a high prognostic value at baseline evaluation and can effectively differentiate active from inactive lesions during induction treatment or after autologous stem-cell transplantation. In combination with biological data, it improves the prediction of relapse. Other PET tracers may soon enter clinical practice and overcome some of the limitations of (18)F-FDG, such as the low sensitivity in detecting early bone marrow infiltration. Excellent results with (11)C-Methionine are reported by Lapa and colleagues in this issue of the Journal. (11)C-Methionine uptake reflects the increased protein synthesis of malignant plasmocytes and correlates well with bone marrow infiltration. Other promising PET ligands include lipid tracers, such as (11)C-Choline or (11)C-acetate, and some peptide tracers, such as (68)Ga-Pentixafor, that targets CXCR4 (chemokine receptor-4), which is often expressed with high density by myeloma cells. Malignant plasma cells are radiosensitive and thus potentially amenable to systemic radionuclide therapy. Indeed, excellent preclinical results were obtained with radioimmunotherapy targeting CD38. Also, preliminary clinical results with peptides targeting CXCR4 (e.g. (177)Lu- or (90)Y-Pentixather) are encouraging. Multiple myeloma may represent a renewal of the already strong partnership between hematologists and nuclear medicine physicians. PMID:26877786

  1. Characterisation of crystal matrices and single pixels for nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Herbert, D. J.; Belcari, N.; Camarda, M.; Guerra, A. Del; Vaiano, A.

    2005-01-01

    Commercially constructed crystal matrices are characterised for use with PSPMT detectors for PET system developments and other nuclear medicine applications. The matrices of different scintillation materials were specified with pixel dimensions of 1.51.5 mm2 in cross-section and a length corresponding to one gamma ray interaction length at 511 keV. The materials used in this study were BGO, LSO, LYSO, YSO and CsI(Na). Each matrix was constructed using a white TiO loaded epoxy that forms a 0.2 mm septa between each pixel. The white epoxy is not the optimum choice in terms of the reflective properties, but represents a good compromise between cost and the need for optical isolation between pixels. We also tested a YAP matrix that consisted of pixels of the same size specification but was manufactured by a different company, who instead of white epoxy, used a thin aluminium reflective layer for optical isolation that resulted in a septal thickness of just 0.01 mm, resulting in a much higher packing fraction. The characteristics of the scintillation materials, such as the light output and energy resolution, were first studied in the form of individual crystal elements by using a single pixel HPD. A comparison of individual pixels with and without the epoxy/dielectric coatings was also performed. Then the matrices themselves were coupled to a PSPMT in order to study the imaging performance. In particular, the system pixel resolution and the peak to valley ratio were measured at 511 and 122 keV.

  2. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--March 31, 1989

    SciTech Connect

    Weiss, A.J.

    1989-08-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1988.

  3. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    SciTech Connect

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  4. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    SciTech Connect

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  5. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  6. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis.

    PubMed

    Gomez-Ospina, Natalia; Potter, Carol J; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L; Picarsic, Jennifer L; Jacobson, Theodora A; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A S; Finegold, Milton J; Muzny, Donna M; Boerwinkle, Eric; Lupski, James R; Plon, Sharon E; Gibbs, Richard A; Eng, Christine M; Yang, Yaping; Washington, Gabriel C; Porteus, Matthew H; Berquist, William E; Kambham, Neeraja; Singh, Ravinder J; Xia, Fan; Enns, Gregory M; Moore, David D

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  7. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2); Notice of Appointment of Adjudicatory Employee Commissioners: Gregory...

  8. Safety research programs sponsored by Office of Nuclear Regulatory Research. Quarterly progress report, April 1-June 30, 1985. Volume 5, No. 2

    SciTech Connect

    Bari, R.A.; Boccio, J.L.; Cerbone, R.J.; Ginsberg, T.; Greene, G.A.; Guppy, J.G.; Hall, R.E.; O'Brien, J.N.; Pratt, W.T.; Reich, M.

    1985-12-01

    The Advanced and Water Reactor Safety Programs Quarterly Progress Reports have been combined and are included in this report entitled, ''Safety Research Programs Sponsored by the Office of Nuclear Regulatory Research - Quarterly Progress Report.'' This progress report will describe current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Accident Evaluation, Division of Engineering Technology, and Division of Risk Analysis and Operations of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research.

  9. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    SciTech Connect

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclear science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.

  10. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    PubMed

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part. PMID:25993865

  11. Nuclear physics and astrophysics. Progress report for period June 15, 1992--June 14, 1993

    SciTech Connect

    Schramm, D.N.; Olinto, A.V.

    1993-06-01

    The authors report on recent progress of research at the interface of nuclear physics and astrophysics. During the past year, the authors continued to work on Big Bang and stellar nucleosynthesis, the solar neutrino problem, the equation of state for dense matter, the quark-hadron phase transition, and the origin of gamma-ray bursts; and began studying the consequences of nuclear reaction rates in the presence of strong magnetic fields. They have shown that the primordial production of B and Be cannot explain recent detections of these elements in halo stars and have looked at spallation as the likely source of these elements. By looking at nucleosynthesis with inhomogeneous initial conditions, they concluded that the Universe must have been very smooth before nucleosynthesis. They have also constrained neutrino oscillations and primordial magnetic fields by Big Bang nucleosynthesis. On the solar neutrino problem, they have analyzed the implications of the SAGE and GALLEX experiments. They also showed that the presence of dibaryons in neutron stars depends weakly on uncertainties of nuclear equations of state. They have started to investigate the consequences of strong magnetic fields on nuclear reactions and implications for neutron star cooling and supernova nucleosynthesis.

  12. Safety research programs sponsored by Office of Nuclear Regulatory Research. Quarterly progress report, July 1 to September 30, 1981

    SciTech Connect

    Cerbone, R.J.; Diamond, D.J.; Ginsberg, T.; Guppy, J.G.; Saha, P.; Sastre, C.; Weeks, J.R.; Wulff, W.; van Rooyen, D.

    1981-11-01

    The Advanced and Water Reactor Safety Research Programs Quarterly Progress Report will be combined and hereafter entitled Safety Research Programs Sponsored by the Office of Nuclear Regulatory Research Quarterly Progress Report. This progress report will continue to describe current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, Thermal Hydraulic LWR and LMFBR Safety Experiments, RAMONA-3B Code Modification and Evaluation, LWR Plant Analyzer Development Program, LWR Code Assessment and Application, Stress Corrosion Cracking of PWR Steam Generator Tubing, and Standards for Materials Integrity in LWR's. The previous reports have covered the periods October 1, 1976 through June 30, 1981.

  13. Development and validation of a fast voxel-based dose evaluation system in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Chang; Lin, Hsin-Hon; Chuang, Keh-Shih; Dong, Shang-Lung; Wu, Jay; Ni, Yu-Ching; Jan, Meei-Ling

    2014-11-01

    PET imaging has been widely used in the detection and staging of malignancies and the evaluation of patient-specific dosimetry for PET scans is important in nuclear medicine. However, patient-specific dosimetry can be estimated only by Monte Carlo methods which are usually time-consuming. The purpose of this study is to develop a fast dose evaluation system namely SimDOSE. SimDOSE is a Monte Carlo code embedded in SimSET with a dose scoring routine to record the deposited energy of the photons and electrons. Fluorine-18 is one of the most commonly used radionuclides that decay predominantly by positron emission. Only a 635 keV (Emax) positron and two annihilation photons should be concerned in F-18 radiation dosimetry, hence simulation is relatively simple. To evaluate the effects of resolution, an F-18 point source placed in a 20 cm diameter sphere filled with water was simulated by SimDOSE and GATE v6.1. Grid sizes of 1 mm, 3 mm, and 5 mm were tested and each was simulated with a total of 107 decays. The resultant dose distribution functions were compared. Dose evaluation on ORNL phantom was also performed to validate the accuracy of SimDOSE. The grid size of phantom was set as 3 mm and the number of decays was 107. The S-values of liver computed by SimDOSE were compared with GATE and OLINDA (Organ Level INternal Dose Assessment) for 11C, 15O, and 18F.Finally, the CPU time of simulations was compared between SimDOSE and GATE. The dose profiles show the absorption doses located 3 mm outside the center are similar between SimDOSE and GATE. However, 71% (19%) difference of the center dose between SimDOSE and GATE are observed for 1 mm (3 mm) grid. The differences of the profile lie in the assumption in SimDOSE that all kinetic energies of electrons are locally absorbed. The ratios of S values of (SimDOSE/OLINDA) range from 0.95 to 1.11 with a mean value of 1.020.043. To compare simulation time from SimDOSE to GATE for calculation of 1 mm, 3 mm, 5 mm gird point source and S values of ORNL phantom are 1.3%, 1.2%, 1.2% and 1.2%, respectively. In conclusion, SimDOSE is an efficient and accurate toolkit to generate patient-specific dose distribution in clinical PET application.

  14. Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review

    PubMed Central

    Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria

    2015-01-01

    Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was proven useful. 68Gallium-SSTR-PET/CT use was infrequent, despite offering the highest sensitivity. PMID:26158607

  15. Implementation of test for quality assurance in nuclear medicine gamma camera

    NASA Astrophysics Data System (ADS)

    Moreno, A. Montoya; Laguna, A. Rodrguez; Zamudio, Flavio E. Trujillo

    2012-10-01

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (Rin) was 4.67 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (Sext), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (Urot), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (Utomo), UI values (%) and percentage noise level (rms%) were 7.54 1.53 and 4.18 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the service. This proposal can be used to develop a similar QAP in other facilities and may serve as a precedent for the proposed regulations for quality assurance (QA) teams in MN.

  16. Implementation of test for quality assurance in nuclear medicine gamma camera

    SciTech Connect

    Montoya Moreno, A.; Rodriguez Laguna, A.; Trujillo Zamudio, Flavio E

    2012-10-23

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (R{sub in}) was 4.67 {+-} 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (S{sub ext}), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (U{sub rot}), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 {+-} 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (U{sub tomo}), UI values (%) and percentage noise level (rms%) were 7.54 {+-} 1.53 and 4.18 {+-} 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the service. This proposal can be used to develop a similar QAP in other facilities and may serve as a precedent for the proposed regulations for quality assurance (QA) teams in MN.

  17. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    NASA Astrophysics Data System (ADS)

    De Jess, M.; Trujillo-Zamudio, F. E.

    2010-12-01

    A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  18. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    SciTech Connect

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-12-07

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  19. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells.

    PubMed

    Tamhane, Tripti; Lllukkumbura, Rukshala; Lu, Shiying; Maelandsmo, Gunhild M; Haugen, Mads H; Brix, Klaudia

    2016-03-01

    Prominent tasks of cysteine cathepsins involve endo-lysosomal proteolysis and turnover of extracellular matrix constituents or plasma membrane proteins for maintenance of intestinal homeostasis. Here we report on enhanced levels and altered subcellular localization of distinct cysteine cathepsins in adenocarcinoma tissue in comparison to adjacent normal colon. Immunofluorescence and immunoblotting investigations revealed the presence of cathepsin L in the nuclear compartment in addition to its expected endo-lysosomal localization in colorectal carcinoma cells. Cathepsin L was represented as the full-length protein in the nuclei of HCT116 cells from which stefin B, a potent cathepsin L inhibitor, was absent. Fluorescence activated cell sorting analyses with synchronized cell cultures revealed deceleration of cell cycle progression of HCT116 cells upon inhibition of cathepsin L activity, while expression of cathepsin L-enhanced green fluorescent protein chimeras accelerated S-phase entry. We conclude that the activity of cathepsin L is high in the nucleus of colorectal carcinoma cells because of lacking stefin B inhibitory activity. Furthermore, we hypothesize that nuclear cathepsin L accelerates cell cycle progression of HCT116 cells thereby supporting the notion that cysteine cathepsins may play significant roles in carcinogenesis due to deregulated trafficking. PMID:26343556

  20. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    SciTech Connect

    Maraman, W.J.

    1980-02-01

    Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

  1. Colorado School of Mines Low Energy Nuclear Physics Project technical progress report

    SciTech Connect

    Cecil, F.E.

    1990-01-05

    This report summarizes the activity and accomplishments of the Colorado School of Mines Low Energy Nuclear Physics project during the calendar year 1989. Many of the projects which were anticipated in the original grant proposal have been completed. Among these completed projects we include of study of the radiative capture of low energy protons on {sup 6}Li, {sup 7}Li, {sup 9}Be, and {sup 11}B. Preliminary measurements of the branching ratios and yields of these reactions were reported in last year's Technical Progress Report. These measurements are now complete and have been used to extract the respective astrophysical S-factors and the corresponding thermonuclear reactivities. While not complete, progress has been made in some of the other originally proposed studies. Among these include a fairly extensive study of the interaction of low energy deuterons with {sup 6}Li and {sup 7}Li. In the course of this study we have made a solid observation of the Oppenheimer-Phillips effect in the D-{sup 6}Li system. Progress has been made in our study of the radiative capture of alpha particles by deuterons, {sup 6}Li, and {sup 7}Li but considerable work remains in these studies. In our earlier reports we noted the observation of d-d reactions during the bombardment of deuterated targets with energetic beams of protons, alpha particles, and other light-to-medium ions. We believe we now understand this phenomenon and feel it has some fairly significant consequences both for our studies and for those of other researchers. Our susceptibility to mob hysteria led us to invest a significant effort in cold nuclear fusion, both employing a fairly unique accelerator based approach at CSM and as one of the gamma ray diagnosticians on the Princeton Plasma Physics Laboratory's Cold Fusion Task Force.

  2. [Bibliographic consideration of proper management of radioactive waste on short-lived period nuclides that are used in nuclear medicine].

    PubMed

    Kida, Tetsuo; Watanabe, Hiroshi; Yamaguchi, Ichirou; Nagaoka, Hiroaki; Fujibuchi, Toshioh; Tanaka, Shinji; Hayakawa, Toshio

    2009-05-20

    A rational clearance system for medical radioactive waste has not yet been established in Japan. As Europe and USA's ways, the establishment of DIS that medical radioactive waste what are kept in storage room for more than decided period each nuclide except from regulation of radiation's control. The purpose of this report is to clarify the problems with the establishment of DIS in Japan through a literature review of the experience in Europe and the USA and previous research that has been reported in Japan. To establish the DIS system, the radiation control system in nuclear medicine should be rebuilt and put into effect. PMID:19498253

  3. Progress toward regulatory acceptance of risk-informed inspection programs for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Hedden, Owen F.; Cowfer, C. David

    1996-11-01

    This paper will describe work within the American Society of Mechanical Engineers committee responsible for rules for inservice inspection of nuclear power plants. Work is progressing with the objective of producing proposals for risk-informed inspection programs that will be incorporated by the US Nuclear Regulatory Commission into the Federal Regulations Governing the construction and inservice inspection of al domestic commercial power plants. The paper will describe in detail the two primary proposals now under development and review. Both are directed toward enhancing safety while reducing the expense of periodic examination of piping welds. The first proposal provides a sound technical basis for reducing the number of Class 1 piping weld examinations as much as 60 percent while improving or maintaining equivalent safety. This is accomplished by using risk-informed techniques to re-establish the most important areas to examine. The second is a broader approach addressing all piping systems considered to be important under risk-informed assessment techniques. Both proposals are based on recent insights into risk analysis techniques developed within the pressure vessel industry, and both require evaluation of theoretical analysis and inputs of practical experience related to a wide variety of detrimental conditions. These proposals are being supported by pilot programs in a number of operating nuclear power plants. The authors will also attempt to explain the institutional constraints inherent in the process of obtaining regulatory recognition of proposals developed cooperatively by industry and the regulatory agency.

  4. Selective inhibitors of nuclear export avert progression in preclinical models of inflammatory demyelination

    PubMed Central

    Haines, Jeffery D.; Herbin, Olivier; de la Hera, Belén; Vidaurre, Oscar G.; Moy, Gregory A.; Sun, Qingxiang; Fung, Ho Yee Joyce; Albrecht, Stephanie; Alexandropoulos, Konstantina; McCauley, Dilara; Chook, Yuh Min; Kuhlmann, Tanja; Kidd, Grahame J.; Shacham, Sharon; Casaccia, Patrizia

    2015-01-01

    Axonal damage has been associated with aberrant protein trafficking. This study characterizes a novel class of compounds targeting nucleo-cytoplasmic shuttling, by binding to the catalytic groove of the nuclear export protein XPO1/CRM1 (chromosome region maintenance protein1). Oral administration of novel reversible CRM1 inhibitors in preclinical murine models of demyelination significantly attenuated disease progression, even when started after the onset of paralysis. Clinical efficacy was associated with decreased proliferation of immune cells, characterized by nuclear accumulation of cell cycle inhibitors, and preservation of cytoskeletal integrity even in demyelinated axons. Neuroprotection was not limited to models of demyelination, but observed also in other mouse models of axonal damage (i.e. kainic acid injection) and detected in cultured neurons after knockdown of Xpo1, the gene encoding for CRM1. A proteomic screen for target molecules revealed that CRM1 inhibitors in neurons prevented nuclear export of molecules associated with axonal damage while retaining transcription factors modulating neuroprotection. PMID:25706475

  5. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students' enrolment and performance, and teaching staff's human resource development.

  6. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    SciTech Connect

    Hamid, Nasri A. Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-29

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students’ enrolment and performance, and teaching staff’s human resource development.

  7. Nuclear medicine in the detection, staging and treatment of gastrointestinal carcinoid tumours.

    PubMed

    Oberg, Kjell; Eriksson, Barbro

    2005-06-01

    Carcinoid tumours belong to the family of neuroendocrine tumours with a capacity to take up and concentrate amines and precursors as well as peptides, and can thereby be detected by nuclear medicine techniques. These rare tumours are difficult to diagnose at earlier stages because of small size and multiplicity. Computed tomography (CT) and magnetic resonance imaging (MRI) are mostly of benefit for detection of larger primary tumours (1-3 cm) and liver and lymph-node metastases. A majority of carcinoid tumours express somatostatin receptors, particularly receptor type 2, and thus somatostatin receptor scintigraphy (SRS) can be used for detection and staging of carcinoid tumours. The detection rate of carcinoid tumours has been reported to be somewhere between 80 and 100% in different studies. The scintigraphy gives a good staging of the disease and detection of unexpected tumour sites, which were not determined by conventional imaging. This method also indicates content of somatostatin receptors, which might indicate efficacy of treatment with octreotide or other somatostatin analogues. Another new non-invasive technique for detection of carcinoid tumours is positron emission tomography (PET). The biological substance for study can be labelled for radioactive imaging with radionuclears, such as (11)C, (15)O and (18)F, with emission of positrons. More than 95% of patients studied displayed high tracer uptake from PET with (11)C-5HTP (5-hydroxytryptophan), which is significantly higher compared to both computer tomography and somatostatin receptor scintigraphy. MIBG has been used for decades to visualize carcinoid tumours, because MIBG is concentrated in the endocrine cells. It was initially developed to detect phaeochromocytomas of the adrenal with reported high sensitivity (87%) and specificity as high as 99%. The method can be used when other methods fail to localize carcinoid tumours and particularly when treatment with (131)I-MIBG is being considered. Tumour-targeted treatment for malignant carcinoid tumour is still investigational, but has become of significant interest with the use of radiolabelled somatostatin analogues. Since a majority of carcinoid tumours present somatostatin receptors and can therefore be visualized in vivo by using radiolabelled somatostatin analogues, it seems logical to try to target these tumours with radioactive substances, not only for visualization but also for treatment. (111)Indium-DTPA-octreotide has been used as the first tumour-targeted treatment, with rather low response rates (in the order of 10-20%) and no significant tumour shrinkage. The second radioactive analogue which has been applied in the clinic is (90)yttrium-DOTA-Tyr3-octreotide, which has given partial and complete remissions in 20-30% of patients. The most significant side-effects have been kidney dysfunction, thrombocytopenia and liver toxicity. The most recent compound is (177)lutetium-DOTA-Tyr3-octreotate, which has been applied by the Rotterdam group and has been reported to give partial remission in about 40% of the patients. In the near future, combined treatment with both (90)yttrium and (177)lutetium coupled to a somatostatin analogue might come into clinical trials. (177)Lutetium may be more effective for smaller tumours whereas (90)yttrium may be more effective for larger tumours. PMID:15763700

  8. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995

    SciTech Connect

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1995-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

  9. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; Garca-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Hschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; Lpez-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ords, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosi?ski, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Urea, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  10. Recent progress on the accurate determination of the equation of state of neutron and nuclear matter

    NASA Astrophysics Data System (ADS)

    Armani, Paolo; Illarionov, Alexey Yu; Lonardoni, Diego; Pederiva, Francesco; Gandolfi, Stefano; Schmidt, Kevin E.; Fantoni, Stefano

    2011-12-01

    The problem of accurately determining the equation of state of nuclear and neutron matter at density near and beyond saturation is still an open challenge. In this paper we will review the most recent progress made by means of Quantum Monte Carlo calculations, which are at present the only ab-initio method capable to treat a sufficiently large number of particles to give meaningful estimates depending only on the choice of the nucleon-nucleon interaction. In particular, we will discuss the introduction of density-dependent interactions, the study of the temperature dependence of the equation of state, and the possibility of accurately studying the effect of the onset of hyperons by developing an accurate hyperon-nucleon and hyperon-nucleon-nucleon interaction.

  11. Forensic Medicine in South Africa: Associations between Medical Practice and Legal Case Progression and Outcomes in Female Murders

    PubMed Central

    Abrahams, Naeemah; Jewkes, Rachel; Martin, Lorna J.; Mathews, Shanaaz

    2011-01-01

    Background Forensic medicine has been largely by-passed by the tide of health systems research and evidence based medicine. Murder victims form a central part of forensic medical examiners' case load, and women murdered by intimate partners are an important subgroup, representing the most severe form and consequence of intimate partner violence. Our aim was to describe the epidemiology of female murder in South Africa (by intimate and non-intimate partners); and to describe and compare autopsy findings, forensic medical management of cases and the contribution of these to legal outcomes. Methods We did a retrospective national study in a proportionate random sample of 25 medico-legal laboratories to identify all homicides in 1999 of women aged 14 years and over. Data were abstracted from the mortuary file and autopsy report, and collected from a police interview. Findings In 21.5% of cases the perpetrator was convicted. Factors associated with a conviction for the female murders included having a history of intimate partner violence 1.18 (95%CI: 0.162.20), weapon recovered 1.36 (95% CI:0.582.15) and a detective visiting the crime scene 1.57 (95% CI:0.143.00). None of the forensic medical activities increased the likelihood of a conviction. Conclusion The findings raise important questions about the role of forensic medicine in these cases. PMID:22194868

  12. Progress in Norwegian-Russian Regulatory Cooperation in Management of the Nuclear Legacy

    SciTech Connect

    Sneve, M.K.; Shandala, N.K.; Smith, G.M.

    2008-07-01

    The Norwegian Radiation Protection Authority (NRPA) and the Federal Medical-Biological Agency (FMBA) of the Russian Federation have a collaboration programme which forms part of the Norwegian government's Plan of Action to improve radiation and nuclear safety in northwest Russia. The background to the NRPA-FMBA collaboration programme has been described in previous WM presentations. This paper presents the substantial progress made within that programme, describes ongoing progress within specific projects and sets out the value arising from wider involvement in the programme of other organisations such as NATO and the technical support derived from other national agencies such as the IAEA, and regulatory authorities from the USA, the UK and France. The main activities of the cooperation projects are concerned with the management of the nuclear legacy in northwest Russia, in particular the remediation of facilities, and related spent fuel and radioactive waste management, at the former Shore Technical Bases at Andreeva Bay and Gremikha Village. New regulatory guidance documents have been developed, necessary because of the special abnormal situation at these sites, now designated as Sites of Temporary Storage (STS), but also because of the transition from military to civilian regulatory supervision and the evolving regulatory system in the Russian Federation. The work has involved major technical inputs from the Russian Federation Institute of Biophysics, as well as review and advice on international recommendations and good practice in other countries provided by other technical support organisations. Projects on-going in 2007 are described which involve regulatory guidance on very Low-Level Waste management, specifically for the licensing and operation of new VLLW disposal facilities; optimisation of operational radiation protection, particularly in areas of high ambient radiation dose rate as are found in some parts of the STSs; determination of factors which can be used to identify when to apply emergency procedures before the full emergency is obvious; and development of the radio-ecological basis for identifying radiation supervision area boundaries. (authors)

  13. Safety research programs sponsored by Office of Nuclear Regulatory Research. Quarterly progress report, October 1-December 31, 1981

    SciTech Connect

    Cerbone, R.J.; Diamond, D.J.; Ginsberg, T.; Guppy, J.G.; Reich, M.; Saha, P.; Sastre, C.; Weeks, J.R.; Wulff, W.; van Rooyen, D.

    1982-02-01

    This progress report will continue to describe current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, Thermal Hydraulic LWR and LMFBR Safety Experiments, RAMONA-3B Code Modification and Evaluation, LWR Plant Analyzer Development Program, LWR Code Assessment and Application, Stress Corrosion Cracking of PWR Steam Generator Tubing, Standards for Materials Integrity in LWRs, Probability Based Load Combinations for Structural Design, Mechanical Piping Benchwork Problems, and Soil Structure Interaction.

  14. Exploring hypothetical learning progressions for the chemistry of nitrogen and nuclear processes

    NASA Astrophysics Data System (ADS)

    Henry, Deborah McKern

    Chemistry is a bridge that connects a number of scientific disciplines. High school students should be able to determine whether scientific information is accurate, how chemistry applies to daily life, and the mechanism by which systems operate (NRC, 2012). This research focuses on describing hypothetical learning progressions for student understanding of the chemical reactions of nitrogen and nuclear processes and examines whether there is consistency in scientific reasoning between these two distinct conceptual areas. The constant comparative method was used to analyze the written products of students including homework, formative and summative tests, laboratory notebooks, reflective journals, written presentations, and discussion board contributions via Edmodo (an online program). The ten participants were 15 and 16 year old students enrolled in a general high school chemistry course. Instruction took place over a ten week period. The learning progression levels ranged from 0 to 4 and were described as missing, novice, intermediate, proficient, and expert. The results were compared to the standards set by the NRC with a lower anchor (expectations for grade 8) and upper anchor (expectations for grade 12). The results indicate that, on average, students were able to reach an intermediate level of understanding for these concepts.

  15. Pilot Quasi-Randomized Controlled Study of Herbal Medicine Hochuekkito as an Adjunct to Conventional Treatment for Progressed Pulmonary Mycobacterium avium Complex Disease

    PubMed Central

    Enomoto, Yasunori; Hagiwara, Eri; Komatsu, Shigeru; Nishihira, Ryuichi; Baba, Tomohisa; Kitamura, Hideya; Sekine, Akimasa; Nakazawa, Atsuhito; Ogura, Takashi

    2014-01-01

    Introduction Hochuekkito, a traditional herbal medicine, is occasionally prescribed in Japan to treat patients with a poor general condition. We aimed to examine whether this medicine was beneficial and tolerable for patients with progressed pulmonary Mycobacterium avium complex (MAC) disease. Methods This pilot open-label quasi-randomized controlled trial enrolled 18 patients with progressed pulmonary MAC disease who had initiated antimycobacterial treatment over one year ago but were persistently culture-positive or intolerant. All patients continued their baseline treatment regimens with (n?=?9) or without (n?=?9) oral Hochuekkito for 24 weeks. Results Baseline characteristics were generally similar between the groups. Most patients were elderly (median age 70 years), female, had a low body mass index (<20 kg/m2), and a long-term disease duration (median approximately 8 years). After the 24-week treatment period, no patient achieved sputum conversion. Although the number of colonies in sputum tended to increase in the control group, it generally remained stable in the Hochuekkito group. Radiological disease control was frequently observed in the Hochuekkito group than the control group (8/9 vs. 3/9; p?=?0.05). Patients in the Hochuekkito group tended to experience increase in body weight and serum albumin level compared with those in the control group (median body weight change: +0.4 kg vs. ?0.8 kg; median albumin change: +0.2 g/dl vs. 0.0 g/dl). No severe adverse events occurred. Conclusions Hochuekkito could be an effective, feasible adjunct to conventional therapy for patients with progressed pulmonary MAC disease. Future study is needed to explore this possibility. Trial Registration UMIN Clinical Trials Registry UMIN000009920 PMID:25093868

  16. Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia.

    PubMed

    Damiano, John A; Afawi, Zaid; Bahlo, Melanie; Mauermann, Monika; Misk, Adel; Arsov, Todor; Oliver, Karen L; Dahl, Hans-Henrik M; Shearer, A Eliot; Smith, Richard J H; Hall, Nathan E; Mahmood, Khalid; Leventer, Richard J; Scheffer, Ingrid E; Muona, Mikko; Lehesjoki, Anna-Elina; Korczyn, Amos D; Herrmann, Harald; Berkovic, Samuel F; Hildebrand, Michael S

    2015-08-15

    We studied a consanguineous Palestinian Arab family segregating an autosomal recessive progressive myoclonus epilepsy (PME) with early ataxia. PME is a rare, often fatal syndrome, initially responsive to antiepileptic drugs which over time becomes refractory and can be associated with cognitive decline. Linkage analysis was performed and the disease locus narrowed to chromosome 19p13.3. Fourteen candidate genes were screened by conventional Sanger sequencing and in one, LMNB2, a novel homozygous missense mutation was identified that segregated with the PME in the family. Whole exome sequencing excluded other likely pathogenic coding variants in the linked interval. The p.His157Tyr mutation is located in an evolutionarily highly conserved region of the alpha-helical rod of the lamin B2 protein. In vitro assembly analysis of mutant lamin B2 protein revealed a distinct defect in the assembly of the highly ordered fibrous arrays typically formed by wild-type lamin B2. Our data suggests that disruption of the organisation of the nuclear lamina in neurons, perhaps through abnormal neuronal migration, causes the epilepsy and early ataxia syndrome and extends the aetiology of PMEs to include dysfunction in nuclear lamin proteins. PMID:25954030

  17. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  18. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1990--June 30, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-08-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5` UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  19. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    SciTech Connect

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-05-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed on a regional level. Our study presents an important step for the integration of 4DCT-ventilation into thoracic clinical practice.

  20. Research and development related to the Nevada Nuclear Waste Storage Investigations. Progress report, July 1-September 30, 1981

    SciTech Connect

    Daniels, W R; Wolfsberg, K; Vaniman, D T; Erdal, B R

    1982-01-01

    This report summarizes the contribution of the Los Alamos National Laboratory to the Nevada Nuclear Waste Storage Investigations for the fourth quarter of FY-81. Progress reports are presented for the following tasks: waste package development; nuclide migration experiments in G tunnel-laboratory studies; geochemistry of tuff; mineralogy-petrology of tuff; volcanism studies; rock physics studies; exploratory shaft; and quality assurance.

  1. Boron in nuclear medicine: New synthetic approaches to PET and SPECT

    SciTech Connect

    Kabalka, G.W.

    1992-09-01

    This annual progress report describes new methods of incorporation of radioiodine into physiologically active compounds (amphetamines), and the use of organoboranes to labeled radiopharmaceuticals with Oxygen- 15, Nitrogen-13, carbon-11 and fluorine-18. Preclinical studies are also reported on evaluation of butyothiophenones as agents acting at dopaminergic or serotonic synapses.

  2. Discovery of rhenium and masurium (technetium) by Ida Noddack-Tacke and Walter Noddack. Forgotten heroes of nuclear medicine.

    PubMed

    Biersack, H-J; Stelzner, F; Knapp, F F

    2015-01-01

    The history of the early identification of elements and their designation to the Mendeleev Table of the Elements was an important chapter in German science in which Ida (1896-1978) and Walter (1893-1960) Noddack played an important role in the first identification of rhenium (element 75, 1925) and technetium (element 43, 1933). In 1934 Ida Noddack was also the first to predict fission of uranium into smaller atoms. Although the Noddacks did not for some time later receive the recognition for the first identification of technetium-99m, their efforts have appropriately more recently been recognized. The discoveries of these early pioneers are even more astounding in light of the limited technologies and resources which were available during this period. The Noddack discoveries of elements 43 and 75 are related to the subsequent use of rhenium-188 (beta/gamma emitter) and technetium-99m (gamma emitter) in nuclear medicine. In particular, the theranostic relationship between these two generator-derived radioisotopes has been demonstrated and offers new opportunities in the current era of personalized medicine. PMID:26478117

  3. Inhibition of Nuclear Factor ?B Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-?-induced activation of nuclear factor ?B (NF-?B), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-?B-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  4. Design and manufacturing of anthropomorphic thyroid-neck phantom for use in nuclear medicine centres in Chile.

    PubMed

    Hermosilla, A; Daz Londoo, G; Garca, M; Ruz, F; Andrade, P; Prez, A

    2014-12-01

    Anthropomorphic phantoms are used in nuclear medicine for imaging quality control, calibration of gamma spectrometry system for the study of internal contamination with radionuclides and for internal dosimetric studies. These are constructed of materials that have radiation attenuation coefficients similar to those of the different organs and tissues of the human body. The material usually used for the manufacture of phantoms is polymethyl methacrylate. Other materials used for this purpose are polyethylene, polystyrene and epoxy resin. This project presents the design and manufacture of an anthropomorphic thyroid-neck phantom that includes the cervical spine, trachea and oesophagus, using a polyester resin (? = 1.1 g cm(-3)). Its linear and mass attenuation coefficients were experimentally determined and simulated by means of XCOM software, finding that this material reproduces the soft tissue ICRU-44 in a range of energies between 80 keV and 11 MeV, with less than a 5 % difference. PMID:24567500

  5. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    SciTech Connect

    Botta, F.; Mairani, A.; Battistoni, G.; Cremonesi, M.; Di Dia, A.; Fasso, A.; Ferrari, A.; Ferrari, M.; Paganelli, G.; Pedroli, G.; Valente, M.

    2011-07-15

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10{sup -3} MeV) and for beta emitting isotopes commonly used for therapy ({sup 89}Sr, {sup 90}Y, {sup 131}I, {sup 153}Sm, {sup 177}Lu, {sup 186}Re, and {sup 188}Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8{center_dot}R{sub CSDA} and 0.9{center_dot}R{sub CSDA} for monoenergetic electrons (R{sub CSDA} being the continuous slowing down approximation range) and within 0.8{center_dot}X{sub 90} and 0.9{center_dot}X{sub 90} for isotopes (X{sub 90} being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9{center_dot}R{sub CSDA} and 0.9{center_dot}X{sub 90} for electrons and isotopes, respectively. Results: Concerning monoenergetic electrons, within 0.8{center_dot}R{sub CSDA} (where 90%-97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between fluka and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9{center_dot}X{sub 90}, fluka and penelope differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of fluka DPKs are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution. Conclusions: fluka provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry.

  6. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    SciTech Connect

    Botta, F; Di Dia, A; Pedroli, G; Mairani, A; Battistoni, G; Fasso, A; Ferrari, A; Ferrari, M; Paganelli, G

    2011-06-01

    The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one.Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10–3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8·RCSDA and 0.9·RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8·X90 and 0.9·X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9·RCSDA and 0.9·X90 for electrons and isotopes, respectively.Results: Concerning monoenergetic electrons, within 0.8·RCSDA (where 90%–97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between fluka and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9·X90, fluka and penelope differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of fluka DPKs are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution.Conclusions: fluka provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry.

  7. Adjusting to progress: interactions between the National Library of Medicine and health sciences librarians, 19612001*

    PubMed Central

    Humphreys, Betsy L.

    2002-01-01

    Most health sciences librarians would agree that the National Library of Medicine's (NLM's) leadership and its services have been highly beneficial to the field, but this does not prevent specific NLM actionsor lack of actionfrom being perceived as annoying or infuriating. Over the past forty years, NLM's interactions with health sciences librarians have been affected by significant additions to NLM's mission and services, the expansion of NLM's direct user groups, and the growing range of possible relationships between health sciences librarians and NLM. The greatest friction between NLM and health services librarians occurs when there is a fundamental change in the way NLM carries out its missiona change that adds to the web of relationships that link librarians and NLM and prompts corresponding changes in the way other libraries do business. Between 1961 and 2001, there were two such fundamental changes: the implementation of the National Network of Libraries of Medicine and the development and promotion of services targeted toward individual health professionals. On a lesser scale, each new service that connects NLM and health sciences librarians is another potential source of irritation, ready to flare up when the service is interrupted, changed, or eliminated. Other factorsincluding strong personalities, mistakes, and poor communicationadd to, but do not cause, the intermittent problems between NLM and its most longstanding and engaged user group. These problems are in essence the price we pay for the leadership and vision of NLM's directors and for NLM's success in developing excellent services and in enhancing them based on advice from librarians and other users. PMID:11838459

  8. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information. PMID:15347692

  9. Nuclear war in the Middle East: where is the voice of medicine and public health.

    PubMed

    Dallas, Cham E; Burkle, Frederick M

    2011-10-01

    Once again, the politically volatile Middle East and accompanying rhetoric has escalated the risk of a major nuclear exchange. Diplomatic efforts have failed to make the medical consequences of such an exchange a leading element in negotiations. The medical and academic communities share this denial. Without exaggeration, the harsh reality of the enormous consequences of an imminently conceivable nuclear war between Iran and Israel will encompass an unprecedented millions of dead and an unavoidable decline in public health and environmental devastation that would impact major populations in the Middle East for decades to come. Nuclear deterrence and the uncomfortable but real medical and public health consequences must become an integral part of a broader global health diplomacy that emphasizes health security along with poverty reduction and good governance. PMID:22509536

  10. Dictionary of radiation protection, radiobiology and nuclear medicine: English, German, French and Russian

    SciTech Connect

    Sube, R.

    1986-01-01

    This dictionary is a thematic enlargement of the four-language Dictionary of Nuclear Engineering, compiled by the same author. It comprises about 12,000 terms in each language. The subject matter dealt with is indicated in detail on the interleaves preceding each separate part of the dictionary. The majority of terms have been compiled from texts in the same language. Care has been taken to use standard terms. The terminology employed by the International Nuclear Information System (INIS) as part of the International Atomic Energy Organization has been incorporated in full.

  11. Early Prediction of Disease Progression in Small Cell Lung Cancer: Toward Model-Based Personalized Medicine in Oncology.

    PubMed

    Buil-Bruna, Nria; Sahota, Tarjinder; Lpez-Picazo, Jos-Mara; Moreno-Jimnez, Marta; Martn-Algarra, Salvador; Ribba, Benjamin; Trocniz, Iaki F

    2015-06-15

    Predictive biomarkers can play a key role in individualized disease monitoring. Unfortunately, the use of biomarkers in clinical settings has thus far been limited. We have previously shown that mechanism-based pharmacokinetic/pharmacodynamic modeling enables integration of nonvalidated biomarker data to provide predictive model-based biomarkers for response classification. The biomarker model we developed incorporates an underlying latent variable (disease) representing (unobserved) tumor size dynamics, which is assumed to drive biomarker production and to be influenced by exposure to treatment. Here, we show that by integrating CT scan data, the population model can be expanded to include patient outcome. Moreover, we show that in conjunction with routine medical monitoring data, the population model can support accurate individual predictions of outcome. Our combined model predicts that a change in disease of 29.2% (relative standard error 20%) between two consecutive CT scans (i.e., 6-8 weeks) gives a probability of disease progression of 50%. We apply this framework to an external dataset containing biomarker data from 22 small cell lung cancer patients (four patients progressing during follow-up). Using only data up until the end of treatment (a total of 137 lactate dehydrogenase and 77 neuron-specific enolase observations), the statistical framework prospectively identified 75% of the individuals as having a predictable outcome in follow-up visits. This included two of the four patients who eventually progressed. In all identified individuals, the model-predicted outcomes matched the observed outcomes. This framework allows at risk patients to be identified early and therapeutic intervention/monitoring to be adjusted individually, which may improve overall patient survival. PMID:25939602

  12. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  13. Echocardiographic, catheterization, and nuclear medicine findings of an aneurysm of the muscular interventricular septum associated with aneurysm of the interatrial septum.

    PubMed

    Roldan, F J; Vargas-Barrn, J; Keirns, C; Espinola-Zavaleta, N; Rijlaarsdam, M; Romero-Cardenas, A

    1999-10-01

    The unusual case of a young woman with an aneurysm of the muscular interventricular septum associated with an aneurysm of the interatrial septum and a muscular interventricular septal defect is presented. The echocardiographic, electrocardiographic, catheterization, and nuclear medicine findings are described. PMID:10511661

  14. Progress on an integrated multi-physics simulation predictive capability for plasma chamber nuclear components

    SciTech Connect

    A. Ying; M. Abdou; H. Zhang; R. Munipalli; M. Ulrickson; M. Sawan; B. Merrill

    2010-12-01

    Understanding the behavior of a plasma chamber component in the fusion environment requires a simulation technique that is capable of integrating multi-disciplinary computational codes while appropriately treating geometric heterogeneity and complexity. Such a tool should be able to interpret phenomena from mutually dependent scientific disciplines and predict performance with sufficient accuracy and consistency. Integrated multi-physics simulation predictive capability (ISPC) relies upon advanced numerical simulation techniques and is being applied to ITER first wall/shield and Test Blanket Module (TBM) designs. In this paper, progress in ISPC development is described through the presentation of a number of integrated simulations. The simulations cover key physical phenomena encountered in a fusion plasma chamber system, including tritium permeation, fluid dynamics, and structure mechanics. Interface engines were developed in order to pass field data, such as surface deformation or nuclear heating rate, from the structural analysis to the thermo-fluid MHD analysis code for magnetohydrodynamic (MHD) velocity profile assessments, or from the neutronics analysis to the thermo-fluid analysis for temperature calculations, respectively. Near-term effort toward further ISPC development is discussed.

  15. Nuclear-waste-management. Quarterly progress report, July-September 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  16. [Research Progress on Chemoresistance Mechanism of Nuclear Factor Kappa B Signalling Patheway in Acute Myeloid Leukemia].

    PubMed

    Zhang, Ran-Ran; Zhang, Hui; Chen, Fu-Xiong

    2015-12-01

    Acute myeloid leukemia (AML) is the most common leukemia in adult, among them the childhood acute myeloid leukemia accounts for 15% to 20%. After exploring and investigating this disease for 60 years, the systematic chemotherapy can achieve complete remission for 75%-80% AML patients, but only 20%-30% AML patients out of them can be cured, and other AML patients relapsed or died of this disease. The primary and/or seondary chemotherapy resistance may be the main reasons of the poor prognosis in AML. The activity of nuclear factor kappa B (NF-?B) involved into multi-layers of physiological functions. Among them, the activity of NF-?B and the apoptosis toleration associated with the sensitivity to chemotherapy. All these indicated that the inhibition of NF-?B may be a promising direction to reverse chemoresistance and improve chemotherapeutic effects for AML. Herein is the review of recent research progress on the field of the roles of NF-?B activation in AML and its application in AML therapy. PMID:26708911

  17. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.

    PubMed

    Koutsopoulos, Sotirios

    2016-04-01

    Until the mid-1980s, mainly biologists were conducting peptide research. This changed with discoveries that opened new paths of research involving the use of peptides in bioengineering, biotechnology, biomedicine, nanotechnology, and bioelectronics. Peptide engineering and rational design of novel peptide sequences with unique and tailor-made properties further expanded the field. The discovery of short self-assembling peptides, which upon association form well-defined supramolecular architectures, created new and exciting areas of research. Depending on the amino acid sequence, the pH, and the type of the electrolyte in the medium, peptide self-assembly leads to the formation of nanofibers, which are further organized to form a hydrogel. In this review, the application of ionic complementary peptides which self-assemble to form nanofiber hydrogels for tissue engineering and regenerative medicine will be discussed through a selective presentation of the most important work performed during the last 25 years. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1002-1016, 2016. PMID:26707893

  18. Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens.

    PubMed

    Uttam, Shikhar; Pham, Hoa V; LaFace, Justin; Leibowitz, Brian; Yu, Jian; Brand, Randall E; Hartman, Douglas J; Liu, Yang

    2015-11-15

    Early cancer detection currently relies on screening the entire at-risk population, as with colonoscopy and mammography. Therefore, frequent, invasive surveillance of patients at risk for developing cancer carries financial, physical, and emotional burdens because clinicians lack tools to accurately predict which patients will actually progress into malignancy. Here, we present a new method to predict cancer progression risk via nanoscale nuclear architecture mapping (nanoNAM) of unstained tissue sections based on the intrinsic density alteration of nuclear structure rather than the amount of stain uptake. We demonstrate that nanoNAM detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis who did and did not develop colon cancer up to 13 years after their initial colonoscopy. NanoNAM of the initial biopsies correctly classified 12 of 15 patients who eventually developed colon cancer and 15 of 18 who did not, with an overall accuracy of 85%. Taken together, our findings demonstrate great potential for nanoNAM in predicting cancer progression risk and suggest that further validation in a multicenter study with larger cohorts may eventually advance this method to become a routine clinical test. PMID:26383164

  19. PROGRESS REPORT. CORROSION OF SPENT NUCLEAR FUEL: THE LONG-TERM ASSESSMENT

    EPA Science Inventory

    The successful disposal of spent nuclear fuel (SNF) is one of the most serious challenges to the success of the nuclear fuel cycle and the future of nuclear power generation. Spent nuclear fuel is essentially UO2 with approximately 4-5 atomic percent actinides and fission product...

  20. Lincoln County nuclear waste project quarterly progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    1996-03-01

    This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.