Sample records for nuclear progesterone-binding protein

  1. Adrenocortical nuclear progesterone-binding protein: Identification by photoaffinity labeling and evidence for deoxyribonucleic acid binding and stimulation by adrenocorticotropin

    SciTech Connect

    Demura, T.; Driscoll, W.J.; Lee, Y.C.; Strott, C.A. (National Institute of Child Health and Human Development, Bethesda, MD (USA))

    1991-01-01

    Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinct from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.

  2. Quantification of progesterone binding in mammary tissue of pregnant ewes

    SciTech Connect

    Smith, J.J.; Capuco, A.V.; Akers, R.M.

    1987-06-01

    Progestin-binding sites in mammary tissue from 14 prepartum, multiparous ewes at 50, 80, 115, and 140 d of gestation were demonstrated by the binding of (/sup 3/H) R5020 (17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione) to ovine mammary cytosol in the presence of sodium molybdate and excess cortisol. Homogenization extracted 89% of total mammary receptors (nuclear) into cytosol. Binding was specific for progestins and was of high affinity. The average dissociation constant for (/sup 3/H) R5020 specifically bound to receptors extracted into mammary cytosol was 1.9 (+/- .4) x 10/sup -9/ M (n = 14) and did not change significantly over the test period. However, binding capacities (fmol/mg cytosolic protein) differed according to stage of gestation with averages of 125 +/- 53, 149 +/- 26, 656 +/- 216, 57 +/- 22 at 50, 80, 115, and 140 d of pregnancy, respectively. Increased number of progestin-binding sites at 115 d of gestation (whether data are expressed per unit of tissue weight, DNA, or cytosolic protein) suggests that an increase per mammary epithelial cell may be necessary to produce the full lobuloalveolar proliferation observed at this stage of gestation.

  3. Progesterone Binding to the 1-Subunit of the Na/K-ATPase on the Cell Surface: Insights from Computational Modeling

    E-print Network

    Askari, Amir

    membrane. Analysis of [3H]ouabain and [3H]progesterone binding to the plasma membrane of the Rana pipiens affect transcription (reviewed in [2-4]). Progesterone-induced meiosis in the Rana pipiens oocyte was one

  4. Nuclear basic proteins in spermiogenesis

    Microsoft Academic Search

    D. Wouters-Tyrou; A. Martinage; P. Chevaillier; P. Sautière

    1998-01-01

    In animal species, spermiogenesis, the late stage of spermatogenesis is characterized by a dramatic remodelling of chromatin which involves morphological changes and various modifications in the nature of the nuclear basic proteins. According to the evolution of species, three situations can be observed: a) persistence of somatic histones or appearance of sperm-specific histones: b) direct replacement of histones by generally

  5. In Vitro Transport of a Fluorescent Nuclear Protein and Exclusion of Non-Nuclear Proteins

    E-print Network

    Forbes, Douglass

    ac- cumulation of some large nuclear proteins (Feldherr and Og- burn, 1980; De Robertis, 1983; EinckIn Vitro Transport of a Fluorescent Nuclear Protein and Exclusion of Non-Nuclear Proteins Donald D microscopic assay for nuclear transport. The assay uses an extract of Xenopus eggs, normal or synthetic nuclei

  6. Protein Dynamics: Implications for Nuclear Architecture and Gene Expression

    NSDL National Science Digital Library

    Tom Mistelli (National Cancer Institute; )

    2001-02-02

    Studies of nuclear architecture reveal that the dynamic properties of proteins in the nucleus are critical for their function. The high mobility of proteins ensures their availability throughout the nucleus; their dynamic interplay generates an ever-changing, but overall stable, architectural framework, within which nuclear processes take place. As a consequence, overall nuclear morphology is determined by the functional interactions of nuclear components. The observed dynamic properties of nuclear proteins are consistent with a central role for stochastic mechanisms in gene expression and nuclear architecture.

  7. Inner nuclear membrane proteins: targeting and influence on genome organization 

    E-print Network

    Zuleger, Nikolaj

    2012-06-22

    The nuclear envelope is a complex double membrane system that separates the activities of the nuclear and cytoplasmic compartments. A recent explosion in the number of proteins associated with this subnuclear organelle together ...

  8. The nuclear envelope LEM-domain protein emerin

    PubMed Central

    Berk, Jason M; Tifft, Kathryn E; Wilson, Katherine L

    2013-01-01

    Emerin, a conserved LEM-domain protein, is among the few nuclear membrane proteins for which extensive basic knowledge—biochemistry, partners, functions, localizations, posttranslational regulation, roles in development and links to human disease—is available. This review summarizes emerin and its emerging roles in nuclear “lamina” structure, chromatin tethering, gene regulation, mitosis, nuclear assembly, development, signaling and mechano-transduction. We also highlight many open questions, exploration of which will be critical to understand how this intriguing nuclear membrane protein and its “family” influence the genome. PMID:23873439

  9. Nuclear calmodulin-binding proteins in rat neurons.

    PubMed

    Pujol, M J; Bosser, R; Vendrell, M; Serratosa, J; Bachs, O

    1993-04-01

    By using a 125I-calmodulin overlay assay, three major high-affinity calmodulin-binding proteins, showing apparent molecular masses of 135, 60, and 50 kDa, have been detected in purified nuclear fractions isolated from rat neurons. It has been shown that after extraction of the nuclei with nucleases and high salt, all these proteins remain strongly associated with the nuclear matrix. The 60- and 50-kDa proteins have been previously identified as subunits of the calmodulin-dependent protein kinase II. We report here the immunoblot identification of the 135-kDa calmodulin-binding protein as myosin light chain kinase. We also show that the calmodulin-dependent protein phosphatase calcineurin is present in the neuronal nuclei and associated with the nuclear matrix. The nuclear localization of both calcineurin and myosin light chain kinase has been confirmed by immunocytochemical studies. PMID:8384250

  10. Transportin-SR, a Nuclear Import Receptor for SR Proteins

    PubMed Central

    Kataoka, Naoyuki; Bachorik, Jennifer L.; Dreyfuss, Gideon

    1999-01-01

    The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain–bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain– bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin ?/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family. PMID:10366588

  11. Investigating dengue virus nonstructural protein 5 (NS5) nuclear import.

    PubMed

    Fraser, Johanna E; Rawlinson, Stephen M; Wang, Chunxiao; Jans, David A; Wagstaff, Kylie M

    2014-01-01

    Dengue virus (DENV) nonstructural protein 5 (NS5) plays a central role in viral replication in the cytoplasm of infected cells. Despite this, NS5 is predominantly located in the nucleus of infected cells where it is thought to play a role in suppression of the host antiviral response. We have investigated the nuclear localization of NS5 using immunofluorescent staining for NS5 in infected cells, showing that NS5 nuclear localization is significantly inhibited by Ivermectin, a general inhibitor of nuclear transport mediated by the cellular nuclear transport proteins importin ?/? (IMP?/?). Experiments in living mammalian cells transfected to express green fluorescent protein (GFP)-tagged NS5 protein confirm that NS5 is predominantly nuclear and that this localization is inhibited by Ivermectin, demonstrating that NS5 contains an Ivermectin-sensitive IMP?/?-recognized nuclear localization signal [Pryor et al. Traffic 8:795-807, 2007]. Consistent with this observation, mutation of critical residues within the nuclear localization signal (the A2 mutant; [Pryor et al. Traffic 8:795-807, 2007]) results in an 80 % reduction in nuclear localization of NS5. Finally we demonstrate direct, high-affinity binding of NS5 to IMP?/? using an AlphaScreen protein-protein binding assay. PMID:24696345

  12. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin

    Microsoft Academic Search

    Kevin Wilhelmsen; Sandy H. M. Litjens; Ingrid Kuikman; Ntambua Tshimbalanga; Hans Janssen; Iman van den Bout; Karine Raymond; Arnoud Sonnenberg

    2005-01-01

    espite their importance in cell biology, the mech- anisms that maintain the nucleus in its proper po- sition in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin

  13. Protein quality control at the inner nuclear membrane

    PubMed Central

    Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J.; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D.; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O.; Knop, Michael

    2015-01-01

    The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression1. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER) and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by ER-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc72,3. However, little is known regarding protein quality control at the INM. Here we describe a protein degradation pathway at the INM mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi34. We report that the As complex functions together with the ubiquitin conjugating enzymes Ubc6andUbc7to degrade soluble and integral membrane proteins. Genetic evidence suggest that the Asi ubiquitin ligase defines a pathway distinct from but complementary to ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer (tFT)5, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquity ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalised integral membrane proteins, thus acting to maintain and safeguard the identity of the INM. PMID:25519137

  14. Gadd45 family proteins are coactivators of nuclear hormone receptors.

    PubMed

    Yi, Y W; Kim, D; Jung, N; Hong, S S; Lee, H S; Bae, I

    2000-05-27

    Gadd45 family genes encode nuclear acidic proteins composed of Gadd45, MyD118, and CR6. Sequence analysis showed that Gadd45 family proteins (Gadd45, MyD118, and CR6) contain LXXLL signature motifs considered necessary and sufficient for the binding of several coactivators to nuclear receptors. Interaction between Gadd45 or CR6 and RXR alpha was confirmed by a two-hybrid test in yeast. Results from a series of GST pulldown assays showed that these Gadd45 family proteins interact with several nuclear hormone receptors including RXR alpha, RAR alpha, ER alpha, PPAR alpha, PPAR beta, and PPAR gamma2 in vitro. Interaction between Gadd45 family proteins and nuclear hormone receptors resulted in modest activation of transactivating function of nuclear hormone receptors in reporter systems. When fused to DNA binding domain of GAL4, Gadd45 and CR6 activated the UAS-mediated transcription in mammalian cells. These results suggest that Gadd45 family proteins bind to nuclear hormone receptors and act as nuclear coactivators. PMID:10872826

  15. Nuclear localization of enhanced green fluorescent protein homomultimers.

    PubMed

    Seibel, Nicole Maria; Eljouni, Jihane; Nalaskowski, Marcus Michael; Hampe, Wolfgang

    2007-09-01

    The green fluorescent protein (GFP) and its variants are used in many studies to determine the subcellular localization of other proteins by analyzing fusion proteins. The main problem for nuclear localization studies is the fact that, to some extent, GFP translocates to the nucleus on its own. Because the nuclear import could be due to unspecific diffusion of the relatively small GFP through the nuclear pores, we analyzed the localization of multimers of a GFP variant, the enhanced GFP (EGFP). By detecting the fluorescence of the expressed proteins in gels after nonreducing SDS-PAGE, we demonstrate the integrity of the expressed proteins. Nevertheless, even EGFP homotetramers and homohexamers are found in the nuclei of the five analyzed mammalian cell lines. The use of fusion constructs of small proteins with multimeric EGFP alone, therefore, is not adequate to prove nuclear import processes. Fusion to tetrameric EGFP in combination with a careful quantification of the fluorescence intensities in the nucleus and cytoplasm might be sufficient in many cases to identify a significant difference between the fusion protein and tetrameric EGFP alone to deduce a nuclear localization signal. PMID:17586454

  16. Regulation of Neuronal Differentiation by Proteins Associated with Nuclear Bodies

    PubMed Central

    Förthmann, Benjamin; van Bergeijk, Jeroen; Lee, Yu-Wei; Lübben, Verena; Schill, Yvonne; Brinkmann, Hella; Ratzka, Andreas; Stachowiak, Michal K.; Hebert, Michael; Grothe, Claudia; Claus, Peter

    2013-01-01

    Nuclear bodies are large sub-nuclear structures composed of RNA and protein molecules. The Survival of Motor Neuron (SMN) protein localizes to Cajal bodies (CBs) and nuclear gems. Diminished cellular concentration of SMN is associated with the neurodegenerative disease Spinal Muscular Atrophy (SMA). How nuclear body architecture and its structural components influence neuronal differentiation remains elusive. In this study, we analyzed the effects of SMN and two of its interaction partners in cellular models of neuronal differentiation. The nuclear 23 kDa isoform of Fibroblast Growth Factor – 2 (FGF-223) is one of these interacting proteins – and was previously observed to influence nuclear bodies by destabilizing nuclear gems and mobilizing SMN from Cajal bodies (CBs). Here we demonstrate that FGF-223 blocks SMN-promoted neurite outgrowth, and also show that SMN disrupts FGF-223-dependent transcription. Our results indicate that FGF-223 and SMN form an inactive complex that interferes with neuronal differentiation by mutually antagonizing nuclear functions. Coilin is another nuclear SMN binding partner and a marker protein for Cajal bodies (CBs). In addition, coilin is essential for CB function in maturation of small nuclear ribonucleoprotein particles (snRNPs). The role of coilin outside of Cajal bodies and its putative impacts in tissue differentiation are poorly defined. The present study shows that protein levels of nucleoplasmic coilin outside of CBs decrease during neuronal differentiation. Overexpression of coilin has an inhibitory effect on neurite outgrowth. Furthermore, we find that nucleoplasmic coilin inhibits neurite outgrowth independent of SMN binding revealing a new function for coilin in neuronal differentiation. PMID:24358231

  17. Interactions of poly(ADP-ribose) with nuclear proteins

    Microsoft Academic Search

    F. R. Althaus; S. Bachmann; L. Höfferer; H. E. Kleczkowska; M. Malanga; P. L. Panzeter; C. Realini; B. Zweifel

    1995-01-01

    The molecular mechanisms whereby poly(ADP-ribosyl)ation primes chromatin proteins for an active role in DNA excision repair are not understood. The prevalent view is that the covalent linkage of ADP-ribose polymers is essential for the modification of target protein function. By contrast, we have focused on the possibility that ADP-ribose polymers interact non-covalently with nuclear proteins and thereby modulate their function.

  18. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis[W

    PubMed Central

    Goto, Chieko; Tamura, Kentaro; Fukao, Yoichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2014-01-01

    In animals, the nuclear lamina is a fibrillar meshwork on the inner surface of the nuclear envelope, composed of coiled-coil lamin proteins and lamin binding membrane proteins. Plants also have a meshwork on the inner surface of the nuclear envelope, but little is known about its composition other than the presence of members of the CROWDED NUCLEI (CRWN) protein family, possible plant lamin analogs. Here, we describe a candidate lamina component, based on two Arabidopsis thaliana mutants (kaku2 and kaku4) with aberrant nuclear morphology. The responsible gene in kaku2 encodes CRWN1, and the responsible gene in kaku4 encodes a plant-specific protein of unknown function (KAKU4) that physically interacts with CRWN1 and its homolog CRWN4. Immunogold labeling revealed that KAKU4 localizes at the inner nuclear membrane. KAKU4 deforms the nuclear envelope in a dose-dependent manner, in association with nuclear membrane invagination and stack formation. The KAKU4-dependent nuclear envelope deformation was enhanced by overaccumulation of CRWN1, although KAKU4 can deform the nuclear envelope even in the absence of CRWN1 and/or CRWN4. Together, these results suggest that plants have evolved a unique lamina-like structure to modulate nuclear shape and size. PMID:24824484

  19. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation.

    PubMed

    Gruenbaum, Yosef; Foisner, Roland

    2015-06-01

    Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes. PMID:25747401

  20. Identification and Characterization of Proteins Involved in Nuclear Organization Using Drosophila GFP Protein Trap Lines

    PubMed Central

    Rohrbaugh, Margaret; Clore, Alyssia; Davis, Julia; Johnson, Sharonta; Jones, Brian; Jones, Keith; Kim, Joanne; Kithuka, Bramwel; Lunsford, Krystal; Mitchell, Joy; Mott, Brian; Ramos, Edward; Tchedou, Maza R.; Acosta, Gilbert; Araujo, Mark; Cushing, Stuart; Duffy, Gabriel; Graves, Felicia; Griffin, Kyler; Gurudatta, B. V.; Jackson, Deaundra; Jaimes, Denis; Jamison, Kendall; Jones, Khali; Kelley, Dhaujee; Kilgore, Marquita; Laramore, Derica; Le, Thuy; Mazhar, Bakhtawar; Mazhar, Muhammad M.; McCrary, Britney; Miller, Teanndras; Moreland, Celethia; Mullins, Alex; Munye, Elyas; Okoorie, Sheila; Pittman, Elisha; Roberts, Nikkita; Rose, De’Warren; Rowland, Alex; Shagarabi, Anwar; Smith, Jamela; Stallworth, Tayler; Stroud, Nicole; Sung, Elizabeth; Sung, Kai; Takenaka, Naomi; Torre, Eduardo; Veira, Jarvis; Vu, Kim; Wagstaff, William; Wood, Ashley M.; Wu, Karen; Yang, Jingping; Corces, Victor G.

    2013-01-01

    Background Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern. Methodology/Principal Findings We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31) gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp) is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl), a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology. Conclusions/Significance These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins. PMID:23341925

  1. Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance

    PubMed Central

    Dongsheng, Liu; Xu, Rong; Cowburn, David

    2009-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474

  2. Classic Nuclear Localization Signals and a Novel Nuclear Localization Motif Are Required for Nuclear Transport of Porcine Parvovirus Capsid Proteins

    PubMed Central

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra

    2014-01-01

    ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698

  3. A nuclear cap binding protein from HeLa cells.

    PubMed Central

    Ohno, M; Kataoka, N; Shimura, Y

    1990-01-01

    We have identified a cap binding protein in a HeLa nuclear extract using a gel mobility shift assay probed with capped RNA. Subcellular fractionation of HeLa cells revealed that the majority (about 70%) of the cap binding activity is present in the nuclear extract, about 20% is in the cytoplasmic S100 fraction, and almost none in the ribosome-high salt wash fraction, indicating that the protein in active form localizes mainly in the nuclei. Competition experiments with various cap analogues showed that the G(5')ppp(5')N-blocking structure as well as the methyl residue at the N7 position of the blocking guanosine is important for the binding of this protein, and that the trimethylguanosine cap structure which exists at the 5' termini of many snRNAs is not recognized by this protein. Immunoprecipitation experiments using various anti-snRNP antibodies suggested that this protein is partially associated with U2 snRNP. We purified this protein to near homogeneity from a HeLa nuclear extract by several chromatographic procedures including capped RNA-Sepharose chromatography. The purified protein shows molecular weight of 80 kilodaltons, as judged by SDS gel electrophoresis, and binds specifically to the cap structure. Images PMID:2148205

  4. Functional Characterization of Nuclear Localization Signals in Yeast Sm Proteins

    PubMed Central

    Bordonné, Rémy

    2000-01-01

    In mammals, nuclear localization of U-snRNP particles requires the snRNA hypermethylated cap structure and the Sm core complex. The nature of the signal located within the Sm core proteins is still unknown, both in humans and yeast. Close examination of the sequences of the yeast SmB, SmD1, and SmD3 carboxyl-terminal domains reveals the presence of basic regions that are reminiscent of nuclear localization signals (NLSs). Fluorescence microscopy studies using green fluorescent protein (GFP)-fusion proteins indicate that both yeast SmB and SmD1 basic amino acid stretches exhibit nuclear localization properties. Accordingly, deletions or mutations in the NLS-like motifs of SmB and SmD1 dramatically reduce nuclear fluorescence of the GFP-Sm mutant fusion alleles. Phenotypic analyses indicate that the NLS-like motifs of SmB and SmD1 are functionally redundant: each NLS-like motif can be deleted without affecting yeast viability whereas a simultaneous deletion of both NLS-like motifs is lethal. Taken together, these findings suggest that, in the doughnut-like structure formed by the Sm core complex, the carboxyl-terminal extensions of Sm proteins may form an evolutionarily conserved basic amino acid-rich protuberance that functions as a nuclear localization determinant. PMID:11027265

  5. Nuclear localization signal binding proteins in higher plant nuclei.

    PubMed Central

    Hicks, G R; Raikhel, N V

    1995-01-01

    The import of proteins into the nucleus is a vital process that is mediated by proteins which specifically recognize nuclear localization signals (NLSs). These factors have not been identified in plants. Previously, we demonstrated that higher plants possess a low-affinity binding site at the nuclear pore that specifically binds to several classes of functional NLSs. By the use of crosslinking reagents and a radiolabeled peptide to the bipartite NLS from the endogenous plant transcription factor Opaque2, two NLS binding proteins (NBPs) of 50-60 kDa and at least two NBPs of 30-40 kDa were identified. Competition studies indicated that labeling was specific for the functional NLS but not a mutant NLS impaired in vivo or a peptide unrelated to NLSs. Also, the apparent dissociation constant (100-300 microM) for labeling was similar to that of the binding site. Proteins of similar mass were labeled with two different crosslinking reagents, and concentration and time studies indicated that these NBPs were distinct proteins and not aggregates. Treatment with salt, detergent, or urea before or during NLS binding demonstrated that the properties of the binding site and the NBPs were identical. This tight correlation strongly indicates that some or all of the NBPs constitute the nuclear pore binding site. Overall, our results indicate that some components of NLS recognition are located at the nuclear pores in higher plants. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7846044

  6. Karyopherins in nuclear transport of homeodomain proteins during development

    PubMed Central

    Ye, Wenduo; Lin, Wenbo; Tartakoff, Alan M.; Tao, Tao

    2013-01-01

    Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation and organ development. Interestingly, their homeodomain signature structure is important for both their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic distribution of these proteins is essential for their functions. We summarize information on a) the roles of karyopherins for import and export of homeoproteins, b) the regulation of their nuclear transport during development, and c) the corresponding complexity of homeoprotein nucleocytoplasmic transport signals. PMID:21256166

  7. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

    SciTech Connect

    Kang, Won Kyung [Molecular Entomology Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan)]. E-mail: wkkang@riken.jp; Kurihara, Masaaki [Molecular Entomology Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan)]. E-mail: mkuri@riken.jp; Matsumoto, Shogo [Molecular Entomology Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan)]. E-mail: smatsu@riken.jp

    2006-06-20

    The BRO proteins of Bombyx mori nucleopolyhedrovirus (BmNPV) display a biphasic pattern of intracellular localization during infection. At early times, they reside in the nucleus but then show both cytoplasmic and nuclear localization as the infection proceeds. Therefore, we examined the possibility of nuclear export. Using inhibitors, we reveal that BmNPV BRO proteins shuttle between the nucleus and cytoplasm. Mutations on the leucine-rich region of BRO proteins resulted in nuclear accumulation of transiently expressed proteins, suggesting that this region functions as a CRM1-dependent nuclear export signal (NES). On the contrary, mutant BRO-D with an altered NES did not show nuclear accumulation in infected cells, although protein production seemed to be reduced. RT-PCR analysis showed that the lower level of protein production was due to a reduction in RNA synthesis. Taken together, our results suggest that BRO proteins are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway.

  8. Prediction of bacterial proteins carrying a nuclear localization signal and nuclear targeting of HsdM from Klebsiella pneumoniae

    Microsoft Academic Search

    Je Chul Lee; Dong Sun Kim; Dong Chan Moon; Jung-Hwa Lee; Mi Jin Kim; Su Man Lee; Yong Seok Lee; Se-Won Kang; Eun Jung Lee; Sang Sun Kang; Eunpyo Lee; Sung Hee Hyun

    2009-01-01

    Nuclear targeting of bacterial proteins is an emerging pathogenic mechanism whereby bacterial proteins can interact with nuclear\\u000a molecules and alter the physiology of host cells. The fully sequenced bacterial genome can predict proteins that target the\\u000a nuclei of host cells based on the presence of nuclear localization signal (NLS). In the present study, we predicted bacterial\\u000a proteins with the NLS

  9. Nuclear Matrix Proteins in Normal and Breast Cancer Cells1

    Microsoft Academic Search

    Parvinderjit S. Khanuja; Jeffrey E. Lehr; Herbert D. Soule; Suresh K. Gehani; Anthony C. Noto; Sajal Choudhury; Ruey Chen; Kenneth J. Pienta

    The progression from normal breast epithelium to a malignant pheno- type may depend on changes in genetic events as well as failure of host mechanisms. Intermediate biomarkers are needed to more effectively identify malignant progression as well as to develop the potential for more specific treatments and prevention strategies. The nuclear matrix is the RNA-protein network which forms the skeleton

  10. Molecular chaperone-mediated nuclear protein dynamics.

    PubMed

    Echtenkamp, Frank J; Freeman, Brian C

    2014-05-01

    Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus. PMID:24694369

  11. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    SciTech Connect

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  12. Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis

    Microsoft Academic Search

    Jan Ellenberg; Eric D. Siggia; Jorge E. Moreira; Carolyn L. Smith; John F. Presley; Howard J. Worman; Jennifer Lippincott-Schwartz

    1997-01-01

    The mechanisms of localization and reten- tion of membrane proteins in the inner nuclear mem- brane and the fate of this membrane system during mi- tosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR-GFP). Photobleaching tech- niques revealed the majority of LBR-GFP to be com- pletely immobilized in

  13. Whole-genome screening identifies proteins localized to distinct nuclear bodies

    PubMed Central

    Fong, Ka-wing; Li, Yujing; Wang, Wenqi; Ma, Wenbin; Li, Kunpeng; Qi, Robert Z.; Liu, Dan; Songyang, Zhou

    2013-01-01

    The nucleus is a unique organelle that contains essential genetic materials in chromosome territories. The interchromatin space is composed of nuclear subcompartments, which are defined by several distinctive nuclear bodies believed to be factories of DNA or RNA processing and sites of transcriptional and/or posttranscriptional regulation. In this paper, we performed a genome-wide microscopy-based screening for proteins that form nuclear foci and characterized their localizations using markers of known nuclear bodies. In total, we identified 325 proteins localized to distinct nuclear bodies, including nucleoli (148), promyelocytic leukemia nuclear bodies (38), nuclear speckles (27), paraspeckles (24), Cajal bodies (17), Sam68 nuclear bodies (5), Polycomb bodies (2), and uncharacterized nuclear bodies (64). Functional validation revealed several proteins potentially involved in the assembly of Cajal bodies and paraspeckles. Together, these data establish the first atlas of human proteins in different nuclear bodies and provide key information for research on nuclear bodies. PMID:24127217

  14. Identification of a Nuclear Stat1 Protein Tyrosine Phosphatase

    Microsoft Academic Search

    J. ten Hoeve; M. de Jesus Ibarra-Sanchez; Y. Fu; W. Zhu; M. Tremblay; M. David; K. Shuai

    2002-01-01

    Upon interferon (IFN) stimulation, Stat1 becomes tyrosine phosphorylated and translocates into the nu- cleus, where it binds to DNA to activate transcription. The activity of Stat1 is dependent on tyrosine phos- phorylation, and its inactivation in the nucleus is accomplished by a previously unknown protein tyrosine phosphatase (PTP). We have now purified a Stat1 PTP activity from HeLa cell nuclear

  15. Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information

    PubMed Central

    Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish

    2014-01-01

    The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370

  16. Nuclear envelope protein MAN1 regulates clock through BMAL1

    PubMed Central

    Lin, Shu-Ting; Zhang, Luoying; Lin, Xiaoyan; Zhang, Linda Chen; Garcia, Valentina Elizabeth; Tsai, Chen-Wei; Ptá?ek, Louis; Fu, Ying-Hui

    2014-01-01

    Circadian clocks serve as internal pacemakers that influence many basic homeostatic processes; consequently, the expression and function of their components are tightly regulated by intricate networks of feedback loops that fine-tune circadian processes. Our knowledge of these components and pathways is far from exhaustive. In recent decades, the nuclear envelope has emerged as a global gene regulatory machine, although its role in circadian regulation has not been explored. We report that transcription of the core clock component BMAL1 is positively modulated by the inner nuclear membrane protein MAN1, which directly binds the BMAL1 promoter and enhances its transcription. Our results establish a novel connection between the nuclear periphery and circadian rhythmicity, therefore bridging two global regulatory systems that modulate all aspects of bodily functions. DOI: http://dx.doi.org/10.7554/eLife.02981.001 PMID:25182847

  17. Nuclear Actin-Related Proteins in Epigenetic Control

    PubMed Central

    Meagher, Richard B.; Kandasamy, Muthugapatti K.; McKinney, Elizabeth C.; Roy, Eileen

    2009-01-01

    The nuclear actin-related proteins (ARPs) share overall structure and low-level sequence homology with conventional actin. They are indispensable subunits of macromolecular machines that control chromatin remodeling and modification leading to dynamic changes in DNA structure, transcription, and DNA repair. Cellular, genetic, and biochemical studies suggest that the nuclear ARPs are essential to the epigenetic control of the cell cycle and cell proliferation in all eukaryotes, while in plants and animals they also exert epigenetic controls over most stages of multicellular development including organ initiation, the switch to reproductive development, and senescence and programmed cell death. A theme emerging from plants and animals is that in addition to their role in controlling the general compaction of DNA and gene silencing, isoforms of nuclear ARP-containing chromatin complexes have evolved to exert dynamic epigenetic control over gene expression and different phases of multicellular development. Herein, we explore this theme by examining nuclear ARP phylogeny, activities of ARP-containing chromatin remodeling complexes that lead to epigenetic control, expanding developmental roles assigned to several animal and plant ARP-containing complexes, the evidence that thousands of ARP complex isoforms may have evolved in concert with multicellular development, and ARPs in human disease. PMID:19766970

  18. Nuclear targeting of the maize R protein requires two nuclear localization sequences

    SciTech Connect

    Shieh, M.W.; Raikhel, N.V. (Michigan State Univ., East Lansing (United States)); Wessler, S.R. (Univ. of Georgia, Athens (United States))

    1993-02-01

    Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is found in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.

  19. Selective effects of inhibitors of protein synthesis on metabolism of nuclear anc cytoplasmic proteins: evidence for coordinate synthesis of non-histone chromosomal proteins.

    PubMed Central

    Vidali, G; Karn, J; Allfrey, V G

    1975-01-01

    We have compared the effects of inhibitors of protein synthesis on the metabolism of nuclear and cytoplasmic proteins of HeLa S-3 cells. L-1-tosylamido-2-phenylethyl chloromethyl ketone, a potent inhibitor of polypeptide chain initiation, was shown to preferentially inhibit the synthesis of cytoplasmic proteins and of histones at concentrations that permit continued amino acid incorporation into nuclear non-histone proteins. Comparisons of the molecular weight distributions of newly synthesized proteins in the presence and absence of L-1-tosylamido-2-phenylethyl chloromethyl ketone have revealed striking differences between nuclear anc cytoplasmic protein fractions. Differential effects on the synthesis of cytoplasmic proteins, acid-soluble nuclear proteins, and residual nuclear proteins have also been obtained with the antibiotic, pactamycin, another inhibitor of polypeptide chain initiation. The incorporation of radioactive amino acids into nuclear non-histone proteins shows resistance to inhibition by pactamycin, but is strongly inhibited by agents such as puromycin and cycloheximide which block chain elongation. The possibility that proliferating cells have developed specialized mechanisms for the coordinate synthesis of chromosomal proteins, possibly involving polycistronic messenger RNAs, is tested and discussed. PMID:1060125

  20. Antibodies against 70-kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins

    PubMed Central

    1992-01-01

    Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV- 40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import. PMID:1332978

  1. Nuclear protein dysregulation in lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia.

    PubMed

    Roberts, Mark J; Chadburn, Amy; Ma, Shuo; Hyjek, Elizabeth; Peterson, LoAnn C

    2013-02-01

    Waldenström macroglobulinemia (WM) is characterized by monoclonal gammopathy, usually IgM, in association with lymphoplasmacytic lymphoma (LPL). Little is known of the expression of nuclear proteins involved in B-cell development in LPL/WM. In this study, the expression patterns of PAX5/BSAP, MUM1/IRF4, and PRDM1/BLIMP1 were analyzed in plasma cells and lymphocytes in 29 cases of newly diagnosed LPL/WM by double immunohistochemical staining with CD138 and CD22. These patterns were compared with the expression profiles seen in normal bone marrow samples, reactive tonsils, and cases of plasma cell myeloma and marginal zone lymphoma. The median percentage of plasma cells coexpressing CD138 and PAX5 was significantly higher in LPL/WM compared with benign tissues (P = .001), marginal zone lymphoma (P = .002), and plasma cell myeloma (P < .0001), whereas the median percentage of plasma cells coexpressing CD138 and MUM1 was lower in LPL/WM than plasma cells in benign tissues (P = .02), marginal zone lymphoma (P = .001), and plasma cell myeloma (P = .0002). These findings show that a subset of plasma cells in LPL/WM demonstrates a nuclear protein expression pattern characteristic of the B-cell developmental program. Thus, the results better define the immunophenotypic profile of the neoplastic cells in LPL/WM. PMID:23355206

  2. Cocksfoot mottle sobemovirus coat protein contains two nuclear localization signals.

    PubMed

    Olspert, Allan; Paves, Heiti; Toomela, Raavo; Tamm, Tiina; Truve, Erkki

    2010-06-01

    Cocksfoot mottle virus (CfMV) coat protein (CP) localization was studied in plant and mammalian cells. Fusion of the full-length CP with enhanced green fluorescent protein (EGFP) localized to the cell nucleus whereas similar constructs lacking the first 33 N-terminal amino acids of CP localized to the cytoplasm. CP and EGFP fusions containing mutations in the arginine-rich motif of CP localized to the cytoplasm and to the nucleus in plant cells indicating the involvement of the motif in nuclear localization. In mammalian cells, mutations in the arginine-rich region were sufficient to completely abolish nuclear transport. The analysis of deletions of amino acid residues 1-11, 1-22, and 22-33 of CP demonstrated that there were two separate nuclear localization signals (NLS) within the N-terminus--a strong NLS1 in the arginine-rich region (residues 22-33) and a weaker NLS2 within residues 1-22. Analysis of point mutants revealed that the basic amino acid residues in the region of the two NLSs were individually not sufficient to direct CP to the nucleus. Additional microinjection studies with fluorescently labeled RNA and CP purified from CfMV particles demonstrated that the wild-type CP was capable of transporting the RNA to the nucleus. This feature was not sequence-specific in transient assays since both CfMV and GFP mRNA were transported to the cell nucleus by CfMV CP. Together the results suggest that the nucleus may be involved in CfMV infection. PMID:20155311

  3. Synchronizing nuclear import of ribosomal proteins with ribosome assembly.

    PubMed

    Kressler, Dieter; Bange, Gert; Ogawa, Yutaka; Stjepanovic, Goran; Bradatsch, Bettina; Pratte, Dagmar; Amlacher, Stefan; Strauß, Daniela; Yoneda, Yoshihiro; Katahira, Jun; Sinning, Irmgard; Hurt, Ed

    2012-11-01

    Ribosomal proteins are synthesized in the cytoplasm, before nuclear import and assembly with ribosomal RNA (rRNA). Little is known about coordination of nucleocytoplasmic transport with ribosome assembly. Here, we identify a transport adaptor, symportin 1 (Syo1), that facilitates synchronized coimport of the two 5S-rRNA binding proteins Rpl5 and Rpl11. In vitro studies revealed that Syo1 concomitantly binds Rpl5-Rpl11 and furthermore recruits the import receptor Kap104. The Syo1-Rpl5-Rpl11 import complex is released from Kap104 by RanGTP and can be directly transferred onto the 5S rRNA. Syo1 can shuttle back to the cytoplasm by interaction with phenylalanine-glycine nucleoporins. X-ray crystallography uncovered how the ?-solenoid symportin accommodates the Rpl5 amino terminus, normally bound to 5S rRNA, in an extended groove. Symportin-mediated coimport of Rpl5-Rpl11 could ensure coordinated and stoichiometric incorporation of these proteins into pre-60S ribosomes. PMID:23118189

  4. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    SciTech Connect

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan)] [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)] [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan)] [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)] [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  5. Radioprotective Thiolamines WR-1065 and WR-33278 Selectively Denature Nonhistone Nuclear Proteins

    NASA Technical Reports Server (NTRS)

    Booth, Valerie K.; Roberts, Jeanette C.; Warters, Raymond L.; Wilmore, Britta H.; Lepock, James R.

    2000-01-01

    Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca (2+) ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.

  6. Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p

    Microsoft Academic Search

    Ursula Stochaj; Roozbeh Rassadi; James Chiu

    2000-01-01

    Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition

  7. Characterization of nuclear localization and nuclear export signals of yeast actin-binding protein Pan1.

    PubMed

    Kami?ska, Joanna; Sedek, Magdalena; Wysocka-Kapci?ska, Monika; Zo?adek, Teresa

    2007-11-27

    Pan1 is an actin patch-associated protein involved in endocytosis. Our studies revealed that in oleate-grown cells Pan1 is located in the nucleus as well as in patches. One of three putative nuclear localization signals (NLS) of Pan1, NLS2, directed beta-galactosidase (beta-gal) to the nucleus. However, GFP-Pan1(886-1219), containing NLS2, was found in the cytoplasm indicating that it may contain a nuclear export signal (NES). A putative Pan1 NES, overlapping with NLS3, re-addressed NLS(H2B)-NES/NLS3-beta-gal from the nucleus to the cytoplasm. Inactivation of the NES allowed NLS3 to be effective. Thus, Pan1 contains functional NLSs and a NES and appears to shuttle in certain circumstances. PMID:17967424

  8. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas

    E-print Network

    Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas Dennis D, and immunocytochemical studies dem- onstrate that this protein is nuclear-localized under both nutrient- replete proliferation (algal blooms), which leads to eutrophica- tion and fish kills (2). The sustainability

  9. Transcription-Dependent and Transcription-Independent Nuclear Transport of hnRNP Proteins

    E-print Network

    Dreyfuss, Gideon

    . In mitosis, as the nuclear envelope breaks down, hnRNPs disperse throughout the cell. At the end of mitosis mitosis, after the nuclear enve- lope breaks down, they are found through- out the entire cellular spaceRNP proteins during mitosis, we compared the protein composition of hnRNPs purified from asynchronous

  10. Identification of nuclear proteins in soybean under flooding stress using proteomic technique.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-05-01

    Flooding stress restricts soybean growth, it results in decrease the production. In this report, to understand how nuclear proteins in soybean affected by flooding, abundance changes of those proteins was analyzed. Nuclear proteins were extracted from the root tips of soybean treated with or without flooding stress. The extracted proteins were analyzed using a label-free quantitative proteomic technique. Of a total of 94 nuclear proteins that were found to be responsive to flooding, the 19 and 75 proteins were increased and decreased, respectively. The identified flooding-responsive proteins were functionally classified, revealing that 8 increased proteins changed in protein synthesis, posttranslational modification, and protein degradation, while 34 decreased proteins were involved in transcription, RNA processing, DNA synthesis, and chromatin structure maintenance. Among these proteins, those whose levels changed more than 10 fold included two poly ADP-ribose polymerases and a novel G-domain-containing protein that might be involved in RNA binding. The mRNA expression levels of these three proteins indicated a similar tendency to their protein abundance changes. These results suggest that acceleration of protein poly-ADP-ribosylation and suppression of RNA metabolism may be involved in root tip of soybean under flooding stress. PMID:24237379

  11. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein.

    PubMed Central

    Michael, W M; Eder, P S; Dreyfuss, G

    1997-01-01

    Protein import into the nucleus and export from the nucleus are signal-mediated processes that require energy. The nuclear transport process about which the most information is currently available is classical nuclear localization signal (NLS)-mediated nuclear import. However, details concerning the signal-mediated export of proteins and RNAs as well as alternative nuclear import pathways are beginning to emerge. An example of this is the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 protein which, by virtue of its M9 domain, is actively exported from the nucleus and imported into the nucleus via a novel pathway mediated by the recently characterized transportin protein. Here we report that the shuttling hnRNP K protein contains a novel shuttling domain (termed KNS) which has many of the characteristics of M9, in that it confers bi-directional transport across the nuclear envelope. KNS-mediated nuclear import is dependent on RNA polymerase II transcription, and we show that a classical NLS can override this effect. Furthermore, KNS accesses a separate import pathway from either classical NLSs or M9. This demonstrates the existence of a third protein import pathway into the nucleus and thereby defines a new type of nuclear import/export signal. PMID:9218800

  12. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    SciTech Connect

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  13. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins.

    PubMed

    Davies, Rebecca G; Wagstaff, Kylie M; McLaughlin, Eileen A; Loveland, Kate L; Jans, David A

    2013-12-01

    Regulation of nuclear protein import is central to many cellular processes such as development, with a key mechanism being factors that retain cargoes in the cytoplasm that normally localize in the nucleus. The breast cancer antigen BRCA1-binding protein BRAP2 has been reported as a novel negative regulator of nuclear import of various nuclear localization signal (NLS)-containing viral and cellular proteins, but although implicated in differentiation pathways and highly expressed in tissues including testis, the gamut of targets for BRAP2 action in a developmental context is unknown. As a first step towards defining the BRAP2 interactome, we performed a yeast-2-hybrid screen to identify binding partners of BRAP2 in human testis. Here we report characterization for the first time of three of these: the high mobility group (HMG)-box-domain-containing chromatin component HMG20A, nuclear mitotic apparatus protein NuMA1 and synaptic nuclear envelope protein SYNE2. Co-immunoprecipitation experiments indicate association of BRAP2 with HMG20A, NuMA1, and SYNE2 in testis, underlining the physiological relevance of the interactions, with immunohistochemistry showing that where BRAP2 is co-expressed with HMG20A and NuMA1, both are present in the cytoplasm, in contrast to their nuclear localization in other testicular cell types. Importantly, quantitative confocal microscopic analysis of cultured cells indicates that ectopic expression of BRAP2 inhibits nuclear localization of HMG20A and NuMA1, and prevents nuclear envelope accumulation of SYNE2, the first report of BRAP2 altering localization of a non-nuclear protein. These results imply for the first time that BRAP2 may have an important role in modulating subcellular localization during testicular development. PMID:23707952

  14. A Bayesian Network Model of Proteins' Association with Promyelocytic Leukemia (PML) Nuclear Bodies

    E-print Network

    Dellaire, Graham

    A Bayesian Network Model of Proteins' Association with Promyelocytic Leukemia (PML) Nuclear Bodies. Promyelocytic leukemia nuclear bodies are implicated in important regulatory processes. To understand leukemia nuclear bodies accurately when interaction data is available. At a false positive rate of 10

  15. Sugar-dependent nuclear import of glycosylated proteins in living cells

    Microsoft Academic Search

    C. Rondanino; Annie-Claude Roche; Michel Monsigny

    2003-01-01

    The nuclear import of proteins larger than Mr 40,000 depends on the presence of a nuclear localization signal (NLS) corre- sponding either to a short peptide sequence or to defined sugars. The sugar-dependent nuclear import was previously evidenced by using glycosylated proteins (neoglycoproteins) introduced into the cytosol of cells either by electroporation or on digitonin-permeabilization and was shown to be

  16. Cloning and nucleotide sequence of the capsid protein and the nuclear inclusion protein (NIb) of potato virus A

    Microsoft Academic Search

    R. F. Collins; D. Leclerc; M. G. AbouHaidar

    1993-01-01

    Summary The sequence of the 3'-terminal 2597 nucleotides of potato virus A (PVA) genome has been determined from cDNA clones. An open reading frame was identified and potentially encodes a large polyprotein containing 789 amino acid residues. This large open reading frame was found to have a high similarity to the nuclear inclusion protein (NIb) and the capsid protein (CP)

  17. The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals

    Microsoft Academic Search

    Derek E. Eberhart; Henry E. Malter; Yue Feng; Stephen T. Warren

    1996-01-01

    Fragile X syndrome is a frequent cause of mental retardation resulting from the absence of FMRP, the protein encoded by the FMR1 gene. FMRP is an RNA-binding protein of unknown function which is associated with ribosomes. To gain insight into FMRP function, we performed immunolocalization analysis of FMRP truncation and fusion constructs which revealed a nuclear localization signal (NLS) in

  18. The nuclear import of ribosomal proteins is regulated by mTOR

    PubMed Central

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  19. Matrix attachment region binding protein MFP1 is localized in discrete domains at the nuclear envelope.

    PubMed Central

    Gindullis, F; Meier, I

    1999-01-01

    Recently, it has been suggested that nuclear processes, such as replication, transcription, and splicing, are spatially organized and associated with a nuclear framework called the nuclear matrix, a structure of unknown molecular composition. It has been shown that chromatin is attached to the nuclear matrix via specific DNA fragments called matrix attachment regions (MARs). We have begun to dissect the plant nuclear matrix by isolating a DNA binding protein with specific affinity for MARs. Here, it is shown that MAR binding filament-like protein 1 (MFP1) is associated with specklelike structures at the nuclear periphery that are part of isolated nuclei and the nuclear matrix. A predicted N-terminal transmembrane domain is necessary for the specific targeting of MFP1 to the speckles, indicating an association with the nuclear envelope-endoplasmic reticulum continuum. In addition, it is shown that a marker protein for plant microtubule organizing centers, which has been shown to be localized on the outside of the plant nuclear envelope, is also part of the nuclear matrix. These findings indicate a close and previously undescribed connection in plants between the nuclear envelope and the internal nuclear matrix, and they suggest a function for MFP1 in attaching chromatin to specific sites at the nuclear periphery. PMID:10368182

  20. Purification and Characterization of an Acanthamoeba Nuclear Actin-binding Protein

    E-print Network

    Purification and Characterization of an Acanthamoeba Nuclear Actin-binding Protein David L. Rimm-reaction with a 29-kD protein rather than with myosin I. In this paper we describe the purification and initial suggest it represents a new class of actin-binding proteins. Materials and Methods Purification

  1. Nuclear localization of Sindbis virus nonstructural protein nsP2

    Microsoft Academic Search

    Xiaozhong Wang; Mingxiao Ding

    1993-01-01

    In early infection, approximately 10% of nonstructural protein nsP2 of Sindbis virus was transported into the nuclei of virus-infected BHK-21 cells. Nuclear nsP2 was dominantly associated with nuclear matrix. During the course of infection, increasing amounts of nsP2 accumulated in the nuclear fraction. A prominent accumulation of nuclear nsP2 occurred early in infection, from 1 h to 3 h postinfection.

  2. Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila

    PubMed Central

    Barton, Lacy J.; Wilmington, Shameika R.; Martin, Melinda J.; Skopec, Hannah M.; Lovander, Kaylee E.; Pinto, Belinda S.; Geyer, Pamela K.

    2014-01-01

    The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ?45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. PMID:24700158

  3. The SUN Protein Mps3 Is Required for Spindle Pole Body Insertion into the Nuclear Membrane and Nuclear Envelope Homeostasis

    PubMed Central

    Smoyer, Christine J.; McCroskey, Scott; Miller, Brandon D.; Weaver, Kyle J.; Delventhal, Kym M.; Unruh, Jay; Slaughter, Brian D.; Jaspersen, Sue L.

    2011-01-01

    The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition. PMID:22125491

  4. Fludarabine Nucleoside Modulates Nuclear “Survival and Death” Proteins in Resistant Chronic Lymphocytic Leukemia Cells

    Microsoft Academic Search

    Silke Henrich; Swetlana Mactier; Giles Best; Stephen P. Mulligan; Ben Crossett; Richard Ian Christopherson

    2011-01-01

    The nuclear mechanisms by which fludarabine nucleoside (F-ara-A) induces apoptosis have been investigated in human MEC1 cells derived from B-cell chronic lymphocytic leukemia. Upon treatment of cells with F-ara-A (100 ?M, 72 hours), 15 nuclear proteins changed in abundance by more than 2-fold. Nuclear proteins up-regulated included calmodulin (4.3-fold), prohibitin (3.9-fold), ?-actin variant (3.7-fold), and structure-specific recognition protein 1 (3.7-fold);

  5. Insights into the origin of the nuclear localization signals in conserved ribosomal proteins.

    PubMed

    Melnikov, Sergey; Ben-Shem, Adam; Yusupova, Gulnara; Yusupov, Marat

    2015-01-01

    Eukaryotic ribosomal proteins, unlike their bacterial homologues, possess nuclear localization signals (NLSs) to enter the cell nucleus during ribosome assembly. Here we provide a comprehensive comparison of bacterial and eukaryotic ribosomes to show that NLSs appear in conserved ribosomal proteins via remodelling of their RNA-binding domains. This finding enabled us to identify previously unknown NLSs in ribosomal proteins from humans, and suggests that, apart from promoting protein transport, NLSs may facilitate folding of ribosomal RNA. PMID:26066547

  6. Insights into the origin of the nuclear localization signals in conserved ribosomal proteins

    PubMed Central

    Melnikov, Sergey; Ben-Shem, Adam; Yusupova, Gulnara; Yusupov, Marat

    2015-01-01

    Eukaryotic ribosomal proteins, unlike their bacterial homologues, possess nuclear localization signals (NLSs) to enter the cell nucleus during ribosome assembly. Here we provide a comprehensive comparison of bacterial and eukaryotic ribosomes to show that NLSs appear in conserved ribosomal proteins via remodelling of their RNA-binding domains. This finding enabled us to identify previously unknown NLSs in ribosomal proteins from humans, and suggests that, apart from promoting protein transport, NLSs may facilitate folding of ribosomal RNA. PMID:26066547

  7. Intrinsically disordered regions have specific functions in mitochondrial and nuclear proteins.

    PubMed

    Homma, Keiichi; Fukuchi, Satoshi; Nishikawa, Ken; Sakamoto, Shigetaka; Sugawara, Hideaki

    2012-01-01

    Proteins in general consist not only of globular structural domains (SDs), but also of intrinsically disordered regions (IDRs), i.e. those that do not assume unique three-dimensional structures by themselves. Although IDRs are especially prevalent in eukaryotic proteins, the functions are mostly unknown. To elucidate the functions of IDRs, we first divided eukaryotic proteins into subcellular localizations, identified IDRs by the DICHOT system that accurately divides entire proteins into SDs and IDRs, and examined charge and hydropathy characteristics. On average, mitochondrial proteins have IDRs more positively charged than SDs. Comparison of mitochondrial proteins with orthologous prokaryotic proteins showed that mitochondrial proteins tend to have segments attached at both N and C termini, high fractions of which are IDRs. Segments added to the N-terminus of mitochondrial proteins contain not only signal sequences but also mature proteins and exhibit a positive charge gradient, with the magnitude increasing toward the N-terminus. This finding is consistent with the notion that positively charged residues are added to the N-terminus of proteobacterial proteins so that the extended proteins can be chromosomally encoded and efficiently transported to mitochondria after translation. By contrast, nuclear proteins generally have positively charged SDs and negatively charged IDRs. Among nuclear proteins, DNA-binding proteins have enhanced charge tendencies. We propose that SDs in nuclear proteins tend to be positively charged because of the need to bind to negatively charged nucleotides, while IDRs tend to be negatively charged to interact with other proteins or other regions of the same proteins to avoid premature proteasomal degradation. PMID:21866296

  8. Identification of an unconventional nuclear localization signal in human ribosomal protein S2

    SciTech Connect

    Antoine, M. [Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, (Germany); Reimers, K. [Department for Plastic, Hand and Reconstructive Surgery, Medical School Hannover, Podbielskistrasse 380, D-30659 Hannover, (Germany); Wirz, W. [Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, (Germany); Gressner, A.M. [Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, (Germany); Mueller, R. [Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, (Germany); Kiefer, P. [Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, (Germany)]. E-Mail: pkiefer@ukaachen.de

    2005-09-16

    Ribosomal proteins must be imported into the nucleus after being synthesized in the cytoplasm. Since the rpS2 amino acid sequence does not contain a typical nuclear localization signal, we used deletion mutant analysis and rpS2-{beta}-galactosidase chimeric proteins to identify the nuclear targeting domains in rpS2. Nuclear rpS2 is strictly localized in the nucleoplasm and is not targeted to the nucleoli. Subcellular localization analysis of deletion mutants of rpS2-{beta}-galactosidase chimeras identified a central domain comprising 72 amino acids which is necessary and sufficient to target the chimeric {beta}-galactosidase to the nucleus. The nuclear targeting domain shares no significant similarity to already characterized nuclear localization signals in ribosomal proteins or other nuclear proteins. Although a Nup153 fragment containing the importin{beta} binding site fused to VP22 blocks nuclear import of rpS2-{beta}-galactosidase fusion proteins, nuclear uptake of rpS2 could be mediated by several import receptors since it binds to importin{alpha}/{beta} and transportin.

  9. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins.

    PubMed Central

    O'Neill, R E; Talon, J; Palese, P

    1998-01-01

    Nuclear import and export of viral nucleic acids is crucial for the replication cycle of many viruses, and elucidation of the mechanism of these steps may provide a paradigm for understanding general biological processes. Influenza virus replicates its RNA genome in the nucleus of infected cells. The influenza virus NS2 protein, which had no previously assigned function, was shown to mediate the nuclear export of virion RNAs by acting as an adaptor between viral ribonucleoprotein complexes and the nuclear export machinery of the cell. A functional domain on the NS2 with characteristics of a nuclear export signal was mapped: it interacts with cellular nucleoporins, can functionally replace the effector domain of the human immunodeficiency virus type 1 (HIV-1) Rev protein and mediates rapid nuclear export when cross-linked to a reporter protein. Microinjection of anti-NS2 antibodies into infected cells inhibited nuclear export of viral ribonucleoproteins, suggesting that the Rev-like NS2 mediates this process. Therefore, we have renamed this Rev-like factor the influenza virus nuclear export protein or NEP. We propose a model by which NEP acts as a protein adaptor molecule bridging viral ribonucleoproteins and the nuclear pore complex. PMID:9427762

  10. Nuclear and Cytoplasmic Soluble Proteins Extraction from a Small Quantity of Drosophila's Whole Larvae and Tissues.

    PubMed

    Piccolo, Luca Lo; Bonaccorso, Rosa; Onorati, Maria Cristina

    2015-01-01

    The identification and study of protein's function in several model organisms is carried out using both nuclear and cytoplasmic extracts. For a long time, Drosophila's embryos have represented the main source for protein extractions, although in the last year, the importance of collecting proteins extracts also from larval tissues has also been understood. Here we report a very simple protocol, improved by a previously developed method, to produce in a single extraction both highly stable nuclear and cytoplasmic protein extracts from a small quantity of whole Drosophila's larvae or tissues, suitable for biochemical analyses like co-immunoprecipitation. PMID:26039237

  11. Isolation of nuclear encoded plastid ribosomal protein cDNAs

    Microsoft Academic Search

    J. Stephen Gantt; Joe L. Key

    1986-01-01

    A pea leaf cDNA library was constructed in the expression vector ?gt11 and screened with antisera raised against proteins extracted from 30S and 50S ribosomal subunits and 70S ribosomes prepared from isolated pea chloroplasts. Six recombinant phage were identified that encoded fusion proteins containing plastid ribosomal protein antigenic determinants. Phage-induced cell lysate proteins, containing the fusion proteins, were bound to

  12. Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore

    PubMed Central

    Ohba, Tomoyuki; Schirmer, Eric C.; Nishimoto, Takeharu; Gerace, Larry

    2004-01-01

    Resident integral proteins of the inner nuclear membrane (INM) are synthesized as membrane-integrated proteins on the peripheral endoplasmic reticulum (ER) and are transported to the INM throughout interphase using an unknown trafficking mechanism. To study this transport, we developed a live cell assay that measures the movement of transmembrane reporters from the ER to the INM by rapamycin-mediated trapping at the nuclear lamina. Reporter constructs with small (<30 kD) cytosolic and lumenal domains rapidly accumulated at the INM. However, increasing the size of either domain by 47 kD strongly inhibited movement. Reduced temperature and ATP depletion also inhibited movement, which is characteristic of membrane fusion mechanisms, but pharmacological inhibition of vesicular trafficking had no effect. Because reporter accumulation at the INM was inhibited by antibodies to the nuclear pore membrane protein gp210, our results support a model wherein transport of integral proteins to the INM involves lateral diffusion in the lipid bilayer around the nuclear pore membrane, coupled with active restructuring of the nuclear pore complex. PMID:15611332

  13. Purification and proteomic analysis of a nuclear-insoluble protein fraction.

    PubMed

    Horigome, Tsuneyoshi; Furukawa, Kazuhiro; Ishii, Kohei

    2008-01-01

    We describe here a method for analyzing a rat liver nuclear-insoluble protein fraction to determine candidate proteins participating in nuclear architecture formation. Rat liver nuclei are purified by sucrose density gradient centrifugation. The purified nuclei are treated with DNase and RNase and then washed with high salt and detergent solutions. The residual nuclear-insoluble protein fraction is separated by reversed-phase high-performance liquid chromatography (HPLC) in 60% formic acid on a polystyrene resin column. This system allows good resolution and high recovery of most insoluble proteins, including intrinsic membrane proteins and even proteins larger than 140 kDa, with more than 70% recovery. The LC-fractionated proteins are further separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein bands are excised, in-gel digested with trypsin, and then analyzed with a protein sequencer or mass spectrometer. Using this protocol, 138 were separated, 29 were identified, among which one appears as a novel nuclear constituent localized in the interchromatin space. PMID:18370015

  14. Nuclear Import and the Evolution of a Multifunctional RNA-binding Protein

    Microsoft Academic Search

    Jonathan S. Rosenblum; Lucy F. Pemberton; Neris Bonifaci; Günter Blobel

    1998-01-01

    La (SS-B) is a highly expressed protein that is able to bind 3 9 -oligouridylate and other common RNA sequence\\/structural motifs. By virtue of these in- teractions, La is present in a myriad of nuclear and cy- toplasmic ribonucleoprotein complexes in vivo where it may function as an RNA-folding protein or RNA chap- erone. We have recently characterized the nuclear

  15. Systematic Identification of Novel Protein Domain Families Associated with Nuclear Functions

    Microsoft Academic Search

    Tobias Doerks; Richard R. Copley; Jorg Schultz; Chris P. Ponting; Peer Bork

    2002-01-01

    A systematic computational analysis of protein sequences containing known nuclear domains led to the identification of 28 novel domain families. This represents a 26% increase in the starting set of 107 known nuclear domain families used for the analysis. Most of the novel domains are present in all major eukaryotic lineages, but 3 are species specific. For about 500 of

  16. Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein

    SciTech Connect

    Au, Victoria; Yu Mei [Department of Microbiology and Immunology, Queen's University, Kingston, ON, K7L 3N6 (Canada); Carstens, Eric B. [Department of Microbiology and Immunology, Queen's University, Kingston, ON, K7L 3N6 (Canada)], E-mail: Carstens@queensu.ca

    2009-03-01

    The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) single-stranded DNA binding protein LEF-3 is a multi-functional protein that is required to transport the helicase protein P143 into the nucleus of infected cells where they function to replicate viral DNA. The N-terminal 56 amino acid region of LEF-3 is required for nuclear transport. In this report, we analyzed the effect of site-specific mutagenesis of LEF-3 on its intracellular distribution. Fluorescence microscopy of expression plasmid-transfected cells demonstrated that the residues 28 to 32 formed the core nuclear localization signal, but other adjacent positively-charged residues augmented these sequences. Comparison with other group I Alphabaculoviruses suggested that this core region functionally duplicated residues including 18 and 19. This was demonstrated by the loss of nuclear localization when the equivalent residues (18 to 20) in Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) LEF-3 were mutated. The AcMNPV LEF-3 nuclear localization domain was also shown to drive nuclear transport in mammalian cells indicating that the protein nuclear import systems in insect and mammalian cells are conserved. We also demonstrated by mutagenesis that two conserved cysteine residues located at 82 and 106 were not essential for nuclear localization or for interaction with P143. However, by using a modified construct of P143 that localized on its own to the nucleus, we demonstrated that a functional nuclear localization domain on LEF-3 was required for interaction between LEF-3 and P143.

  17. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins.

    PubMed

    Pentecost, Mickey; Vashisht, Ajay A; Lester, Talia; Voros, Tim; Beaty, Shannon M; Park, Arnold; Wang, Yao E; Yun, Tatyana E; Freiberg, Alexander N; Wohlschlegel, James A; Lee, Benhur

    2015-03-01

    The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear-cytoplasmic trafficking of cognate paramyxovirus M proteins that show a consistent nuclear trafficking phenotype. PMID:25782006

  18. Evidence for Ubiquitin-Regulated Nuclear and Subnuclear Trafficking among Paramyxovirinae Matrix Proteins

    PubMed Central

    Pentecost, Mickey; Vashisht, Ajay A.; Beaty, Shannon M.; Park, Arnold; Wang, Yao E.; Yun, Tatyana E; Freiberg, Alexander N.; Wohlschlegel, James A.; Lee, Benhur

    2015-01-01

    The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear-cytoplasmic trafficking of cognate paramyxovirus M proteins that show a consistent nuclear trafficking phenotype. PMID:25782006

  19. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    PubMed Central

    Mao, Grace; Brody, James P.

    2009-01-01

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of S. Cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s?1. We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase. PMID:17850763

  20. An electrophoretic investigation of mammalian spermatid-specific nuclear proteins

    Microsoft Academic Search

    Maryvonne Lanneau; M. Loir

    1982-01-01

    Summary. Using standardized methods for protein extraction and analysis, the testes of rams, bulls, goats, boars, stallions, rats, cats, hedgehogs, European mink and ferrets were examined for basic spermatid nucleoproteins by electrophoresis. The results suggest that differences exist in the total number of these proteins as well as in the number and amount of the cross-linked cystein-containing proteins. These differences

  1. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing.

    PubMed

    Yan, Chunlan; Wu, Wei; Li, Haiyan; Zhang, Guanglin; Duerksen-Hughes, Penelope J; Zhu, Xinqiang; Yang, Jun

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage. PMID:20097212

  2. A baculovirus expression vector derived from the basic protein promoter of Autographa californica nuclear polyhedrosis virus

    Microsoft Academic Search

    Michele S. Hill-Perkins; Robert D. Possee

    1990-01-01

    The basic protein of Autographa californica nuclear polyhedrosis virus (AcMNPV) is associated with virus DNA in virion nucleocapsids and is produced in infected cells during the late phase of gene expression. A transfer vector was constructed containing the fl- galactosidase gene, under the control of a copy of the putative basic protein promoter, in place of the polyhedrin gene within

  3. Correlation of nuclear color and opalescence with protein S-thiolation in human lenses.

    PubMed

    Lou, M F; Dickerson, J E; Tung, W H; Wolfe, J K; Chylack, L T

    1999-05-01

    Human lens nuclei were collected during routine cataract surgery and used to study the role of oxidation in cataract formation and brunescence. This study focused on the comparison of the intensities of nuclear opacity and pigmentation (brunescence) with the changes in free glutathione (GSH) and the three species of protein-thiol mixed disulfides: protein-S-S-glutathione (PSSG), protein-S S-cysteine (PSSC) and protein-S-S-gamma-glutamylcysteine (PSSGC). Eighty-one freshly excised human lens nuclei from a population with a mean age of 77 were used. The nuclear color was graded using the CCRG system, ranging from yellow to dark brown. The nuclear cataract opalescence of these lenses was also graded using the LOCS II system, ranging from LOCS II NO-1 to NO-4. Three normal human lenses (average age of 88 yr) were also included in the study as controls. The nuclear samples were each analyzed for free GSH and protein-thiol mixed disulfides, respectively. It was found that nuclear GSH decreased as the nuclear color increased from yellow to dark brown (from 0.73+/-0.13 to 0.13+/-0.03 micromole g wet wt-1) and as the nuclear opalescence increased from NO.1 to NO.4 (from 0. 80+/-0.19 to 0.20+/-0.01 micromole g wet wt-1). All these values were lower than that of GSH in normal controls (1.43+/-0.59 micromole g wet wt-1). Levels of both PSSG and PSSC progressively increased, however, as the nuclear color intensified. PSSG increased from 0.29+/-0.05 to 0.91+/-0.11 micromole g wet wt-1while PSSC increased from 0.13+/-0.04 to 0.41+/- 0.06 micromole g wet wt-1. PSSGC concentration progressively increased with increases in both nuclear pigmentation (from 0.05+/-0.01 to 0.23+/-0.05 micromole g wet wt-1) and nuclear opacity (from 0.02+/-0.00 to 0.20+/-0.02 micromole g wet wt-1). In comparison, normal controls had lower levels of all three mixed disulfide species: PSSG, 0.22+/-0.06; PSSC, 0.08+/-0.02; PSSGC, 0.02+/-0.06 micromole g wet wt-1, respectively. The correlation of lens nuclear color and opalescence intensity with nuclear protein S-thiolation indicates that protein-thiol mixed disulfides may play an important role in cataractogenesis and development of brunescence in human lenses. PMID:10328968

  4. Presence of argyrophilic cytoplasmic and nuclear proteins in the spermatic cells of Nucella lapillus (Gastropoda, Prosobranchia).

    PubMed

    Azevedo, C; Oliveira, E

    1988-01-01

    The technique for ultrastructural localization of argyrophilic proteins was modified and NOR-Silver staining methods were applied to the study of the distribution of these proteins in the spermatic cells of Nucella lapillus (Gastropoda, Prosobranchia). Two types of selective silver deposits were found during the different phases of spermiogenesis and in mature spermatozoa. Argyrophilic nuclear, nucleolar and cytoplasmic proteins were simultaneously detected by improvement of a modified one-step silver technique. PMID:2453266

  5. Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing.

    PubMed

    Depping, Reinhard; Jelkmann, Wolfgang; Kosyna, Friederike Katharina

    2015-06-01

    In order to pass through the nuclear pore complex, proteins larger than ?40 kDa require specific nuclear transport receptors. Defects in nuclear-cytoplasmatic transport affect fundamental processes such as development, inflammation and oxygen sensing. The transcriptional response to O2 deficiency is controlled by hypoxia-inducible factors (HIFs). These are heterodimeric transcription factors of each ?100-120 kDa proteins, consisting of one out of three different O2-labile ? subunits (primarily HIF-1?) and a more constitutive 1? subunit. In the presence of O2, the ? subunits are hydroxylated by specific prolyl-4-hydroxylase domain proteins (PHD1, PHD2, and PHD3) and an asparaginyl hydroxylase (factor inhibiting HIF-1, FIH-1). The prolyl hydroxylation causes recognition by von Hippel-Lindau tumor suppressor protein (pVHL), ubiquitination, and proteasomal degradation. The activity of the oxygen sensing machinery depends on dynamic intracellular trafficking. Nuclear import of HIF-1? and HIF-1? is mainly mediated by importins ? and ? (?/?). HIF-1? can shuttle between nucleus and cytoplasm, while HIF-1? is permanently inside the nucleus. pVHL is localized to both compartments. Nuclear import of PHD1 relies on a nuclear localization signal (NLS) and uses the classical import pathway involving importin ?/? receptors. PHD2 shows an atypical NLS, and its nuclear import does not occur via the classical pathway. PHD2-mediated hydroxylation of HIF-1? occurs predominantly in the cell nucleus. Nuclear export of PHD2 involves a nuclear export signal (NES) in the N-terminus and depends on the export receptor chromosome region maintenance 1 (CRM1). Nuclear import of PHD3 is mediated by importin ?/? receptors and depends on a non-classical NLS. Specific modification of the nuclear translocation of the three PHD isoforms could provide a promising strategy for the development of new therapeutic substances to tackle major diseases. PMID:25809665

  6. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors

    PubMed Central

    1990-01-01

    We have developed an in vitro system involving digitonin-permeabilized vertebrate cells to study biochemical events in the transport of macromolecules across the nuclear envelope. While treatment of cultured cells with digitonin permeabilizes the plasma membranes to macromolecules, the nuclear envelopes remain structurally intact and nuclei retain the ability to transport and accumulate proteins containing the SV40 large T antigen nuclear location sequence. Transport requires addition of exogenous cytosol to permeabilized cells, indicating the soluble cytoplasmic factor(s) required for nuclear import are released during digitonin treatment. In this reconstituted import system, a protein containing a nuclear location signal is rapidly accumulated in nuclei, where it reaches a 30-fold concentration compared to the surrounding medium within 30 min. Nuclear import is specific for a functional nuclear location sequence, requires ATP and cytosol, and is temperature dependent. Furthermore, accumulation of the transport substrate within nuclei is completely inhibited by wheat germ agglutinin, which binds to nuclear pore complexes and inhibits transport in vivo. Together, these results indicate that the permeabilized cell system reproduces authentic nuclear protein import. In a preliminary biochemical dissection of the system, we observe that the sulfhydryl alkylating reagent N- ethylmaleimide inactivates both cytosolic factor(s) and also component(s) in the insoluble permeabilized cell fraction required for nuclear protein import. Because this permeabilized cell model is simple, efficient, and works effectively with cells and cytosol fractions prepared from a variety of different vertebrate sources, it will prove powerful for investigating the biochemical pathway of nuclear transport. PMID:2391365

  7. The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex

    PubMed Central

    Theerthagiri, Gandhi; Eisenhardt, Nathalie; Schwarz, Heinz

    2010-01-01

    All transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). Despite their enormous size, ?60 MD in vertebrates, they are comprised of only ?30 distinct proteins (nucleoporins or Nups), many of which form subcomplexes that act as building blocks for NPC assembly. One of these evolutionarily conserved subcomplexes, the Nup93 complex, is a major structural component linking the NPC to the membranes of the NE. Using in vitro nuclear assembly assays, we show that two components of the Nup93 complex, Nup188 and Nup205, are dispensable for NPC formation. However, nuclei lacking Nup188 increase in size by several fold compared with wild type. We demonstrate that this phenotype is caused by an accelerated translocation of integral membrane proteins through NPCs, suggesting that Nup188 confines the passage of membrane proteins and is thus crucial for the homeostasis of the different nuclear membranes. PMID:20566687

  8. Functional Insights from Studies on the Structure of the Nuclear Pore and Coat Protein Complexes

    PubMed Central

    Schwartz, Thomas

    2013-01-01

    The nuclear envelope (NE) is a specific extension of the endoplasmic reticulum (ER) that wraps around the nucleus and enables the spatial separation of gene transcription and protein translation, one of the signature features of eukaryotes. Rather than being completely closed, the double lipid bilayer of the NE is perforated at sites where the inner and outer nuclear membranes fuse, resulting in circular openings lined with sharply bent membranes. These openings are filled with nuclear pore complexes (NPCs), enormous protein assemblies that facilitate nuclear transport. The scaffold components of the NPC surprisingly share interesting similarities with elements of coat protein complexes, which have general implications for function and evolution of these membrane-coating complexes. Here I discuss, from a structural perspective, what these findings might teach us. PMID:23709684

  9. Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development.

    PubMed

    Randles, K Natalie; Lam, Le Thanh; Sewry, Caroline A; Puckelwartz, Megan; Furling, Denis; Wehnert, Manfred; McNally, Elizabeth M; Morris, Glenn E

    2010-03-01

    Nesprins are a family of nuclear transmembrane proteins anchored via Sun proteins to the nuclear membrane. Analysis of nesprins during human muscle development revealed an increase in nesprin-1-giant during early myogenesis in vitro. During the transition from immature to mature muscle fibres in vivo, nesprin-2 partly replaced nesprin-1 at the nuclear envelope and short nesprin isoforms became dominant. Sun1 and Sun2 proteins remained unchanged during this fibre maturation. In emerin-negative skin fibroblasts, nesprin-2-giant was relocated from the nuclear envelope to the cytoplasm, not to the endoplasmic reticulum, while nesprin-1 remained at the nuclear envelope. In emerin-negative keratinocytes lacking nesprin-1, nesprin-2 remained at the nuclear envelope. HeLa cell nuclear envelopes lacked nesprin-1, which was the dominant form in myoblasts, while a novel 130-kD nesprin-2 isoform dominated Ntera-2 cells. The results suggest the possibility of isoform-specific and tissue-specific roles for nesprins in nuclear positioning. PMID:20108321

  10. Rna1p, a Ran/TC4 GTPase activating protein, is required for nuclear import

    PubMed Central

    1995-01-01

    The Saccharomyces cerevisiae gene, RNA1, encodes a protein with extensive homology to the mammalian Ran/TC4 GTPase activating protein. Using indirect immunofluorescence microscopy, we have demonstrated that rna1-1 mutant cells are defective in nuclear import of several proteins. The same result is obtained when nuclear import is examined in living cells using a nuclear protein fused to the naturally green fluorescent protein. These findings suggest a role for the Rna1p in trafficking of proteins across the nuclear membrane. To investigate this role more directly, an in vitro import assay that monitors the import of a fluorescently labeled substrate into the nuclei of semi- intact yeast cells was used. Import to the nucleus requires the addition of exogenous cytosol. Results indicate that, in contrast to wild-type cytosols, extracts made from rna1-1 mutant cells are unable to support import of the fluorescently labeled substrate into competent nuclei. Immunoblotting demonstrates that these mutant-derived extracts are depleted of Rna1p. However, when purified Rna1p is added back to these extracts the import activity is restored in a dose-dependent manner. These results demonstrate that Rna1p plays a direct role in the import of proteins into the nucleus. PMID:7657689

  11. An electrophoretic investigation of mammalian spermatid-specific nuclear proteins.

    PubMed

    Lanneau, M; Loir, M

    1982-05-01

    Using standardized methods for protein extraction and analysis, the testes of rams, bulls, goats, boars, stallions, rats, cats, hedgehogs, European mink and ferrets were examined for basic spermatid nucleoproteins by electrophoresis. The results suggest that differences exist in the total number of these proteins as well as in the number and amount of the cross-linked cystein-containing proteins. These differences appear to be more family-specific than species-specific. PMID:7077593

  12. Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P

    PubMed Central

    Houser-Scott, Felicia; Xiao, Shaohua; Millikin, Christopher E.; Zengel, Janice M.; Lindahl, Lasse; Engelke, David R.

    2002-01-01

    Ribonuclease P (RNase P) is a ubiquitous endoribonuclease that cleaves precursor tRNAs to generate mature 5? termini. Although RNase P from all kingdoms of life have been found to have essential RNA subunits, the number and size of the protein subunits ranges from one small protein in bacteria to at least nine proteins of up to 100 kDa. In Saccharomyces cerevisiae nuclear RNase P, the enzyme is composed of ten subunits: a single RNA and nine essential proteins. The spatial organization of these components within the enzyme is not yet understood. In this study we examine the likely binary protein–protein and protein–RNA subunit interactions by using directed two- and three-hybrid tests in yeast. Only two protein subunits, Pop1p and Pop4p, specifically bind the RNA subunit. Pop4p also interacted with seven of the other eight protein subunits. The remaining protein subunits all showed one or more specific protein–protein interactions with the other integral protein subunits. Of particular interest was the behavior of Rpr2p, the only protein subunit found in RNase P but not in the closely related enzyme, RNase MRP. Rpr2p interacts strongly with itself as well as with Pop4p. Similar interactions with self and Pop4p were also detected for Snm1p, the only unique protein subunit so far identified in RNase MRP. This observation is consistent with Snm1p and Rpr2p serving analogous functions in the two enzymes. This study provides a low-resolution map of the multisubunit architecture of the ribonucleoprotein enzyme, nuclear RNase P from S. cerevisiae. PMID:11880623

  13. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    SciTech Connect

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China) [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Sun, Ya-Ni [College of Veterinary Medicine, Northwest A and F University, Shanxi, Yangling 712100 (China)] [College of Veterinary Medicine, Northwest A and F University, Shanxi, Yangling 712100 (China); Gao, Ji-Ming; Xie, Zhi-Jing [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China) [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Wang, Yu [Department of Basic Medical Sciences, Taishan Medical College, Shandong, Taian 271000 (China)] [Department of Basic Medical Sciences, Taishan Medical College, Shandong, Taian 271000 (China); Zhu, Yan-Li [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China) [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Jiang, Shi-Jin, E-mail: sjjiang@sdau.edu.cn [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China) [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China)

    2013-02-05

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  14. Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence

    PubMed Central

    Giampieri, Enrico; De Cecco, Marco; Remondini, Daniel; Sedivy, John; Castellani, Gastone

    2015-01-01

    The amount of cellular proteins is a crucial parameter that is known to vary between cells as a function of the replicative passages, and can be important during physiological aging. The process of protein degradation is known to be performed by a series of enzymatic reactions, ranging from an initial step of protein ubiquitination to their final fragmentation by the proteasome. In this paper we propose a stochastic dynamical model of nuclear proteins concentration resulting from a balance between a constant production of proteins and their degradation by a cooperative enzymatic reaction. The predictions of this model are compared with experimental data obtained by fluorescence measurements of the amount of nuclear proteins in murine tail fibroblast (MTF) undergoing cellular senescence. Our model provides a three-parameter stationary distribution that is in good agreement with the experimental data even during the transition to the senescent state, where the nuclear protein concentration changes abruptly. The estimation of three parameters (cooperativity, saturation threshold, and maximal velocity of the reaction), and their evolution during replicative passages shows that only the maximal velocity varies significantly. Based on our modeling we speculate the reduction of functionality of the protein degradation mechanism as a possible competitive inhibition of the proteasome. PMID:26115222

  15. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding.

    PubMed

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS(SV40)) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS(SV40) in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS(SV40) formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS(SV40) likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS(SV40) can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. PMID:26032495

  16. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter.

    PubMed

    Tsao, Hsiao-Wei; Tai, Tzong-Shyuan; Tseng, William; Chang, Hui-Hsin; Grenningloh, Roland; Miaw, Shi-Chuen; Ho, I-Cheng

    2013-09-24

    E26 transformation-specific sequence 1 (Ets-1), the prototype of the ETS family of transcription factors, is critical for the expression of IL-2 by murine Th cells; however, its mechanism of action is still unclear. Here we show that Ets-1 is also essential for optimal production of IL-2 by primary human Th cells. Although Ets-1 negatively regulates the expression of Blimp1, a known suppressor of IL-2 expression, ablation of B lymphocyte-induced maturation protein 1 (Blimp1) does not rescue the expression of IL-2 by Ets-1-deficient Th cells. Instead, Ets-1 physically and functionally interacts with the nuclear factor of activated T-cells (NFAT) and is required for the recruitment of NFAT to the IL-2 promoter. In addition, Ets-1 is located in both the nucleus and cytoplasm of resting Th cells. Nuclear Ets-1 quickly exits the nucleus in response to calcium-dependent signals and competes with NFAT proteins for binding to protein components of noncoding RNA repressor of NFAT complex (NRON), which serves as a cytoplasmic trap for phosphorylated NFAT proteins. This nuclear exit of Ets-1 precedes rapid nuclear entry of NFAT and Ets-1 deficiency results in impaired nuclear entry, but not dephosphorylation, of NFAT proteins. Thus, Ets-1 promotes the expression of IL-2 by modulating the activity of NFAT. PMID:24019486

  17. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    PubMed Central

    Knowles, David W.; Sudar, Damir; Bator-Kelly, Carol; Bissell, Mina J.; Lelièvre, Sophie A.

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently stained nuclear protein NuMA in different mammary phenotypes obtained using 3D cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from 3D confocal images. Prominent features of fluorescently stained NuMA were detected by using a previously undescribed local bright feature analysis technique, and their normalized spatial density was calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features when nonneoplastic cells underwent phenotypically normal acinar morphogenesis. Conversely, we did not detect any reorganization of NuMA during formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating nonneoplastic from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues. PMID:16537359

  18. Protein 4.1 is a component of the nuclear matrix of mammalian cells.

    PubMed Central

    De Cárcer, G; Lallena, M J; Correas, I

    1995-01-01

    Protein 4.1 is a major component of the erythrocyte membrane skeleton that promotes the interaction of spectrin with actin and links the resulting complex network to integral membrane proteins. Here we analyse the distribution of different 4.1 proteins within the nucleus of mammalian cells. Nuclear matrices have been prepared from Madin-Darby canine kidney (MDCK) and HeLa cells and protein fractions isolated at each step of the purifications have been analysed by immunoblotting using characterized polyclonal antibodies against protein 4.1. Two 4.1 polypeptides of M(r) approximately 135,000 and 175,000 are extracted after DNase I digestion and 0.25 M ammonium sulphate treatments, suggesting that they may be associated with chromatin. Interestingly, nuclear matrices isolated after DNase I digestion and sequential treatments with increasing ionic strength contain a third 4.1 polypeptide of M(r) approximately 75,000 (4.1p75), suggesting that it is a component of the nuclear matrix. Immunoblot analyses of nuclear matrices isolated from different cell types and species indicate that 4.1p75 is a common element of the nuclear matrix of mammalian cells. Moreover, 4.1p75 distributes to typical nuclear speckles which are enriched with the spliceosome assembly factor SC35, as revealed by double-label immunofluorescence analyses. Protein 4.1p75 might be an anchoring element of the nucleoskeleton, playing a role similar to that described for the erythroid protein 4.1 in red blood cells. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8554533

  19. Nuclear Export Signal-Interacting Protein Forms Complexes with Lamin A/C-Nups To Mediate the CRM1-Independent Nuclear Export of Large Hepatitis Delta Antigen

    PubMed Central

    Huang, Cheng; Jiang, Jia-Yin; Chang, Shin C.; Tsay, Yeou-Guang; Chen, Mei-Ru

    2013-01-01

    Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L. PMID:23175358

  20. Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen.

    PubMed

    Huang, Cheng; Jiang, Jia-Yin; Chang, Shin C; Tsay, Yeou-Guang; Chen, Mei-Ru; Chang, Ming-Fu

    2013-02-01

    Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L. PMID:23175358

  1. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin [Birth Defects Center, University of Louisville Health Sciences Center, Dental Building Room 203B, 501 S. Preston Street, Louisville, KY 40202 (United States); Lan Zijian [Birth Defects Center, University of Louisville Health Sciences Center, Dental Building Room 203B, 501 S. Preston Street, Louisville, KY 40202 (United States)], E-mail: z0lan001@gwise.louisville.edu

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  2. Cocksfoot mottle sobemovirus coat protein contains two nuclear localization signals

    Microsoft Academic Search

    Allan Olspert; Heiti Paves; Raavo Toomela; Tiina Tamm; Erkki Truve

    2010-01-01

    Cocksfoot mottle virus (CfMV) coat protein (CP) localization was studied in plant and mammalian cells. Fusion of the full-length CP with enhanced\\u000a green fluorescent protein (EGFP) localized to the cell nucleus whereas similar constructs lacking the first 33 N-terminal\\u000a amino acids of CP localized to the cytoplasm. CP and EGFP fusions containing mutations in the arginine-rich motif of CP localized

  3. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium. PMID:15896312

  4. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?

    PubMed

    Caly, Leon; Wagstaff, Kylie M; Jans, David A

    2012-09-01

    A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses. PMID:22750233

  5. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  6. Phenotype clustering of breast epithelial cells in confocal images based on nuclear protein distribution analysis

    PubMed Central

    Long, Fuhui; Peng, Hanchuan; Sudar, Damir; Lelièvre, Sophie A; Knowles, David W

    2007-01-01

    Background The distribution of chromatin-associated proteins plays a key role in directing nuclear function. Previously, we developed an image-based method to quantify the nuclear distributions of proteins and showed that these distributions depended on the phenotype of human mammary epithelial cells. Here we describe a method that creates a hierarchical tree of the given cell phenotypes and calculates the statistical significance between them, based on the clustering analysis of nuclear protein distributions. Results Nuclear distributions of nuclear mitotic apparatus protein were previously obtained for non-neoplastic S1 and malignant T4-2 human mammary epithelial cells cultured for up to 12 days. Cell phenotype was defined as S1 or T4-2 and the number of days in cultured. A probabilistic ensemble approach was used to define a set of consensus clusters from the results of multiple traditional cluster analysis techniques applied to the nuclear distribution data. Cluster histograms were constructed to show how cells in any one phenotype were distributed across the consensus clusters. Grouping various phenotypes allowed us to build phenotype trees and calculate the statistical difference between each group. The results showed that non-neoplastic S1 cells could be distinguished from malignant T4-2 cells with 94.19% accuracy; that proliferating S1 cells could be distinguished from differentiated S1 cells with 92.86% accuracy; and showed no significant difference between the various phenotypes of T4-2 cells corresponding to increasing tumor sizes. Conclusion This work presents a cluster analysis method that can identify significant cell phenotypes, based on the nuclear distribution of specific proteins, with high accuracy. PMID:17634093

  7. R7BP: a surprising new link between G proteins, RGS proteins, and nuclear signaling in the brain.

    PubMed

    Hepler, John R

    2005-07-26

    The regulators of G protein signaling (RGS proteins) bind directly to G protein alpha (Galpha) subunits in brain and other tissues to determine the strength, duration, and fidelity of neurotransmitter receptor signaling. A recent study shows, quite unexpectedly, that one class of RGS proteins [the R7 subfamily bound to Gbeta(5) (R7-Gbeta(5))] shuttles between the plasma membrane and the nucleus with assistance from a novel shuttle protein, R7BP. R7BP binds directly to R7-Gbeta(5) and the protein complex is tethered to the plasma membrane by addition of a lipid, palmitate, on R7BP. Removal of palmitate results in the translocation of the R7BP-R7-Gbeta(5) complex to the nucleus, presumably for nontraditional signaling functions. These findings suggest an entirely novel mechanism for regulating neurotransmitter signaling. That is, R7BP transduces signals directly from receptors and G proteins at the plasma membrane to the nucleus, and this plasma membrane-nuclear shuttling is controlled by reversible palmitoylation of R7BP. PMID:16046666

  8. R7BP: A Surprising New Link Between G Proteins, RGS Proteins, and Nuclear Signaling in the Brain

    NSDL National Science Digital Library

    John R. Hepler (Emory University School of Medicine; Department of Pharmacology REV)

    2005-07-26

    The regulators of G protein signaling (RGS proteins) bind directly to G protein alpha (G?) subunits in brain and other tissues to determine the strength, duration, and fidelity of neurotransmitter receptor signaling. A recent study shows, quite unexpectedly, that one class of RGS proteins [the R7 subfamily bound to G?5 (R7-G?5)] shuttles between the plasma membrane and the nucleus with assistance from a novel shuttle protein, R7BP. R7BP binds directly to R7-G?5 and the protein complex is tethered to the plasma membrane by addition of a lipid, palmitate, on R7BP. Removal of palmitate results in the translocation of the R7BP–R7-G?5 complex to the nucleus, presumably for nontraditional signaling functions. These findings suggest an entirely novel mechanism for regulating neurotransmitter signaling. That is, R7BP transduces signals directly from receptors and G proteins at the plasma membrane to the nucleus, and this plasma membrane–nuclear shuttling is controlled by reversible palmitoylation of R7BP.

  9. Interactions and three-dimensional localization of a group of nuclear pore complex proteins

    Microsoft Academic Search

    N. Pante; Ricardo Bastos; Isabel McMorrow; Brian Burke; Ueli Aebi

    1994-01-01

    We have used antibodies directed against a number of nuclear pore complex (NPC) proteins to determine their mutual interactions and location within the three-dimensional structure of the NPC. A mono- clonal antibody, termed QE5, recognized three NPC polypeptides, p250, NUP153, and p62 on Western blots, and labeled the nuclear envelope of several cul- tured cell lines by immunofluorescence microscopy. These

  10. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein

    Microsoft Academic Search

    K. Klucevsek; J. Daley; M. S. Darshan; J. Bordeaux; J.. Moroianu

    2006-01-01

    We have investigated the nuclear import strategies of high-risk HPV18 L2 minor capsid protein. HPV18 L2 interacts with Kap ?2 adapter, and Kap ?2 and Kap ?3 nuclear import receptors. Moreover, binding of RanGTP to either Kap ?2 or Kap ?3 inhibits their interaction with L2, suggesting that these Kap ?\\/L2 complexes are import competent. Mapping studies show that HPV18

  11. Karyopherin beta 2 Mediates Nuclear Import of a mRNA Binding Protein

    Microsoft Academic Search

    Neris Bonifaci; Junona Moroianu; Aurelian Radu; Gunter Blobel

    1997-01-01

    We have cloned and sequenced cDNA for human karyopherin beta 2, also known as transportin. In a solution binding assay, recombinant beta 2 bound directly to recombinant nuclear mRNA-binding protein A1. Binding was inhibited by a peptide representing A1's previously characterized M9 nuclear localization sequence (NLS), but not by a peptide representing a classical NLS. As previously shown for karyopherin

  12. Multidimensional profiling of cell surface proteins and nuclear markers

    SciTech Connect

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  13. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells

    PubMed Central

    Poh, Yeh-Chuin; Shevtsov, Sergey P.; Chowdhury, Farhan; Wu, Douglas C.; Na, Sungsoo; Dundr, Miroslav; Wang, Ning

    2012-01-01

    Despite past progress in understanding mechanisms of cellular mechanotransduction, it is unclear whether a local surface force can directly alter nuclear functions without intermediate biochemical cascades. Here we show that a local dynamic force via integrins resulted in direct displacements of coilin and SMN proteins in Cajal bodies (CBs) and direct dissociation of coilin-SMN complexes. Spontaneous movements of coilin increased more than those of SMN in the same CB after dynamic force application. FRET changes of coilin-SMN depended on force magnitude, an intact F-actin, cytoskeletal tension, Lamin A/C, or substrate rigidity. Other protein pairs in CBs exhibited different magnitudes of FRET. Dynamic cyclic force induced tiny phase lags between various protein pairs in CBs, suggesting viscoelastic interactions between them. These findings demonstrate that dynamic force-induced direct structural changes of protein complexes in Cajal bodies may represent a unique mechanism of mechanotransduction that impacts on nuclear functions involved in gene expression. PMID:22643893

  14. Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation

    PubMed Central

    Zimmerman, Seth P.; Bear, James E.; Goldstein, Bob; Hahn, Klaus; Kuhlman, Brian

    2015-01-01

    Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo. PMID:26083500

  15. Characterization of a sperm-specific nuclear autoantigenic protein. II. Expression and localization in the testis.

    PubMed

    Welch, J E; O'Rand, M G

    1990-10-01

    The testis- and sperm-specific nuclear autoantigenic protein, NASP, has a 2.5-kb mRNA that encodes a protein of molecular weight 73,533 and has several structural features of nuclear proteins. To further characterize NASP and confirm the structural predictions that NASP was a nuclear protein, specific immunostaining using a specific anti-recombinant protein antibody and in situ hybridization with a cDNA were used. In testis sections, NASP was first detected in the nuclear area of primary spermatocytes. During the subsequent meiotic divisions, NASP was partitioned into the cytoplasm and then reassociated with the reforming nucleus. No antibody labeling was associated with the chromatin. During spermiogenesis, NASP became restricted to the post-acrosomal region of the spermatozoon, although some labeling appeared in residual bodies and subsequently in the tubule lumen. NASP was not found in somatic cells. The detection of NASP mRNA transcripts in primary spermatocytes by in situ hybridization supported the immunolocalization results and indicated that NASP expression was under transcriptional control. PMID:2289011

  16. Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro.

    PubMed Central

    Fredman, J N; Engler, J A

    1993-01-01

    The adenovirus precursor to the terminal protein (pTP), expressed in a vaccinia virus expression system or in native adenovirus, was assayed for its ability to interact with the nuclear matrix. Biochemical function was measured by determining the relative amount of pTP protein or of adenovirus DNA that remained associated with the nuclear matrix after extensive washing. pTP was retained on the matrix whereas beta-galactosidase was not, as assayed by quantitative immunoblot analysis. Nuclear matrix isolated from adenovirus-infected HeLa cells retained bound adenovirus DNA even when washed with 1 M guanidine hydrochloride; this interaction could be inhibited by added purified pTP protein. Analogous experiments with matrix isolated from HeLa cells infected with a recombinant vaccinia virus that expressed pTP showed a similar retention of pTP protein; this association could also be inhibited by added pTP protein. Binding of pTP to nuclear matrix isolated from uninfected cells was saturable, with an apparent Kd of 250 nM and an estimated 2.8 x 10(6) sites for pTP binding per cell nucleus. The association of pTP with matrix is postulated to help direct adenovirus replication complexes to the appropriate locale within the nucleus. Images PMID:8497057

  17. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    SciTech Connect

    Sheren, Jamie E. [Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)] [Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu [Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 (United States)

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequence (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.

  18. Venezuelan equine encephalitis virus capsid protein inhibits nuclear import in Mammalian but not in mosquito cells.

    PubMed

    Atasheva, Svetlana; Garmashova, Natalia; Frolov, Ilya; Frolova, Elena

    2008-04-01

    Venezuelan equine encephalitis virus (VEEV) represents a continuous public health threat in the United States. It has the ability to cause fatal disease in humans and in horses and other domestic animals. We recently demonstrated that replicating VEEV interferes with cellular transcription and uses this phenomenon as a means of downregulating a cellular antiviral response. VEEV capsid protein was found to play a critical role in this process, and its approximately 35-amino-acid-long peptide, fused with green fluorescent protein, functioned as efficiently as did the entire capsid. We detected a significant fraction of VEEV capsid associated with nuclear envelope, which suggested that this protein might regulate nucleocytoplasmic trafficking. In this study, we demonstrate that VEEV capsid and its N-terminal sequence efficiently inhibit multiple receptor-mediated nuclear import pathways but have no effect on the passive diffusion of small proteins. The capsid protein of the Old World alphavirus Sindbis virus and the VEEV capsid, with a previously defined frameshift mutation, were found to have no detectable effect on nuclear import. Importantly, the VEEV capsid did not noticeably interfere with nuclear import in mosquito cells, and this might play a critical role in the ability of the virus to develop a persistent, life-long infection in mosquito vectors. These findings demonstrate a new aspect of VEEV-host cell interactions, and the results of this study are likely applicable to other New World alphaviruses, such as eastern and western equine encephalitis viruses. PMID:18256144

  19. Impaired nuclear import of mammalian Dlx4 proteins as a consequence of rapid sequence divergence.

    PubMed

    Coubrough, Melissa L; Bendall, Andrew J

    2006-11-15

    Dlx genes encode a developmentally important family of transcription factors with a variety of functions and sites of action during vertebrate embryogenesis. The murine Dlx4 gene is an enigmatic member of the family; little is known about the normal developmental function(s) of Dlx4. Here, we show that Dlx4 is expressed in the murine placenta and in a trophoblast cell line where the protein localizes to both the nucleus and cytoplasm. Despite the presence of several leucine/valine-rich motifs that match known nuclear export sequences, cytoplasmic Dlx4 is not due to CRM-1-mediated nuclear export. Rather, nuclear import of Dlx4 is compromised by specific residues that flank the nuclear localization signal. One of these residues represents a novel conserved feature of the Dlx4 protein in placental mammals, and the second represents novel variation within mouse Dlx4 isoforms. Comparison of orthologous protein sequences reveals a particularly high rate of non-synonymous change in the coding regions of mammalian Dlx4 genes. Since impaired nuclear localization is unlikely to enhance the function of a nuclear transcription factor, these data point to reduced selection pressure as the basis for the rapid divergence of the Dlx4 gene within the mammalian clade. PMID:17011548

  20. Identification of Nuclear Protein Targets for Six Leukemogenic Tyrosine Kinases Governed by Post-Translational Regulation

    PubMed Central

    Pierce, Andrew; Williamson, Andrew; Jaworska, Ewa; Griffiths, John R.; Taylor, Sam; Walker, Michael; O’Dea, Mark Aspinall; Spooncer, Elaine; Unwin, Richard D.; Poolman, Toryn; Ray, David; Whetton, Anthony D.

    2012-01-01

    Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NF?B whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NF?B action those proteins where genes have NF?B binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases. PMID:22745689

  1. Characterization of the nuclear localization signal of high risk HPV16 E2 protein

    Microsoft Academic Search

    Kristin Klucevsek; Mary Wertz; John Lucchi; Anna Leszczynski; Junona. Moroianu

    2007-01-01

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA-binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells, we found that the C domain is responsible for the nuclear localization of E2

  2. Nuf2, a spindle pole body-associated protein required for nuclear division in yeast

    PubMed Central

    1994-01-01

    The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be localized to the intranuclear region and is a candidate for a protein involved in SPB separation. The nuclear association of Nuf2 can be disrupted, in part, by 1 M salt but not by the detergent Triton X-100. All Nuf2 can be removed from nuclei by 8 M urea extraction. In this regard, Nuf2 is similar to other SPB- associated proteins including Nufl/SPC110, also a coiled-coil protein. Temperature-sensitive alleles of NUF2 were generated within the coiled- coil region of Nuf2 and such NUF2 mutant cells rapidly arrest after temperature shift with a single undivided or partially divided nucleus in the bud neck, a shortened mitotic spindle and their DNA fully replicated. In sum, Nuf2 is a protein associated with the SPB that is critical for nuclear division. Anti-Nuf2 antibodies also recognize a mammalian 73-kd protein and display centrosome staining of mammalian tissue culture cells suggesting the presence of a protein with similar function. PMID:8188751

  3. The nuclear protein p30 specifically interacts with a nuclear matrix attachment region from the rat genome.

    PubMed

    Fedorov, Anton; Lukyanov, Dmitri; Rogoli?ski, Jacek; Wid?ak, Piotr; Podgornaya, Olga; Rzeszowska-Wolny, Joanna

    2004-01-01

    In our previous study, a 454 bp DNA fragment was isolated from rat genomic DNA as an element which interacts with nuclear matrix proteins, i.e. a Matrix Associated Region (MAR). Computer analyses revealed that the right half of this fragment, named RME (Rat MAR Element), possesses a high matrix association potential and is likely to be responsible for the matrix association of the whole sequence. RME was used as a probe in an electrophoretic mobility shift assay (EMSA), and with the use of Southwestern blotting, a rat liver nuclear protein which binds specifically to it was identified. Its molecular mass was estimated by SDS-PAGE as 30 kDa (p30). Polyclonal antibodies raised against protein-RME complexes caused a super-shift of specific complexes in EMSA, and bound to p30 in nuclear extracts of rat liver in Western blotting. The immunofluorescence labelling of a rat embryonic fibroblast cell monolayer with anti-p30 antibody revealed a mainly intranuclear pattern of staining. PMID:15048159

  4. SIGNIFICANT PROPORTIONS OF NUCLEAR TRANSPORT PROTEINS WITH REDUCED INTRACELLULAR MOBILITIES RESOLVED BY FLUORESCENCE CORRELATION SPECTROSCOPY

    PubMed Central

    PARADISE, ALLISON; LEVIN, MIKHAIL K.; KORZA, GEORGE; CARSON, JOHN H.

    2006-01-01

    Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin ?, importin ?, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin ?, importin ?, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions. PMID:17056062

  5. Distinctive Properties of the Nuclear Localization Signals of Inner Nuclear Membrane Proteins Heh1 and Heh2.

    PubMed

    Lokareddy, Ravi K; Hapsari, Rizqiya A; van Rheenen, Mathilde; Pumroy, Ruth A; Bhardwaj, Anshul; Steen, Anton; Veenhoff, Liesbeth M; Cingolani, Gino

    2015-07-01

    Targeting of ER-synthesized membrane proteins to the inner nuclear membrane (INM) has long been explained by the diffusion-retention model. However, several INM proteins contain non-classical nuclear localization signal (NLS) sequences, which, in a few instances, have been shown to promote importin ?/?- and Ran-dependent translocation to the INM. Here, using structural and biochemical methods, we show that yeast INM proteins Heh2 and Src1/Heh1 contain bipartite import sequences that associate intimately with the minor NLS-binding pocket of yeast importin ? and unlike classical NLSs efficiently displace the IBB domain in the absence of importin ?. In vivo, the intimate interactions at the minor NLS-binding pocket make the h2NLS highly efficient at recruiting importin ? at the ER and drive INM localization of endogenous Heh2. Thus, h1/h2NLSs delineate a novel class of super-potent, IBB-like membrane protein NLSs, distinct from classical NLSs found in soluble cargos and of general interest in biology. PMID:26051712

  6. Transmembrane Protein-free Membranes Fuse into Xenopus Nuclear Envelope and Promote Assembly of Functional Pores*

    PubMed Central

    Rafikova, Elvira R.; Melikov, Kamran; Ramos, Corinne; Dye, Louis; Chernomordik, Leonid V.

    2009-01-01

    Post-mitotic reassembly of nuclear envelope (NE) and the endoplasmic reticulum (ER) has been reconstituted in a cell-free system based on interphase Xenopus egg extract. To evaluate the relative contributions of cytosolic and transmembrane proteins in NE and ER assembly, we replaced a part of native membrane vesicles with ones either functionally impaired by trypsin or N-ethylmaleimide treatments or with protein-free liposomes. Although neither impaired membrane vesicles nor liposomes formed ER and nuclear membrane, they both supported assembly reactions by fusing with native membrane vesicles. At membrane concentrations insufficient to generate full-sized functional nuclei, addition of liposomes and their fusion with membrane vesicles resulted in an extensive expansion of NE, further chromatin decondensation, restoration of the functionality, and spatial distribution of the nuclear pore complexes (NPCs), and, absent newly delivered transmembrane proteins, an increase in NPC numbers. This rescue of the nuclear assembly by liposomes was inhibited by wheat germ agglutinin and thus required active nuclear transport, similarly to the assembly of full-sized functional NE with membrane vesicles. Mechanism of fusion between liposomes and between liposomes and membrane vesicles was investigated using lipid mixing assay. This fusion required interphase cytosol and, like fusion between native membrane vesicles, was inhibited by guanosine 5?-3-O-(thio)triphosphate, soluble N-ethylmaleimide-sensitive factor attachment protein, and N-ethylmaleimide. Our findings suggest that interphase cytosol contains proteins that mediate the fusion stage of ER and NE reassembly, emphasize an unexpected tolerance of nucleus assembly to changes in concentrations of transmembrane proteins, and reveal the existence of a feedback mechanism that couples NE expansion with NPC assembly. PMID:19696024

  7. PUB1 is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae.

    PubMed Central

    Anderson, J T; Paddy, M R; Swanson, M S

    1993-01-01

    Proteins that directly associate with nuclear polyadenylated RNAs, or heterogeneous nuclear RNA-binding proteins (hnRNPs), and those that associate with cytoplasmic mRNAs, or mRNA-binding proteins (mRNPs), play important roles in regulating gene expression at the posttranscriptional level. Previous work with a variety of eukaryotic cells has demonstrated that hnRNPs are localized predominantly within the nucleus whereas mRNPs are cytoplasmic. While studying proteins associated with polyadenylated RNAs in Saccharomyces cerevisiae, we discovered an abundant polyuridylate-binding protein, PUB1, which appears to be both an hnRNP and an mRNP. PUB1 and PAB1, the polyadenylate tail-binding protein, are the two major proteins cross-linked by UV light to polyadenylated RNAs in vivo. The deduced primary structure of PUB1 indicates that it is a member of the ribonucleoprotein consensus sequence family of RNA-binding proteins and is structurally related to the human hnRNP M proteins. Even though the PUB1 protein is a major cellular polyadenylated RNA-binding protein, it is nonessential for cell growth. Indirect cellular immunofluorescence combined with digital image processing allowed a detailed comparison of the intracellular distributions of PUB1 and PAB1. While PAB1 is predominantly, and relatively uniformly, distributed within the cytoplasm, PUB1 is localized in a nonuniform pattern throughout both the nucleus and the cytoplasm. The cytoplasmic distribution of PUB1 is considerably more discontinuous than that of PAB1. Furthermore, sucrose gradient sedimentation analysis demonstrates that PAB1 cofractionates with polyribosomes whereas PUB1 does not. These results suggest that PUB1 is both an hnRNP and an mRNP and that it may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. Images PMID:8413212

  8. Characterizing residual structure in disordered protein States using nuclear magnetic resonance.

    PubMed

    Eliezer, David

    2007-01-01

    The importance of disordered protein states in biology is gaining recognition, and can be attributed in part to the participation of unfolded and partially folded states of globular proteins in normal and abnormal biological functions, such as protein translation, protein translocation, protein degradation, protein assembly, and protein aggregation (1-5). There is also a growing awareness that a significant fraction of gene products from various genomes, including the human genome, fall into a category that includes low complexity, low globularity, or intrinsically unstructured proteins (6-9). Unlike native states of globular proteins, disordered protein states, by definition, do not adopt a fixed structure that can be determined using classical high-resolution methods. Nevertheless, there has long been evidence that many disordered states contain detectable and significant residual or nascent structure (10-16). This structure has been found to be important for nucleating local structure, as well as mediating long range contacts upon either intramolecular folding to the native state (17-21) or intermolecular folding with specific binding partners (22-24), and is also predicted to influence intermolecular folding into structured aggregates (25,26). The primary tool for the characterization of such structure is high-resolution solution state nuclear magnetic resonance (NMR) spectroscopy. Advances in NMR instrumentation and methods have greatly facilitated this task and in principle can now be accomplished by those without extensive prior experience in NMR spectroscopy. This chapter describes how this can be accomplished. PMID:16957317

  9. Yeast-Plant Coupled Vector System for Identification of Nuclear Proteins1[OA

    E-print Network

    Citovsky, Vitaly

    clones into a multiple cloning site-compatible and reading frame-compatible plant expression vector be transferred, also by a one-step cloning, into a binary multigene expression vector for transient or stableYeast-Plant Coupled Vector System for Identification of Nuclear Proteins1[OA] Adi Zaltsman, Bu

  10. Characterization of the nuclear localization signal of high risk HPV16 E2 protein

    SciTech Connect

    Klucevsek, Kristin [Biology Department, Boston College, Higgins Hall, room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Wertz, Mary [Biology Department, Boston College, Higgins Hall, room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Lucchi, John [Biology Department, Boston College, Higgins Hall, room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Leszczynski, Anna [Biology Department, Boston College, Higgins Hall, room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Moroianu, Junona [Biology Department, Boston College, Higgins Hall, room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States)]. E-mail: moroianu@bc.edu

    2007-03-30

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA-binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells, we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of EGFP-E2 and EGFP-cE2 determined that the C domain contains an {alpha} helix cNLS that overlaps with the DNA-binding region. Mutational analysis revealed that the arginine and lysine residues in this cNLS are essential for nuclear localization of HPV16 E2. Interestingly, these basic amino acid residues are well conserved among the E2 proteins of BPV-1 and some high risk HPV types but not in the low risk HPV types, suggesting that there are differences between the NLSs and corresponding nuclear import pathways between these E2 proteins.

  11. Characterization of the Nuclear Localization Signal of High Risk HPV16 E2 Protein

    PubMed Central

    Klucevsek, Kristin; Wertz, Mary; Lucchi, John; Leszczynski, Anna; Moroianu, Junona

    2009-01-01

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of EGFP-E2 and EGFP-cE2 determined that the C domain contains an alpha helix cNLS that overlaps with the DNA binding region. Mutational analysis revealed that the arginine and lysine residues in this cNLS are essential for nuclear localization of HPV16 E2. Interestingly, these basic amino acid residues are well conserved among the E2 proteins of BPV-1 and some high risk HPV types but not in the low risk HPV types, suggesting that there are differences between the NLSs and corresponding nuclear import pathways between these E2 proteins. PMID:17097712

  12. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    PubMed Central

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2014-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1 mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  13. Fanconi Anemia Proteins FANCA, FANCC, and FANCG\\/XRCC9 Interact in a Functional Nuclear Complex

    Microsoft Academic Search

    IRENE GARCIA-HIGUERA; YANAN KUANG; DIETER NAF; JENNIFER WASIK; ALAN D. D'ANDREA

    1999-01-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight comple- mentation groups (A to H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but their cellular function remains unknown. We have previously demonstrated that the FANCA and FANCC proteins interact and form a nuclear complex in normal cells, suggesting

  14. Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes

    Microsoft Academic Search

    K. Y. Ma; T.-Y. Chan; K. H. Chu

    2009-01-01

    Penaeoidea is a diverse group of economically important marine shrimps. Attention to the evolutionary history of the penaeoids has been raised since studies using mitochondrial DNA markers and sperm ultrastructure contradict classification of the penaeoid families based on morphology and hence challenge the long standing taxonomy of this superfamily. In this study, DNA sequences of two nuclear protein-coding genes, phosphoenolpyruvate

  15. High-Frequency Dynamic Nuclear Polarization in MAS Spectra of Membrane and Soluble Proteins

    E-print Network

    Griffin, Robert G.

    High-Frequency Dynamic Nuclear Polarization in MAS Spectra of Membrane and Soluble Proteins Melanie of the principal promises of magic angle spinning (MAS) solid-state NMR (SSNMR) experiments is the possibility The success of these experiments is due largely to the ability to record multidimensional MAS NMR spectra

  16. The Nuclear Protein p34SEI-1 Regulates the Kinase Activity of Cyclin-Dependent

    E-print Network

    Tsai, Ming-Daw

    and tumorigenesis. p34SEI-1 , a nuclear protein originally cloned through a yeast two-hybrid approach using human p basis of the interaction remains to be determined. We report the use of in vitro studies to address-14) are inhibitors of CDK4 and 6. Moreover, the oncoprotein Tax from human T-cell leukemia virus 1 (HTLV-1

  17. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation

    PubMed Central

    Batrakou, Dzmitry G.; de las Heras, Jose I.; Czapiewski, Rafal; Mouras, Rabah; Schirmer, Eric C.

    2015-01-01

    Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity. PMID:26024229

  18. Molecular Characterization of Three PRORP Proteins in the Moss Physcomitrella patens: Nuclear PRORP Protein Is Not Essential for Moss Viability

    PubMed Central

    Tanaka, Korechika; Kometani, Kazuki; Satoh, Hiroyuki; Sugita, Mamoru

    2014-01-01

    RNase P is a ubiquitous endonuclease that removes the 5? leader sequence from pre-tRNAs in all organisms. In Arabidopsis thaliana, RNA-free proteinaceous RNase Ps (PRORPs) seem to be enzyme(s) for pre-tRNA 5?-end processing in organelles and the nucleus and are thought to have replaced the ribonucleoprotein RNase P variant. However, the evolution and function of plant PRORPs are not fully understood. Here, we identified and characterized three PRORP-like proteins, PpPPR_63, 67, and 104, in the basal land plant, the moss Physcomitrella patens. PpPPR_63 localizes to the nucleus, while PpPPR_67 and PpPPR_104 are found in both the mitochondria and chloroplasts. The three proteins displayed pre-tRNA 5?-end processing activity in vitro. Mutants with knockout (KO) of the PpPPR_63 gene displayed growth retardation of protonemal colonies, indicating that, unlike Arabidopsis nuclear RPORPs, the moss nuclear PpPPR_63 is not essential for viability. In the KO mutant, nuclear-encoded tRNAAsp (GUC) levels were slightly decreased, whereas most nuclear-encoded tRNA levels were not altered. This indicated that most of the cytosolic mature tRNAs were produced normally without proteinaceous RNase P-like PpPPR_63. Single PpPPR_67 or 104 gene KO mutants displayed different phenotypes of protonemal growth and chloroplast tRNAArg (ACG) accumulation. However, the levels of all other tRNAs were not altered in the KO mutants. In addition, in vitro RNase P assays showed that PpPPR_67 and PpPPR_104 efficiently cleaved chloroplast pre-tRNAArg (CCG) and pre-tRNAArg (UCU) but they cleaved pre-tRNAArg (ACG) with different efficiency. This suggests that the two proteins have overlapping function but their substrate specificity is not identical. PMID:25272157

  19. The tight junction protein Z O-2 has several functional nuclear export signals

    SciTech Connect

    Gonzalez-Mariscal, Lorenza [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico)]. E-mail: lorenza@fisio.cinvestav.mx; Ponce, Arturo [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico); Alarcon, Lourdes [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico); Jaramillo, Blanca Estela [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico)

    2006-10-15

    The tight junction (TJ) protein ZO-2 changes its subcellular distribution according to the state of confluency of the culture. Thus in confluent monolayers, it localizes at the TJ region whereas in sparse cultures it concentrates at the nucleus. The canine sequence of ZO-2 displays four putative nuclear export signals (NES), two at the second PDZ domain (NES-0 and NES-1) and the rest at the GK region (NES-2 and NES-3). The functionality of NES-0 and NES-3 was unknown, hence here we have explored it with a nuclear export assay, injecting into the nucleus of MDCK cells peptides corresponding to the ZO-2 NES sequences chemically coupled to ovalbumin. We show that both NES-0 and NES-3 are functional and sensitive to leptomycin B. We also demonstrate that NES-1, previously characterized as a non functional NES, is rendered capable of nuclear export upon the acquisition of a negative charge at its Ser369 residue. Experiments performed injecting at the nucleus WT and mutated ZO-2-GST fusion proteins revealed the need of both NES-0 and NES-1, and NES-2 and NES-3 for attaining an efficient nuclear exit of the respective amino and middle segments of ZO-2. Moreover, the transfection of MDCK cells with full-length ZO-2 revealed that the mutation of any of the NES present in the molecule was sufficient to induce nuclear accumulation of the protein.

  20. part of the spindle matrix in mitosis. Indeed, the yeast nuclear protein FIN1p contains coiled-

    E-print Network

    Bermingham, Eldredge

    part of the spindle matrix in mitosis. Indeed, the yeast nuclear protein FIN1p contains coiled- coil domains and associates with spindles during mitosis (46). Furthermore, purified FIN1p self to regulate many nuclear functions as well as nuclear structural integrity. At the onset of mitosis, lamins

  1. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation

    Microsoft Academic Search

    Nataliya Shulga; Paul Roberts; Zhenyu Gu; Lynn Spit; Michelle M. Tab; Masayasu Nomura; David S. Goldfarb

    1996-01-01

    The transport of proteins into the nucleus is a receptor-mediated process that is likely to involve be- tween 50-100 gene products, including many that com- prise the nuclear pore complex. We have developed an assay in Saccharomyces cerevisiae for the nuclear trans- port of green fluorescent protein fused to the SV-40 large T antigen nuclear localization signal (NLS-GFP). This assay

  2. Characterization of a nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR) transcriptional regulator protein.

    PubMed

    Huggenvik, J I; Michelson, R J; Collard, M W; Ziemba, A J; Gurley, P; Mowen, K A

    1998-10-01

    A monkey kidney cDNA that encodes a nuclear regulatory factor was identified by expression and affinity binding to a synthetic retinoic acid response element (RARE) and was used to isolate human placental and rat germ cell cDNAs by hybridization. The cDNAs encode a 59-kDa protein [nuclear DEAF-1-related (NUDR)] which shows sequence similarity to the Drosophila Deformed epidermal autoregulatory factor-1 (DEAF-1), a nonhomeodomain cofactor of embryonic Deformed gene expression. Similarities to other proteins indicate five functional domains in NUDR including an alanine-rich region prevalent in developmental transcription factors, a domain found in the promyelocytic leukemia-associated SP100 proteins, and a zinc finger homology domain associated with the AML1/MTG8 oncoprotein. Although NUDR mRNA displayed a wide tissue distribution in rats, elevated levels of protein were only observed in testicular germ cells, developing fetus, and transformed cell lines. Nuclear localization of NUDR was demonstrated by immunocytochemistry and by a green fluorescent protein-NUDR fusion protein. Site-directed mutagenesis of a nuclear localization signal resulted in cytoplasmic localization of the protein and eliminated NUDR-dependent transcriptional activation. Recombinant NUDR protein showed affinity for the RARE in mobility shifts; however it was efficiently displaced by retinoic acid receptor (RAR)/retinoid X receptor (RXR) complexes. In transient transfections, NUDR produced up to 26-fold inductions of a human proenkephalin promoter-reporter plasmid, with minimal effects on the promoters for prodynorphin or thymidine kinase. Placement of a RARE on the proenkephalin promoter increased NUDR-dependent activation to 41-fold, but this RARE-dependent increase was not transferable to a thymidine kinase promoter. Recombinant NUDR protein showed minimal binding affinity for proenkephalin promoter sequences, but was able to select DNA sequences from a random oligonucleotide library that had similar core-binding motifs (TTCG) as those recognized by DEAF-1. This motif is also present between the half-sites of several endogenous RAREs. The derived consensus- binding motif recognized by NUDR (TTCGGGNNTTTCCGG) was confirmed by mobility shift and deoxyribonuclease I (DNase I) protection assays; however, the consensus sequence was also unable to confer NUDR-dependent transcriptional activation to the thymidine kinase promoter. Our data suggests that NUDR may activate transcription independently of promoter binding, perhaps through protein-protein interaction with basal transcription factors, or by activation of secondary factors. The sequence and functional similarities between NUDR and DEAF-1 suggest that NUDR may also act as a cofactor to regulate the transcription of genes during fetal development or differentiation of testicular cells. PMID:9773984

  3. Ubiquitin-dependent Protein Degradation at the Yeast Endoplasmic Reticulum and Nuclear Envelope

    PubMed Central

    Zattas, Dimitrios; Hochstrasser, Mark

    2014-01-01

    The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane. PMID:25231236

  4. Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment

    SciTech Connect

    Oh, B.H.; Westler, W.M.; Darba, P.; Markley, J.L.

    1988-05-13

    By applying a two-dimensional double-quantum carbon-13 nuclear magnetic resonance experiment to a protein uniformly enriched to 26% carbon-13, networks of directly bonded carbon atoms were identified by virtue of their one-bond spin-spin couplings and were classified by amino acid type according to their particular single- and double-quantum chemical shift patterns. Spin systems of 75 of the 98 amino acid residues in a protein, oxidized Anabaena 7120 ferredoxin (molecular weight 11,000), were identified by this approach, which represents a key step in an improved methodology for assigning protein nuclear magnetic resonance spectra. Missing spin systems corresponded primarily to residues located adjacent to the paramagnetic iron-sulfur cluster. 25 references, 2 figures.

  5. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    SciTech Connect

    Ostlund, Cecilia [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States) [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Guan, Tinglu [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States)] [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Figlewicz, Denise A. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Hays, Arthur P. [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States)] [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Worman, Howard J. [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States) [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Gerace, Larry [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States)] [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Schirmer, Eric C., E-mail: e.schirmer@ed.ac.uk [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  6. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    SciTech Connect

    Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan); Hirai, Yuya; Yoshimura, Shige H. [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan); Horigome, Tsuneyoshi [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Takeyasu, Kunio [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan)

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do not take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.

  7. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-?. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-? and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-? (PPAR?). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPAR?-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. PMID:26074086

  8. Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins

    PubMed Central

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, Mark J.; Mohandas, Narla; Chasis, Joel Anne

    2005-01-01

    Enucleation, a rare feature of mammalian differentiation, occurs in 3 cell types: erythroblasts, lens epithelium, and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing erythroid burst-forming unit (BFU-E) differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA (Nuclear mitotic apparatus), and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus, nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery. (Blood. 2005;106:2200-2205) PMID:15933051

  9. Nuclear and Cytoplasmic Soluble Proteins Extraction from a Small Quantity of Drosophila’s Whole Larvae and Tissues

    PubMed Central

    Lo Piccolo, Luca; Bonaccorso, Rosa; Onorati, Maria Cristina

    2015-01-01

    The identification and study of protein’s function in several model organisms is carried out using both nuclear and cytoplasmic extracts. For a long time, Drosophila’s embryos have represented the main source for protein extractions, although in the last year, the importance of collecting proteins extracts also from larval tissues has also been understood. Here we report a very simple protocol, improved by a previously developed method, to produce in a single extraction both highly stable nuclear and cytoplasmic protein extracts from a small quantity of whole Drosophila’s larvae or tissues, suitable for biochemical analyses like co-immunoprecipitation. PMID:26039237

  10. C-reactive protein reacts with the U1 small nuclear ribonucleoprotein

    SciTech Connect

    Du Clos, T.W. (VA Medical Center, Albuquerque, NM (USA))

    1989-10-15

    C-reactive protein (CRP) was found to produce a small, discrete, speckled fluorescence pattern in the nucleus of HEp-2 cells. Double staining with anti-RNP serum and CRP produced very similar staining patterns. By counterimmunoelectrophoresis CRP was bound to extractable nuclear antigens found in rabbit thymus extract. The reactive components of the extract were only partially sensitive to treatment with RNase. CRP immunoprecipitated the U1 RNA species from ({sup 32}P)labeled HeLa cells and the protein bands of the Sm/RNP complex from ({sup 35}S)-methionine-labeled HeLa cells. By blotting, CRP bound to several discrete bands in a calcium-dependent, PC-inhibitable manner. Two of the bands comigrated with the 70K protein band associated with the U1 snRNP, and its major breakdown product. Binding to these bands was inhibited by both EDTA and PC indicating that CRP binds these proteins through the PC-binding site. Binding to the 70K protein of the U1 snRNP was confirmed by reactivity with the recombinant 70K protein in a dot blot. These findings indicate the CRP binds to the U1-RNP snRNP particle. Considering the ability of CRP to inhibit antibody responses to its ligands and its ability to activate C and promote phagocytosis it is suggested that CRP may play a role in the regulation of autoantibody responses to nuclear Ag.

  11. A Crowdsourced nucleus: Understanding nuclear organization in terms of dynamically networked protein function

    PubMed Central

    Wood, Ashley M.; Garza-Gongora, Arturo G.; Kosak, Steven T.

    2014-01-01

    The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. PMID:24412853

  12. Differential Targeting of Nuclear Pore Complex Proteins in Poliovirus-Infected Cells?

    PubMed Central

    Park, Nogi; Katikaneni, Pavan; Skern, Tim; Gustin, Kurt E.

    2008-01-01

    Poliovirus disrupts nucleocytoplasmic trafficking and results in the cleavage of two nuclear pore complex (NPC) proteins, Nup153 and Nup62. The NPC is a 125-MDa complex composed of multiple copies of 30 different proteins. Here we have extended the analysis of the NPC in infected cells by examining the status of Nup98, an interferon-induced NPC protein with a major role in mRNA export. Our results indicate that Nup98 is targeted for cleavage after infection but that this occurs much more rapidly than it does for Nup153 and Nup62. In addition, we find that cleavage of these NPC proteins displays differential sensitivity to the viral RNA synthesis inhibitor guanidine hydrochloride. Inhibition of nuclear import and relocalization of host nuclear proteins to the cytoplasm were only apparent at later times after infection when all three nucleoporins (Nups) were cleaved. Surprisingly, analysis of the distribution of mRNA in infected cells revealed that proteolysis of Nup98 did not result in an inhibition of mRNA export. Cleavage of Nup98 could be reconstituted by the addition of purified rhinovirus type 2 2Apro to whole-cell lysates prepared from uninfected cells, suggesting that the 2A protease has a role in this process in vivo. These results indicate that poliovirus differentially targets subsets of NPC proteins at early and late times postinfection. In addition, targeting of interferon-inducible NPC proteins, such as Nup98, may be an additional weapon in the arsenal of poliovirus and perhaps other picornaviruses to overcome host defense mechanisms. PMID:18045934

  13. Mitochondrial Biogenesis through Activation of Nuclear Signaling Proteins

    PubMed Central

    Dominy, John E.; Puigserver, Pere

    2013-01-01

    The dynamics of mitochondrial biogenesis and function is a complex interplay of cellular and molecular processes that ultimately shape bioenergetics capacity. Mitochondrial mass, by itself, represents the net balance between rates of biogenesis and degradation. Mitochondrial biogenesis is dependent on different signaling cascades and transcriptional complexes that promote the formation and assembly of mitochondria—a process that is heavily dependent on timely and coordinated transcriptional control of genes encoding for mitochondrial proteins. In this article, we discuss the major signals and transcriptional complexes, programming mitochondrial biogenesis, and bioenergetic activity. This regulatory network represents a new therapeutic window into the treatment of the wide spectrum of mitochondrial and neurodegenerative diseases characterized by dysregulation of mitochondrial dynamics and bioenergetic deficiencies. PMID:23818499

  14. A Flow Cytometry-Based Screen of Nuclear Envelope Transmembrane Proteins Identifies NET4\\/Tmem53 as Involved in Stress-Dependent Cell Cycle Withdrawal

    Microsoft Academic Search

    Nadia Korfali; Vlastimil Srsen; Martin Waterfall; Dzmitry G. Batrakou; Vanja Pekovic; Christopher J. Hutchison; Eric C. Schirmer; Joanna Mary Bridger

    2011-01-01

    Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested\\/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle\\/DNA content profiles when exogenously expressed. Eight

  15. Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila

    SciTech Connect

    Liu, Jun; Song, Kiwon; Wolfner, M.F. [Cornell Univ., Ithaca, NY (United States)

    1995-12-01

    The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutant alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that Ya function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function might interact with itself either directly or indirectly. 27 refs., 6 figs.

  16. A single herpesvirus protein can mediate vesicle formation in the nuclear envelope.

    PubMed

    Lorenz, Michael; Vollmer, Benjamin; Unsay, Joseph D; Klupp, Barbara G; García-Sáez, Ana J; Mettenleiter, Thomas C; Antonin, Wolfram

    2015-03-13

    Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission. PMID:25605719

  17. Comparison of Effects of Inhibitors of Viral and Cellular Protein Kinases on Human Cytomegalovirus Disruption of Nuclear Lamina and Nuclear Egress

    PubMed Central

    Sharma, Mayuri

    2014-01-01

    Human cytomegalovirus (HCMV) kinase UL97 is required for efficient nuclear lamina disruption during nuclear egress. However, cellular protein kinase C (PKC) has been implicated in this process in other systems. Comparing the effects of UL97 and cellular kinase inhibitors on HCMV nuclear egress confirms a role for UL97 in lamina disruption and nuclear egress. A pan-PKC inhibitor did not affect lamina disruption but did reduce the number of cytoplasmic capsids more than the number of nuclear capsids. PMID:24965476

  18. Dissecting the Contribution of Diffusion and Interactions to the Mobility of Nuclear Proteins

    PubMed Central

    Beaudouin, Joël; Mora-Bermúdez, Felipe; Klee, Thorsten; Daigle, Nathalie; Ellenberg, Jan

    2006-01-01

    Quantitative characterization of protein interactions under physiological conditions is vital for systems biology. Fluorescence photobleaching/activation experiments of GFP-tagged proteins are frequently used for this purpose, but robust analysis methods to extract physicochemical parameters from such data are lacking. Here, we implemented a reaction-diffusion model to determine the contributions of protein interaction and diffusion on fluorescence redistribution. The model was validated and applied to five chromatin-interacting proteins probed by photoactivation in living cells. We found that very transient interactions are common for chromatin proteins. Their observed mobility was limited by the amount of free protein available for diffusion but not by the short residence time of the bound proteins. Individual proteins thus locally scan chromatin for binding sites, rather than diffusing globally before rebinding at random nuclear positions. By taking the real cellular geometry and the inhomogeneous distribution of binding sites into account, our model provides a general framework to analyze the mobility of fluorescently tagged factors. Furthermore, it defines the experimental limitations of fluorescence perturbation experiments and highlights the need for complementary methods to measure transient biochemical interactions in living cells. PMID:16387760

  19. Characterization of a sperm-specific nuclear autoantigenic protein. I. Complete sequence and homology with the Xenopus protein, N1/N2.

    PubMed

    Welch, J E; Zimmerman, L J; Joseph, D R; O'Rand, M G

    1990-10-01

    In our studies on specific sperm proteins that function in fertilization, an autoantigenic, postacrosomal sperm protein has been found to originate in the testis as a nuclear-associated protein. This nuclear autoantigenic sperm protein (NASP) contains a C-terminal nuclear translocation signal and has structural similarities to the lamins and other nuclear proteins; and its 2.5 kb mRNA is apparently tissue-, but not species-, specific. DNA clones from a rabbit testis cDNA library and a rabbit genomic library were sequenced in order to characterize NASP. The polyadenylated mRNA has 39 bases of 5' untranslated sequence, an open reading frame of 2043 bases encoding 680 amino acids, and a 104 base 3' untranslated region (2,186). The encoded polypeptide has a calculated molecular weight of 73,533 and a pI = 4.06, containing 25% acidic residues. One clone (R1.2) expressing the C-terminal 446 amino acids was used to express a fusion protein. The expressed R1.2/beta-galactosidase fusion protein was found to be autoantigenic. Secondary structure predictions for NASP showed that 69% of the molecule had a high probability of forming alpha-helices and that several alpha-helical regions had a characteristic repeating heptad pattern that in the intermediate filaments and nuclear lamins is involved in coiled-coil interactions with other molecules. In addition to the nuclear translocation signal common to many nuclear proteins, NASP also showed homology with the Xenopus histone-binding protein, N1/N2. PMID:2289010

  20. Interactome of the negative regulator of nuclear import BRCA1-binding protein 2.

    PubMed

    Fatima, Shadma; Wagstaff, Kylie M; Loveland, Kate L; Jans, David A

    2015-01-01

    Although the negative regulator of nuclear import (NRNI) BRCA1 binding protein 2 (BRAP2) is highly expressed in testis, its role is largely unknown. Here we address this question by documenting the BRAP2 interactome from human testis, using the yeast 2-hybrid system to identify BRAP2-interacting proteins with roles in diverse cellular processes, including regulation of the actin cytoskeleton, ubiquitinylation, cell cycle/apoptosis and transcription. Interaction with BRAP2 in adult mouse testis with three of these, PH domain and leucine rich repeat protein phosphatase 1 (PHLPP1), A-Kinase anchor protein (AKAP3) and DNA methyl transferase 1 (DNMT1), was confirmed by coimmunoprecipitation assays. BRAP2's ability to inhibit PHLPP1 and DNMT1 nuclear localisation was also confirmed by quantitative confocal microscopy. Importantly, the physiological relevance thereof was implied by the cytoplasmic localisation of PHLPP1, AKAP3 and DNMT1 in pachytene spermatocytes/round spermatids where BRAP2 is present at high levels, and nuclear localisation of PHLPP1 and DNMT1 in spermatogonia concomitant with lower levels of BRAP2. Interestingly, BRAP2 was also present in murine spermatozoa, in part colocalised with AKAP3. Together the results indicate for the first time that BRAP2 may play an important NRNI role in germ cells of the testis, with an additional, scaffold/structural role in mature spermatozoa. PMID:25820252

  1. Nuclear localization of mouse Mx1 protein is necessary for inhibition of influenza virus.

    PubMed Central

    Zürcher, T; Pavlovic, J; Staeheli, P

    1992-01-01

    The interferon-induced Mx1 protein of mice confers selective resistance to influenza virus. It inhibits viral mRNA synthesis in the nucleus of influenza virus-infected cells. The related human MxA protein is localized in the cytoplasm and can inhibit influenza virus and vesicular stomatitis virus but not other viruses. MxA blocks a poorly defined cytoplasmic multiplication step of influenza virus that follows primary transcription of the viral genome. We previously showed that nuclear variants of MxA that carry an artificial nuclear translocation signal were also active against influenza virus. However, these variants blocked primary transcription of influenza virus. In the present study, we addressed the question of whether cytoplasmic forms of Mx1 were capable of mimicking the antiviral action of MxA by determining the antiviral activities of mutant mouse Mx1 protein. Cytoplasmic Mx1(E614), which differs from wild-type Mx1 by a single amino acid substitution in its nuclear transport signal, failed to inhibit the multiplication of influenza virus and vesicular stomatitis virus. Relocation of Mx1(E614) to the nucleus with the help of the simian virus 40 large T nuclear translocation signal attached to its amino terminus restored the influenza virus-inhibiting activity. Other changes in the carboxy-terminal region of Mx1 also abolished transport to the nucleus and simultaneously abolished antiviral activity. One of these variants, Mx1/A, gained activity against influenza virus upon relocation to the nucleus. These results demonstrate that unlike human MxA, the mouse Mx1 protein can function only in the nucleus. This finding has important implications regarding the mechanistic details of Mx protein action. Images PMID:1321288

  2. Identification of a functional nuclear export signal in the green fluorescent protein asFP499

    SciTech Connect

    Mustafa, Huseyin [Cooperative Research Centre for Diagnostics at CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Vic. 3052 (Australia)]. E-mail: huseyinm@hotmail.com; Strasser, Bernd [Cooperative Research Centre for Diagnostics at CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Vic. 3052 (Australia); Rauth, Sabine [Cooperative Research Centre for Diagnostics at CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Vic. 3052 (Australia); Irving, Robert A. [Cooperative Research Centre for Diagnostics at CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Vic. 3052 (Australia); Wark, Kim L. [Cooperative Research Centre for Diagnostics at CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Vic. 3052 (Australia)

    2006-04-21

    The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified {sub 194}LRMEKLNI{sub 201} as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES.

  3. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    NASA Astrophysics Data System (ADS)

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W. W.; , Francis E. Jenney, Jr.; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2013-12-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  4. Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin

    SciTech Connect

    Kurooka, Hisanori; Kato, Keizo; Minoguchi, Shigeru [Kyoto Univ. (Japan)] [and others] [Kyoto Univ. (Japan); and others

    1997-02-01

    In a yeast artificial chromosome contig close to the nude locus on mouse chromosome 11, we identified a novel gene, nucleoredoxin, that encodes a protein with similarity to the active site of thioredoxins. Nucleoredoxin is conserved between mammalian species, and two homologous genes were found in Caenorhabditis elegans. The nucleoredoxin transcripts are expressed in all adult tissues examined, but restricted to the nervous system and the limb buds in Day 10.5-11.5 embryos. The nucleoredoxin protein is predominantly localized in the nucleus of cells transfected with the nucleoredoxin expression construct. Since the bacterially expressed protein of nucleoredoxin showed oxidoreductase activity of the insulin disulfide bonds with kinetics similar to that of thioredoxin, it may be a redox regulator of the nuclear proteins, such as transcription factors. 40 refs., 6 figs.

  5. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    PubMed Central

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W.W.; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2014-01-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure.

  6. Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins.

    PubMed

    Ma, H; Siegel, A J; Berezney, R

    1999-08-01

    To study the possible role of the nuclear matrix in chromosome territory organization, normal human fibroblast cells are treated in situ via classic isolation procedures for nuclear matrix in the absence of nuclease (e.g., DNase I) digestion, followed by chromosome painting. We report for the first time that chromosome territories are maintained intact on the nuclear matrix. In contrast, complete extraction of the internal nuclear matrix components with RNase treatment followed by 2 M NaCl results in the disruption of higher order chromosome territory architecture. Correlative with territorial disruption is the formation of a faint DNA halo surrounding the nuclear lamina and a dispersive effect on the characteristically discrete DNA replication sites in the nuclear interior. Identical results were obtained using eight different human chromosome paints. Based on these findings, we developed a fractionation strategy to release the bulk of nuclear matrix proteins under conditions where the chromosome territories are maintained intact. A second treatment results in disruption of the chromosome territories in conjunction with the release of a small subset of acidic proteins. These proteins are distinct from the major nuclear matrix proteins and may be involved in mediating chromosome territory organization. PMID:10444063

  7. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex

    PubMed Central

    Popken, Petra; Ghavami, Ali; Onck, Patrick R.; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    Nuclear pore complexes (NPCs) allow selective import and export while forming a barrier for untargeted proteins. Using fluorescence microscopy, we measured in vivo the permeability of the Saccharomyces cerevisiae NPC for multidomain proteins of different sizes and found that soluble proteins of 150 kDa and membrane proteins with an extralumenal domain of 90 kDa were still partly localized in the nucleus on a time scale of hours. The NPCs thus form only a weak barrier for the majority of yeast proteins, given their monomeric size. Using FG?-mutant strains, we showed that specific combinations of Nups, especially with Nup100, but not the total mass of FG-nups per pore, were important for forming the barrier. Models of the disordered phase of wild-type and mutant NPCs were generated using a one bead per amino acid molecular dynamics model. The permeability measurements correlated with the density predictions from coarse-grained molecular dynamics simulations in the center of the NPC. The combined in vivo and computational approach provides a framework for elucidating the structural and functional properties of the permeability barrier of nuclear pore complexes. PMID:25631821

  8. LaRbp38: A Leishmania amazonensis protein that binds nuclear and kinetoplast DNAs

    SciTech Connect

    Lira, C.B.B. [Departamento de Genetica, IB, Universidade Estadual de Sao Paulo, UNESP, 18618-000, Botucatu, SP (Brazil); Instituto de Biologia, UNICAMP, Campinas, SP (Brazil); Siqueira Neto, J.L. [Departamento de Genetica, IB, Universidade Estadual de Sao Paulo, UNESP, 18618-000, Botucatu, SP (Brazil); Instituto de Biologia, UNICAMP, Campinas, SP (Brazil); Giardini, M.A. [Departamento de Genetica, IB, Universidade Estadual de Sao Paulo, UNESP, 18618-000, Botucatu, SP (Brazil); Instituto de Biologia, UNICAMP, Campinas, SP (Brazil); Winck, F.V. [Instituto de Biologia, UNICAMP, Campinas, SP (Brazil); Ramos, C.H.I. [Instituto de Quimica, UNICAMP, Campinas, SP (Brazil); Cano, M.I.N. [Departamento de Genetica, IB, Universidade Estadual de Sao Paulo, UNESP, 18618-000, Botucatu, SP (Brazil)]. E-mail: micano@ibb.unesp.br

    2007-07-06

    Leishmania amazonensis causes a wide spectrum of leishmaniasis. There are no vaccines or adequate treatment for leishmaniasis, therefore there is considerable interest in the identification of new targets for anti-leishmania drugs. The central role of telomere-binding proteins in cell maintenance makes these proteins potential targets for new drugs. In this work, we used a combination of purification chromatographies to screen L. amazonensis proteins for molecules capable of binding double-stranded telomeric DNA. This approach resulted in the purification of a 38 kDa polypeptide that was identified by mass spectrometry as Rbp38, a trypanosomatid protein previously shown to stabilize mitochondrial RNA and to associate with nuclear and kinetoplast DNAs. Western blotting and supershift assays confirmed the identity of the protein as LaRbp38. Competition and chromatin immunoprecipitation assays confirmed that LaRbp38 interacted with kinetoplast and nuclear DNAs in vivo and suggested that LaRbp38 may have dual cellular localization and more than one function.

  9. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly.

    PubMed

    Schütz, Sabina; Fischer, Ute; Altvater, Martin; Nerurkar, Purnima; Peña, Cohue; Gerber, Michaela; Chang, Yiming; Caesar, Stefanie; Schubert, Olga T; Schlenstedt, Gabriel; Panse, Vikram G

    2014-01-01

    Within a single generation time a growing yeast cell imports ?14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers-termed here escortins-to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. PMID:25144938

  10. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    SciTech Connect

    Siyam, Arwa [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States) [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); Wang, Suzhen; Qin, Chunlin; Mues, Gabriele [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States)] [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Stevens, Roy [Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States)] [Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); D'Souza, Rena N. [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States)] [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Lu, Yongbo, E-mail: ylu@bcd.tamhsc.edu [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States)] [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nuclear localization of DMP1 in various cell lines. Black-Right-Pointing-Pointer Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. Black-Right-Pointing-Pointer Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  11. Genome-Wide Screen of Three Herpesviruses for Protein Subcellular Localization and Alteration of PML Nuclear Bodies

    PubMed Central

    Salsman, Jayme; Zimmerman, Nicole; Chen, Tricia; Domagala, Megan; Frappier, Lori

    2008-01-01

    Herpesviruses are large, ubiquitous DNA viruses with complex host interactions, yet many of the proteins encoded by these viruses have not been functionally characterized. As a first step in functional characterization, we determined the subcellular localization of 234 epitope-tagged proteins from herpes simplex virus, cytomegalovirus, and Epstein–Barr virus. Twenty-four of the 93 proteins with nuclear localization formed subnuclear structures. Twelve of these localized to the nucleolus, and five at least partially localized with promyelocytic leukemia (PML) bodies, which are known to suppress viral lytic infection. In addition, two proteins disrupted Cajal bodies, and 19 of the nuclear proteins significantly decreased the number of PML bodies per cell, including six that were shown to be SUMO-modified. These results have provided the first functional insights into over 120 previously unstudied proteins and suggest that herpesviruses employ multiple strategies for manipulating nuclear bodies that control key cellular processes. PMID:18617993

  12. Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening

    Microsoft Academic Search

    Birgit Piechulla; Eran Pichersky; Anthony R. Cashmore; Wilhelm Gruissem

    1986-01-01

    The expression of plastid and nuclear genes coding for photosynthesis-specific proteins has been studied during tomato fruit formation. The steady-state transcript levels for the large (rbcL) and small (rbcS) subunit of RuBPC\\/Oase, as well as the thylakoid membrane proteins, the 32 kD QB-binding protein of PS II (psbA), the P700 reaction center protein of PS I (psaA) and the chlorophyll

  13. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay.

    PubMed

    Bresson, Stefan M; Conrad, Nicholas K

    2013-01-01

    Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAP? and PAP?, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAP?, redundantly with PAP?, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAP?/?, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. PMID:24146636

  14. O-GlcNAc glycosylation: a signal for the nuclear transport of cytosolic proteins?

    Microsoft Academic Search

    Céline Guinez; Willy Morelle; Jean-Claude Michalski; Tony Lefebvre

    2005-01-01

    Year 2004 marks the 20th anniversary of the discovery of O-linked N-acetylglucosamine (O-GlcNAc) by Gerald W. Hart. Despite interest for O-GlcNAc, the functions played by this single monosaccharide remain poorly understood, though numerous roles have been suggested, among which is the involvement of O-GlcNAc in the nuclear transport of cytosolic proteins. This idea was first sustained by studies on bovine

  15. Utilization of nuclear structural proteins for targeted therapy and detection of proliferative and differentiation disorders

    DOEpatents

    Lelievre, Sophie (Berkeley, CA); Bissell, Mina (Berkeley, CA)

    2001-01-01

    The localization of nuclear apparatus proteins (NUMA) is used to identify tumor cells and different stages in the tumor progression and differentiation processes. There is a characteristic organization of NuMA in tumor cells and in phenotypically normal cells. NuMA distribution patterns are significantly less diffuse in proliferating non-malignant cells compared to malignant cells. The technique encompasses cell immunostaining using a NuMA specific antibody, and microscopic analysis of NuMA distribution within each nucleus.

  16. LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle

    PubMed Central

    Dialynas, George; Flannery, Kaitlin M.; Zirbel, Luka N.; Nagy, Peter L.; Mathews, Katherine D.; Moore, Steven A.; Wallrath, Lori L.

    2012-01-01

    Mutations in the human LMNA gene, encoding A-type lamins, give rise to laminopathies, which include several types of muscular dystrophy. Here, heterozygous sequence variants in LMNA, which result in single amino-acid substitutions, were identified in patients exhibiting muscle weakness. To assess whether the substitutions altered lamin function, we performed in vivo analyses using a Drosophila model. Stocks were generated that expressed mutant forms of the Drosophila A-type lamin modeled after each variant. Larvae were used for motility assays and histochemical staining of the body-wall muscle. In parallel, immunohistochemical analyses were performed on human muscle biopsy samples from the patients. In control flies, muscle-specific expression of the wild-type A-type lamin had no apparent affect. In contrast, expression of the mutant A-type lamins caused dominant larval muscle defects and semi-lethality at the pupal stage. Histochemical staining of larval body wall muscle revealed that the mutant A-type lamin, B-type lamins, the Sad1p, UNC-84 domain protein Klaroid and nuclear pore complex proteins were mislocalized to the cytoplasm. In addition, cytoplasmic actin filaments were disorganized, suggesting links between the nuclear lamina and the cytoskeleton were disrupted. Muscle biopsies from the patients showed dystrophic histopathology and architectural abnormalities similar to the Drosophila larvae, including cytoplasmic distribution of nuclear envelope proteins. These data provide evidence that the Drosophila model can be used to assess the function of novel LMNA mutations and support the idea that loss of cellular compartmentalization of nuclear proteins contributes to muscle disease pathogenesis. PMID:22186027

  17. Methylation-dependent binding of wheat nuclear proteins to the promoter region of ribosomal RNA genes

    Microsoft Academic Search

    Vasilii V. Ashapkin; Taras T. Antoniv; Boris F. Vanyushin

    1995-01-01

    Here, we report data on the binding of wheat nuclear proteins (NP) to the promoter region of the rDNA intergenic spacer (IGS), with emphasis on the possible effects of methylation with M.HpalI on this binding. We have found that a number of NP specifically bind to the rDNA promoter, and to upstream and downstream IGS sequences. A 240-kDa NP binds

  18. Requirement of the spindle pole body for targeting and/or tethering proteins to the inner nuclear membrane.

    PubMed

    Diaz-Muñoz, Greetchen; Harchar, Terri A; Lai, Tsung-Po; Shen, Kuo-Fang; Hopper, Anita K

    2014-01-01

    Appropriate targeting of inner nuclear membrane (INM) proteins is important for nuclear function and architecture. To gain new insights into the mechanism(s) for targeting and/or tethering peripherally associated proteins to the INM, we screened a collection of temperature sensitive S. cerevisiae yeast mutants for defects in INM location of the peripheral protein, Trm1-II-GFP. We uncovered numerous genes encoding components of the Spindle Pole Body (SPB), the yeast centrosome. SPB alterations affect the localization of both an integral (Heh2) and a peripheral INM protein (Trm1-II-GFP), but not a nucleoplasmic protein (Pus1). In wild-type cells Trm1-II-GFP is evenly distributed around the INM, but in SPB mutants, Trm1-II-GFP mislocalizes as a spot(s) near ER-nucleus junctions, perhaps its initial contact site with the nuclear envelope. Employing live cell imaging over time in a microfluidic perfusion system to study protein dynamics, we show that both Trm1-II-GFP INM targeting and maintenance depend upon the SPB. We propose a novel targeting and/or tethering model for a peripherally associated INM protein that combines mechanisms of both integral and soluble nuclear proteins, and describe a role of the SPB in nuclear envelope dynamics that affects this process. PMID:25482124

  19. Requirement of the spindle pole body for targeting and/or tethering proteins to the inner nuclear membrane

    PubMed Central

    Diaz-Muñoz, Greetchen; Harchar, Terri A; Lai, Tsung-Po; Shen, Kuo-Fang; Hopper, Anita K

    2014-01-01

    Appropriate targeting of inner nuclear membrane (INM) proteins is important for nuclear function and architecture. To gain new insights into the mechanism(s) for targeting and/or tethering peripherally associated proteins to the INM, we screened a collection of temperature sensitive S. cerevisiae yeast mutants for defects in INM location of the peripheral protein, Trm1-II-GFP. We uncovered numerous genes encoding components of the Spindle Pole Body (SPB), the yeast centrosome. SPB alterations affect the localization of both an integral (Heh2) and a peripheral INM protein (Trm1-II-GFP), but not a nucleoplasmic protein (Pus1). In wild-type cells Trm1-II-GFP is evenly distributed around the INM, but in SPB mutants, Trm1-II-GFP mislocalizes as a spot(s) near ER-nucleus junctions, perhaps its initial contact site with the nuclear envelope. Employing live cell imaging over time in a microfluidic perfusion system to study protein dynamics, we show that both Trm1-II-GFP INM targeting and maintenance depend upon the SPB. We propose a novel targeting and/or tethering model for a peripherally associated INM protein that combines mechanisms of both integral and soluble nuclear proteins, and describe a role of the SPB in nuclear envelope dynamics that affects this process. PMID:25482124

  20. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    PubMed

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-? (PPAR?) NRs and the metabotropic glutamate (mGluR) and ?2-adreneric (?2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the ?2AR LBP were used in virtual screening to identify high efficacy agonists targeting ?2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  1. Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors

    PubMed Central

    2015-01-01

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-? (PPAR?) NRs and the metabotropic glutamate (mGluR) and ?2-adreneric (?2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the ?2AR LBP were used in virtual screening to identify high efficacy agonists targeting ?2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  2. A discrete 3' region of U6 small nuclear RNA modulates the phosphorylation cycle of the C1 heterogeneous nuclear ribonucleoprotein particle protein.

    PubMed Central

    Mayrand, S H; Fung, P A; Pederson, T

    1996-01-01

    The C heterogeneous ribonucleoprotein particle (hnRNP) protein bind to nascent pre-mRNA and may participate in assembly of the early prespliceosome. Ser/Thr phosphorylation of the C1 hnRNP protein in HeLa nuclear extracts regulates its binding to pre-mRNA (S. H. Mayrand, P. Dwen, and T. Pederson, Proc. Natl. Acad. Sci. USA 90:7764-7768, 1993). We have now further investigated the phosphorylation cycle of the C1 hnRNP protein, with emphasis on its regulation. Pretreatment of nuclear extracts with micrococcal nuclease eliminated the phosphorylation of C1 hnRNP protein, but pretreatment with DNase did not, suggesting a dependence on RNA. Oligodeoxynucleotide-targeted RNase H cleavage of U1, U2, and U4 small nuclear RNAs did not affect the phosphorylation of C1 hnRNP protein. However, cleavage of nucleotides 78 to 95, but not other regions, of U6 small nuclear RNA resulted in an inhibition of the dephosphorylation step of the C1 hnRNP protein phosphorylation cycle. This inhibition was as pronounced as that seen with the serine/threonine protein phosphatase inhibitor okadaic acid. C1 hnRNP protein dephosphorylation could be completely restored by the addition of intact U6 RNA. Add-back experiments with mutant RNAs further delineated the minimal region essential for C1 protein dephosphorylation as residing in nucleotides 85 to 92 of U6 RNA. These results illuminate a hitherto unanticipated function of U6 RNA: the modulation of a phosphorylation-dephosphorylation cycle of C1 hnRNP protein that influences the binding affinity of this protein for pre-mRNA. This newly revealed function of U6 RNA is likely to play a very early role in the prespliceosome assembly pathway, prior to U6 RNA's entry into the mature spliceosome's active center. PMID:8622668

  3. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane.

    PubMed

    Ungricht, Rosemarie; Klann, Michael; Horvath, Peter; Kutay, Ulrike

    2015-06-01

    Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2? as model substrates, we show that INM targeting is energy-dependent but distinct from import of soluble cargo. Accumulation of proteins at the INM relies on both a highly interconnected ER network, which is affected by energy depletion, and an efficient immobilization step at the INM. Nucleoporin depletions suggest that translocation through nuclear pore complexes (NPCs) is rate-limiting and restricted by the central NPC scaffold. Our experimental data combined with mathematical modeling support a diffusion-retention-based mechanism of INM targeting. We experimentally confirmed the sufficiency of diffusion and retention using an artificial reporter lacking natural sorting signals that recapitulates the energy dependence of the process in vivo. PMID:26056139

  4. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.

    PubMed

    Tomas, Martin; Blumhardt, Philipp; Deutzmann, Anja; Schwarz, Tobias; Kromm, Dimitri; Leitenstorfer, Alfred; Ferrando-May, Elisa

    2013-08-01

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at ? = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at ? = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. PMID:23420601

  5. Characterization of a Family of Novel Cysteine- Serine-Rich Nuclear Proteins (CSRNP)

    PubMed Central

    Gingras, Sébastien; Pelletier, Stéphane; Boyd, Kelli; Ihle, James N.

    2007-01-01

    Gene array analysis has been widely used to identify genes induced during T cell activation. Our studies identified an immediate early gene that is strongly induced in response to IL-2 in mouse T cells which we named cysteine- serine-rich nuclear protein-1 (CSRNP-1). The human ortholog was previously identified as an AXIN1 induced gene (AXUD1). The protein does not contain sequence defined domains or motifs annotated in public databases, however the gene is a member of a family of three mammalian genes that share conserved regions, including cysteine- and serine-rich regions and a basic domain, they encode nuclear proteins, possess transcriptional activation domain and bind the sequence AGAGTG. Consequently we propose the nomenclature of CSRNP-1, -2 and -3 for the family. To elucidate the physiological functions of CSRNP-1, -2 and -3, we generated mice deficient for each of these genes by homologous recombination in embryonic stem cells. Although the CSRNP proteins have the hallmark of transcription factors and CSRNP-1 expression is highly induced by IL-2, deletion of the individual genes had no obvious consequences on normal mouse development, hematopoiesis or T cell functions. However, combined deficiencies cause partial neonatal lethality suggesting that the genes have redundant functions. PMID:17726538

  6. Reverse micelles as a platform for dynamic nuclear polarization in solution NMR of proteins.

    PubMed

    Valentine, Kathleen G; Mathies, Guinevere; Bédard, Sabrina; Nucci, Nathaniel V; Dodevski, Igor; Stetz, Matthew A; Can, Thach V; Griffin, Robert G; Wand, A Joshua

    2014-02-19

    Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule. Unfortunately, these EPR transitions lie in the microwave range of the electromagnetic spectrum where bulk water absorbs strongly, often resulting in catastrophic heating. Furthermore, the residence times of water on the surface of the protein in bulk solution are generally too short for efficient transfer of polarization. Here we take advantage of the properties of solutions of encapsulated proteins dissolved in low viscosity solvents to implement DNP in liquids. Such samples are largely transparent to the microwave frequencies required and thereby avoid significant heating. Nitroxide radicals are introduced into the reverse micelle system in three ways: attached to the protein, embedded in the reverse micelle shell, and free in the aqueous core. Significant enhancements of the water resonance ranging up to ?-93 at 0.35 T were observed. We also find that the hydration properties of encapsulated proteins allow for efficient polarization transfer from water to the protein. These and other observations suggest that merging reverse micelle encapsulation technology with DNP offers a route to a significant increase in the sensitivity of solution NMR spectroscopy of proteins and other biomolecules. PMID:24456213

  7. Agrobacterium rhizogenes GALLS Protein Contains Domains for ATP Binding, Nuclear Localization, and Type IV Secretion?

    PubMed Central

    Hodges, Larry D.; Vergunst, Annette C.; Neal-McKinney, Jason; den Dulk-Ras, Amke; Moyer, Deborah M.; Hooykaas, Paul J. J.; Ream, Walt

    2006-01-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2. PMID:17012398

  8. Identification and Characterization of a Novel Nuclear Protein Complex Involved in Nuclear Hormone Receptor-mediated Gene Regulation*

    PubMed Central

    Garapaty, Shivani; Xu, Chong-Feng; Trojer, Patrick; Mahajan, Muktar A.; Neubert, Thomas A.; Samuels, Herbert H.

    2009-01-01

    NRC/NCoA6 plays an important role in mediating the effects of ligand-bound nuclear hormone receptors as well as other transcription factors. NRC interacting factor 1 (NIF-1) was cloned as a novel factor that interacts in vivo with NRC. Although NIF-1 does not directly interact with nuclear hormone receptors, it enhances activation by nuclear hormone receptors presumably through its interaction with NRC. To further understand the cellular and biological function of NIF-1, we identified NIF-1-associated proteins by in-solution proteolysis followed by mass spectrometry. The identified components revealed factors involved in histone methylation and cell cycle control and include Ash2L, RbBP5, WDR5, HCF-1, DBC-1, and EMSY. Although the NIF-1 complex contains Ash2L, RbBP5, and WDR5, suggesting that the complex might methylate histone H3-Lys-4, we found that the complex contains a H3 methyltransferase activity that modifies a residue other than H3-Lys-4. The identified components form at least two distinctly sized NIF-1 complexes. DBC-1 and EMSY were identified as integral components of an NIF-1 complex of ?1.5 MDa and were found to play an important role in the regulation of nuclear receptor-mediated transcription. Stimulation of the Sox9 and HoxA1 genes by retinoic acid receptor-? was found to require both DBC-1 and EMSY in addition to NIF-1 for maximal transcriptional activation. Interestingly, NRC was not identified as a component of the NIF-1 complex, suggesting that NIF-1 and NRC do not exist as stable in vitro purified complexes, although the separate NIF-1 and NRC complexes appear to functionally interact in the cell. PMID:19131338

  9. Influence of cargo size on Ran and energy requirements for nuclear protein import

    PubMed Central

    Lyman, Susan K.; Guan, Tinglu; Bednenko, Janna; Wodrich, Harald; Gerace, Larry

    2002-01-01

    Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin ?/? and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin ? and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC. PMID:12370244

  10. The Relationship between SMN, the Spinal Muscular Atrophy Protein, and Nuclear Coiled Bodies in Differentiated Tissues and Cultured Cells

    Microsoft Academic Search

    Philip J. Young; Thanh T. Le; Nguyen thi Man; Arthur H. M. Burghes; Glenn E. Morris

    2000-01-01

    The spinal muscular atrophy protein, SMN, is a cytoplasmic protein that is also found in distinct nuclear structures called “gems.” Gems are closely associated with nuclear coiled bodies and both may have a direct role in snRNP maturation and pre-RNA splicing. There has been some controversy over whether gems and coiled bodies colocalize or form adjacent\\/independent structures in HeLa and

  11. The Yeast Nucleoporin Nup53p Specifically Interacts with Nic96p and Is Directly Involved in Nuclear Protein Import

    PubMed Central

    Fahrenkrog, Birthe; Hübner, Wolfgang; Mandinova, Anna; Panté, Nelly; Keller, Walter; Aebi, Ueli

    2000-01-01

    The bidirectional nucleocytoplasmic transport of macromolecules is mediated by the nuclear pore complex (NPC) which, in yeast, is composed of ?30 different proteins (nucleoporins). Pre-embedding immunogold-electron microscopy revealed that Nic96p, an essential yeast nucleoporin, is located about the cytoplasmic and the nuclear periphery of the central channel, and near or at the distal ring of the yeast NPC. Genetic approaches further implicated Nic96p in nuclear protein import. To more specifically explore the potential role of Nic96p in nuclear protein import, we performed a two-hybrid screen with NIC96 as the bait against a yeast genomic library to identify transport factors and/or nucleoporins involved in nuclear protein import interacting with Nic96p. By doing so, we identified the yeast nucleoporin Nup53p, which also exhibits multiple locations within the yeast NPC and colocalizes with Nic96p in all its locations. Whereas Nup53p is directly involved in NLS-mediated protein import by its interaction with the yeast nuclear import receptor Kap95p, it appears not to participate in NES-dependent nuclear export. PMID:11071914

  12. Platelet-derived growth factor induces phosphorylation of a 64-kDa nuclear protein

    SciTech Connect

    Shawver, L.K.; Pierce, G.F.; Kawahara, R.S.; Deuel, T.F.

    1989-01-15

    The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation.

  13. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    PubMed Central

    Lalime, Erin N.; Pekosz, Andrew

    2014-01-01

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. PMID:24928037

  14. Centrin 2 Localizes to the Vertebrate Nuclear Pore and Plays a Role in mRNA and Protein Export? †

    PubMed Central

    Resendes, Karen K.; Rasala, Beth A.; Forbes, Douglass J.

    2008-01-01

    Centrins in vertebrates have traditionally been associated with microtubule-nucleating centers such as the centrosome. Unexpectedly, we found centrin 2 to associate biochemically with nucleoporins, including the Xenopus laevis Nup107-160 complex, a critical subunit of the vertebrate nuclear pore in interphase and of the kinetochores and spindle poles in mitosis. Immunofluorescence of Xenopus cells and in vitro reconstituted nuclei indeed revealed centrin 2 localized at the nuclear pores. Use of the mild detergent digitonin in immunofluorescence also allowed centrin 2 to be clearly visualized at the nuclear pores of human cells. Disruption of nuclear pores using RNA interference of the pore assembly protein ELYS/MEL-28 resulted in a specific decrease of centrin 2 at the nuclear rim of HeLa cells. Functionally, excess expression of either the N- or C-terminal calcium-binding domains of human centrin 2 caused a dominant-negative effect on both mRNA and protein export, leaving protein import intact. The mRNA effect mirrors that found for the Saccharomyes cerevisiae centrin Cdc31p at the yeast nuclear pore, a role until now thought to be unique to yeast. We conclude that in vertebrates, centrin 2 interacts with major subunits of the nuclear pore, exhibits nuclear pore localization, and plays a functional role in multiple nuclear export pathways. PMID:18172010

  15. Tumor Necrosis Factor-Induced Protein 3 As a Putative Regulator of Nuclear Factor-BMediated Resistance to

    E-print Network

    Ford, James

    Tumor Necrosis Factor- ­Induced Protein 3 As a Putative Regulator of Nuclear Factor- B in glioblastoma cells. Results We identified a transcriptomic signature that predicts a common in vitro alterations of various NF- B pathway elements. Tumor necrosis factor- ­induced protein 3 (TNFAIP3

  16. Physical and Functional Interactions between Cellular Retinoic Acid Binding Protein II and the Retinoic Acid-Dependent Nuclear Complex

    Microsoft Academic Search

    LAURENT DELVA; JEAN-NOEL BASTIE; CECILE ROCHETTE-EGLY; RADHIA KRAIBA; NICOLE BALITRAND; GILLES DESPOUY; PIERRE CHAMBON; CHRISTINE CHOMIENNE

    1999-01-01

    Two sorts of proteins bind to, and mediate the developmental and homeostatic effects of, retinoic acid (RA): the RAR and RXR nuclear receptors, which act as ligand-dependent transcriptional regulators, and the cellular RA binding proteins (CRABPI and CRABPII). CRABPs are generally known to be implicated in the synthesis, degradation, and control of steady-state levels of RA, yet previous and recent

  17. DETECTION OF EXTRA-NUCLEAR HIGH MOBILITY GROUP BOX-1 PROTEIN IN A CANINE MODEL OF MYOCARDIAL INFARCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high mobility group box-1 protein (HMGB-1) is a well-characterized nuclear protein recently shown to be involved in endotoxin-induced inflammation and injury. Studies have linked HMGB-1 release to the production of pro-inflammatory cytokines; however, a role for HMGB-1 in other disorders involvi...

  18. DNA-interactions and nuclear localisation of the chromosomal HMG domain protein SSRP1 from maize.

    PubMed

    Röttgers, K; Krohn, N M; Lichota, J; Stemmer, C; Merkle, T; Grasser, K D

    2000-08-01

    The structure-specific recognition protein 1 (SSRP1) is a member of the protein family containing a high mobility group (HMG) domain DNA-binding motif. We have functionally characterised the 71.4 kDa Zm-SSRP1 protein from maize. The chromatin-associated Zm-SSRP1 is detected by immunoblot analysis in maize leaves, kernels and suspension culture cells, but not in roots. Mediated by its HMG domain, recombinant Zm-SSRP1 interacts structure-specifically with supercoiled DNA and DNA minicircles when compared with linear DNA. In linear duplex DNA, the protein does not recognise a specific sequence, but it binds preferentially to sequences containing the deformable dinucleotide TG, as demonstrated by a random oligonucleotide selection experiment. Zm-SSRP1 modulates DNA structure by bending the target sequence, since it promotes the circularisation of short DNA fragments in the presence of DNA ligase. Moreover, Zm-SSRP1 facilitates the formation of nucleoprotein structures, as measured using the bacterial site-specific beta-mediated recombination reaction. Analysis of the subcellular localisation of various SSRP1-GFP fusions revealed that, in contrast to HMG domain transcription factors, the nuclear localisation sequence of Zm-SSRP1 is situated within a 20-amino acid residue region adjacent to the HMG domain rather than within the DNA-binding domain. The results are discussed in the context of the likely function of SSRP1 proteins in transcription and replication. PMID:10929132

  19. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)h detection.

    PubMed

    Su, Yongchao; Andreas, Loren; Griffin, Robert G

    2015-06-01

    Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins. PMID:25839340

  20. Arginine methylation facilitates the nuclear export of hnRNP?proteins

    PubMed Central

    Shen, Elisa C.; Henry, Michael F.; Weiss, Valerie H.; Valentini, Sandro R.; Silver, Pamela A.; Lee, Margaret S.

    1998-01-01

    Eukaryotic mRNA processing and export is mediated by various heterogeneous nuclear ribonucleoproteins (hnRNPs). Many of these hnRNPs are methylated on arginine residues. In the yeast, Saccharomyces cerevisiae, the predominant enzyme responsible for arginine methylation is Hmt1p. Hmt1p methylates both Npl3p and Hrp1p, which are shuttling hnRNPs involved in mRNA processing and export. Here, we employ an in vivo nuclear export assay to show that arginine methylation is important for the nuclear export of these hnRNPs. Both Npl3p and Hrp1p fail to exit the nucleus in cells lacking Hmt1p, and overexpression of Hmt1p enhances Npl3p export. The export of a novel hnRNP-like protein, Hrb1p, which does not bind poly(A)+ RNA, however, is not affected by the lack of methylation. Furthermore, we find a genetic relationship between Hmt1p and cap-binding protein 80 (CBP80). Together, these findings establish that one biological role for arginine methylation is in facilitating the export of certain hnRNPs out of the nucleus. PMID:9499403

  1. Histone-binding domains in a human nuclear autoantigenic sperm protein.

    PubMed

    Batova, I; O'Rand, M G

    1996-06-01

    In one of our previous studies, the deduced amino acid sequence of the human nuclear autoantigenic sperm protein (hNASP) revealed two conserved histone-binding domains when compared to the Xenopus N1/N2 protein sequence. These histone-binding domains of Xenopus N1/N2 are known to be functional; however, their function in hNASP is unknown. In this study we have determined the number, location, and activity of the histone-binding domains on the primary sequence of hNASP. Purified recombinant polypeptides expressing the full-length hNASP and various deletion constructs covering the entire length of the hNASP sequence were tested by Western blotting and in ELISA for binding to biotin-labeled histones. A positive reaction was detected for the full-length recombinant protein and for the polypeptides spanning the N-terminal region (amino acids [aa] 32-192), and two additional regions: aa 193-352 and aa 353-572. The lack of binding to the expressed C-terminal (aa 573-787), which also contains polyacidic amino acids, suggests that the binding of hNASP to the somatic core histones is a sequence-specific as well as an electrostatic interaction. The removal of flanking sequences from the binding domains did not abrogate their ability to bind histones. We conclude that there are at least three functional histone-binding domains in hNASP, two of them encompassing the predicted histone binding sites homologous to the N1/N2 protein, and a third novel domain. Therefore, hNASP may be defined as a nuclear histone-binding protein found in human testis. PMID:8724350

  2. Expression and localization of nuclear proteins in autosomal-dominant Emery-Dreifuss muscular dystrophy with LMNA R377H mutation

    Microsoft Academic Search

    Beate Reichart; Ruth Klafke; Christine Dreger; Eleonora Krüger; Isabell Motsch; Andrea Ewald; Jochen Schäfer; Heinz Reichmann; Clemens R Müller; Marie-Christine Dabauvalle

    2004-01-01

    BACKGROUND: The autosomal dominant form of Emery-Dreifuss muscular dystrophy (AD-EDMD) is caused by mutations in the gene encoding for the lamins A and C (LMNA). Lamins are intermediate filament proteins which form the nuclear lamina underlying the inner nuclear membrane. We have studied the expression and the localization of nuclear envelope proteins in three different cell types and muscle tissue

  3. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2? phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2? after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. PMID:25329362

  4. A protein carboxylate coordinated oxo-centered tri-nuclear iron complex with possible implications for ferritin mineralization

    Microsoft Academic Search

    Martin Högbom; Pär Nordlund

    2004-01-01

    The crystal structure of an oxo-centered tri-nuclear iron complex formed on a protein surface is presented. The cluster forms when crystals of the class Ib ribonucleotide reductase R2 protein from Corynebacterium ammoniagenes are subjected to iron soaking. The tri-iron-oxo complex is coordinated by protein-derived carboxylate ligands arranged in a motif similar to the one found on the inner surface of

  5. The L2 Minor Capsid Protein of Human Papillomavirus Type 16 Interacts with a Network of Nuclear Import Receptors

    Microsoft Academic Search

    Medha S. Darshan; John Lucchi; Emily Harding; Junona Moroianu

    2004-01-01

    The L2 minor capsid proteins enter the nucleus twice during viral infection: in the initial phase after virion disassembly and in the productive phase when, together with the L1 major capsid proteins, they assemble the replicated viral DNA into virions. In this study we investigated the interactions between the L2 protein of high-risk human papillomavirus type 16 (HPV16) and nuclear

  6. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35

    SciTech Connect

    Salsman, Jayme; Wang Xueqi; Frappier, Lori, E-mail: lori.frappier@utoronto.ca

    2011-06-05

    The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.

  7. Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization.

    PubMed

    Yamamoto, Kazutoshi; Caporini, Marc A; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2015-01-01

    While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR approaches to obtain such information in a cellular setting. As long as the proteins inside the living cell tumble rapidly in the NMR timescale, recently developed in-cell solution NMR approaches can provide 3D structural information. However, there are numerous challenges to study membrane proteins inside a cell. Research in our laboratory is focused on developing a combination of solid-state NMR and biological approaches to overcome these challenges in order to obtain high-resolution structural insights into electron transfer processes mediated by membrane-bound proteins like mammalian cytochrome-b5, cytochrome-P450 and cytochrome-P450-reductase. In this study, we demonstrate the feasibility of using dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR spectroscopy for in-cell studies on a membrane-anchored protein. Our experimental results obtained from ¹³C-labeled membrane-anchored cytochrome-b5 in native Escherichia coli cells show a ~16-fold DNP signal enhancement. Further, results obtained from a 2D ¹³C/¹³C chemical shift correlation MAS experiment demonstrate the feasibility of suppressing the background signals from other cellular contents for high-resolution structural studies on membrane proteins. We believe that this study would pave new avenues for high-resolution structural studies on a variety of membrane-associated proteins and their complexes in the cellular context to fully understand their functional roles in physiological processes. PMID:25017802

  8. Solution structures of Mengovirus Leader protein, its phosphorylated derivatives, and in complex with nuclear transport regulatory protein, RanGTPase

    PubMed Central

    Bacot-Davis, Valjean R.; Ciomperlik, Jessica J.; Basta, Holly A.; Cornilescu, Claudia C.; Palmenberg, Ann C.

    2014-01-01

    Cardiovirus Leader (L) proteins induce potent antihost inhibition of active cellular nucleocytoplasmic trafficking by triggering aberrant hyperphosphorylation of nuclear pore proteins (Nup). To achieve this, L binds protein RanGTPase (Ran), a key trafficking regulator, and diverts it into tertiary or quaternary complexes with required kinases. The activity of L is regulated by two phosphorylation events not required for Ran binding. Matched NMR studies on the unphosphorylated, singly, and doubly phosphorylated variants of Mengovirus L (LM) show both modifications act together to partially stabilize a short internal ?-helix comprising LM residues 43–46. This motif implies that ionic and Van der Waals forces contributed by phosphorylation help organize downstream residues 48–67 into a new interface. The full structure of LM as bound to Ran (unlabeled) and Ran (216 aa) as bound by LM (unlabeled) places LM into the BP1 binding site of Ran, wrapped by the conformational flexible COOH tail. The arrangement explains the tight KD for this complex and places the LM zinc finger and phosphorylation interface as surface exposed and available for subsequent reactions. The core structure of Ran, outside the COOH tail, is not altered by LM binding and remains accessible for canonical RanGTP partner interactions. Pull-down assays identify at least one putative Ran:LM partner as an exportin, Crm1, or CAS. A model of Ran:LM:Crm1, based on the new structures suggests LM phosphorylation status may mediate Ran’s selection of exportin(s) and cargo(s), perverting these native trafficking elements into the lethal antihost Nup phosphorylation pathways. PMID:25331866

  9. Identification of a Protein Complex that is Required for Nuclear Protein Import and Mediates Docking of Import Substrate to Distinct Nucleoporins

    Microsoft Academic Search

    Aurelian Radu; Gunter Blobel; Mary Shannon Moore

    1995-01-01

    We have identified and characterized a 9S protein complex from a Xenopus ovary cytosolic subfraction (fraction A) that constitutes this fraction's activity in recognizing a model nuclear import substrate and docking it at the nuclear pore complex. Because of its function, the complex is termed karyopherin. The 54- and 56-kDa subunits of the complex are termed alpha1 and alpha2, respectively,

  10. Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication

    Microsoft Academic Search

    Maureen A. Powers; Colin Macaulay; Frank R. Masiarz; Douglass J. Forbes

    1995-01-01

    Xenopus egg extracts provide a powerful system for in vitro reconstitution of nuclei and analy- sis of nuclear transport. Such cell-free extracts contain three major N-acetylglucosaminylated proteins: p200, p97, and p60. Both p200 and p60 have been found to be components of the nuclear pore. Here, the role of p97 has been investigated. Xenopus p97 was isolated and antisera were

  11. Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Peng, Hui; Pan, Shirong; Feng, Min; Wen, Yuting; Deng, Jingjing; Luo, Xin; Wu, Chuanbin

    2010-01-01

    Nuclear transport of exogenous DNA is a major barrier to nonviral gene delivery that needs to be addressed in the design of new vectors. In this study, we prepared pDNA/HMGB1/PEG-PEI terplexes to promote nuclear import. HMGB1 in the terplexes was used to assist the transportation of pDNA into the nucleus of cells, since it contained nuclear localization signal (NLS) PEG chains were introduced to stabilize pDNA/vector terplexes and reduce the cytotoxicity. HMGB1/PEG-PEI combined vectors have been investigated specifically for their structure interaction by atomic force microscopy and circular dichroic spectroscopy. The results demonstrated that the HMGB1 molecule could bind with the pDNA chains, but not condense pDNA well. The PEG-PEI further compacted pDNA/HMGB1 complexes into nanosized spherical terplexes. The pDNA delivered by HMGB1/PEG-PEI combined vectors was significantly accumulated in the nucleus of cells, as observed by confocal laser scanning microscopy. The percentage of GFP-transfected cells and VEGF protein expression level induced by HMGB1/PEG-PEI were 2.6-4.9-fold and 1.4-2.8-fold higher, respectively, than that of a common cationic polymer PEI 25 kDa. Therefore, the HMGB1/PEG-PEI combined vector could be used as a versatile vector for promoting exogenous DNA nuclear localization, thereby enhancing its expression.

  12. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    Microsoft Academic Search

    Zachary Piccioli; Courtney H. McKee; Anna Leszczynski; Zeynep Onder; Erin C. Hannah; Shahan Mamoor; Lauren Crosby; Junona Moroianu

    2010-01-01

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE739–98 localized mostly to the nucleus. The GST-11E7 and GST-11cE739–98 were imported

  13. Novel Nuclear Export Signal-Interacting Protein, NESI, Critical for the Assembly of Hepatitis Delta Virus

    PubMed Central

    Wang, Yun-Hsin; Chang, Shin C.; Huang, Cheng; Li, Ya-Ping; Lee, Chia-Huei; Chang, Ming-Fu

    2005-01-01

    The process of host factor-mediated nucleocytoplasmic transport is critical for diverse cellular events in eukaryotes and the life cycle of viruses. We have previously identified a chromosome region maintenance 1-independent nuclear export signal (NES) at the C terminus of the large form of hepatitis delta antigen (HDAg), designated NES(HDAg-L) that is required for the assembly of hepatitis delta virus (HDV) (C.-H. Lee et al., J. Biol. Chem. 276:8142-8148, 2001). To look for interacting proteins of the NES(HDAg-L), yeast two-hybrid screening was applied using the GAL4-binding domain fused to the NES(HDAg-L) as bait. Among the positive clones, one encodes a protein, designated NESI [NES(HDAg-L) interacting protein] that specifically interacted with the wild-type NES(HDAg-L) but not with the export/package-defective HDAg-L mutant, NES*(HDAg-L), in which Pro-205 has been replaced by Ala. Northern blot analysis revealed NESI as the gene product of a 1.9-kb endogenous mRNA transcript that is present predominantly in human liver tissue. NESI consists of 467 amino acid residues and bears a putative actin-binding site and a bipartite nuclear localization signal. Specific interaction between HDAg-L and NESI was further confirmed by coimmunoprecipitation and immunofluorescence staining. Overexpression of antisense NESI RNAs inhibited the expression of NESI and abolished HDAg-L-mediated nuclear export and assembly of HDV genomic RNA. These data indicate a critical role of NESI in the assembly of HDV through interaction with HDAg-L. PMID:15956556

  14. Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus.

    PubMed

    Wang, Yun-Hsin; Chang, Shin C; Huang, Cheng; Li, Ya-Ping; Lee, Chia-Huei; Chang, Ming-Fu

    2005-07-01

    The process of host factor-mediated nucleocytoplasmic transport is critical for diverse cellular events in eukaryotes and the life cycle of viruses. We have previously identified a chromosome region maintenance 1-independent nuclear export signal (NES) at the C terminus of the large form of hepatitis delta antigen (HDAg), designated NES(HDAg-L) that is required for the assembly of hepatitis delta virus (HDV) (C.-H. Lee et al., J. Biol. Chem. 276:8142-8148, 2001). To look for interacting proteins of the NES(HDAg-L), yeast two-hybrid screening was applied using the GAL4-binding domain fused to the NES(HDAg-L) as bait. Among the positive clones, one encodes a protein, designated NESI [NES(HDAg-L) interacting protein] that specifically interacted with the wild-type NES(HDAg-L) but not with the export/package-defective HDAg-L mutant, NES*(HDAg-L), in which Pro-205 has been replaced by Ala. Northern blot analysis revealed NESI as the gene product of a 1.9-kb endogenous mRNA transcript that is present predominantly in human liver tissue. NESI consists of 467 amino acid residues and bears a putative actin-binding site and a bipartite nuclear localization signal. Specific interaction between HDAg-L and NESI was further confirmed by coimmunoprecipitation and immunofluorescence staining. Overexpression of antisense NESI RNAs inhibited the expression of NESI and abolished HDAg-L-mediated nuclear export and assembly of HDV genomic RNA. These data indicate a critical role of NESI in the assembly of HDV through interaction with HDAg-L. PMID:15956556

  15. Expression and nuclear localization of the TATA-box-binding protein during baculovirus infection.

    PubMed

    Mainz, Daniela; Quadt, Ilja; Stranzenbach, Andrea K; Voss, Daniel; Guarino, Linda A; Knebel-Mörsdorf, Dagmar

    2014-06-01

    The TATA-box-binding protein (TBP) plays a key role in initiating eukaryotic transcription and is used by many viruses for viral transcription. We previously reported increased TBP levels during infection with the baculovirus Autographa californica multicapsid nuclear polyhedrovirus (AcMNPV). The TBP antiserum used in that study, however, cross-reacted with a baculoviral protein. Here, we reported that increased amounts of nuclear TBP were detected upon infection of Spodoptera frugiperda and TN-368 cells with a TBP-specific antiserum. TBP levels increased until 72 h post-infection (p.i.), whilst tbp transcripts decreased by 16 h p.i., which suggested a virus-induced influence on the TBP protein levels. To address a potential modification of the TBP degradation pathway during infection, we investigated the possible role of viral ubiquitin. Infection studies with AcMNPV recombinants carrying a mutated viral ubiquitin gene revealed that the TBP increase during infection was not altered. In addition, pulse-chase experiments indicated a high TBP half-life of ~60 h in uninfected cells, suggesting that a virus-induced increase of TBP stability was unlikely. This increase in TBP correlated with a redistribution to nuclear domains resembling sites of viral DNA synthesis. Furthermore, we observed colocalization of TBP with host RNA polymerase (RNAP) II, but only until 8 h p.i., whilst TBP, but not RNAPII, was present in the enlarged replication domains late during infection. Thus, we suggested that AcMNPV adapted a mechanism to accumulate the highly stable cellular TBP at sites of viral DNA replication and transcription. PMID:24676420

  16. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    SciTech Connect

    Iwahara, Naotoshi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan)] [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Hisahara, Shin; Hayashi, Takashi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan) [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University, Sapporo 060-8556 (Japan); Horio, Yoshiyuki, E-mail: horio@sapmed.ac.jp [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan)] [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan)

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  17. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  18. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  19. Study of nuclear proteins in normal and xeroderma pigmentosum lymphoblastoid cells

    SciTech Connect

    Amari, N.M.B.

    1985-01-01

    Nuclear histone and nonhistone (NHP) proteins from normal human and xeroderma pigmentosum, complementation group A (XP-A) lymphoblastoid cells were compared both qualitatively, quantitatively and for binding affinity for DNA. Histones and four NHP fractions (NHP/sub 1-4/) were isolated from purified cell nuclei. Binding affinity to (/sup 3/H) melanoma DNA of histones and each NHP fraction was then determined using gradient dialysis followed by a filter assay. Histones and each NHP fraction were then sub-fractionated by polyacrylamide gel electrophoresis. Densitometric scans of the separation of these proteins on the gels were qualitatively, and quantitatively analyzed and compared between the two cell lines. No qualitative or quantitative differences were observed between histones from XP-A or normal cells.

  20. Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation.

    PubMed

    Richardson, Richard T; Alekseev, Oleg M; Grossman, Gail; Widgren, Esther E; Thresher, Randy; Wagner, Eric J; Sullivan, Kelly D; Marzluff, William F; O'Rand, Michael G

    2006-07-28

    A multichaperone nucleosome-remodeling complex that contains the H1 linker histone chaperone nuclear autoantigenic sperm protein (NASP) has recently been described. Linker histones (H1) are required for the proper completion of normal development, and NASP transports H1 histones into nuclei and exchanges H1 histones with DNA. Consequently, we investigated whether NASP is required for normal cell cycle progression and development. We now report that without sufficient NASP, HeLa cells and U2OS cells are unable to replicate their DNA and progress through the cell cycle and that the NASP(-/-) null mutation causes embryonic lethality. Although the null mutation NASP(-/-) caused embryonic lethality, null embryos survive until the blastocyst stage, which may be explained by the presence of stored NASP protein in the cytoplasm of oocytes. We conclude from this study that NASP and therefore the linker histones are key players in the assembly of chromatin after DNA replication. PMID:16728391

  1. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    SciTech Connect

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)] [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan)] [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan) [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan) [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan) [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  2. Expression of Nuclear Factor Erythroid 2 Protein in Malignant Cutaneous Tumors

    PubMed Central

    Choi, Chang Yong; Kim, Jin Young; Wee, Seo Yeong; Lee, Jang Hyun; Nam, Doo Hyun; Cho, Moon Kyun; Lee, Yoon Jin; Nam, Hae Seon; Lee, Sang Han; Cho, Sung Woo

    2014-01-01

    Background Reactive oxygen species (ROS) damages cell molecules, and modifies cell signaling. The nuclear factor E2-related factor (Nrf2) is a critical transcription regulator, which protects cells against oxidative damage. Nrf2 expression is increased in a large number of cancers. However, little information has been reported regarding the expression of Nrf2 in skin cancers. Hence, we explored the expression of Nrf2 protein in skin cancers. Methods The Nrf2 protein expression in 24 specimens, including 6 malignant melanomas (MM), 6 squamous cell carcinomas (SCC), 6 basal cell carcinomas (BCC), and 6 normal skin tissues, was evaluated by western blotting. Immunohistochemical staining was performed. The expression of Kelch-like ECH-associated protein 1 (Keap1), the key regulator of Nrf2, was also analyzed by western blotting. Results Small interfering RNA transfection to the melanoma cell line G361 confirmed that an approximately 66 kDa band was the true Nrf2 band. The western blot revealed that the Nrf2 protein was definitely expressed in normal skin tissues, but the Nrf2 expression was decreased in MM, SCC, and BCC. Immunohistochemical examination showed that expression of Nrf2 was decreased in all skin cancer tissues compared to the normal skin tissues. Keap1 was not expressed in all malignant skin tumors and normal skin tissues by western blot. Conclusions ROS was increased in various types of cancers which proteins were highly expressed or underexpressed. This study demonstrated that the expression of Nrf2 protein was down-regulated in human malignant skin tumors. We suggest that decreased expression of Nrf2 is related to skin cancers. PMID:25396176

  3. Most nuclear systemic autoantigens are extremely disordered proteins: implications for the etiology of systemic autoimmunity

    PubMed Central

    Carl, Philip L; Temple, Brenda RS; Cohen, Philip L

    2005-01-01

    Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals. PMID:16277689

  4. A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein

    PubMed Central

    Li, Zhuo; Huang, Richard Y.-C.; Yopp, Daniel C.; Hileman, Travis H.; Santangelo, Thomas J.; Hurwitz, Jerard; Hudgens, Jeffrey W.; Kelman, Zvi

    2014-01-01

    Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that associates with and influences the activity of many proteins participating in DNA metabolic processes and cell cycle progression. Previously, an uncharacterized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably interact with PCNA in vivo. Here, we show that this protein, designated Thermococcales inhibitor of PCNA (TIP), binds to PCNA in vitro and inhibits PCNA-dependent activities likely by preventing PCNA trimerization. Using hydrogen/deuterium exchange mass spectrometry and site-directed mutagenesis, the interacting regions of PCNA and TIP were identified. Most proteins bind to PCNA via a PCNA-interacting peptide (PIP) motif that interacts with the inter domain connecting loop (IDCL) on PCNA. TIP, however, lacks any known PCNA-interacting motif, suggesting a new mechanism for PCNA binding and regulation of PCNA-dependent activities, which may support the development of a new subclass of therapeutic biomolecules for inhibiting PCNA. PMID:24728986

  5. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    SciTech Connect

    Cambier, Linda [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France)] [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France); Pomies, Pascal, E-mail: pascal.pomies@crbm.cnrs.fr [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France)] [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France)

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  6. GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import

    PubMed Central

    1995-01-01

    Mediated import of proteins into the nucleus involves multiple cytosolic factors, including the small GTPase Ran. Whether Ran functions by interacting with other cytosolic proteins or components of the nuclear pore complex has been unclear. Furthermore, the precise transport step where Ran acts has not been determined. To address these questions, we have analyzed the binding interactions of Ran using permeabilized cells and isolated nuclear envelopes. By light and electron microscope immunolocalization, we have found that Ran accumulates specifically at the cytoplasmic surface of the nuclear pore complex when nuclear import in permeabilized cells is inhibited by nonhydrolyzable analogs of GTP. Ran associates with a peripheral pore complex region that is similar to the area where transport ligands accumulate by depletion of ATP, which arrests an early step of transport. Binding studies with isolated nuclear envelopes in the absence of added cytosol indicate that Ran-GTP directly interacts with a pore complex protein. Using blot overlay techniques, we detected a single prominent polypeptide of isolated nuclear envelopes that binds Ran-GTP. This corresponds to the 358-kD protein RanBP2, a Ran binding pore complex protein recently identified by two-hybrid screening. Thus, RanBP2 is likely to constitute the Ran-GTP-binding site detected at the cytoplasmic periphery of the pore complex. These data support a model in which initial ligand binding to the nuclear pore complex occurs at or near RanBP2, and that hydrolysis of GTP by Ran at this site serves to define commitment to the nuclear import pathway. PMID:7593180

  7. Biophysical and Functional Analyses Suggest That Adenovirus E4-ORF3 Protein Requires Higher-order Multimerization to Function against Promyelocytic Leukemia Protein Nuclear Bodies*

    PubMed Central

    Patsalo, Vadim; Yondola, Mark A.; Luan, Bowu; Shoshani, Ilana; Kisker, Caroline; Green, David F.; Raleigh, Daniel P.; Hearing, Patrick

    2012-01-01

    The early region 4 open reading frame 3 protein (E4-ORF3; UniProt ID P04489) is the most highly conserved of all adenovirus-encoded gene products at the amino acid level. A conserved attribute of the E4-ORF3 proteins of different human adenoviruses is the ability to disrupt PML nuclear bodies from their normally punctate appearance into heterogeneous filamentous structures. This E4-ORF3 activity correlates with the inhibition of PML-mediated antiviral activity. The mechanism of E4-ORF3-mediated reorganization of PML nuclear bodies is unknown. Biophysical analysis of the purified WT E4-ORF3 protein revealed an ordered secondary/tertiary structure and the ability to form heterogeneous higher-order multimers in solution. Importantly, a nonfunctional E4-ORF3 mutant protein, L103A, forms a stable dimer with WT secondary structure content. Because the L103A mutant is incapable of PML reorganization, this result suggests that higher-order multimerization of E4-ORF3 may be required for the activity of the protein. In support of this hypothesis, we demonstrate that the E4-ORF3 L103A mutant protein acts as a dominant-negative effector when coexpressed with the WT E4-ORF3 in mammalian cells. It prevents WT E4-ORF3-mediated PML track formation presumably by binding to the WT protein and inhibiting the formation of higher-order multimers. In vitro protein binding studies support this conclusion as demonstrated by copurification of coexpressed WT and L103A proteins in Escherichia coli and coimmunoprecipitation of WT·L103A E4-ORF3 complexes in mammalian cells. These results provide new insight into the properties of the Ad E4-ORF3 protein and suggest that higher-order protein multimerization is essential for E4-ORF3 activity. PMID:22573317

  8. A protein carboxylate coordinated oxo-centered tri-nuclear iron complex with possible implications for ferritin mineralization.

    PubMed

    Högbom, Martin; Nordlund, Pär

    2004-06-01

    The crystal structure of an oxo-centered tri-nuclear iron complex formed on a protein surface is presented. The cluster forms when crystals of the class Ib ribonucleotide reductase R2 protein from Corynebacterium ammoniagenes are subjected to iron soaking. The tri-iron-oxo complex is coordinated by protein-derived carboxylate ligands arranged in a motif similar to the one found on the inner surface of ferritins and may mimic an early stage in the mineralization of iron in ferritins. In addition, the structure adds to the very limited data on protein-mineral interfaces. PMID:15178319

  9. Ubc9 interacts with a nuclear localization signal and mediates nuclear localization of the paired-like homeobox protein Vsx-1 independent of SUMO-1 modification.

    PubMed

    Kurtzman, A L; Schechter, N

    2001-05-01

    Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH(2) terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation. PMID:11331779

  10. Deuterated protein folds obtained directly from unassigned nuclear overhauser effect data.

    PubMed

    Bermejo, Guillermo A; Llinás, Miguel

    2008-03-26

    We demonstrate the feasibility of determining the global fold of a highly deuterated protein from unassigned experimental NMR nuclear Overhauser effect (NOE) data only. The method relies on the calculation of a spatial configuration of covalently unconnected protons-a "cloud"-directly from unassigned distance restraints derived from 13C- and 15N-edited NOESY spectra. Each proton in the cloud, labeled by its chemical shift and that of the directly bound 13C or 15N, is subsequently mapped to specific atoms in the protein. This is achieved via graph-theoretical protocols that search for connectivities in graphs that encode the structural information within the cloud. The peptidyl HN chain is traced by seeking for all possible routes and selecting the one that yields the minimal sum of sequential distances. Complete proton identification in the cloud is achieved by linking the side-chain protons to proximal main-chain HNs via bipartite graph matching. The identified protons automatically yield the NOE assignments, which in turn are used for structure calculation with RosettaNMR, a protocol that incorporates structural bias derived from protein databases. The method, named Sparse-Constraint CLOUDS, was applied to experimental NOESY data on the 58-residue Z domain of staphylococcal protein A. The generated structures are of similar accuracy to those previously reported, which were derived via a conventional approach involving a larger NMR data set. Additional tests were performed on seven reported protein structures of various folds, using restraint lists simulated from the known atomic coordinates. PMID:18318535

  11. Identification of a nuclear export signal sequence for bovine papillomavirus E1 protein

    SciTech Connect

    Rosas-Acosta, German; Wilson, Van G., E-mail: wilson@medicine.tamhsc.edu

    2008-03-30

    Recent studies have demonstrated nuclear export by papillomavirus E1 proteins, but the requisite export sequence(s) for bovine papillomavirus (BPV) E1 were not defined. In this report we identify three functional nuclear export sequences (NES) present in BPV E1, with NES2 being the strongest in reporter assays. Nuclear localization of BPV1 E1 was modulated by over- or under-expression of CRM1, the major cellular exportin, and export was strongly reduced by the CRM1 inhibitor, Leptomycin B, indicating that E1 export occurs primarily through a CRM1-dependent process. Consistent with the in vivo functional results, E1 bound CRM1 in an in vitro pull-down assay. In addition, sumoylated E1 bound CRM1 more effectively than unmodified E1, suggesting that E1 export may be regulated by SUMO modification. Lastly, an E1 NES2 mutant accumulated in the nucleus to a greater extent than wild-type E1, yet was defective for viral origin replication in vivo. However, NES2 exhibited no intrinsic replication defect in an in vitro replication assay, implying that nucleocytoplasmic shuttling may be required to maintain E1 in a replication competent state.

  12. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress.

    PubMed

    Ng, Sophia; De Clercq, Inge; Van Aken, Olivier; Law, Simon R; Ivanova, Aneta; Willems, Patrick; Giraud, Estelle; Van Breusegem, Frank; Whelan, James

    2014-07-01

    Mitochondrial biogenesis and function in plants require the expression of over 1000 nuclear genes encoding mitochondrial proteins (NGEMPs). The expression of these genes is regulated by tissue-specific, developmental, internal, and external stimuli that result in a dynamic organelle involved in both metabolic and a variety of signaling processes. Although the metabolic and biosynthetic machinery of mitochondria is relatively well understood, the factors that regulate these processes and the various signaling pathways involved are only beginning to be identified at a molecular level. The molecular components of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling pathways that regulate the expression of NGEMPs interact with chloroplast-, growth-, and stress-signaling pathways in the cell at a variety of levels, with common components involved in transmission and execution of these signals. This positions mitochondria as important hubs for signaling in the cell, not only in direct signaling of mitochondrial function per se, but also in sensing and/or integrating a variety of other internal and external signals. This integrates and optimizes growth with energy metabolism and stress responses, which is required in both photosynthetic and non-photosynthetic cells. PMID:24711293

  13. Karyopherin ?2 mediates nuclear import of a mRNA binding?protein

    PubMed Central

    Bonifaci, Neris; Moroianu, Junona; Radu, Aurelian; Blobel, Günter

    1997-01-01

    We have cloned and sequenced cDNA for human karyopherin ?2, also known as transportin. In a solution binding assay, recombinant ?2 bound directly to recombinant nuclear mRNA-binding protein A1. Binding was inhibited by a peptide representing A1’s previously characterized M9 nuclear localization sequence (NLS), but not by a peptide representing a classical NLS. As previously shown for karyopherin ?1, karyopherin ?2 bound to several nucleoporins containing characteristic peptide repeat motifs. In a solution binding assay, both ?1 and ?2 competed with each other for binding to immobilized repeat nucleoporin Nup98. In digitonin-permeabilized cells, ?2 was able to dock A1 at the nuclear rim and to import it into the nucleoplasm. At low concentrations of ?2, there was no stimulation of import by the exogenous addition of the GTPase Ran. However, at higher concentrations of ?2 there was marked stimulation of import by Ran. Import was inhibited by the nonhydrolyzable GTP analog guanylyl imidodiphosphate by a Ran mutant that is unable to hydrolyze GTP and also by wheat germ agglutinin. Consistent with the solution binding results, karyopherin ?2 inhibited karyopherin ?/?1-mediated import of a classical NLS containing substrate and, vice versa, ?1 inhibited ?2-mediated import of A1 substrate, suggesting that the two import pathways merge at the level of docking of ?1 and ?2 to repeat nucleoporins. PMID:9144189

  14. A Nuclear Factor of High Mobility Group Box Protein in Toxoplasma gondii

    PubMed Central

    Wang, Hui; Lei, Tao; Liu, Jing; Li, Muzi; Nan, Huizhu; Liu, Qun

    2014-01-01

    High mobility group box 1 (HMGB1) is a nuclear factor that usually binds DNA and modulates gene expression in multicellular organisms. Three HMGB1 orthologs were predicted in the genome of Toxoplasma gondii, an obligate intracellular protozoan pathogen, termed TgHMGB1a, b and c. Phylogenetic and bioinformatic analyses indicated that these proteins all contain a single HMG box and which shared in three genotypes. We cloned TgHMGB1a, a 33.9 kDa protein that can stimulates macrophages to release TNF-?, and, we demonstrated that the TgHMGB1a binds distorted DNA structures such as cruciform DNA in electrophoretic mobility shift assays (EMSA). Immunofluorescence assay indicated TgHMGB1a concentrated in the nucleus of intracellular tachyzoites but translocated into the cytoplasm while the parasites release to extracellular. There were no significant phenotypic changes when the TgHMGB1a B box was deleted, while transgenic parasites that overexpressed TgHMGB1a showed slower intracellular growth and caused delayed death in mouse, further quantitative RT-PCR analyses showed that the expression levels of many important genes, including virulence factors, increased when TgHMGB1a was overexpressed, but no significant changes were observed in TgHMGB1a B box-deficient parasites. Our findings demonstrated that TgHMGB1a is indeed a nuclear protein that maintains HMG box architectural functions and is a potential proinflammatory factor during the T.gondii infection. Further studies that clarify the functions of TgHMGB1s will increase our knowledge of transcriptional regulation and parasite virulence, and might provide new insight into host–parasite interactions for T. gondii infection. PMID:25369210

  15. Arrest of Nuclear Division in Plasmodium through Blockage of Erythrocyte Surface Exposed Ribosomal Protein P2

    PubMed Central

    Das, Sudipta; Basu, Himanish; Korde, Reshma; Tewari, Rita; Sharma, Shobhona

    2012-01-01

    Malaria parasites reside inside erythrocytes and the disease manifestations are linked to the growth inside infected erythrocytes (IE). The growth of the parasite is mostly confined to the trophozoite stage during which nuclear division occurs followed by the formation of cell bodies (schizogony). The mechanism and regulation of schizogony are poorly understood. Here we show a novel role for a Plasmodium falciparum 60S stalk ribosomal acidic protein P2 (PfP2) (PFC0400w), which gets exported to the IE surface for 6–8 hrs during early schizogony, starting around 26–28 hrs post-merozoite invasion. The surface exposure is demonstrated using multiple PfP2-specific monoclonal antibodies, and is confirmed through transfection using PfP2-GFP. The IE surface-exposed PfP2-protein occurs mainly as SDS-resistant P2-homo-tetramers. Treatment with anti-PfP2 monoclonals causes arrest of IEs at the first nuclear division. Upon removal of the antibodies, about 80–85% of synchronized parasites can be released even after 24 hrs of antibody treatment. It has been reported that a tubovesicular network (TVN) is set up in early trophozoites which is used for nutrient import. Anti-P2 monoclonal antibodies cause a complete fragmentation of TVN by 36 hrs, and impairs lipid import in IEs. These may be downstream causes for the cell-cycle arrest. Upon antibody removal, the TVN is reconstituted, and the cell division progresses. Each of the above properties is observed in the rodent malaria parasite species P. yoelii and P. berghei. The translocation of the P2 protein to the IE surface is therefore likely to be of fundamental importance in Plasmodium cell division. PMID:22912579

  16. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells.

    PubMed

    Niopek, Dominik; Benzinger, Dirk; Roensch, Julia; Draebing, Thomas; Wehler, Pierre; Eils, Roland; Di Ventura, Barbara

    2014-01-01

    The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light. PMID:25019686

  17. N-Terminal Sequences from Autographa californica Nuclear Polyhedrosis Virus Envelope Proteins ODV-E66 and ODV-E25 are Sufficient to Direct Reporter Proteins to the Nuclear Envelope, Intranuclear Microvesicles and the Envelope of Occlusion Derived Virus

    Microsoft Academic Search

    Tao Hong; Max D. Summers; Sharon C. Braunagel

    1997-01-01

    Baculovirus occlusion-derived virus (ODV) derives its envelope from an intranuclear membrane source. N-terminal amino acid sequences of the Autographa californica nuclear polyhedrosis virus (AcMNPV) envelope proteins, ODV-E66 and ODV-E25 (23 and 24 amino acids, respectively) are highly hydrophobic. Recombinant viruses that express the two N-terminal amino acid sequences fused to green fluorescent protein (23GFP or 24GFP) provided visual markers to

  18. The Nuclear Localization of Low Risk HPV11 E7 Protein Mediated by its Zinc Binding Domain Is Independent of Nuclear Import Receptors

    PubMed Central

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-01-01

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE739–98 localized mostly to the nucleus. The GST-11E7 and GST-11cE739–98 were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc-binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc-binding domain is essential for nuclear localization of 11E7. PMID:20800258

  19. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution.

    PubMed Central

    Doye, V.; Wepf, R.; Hurt, E. C.

    1994-01-01

    Temperature-sensitive nucleoporin nup49-316 mutant cells accumulate poly(A)+ RNA inside the nucleus when shifted to restrictive temperature. We performed a synthetic lethal screen with this mutant allele to identify further components of the mRNA export machinery. A synthetic lethal mutant slv21 was isolated, which exhibited a ts phenotype and showed nuclear accumulation of poly(A)+ RNA at 37 degrees C. The wild-type gene complementing slv21 was cloned and sequenced. It encodes a novel protein Nup133p which is located at the nuclear pore complex. NUP133 is not an essential gene, but cells in which NUP133 is disrupted grow slowly at permissive temperatures and stop growing at 37 degrees C. Concomitant with the growth inhibition, nup133- cells accumulate poly(A)+ RNA inside the nucleus whereas nuclear import of a karyophilic reporter protein is not altered. Strikingly, nup133- cells display extensive clustering of nuclear pore complexes at a few sites on the nuclear envelope. However, the nuclear pore clustering phenotype and intranuclear accumulation of poly(A)+ RNA are not obligatorily linked, since an amino-terminally truncated Nup133p allows normal poly(A)+ RNA export, but does not complement the clustering phenotype of nup133- cells. Images PMID:7813444

  20. Atypical I?B proteinsnuclear modulators of NF-?B signaling

    PubMed Central

    2013-01-01

    Nuclear factor ?B (NF-?B) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-?B governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-?B signaling, the I?B proteins. Classical I?Bs, like the prototypical protein I?B?, sequester NF-?B transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-?B to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of I?B?. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-?B activation. Once their NLS is accessible, NF-?B transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical I?B proteins, referred to as the BCL-3 subfamily. Those atypical I?Bs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-?B transcription factors takes place in the nucleus in contrast to classical I?Bs, whose binding to NF-?B predominantly occurs in the cytoplasm. Secondly, atypical I?Bs are strongly induced after NF-?B activation, for example by LPS and IL-1? stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical I?Bs with DNA-associated NF-?B transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-?B activity. The capacity to modulate NF-?B transcription either positively or negatively, represents their most important and unique mechanistic difference to classical I?Bs. Several reports revealed the importance of atypical I?B proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical I?B functioning. PMID:23578005

  1. Accurate and rapid docking of protein–protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization

    PubMed Central

    Clore, G. Marius

    2000-01-01

    A simple and rapid method is presented for solving the three-dimensional structures of protein–protein complexes in solution on the basis of experimental NMR restraints that provide the requisite translational (i.e., intermolecular nuclear Overhauser enhancement, NOE, data) and orientational (i.e., backbone 1H-15N dipolar couplings and intermolecular NOEs) information. Providing high-resolution structures of the proteins in the unbound state are available and no significant backbone conformational changes occur upon complexation (which can readily be assessed by analysis of dipolar couplings measured on the complex), accurate and rapid docking of the two proteins can be achieved. The method, which is demonstrated for the 40-kDa complex of enzyme I and the histidine phosphocarrier protein, involves the application of rigid body minimization using a target function comprising only three terms, namely experimental NOE-derived intermolecular interproton distance and dipolar coupling restraints, and a simple intermolecular van der Waals repulsion potential. This approach promises to dramatically reduce the amount of time and effort required to solve the structures of protein–protein complexes by NMR, and to extend the capabilities of NMR to larger protein–protein complexes, possibly up to molecular masses of 100 kDa or more. PMID:10922057

  2. Oxidative stress–induced assembly of PML nuclear bodies controls sumoylation of partner proteins

    PubMed Central

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; Lallemand-Breitenbach, Valérie

    2014-01-01

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  3. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    PubMed

    Müller, Rebekka; Misund, Kristine; Holien, Toril; Bachke, Siri; Gilljam, Karin M; Våtsveen, Thea K; Rø, Torstein B; Bellacchio, Emanuele; Sundan, Anders; Otterlei, Marit

    2013-01-01

    Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA) is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM). Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment. PMID:23936203

  4. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas

    PubMed Central

    Wykoff, Dennis D.; Grossman, Arthur R.; Weeks, Donald P.; Usuda, Hideaki; Shimogawara, Kosuke

    1999-01-01

    Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems. PMID:10611385

  5. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.

    PubMed

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-03-17

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  6. The Nuclear Envelope Protein Matefin\\/SUN1 Is Required for Homologous Pairing in C. elegans Meiosis

    Microsoft Academic Search

    Alexandra Penkner; Lois Tang; Maria Novatchkova; Markus Ladurner; Alexandra Fridkin; Yosef Gruenbaum; Dieter Schweizer; Josef Loidl; Verena Jantsch

    2007-01-01

    SUMMARY We identify a highly specific mutation (jf18 )i n the Caenorhabditis elegans nuclear envelope protein matefin MTF-1\\/SUN-1 that provides direct evidence for active involvement of the nuclear envelope in homologous chromosome pairing in C. elegans meiosis. The reorganiza- tion of chromatin in early meiosis is disrupted in mtf-1\\/sun-1(jf18) gonads, concomitant with the absence of presynaptic homolog alignment. Synapsis is

  7. Nuclear Photosynthetic Gene Expression Is Synergistically Modulated by Rates of Protein Synthesis in Chloroplasts and Mitochondria[W

    PubMed Central

    Pesaresi, Paolo; Masiero, Simona; Eubel, Holger; Braun, Hans-Peter; Bhushan, Shashi; Glaser, Elzbieta; Salamini, Francesco; Leister, Dario

    2006-01-01

    Arabidopsis thaliana mutants prors1-1 and -2 were identified on the basis of a decrease in effective photosystem II quantum yield. Mutations were localized to the 5?-untranslated region of the nuclear gene PROLYL-tRNA SYNTHETASE1 (PRORS1), which acts in both plastids and mitochondria. In prors1-1 and -2, PRORS1 expression is reduced, along with protein synthesis in both organelles. PRORS1 null alleles (prors1-3 and -4) result in embryo sac and embryo development arrest. In mutants with the leaky prors1-1 and -2 alleles, transcription of nuclear genes for proteins involved in photosynthetic light reactions is downregulated, whereas genes for other chloroplast proteins are upregulated. Downregulation of nuclear photosynthetic genes is not associated with a marked increase in the level of reactive oxygen species in leaves and persists in the dark, suggesting that the transcriptional response is light and photooxidative stress independent. The mrpl11 and prpl11 mutants are impaired in the mitochondrial and plastid ribosomal L11 proteins, respectively. The prpl11 mrpl11 double mutant, but neither of the single mutants, resulted in strong downregulation of nuclear photosynthetic genes, like that seen in leaky mutants for PRORS1, implying that, when organellar translation is perturbed, signals derived from both types of organelles cooperate in the regulation of nuclear photosynthetic gene expression. PMID:16517761

  8. Diverse regulation of protein function by O-GlcNAc: a nuclear and cytoplasmic carbohydrate post-translational modification

    Microsoft Academic Search

    Keith Vosseller; Kaoru Sakabe; Lance Wells; Gerald W Hart

    2002-01-01

    N-Acetylglucosamine O-linked to serines and threonines of cytosolic and nuclear proteins (O-GlcNAc) is an abundant reversible post-translational modification found in all higher eukaryotes. Evidence for functional regulation of proteins by this dynamic saccharide is rapidly accumulating. Deletion of the gene encoding the enzyme that attaches O-GlcNAc (OGT) is lethal at the single cell level, indicating the fundamental requirement for this

  9. Anti-immunoglobulin M activates nuclear calcium/calmodulin-dependent protein kinase II in human B lymphocytes

    PubMed Central

    1995-01-01

    We and others have previously shown that the nuclear protein, Ets-1, is phosphorylated in a calcium-dependent manner after ligation of immunoglobulin (Ig) M on B lymphocytes. As this phosphorylation was independent of protein kinase C activity, we tested whether a calcium/calmodulin-dependent protein kinase (CaM kinase) might phosphorylate the Ets-1 protein after elevation of intracellular free calcium concentrations. The dephosphorylated form of Ets-1 has been shown to bind to chromatin, suggesting that the operative kinase should be detectable in the nucleus. We prepared nuclear extracts from two human B cell lines in which increased intracellular free calcium levels correlated with increased phosphorylation of the Ets-1 protein. Activity of the CaM kinases was determined using a synthetic peptide substrate both in the absence and presence of an inhibitor specific for the CaM kinase family, KN-62. Stimulation of cells with anti-IgM led to increased activity of a nuclear kinase that could phosphorylate the peptide, and this activity was reduced by 10 microM KN-62. Kinase activity was reduced in lysates preadsorbed using an antibody specific for CaM kinase II. Two-dimensional phosphopeptide maps of the Ets-1 protein from cells incubated with ionomycin or anti-IgM contained two unique phosphopeptides that were absent in untreated cells. Incubation of isolated Ets-1 protein with purified CaM kinase II produced phosphorylation of peptides that migrated identically to those found in cells incubated with either anti-IgM or ionomycin. These data suggest a model of signal transduction by the antigen receptor on B lymphocytes in which increased intracellular free calcium can rapidly activate nuclear CaM kinase II, potentially resulting in phosphorylation and regulation of DNA-binding proteins. PMID:7500040

  10. Prothymosin alpha, a mammalian c-myc-regulated acidic nuclear protein, provokes the decondensation of human chromosomes in vitro.

    PubMed

    Boán, F; Viñas, A; Buceta, M; Domínguez, F; Sánchez, L; Gómez-Márquez, J

    2001-01-01

    Prothymosin (ProT alpha) is an acidic nuclear protein, widely distributed in mammalian cells, whose expression is regulated by c-myc and linked to cell proliferation. ProT alpha interacts with histone H1 via its acidic domain, and its overexpression provokes the unfolding of chromatin fibers. Here we show that incubation of human native metaphase chromosomes with ProT alpha induces their extensive unravelling suggesting a function of this protein in chromosome decondensation. PMID:11528108

  11. C++ OPPS, a new software for the interpretation of protein dynamics from nuclear magnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Zerbetto, Mirco; Polimeno, Antonino; Meirovitch, Eva

    Nuclear magnetic resonance (NMR) is a powerful tool for elucidating protein dynamics because of the possibility to interpret nuclear spin relaxation properties in terms of microdynamic parameters. Magnetic relaxation times T1, T2, and NOE depend on dipolar and quadrupolar interactions, on chemical shift anisotropy and cross-correlation effects. Within the framework of given motional model, it is possible to express the NMR relaxation times as functions of spectral densities (Abragam, The Principles of Nuclear Magnetism; Oxford University Press: Clarendon, London, 1961), obtaining the connection between macroscopic observables and microscopic properties. In this context, recently Meirovitch et al. (Shapiro et al., Biochemistry 2002, 41, 6271, Meirovitch et al., J Phys Chem B 2006, 110, 20615, Meirovitch et al., J Phys Chem B 2007, 111, 12865) applied the dynamical model introduced by Polimeno and Freed (Polimeno and Freed, Adv Chem Phys 1993, 83, 89, Polimeno and Freed, J Phys Chem 1995, 99, 10995), known as the slowly relaxing local structure (SRLS) model, to the study of NMR data. The program C++OPPS (http://www.chimica.unipd.it/licc/), developed in our laboratory, implements the SRLS model in an user-friendly way with a graphical user interface (GUI), introduced to simplify the work to users who do not feel at ease with the complex mathematics of the model and the difficulties of command line based programs. The program is an evolution of the old FORTRAN 77 implementation COPPS (COupled Protein Probe Smoluchowski) and presents a number of new features: the presence of an easy to use GUI written in JAVA; high calculation performance thanks to features of C++ language, employment of BLAS (basic linear algebra subprograms) library (Blackford et al., Trans Math Soft 2002, 28, 135) in handling matrix-vector operations and parallelization of the code under the MPI (message passing interface) paradigm (Gropp et al., Parallel Comput 1996, 22, 789, Gropp and Lusk, User's Guide for mpich, a Portable Implementation of MPI Mathematics and Computer Science Division; Argonne National Laboratory, 1996); possibility to predict the diffusion tensor of the protein via a hydrodynamic approach (Barone et al., J Comp Chem, in press). A cluster version of C++OPPS was also developed, which can be easily accessed by users via the web.

  12. A Novel Bipartite Nuclear Localization Signal Guides BPM1 Protein to Nucleolus Suggesting Its Cullin3 Independent Function

    PubMed Central

    Leljak Levani?, Dunja; Horvat, Tomislav; Martin?i?, Jelena; Bauer, Nataša

    2012-01-01

    BPM1 belongs to the MATH-BTB family of proteins, which act as substrate-binding adaptors for the Cullin3-based E3 ubiquitin ligase. MATH-BTB proteins associate with Cullin3 via the BTB domain and with the substrate protein via the MATH domain. Few BPM1-interacting proteins with different functions are recognized, however, specific roles of BPM1, depending on its cellular localization have not been studied so far. Here, we found a novel bipartite nuclear localization signal at the C-terminus of the BPM1 protein, responsible for its nuclear and nucleolar localization and sufficient to drive the green fluorescent protein and cytoplasmic BPM4 protein into the nucleus. Co-localization analysis in live Nicotiana tabacum BY2 cells indicates a Cullin3 independent function since BPM1 localization is predominantly nucleolar and thus devoid of Cullin3. Treatment of BY2 cells with the proteasome inhibitor MG132 blocks BPM1 and Cullin3 degradation, suggesting turnover of both proteins through the ubiquitin–proteasome pathway. Possible roles of BPM1 in relation to its in vivo localization are discussed. PMID:23251450

  13. The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production.

    PubMed

    Schmid, Manfred; Olszewski, Pawel; Pelechano, Vicent; Gupta, Ishaan; Steinmetz, Lars M; Jensen, Torben Heick

    2015-07-01

    Polyadenylation of mRNA is a key step in eukaryotic gene expression. However, despite the major impact of poly(A) tails on mRNA metabolism, the precise roles of poly(A)-binding proteins (PABPs) in nuclear mRNA biogenesis remain elusive. Here, we demonstrate that rapid nuclear depletion of the S. cerevisiae PABP Nab2p leads to a global loss of cellular mRNA, but not of RNA lacking poly(A) tails. Disappearance of mRNA is a nuclear event, but not due to decreased transcription. Instead, the absence of Nab2p results in robust nuclear mRNA decay by the ribonucleolytic RNA exosome in a polyadenylation-dependent process. We conclude that Nab2p is required to protect early mRNA and therefore constitutes a crucial nuclear mRNA biogenesis factor. PMID:26119729

  14. Developmentally Essential Protein Flightless I Is a Nuclear Receptor Coactivator with Actin Binding Activity

    PubMed Central

    Lee, Young-Ho; Campbell, Hugh D.; Stallcup, Michael R.

    2004-01-01

    Hormone-activated nuclear receptors (NR) activate transcription by recruiting multiple coactivator complexes to the promoters of target genes. One important coactivator complex includes a p160 coactivator (e.g., GRIP1, SRC-1, or ACTR) that binds directly to activated NR, the histone acetyltransferase p300 or CBP, and the arginine-specific histone methyltransferase CARM1. We previously demonstrated that the coactivator function of CARM1 depends both on the methyltransferase activity and on additional unknown proteins that bind to CARM1. In this study a yeast two-hybrid screen for proteins that bind CARM1 identified the protein Flightless I (Fli-I), which has essential roles in Drosophila and mouse development. Fli-I bound to CARM1, GRIP1, and NRs and cooperated synergistically with CARM1 and GRIP1 to enhance NR function. Fli-I bound poorly to and did not cooperate with PRMT1, a CARM1-related protein arginine methyltransferase that also functions as an NR coactivator. The synergy between GRIP1, CARM1, and Fli-I required the methyltransferase activity of CARM1. The C-terminal AD1 (binding site for p300/CBP) and AD2 (binding site for CARM1) activation domains of GRIP1 contributed to the synergy but were less stringently required than the N-terminal region of GRIP1, which is the binding site for Fli-I. Endogenous Fli-I was recruited to the estrogen-regulated pS2 gene promoter of MCF-7 cells in response to the hormone, and reduction of endogenous Fli-I levels by small interfering RNA reduced hormone-stimulated gene expression by the endogenous estrogen receptor. A fragment of Fli-I that is related to the actin binding protein gelsolin enhanced estrogen receptor activity, and mutations that reduced actin binding also reduced the coactivator function of this Fli-I fragment. These data suggest that Fli-I may facilitate interaction of the p160 coactivator complex with other coactivators or coactivator complexes containing actin or actin-like proteins. PMID:14966289

  15. Heterogeneous Nuclear Ribonucleoprotein A3 Is the Liver Nuclear Protein Binding to Age Related Increase Element RNA of the Factor IX Gene

    PubMed Central

    Hamada, Toshiyuki; Kurachi, Sumiko; Kurachi, Kotoku

    2010-01-01

    Background In the ASE/AIE-mediated genetic mechanism for age-related gene regulation, a recently identified age-related homeostasis mechanism, two genetic elements, ASE (age-related stability element) and AIE (age-related increase element as a stem-loop forming RNA), play critical roles in producing specific age-related expression patterns of genes. Principal Finding We successfully identified heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) as a major mouse liver nuclear protein binding to the AIE-derived RNAs of human factor IX (hFIX) as well as mouse factor IX (mFIX) genes. HnRNP A3 bound to the AIE RNA was not phosphorylated at its Ser359, while hnRNP A3 in the mouse liver nuclear extracts was a mixture of phosphorylated and unphosphorylated Ser359. HepG2 cells engineered to express recombinant hFIX transduced with adenoviral vectors harboring an effective siRNA against hnRNP A3 resulted in a substantial reduction in hFIX expression only in the cells carrying a hFIX expression vector with AIE, but not in the cells carrying a hFIX expression vector without AIE. The nuclear hnRNP A3 protein level in the mouse liver gradually increased with age, while its mRNA level stayed age-stable. Conclusions We identified hnRNP A3 as a major liver nuclear protein binding to FIX-AIE RNA. This protein plays a critical role in age-related gene expression, likely through an as yet unidentified epigenetic mechanism. The present study assigned a novel functional role to hnRNP A3 in age-related regulation of gene expression, opening up a new avenue for studying age-related homeostasis and underlying molecular mechanisms. PMID:20885981

  16. A PY-NLS Nuclear Targeting Signal Is Required for Nuclear Localization and Function of the Saccharomyces cerevisiae mRNA-binding Protein Hrp1*

    PubMed Central

    Lange, Allison; Mills, Ryan E.; Devine, Scott E.; Corbett, Anita H.

    2008-01-01

    Proteins destined for import into the nucleus contain nuclear localization signals (NLSs) that are recognized by import receptors termed karyopherins or importins. Until recently, the only nuclear import sequence that had been well defined and characterized was the classical NLS (cNLS), which is recognized by importin ?. However, Chook and coworkers (Lee, B. J., Cansizoglu, A. E., Süel, K. E., Louis, T. H., Zhang, Z., and Chook, Y. M. (2006) Cell 126, 543–558) have provided new insight into nuclear targeting with their identification of a novel NLS, termed the PY-NLS, that is recognized by the human karyopherin ?2/transportin (Kap?2) receptor. Here, we demonstrate that the PY-NLS is conserved in Saccharomyces cerevisiae and show for the first time that the PY-NLS is a functional nuclear targeting sequence in vivo. The apparent ortholog of Kap?2 in yeast, Kap104, has two known cargos, the mRNA-binding proteins Hrp1 and Nab2, which both contain putative PY-NLS-like sequences. We find that the PY-NLS-like sequence within Hrp1, which closely matches the PY-NLS consensus, is both necessary and sufficient for nuclear import and is also required for receptor binding and protein function. In contrast, the PY-NLS-like sequences in Nab2, which vary from the PY-NLS consensus, are not required for proper import or protein function, suggesting that Kap104 may interact with different cargos using multiple mechanisms. Dissection of the PY-NLS consensus reveals that the minimal PY-NLS in yeast consists of the C-terminal portion of the human consensus, R/H/KX2–5PY, with upstream basic or hydrophobic residues enhancing the targeting function. Finally, we apply this analysis to a bioinformatic search of the yeast proteome as a preliminary search for new potential Kap104 cargos. PMID:18343812

  17. The NS2 Proteins of Parvovirus Minute Virus of Mice Are Required for Efficient Nuclear Egress of Progeny Virions in Mouse Cells

    Microsoft Academic Search

    Virginie Eichwald; Laurent Daeffler; Michele Klein; Jean Rommelaere; Nathalie Salome ´

    2002-01-01

    The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection

  18. Incorporation of the nuclear pore basket protein Nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs

    PubMed Central

    Smythe, Carl; Jenkins, Hazel E.; Hutchison, Christopher J.

    2000-01-01

    In cell-free extracts of Xenopus eggs that support the assembly of replication-competent nuclei, we found that lamin B3 specifically associates with four polypeptides (termed SLAPs, soluble lamin associated proteins). Here, one SLAP is identified as the nuclear pore complex protein Nup153, one member of the F/GXFG motif-containing nucleoporins. In vitro translated Nup153 and lamin B3 co-immunoprecipitate, and lamin B3 interacts specifically with the C-terminal domain of Nup153. During nuclear envelope assembly, other F/GXFG-containing nucleoporins are incorporated into the nuclear envelope preceding lamina assembly. Incorporation of Nup153 occurs at the same time as lamina assembly. When lamina assembly is prevented using the dominant-negative mutant XlaminB?2+, Nup153 does not appear at the nuclear envelope, while other F/GXFG-containing nucleoporins and Nup93 are recruited normally. When the lamina of pre-assembled nuclei is disrupted using the same dominant-negative mutant, the distribution of other nucleoporins is unaffected. However, Nup153 recruitment at the nuclear envelope is lost. Our results indicate that both the recruitment and maintenance of Nup153 at the pore are dependent upon the integrity of the lamina. PMID:10921874

  19. Functional Characterization of Nuclear Localization and Export Signals in Hepatitis C Virus Proteins and Their Role in the Membranous Web

    PubMed Central

    Levin, Aviad; Neufeldt, Christopher J.; Pang, Daniel; Wilson, Kristen; Loewen-Dobler, Darci; Joyce, Michael A.; Wozniak, Richard W.; Tyrrell, D. Lorne J

    2014-01-01

    The hepatitis C virus (HCV) is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS) and nuclear export signals (NES) have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC) proteins (termed nucleoporins or Nups) are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin ?5 (IPOA5/kap?1), importin ?3 (IPO5/kap ?3), and exportin 1 (XPO1/CRM1) both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication. PMID:25485706

  20. Nicotine mediates hypochlorous acid-induced nuclear protein damage in mammalian cells.

    PubMed

    Salama, Samir A; Arab, Hany H; Omar, Hany A; Maghrabi, Ibrahim A; Snapka, Robert M

    2014-06-01

    Activated neutrophils secrete hypochlorous acid (HOCl) into the extracellular space of inflamed tissues. Because of short diffusion distance in biological fluids, HOCl-damaging effect is restricted to the extracellular compartment. The current study aimed at investigating the ability of nicotine, a component of tobacco and electronic cigarettes, to mediate HOCl-induced intracellular damage. We report, for the first time, that HOCl reacts with nicotine to produce nicotine chloramine (Nic-Cl). Nic-Cl caused dose-dependent damage to proliferating cell nuclear antigen (PCNA), a nuclear protein, in cultured mammalian lung and kidney cells. Vitamin C, vitamin E analogue (Trolox), glutathione, and N-acetyl-L-cysteine inhibited the Nic-Cl-induced PCNA damage, implicating oxidation in PCNA damage. These findings point out the ability of nicotine to mediate HOCl-induced intracellular damage and suggest antioxidants as protective measures. The results also raise the possibility that Nic-Cl can be created in the inflamed tissues of tobacco and electronic cigarette smokers and may contribute to smoking-related diseases. PMID:24357417

  1. Nicotine Mediates Hypochlorous acid-Induced Nuclear Protein Damage in Mammalian Cells

    PubMed Central

    Salama, Samir A.; Arab, Hany H.; Omar, Hany A.; Maghrabi, Ibrahim A.; Snapka, Robert M.

    2014-01-01

    Activated neutrophils secrete hypochlorous acid (HOCl) into the extracellular space of inflamed tissues. Because of short diffusion distance in biological fluids, HOCl damaging effect is restricted to the extracellular compartment. The current study aimed at investigating the ability of nicotine, a component of tobacco and electronic cigarettes, to mediate HOCl-induced intracellular damage. We report, for the first time, that HOCl reacts with nicotine to produce nicotine chloramine (Nic-Cl). Nic-Cl caused dose-dependent damage to proliferating cell nuclear antigen (PCNA), a nuclear protein, in cultured mammalian lung and kidney cells. Vitamin C, Trolox, glutathione, and N-acetyl-L-cysteine inhibited the Nic-Cl-induced PCNA damage, implicating oxidation in PCNA damage. These findings point out the ability of nicotine to mediate HOCl-induced intracellular damage and suggest antioxidants as protective measures. The results also raise the possibility that Nic-Cl can be created in the inflamed tissues of tobacco and electronic cigarette smokers and may contribute to smoking-related diseases. PMID:24357417

  2. Nuclear calmodulin/62 kDa calmodulin-binding protein complexes in interphasic and mitotic cells.

    PubMed

    Portolés, M; Faura, M; Renau-Piqueras, J; Iborra, F J; Saez, R; Guerri, C; Serratosa, J; Rius, E; Bachs, O

    1994-12-01

    We report here that a 62 kDa calmodulin-binding protein (p62), recently identified in the nucleus of rat hepatocytes, neurons and glial cells, consists of four polypeptides showing pI values between 5.9 and 6.1. By using a DNA-binding overlay assay we found that the two most basic of the p62 polypeptides bind both single- and double-stranded DNA. The intranuclear distribution of calmodulin and p62 was analysed in hepatocytes and astrocyte precursor cells, and in proliferating and differentiated astrocytes in primary cultures by immunogold-labeling methods. In non-dividing cells nuclear calmodulin was mostly localized in heterochromatin although it was also present in euchromatin and nucleoli. A similar pattern was observed for p62, with the difference that it was not located in nucleoli. p62/calmodulin complexes, mainly located over heterochromatin domains were also observed in interphasic cells. These complexes remained associated with the nuclear matrix after in situ sequential extraction with nucleases and high-salt containing buffers. In dividing cells, both calmodulin and p62 were found distributed over all the mitotic chromosomes but the p62/calmodulin aggregates were disrupted. These results suggest a role for calmodulin and p62 in the condensation of the chromatin. PMID:7706409

  3. Purification of nuclear localization signal-containing proteins and its application to investigation of the mechanisms of the cell division cycle.

    PubMed

    Christodoulou, Andri; Yokoyama, Hideki

    2015-01-01

    The GTP bound form of the Ran GTPase (RanGTP) in the nucleus promotes nuclear import of the proteins bearing nuclear localization signals (NLS). When nuclear envelopes break down during mitosis, RanGTP is locally produced around chromosomes and drives the assembly of the spindle early in mitosis and the nuclear envelope (NE) later. RanGTP binds to the heterodimeric nuclear transport receptor importin ?/? and releases NLS proteins from the receptor. Liberated NLS proteins around chromosomes have been shown to play distinct, essential roles in spindle and NE assembly. Here we provide a highly specific protocol to purify NLS proteins from crude cell lysates. The pure NLS fraction is an excellent resource to investigate the NLS protein function and identify new mitotic regulators, uncovering fundamental mechanisms of the cell division cycle. It takes 2-3 days to obtain the NLS fraction. PMID:25862163

  4. The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome

    PubMed Central

    Niepel, Mario; Molloy, Kelly R.; Williams, Rosemary; Farr, Julia C.; Meinema, Anne C.; Vecchietti, Nicholas; Cristea, Ileana M.; Chait, Brian T.; Rout, Michael P.; Strambio-De-Castillia, Caterina

    2013-01-01

    The basket of the nuclear pore complex (NPC) is generally depicted as a discrete structure of eight protein filaments that protrude into the nucleoplasm and converge in a ring distal to the NPC. We show that the yeast proteins Mlp1p and Mlp2p are necessary components of the nuclear basket and that they also embed the NPC within a dynamic protein network, whose extended interactome includes the spindle organizer, silencing factors, the proteasome, and key components of messenger ribonucleoproteins (mRNPs). Ultrastructural observations indicate that the basket reduces chromatin crowding around the central transporter of the NPC and might function as a docking site for mRNP during nuclear export. In addition, we show that the Mlps contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. Our results suggest that the Mlps are multifunctional proteins linking the nuclear transport channel to multiple macromolecular complexes involved in the regulation of gene expression and chromatin maintenance. PMID:24152732

  5. A monoclonal antibody against the nuclear pore complex inhibits nucleocytoplasmic transport of protein and RNA in vivo

    Microsoft Academic Search

    Carol Featherstone; Martyn K. Darby; Larry Gerace

    1988-01-01

    A monoclonal antibody that reacts with proteins in the nuclear pore complex of rat liver (Snow, C. M., A. Senior, and L. Gerace. 1987. J. Cell Biol. 104:1143-1156) has been shown to cross react with similar components in Xenopus oocytes, as determined by immunofluorescence microscopy and immunoblotting. We have microinjected the antibody into oocytes to study the possible role of

  6. Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): An inference from nuclear protein-coding genes

    Microsoft Academic Search

    Jenny Knapp; Minoru Nakao; Tetsuya Yanagida; Munehiro Okamoto; Urmas Saarma; Antti Lavikainen; Akira Ito

    2011-01-01

    The family Taeniidae of tapeworms is composed of two genera, Echinococcus and Taenia, which obligately parasitize mammals including humans. Inferring phylogeny via molecular markers is the only way to trace back their evolutionary histories. However, molecular dating approaches are lacking so far. Here we established new markers from nuclear protein-coding genes for RNA polymerase II second largest subunit (rpb2), phosphoenolpyruvate

  7. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-

    E-print Network

    Lin, Chentao

    The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light Charles E. Young Dr. South, Los Angeles, CA 90095-1606, USA Summary Cryptochrome 2 is a ¯avin-type blue light receptor mediating ¯oral induction in response to photoperiod and a blue light-induced hypocotyl

  8. Protein interactions at the higher plant nuclear envelope: evidence for a linker of nucleoskeleton and cytoskeleton complex

    PubMed Central

    Evans, David E.; Pawar, Vidya; Smith, Sarah J.; Graumann, Katja

    2014-01-01

    Following the description of SAD1/UNC84 (SUN) domain proteins in higher plants, evidence has rapidly increased that plants contain a functional linker of nucleoskeleton and cytoskeleton (LINC) complex bridging the nuclear envelope (NE). While the SUN domain proteins appear to be highly conserved across kingdoms, other elements of the complex are not and some key components and interactions remain to be identified. This mini review examines components of the LINC complex, including proteins of the SUN domain family and recently identified plant Klarsicht/Anc/Syne-1 homology (KASH) domain proteins. First of these to be described were WIPs (WPP domain interacting proteins), which act as protein anchors in the outer NE. The plant KASH homologs are C-terminally anchored membrane proteins with the extreme C-terminus located in the nuclear periplasm; AtWIPs contain a highly conserved X-VPT motif at the C-terminus in contrast to PPPX in opisthokonts. The role of the LINC complex in organisms with a cell wall, and description of further LINC complex components will be considered, together with other potential plant-specific functions. PMID:24847341

  9. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    SciTech Connect

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States)] [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States)] [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kim, Jee In [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States) [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of)

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  10. Nuclear quadrupole interaction of111Cd on type-1 Cu-sites in blue copper proteins

    NASA Astrophysics Data System (ADS)

    Tröger, W.; Butz, T.; Danielsen, E.; Bauer, R.; Thoenes, U.; Messerschmidt, A.; Huber, R.; Canters, G. W.; den Blaauwen, T.

    1993-03-01

    The nuclear quadrupole interaction (NQI) of111Cd substituted for Cu(II) on type-1 sites in blue copper proteins is characterized by high values of ?0 in the region of 300 Mrad/s, close to that for the catalytic zinc site in alcohol dehydrogenase. Type-1 Cu has usually two sulfur ligands and two nitrogen ligands and in some cases an oxygen ligand in either a distorted tetrahedral geometry or in a trigonal bipyramidal geometry. The near tetrahedral arrangement together with the ligand sphere containing the same number of sulfur ligands explains the value of ?0 in the blue copper proteins. The present work determined the partial NQI for methionine using the known structure of azurin. This value was then used in the angular overlap model to calculate the NQI for ascorbate oxidase the structure of which is also known and gave good agreement with experiment. NQI data for laccase and stellacyanin the structures of which are unknown, are also given.

  11. Fluctuation-based imaging of nuclear Rac1 activation by protein oligomerisation.

    PubMed

    Hinde, Elizabeth; Yokomori, Kyoko; Gaus, Katharina; Hahn, Klaus M; Gratton, Enrico

    2014-01-01

    Here we describe a fluctuation-based method to quantify how protein oligomerisation modulates signalling activity of a multifunctional protein. By recording fluorescence lifetime imaging microscopy (FLIM) data of a FRET biosensor in a format that enables concomitant phasor and cross Number and Brightness (cN&B) analysis, we measure the nuclear dynamics of a Rac1 FRET biosensor and assess how Rac1 homo-oligomers (N&B) regulate Rac1 activity (hetero-oligomerisation with the biosensor affinity reagent, PBD, by FLIM-FRET) or interaction with an unknown binding partner (cN&B). The high spatiotemporal resolution of this method allowed us to discover that upon DNA damage monomeric and active Rac1 in the nucleus is segregated from dimeric and inactive Rac1 in the cytoplasm. This reorganisation requires Rac1 GTPase activity and is associated with an importin-?2 redistribution. Only with this multiplexed approach can we assess the oligomeric state a molecular complex must form in order to regulate a complex signalling network. PMID:24573109

  12. Fluctuation-based imaging of nuclear Rac1 activation by protein oligomerisation

    NASA Astrophysics Data System (ADS)

    Hinde, Elizabeth; Yokomori, Kyoko; Gaus, Katharina; Hahn, Klaus M.; Gratton, Enrico

    2014-02-01

    Here we describe a fluctuation-based method to quantify how protein oligomerisation modulates signalling activity of a multifunctional protein. By recording fluorescence lifetime imaging microscopy (FLIM) data of a FRET biosensor in a format that enables concomitant phasor and cross Number and Brightness (cN&B) analysis, we measure the nuclear dynamics of a Rac1 FRET biosensor and assess how Rac1 homo-oligomers (N&B) regulate Rac1 activity (hetero-oligomerisation with the biosensor affinity reagent, PBD, by FLIM-FRET) or interaction with an unknown binding partner (cN&B). The high spatiotemporal resolution of this method allowed us to discover that upon DNA damage monomeric and active Rac1 in the nucleus is segregated from dimeric and inactive Rac1 in the cytoplasm. This reorganisation requires Rac1 GTPase activity and is associated with an importin-?2 redistribution. Only with this multiplexed approach can we assess the oligomeric state a molecular complex must form in order to regulate a complex signalling network.

  13. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits.

    PubMed

    Verheyen, Toon; Görnemann, Janina; Verbinnen, Iris; Boens, Shannah; Beullens, Monique; Van Eynde, Aleyde; Bollen, Mathieu

    2015-07-13

    Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the ?, ? and ? isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1? emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits. PMID:25990731

  14. Nuclear export of the influenza virus ribonucleoprotein complex: Interaction of Hsc70 with viral proteins M1 and NS2.

    PubMed

    Watanabe, Ken; Shimizu, Teppei; Noda, Saiko; Tsukahara, Fujiko; Maru, Yoshiro; Kobayashi, Nobuyuki

    2014-01-01

    The influenza virus replicates in the host cell nucleus, and the progeny viral ribonucleoprotein complex (vRNP) is exported to the cytoplasm prior to maturation. NS2 has a nuclear export signal that mediates the nuclear export of vRNP by the vRNP-M1-NS2 complex. We previously reported that the heat shock cognate 70 (Hsc70) protein binds to M1 protein and mediates vRNP export. However, the interactions among M1, NS2, and Hsc70 are poorly understood. In the present study, we demonstrate that Hsc70 interacts with M1 more strongly than with NS2 and competes with NS2 for M1 binding, suggesting an important role of Hsc70 in the nuclear export of vRNP. PMID:25161876

  15. Constitutive nuclear expression of dentin matrix protein 1 fails to rescue the Dmp1-null phenotype.

    PubMed

    Lin, Shuxian; Zhang, Qi; Cao, Zhengguo; Lu, Yongbo; Zhang, Hua; Yan, Kevin; Liu, Ying; McKee, Marc D; Qin, Chunlin; Chen, Zhi; Feng, Jian Q

    2014-08-01

    Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with ?v?3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as (NLS)DMP1) or to the extracellular matrix as the WT type (referred to as (SP)DMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted (NLS)DMP1 transgene driven by a 3.6-kb rat Col 1?1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the (SP)DMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes. PMID:24917674

  16. Helicobacter pylori tumor necrosis factor-? inducing protein promotes cytokine expression via nuclear factor-?B

    PubMed Central

    Tang, Chun-Li; Hao, Bo; Zhang, Guo-Xin; Shi, Rui-Hua; Cheng, Wen-Fang

    2013-01-01

    AIM: To study the effects of Helicobacter pylori (H. pylori) tumor necrosis factor-? (TNF) inducing protein (Tip-?) on cytokine expression and its mechanism. METHODS: We cloned Tip-? from the H. pylori strain 26695, transformed Escherichia coli with an expression plasmid, and then confirmed the expression product by Western blotting. Using different concentrations of Tip-? that affected SGC7901 and GES-1 cells at different times, we assessed cytokine levels using enzyme-linked immunosorbent assay. We blocked SGC7901 cells with pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of nuclear factor ?B (NF-?B). We then detected interleukin (IL)-1? and TNF-? levels in SGC7901 cells. RESULTS: Western blot analysis using an anti-Tip-? antibody revealed a 23-kDa protein, which indicated that recombinant Tip-? protein was recombined successfully. The levels of IL-1?, IL-8 and TNF-? were significantly higher following Tip-? interference, whether GES-1 cells or SGC-7901 cells were used (P < 0.05). However, the levels of cytokines (including IL-1?, IL-8 and TNF-?) secreted by SGC-7901 cells were greater than those secreted by GES-1 cells following treatment with Tip-? at the same concentration and for the same duration (P < 0.05). After blocking NF-?B with PDTC, the cells (GES-1 cells and SGC-7901 cells) underwent interference with Tip-?. We found that IL-1? and TNF-? levels were significantly decreased compared to cells that only underwent Tip-? interference (P < 0.05). CONCLUSION: Tip-? plays an important role in cytokine expression through NF-?B. PMID:23372364

  17. Characterization of periphilin, a widespread, highly insoluble nuclear protein and potential constituent of the keratinocyte cornified envelope.

    PubMed

    Kazerounian, Shideh; Aho, Sirpa

    2003-09-19

    While keratinocytes go through the terminal differentiation and move toward the outer layers of epidermis, multiple proteins become sequentially incorporated into the cornified cell envelope. We have identified through yeast two-hybrid screening a novel protein, periphilin, interacting with periplakin, which is known as a precursor of the cornified cell envelope. Periphilin gene at chromosome 12q12 gives rise to multiple alternatively spliced transcripts. A monoclonal antibody detected the keratinocyte-specific periphilin isoform in undifferentiated keratinocytes in speckle-type nuclear granules and at the nuclear membrane, but in differentiated keratinocytes periphilin localized to the cell periphery and at cell-cell junctions, colocalizing there with periplakin. From cultured keratinocytes, periphilin was solubilized only after urea extraction, indicating the highly insoluble character of this protein. The nuclear localization, mediated through the N-terminal sequences of periphilin protein, is a prerequisite for the formation of insoluble complexes. Although the globular N terminus of periphilin was necessary for the interaction with the periplakin tail, the keratinocyte-specific C terminus was responsible for the homodimerization. The C-terminal helical domain, composed of multiple heptad repeats, serves as a substrate for cross-linking by transglutaminases but also was specifically cleaved by caspase-5 in vitro. In conclusion, the localization pattern and insolubility of periphilin indicate that this novel protein is potentially involved in epithelial differentiation and contributes to epidermal integrity and barrier formation. PMID:12853457

  18. Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus

    SciTech Connect

    Munoz-Fontela, C. [Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal sn, 28040 Madrid (Spain); Collado, M. [Molecular Oncology Program, Centro Nacional de Investigaciones Oncologicas, Melchor Fernandez Almagro 3, 28029 Madrid (Spain); Rodriguez, E. [Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal sn, 28040 Madrid (Spain); Garcia, M.A. [Centro Nacional de Biotecnologia (CNB), Universidad Autonoma de Madrid, 28049 Madrid (Spain); Alvarez-Barrientos, A. [Unidad de Citometria, Fundacion Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Ronda de Poniente 5, Tres Cantos, 28760 Madrid (Spain); Arroyo, J. [Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal sn, 28040 Madrid (Spain); Nombela, C. [Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal sn, 28040 Madrid (Spain); Rivas, C. [Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal sn, 28040 Madrid (Spain)]. E-mail: mdcrivas@farm.ucm.es

    2005-11-15

    LANA2 is a latent protein detected in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected B cells that inhibits p53-dependent transcriptional transactivation and apoptosis and PKR-dependent apoptosis, suggesting an important role in the transforming activity of the virus. It has been reported that LANA2 localizes into the nucleus of both KSHV-infected B cells and transiently transfected HeLa cells. In this study, we show that LANA2 is a nucleocytoplasmic shuttling protein that requires a Rev-type nuclear export signal located in the C-terminus to direct the protein to the cytoplasm, through an association with the export receptor CRM1. In addition, a functional protein kinase B (PKB)/Akt phosphorylation motif partially overlapping with the nuclear export signal was identified. Nuclear exclusion of LANA2 was negatively regulated by the phosphorylation of threonine 564 by Akt. The ability of LANA2 to shuttle between nucleus and cytoplasm has implications for the function of this viral protein.

  19. KIFC1-Like Motor Protein Associates with the Cephalopod Manchette and Participates in Sperm Nuclear Morphogenesis in Octopus tankahkeei

    PubMed Central

    Tan, Fu-Qing; Yang, Wan-Xi

    2010-01-01

    Background Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery. Methodology/Principal Findings We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level. Conclusions/Significance The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod. PMID:21187923

  20. A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression.

    PubMed

    Sachs, A B; Bond, M W; Kornberg, R D

    1986-06-20

    Nuclear and cytoplasmic poly(A)-binding proteins have been purified from Saccharomyces cerevisiae, and antisera have been used to isolate a gene that encodes them. The gene occurs in a single copy on chromosome 5 and gives rise to a unique, unspliced 2.1 kb transcript. The nuclear protein appears to be derived from the cytoplasmic one by proteolytic cleavage into 53 and 17 kd polypeptides that remain associated during isolation. DNA sequence determination reveals four tandemly arrayed 90 amino acid regions of homology that probably represent poly(A)-binding domains. A 55 residue A-rich region upstream of the initiator methionine codon in the mRNA shows an affinity for poly(A)-binding protein comparable to that of poly(A)180-220, raising the possibility of feedback regulation of translation. PMID:3518950

  1. Cell proliferation-associated nuclear antigen defined by antibody Ki-67: a new kind of cell cycle-maintaining proteins.

    PubMed

    Duchrow, M; Schlüter, C; Key, G; Kubbutat, M H; Wohlenberg, C; Flad, H D; Gerdes, J

    1995-01-01

    A decade of studies on the human nuclear antigen defined by monoclonal antibody Ki-67 (the "Ki-67 protein") has made it abundantly clear that this structure is strictly associated with human cell proliferation and that the expression of this protein can be used to assess the growth fraction of a given cell population. Until recently the Ki-67 protein was described as a nonhistone protein that is highly susceptible to protease treatment. We have isolated and sequenced cDNAs encoding for this antigen and found two isoforms of the full length cDNA of 11.5 and 12.5 kb, respectively, sequence and structure of which are thus far unique. The gene encoding the Ki-67 protein is organized in 15 exons and is localized on chromosome 10. The center of this gene is formed by an extraordinary 6845 bp exon containing 16 successively repeated homologous segments of 366 bp ("Ki-67 repeats"), each containing a highly conserved new motif of 66 bp ("Ki-67 motif"). The deduced peptide sequence of this central exon possess 10 ProGluSerThr (PEST) motifs which are associated with high turnover proteins such as other cell cycle-related proteins, oncogenes and transcription factors, etc. Like the latter proteins the Ki-67 antigen plays a pivotal role in maintaining cell proliferation because Ki-67 protein antisense oligonucleotides significantly inhibit 3H-thymidine incorporation in permanent human tumor cell lines in a dose-dependent manner. PMID:8744726

  2. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  3. Growth Factor-induced p42\\/p44 MAPK Nuclear Translocation and Retention Requires Both MAPK Activation and Neosynthesis of Nuclear Anchoring Proteins

    Microsoft Academic Search

    Philippe Lenormand; Jean-Marc Brondello; Anne Brunet; Jacques Pouysségur

    2010-01-01

    Mitogen-activated protein kinases (p42\\/p44 MAPK, also called Erk2 and Erk1) are key mediators of signal transduction from the cell surface to the nu- cleus. We have previously shown that the activation of p42\\/p44 MAPK required for transduction of mitogenic signaling is associated with a rapid nuclear transloca- tion of these kinases. However, the means by which p42 and p44 MAPK

  4. Is a Malleable Protein Necessarily Highly Dynamic? The Hydrophobic Core of the Nuclear Coactivator Binding Domain Is Well Ordered

    PubMed Central

    Kjaergaard, Magnus; Poulsen, Flemming M.; Teilum, Kaare

    2012-01-01

    The nuclear coactivator binding domain of CREB binding protein folds into remarkably different structures in complex with different ligands. To understand the mechanism of the structural adaptability in the nuclear coactivator binding domain (NCBD), we have compared the dynamics of the hydrophobic core of NCBD in the ligand-free state and in a well-folded complex with the ligand activator for thyroid hormone and retinoid receptors using multiple NMR methods including methyl chemical shifts, coupling constants, and methyl order parameters. From all NMR measures, the aliphatic side chains in the hydrophobic core are slightly more dynamic in the free protein than in the complex, but have mobility comparable to the hydrophobic cores of average folded proteins. Urea titration monitored by NMR reveals that all parts of the protein, including the side-chain packing in the hydrophobic core, denatures in a single cooperative process. The molten globule characteristics of NCBD are thus restricted to a slowly fluctuating tertiary structure. Consequently, the conformational plasticity of the protein is most likely related to its low overall stability rather than an intrinsically flexible protein structure. The well-defined structure supports a model of molecular recognition dominated by conformational selection, whereas only minor structural adjustments are necessary after the association. PMID:22500763

  5. Structure and expression of the Drosophila melanogaster gene for the U1 small nuclear ribonucleoprotein particle 70K protein.

    PubMed Central

    Mancebo, R; Lo, P C; Mount, S M

    1990-01-01

    A genomic clone encoding the Drosophila U1 small nuclear ribonucleoprotein particle 70K protein was isolated by hybridization with a human U1 small nuclear ribonucleoprotein particle 70K protein cDNA. Southern blot and in situ hybridizations showed that this U1 70K gene is unique in the Drosophila genome, residing at cytological position 27D1,2. Polyadenylated transcripts of 1.9 and 3.1 kilobases were observed. While the 1.9-kilobase mRNA is always more abundant, the ratio of these two transcripts is developmentally regulated. Analysis of cDNA and genomic sequences indicated that these two RNAs encode an identical protein with a predicted molecular weight of 52,879. Comparison of the U1 70K proteins predicted from Drosophila, human, and Xenopus cDNAs revealed 68% amino acid identity in the most amino-terminal 214 amino acids, which include a sequence motif common to many proteins which bind RNA. The carboxy-terminal half is less well conserved but is highly charged and contains distinctive arginine-rich regions in all three species. These arginine-rich regions contain stretches of arginine-serine dipeptides like those found in transformer, transformer-2, and suppressor-of-white-apricot proteins, all of which have been identified as regulators of mRNA splicing in Drosophila melanogaster. Images PMID:1692955

  6. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    SciTech Connect

    Steen, Hakan [Department of Neuroscience, Uppsala University, Biomedical Centre, Box 587, Husargatan 3, SE-75123 Uppsala (Sweden); Lindholm, Dan [Department of Neuroscience, Uppsala University, Biomedical Centre, Box 587, Husargatan 3, SE-75123 Uppsala (Sweden); Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki (Finland)], E-mail: dan.lindholm@neuro.uu.se

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent to the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.

  7. Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein At GRP7

    Microsoft Academic Search

    Alicja Ziemienowicz; Dorothea Haasen; Dorothee Staiger; Thomas Merkle

    2003-01-01

    We characterized the Arabidopsis orthologue of the human nuclear import receptor transportin1 (TRN1). Like the human receptor, Arabidopsis TRN1 recognizes nuclear import signals on proteins that are different from the classical basic nuclear localization signals. The M9 domain of human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the prototype of such signals. We show that AtTRN1 binds to similar domains

  8. Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins.

    PubMed

    Kollmar, Martin

    2015-01-01

    The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical ?-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope. PMID:26024016

  9. The L2 Minor Capsid Protein of Human Papillomavirus Type 16 Interacts with a Network of Nuclear Import Receptors

    PubMed Central

    Darshan, Medha S.; Lucchi, John; Harding, Emily; Moroianu, Junona

    2004-01-01

    The L2 minor capsid proteins enter the nucleus twice during viral infection: in the initial phase after virion disassembly and in the productive phase when, together with the L1 major capsid proteins, they assemble the replicated viral DNA into virions. In this study we investigated the interactions between the L2 protein of high-risk human papillomavirus type 16 (HPV16) and nuclear import receptors. We discovered that HPV16 L2 interacts directly with both Kap?2 and Kap?3. Moreover, binding of Ran-GTP to either Kap?2 or Kap?3 inhibits its interaction with L2, suggesting that the Kap?/L2 complex is import competent. In addition, we found that L2 forms a complex with the Kap?2?1 heterodimer via interaction with the Kap?2 adapter. In agreement with the binding data, nuclear import of L2 in digitonin-permeabilized cells could be mediated by either Kap?2?1 heterodimers, Kap?2, or Kap?3. Mapping studies revealed that HPV16 L2 contains two nuclear localization signals (NLSs), in the N terminus (nNLS) and C terminus (cNLS), that could mediate its nuclear import. Together the data suggest that HPV16 L2 interacts via its NLSs with a network of karyopherins and can enter the nucleus via several import pathways mediated by Kap?2?1 heterodimers, Kap?2, and Kap?3. PMID:15507604

  10. Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins

    PubMed Central

    Kollmar, Martin

    2015-01-01

    The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical ?-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope. PMID:26024016

  11. Levels of synthesis of primate-specific nuclear proteins differ between growth-arrested and proliferating cells

    SciTech Connect

    Celis, J.E.; Madsen, P.; Nielsen, S.; Ratz, G.P.; Lauridsen, J.B.; Celis, A.

    1987-02-01

    A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of (/sup 35/S)methionine-labelled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation.

  12. Small nuclear RNA-associated proteins are immunologically related as revealed by mapping of autoimmune reactive B-cell epitopes.

    PubMed Central

    Habets, W J; Sillekens, P T; Hoet, M H; McAllister, G; Lerner, M R; van Venrooij, W J

    1989-01-01

    Autoantibodies from a patient with systemic lupus erythematosus, which recognize U1 and U2 small nuclear ribonucleoprotein particles (snRNPs), were used to map B-cell autoepitopes on the U1 snRNP-specific A protein. This protein contains two regions that are highly similar to regions in the U2 snRNP-specific B" protein. A site termed epitope 2 maps in one such region and was found to react with antibodies cross-reactive between A and B". A second site, epitope 1, is situated in a proline-rich region that shows no homology with B". This epitope can bind three different autoantibodies with distinct specificities. Epitope 1-affinity-purified antibodies from different patients react with either (i) the A protein exclusively; (ii) proteins A, B'/B, a synthetic peptide for part of the N polypeptide, and an unidentified protein with a molecular mass of 50 kDa; or (iii) proteins A, B'/B, C, and the N-derived peptide. Comparison of the primary structures of proteins B'/B, N, and C reveals multiple epitope 1-like sequences in all of them. The possibility that these repeating regions act as immunogens in patients with autoimmune disease is discussed. Images PMID:2471976

  13. Nuclear Translocation of Cellular Retinoic Acid-binding Protein II Is Regulated by Retinoic Acid-controlled SUMOylation*

    PubMed Central

    Majumdar, Avijit; Petrescu, Anca D.; Xiong, Yin; Noy, Noa

    2011-01-01

    Cellular retinoic acid-binding protein II (CRABP-II) undergoes nuclear translocation upon binding of retinoic acid (RA). In the nucleus, CRABP-II directly binds to the nuclear receptor RAR to form a complex through which RA is “channeled” from the binding protein to the receptor. CRABP-II thus facilitates the ligation of RAR and markedly enhances its transcriptional activity. The primary sequence of CRABP-II contains three putative SUMOylation sites, centered at K45, K87, and K102. We show here that RA induces interactions of CRABP-II with the E2 SUMO ligase Ubc9 and triggers SUMOylation of the protein both in vitro and in cultured cells. Mutagenesis analyses demonstrate that K102 is the sole CRABP-II residue to be SUMOylated in response to RA. Mutation of this residue abolishes the ability of CRABP-II to undergo nuclear translocation in response RA and thus impairs CRABP-II-mediated activation of RAR. Additional observations demonstrate that apo-CRABP-II is associated with endoplasmic reticulum (ER), and that RA triggers the dissociation of CRABP-II from this location. Furthermore, we show that RA-induced dissociation of CRABP-II from the ER requires SUMOylation of K102. Hence, SUMOylation of K102 in response to RA binding is critical for dissociation of CRABP-II from ER and, consequently, for mobilization of the protein to nucleus and for its cooperation with RAR. PMID:21998312

  14. Formation of nuclear bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1

    PubMed Central

    Ishizuka, Akira; Hasegawa, Yuko; Ishida, Kentaro; Yanaka, Kaori; Nakagawa, Shinichi

    2014-01-01

    Gomafu/MIAT/Rncr2 is a long noncoding RNA that has been proposed to control retinal cell specification, stem cell differentiation and alternative splicing of schizophrenia-related genes. However, how Gomafu controls these biological processes at the molecular level has remained largely unknown. In this study, we identified the RNA-binding protein Celf3 as a novel Gomafu-associating protein. Knockdown of Celf3 led to the down-regulation of Gomafu, and cross-link RNA precipitation analysis confirmed specific binding between Celf3 and Gomafu. In the neuroblastoma cell line Neuro2A, Celf3 formed novel nuclear bodies (named CS bodies) that colocalized with SF1, another Gomafu-binding protein. Gomafu, however, was not enriched in the CS bodies; instead, it formed distinct nuclear bodies in separate regions in the nucleus. These observations suggest that Gomafu indirectly modulates the function of the splicing factors SF1 and Celf3 by sequestering these proteins into separate nuclear bodies. PMID:25145264

  15. The N-terminus of porcine circovirus type 2 replication protein is required for nuclear localization and ori binding activities

    SciTech Connect

    Lin, W.-L. [Graduate Institute of Veterinary Microbiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Chien, M.-S. [Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Du, Y.-W.; Wu, P.-C. [Graduate Institute of Veterinary Microbiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Huang Chienjin [Graduate Institute of Veterinary Microbiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China)], E-mail: cjhuang@dragon.nchu.edu.tw

    2009-02-20

    Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.

  16. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences.

    PubMed

    Ishiwata, Keisuke; Sasaki, Go; Ogawa, Jiro; Miyata, Takashi; Su, Zhi-Hui

    2011-02-01

    Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects. PMID:21075208

  17. Development of a Radioiodinated Triazolopyrimidine Probe for Nuclear Medical Imaging of Fatty Acid Binding Protein 4

    PubMed Central

    Onoe, Satoru; Sampei, Sotaro; Kimura, Ikuo; Ono, Masahiro; Saji, Hideo

    2014-01-01

    Fatty acid binding protein 4 (FABP4) is the most well-characterized FABP isoform. FABP4 regulates inflammatory pathways in adipocytes and macrophages and is involved in both inflammatory diseases and tumor formation. FABP4 expression was recently reported for glioblastoma, where it may participate in disease malignancy. While FABP4 is a potential molecular imaging target, with the exception of a tritium labeled probe there are no reports of other nuclear imaging probes that target this protein. Here we designed and synthesized a nuclear imaging probe, [123I]TAP1, and evaluated its potential as a FABP4 targeting probe in in vitro and in vivo assays. We focused on the unique structure of a triazolopyrimidine scaffold that lacks a carboxylic acid to design the TAP1 probe that can undergo facilitated delivery across cell membranes. The affinity of synthesized TAP1 was measured using FABP4 and 8-anilino-1-naphthalene sulfonic acid. [125I]TAP1 was synthesized by iododestannylation of a precursor, followed by affinity and selectivity measurements using immobilized FABPs. Biodistributions in normal and C6 glioblastoma-bearing mice were evaluated, and excised tumors were subjected to autoradiography and immunohistochemistry. TAP1 and [125I]TAP1 showed high affinity for FABP4 (Ki?=?44.5±9.8 nM, Kd?=?69.1±12.3 nM). The FABP4 binding affinity of [125I]TAP1 was 11.5- and 35.5-fold higher than for FABP3 and FABP5, respectively. In an in vivo study [125I]TAP1 displayed high stability against deiodination and degradation, and moderate radioactivity accumulation in C6 tumors (1.37±0.24% dose/g 3 hr after injection). The radioactivity distribution profile in tumors partially corresponded to the FABP4 positive area and was also affected by perfusion. The results indicate that [125I]TAP1 could detect FABP4 in vitro and partly in vivo. As such, [125I]TAP1 is a promising lead compound for further refinement for use in in vivo FABP4 imaging. PMID:24732569

  18. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D. [Department of Medicine, Section of Pulmonary Disease and Critical Care, Tulane University School of Medicine, New Orleans, LA (United States); Block, Gregory J. [University of Washington Institute for Stem Cell and Regenerative Medicine, Seattle, WA (United States); Shan, Bin; Esteves, Kyle C. [Department of Medicine, Section of Pulmonary Disease and Critical Care, Tulane University School of Medicine, New Orleans, LA (United States); Lin, Zhen; Flemington, Erik K. [Department of Pathology, Tulane University School of Medicine, New Orleans, LA (United States); Lasky, Joseph A., E-mail: jlasky@tulane.edu [Department of Medicine, Section of Pulmonary Disease and Critical Care, Tulane University School of Medicine, New Orleans, LA (United States)

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  19. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    SciTech Connect

    Dement, Gregory A. [School of Molecular Biosciences, Washington State University, Rm. 639, Fulmer Hall, Pullman, WA 99164-4660 (United States); Maloney, Scott C. [School of Molecular Biosciences, Washington State University, Rm. 639, Fulmer Hall, Pullman, WA 99164-4660 (United States); Reeves, Raymond [School of Molecular Biosciences, Washington State University, Rm. 639, Fulmer Hall, Pullman, WA 99164-4660 (United States)]. E-mail: reevesr@mail.wsu.edu

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential ({delta}{psi}{sub m}). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression.

  20. Converging nuclear magnetic shielding calculations with respect to basis and system size in protein systems.

    PubMed

    Hartman, Joshua D; Neubauer, Thomas J; Caulkins, Bethany G; Mueller, Leonard J; Beran, Gregory J O

    2015-07-01

    Ab initio chemical shielding calculations greatly facilitate the interpretation of nuclear magnetic resonance (NMR) chemical shifts in biological systems, but the large sizes of these systems requires approximations in the chemical models used to represent them. Achieving good convergence in the predicted chemical shieldings is necessary before one can unravel how other complex structural and dynamical factors affect the NMR measurements. Here, we investigate how to balance trade-offs between using a better basis set or a larger cluster model for predicting the chemical shieldings of the substrates in two representative examples of protein-substrate systems involving different domains in tryptophan synthase: the N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F9) ligand which binds in the [Formula: see text] active site, and the 2-aminophenol quinonoid intermediate formed in the [Formula: see text] active site. We first demonstrate that a chemically intuitive three-layer, locally dense basis model that uses a large basis on the substrate, a medium triple-zeta basis to describe its hydrogen-bonding partners and/or surrounding van der Waals cavity, and a crude basis set for more distant atoms provides chemical shieldings in good agreement with much more expensive large basis calculations. Second, long-range quantum mechanical interactions are important, and one can accurately estimate them as a small-basis correction to larger-basis calculations on a smaller cluster. The combination of these approaches enables one to perform density functional theory NMR chemical shift calculations in protein systems that are well-converged with respect to both basis set and cluster size. PMID:25993979

  1. Demonstration of a RNA-dependent nuclear interaction between the promyelocytic leukaemia protein and glyceraldehyde-3-phosphate dehydrogenase.

    PubMed Central

    Carlile, G W; Tatton, W G; Borden, K L

    1998-01-01

    The promyelocytic leukaemia (protein) (PML) localizes to multiprotein complexes known as PML nuclear bodies. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) co-immunoprecipitates with PML and co-localizes with PML in nuclear bodies. RNase treatment disrupts the ability of PML and GAPDH to both co-localize and co-immunoprecipitate, indicating that the association between PML and GAPDH depends on the presence of RNA. Disruption of PML bodies contributes towards reduced apoptosis in acute promyelocytic leukaemia and GAPDH induces apoptotic neuronal death. The GAPDH-PML interaction may be involved in the regulation of apoptosis. PMID:9794812

  2. Nuclear Magnetic Resonance based Characterization of the Protein Binding Pocket using Hyperpolarized Ligand 

    E-print Network

    Min, Hlaing

    2014-08-04

    In the drug design process, the structural determination of the protein-ligand binding interface and understanding how the drug binds to the target protein at the protein binding pocket is essential. In the past few years, ...

  3. The novel human HUEL (C4orf1) gene maps to chromosome 4p12-p13 and encodes a nuclear protein containing the nuclear receptor interaction motif.

    PubMed

    Sim, D L; Chow, V T

    1999-07-15

    A 3250-bp novel human cDNA sequence was isolated from the MRC-5 human embryonic lung cell line by the rapid amplification of cDNA ends technique. This gene was designated HUEL and given the symbol C4orf1 by the HUGO Nomenclature Committee. Within HUEL was identified a continuous ORF of 1704 bp encoding a predicted hydrophilic protein of 568 amino acids with a calculated molecular mass of 63,410 Da. The putative protein contains the LXXLL signature motif considered necessary and sufficient for binding of certain coactivators to liganded nuclear receptors, as well as nuclear localization signals, a nuclear export-like signal, a zinc finger-like motif, an acidic region, and two leucine zipper-like domains. Northern blot analysis of human fetal tissues revealed 3. 4-kb transcripts, while RT-PCR demonstrated HUEL expression in a wide range of human adult tissues and cancer cell lines. In the SiHa, HT-1080, and G-401 cancer lines was detected an alternative transcript in which a 166-bp segment was excluded by exon skipping, which is predicted to culminate in a protein with a modified and truncated C-terminus. HUEL was localized to chromosome region 4p12-p13 by fluorescence in situ hybridization. In Western blots, affinity-purified antibodies raised against a HUEL-specific synthetic peptide could recognize a distinct protein band of approximately 70 kDa. Immunoblotting of subcellular fractions and indirect immunofluorescence of human embryonic lung cells demonstrated the distribution of HUEL predominantly in the cytoplasm, with an apparently cytoskeletal association. However, in smaller or dividing PLC/PRF/5 and TONG liver carcinoma cells, there was a translocation of HUEL from the cytoplasm to the nucleus. Taken together, these data suggest that HUEL plays a role in transcriptional regulation. PMID:10409434

  4. The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals.

    PubMed Central

    Goday, A; Jensen, A B; Culiáñez-Macià, F A; Mar Albà, M; Figueras, M; Serratosa, J; Torrent, M; Pagès, M

    1994-01-01

    The maize abscisic acid (ABA)-responsive rab17 mRNA and Rab17 protein distribution in maize embryo tissues was investigated by in situ hybridization and immunocytochemistry. rab17 mRNA and Rab17 protein were found in all cells of embryo tissues. Synthesis of rab17 mRNA occurred initially in the embryo axis. As maturation progressed, rab17 mRNA was detectable in the scutellum and accumulated in axis cells and provascular tissues. However, the response to exogenous ABA differed in various embryo cell types. The Rab17 protein was located in the nucleus and in the cytoplasm, and qualitative differences in the phosphorylation states of the protein were found between the two subcellular compartments. Based on the similar domain arrangements of Rab17 and a nuclear localization signal (NLS) binding phosphoprotein, Nopp140, interaction of Rab17 with NLS peptides was studied. We found specific binding of Rab17 to the wild-type NLS of the SV40 T antigen but not to an import incompetent mutant peptide. Moreover, binding of the NLS peptide to Rab17 was found to be dependent upon phosphorylation. These results suggest that Rab17 may play a role in nuclear protein transport. PMID:8180497

  5. The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals.

    PubMed

    Goday, A; Jensen, A B; Culiáñez-Macià, F A; Mar Albà, M; Figueras, M; Serratosa, J; Torrent, M; Pagès, M

    1994-03-01

    The maize abscisic acid (ABA)-responsive rab17 mRNA and Rab17 protein distribution in maize embryo tissues was investigated by in situ hybridization and immunocytochemistry. rab17 mRNA and Rab17 protein were found in all cells of embryo tissues. Synthesis of rab17 mRNA occurred initially in the embryo axis. As maturation progressed, rab17 mRNA was detectable in the scutellum and accumulated in axis cells and provascular tissues. However, the response to exogenous ABA differed in various embryo cell types. The Rab17 protein was located in the nucleus and in the cytoplasm, and qualitative differences in the phosphorylation states of the protein were found between the two subcellular compartments. Based on the similar domain arrangements of Rab17 and a nuclear localization signal (NLS) binding phosphoprotein, Nopp140, interaction of Rab17 with NLS peptides was studied. We found specific binding of Rab17 to the wild-type NLS of the SV40 T antigen but not to an import incompetent mutant peptide. Moreover, binding of the NLS peptide to Rab17 was found to be dependent upon phosphorylation. These results suggest that Rab17 may play a role in nuclear protein transport. PMID:8180497

  6. Regulation of Stress-Inducible Phosphoprotein 1 Nuclear Retention by Protein Inhibitor of Activated STAT PIAS1

    PubMed Central

    Soares, Iaci N.; Caetano, Fabiana A.; Pinder, Jordan; Rodrigues, Bruna Roz; Beraldo, Flavio H.; Ostapchenko, Valeriy G.; Durette, Chantal; Pereira, Grace Schenatto; Lopes, Marilene H.; Queiroz-Hazarbassanov, Nicolle; Cunha, Isabela W.; Sanematsu, Paulo I.; Suzuki, Sergio; Bleggi-Torres, Luiz F.; Schild-Poulter, Caroline; Thibault, Pierre; Dellaire, Graham; Martins, Vilma R.; Prado, Vania F.; Prado, Marco A. M.

    2013-01-01

    Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450–480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity. PMID:23938469

  7. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio (Aichi Cancer Center Research Inst., Nagoya (Japan))

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  8. Nuclear protein I{kappa}B-{zeta} inhibits the activity of STAT3

    SciTech Connect

    Wu, Zhihao; Zhang, Xiaoai; Yang, Juntao; Wu, Guangzhou; Zhang, Ying; Yuan, Yanzhi; Jin, Chaozhi [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China)] [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China); Chang, Zhijie [Department of Biological Sciences and Biotechnology, Institute of Biomedicine, Tsinghua University, Beijing 100084 (China)] [Department of Biological Sciences and Biotechnology, Institute of Biomedicine, Tsinghua University, Beijing 100084 (China); Wang, Jian, E-mail: wangjian@nic.bmi.ac.cn [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China)] [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China); Yang, Xiaoming, E-mail: xmyang2@nic.bmi.ac.cn [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China)] [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China); He, Fuchu, E-mail: hefc@nic.bmi.ac.cn [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China) [State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2009-09-18

    STAT3 (Signal transducer and activator of transcription 3) is a key transcription factor of the JAK-STAT (Janus kinase/signal transducer and activator of transcription) pathway that regulates cell proliferation and apoptosis. Activation of STAT3 is under tight regulation, and yet the different signaling pathways and the mechanisms that regulate its activity remain to be elucidated. Using a yeast two-hybrid screening, we have identified a nuclear protein I{kappa}B-{zeta} that interacts in a novel way with STAT3. This physical interaction was further confirmed by co-immunoprecipitation assays. The interaction regions were mapped to the coiled-coil domain of STAT3 and the C-terminal of I{kappa}B-{zeta}. Overexpression of I{kappa}B-{zeta} inhibited the transcriptional activity of STAT3. It also suppressed cell growth and induced cell apoptosis in SRC-simulated cells, which is partially mediated by down-regulation of expression of a known STAT3 target gene, MCL1. Our results suggest that I{kappa}B-{zeta} is a negative regulator of STAT3, and demonstrate a novel mechanism in which a component of the NF-{kappa}B signaling pathway inhibits the activation of STAT3.

  9. Multiple Genes Encode Nuclear Factor 1Like Proteins that Bind to the Promoter for 3-hydroxy-3-methylglutaryl-coenzyme A Reductase

    Microsoft Academic Search

    Gregorio Gil; Jeffrey R. Smith; Joseph L. Goldstein; Clive A. Slaughter; Kim Orth; Michael S. Brown; Timothy F. Osborne

    1988-01-01

    DNA-binding proteins of the nuclear factor 1 (NF1) family recognize sequences containing TGG. Two of these proteins, termed reductase promoter factor (RPF) proteins A and B, bind to the promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a negatively regulated enzyme in cholesterol biosynthesis. In the current study, we determined the sequences of peptides derived from hamster RPF proteins A and B

  10. The mouse proline-rich protein MP6 promoter binds isoprenaline-inducible parotid nuclear proteins via a highly conserved NFkB/rel-like site.

    PubMed Central

    Roberts, S G; Layfield, R; McDonald, C J

    1991-01-01

    Proline-rich protein (PRP) gene MP6 was isolated from a mouse BALB/c genomic DNA library in lambda EMBL3, characterised by hybridisation and restriction mapping and the promoter region, from -162 to +72 around the PRP consensus cap-site, was sequenced. In gel shift assays this region formed complexes C1 and C2 with parotid nuclear proteins which were induced by the beta-adrenergic agonist isoprenaline. DNA competition studies and direct binding assays of promoter subfragments showed that it was the sequence from -157 to -91 that was forming the isoprenaline-dependent complexes. All PRP genes conserve a 23bp. sequence, termed PRP Box1, with ets and NFkB/rel binding site-like elements, upstream of their promoters. In the MP6 promoter, PRP Box1 was within the region forming the complexes. Further gel shift assays using PRP Box1 oligonucleotides as competitors and targets indicated that the NFkB/rel binding site-like element was important in formation of the isoprenaline-inducible complexes. HeLa nuclear extracts also formed complexes with PRP Box1 similar to C1 and C2 but nuclear extracts from spleen, submandibular gland and liver did not. These complexes are thus candidate regulators for the isoprenaline-dependent and tissue-specific transcription of PRP genes. Images PMID:1747160

  11. The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration.

    PubMed

    Bone, Courtney R; Tapley, Erin C; Gorjánácz, Mátyás; Starr, Daniel A

    2014-09-15

    Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect-live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus. PMID:25057012

  12. Nucleocytoplasmic shuttling of the rabies virus P protein requires a nuclear localization signal and a CRM1-dependent nuclear export signal

    SciTech Connect

    Pasdeloup, David [Unite Mixte de Virologie Moleculaire et Structurale UMR2472 CNRS, UMR1157 INRA, 91198 Gif sur Yvette Cedex (France); Poisson, Nicolas [Unite Mixte de Virologie Moleculaire et Structurale UMR2472 CNRS, UMR1157 INRA, 91198 Gif sur Yvette Cedex (France); Raux, Helene [Unite Mixte de Virologie Moleculaire et Structurale UMR2472 CNRS, UMR1157 INRA, 91198 Gif sur Yvette Cedex (France); Gaudin, Yves [Unite Mixte de Virologie Moleculaire et Structurale UMR2472 CNRS, UMR1157 INRA, 91198 Gif sur Yvette Cedex (France); Ruigrok, Rob W.H. [Laboratoire de Virologie Moleculaire et Structurale, FRE 2854 CNRS-UJF, c/o EMBL, BP 181, 38042 Grenoble Cedex 9 (France); Blondel, Danielle [Unite Mixte de Virologie Moleculaire et Structurale UMR2472 CNRS, UMR1157 INRA, 91198 Gif sur Yvette Cedex (France)]. E-mail: danielle.blondel@vms.cnrs-gif.fr

    2005-04-10

    Rabies virus P protein is a co-factor of the viral RNA polymerase. It has been shown previously that P mRNA directs the synthesis of four N-terminally truncated P products P2, P3, P4, and P5 due to translational initiation by a leaky scanning mechanism at internal Met codons. Whereas P and P2 are located in the cytoplasm, P3, P4, and P5 are found in the nucleus. Here, we have analyzed the molecular basis of the subcellular localization of these proteins. Using deletion mutants fused to GFP protein, we show the presence of a nuclear localization signal (NLS) in the C-terminal part of P (172-297). This domain contains a short lysine-rich stretch ({sup 211}KKYK{sup 214}) located in close proximity with arginine 260 as revealed by the crystal structure of P. We demonstrate the critical role of lysine 214 and arginine 260 in NLS activity. In the presence of Leptomycin B, P is retained in the nucleus indicating that it contains a CRM1-dependent nuclear export signal (NES). The subcellular distribution of P deletion mutants indicates that the domain responsible for export is the amino-terminal part of the protein. The use of fusion proteins that have amino terminal fragments of P fused to {beta}-galactosidase containing the NLS of SV40 T antigen allows us to identify a NES between residues 49 and 58. The localization of NLS and NES determines the cellular distribution of the P gene products.

  13. The Unfolded Protein Response Transducer Ire1p Contains a Nuclear Localization Sequence Recognized by Multiple Importins

    Microsoft Academic Search

    Laurence Goffin; Sadanand Vodala; Christine Fraser; Joanne Ryan; Mark Timms; Sarina Meusburger; Bruno Catimel; Edouard C. Nice; Pamela A. Silver; Chong-Yun Xiao; David A. Jans; Mary-Jane H. Gething

    2006-01-01

    The Ire1p transmembrane receptor kinase\\/endonuclease transduces the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus in Saccharomyces cerevisiae. In this study, we analyzed the capacity of a highly basic sequence in the linker region of Ire1p to function as a nuclear localization sequence (NLS) both in vivo and in vitro. This 18-residue sequence is capable of

  14. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes

    Microsoft Academic Search

    Nicolas Vidal; S. Blair Hedges

    2005-01-01

    Squamate reptiles number approximately 8000 living species and are a major component of the world's terrestrial vertebrate diversity. However, the established relationships of the higher-level groups have been questioned in recent molecular analyses. Here we expand the molecular data to include DNA sequences, totaling 6192 base pairs (bp), from nine nuclear protein-coding genes (C-mos, RAG1, RAG2, R35, HOXA13, JUN, ?-enolase,

  15. Evolution \\/ Évolution The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes

    Microsoft Academic Search

    Nicolas Vidal; S. Blair Hedges

    Squamate reptiles number approximately 8000 living species and are a major component of the world's terrestrial vertebrate diversity. However, the established relationships of the higher-level groups have been questioned in recent molecular analyses. Here we expand the molecular data to include DNA sequences, totaling 6192 base pairs (bp), from nine nuclear protein-coding genes (C-mos, RAG1, RAG2, R35, HOXA13, JUN,?-enolase, amelogenin

  16. A Pre-mRNA-Binding Protein Accompanies the RNA from the Gene through the Nuclear Pores and into Polysomes

    Microsoft Academic Search

    Neus Visa; Alla T Alzhanova-Ericsson; Xin Sun; Elena Kiseleva; Birgitta Björkroth; Tilmann Wurtz; Bertil Daneholt

    1996-01-01

    In the larval salivary glands of C. tentans, it is possible to visualize by electron microscopy how Balbiani ring (BR) pre-mRNA associates with proteins to form pre-mRNP particles, how these particles move to and through the nuclear pore, and how the BR RNA is engaged in the formation of giant polysomes in the cytoplasm. Here, we study C. tentans hrp36,

  17. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes.

    PubMed

    Molitor, Tyler P; Traktman, Paula

    2014-03-01

    Barrier to autointegration factor (BAF), which is encoded by the BANF1 gene, binds with high-affinity to double-stranded DNA and LEM domain-containing proteins at the nuclear periphery. A BANF1 mutation has recently been associated with a novel human progeria syndrome, and cells from these patients have aberrant nuclear envelopes. The interactions of BAF with its DNA- and protein-binding partners are known to be regulated by phosphorylation, and previously we validated BAF as a highly efficient substrate for the VRK1 protein kinase. Here we show that depletion of VRK1 in MCF10a and MDA-MB-231 cells results in aberrant nuclear architecture. The immobile fraction of green fluorescent protein (GFP)-BAF at the nuclear envelope (NE) is elevated, suggesting that prolonged interactions of BAF with its binding partners is likely responsible for the aberrant NE architecture. Because detachment of BAF from its binding partners is associated with NE disassembly, we performed live-imaging analysis of control and VRK1-depleted cells to visualize GFP-BAF dynamics during mitosis. In the absence of VRK1, BAF does not disperse but instead remains chromosome bound from the onset of mitosis. VRK1 depletion also increases the number of anaphase bridges and multipolar spindles. Thus phosphorylation of BAF by VRK1 is essential both for normal NE architecture and proper dynamics of BAF-chromosome interactions during mitosis. These results are consistent with previous studies of the VRK/BAF signaling axis in Caenorhabditis elegans and Drosophila melanogaster and validate VRK1 as a key regulator of NE architecture and mitotic chromosome dynamics in mammalian cells. PMID:24430874

  18. Prothymosin ?, a mammalian c-myc-regulated acidic nuclear protein, provokes the decondensation of human chromosomes in vitro

    Microsoft Academic Search

    F. Boán; A. Viñas; M. Buceta; F. Domínguez; L. Sánchez; J. Gómez-Márquez

    2001-01-01

    Prothymosin (ProT?) is an acidic nuclear protein, widely distributed in mammalian cells, whose expression is regulated by c-myc and linked to cell proliferation. ProT? interacts with histone H1 via its acidic domain, and its overexpression provokes the unfolding of chromatin fibers. Here we show that incubation of human native metaphase chromosomes with ProT? induces their extensive unravelling suggesting a function

  19. Sm protein down-regulation leads to defects in nuclear pore complex disassembly and distribution in C. elegans embryos

    PubMed Central

    Joseph-Strauss, Daphna; Gorjánácz, Mátyás; Santarella-Mellwig, Rachel; Voronina, Ekaterina; Audhya, Anjon; Cohen-Fix, Orna

    2012-01-01

    Summary Nuclear pore complexes (NPCs) are large macromolecular structures embedded in the nuclear envelope (NE), where they facilitate exchange of molecules between the cytoplasm and the nucleoplasm. In most cell types, NPCs are evenly distributed around the NE. However, the mechanisms dictating NPC distribution are largely unknown. Here, we used the model organism C. elegans to identify genes that affect NPC distribution during early embryonic divisions. We found that down-regulation of the Sm proteins, which are core components of the spliceosome, but not down-regulation of other splicing factors, led to clustering of NPCs. Down-regulation of Sm proteins also led to incomplete disassembly of NPCs during mitosis, but had no effect on lamina disassembly, suggesting that the defect in NPC disassembly was not due to a general defect in nuclear envelope breakdown. We further found that these mitotic NPC remnants persisted on an ER membrane that juxtaposes the mitotic spindle. At the end of mitosis, the remnant NPCs moved toward the chromatin and the reforming NE, where they ultimately clustered by forming membrane stacks perforated by NPCs. Our results suggest a novel, splicing-independent, role for Sm proteins in NPC disassembly, and point to a possible link between NPC disassembly in mitosis and NPC distribution in the subsequent interphase. PMID:22426005

  20. Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans

    SciTech Connect

    Ji Qiongmei [Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10021 (United States); Huang, C.-H. [Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10021 (United States)]. E-mail: chuang@nybloodcenter.org; Peng Jianbin [Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10021 (United States); Hashmi, Sarwar [Developmental Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021 (United States); Ye Tianzhang [Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10021 (United States); Chen Ying [Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10021 (United States)

    2007-04-15

    We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.

  1. Domains involved in calcineurin phosphatase inhibition and nuclear localisation in the African swine fever virus A238L protein

    SciTech Connect

    Abrams, Charles C.; Chapman, Dave A.G.; Silk, Rhiannon; Liverani, Elisabetta [Institute for Animal Health Pirbright Laboratory, Pirbright (United Kingdom); Dixon, Linda K. [Institute for Animal Health Pirbright Laboratory, Pirbright (United Kingdom)], E-mail: linda.dixon@bbsrc.ac.uk

    2008-05-10

    The African swine fever virus A238L protein inhibits calcineurin phosphatase activity and activation of NF-{kappa}B and p300 co-activator. An 82 amino acid domain containing residues 157 to 238 at the C-terminus of A238L was expressed in E. coli and purified. This purified A238L fragment acted as a potent inhibitor of calcineurin phosphatase in vitro with an IC{sub 50} of approximately 70 nM. Two putative nuclear localisation signals were identified between residues 80 to 86 (NLS-1) and between residues 203 to 207 overlapping with the N-terminus of the calcineurin docking motif (NLS-2). Mutation of these motifs independently did not reduce nuclear localisation compared to the wild type A238L protein, whereas mutation of both motifs significantly reduced nuclear localisation of A238L. Mutation of the calcineurin docking motif resulted in a dramatic increase in the nuclear localisation of A238L provided an intact NLS was present. We propose that binding of calcineurin to A238L masks NLS-2 contributing to the cytoplasmic retention of A238L.

  2. The human T-cell leukemia virus type 1 transactivator protein Tax colocalizes in unique nuclear structures with NF-kappaB proteins.

    PubMed Central

    Bex, F; McDowall, A; Burny, A; Gaynor, R

    1997-01-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is a potent activator of viral transcription. Tax also activates the expression of specific cellular genes involved in the control of T-lymphocyte growth via effects on cellular transcription factors, including members of the NF-kappaB/cRel family. Immunocytochemistry and electron microscopy were used to characterize the intracellular localization of Tax and identify cellular factors which are the potential targets for its transcriptional activity. These studies indicated that Tax localizes in discrete nuclear foci in T lymphocytes transformed by HTLV-1 and in cells transduced with Tax expression vectors. The Tax-containing foci are complex nuclear structures comprising a central core in which Tax colocalizes with splicing factor Sm. In addition to splicing factors Sm and SC-35, the Tax-containing nuclear structures also contain transcriptional components, including the largest subunit of RNA polymerase II and cyclin-dependent kinase CDK8. The inclusion of the two subunits of NF-kappaB, p50 and RelA, and the presence of the mRNA from a gene specifically activated by Tax through NF-kappaB binding sites suggest that these unique nuclear structures participate in Tax-mediated activation of gene expression via the NF-kappaB pathway. PMID:9094620

  3. Nuclear

    NSDL National Science Digital Library

    Iowa Public Television. Explore More Project

    2004-01-01

    What part does nuclear energy play in satisfying energy demands? This informational piece, part of a series about the future of energy, introduces students to the uranium atom as an energy source. Here students read about the history of nuclear energy, how energy is derived from uranium, and benefits of nuclear energy. Information is also provided about limitations, particularly disposal problems and radioactivity, and geographical considerations of nuclear power in the United States. Thought-provoking questions afford students chances to reflect on what they've read about the uses of nuclear power. Articles and information on new nuclear plant design and nuclear accidents are available from a sidebar. Five energy-related PBS NewsHour links are provided. A web link to the U.S. Nuclear Regulatory Commission is included. Copyright 2005 Eisenhower National Clearinghouse

  4. Venezuelan equine Encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin alpha/beta that obstructs nuclear pore complex function.

    PubMed

    Atasheva, Svetlana; Fish, Alexander; Fornerod, Maarten; Frolova, Elena I

    2010-05-01

    Development of the cellular antiviral response requires nuclear translocation of multiple transcription factors and activation of a wide variety of cellular genes. To counteract the antiviral response, several viruses have developed an efficient means of inhibiting nucleocytoplasmic traffic. In this study, we demonstrate that the pathogenic strain of Venezuelan equine encephalitis virus (VEEV) has developed a unique mechanism of nuclear import inhibition. Its capsid protein forms a tetrameric complex with the nuclear export receptor CRM1 and the nuclear import receptor importin alpha/beta. This unusual complex accumulates in the center channel of the nuclear pores and blocks nuclear import mediated by different karyopherins. The inhibitory function of VEEV capsid protein is determined by a short 39-amino-acid-long peptide that contains both nuclear import and supraphysiological nuclear export signals. Mutations in these signals or in the linker peptide attenuate or completely abolish capsid-specific inhibition of nuclear traffic. The less pathogenic VEEV strains contain a wide variety of mutations in this peptide that affect its inhibitory function in nuclear import. Thus, these mutations appear to be the determinants of this attenuated phenotype. This novel mechanism of inhibiting nuclear transport also shows that the nuclear pore complex is vulnerable to unusual cargo receptor complexes and sheds light on the importance of finely adjusted karyopherin-nucleoporin interactions for efficient cargo translocation. PMID:20147401

  5. A nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2

    PubMed Central

    Ma, Lisong; Cornelissen, Ben J. C.; Takken, Frank L. W.

    2013-01-01

    Plant pathogens secrete effector proteins to promote host colonization. During infection of tomato xylem vessels, Fusarium oxysporum f. sp. lycopersici (Fol) secretes the Avr2 effector protein. Besides being a virulence factor, Avr2 is recognized intracellularly by the tomato I-2 resistance protein, resulting in the induction of host defenses. Here, we show that AVR2 is highly expressed in root- and xylem-colonizing hyphae three days post inoculation of roots. Co-expression of I-2 with AVR2 deletion constructs using agroinfiltration in Nicotiana benthamiana leaves revealed that, except for the N-terminal 17 amino acids, the entire AVR2 protein is required to trigger I-2-mediated cell death. The truncated Avr2 variants are still able to form homo-dimers, showing that the central region of Avr2 is required for dimerization. Simultaneous production of I-2 and Avr2 chimeras carrying various subcellular localization signals in N. benthamiana leaves revealed that a nuclear localization of Avr2 is required to trigger I-2-dependent cell death. Nuclear exclusion of Avr2 prevented its activation of I-2, suggesting that Avr2 is recognized by I-2 in the nucleus. PMID:23596453

  6. The fission yeast ES2 homologue, Bis1, interacts with the Ish1 stress-responsive nuclear envelope protein.

    PubMed

    Taricani, Lorena; Tejada, Max L; Young, Paul G

    2002-03-22

    In fission yeast, nutrient starvation induces physiological, biochemical, and morphological changes that enable survival. Collectively these changes are referred to as stationary phase. We have used a green fluorescent protein random insertional mutagenesis system to isolate two novel stress-response proteins required in stationary phase. Ish1 is a nuclear envelope protein that is present throughout the cell cycle and whose expression is increased in response to stresses such as glucose and nitrogen starvation, as well as osmotic stress. Expression of Ish1 is regulated by the Spc1 MAPK pathway through the Atf1 transcription factor. Although overexpression of Ish1 is lethal, cells lacking ish1 exhibit reduced viability in stationary phase. Bis1 is a novel interacting partner of Ish1. Bis1 is the Schizosaccharomyces pombe member of the ES2 nuclear protein family found in Mus musculus, Drosophila melanogaster, Homo sapiens, and Arabidopsis thaliana. Overexpression of Bis1 results in a cell elongation phenotype, whereas bis1(-) cells exhibit a reduced viability in stationary phase similar to that seen in ish1(-) cells. PMID:11751918

  7. Two-Dimensional Gel Electrophoresis of Acid-extractable Nuclear Proteins of Regenerating and Thioacetamide-treated Rat Liver, Morris 9618A Hepatoma, and Walker 256 Carcinosarcoma1

    Microsoft Academic Search

    Lynn C. Yeoman; Charles W. Taylor; Harris Busch

    SUMMARY The acid-soluble nuclear proteins of regenerating and thi- oacetamide-treated rat livers as well as the Morris 9618A hepatoma and the Walker 256 carcinosarcoma were ex tracted from citric acid-isolated nuclei with 0.4 N H2SO4. The nuclear extracts were analyzed by two-dimensional polyacrylamide gel electrophoresis. Although most of the protein spots were common to the livers and tumors stud ied,

  8. Endurance training increases the expression of mitochondrial and nuclear encoded cytochrome c oxidase subunits and heat shock proteins in rat skeletal muscle

    Microsoft Academic Search

    T. R. Samelman; L. J. Shiry; D. F. Cameron

    2000-01-01

    Cytochrome c oxidase (CCO) is an enzyme complex found on the inner mitochondrial membrane and serves as the final electron acceptor in\\u000a mitochondrial electron transport. Heat shock proteins (HSPs) are involved in the import of nuclear encoded protein subunits\\u000a into the mitochondria and induce conformational changes to form active enzyme complexes. As both the nuclear and mitochondrial\\u000a encoded subunits of

  9. Mechanism of a Transcriptional Cross Talk between Transforming Growth Factor-?–regulated Smad3 and Smad4 Proteins and Orphan Nuclear Receptor Hepatocyte Nuclear Factor-4

    PubMed Central

    Chou, Wan-Chih; Prokova, Vassiliki; Shiraishi, Keiko; Valcourt, Ulrich; Moustakas, Aristidis; Hadzopoulou-Cladaras, Margarita; Zannis, Vassilis I.; Kardassis, Dimitris

    2003-01-01

    We have shown previously that the transforming growth factor-? (TGF?)-regulated Sma-Mad (Smad) protein 3 and Smad4 proteins transactivate the apolipoprotein C-III promoter in hepatic cells via a hormone response element that binds the nuclear receptor hepatocyte nuclear factor 4 (HNF-4). In the present study, we show that Smad3 and Smad4 but not Smad2 physically interact with HNF-4 via their Mad homology 1 domains both in vitro and in vivo. The synergistic transactivation of target promoters by Smads and HNF-4 was shown to depend on the specific promoter context and did not require an intact ?-hairpin/DNA binding domain of the Smads. Using glutathione S-transferase interaction assays, we established that two regions of HNF-4, the N-terminal activation function 1 (AF-1) domain (aa 1–24) and the C-terminal F domain (aa 388–455) can mediate physical Smad3/HNF-4 interactions in vitro. In vivo, Smad3 and Smad4 proteins enhanced the transactivation function of various GAL4-HNF-4 fusion proteins via the AF-1 and the adjacent DNA binding domain, whereas a single tyrosine to alanine substitution in AF-1 abolished coactivation by Smads. The findings suggest that the transcriptional cross talk between the TGF?-regulated Smads and HNF-4 is mediated by specific functional domains in the two types of transcription factors. Furthermore, the specificity of this interaction for certain target promoters may play an important role in various hepatocyte functions, which are regulated by TGF? and the Smads. PMID:12631740

  10. Essential Function for the Nuclear Protein Akirin2 in B Cell Activation and Humoral Immune Responses.

    PubMed

    Tartey, Sarang; Matsushita, Kazufumi; Imamura, Tomoko; Wakabayashi, Atsuko; Ori, Daisuke; Mino, Takashi; Takeuchi, Osamu

    2015-07-15

    Akirin2, an evolutionarily conserved nuclear protein, is an important factor regulating inflammatory gene transcription in mammalian innate immune cells by bridging the NF-?B and SWI/SNF complexes. Although Akirin is critical for Drosophila immune responses, which totally rely on innate immunity, the mammalian NF-?B system is critical not only for the innate but also for the acquired immune system. Therefore, we investigated the role of mouse Akirin2 in acquired immune cells by ablating Akirin2 function in B lymphocytes. B cell-specific Akirin2-deficient (Cd19(Cre/+)Akirin2(fl/fl)) mice showed profound decrease in the splenic follicular (FO) and peritoneal B-1, but not splenic marginal zone (MZ), B cell numbers. However, both Akirin2-deficient FO and MZ B cells showed severe proliferation defect and are prone to undergo apoptosis in response to TLR ligands, CD40, and BCR stimulation. Furthermore, B cell cycling was defective in the absence of Akirin2 owing to impaired expression of genes encoding cyclin D and c-Myc. Additionally, Brg1 recruitment to the Myc and Ccnd2 promoter was severely impaired in Akirin2-deficient B cells. Cd19(Cre/+)Akirin2(fl/fl) mice showed impaired in vivo immune responses to T-dependent and -independent Ags. Collectively, these results demonstrate that Akirin2 is critical for the mitogen-induced B cell cycle progression and humoral immune responses by controlling the SWI/SNF complex, further emphasizing the significant function of Akirin2 not only in the innate, but also in adaptive immune cells. PMID:26041538

  11. Posttranscriptional regulation of urokinase receptor expression by heterogeneous nuclear ribonuclear protein C.

    PubMed

    Velusamy, Thirunavukkarasu; Shetty, Praveenkumar; Bhandary, Yashodhar P; Liu, Ming-Cheh; Shetty, Sreerama

    2008-06-17

    Interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, is a key regulatory step in uPA-mediated cell proliferation and migration. Our previous studies demonstrated that posttranscriptional stabilization of uPAR mRNA by uPA contributes to the induction of cell surface uPAR expression, and heterogeneous nuclear ribonuclear protein C1 (hnRNPC) binds to a 110 nt sequence of uPAR mRNA 3'-UTR, thereby preventing its degradation. These observations indicate that hnRNPC could be involved in the induction of uPAR expression by uPA. In the present study, we investigated this possibility and confirmed that uPA increased the binding of hnRNPC to the 3'-UTR of uPAR mRNA. Furthermore, uPA induced tyrosine phosphorylation of hnRNPC and uPAR expression through mRNA stabilization. Inhibition of hnRNPC tyrosine phosphorylation abolished its interaction with uPAR mRNA and suppressed mRNA stabilization and cell surface uPAR expression. Deletion experiments revealed that hnRNPC binds to uPAR mRNA through its RNA binding domain (RBD). Site-directed mutagenesis studies further indicated that phosphorylation of tyrosine residue 57 (Y57) present in RBD of hnRNPC by uPA is essential for uPAR 3'-UTR mRNA binding and uPAR expression. Increased hnRNPC interaction with the uPAR mRNA 3'-UTR through phosphorylation of Y57 represents a novel mechanism by which uPA regulates posttranscriptional uPAR mRNA turnover and cell surface uPAR expression. PMID:18494499

  12. The relationship between SMN, the spinal muscular atrophy protein, and nuclear coiled bodies in differentiated tissues and cultured cells.

    PubMed

    Young, P J; Le, T T; thi Man, N; Burghes, A H; Morris, G E

    2000-05-01

    The spinal muscular atrophy protein, SMN, is a cytoplasmic protein that is also found in distinct nuclear structures called "gems." Gems are closely associated with nuclear coiled bodies and both may have a direct role in snRNP maturation and pre-RNA splicing. There has been some controversy over whether gems and coiled bodies colocalize or form adjacent/independent structures in HeLa and other cultured cells. Using a new panel of antibodies against SMN and antibodies against coilin-p80, a systematic and quantitative study of adult differentiated tissues has shown that gems always colocalize with coiled bodies. In some tissues, a small proportion of coiled bodies (<10%) had no SMN, but independent or adjacent gems were not found. The most striking observation, however, was that many cell types appear to have neither gems nor coiled bodies (e.g., cardiac and smooth muscle, blood vessels, stomach, and spleen) and this expression pattern is conserved across human, rabbit, and pig species. This shows that assembly of distinct nuclear bodies is not essential for RNA splicing and supports the view that they may be storage sites for reserves of essential proteins and snRNPs. Overexpression of SMN in COS-7 cells produced supernumerary nuclear bodies, most of which also contained coilin-p80, confirming the close relationship between gems and coiled bodies. However, when SMN is reduced to very low levels in type I SMA fibroblasts, coiled bodies are still formed. Overall, the data suggest that gem/coiled body formation is not determined by high cytoplasmic SMN concentrations or high metabolic activity alone and that a differentiation-specific factor may control their formation. PMID:10772809

  13. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes.

    PubMed

    You, Jianxin; Srinivasan, Viswanathan; Denis, Gerald V; Harrington, William J; Ballestas, Mary E; Kaye, Kenneth M; Howley, Peter M

    2006-09-01

    The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is required for viral episome maintenance in host cells during latent infection. Two regions of the protein have been implicated in tethering LANA/viral episomes to the host mitotic chromosomes, and LANA chromosome-binding sites are subjects of high interest. Because previous studies had identified bromodomain protein Brd4 as the mitotic chromosome anchor for the bovine papillomavirus E2 protein, which tethers the viral episomes to host mitotic chromosomes (J. You, J. L. Croyle, A. Nishimura, K. Ozato, and P. M. Howley, Cell 117:349-360, 2004, and J. You, M. R. Schweiger, and P. M. Howley, J. Virol. 79:14956-14961, 2005), we examined whether KSHV LANA interacts with Brd4. We found that LANA binds Brd4 in vivo and in vitro and that the binding is mediated by a direct protein-protein interaction between the ET (extraterminal) domain of Brd4 and a carboxyl-terminal region of LANA previously implicated in chromosome binding. Brd4 associates with mitotic chromosomes throughout mitosis and demonstrates a strong colocalization with LANA and the KSHV episomes on host mitotic chromosomes. Although another bromodomain protein, RING3/Brd2, binds to LANA in a similar fashion in vitro, it is largely excluded from the mitotic chromosomes in KSHV-uninfected cells and is partially recruited to the chromosomes in KSHV-infected cells. These data identify Brd4 as an interacting protein for the carboxyl terminus of LANA on mitotic chromosomes and suggest distinct functional roles for the two bromodomain proteins RING3/Brd2 and Brd4 in LANA binding. Additionally, because Brd4 has recently been shown to have a role in transcription, we examined whether Brd4 can regulate the CDK2 promoter, which can be transactivated by LANA. PMID:16940503

  14. The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces.

    PubMed

    Labrecque, M P; Prefontaine, G G; Beischlag, T V

    2013-08-01

    The basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH-PAS) domain family of transcription factors mediates cellular responses to a variety of internal and external stimuli. As functional transcription factors, these proteins act as bHLH-PAS heterodimers and can be further sub-classified into sensory/activated subunits and regulatory or ARNT-like proteins. This class of proteins act as master regulators of the bHLH-PAS superfamily of transcription factors that mediate circadian rhythm gene programs, innate and adaptive immune responses, oxygen-sensing mechanisms and compensate for deleterious environmental exposures. Some contribute to the etiology of human pathologies including cancer because of their effects on cell growth and metabolism. We will review the canonical roles of ARNT and ARNT-like proteins with an emphasis on coactivator selectivity and recruitment. We will also discuss recent advances in our understanding of noncanonical DNA-binding independent or off-target roles of ARNT that are uncoupled from its classic heterodimeric bHLH-PAS binding partners. Understanding the DNA binding-independent functions of ARNT may identify novel therapeutic options for the treatment of a large spectrum of disease states. PMID:23116263

  15. NoBP, a Nuclear Fibroblast Growth Factor 3 Binding Protein, Is Cell Cycle Regulated and Promotes Cell Growth

    PubMed Central

    Reimers, Kerstin; Antoine, Marianne; Zapatka, Marcus; Blecken, Volker; Dickson, Clive; Kiefer, Paul

    2001-01-01

    Secreted and nuclear forms of fibroblast growth factor 3 (FGF3) have opposing effects on cells. The secreted form stimulates cell growth and transformation, while the nuclear form inhibits DNA synthesis and cell proliferation. By using the yeast two-hybrid system we have identified a nucleolar FGF3 binding protein (NoBP) which coimmunoprecipitated and colocalized with FGF3 in transfected COS-1 cells. Characterization of the NoBP binding domain of FGF3 exactly matched the sequence requirements of FGF3 for its translocation into the nucleoli, suggesting that NoBP might be the nucleolar binding partner of FGF3 essential for its nucleolus localization. Carboxyl-terminal domains of NoBP contain linear nuclear and nucleolar targeting motifs which are capable of directing a heterologous protein ?-galactosidase to the nucleus and the nucleoli. While NoBP expression was detected in all analyzed proliferating established cell lines, NoBP transcription was rapidly downregulated in the promyelocytic leukemia cell line HL60 when induced to differentiate. Analysis on the expression pattern of NoBP mRNA throughout the cell cycle in HeLa cells synchronized by lovastatin demonstrated a substantial upregulation during the late G1/early S phase. NoBP overexpression conferred a proliferating effect onto NIH 3T3 cells and can counteract the inhibitory effect of nuclear FGF3, suggesting a role of NoBP in controlling proliferation in cells. We propose that NoBP is the functional target of nuclear FGF3 action. PMID:11438656

  16. Type 3 protein kinase C localization to the nuclear envelope of phorbol ester-treated NIH 3T3 cells

    PubMed Central

    1989-01-01

    We have examined the immunocytochemical localization of protein kinase C (PKC) in NIH 3T3 cells using mAbs that recognize Type 3 PKC. In control cells, the immunofluorescent staining was similar with mAbs directed to either the catalytic or the regulatory domain of PKC. Type 3 PKC localized in a diffuse cytoplasmic pattern, while the nuclei were apparently unstained. Cytoskeletal components also were Treatment of the cells with phorbol 12-myristate 13-acetate (PMA) resulted in a redistribution of PKC with a specific increase in nuclear PKC. Compared to control cells, the staining with the anticatalytic domain mAbs changed markedly, covering the entire cell surface. In contrast, the staining by the antiregulatory domain mAb did not cover the cell surface and the nuclei remained unstained; these results suggest that PKC activation leads to a conformational change of the regulatory domain such that the epitope recognized by the antiregulatory domain mAb is not readily accessible. We have demonstrated by three criteria that PMA treatment specifically increased PKC in the nucleus: (a) immunofluorescent staining in isolated nuclei increased; (b) Western blots showed that our mAbs detected only one protein, the 82-kD PKC, whose level increased in nuclear lysates from PMA-treated cells; and (c) PKC activity increased in nuclear lysates. In fractionation studies we demonstrated that PKC specifically localized to the nuclear envelope fraction. These results demonstrate that PMA activation leads to a rapid redistribution of Type 3 PKC to the nuclear envelope, and suggests that this isozyme may play a role in mediating PKC-induced changes in gene expression. PMID:2668302

  17. The Dynamic Nuclear Redistribution of an hnRNP K-homologous Protein during Drosophila Embryo Development and Heat Shock. Flexibility of Transcription Sites In Vivo

    Microsoft Academic Search

    Peter Buchenau; Harald Saumweber; Donna J. Arndt-Jovin

    1997-01-01

    The Drosophila protein Hrb57A has se- quence homology to mammalian heterogenous nuclear ribonucleoprotein (hnRNP) K proteins. Its in vivo dis- tribution has been studied at high resolution by confo- cal laser scanning microscopy (CLSM) in embryos in- jected with fluorescently labeled monoclonal antibody. Injection of antibody into living embryos had no appar- ent deleterious effects on further development. Fur- thermore,

  18. Nuclear Protein Import: Ran--GTP Dissociates the Karyopherin alpha beta Heterodimer by Displacing alpha from an Overlapping Binding Site on beta

    Microsoft Academic Search

    Junona Moroianu; Gunter Blobel; Aurelian Radu

    1996-01-01

    The alpha subunit of the karyopherin heterodimer functions in recognition of the protein import substrate and the beta subunit serves to dock the trimeric complex to one of many sites on nuclear pore complex fibers. The small GTPase Ran and the Ran interactive protein, p10, function in the release of the docked complex. Repeated cycles of docking and release are

  19. The Positively Charged Termini of L2 Minor Capsid Protein Required for Bovine Papillomavirus Infection Function Separately in Nuclear Import and DNA Binding

    Microsoft Academic Search

    Alyson Fay; William H. Yutzy; Richard B. S. Roden; Junona Moroianu

    2004-01-01

    During the papillomavirus (PV) life cycle, the L2 minor capsid protein enters the nucleus twice: in the initial phase after entry of virions into cells and in the productive phase to mediate encapsidation of the newly replicated viral genome. Therefore, we investigated the interactions of the L2 protein of bovine PV type 1 (BPV1) with the nuclear import machinery and

  20. FoxO proteins' nuclear retention and BH3-only protein Bim induction evoke mitochondrial dysfunction-mediated apoptosis in berberine-treated HepG2 cells.

    PubMed

    Shukla, Shatrunajay; Rizvi, Fatima; Raisuddin, Sheikh; Kakkar, Poonam

    2014-11-01

    Mammalian forkhead-box family members belonging to the 'O' category (FoxO) manipulate a plethora of genes modulating a wide array of cellular functions including cell cycle regulation, apoptosis, DNA damage repair, and energy metabolism. FoxO overexpression and nuclear accumulation have been reported to show correlation with hindered tumor growth in vitro and size in vivo, while FoxO's downregulation via phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway has been linked with tumor promotion. In this study, we have explored for the first time intervention of berberine, a plant-derived isoquinoline alkaloid, with FoxO family proteins in hepatoma cells. We observed that berberine significantly upregulated the mRNA expression of both FoxO1 and FoxO3a. Their phosphorylation-mediated cytoplasmic sequestration followed by degradation was prevented by berberine-induced downmodulation of the PI3K/Akt/mTOR pathway which promoted FoxO nuclear retention. PTEN, a tumor suppressor gene and negative regulator of the PI3K/Akt axis, was upregulated while phosphorylation of its Ser380 residue (possible mechanism of PTEN degradation) was significantly decreased in treated HepG2 cells. Exposure to berberine induced a significant increase in transcriptional activity of FoxO, as shown by GFP reporter assay. FoxO transcription factors effectively heightened BH3-only protein Bim expression, which in turn, being a direct activator of proapoptotic protein Bax, altered Bax/Bcl-2 ratio, culminating into mitochondrial dysfunction, caspases activation, and DNA fragmentation. The pivotal role of Bim in berberine-mediated cytotoxicity was further corroborated by knockdown experiments where Bim-silencing partially restored HepG2 cell viability during berberine exposure. In addition, a correlation between oxidative overload and FoxO's nuclear accumulation via JNK activation was evident as berberine treatment led to a pronounced increase in JNK phosphorylation together with enhanced ROS generation, lipid peroxidation, decreased activities of superoxide dismutase and catalase, and diminished glutathione levels. Thus, our findings suggest that the antiproliferative effect of berberine may in part be due to mitochondria-mediated apoptosis with Bim acting as a pivotal downstream factor of FoxO-induced transcriptional activation. PMID:25128467

  1. Isolation of the nuclear yeast genes for citrate synthase and fifteen other mitochondrial proteins by a new screening method.

    PubMed Central

    Suissa, M; Suda, K; Schatz, G

    1984-01-01

    To isolate nuclear genes specifying imported mitochondrial proteins, a yeast genomic clone bank was screened by an RNA hybridization-competition assay. This assay exploited the fact that mRNAs for imported mitochondrial proteins are enriched in polysomes which are bound to the mitochondrial surface in cycloheximide-inhibited yeast cells. Clones selectively hybridizing to these enriched mRNAs were further screened by hybrid-selected translation and immunoprecipitation with monospecific antisera against individual mitochondrial proteins. Thirty-six clones were isolated which contained complete or partial copies of 16 different genes for imported mitochondrial proteins. Several of these clones caused expression of the corresponding precursor polypeptide in Escherichia coli or over-expression of the corresponding mature protein in yeast. The gene for the matrix enzyme citrate synthase was sequenced; the derived amino acid sequence of the precursor polypeptide revealed an amino-terminal extension containing basic but no acidic residues. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6090126

  2. Site-specific free energy changes in proteins upon ligand binding by nuclear magnetic resonance: Ca2+ -displacement by Ln3+ in a Ca2+ -binding protein from Entamoeba histolytica.

    PubMed

    Chandra, Kousik; Mustafi, Sourajit M; Muthukumar, Subramanian; Chary, Kandala V R

    2011-04-01

    The study of protein-ligand interaction has been of a great interest in contemporary structural biology. The understanding of the nature of such interaction and determining the associated binding affinities are of utmost importance. Nuclear magnetic resonance has become a powerful tool in deriving information related to such interactions in proteins. Nuclear magnetic resonance data provide the site-specific information even in the case of proteins having multiple-binding sites and populations of respective species. In this communication, we set out to use such information to derive the associated microscopic binding constants. PMID:21235730

  3. Evolutionarily Conserved Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A/B Proteins Functionally Interact with Human and Drosophila TAR DNA-binding Protein 43 (TDP-43)*

    PubMed Central

    Romano, Maurizio; Buratti, Emanuele; Romano, Giulia; Klima, Raffaella; Del Bel Belluz, Lisa; Stuani, Cristiana; Baralle, Francisco; Feiguin, Fabian

    2014-01-01

    Human TDP-43 represents the main component of neuronal inclusions found in patients with neurodegenerative diseases, especially frontotemporal lobar degeneration and amyotrophic lateral sclerosis. In vitro and in vivo studies have shown that the TAR DNA-binding protein 43 (TDP-43) Drosophila ortholog (TBPH) can biochemically and functionally overlap the properties of the human factor. The recent direct implication of the human heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1, known TDP-43 partners, in the pathogenesis of multisystem proteinopathy and amyotrophic lateral sclerosis supports the hypothesis that the physical and functional interplay between TDP-43 and hnRNP A/B orthologs might play a crucial role in the pathogenesis of neurodegenerative diseases. To test this hypothesis and further validate the fly system as a useful model to study this type of diseases, we have now characterized human TDP-43 and Drosophila TBPH similarity in terms of protein-protein interaction pathways. In this work we show that TDP-43 and TBPH share the ability to associate in vitro with Hrp38/Hrb98DE/CG9983, the fruit fly ortholog of the human hnRNP A1/A2 factors. Interestingly, the protein regions of TDP-43 and Hrp38 responsible for reciprocal interactions are conserved through evolution. Functionally, experiments in HeLa cells demonstrate that TDP-43 is necessary for the inhibitory activity of Hrp38 on splicing. Finally, Drosophila in vivo studies show that Hrp38 deficiency produces locomotive defects and life span shortening in TDP-43 with and without animals. These results suggest that hnRNP protein levels can play a modulatory role on TDP-43 functions. PMID:24492607

  4. Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human and Drosophila TAR DNA-binding protein 43 (TDP-43).

    PubMed

    Romano, Maurizio; Buratti, Emanuele; Romano, Giulia; Klima, Raffaella; Del Bel Belluz, Lisa; Stuani, Cristiana; Baralle, Francisco; Feiguin, Fabian

    2014-03-01

    Human TDP-43 represents the main component of neuronal inclusions found in patients with neurodegenerative diseases, especially frontotemporal lobar degeneration and amyotrophic lateral sclerosis. In vitro and in vivo studies have shown that the TAR DNA-binding protein 43 (TDP-43) Drosophila ortholog (TBPH) can biochemically and functionally overlap the properties of the human factor. The recent direct implication of the human heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1, known TDP-43 partners, in the pathogenesis of multisystem proteinopathy and amyotrophic lateral sclerosis supports the hypothesis that the physical and functional interplay between TDP-43 and hnRNP A/B orthologs might play a crucial role in the pathogenesis of neurodegenerative diseases. To test this hypothesis and further validate the fly system as a useful model to study this type of diseases, we have now characterized human TDP-43 and Drosophila TBPH similarity in terms of protein-protein interaction pathways. In this work we show that TDP-43 and TBPH share the ability to associate in vitro with Hrp38/Hrb98DE/CG9983, the fruit fly ortholog of the human hnRNP A1/A2 factors. Interestingly, the protein regions of TDP-43 and Hrp38 responsible for reciprocal interactions are conserved through evolution. Functionally, experiments in HeLa cells demonstrate that TDP-43 is necessary for the inhibitory activity of Hrp38 on splicing. Finally, Drosophila in vivo studies show that Hrp38 deficiency produces locomotive defects and life span shortening in TDP-43 with and without animals. These results suggest that hnRNP protein levels can play a modulatory role on TDP-43 functions. PMID:24492607

  5. 70-kDa heat shock cognate protein hsc70 mediates calmodulin-dependent nuclear import of the sex-determining factor SRY.

    PubMed

    Kaur, Gurpreet; Lieu, Kim G; Jans, David A

    2013-02-01

    We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca(2+). Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY. PMID:23235156

  6. Reverse Micelles As a Platform for Dynamic Nuclear Polarization in Solution NMR of Proteins

    E-print Network

    Valentine, Kathleen G.

    Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. ...

  7. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins—a role in nuclear localization

    Microsoft Academic Search

    Tony Lefebvre; Stéphanie Ferreira; Laetitia Dupont-Wallois; Thierry Bussière; Marie-Joëlle Dupire; André Delacourte; Jean-Claude Michalski; Marie-Laure Caillet-Boudin

    2003-01-01

    Both phosphorylation and O-GlcNAc glycosylation posttranslationally modify microtubule-associated Tau proteins. Whereas the hyperphosphorylation of these proteins that occurs in Alzheimer's disease is well characterized, little is known about the O-GlcNAc glycosylation. The present study demonstrates that a balance exists between phosphorylation and O-GlcNAc glycosylation of Tau proteins, and furthermore that a dysfunction of this balance correlates with reduced nuclear localization.The

  8. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins

    PubMed Central

    Balk, Janneke; Pierik, Antonio J; Netz, Daili J Aguilar; Mühlenhoff, Ulrich; Lill, Roland

    2004-01-01

    The genome of the yeast Saccharomyces cerevisiae encodes the essential protein Nar1p that is conserved in virtually all eukaryotes and exhibits striking sequence similarity to bacterial iron-only hydrogenases. A human homologue of Nar1p was shown previously to bind prenylated prelamin A in the nucleus. However, yeast neither exhibits hydrogenase activity nor contains nuclear lamins. Here, we demonstrate that Nar1p is predominantly located in the cytosol and contains two adjacent iron–sulphur (Fe/S) clusters. Assembly of its Fe/S clusters crucially depends on components of the mitochondrial Fe/S cluster biosynthesis apparatus such as the cysteine desulphurase Nfs1p, the ferredoxin Yah1p and the ABC transporter Atm1p. Using functional studies in vivo, we show that Nar1p is required for maturation of cytosolic and nuclear, but not of mitochondrial, Fe/S proteins. Nar1p-depleted cells do not accumulate iron in mitochondria, distinguishing these cells from mutants in components of the mitochondrial Fe/S cluster biosynthesis apparatus. In conclusion, Nar1p represents a crucial, novel component of the emerging cytosolic Fe/S protein assembly machinery that catalyses an essential and ancient process in eukaryotes. PMID:15103330

  9. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    PubMed

    Serpeloni, Mariana; Moraes, Carolina Borsoi; Muniz, João Renato Carvalho; Motta, Maria Cristina Machado; Ramos, Augusto Savio Peixoto; Kessler, Rafael Luis; Inoue, Alexandre Haruo; daRocha, Wanderson Duarte; Yamada-Ogatta, Sueli Fumie; Fragoso, Stenio Perdigão; Goldenberg, Samuel; Freitas-Junior, Lucio H; Avila, Andréa Rodrigues

    2011-01-01

    In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX) multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II), but not RNA polymerase I (RNA pol I) or Spliced Leader (SL) transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and decrease of translation levels, reinforcing that Trypanosoma-Sub2 (Tryp-Sub2) is a component of mRNA transcription/export pathway in trypanosomes. PMID:21687672

  10. Nucleoporin 62-like protein activates canonical Wnt signaling through facilitating the nuclear import of ?-catenin in zebrafish.

    PubMed

    Yang, Xiaojie; Gu, Qilin; Lin, Li; Li, Shaoyang; Zhong, Shan; Li, Qing; Cui, Zongbin

    2015-04-01

    Nucleoporin p62 (Nup62) localizes in the central channel of nuclear pore complexes (NPCs) and regulates nuclear pore permeability and nucleocytoplasmic transport. However, the developmental roles of Nup62 in vertebrates remain largely unclear. Zebrafish Nup62-like protein (Nup62l) is a homolog of mammalian Nup62. The nup62l gene is maternally expressed, but its transcripts are ubiquitously distributed during early embryogenesis and enriched in the head, pharynx, and intestine of developing embryos. Activation of the Wnt/?-catenin pathway positively modulates nup62l transcription, while Bmp signaling acts downstream of Wnt/?-catenin signaling to negatively regulate nup62l expression. Overexpression of nup62l dorsalized embryos and enhanced gastrula convergence and extension (CE) movements. In contrast, knockdown of Nup62l led to ventralized embryos, an impediment to CE movements, and defects in specification of midline organ progenitors. Mechanistically, Nup62l acts as an activator of Wnt/?-catenin signaling through interaction with and facilitation of nuclear import of ?-catenin-1/2 in zebrafish. Thus, Nup62l regulates dorsoventral patterning, gastrula CE movements, and proper specification of midline organ precursors through mediating the nuclear import of ?-catenins in zebrafish. PMID:25605329

  11. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    SciTech Connect

    Amin, Mohammed Abdullahel [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka (Japan); Matsunaga, Sachihiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka (Japan); Ma, Nan [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka (Japan); Takata, Hideaki [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka (Japan); Yokoyama, Masami [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka (Japan); Uchiyama, Susumu [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka (Japan); Fukui, Kiichi [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka (Japan)]. E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-08-24

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth.

  12. Thyroid hormone receptors form distinct nuclear protein-dependent and independent complexes with a thyroid hormone response element

    SciTech Connect

    Lazar, M.A.; Berrodin, T.J. (Univ. of Pennsylvania School of Medicine, Philadelphia (USA))

    1990-11-01

    We have examined the binding of nuclear proteins and recombinant thyroid hormone receptors (TRs) to the palindromic thyroid hormone responsive element AGGTCATGACCT (TREp) using a gel electrophoretic mobility shift assay. Four specific protein-DNA complexes were detected after incubation of nuclear extracts (NE) from T3-responsive pituitary (GH3) cells with a TREp-containing DNA fragment. This was compared with the TREp binding of reticulocyte lysate-synthesized TRs. TR alpha 1 and TR beta 2 each formed a single major TR:TREp complex which comigrated with the least retarded complex formed by GH3 NE, while TR beta 1 formed multiple complexes suggesting that it can bind to TREp as an oligomer. Interestingly, coincubation of 35S-TR alpha 1, GH3 NE, and unlabeled TREp resulted in not only the 35S-TR:TREp complex, but in two additional more greatly retarded complexes containing 35S-TR alpha 1 and comigrating with those formed by GH3 extract alone. Incubation of each of the TRs with NE from COS-7 cells, which do not possess sufficient endogenous TRs to mediate T3-responses, resulted in formation of a new, more greatly shifted complex. A similar, heat labile activity which altered mobility of the TR:TRE complex was also present in NE from T3-unresponsive JEG-3 cells. At high concentration of NE, all of the TR bound to TREp was more greatly retarded than in the absence of NE. Truncation of TR alpha 1 at amino acid 210 prevented additional complex formation in the presence of NE without affecting DNA binding, suggesting that the carboxyl-terminus of the TRs is essential for interaction with nuclear proteins.

  13. Differential effects of depleting agents on cytoplasmic and nuclear non-protein sulphydryls: a fluorescence image cytometry study.

    PubMed Central

    Thomas, M.; Nicklee, T.; Hedley, D. W.

    1995-01-01

    The intracellular distribution of glutathione (GSH) was measured by a quantitative image cytometry method, using the sulphydryl-reactive agent mercury orange. This readily forms fluorescent adducts with GSH and other non-protein sulphydryls (NPSH), but reacts much more slowly with protein sulphydryls. Under optimum staining conditions mean integrated mercury orange fluorescence per cell was closely correlated with a standard biochemical assay for GSH. Use of the DNA dye DAPI as a counterstain allowed measurement of nuclear NPSH. The mean nuclear-cytoplasmic ratio was 0.57 +/- 0.05. Isolation of nuclei under aqueous conditions resulted in the loss of approximately 90% of mercury orange fluorescence, compared with nuclear fluorescence from intact cells, suggesting that background labelling of protein sulphydryls or other macromolecules is low. Depletion of GSH with N-ethylmaleimide or diethylmaleate decreased mercury orange fluorescence in the nucleus and cytoplasm to a similar extent. In contrast, mercury orange fluorescence in the nucleus was much more resistant to DL-buthionine-S,R-sulphoximine (BSO) depletion than that in the cytoplasm. This finding is compatible with a distinct pool of GSH in the nucleus that is comparatively resistant to BSO depletion. Alternatively, the retention of fluorescence in the nucleus following GSH depletion by BSO treatment might be due to accumulation of cysteine. These findings have implications for cancer treatment since the level of NPSH in the nucleus might be a more important determinant of resistance to DNA-damaging agents than that in cytoplasm. The image cytometry method described here is quantitative, allows a measure of tumour cell heterogeneity and can be applied to small biopsy samples obtained by fine-needle aspiration. Thus it appears suitable for prospective clinical studies in cancer patients, and for monitoring the effects of GSH-depleting agents used as adjuncts to cancer chemotherapy or radiotherapy. Images Figure 1 PMID:7599065

  14. Differential effects of depleting agents on cytoplasmic and nuclear non-protein sulphydryls: a fluorescence image cytometry study.

    PubMed

    Thomas, M; Nicklee, T; Hedley, D W

    1995-07-01

    The intracellular distribution of glutathione (GSH) was measured by a quantitative image cytometry method, using the sulphydryl-reactive agent mercury orange. This readily forms fluorescent adducts with GSH and other non-protein sulphydryls (NPSH), but reacts much more slowly with protein sulphydryls. Under optimum staining conditions mean integrated mercury orange fluorescence per cell was closely correlated with a standard biochemical assay for GSH. Use of the DNA dye DAPI as a counterstain allowed measurement of nuclear NPSH. The mean nuclear-cytoplasmic ratio was 0.57 +/- 0.05. Isolation of nuclei under aqueous conditions resulted in the loss of approximately 90% of mercury orange fluorescence, compared with nuclear fluorescence from intact cells, suggesting that background labelling of protein sulphydryls or other macromolecules is low. Depletion of GSH with N-ethylmaleimide or diethylmaleate decreased mercury orange fluorescence in the nucleus and cytoplasm to a similar extent. In contrast, mercury orange fluorescence in the nucleus was much more resistant to DL-buthionine-S,R-sulphoximine (BSO) depletion than that in the cytoplasm. This finding is compatible with a distinct pool of GSH in the nucleus that is comparatively resistant to BSO depletion. Alternatively, the retention of fluorescence in the nucleus following GSH depletion by BSO treatment might be due to accumulation of cysteine. These findings have implications for cancer treatment since the level of NPSH in the nucleus might be a more important determinant of resistance to DNA-damaging agents than that in cytoplasm. The image cytometry method described here is quantitative, allows a measure of tumour cell heterogeneity and can be applied to small biopsy samples obtained by fine-needle aspiration. Thus it appears suitable for prospective clinical studies in cancer patients, and for monitoring the effects of GSH-depleting agents used as adjuncts to cancer chemotherapy or radiotherapy. PMID:7599065

  15. A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth

    USGS Publications Warehouse

    Choi, M.K.; Moon, C.H.; Ko, M.S.; Lee, U.-H.; Cho, W.J.; Cha, S.J.; Do, J.W.; Heo, G.J.; Jeong, S.G.; Hahm, Y.S.; Harmache, A.; Bremont, M.; Kurath, G.; Park, J.-W.

    2011-01-01

    The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the 32EGDL35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-?EGDL in which the 32EGDL35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-?NV-GFP) were used as controls. RTG-2 cells infected with rIHNV-?NV-GFP and rIHNV-NV-?EGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I:C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-?NV-GFP and rIHNV-NV-?EGDL were inhibited by poly I:C. In addition, both rIHNV-?NV and rIHNV-NV-?EGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of 32EGDL35 responsible for nuclear localization are important for the inhibitory activity of NV.

  16. Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNA-binding protein Scp160.

    PubMed

    Brykailo, Melissa A; McLane, Laura M; Fridovich-Keil, Judith; Corbett, Anita H

    2007-01-01

    Gene expression is controlled by RNA-binding proteins that modulate the synthesis, processing, transport and stability of various classes of RNA. Some RNA-binding proteins shuttle between the nucleus and cytoplasm and are thought to bind to RNA transcripts in the nucleus and remain bound during translocation to the cytoplasm. One RNA-binding protein that has been hypothesized to function in this manner is the Saccharomyces cerevisiae Scp160 protein. Although the steady-state localization of Scp160 is cytoplasmic, previous studies have identified putative nuclear localization (NLS) and nuclear export (NES) signals. The goal of this study was to test the hypothesis that Scp160 is a nucleocytoplasmic shuttling protein. We exploited a variety of yeast export mutants to capture any potential nuclear accumulation of Scp160 and found no evidence that Scp160 enters the nucleus. These localization studies were complemented by a mutational analysis of the predicted NLS. Results indicate that key basic residues within the predicted NLS of Scp160 can be altered without severely affecting Scp160 function. This finding has important implications for understanding the function of Scp160, which is likely limited to the cytoplasm. Additionally, our results provide strong evidence that the presence of a predicted nuclear localization signal within the sequence of a protein should not lead to the assumption that the protein enters the nucleus in the absence of additional experimental evidence. PMID:17933776

  17. Mapping sequences required for nuclear localization and the transcriptional activation function of the Arabidopsis protein AINTEGUMENTA

    Microsoft Academic Search

    Beth A. Krizek; Chidananda Sulli

    2006-01-01

    The Arabidopsis thaliana floral development protein AINTEGUMENTA (ANT) is a member of a large family of DNA binding proteins (AP2\\/ERF family) that control plant growth and development in response to developmental or environmental signals. Transcriptional activation and\\/or repression activities have been demonstrated for several members of this protein family. We have used fusions between ANT and the GAL4 DNA binding

  18. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    NASA Astrophysics Data System (ADS)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  19. Nuf2, a spindle pole body-associated protein required for nuclear division in yeast

    Microsoft Academic Search

    Mark A. Osborne; Gabriel Schlenstedt; Timothy Jinks; Pamela A. Silver

    1994-01-01

    The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be local- ized to the intranuclear region and is a candidate for a protein involved in

  20. The nuclear pore complex function of Sec13 protein is required for cell survival during retinal development.

    PubMed

    Niu, Xubo; Hong, Jian; Zheng, Xiaofeng; Melville, David B; Knapik, Ela W; Meng, Anming; Peng, Jinrong

    2014-04-25

    Sec13 is a dual function protein, being a core component of both the COPII coat, which mediates protein trafficking from the endoplasmic reticulum to the Golgi apparatus, and the nuclear pore complex (NPC), which facilitates nucleo-cytoplasmic traffic. Here, we present a genetic model to differentiate the roles of these two functions of Sec13 in vivo. We report that sec13(sq198) mutant embryos develop small eyes that exhibit disrupted retinal lamination and that the mutant retina contains an excessive number of apoptotic cells. Surprisingly, we found that loss of COPII function by oligonucleotide-mediated gene knockdown of sec31a and sec31b or brefeldin A treatment did not disrupt retinal lamination, although it did result in digestive organ defects similar to those seen in sec13(sq198), suggesting that the digestive organ defects observed in sec13(sq198) are due to loss of COPII function, whereas the retinal lamination defects are due to loss of the NPC function. We showed that the retinal cells of sec13(sq198) failed to form proper nuclear pores, leading to a nuclear accumulation of total mRNA and abnormal activation of the p53-dependent apoptosis pathway, causing the retinal defect in sec13(sq198). Furthermore, we found that a mutant lacking Nup107, a key NPC-specific component, phenocopied the retinal lamination phenotype as observed in sec13(sq198). Our results demonstrate a requirement for the nuclear pore function of Sec13 in development of the retina and provide the first genetic evidence to differentiate the contributions of the NPC and the COPII functions of Sec13 during organogenesis. PMID:24627485

  1. The Tobamovirus Turnip Vein Clearing Virus 30-Kilodalton Movement Protein Localizes to Novel Nuclear Filaments To Enhance Virus Infection

    PubMed Central

    Levy, Amit; Zheng, Judy Y.

    2013-01-01

    Plant viruses overcome the barrier of the plant cell wall by encoding cell-to-cell movement proteins (MPs), which direct newly replicated viral genomes to, and across, the wall. The paradigm for how a single MP regulates and coordinates these activities is the Tobacco mosaic virus (TMV) 30-kDa protein (MPTMV). Detailed studies demonstrate that TMV multiplies exclusively in the cytoplasm and have documented associations of MPTMV with endoplasmic reticulum (ER) membrane, microtubules, and plasmodesmata throughout the course of infection. As TMV poorly infects Arabidopsis thaliana, Turnip vein clearing virus (TVCV) is the tobamovirus of choice for studies in this model plant. A key problem, which has contributed to confusion in the field, is the unproven assumption that the TVCV and TMV life cycles are identical. We engineered an infectious TVCV replicon that expressed a functional fluorescence-tagged MPTVCV and report here the unexpected discovery that MPTVCV, beyond localizing to ER membrane and plasmodesmata, targeted to the nucleus in a nuclear localization signal (NLS)-dependent manner, where it localized to novel F-actin-containing filaments that associated with chromatin. The MPTVCV NLS appeared to be conserved in the subgroup 3 tobamoviruses, and our mutational analyses showed that nuclear localization of MPTVCV was necessary for efficient TVCV cell-to-cell movement and systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. Our studies identify a novel nuclear stage in TVCV infection and suggest that nuclear MP encoded by TVCV and other subgroup 3 tobamoviruses interacts with F-actin and chromatin to modulate host defenses or cellular physiology to favor virus movement and infection. PMID:23536678

  2. The Nuclear Pore Complex Function of Sec13 Protein Is Required for Cell Survival during Retinal Development*

    PubMed Central

    Niu, Xubo; Hong, Jian; Zheng, Xiaofeng; Melville, David B.; Knapik, Ela W.; Meng, Anming; Peng, Jinrong

    2014-01-01

    Sec13 is a dual function protein, being a core component of both the COPII coat, which mediates protein trafficking from the endoplasmic reticulum to the Golgi apparatus, and the nuclear pore complex (NPC), which facilitates nucleo-cytoplasmic traffic. Here, we present a genetic model to differentiate the roles of these two functions of Sec13 in vivo. We report that sec13sq198 mutant embryos develop small eyes that exhibit disrupted retinal lamination and that the mutant retina contains an excessive number of apoptotic cells. Surprisingly, we found that loss of COPII function by oligonucleotide-mediated gene knockdown of sec31a and sec31b or brefeldin A treatment did not disrupt retinal lamination, although it did result in digestive organ defects similar to those seen in sec13sq198, suggesting that the digestive organ defects observed in sec13sq198 are due to loss of COPII function, whereas the retinal lamination defects are due to loss of the NPC function. We showed that the retinal cells of sec13sq198 failed to form proper nuclear pores, leading to a nuclear accumulation of total mRNA and abnormal activation of the p53-dependent apoptosis pathway, causing the retinal defect in sec13sq198. Furthermore, we found that a mutant lacking Nup107, a key NPC-specific component, phenocopied the retinal lamination phenotype as observed in sec13sq198. Our results demonstrate a requirement for the nuclear pore function of Sec13 in development of the retina and provide the first genetic evidence to differentiate the contributions of the NPC and the COPII functions of Sec13 during organogenesis. PMID:24627485

  3. Different targets for the fragile X-related proteins revealed by their distinct nuclear localizations

    Microsoft Academic Search

    Filippo Tamanini; C. E. Bakker; Unen van L; B. Anar; R. Willemsen; M. Yoshida; H. Galjaard; B. A. Oostra; A. T. Hoogeveen; C. J. M. Bontekoe

    1999-01-01

    Fragile X syndrome is caused by the absence of the fragile X mental\\u000a retardation protein (FMRP). FMRP and its structural homologues FXR1P and\\u000a FXR2P form a family of RNA-binding proteins (FXR proteins). The three\\u000a proteins associate with polyribosomes as cytoplasmic mRNP particles. Here\\u000a we show that small amounts of FMRP, FXR1P and FXR2P shuttle between\\u000a cytoplasm and nucleus. Mutant FMRP

  4. Polymorphisms of the HNF1A Gene Encoding Hepatocyte Nuclear Factor-1? are Associated with C-Reactive Protein

    PubMed Central

    Reiner, Alexander P.; Barber, Mathew J.; Guan, Yongtao; Ridker, Paul M.; Lange, Leslie A.; Chasman, Daniel I.; Walston, Jeremy D.; Cooper, Gregory M.; Jenny, Nancy S.; Rieder, Mark J.; Durda, J. Peter; Smith, Joshua D.; Novembre, John; Tracy, Russell P.; Rotter, Jerome I.; Stephens, Matthew; Nickerson, Deborah A.; Krauss, Ronald M.

    2008-01-01

    Data from the Pharmacogenomics and Risk of Cardiovascular Disease (PARC) study and the Cardiovascular Health Study (CHS) provide independent and confirmatory evidence for association between common polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1? and plasma C-reactive protein (CRP) concentration. Analyses with the use of imputation-based methods to combine genotype data from both studies and to test untyped SNPs from the HapMap database identified several SNPs within a 5 kb region of HNF1A intron 1 with the strongest evidence of association with CRP phenotype. PMID:18439552

  5. Chromosomal Assignment of Human Nuclear Envelope Protein Genes LMNA, LMNB1, and LBR by Fluorescence in SituHybridization

    Microsoft Academic Search

    Karen L. Wydner; John A. McNeil; Feng Lin; Howard J. Worman; Jeanne B. Lawrence

    1996-01-01

    We have used fluorescencein situhybridization to establish precise chromosomal localizations for three human genes encoding four different nuclear envelope proteins. Lamin A\\/C (LMN1, HGMW-approved symbol LMNA) mapped to 1q21.2–q21.3, with a most probable gene assignment to 1q21.3; lamin B receptor (LBR) was localized to 1q42.1; and lamin B1 (LMNB1) was mapped to the interface of bands 5q23.3–q31.1. Assignments were determined

  6. African swine fever virus protein p30 interaction with heterogeneous nuclear ribonucleoprotein K (hnRNP-K) during infection.

    PubMed

    Hernaez, Bruno; Escribano, Jose M; Alonso, Covadonga

    2008-10-15

    Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) was identified as interacting cellular protein with the abundant immediate early protein p30 from African swine fever virus (ASFV) in a macrophage cDNA library screening. The interacting regions of hnRNP-K with p30 were established within residues 35-197, which represent KH1 and KH2 domains responsible for RNA binding. Colocalization of hnRNP-K and p30 was observed mainly in the nucleus, but not in the cytoplasm of infected cells and infection modified hnRNP-K subcellular distribution and decreased the incorporation of 5-fluorouridine into nascent RNA. Since similar effects were observed in cells transiently expressing p30, this interaction provides new insights into p30 function and could represent a possible additional mechanism by which ASFV downregulates host cell mRNA translation. PMID:18775702

  7. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  8. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  9. Proteins

    NSDL National Science Digital Library

    Mowery, Jeanette

    Laboratory manual and supplemental resources that were developed for a college laboratory course in protein purification. The enzyme, Beta-galactosidase, is purified in two steps, with analysis and verification of results. Course materials are divided into four units: Why Proteins, Assays, The Purification Process, and Analysis and Verification. Powerpoint lectures and study guides are provided.

  10. Detection by monoclonal antibodies of the Wilms' tumor (WT1) nuclear protein in patients with acute leukemia.

    PubMed

    Menssen, H D; Renkl, H J; Rodeck, U; Kari, C; Schwartz, S; Thiel, E

    1997-03-01

    The WT1 gene encodes a transcriptional regulator which during embryogenesis is involved in growth control and differentiation of diverse tissues. It is also expressed in few human malignancies, including acute leukemia. We tested 3 different monoclonal antibodies (MAbs H2, H7, HCl7) and the polyvalent serum WTC-19 for WT1 protein detection in mononuclear cell (MNC) preparations of 104 newly diagnosed acute leukemia patients. Using RT-PCR, these MNC preparations were also analyzed for WT1 gene expression. MAbs H2, H7 and HCl7 and the polyclonal WTC-19 exhibited nuclear immunoreactivity in 63 of 99, 28 of 56, 38 of 60 and 22 of 43 WT1 gene-expressing leukemia samples, respectively. With these antibodies, no WT1 immunoreactivity was found in MNCs from blood of healthy volunteers, from CD34+ progenitor cell-enriched leukapheresis products of patients conditioned for peripheral stem cell harvest or from reactive bone marrow. Contrary to WTC-19, all MAbs reacted highly specifically with the WT1 protein (0.71 vs. 1.0). The WT1 protein was heterogeneously detected in leukemia blast preparations by all antibodies, irrespective of cell morphology. Very few HL60 cells and blasts from newly diagnosed leukemia patients interspersed among normal blood MNCs (50 blasts among 5 x 10(5) MNCs) were easy to identify by indirect immunofluorescence using MAbs H2 and HCl7. Taken together, MAbs H2 and HCl7 were superior to MAb H7 and the polyvalent WTC-19 in detecting the WT1 nuclear protein. PMID:9052749

  11. Thyroid transcription factor-1, hepatocyte nuclear factor-3? and surfactant protein A and B in the developing chick lung

    PubMed Central

    ZENG, XIN; YUTZEY, KATHERINE E.; WHITSETT, JEFFREY A.

    1998-01-01

    Expression of surfactant proteins SP-A, SP-B and the transcription factors TTF-1 and HNF-3? was identified by immunohistochemistry in the developing chicken. SP-B, a small hydrophobic peptide critical for lung function and surfactant homeostasis in mammals, was detected in the epithelial cells of parabronchi in embryonic chicken lung from the 15th day of incubation, prior to the onset of the breathing movements and was expressed at high levels in the posthatching chicken lung. SP-A, an abundant surfactant protein involved in innate defence of the mammalian lung, was detected in the chick embryo in subsets of epithelial cells in the mesobronchus, starting from d 15 and was detected in the posthatching chicken lung. The transcription factors hepatocyte nuclear factor 3? (HNF-3?) and thyroid transcription factor-1 (TTF-1), both regulators epithelial cell differentiation and gene expression in mammalian species, were detected at the onset of lung bud formation (d 4 of incubation) and throughout lung development. Abundant nuclear expression was detected in nuclei of respiratory epithelial cells of developing bronchial tubules for both transcription factors. In contrast to the surfactant proteins, expression of both TTF-1 and HNF-3? decreased markedly in posthatching chicken lung. The expression of SP-A and SP-B in chick lung demonstrates the conservation of surfactant proteins in vertebrates. The temporospatial pattern of TTF-1 and HNF-3? overlaps with that of SP-A and SP-B, supporting their potential roles in chick lung development and demonstrating the conservation of regulatory mechanisms contributing to gene expression in respiratory epithelial cells in vertebrates. PMID:9877295

  12. Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. PARP-1: New player in tumor progression.

    PubMed

    Barboro, Paola; Ferrari, Nicoletta; Capaia, Matteo; Petretto, Andrea; Salvi, Sandra; Boccardo, Simona; Balbi, Cecilia

    2015-10-01

    Prostate cancer (PCa) displays infrequent point mutations, whereas genomic rearrangements are highly prevalent. In eukaryotes, the genome is compartmentalized into chromatin loop domains by the attachment to the nuclear matrix (NM), and it has been demonstrated that several recombination hot spots are situated at the base of loops. Here, we have characterized the binding between NM proteins and matrix attachment regions (MARs) in PCa. Nontumor and 44 PCa tissues were analyzed. More aggressive tumors were characterized by an increase in the complexity of the NM protein patterns that was synchronous with a decrease in the number of proteins binding the MAR sequences. PARP-1 was the protein that showed the most evident changes. The expression of the PARP-1 associated with NM increased and it was dependent on tumor aggressiveness. Immunohistochemical analysis showed that the protein was significantly overexpressed in tumor cells. To explore the role of PARP-1 in PCa progression, PCa cells were treated with the PARP inhibitor, ABT-888. In androgen-independent PC3 cells, PARP inhibition significantly decreased cell viability, migration, invasion, chromatin loop dimensions and histone acetylation. Collectively, our study provides evidence that MAR-binding proteins are involved in the development and progression of PCa. PARP could play a key role in the compartmentalization of chromatin and in the development of the more aggressive phenotype. Thus, PARP can no longer be viewed only as an enzyme involved in DNA repair, but that its role in chromatin modulation could provide the basis for a new therapeutic approach to the treatment of PCa. PMID:25808111

  13. Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    PubMed Central

    Gallina, Irene; Colding, Camilla; Henriksen, Peter; Beli, Petra; Nakamura, Kyosuke; Offman, Judith; Mathiasen, David P.; Silva, Sonia; Hoffmann, Eva; Groth, Anja; Choudhary, Chunaram; Lisby, Michael

    2015-01-01

    DNA replication stress is a source of genomic instability. Here we identify changed mutation rate 1 (Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that Cmr1—together with Mrc1/Claspin, Pph3, the chaperonin containing TCP1 (CCT) and 25 other proteins—define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to Cmr1, its human orthologue WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that Cmr1/WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins. PMID:25817432

  14. Nuclear Bodies: Random Aggregates of Sticky Proteins or Crucibles of Macromolecular Assembly?

    PubMed Central

    Matera, A. Gregory; Izaguire-Sierra, Mario; Praveen, Kavita; Rajendra, T.K.

    2011-01-01

    The principles of self-assembly and self-organization are major tenets of molecular and cellular biology. Governed by these principles, the eukaryotic nucleus is composed of numerous subdomains and compartments, collectively described as nuclear bodies. Emerging evidence reveals that associations within and between various nuclear bodies and genomic loci are dynamic and can change in response to cellular signals. This review will discuss recent progress in our understanding of how nuclear body components come together, what happens when they form, and what benefit these subcellular structures may provide to the tissues or organisms in which they are found. PMID:19922869

  15. Differential Requirements for Alternative Splicing and Nuclear Export Functions of Equine Infectious Anemia Virus Rev Protein

    Microsoft Academic Search

    MATTHEW E. HARRIS; RICHARD R. GONTAREK; DAVID DERSE; THOMAS J. HOPE

    1998-01-01

    The Rev protein of equine infectious anemia virus (ERev) exports unspliced and partially spliced viral RNAs from the nucleus. Like several cellular proteins, ERev regulates its own mRNA by mediating an alternative splicing event. To determine the requirements for these functions, we have identified ERev mutants that affect RNA export or both export and alternative splicing. Mutants were further characterized

  16. Stability of the nuclear protein turnover during cellular senescence of human fibroblasts

    Microsoft Academic Search

    Katrin Merker; Oliver Ullrich; Hartmut Schmidt; Nicolle Sitte; Tilman Grune

    2003-01-01

    The accumulation of oxidized proteins is one of the highlights of age-related changes of cellular metabolism and happens at least partially as a result of a decline in the activity of intracellular proteases (e.g., the proteasome). Because the proteasome is located in numerous cellular compartments, we tested whether and to which extent the proteasome and the protein turnover changes in

  17. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion

    Microsoft Academic Search

    S. Soni; S Bala; B Gwynn; K E Sahr; L L Peters; M Hanspal

    2006-01-01

    In mammals, the functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by developing erythroblasts. Erythroblast-macrophage interactions play a central role in the terminal maturation of erythroblasts, including enucleation. One possible mediator of this cell-cell interaction is the protein Emp (erythroblast macrophage protein). We used targeted gene inactivation to define the

  18. The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery.

    PubMed

    Hausmann, Anja; Aguilar Netz, Daili J; Balk, Janneke; Pierik, Antonio J; Mühlenhoff, Ulrich; Lill, Roland

    2005-03-01

    Soluble P loop NTPases represent a large protein family and are involved in diverse cellular functions. Here, we functionally characterized the first member of the Mrp/Nbp35 subbranch of this family, the essential Nbp35p of Saccharomyces cerevisiae. The protein resides in the cytosol and nucleus and carries an Fe/S cluster at its N terminus. Assembly of the Fe/S cluster requires the mitochondrial Fe/S cluster (ISC)-assembly and -export machineries. Depletion of Nbp35p strongly impairs the activity of the cytosolic Fe/S protein, isopropylmalate isomerase (Leu1p), whereas mitochondrial Fe/S enzymes are unaffected. Moreover, defects in the de novo maturation of various cytosolic and nuclear Fe/S proteins were observed in the absence of Nbp35p, demonstrating the functional involvement of Nbp35p in the biogenesis of extramitochondrial Fe/S proteins. Furthermore, Nbp35p genetically interacts with the closely similar P loop NTPase, Cfd1p, and the hydrogenase-like Nar1p, both of which were recently shown to perform a crucial function in cytosolic and nuclear Fe/S protein biogenesis. Hence, our study suggests that eukaryotic Nbp35 NTPases function in Fe/S protein maturation. The findings provide strong evidence for the existence of a highly conserved and essential machinery dedicated to assembling cytosolic and nuclear Fe/S proteins. PMID:15728363

  19. Phosphorus nuclear magnetic resonance studies of lipid-protein interactions: Human erythrocyte glycophorin and phospholipids

    SciTech Connect

    Yeagle, P.L.; Kelsey, D. (Univ. at Buffalo School of Medicine, NY (USA))

    1989-03-07

    Human erythrocyte glycophorin containing four molecules of phospholipid tightly bound to the protein was isolated from human red cell ghosts. This protein preparation was reconstituted into a digalactosyl diglyceride bilayer. The {sup 31}P NMR spectrum of this reconstituted membrane produced an axially symmetric powder pattern arising exclusively from the phospholipids bound to glycophorin. The width of the powder pattern, about 90 ppm, is about twice as broad as that normally exhibited by a phospholipid bilayer. The chemical shift tensor is perturbed relative to phospholipids in a bilayer. The spin-lattice relaxation rate of these protein-bound phospholipids is found to be nearly an order of magnitude faster than phospholipids in a bilayer. The results are consistent with phospholipids tightly bound to the membrane protein and undergoing rotational diffusion, perhaps as a complex of phospholipid and protein.

  20. Dynamic nuclear polarization in biomolecular solid state NMR : methods and applications in peptides and membrane proteins

    E-print Network

    Bajaj, Vikram Singh

    2007-01-01

    Solid state NMR can probe structure and dynamics on length scales from the atomic to the supramolecular. However, low sensitivity limits its application in macromolecules. NMR sensitivity can be improved by dynamic nuclear ...

  1. Ligand binding proteins: roles in ligand transfer and activation of nuclear receptors 

    E-print Network

    Petrescu, Anca Daniela

    2004-09-30

    AR secondary structure. Fluorescent sterol exchange assays between donor and acceptor mitochondrial membranes indicate that StAR significantly increased the formation of rapidly transferable cholesterol domains. Second, HNF-4a, a nuclear receptor, had been...

  2. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance

    PubMed Central

    Jang, Cheol Seong

    2013-01-01

    Thermotolerance is very important for plant survival when plants are subjected to lethally high temperature. However, thus far little is known about the functions of RING E3 ligase in response to heat shock in plants. This study found that one rice gene encoding the RING finger protein was specifically induced by heat and cold stress treatments but not by salinity or dehydration and named it OsHCI1 (Oryza sativa heat and cold induced 1). Subcellular localization results showed that OsHCI1 was mainly associated with the Golgi apparatus and moved rapidly and extensively along the cytoskeleton. In contrast, OsHCI1 may have accumulated in the nucleus under high temperatures. OsHCI1 physically interacted with nuclear substrate proteins including a basic helix-loop-helix transcription factor. Transient co-overexpression of OsHCI1 and each of three nuclear proteins showed that their fluorescent signals moved into the cytoplasm as punctuate formations. Heterogeneous overexpression of OsHCI1 in Arabidopsis highly increased survival rate through acquired thermotolerance. It is proposed that OsHCI1 mediates nuclear–cytoplasmic trafficking of nuclear substrate proteins via monoubiquitination and drives an inactivation device for the nuclear proteins under heat shock. PMID:23698632

  3. The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane.

    PubMed

    Ye, G J; Vaughan, K T; Vallee, R B; Roizman, B

    2000-02-01

    To express the function encoded in its genome, the herpes simplex virus 1 capsid-tegument structure released by deenvelopment during entry into cells must be transported retrograde to the nuclear pore where viral DNA is released into the nucleus. This path is essential in the case of virus entering axons of dorsal root ganglia. The objective of the study was to identify the viral proteins that may be involved in the transport. We report the following findings. (i) The neuronal isoform of the intermediate chain (IC-1a) of the dynein complex pulled down, from lysates of [(35)S]methionine-labeled infected cells, two viral proteins identified as the products of U(L)34 and U(L)31 open reading frames, respectively. U(L)34 protein is a virion protein associated with cellular membranes and phosphorylated by the viral kinase U(S)3. U(L)31 protein is a largely insoluble, evenly dispersed nuclear phosphoprotein required for optimal processing and packaging of viral DNA into preformed capsids. Reciprocal pulldown experiments verified the interaction of IC-1a and U(L)34 protein. In similar experiments, U(L)34 protein was found to interact with U(L)31 protein and the major capsid protein ICP5. (ii) To determine whether U(L)34 protein is transported to the nuclear membrane, a requirement if it is involved in transport, the U(L)34 protein was inserted into a baculovirus vector under the cytomegalovirus major early promoter. Cells infected with the recombinant baculovirus expressed U(L)34 protein in a dose-dependent manner, and the U(L)34 protein localized primarily in the nuclear membrane. An unexpected finding was that U(L)34-expressing cells showed a dissociation of the inner and outer nuclear membranes reminiscent of the morphologic changes seen in cells productively infected with herpes simplex virus 1. U(L)34, like many other viral proteins, may have multiple functions expressed both early and late in infection. PMID:10627546

  4. A novel function for the 90 kDa heat-shock protein (Hsp90): facilitating nuclear export of 60 S ribosomal subunits.

    PubMed Central

    Schlatter, Harald; Langer, Thomas; Rosmus, Susann; Onneken, Marie-Luise; Fasold, Hugo

    2002-01-01

    Ribosomal subunits are assembled in the nucleus, and mature 40 S and 60 S subunits are exported stoichiometrically into the cytoplasm. The nuclear export of ribosomal subunits is a unidirectional, saturable and energy-dependent process. An in vitro assay for the nuclear export of 60 S ribosomal subunits involves the use of resealed nuclear envelopes. The export of ribosomal subunits from resealed nuclear envelopes is enhanced by cytoplasmic proteins. Here we present evidence that the export-promoting activity was due to the cytoplasmic 90 kDa heat-shock protein (Hsp90). Isolated, purified Hsp90 vastly enhanced the export of 60 S ribosomal subunits from resealed nuclear envelopes, while inhibition of Hsp90 function, either with the Hsp90-binding drug geldanamycin or with anti-Hsp90 antibodies, resulted in reduced release of 60 S ribosomal subunits. To confirm these findings under in vivo conditions, corresponding experiments were performed with Xenopus oocytes using microinjection techniques; the results obtained confirmed the findings obtained with resealed nuclear envelopes. These findings suggest that Hsp90 facilitates the nuclear export of 60 S ribosomal subunits, probably by chaperoning protein interactions during the export process. PMID:11879195

  5. Protein

    MedlinePLUS

    ... for the heart. Alternatively, a cup of cooked lentils provides about 18 grams of protein and 15 ... eating approximately one daily serving of beans, chickpeas, lentils or peas can increase fullness, which may lead ...

  6. Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3.

    PubMed

    Serrano, Pedro; Johnson, Margaret A; Chatterjee, Amarnath; Neuman, Benjamin W; Joseph, Jeremiah S; Buchmeier, Michael J; Kuhn, Peter; Wüthrich, Kurt

    2009-12-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold. PMID:19828617

  7. Nuclear Magnetic Resonance Structure of the Nucleic Acid-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 3?

    PubMed Central

    Serrano, Pedro; Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Joseph, Jeremiah S.; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand ?-sheet holding two ?-helices of three and four turns that are oriented antiparallel to the ?-strands. Two antiparallel two-strand ?-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold. PMID:19828617

  8. A REVIEW OF NUCLEAR RECEPTOR GENE ACTIVATION THROUGH COFACTOR PROTEIN INTERACTIONS

    E-print Network

    Baker, Robert L.

    2008-07-07

    cause of these pathologies. Certain aspects of the aforementioned diseases have been linked to the aberrant expression and activity of selected gene-expression-programs. Gene expression is regulated by proteins known as transcription factors. One...

  9. Nuclear-localized and deregulated calcium- and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus.

    PubMed

    Takeda, Naoya; Maekawa, Takaki; Hayashi, Makoto

    2012-02-01

    The common symbiosis pathway is at the core of symbiosis signaling between plants and soil microbes. In this pathway, calcium- and calmodulin-dependent protein kinase (CCaMK) plays a crucial role in integrating the signals both in arbuscular mycorrhizal symbiosis (AMS) and in root nodule symbiosis (RNS). However, the molecular mechanism by which CCaMK coordinates AMS and RNS is largely unknown. Here, we report that the gain-of-function (GOF) variants of CCaMK without the regulatory domains activate both AMS and RNS signaling pathways in the absence of symbiotic partners. This activation requires nuclear localization of CCaMK. Enforced nuclear localization of the GOF-CCaMK variants by fusion with a canonical nuclear localization signal enhances signaling activity of AMS and RNS. The GOF-CCaMK variant triggers formation of a structure similar to the prepenetration apparatus, which guides infection of arbuscular mycorrhizal fungi to host root cells. In addition, the GOF-CCaMK variants without the regulatory domains partly restore AMS but fail to support rhizobial infection in ccamk mutants. These data indicate that AMS, the more ancient type of symbiosis, can be mainly regulated by the kinase activity of CCaMK, whereas RNS, which evolved more recently, requires complex regulation performed by the regulatory domains of CCaMK. PMID:22337918

  10. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    SciTech Connect

    Holowachuk, Eugene W. [Mary Imogene Bassett Hospital, Research Institute, 1 Atwell Road, Cooperstown, NY 13326 (United States)]. E-mail: geneh@telenet.net

    2007-09-21

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

  11. MeCP2 deficiency downregulates specific nuclear proteins that could be partially recovered by valproic acid in vitro.

    PubMed

    Vecsler, Manuela; Simon, Amos J; Amariglio, Ninette; Rechavi, Gideon; Gak, Eva

    2010-01-01

    MeCP2, the major causative factor of Rett syndrome and related phenotypes including autism, is a two-face nuclear modulator acting via transcriptional and chromatin remodeling mechanisms. This study investigated the expression of several nuclear proteins and their dependence on MeCP2 dose and presence of the Rett causative R306C mutation. To this end, we developed in vitro models representing MeCP2 deficiency induced by siRNAs, and cells expressing the R306C mutation. Using an extended antibody microarray validated by specific assays, revealed that MeCP2 dose was correlated with specific nuclear proteins profiles including the BRM/SNF2 component of SWI/SNF complex, PRMT1 methyl transferase and HDAC2. Furthermore, while exposing the MeCP2 knock-down system to therapeutic concentrations of valproic acid (VPA), a known HDACs inhibitor, we observed a partial restoration of MeCP2 expression levels. Exposure to VPA also increased the levels of BRM, as well as of BDNF, an important co-factor in MeCP2-mediated pathway. Our findings provide additional evidence of diverse mechanisms of MeCP2 function as transcriptional repressor and activator of specific genes. As it has been recently demonstrated that post-natal restoration of MeCP2 deficiency may reverse neurological defects in a mouse model of Rett syndrome, we suggest to study the restorative effect of HDAC inhibitors in MeCP2-deficient mouse model. PMID:20093853

  12. The nuclear distribution of Polycomb during Drosophila melanogaster development shown with a GFP fusion protein

    Microsoft Academic Search

    Steffen Dietzel; Hartmut Niemann; Bodo Brückner; Cédric Maurange; Renato Paro

    1999-01-01

    .   The chromatin protein Polycomb (PC) is necessary for keeping homeotic genes repressed in a permanent and heritable manner.\\u000a PC is part of a large multimeric complex (PcG proteins) involved in generating silenced chromatin domains at target genes,\\u000a thus preventing their inappropriate expression. In order to assess the intranuclear distribution of PC during mitosis in different\\u000a developmental stages as well

  13. RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization

    PubMed Central

    González, Inmaculada; Rakitina, Daria; Semashko, Maria; Taliansky, Michael; Praveen, Shelly; Palukaitis, Peter; Carr, John P.; Kalinina, Natalia; Canto, Tomás

    2012-01-01

    Previously, we found that silencing suppression by the 2b protein and six mutants correlated both with their ability to bind to double-stranded (ds) small RNAs (sRNAs) in vitro and with their nuclear/nucleolar localization. To further discern the contribution to suppression activity of sRNA binding and of nuclear localization, we have characterized the kinetics of in vitro binding to a ds sRNA, a single-stranded (ss) sRNA, and a micro RNA (miRNA) of the native 2b protein and eight mutant variants. We have also added a nuclear export signal (NES) to the 2b protein and assessed how it affected subcellular distribution and suppressor activity. We found that in solution native protein bound ds siRNA, miRNA, and ss sRNA with high affinity, at protein:RNA molar ratios ?2:1. Of the four mutants that retained suppressor activity, three showed sRNA binding profiles similar to those of the native protein, whereas the remaining one bound ss sRNA at a 2:1 molar ratio, but both ds sRNAs with 1.5–2 times slightly lower affinity. Three of the four mutants lacking suppressor activity failed to bind to any sRNA, whereas the remaining one bound them at far higher ratios. NES-tagged 2b protein became cytoplasmic, but suppression activity in patch assays remained unaffected. These results support binding to sRNAs at molar ratios at or near 2:1 as critical to the suppressor activity of the 2b protein. They also show that cytoplasmically localized 2b protein retained suppressor activity, and that a sustained nuclear localization was not required for this function. PMID:22357910

  14. Structure of pp32, an acidic nuclear protein which inhibits oncogene-induced formation of transformed foci.

    PubMed Central

    Chen, T H; Brody, J R; Romantsev, F E; Yu, J G; Kayler, A E; Voneiff, E; Kuhajda, F P; Pasternack, G R

    1996-01-01

    pp32 is a nuclear protein found highly expressed in normal tissues in those cells capable of self-renewal and in neoplastic cells. We report the cloning of cDNAs encoding human and murine pp32. The clones encode a 28.6-kDa protein; approximately two-thirds of the N-terminal predicts an amphipathic alpha helix containing two possible nuclear localization signals and a potential leucine zipper motif. The C-terminal third is exceptionally acidic, comprised of approximately 70% aspartic and glutamic acid residues; the predicted pI of human pp32 is 3.81. Human and murine pp32 cDNAs are 88% identical; the predicted proteins are 89% identical and 95% similar. Although the structure of pp32 is suggestive of a transcription factor, pp32 did not significantly modulate transcription of a reporter construct when fused to the Gal4 DNA-binding domain. In contrast, in cotransfection experiments, pp32 inhibited the ability of a broad assortment of oncogene pairs to transform rat embryo fibroblasts, including ras + myc, ras + jun, ras + E1a, ras + mutant p53, and E6 + E7. In related experiments, pp32 inhibited the ability of Rat 1a-myc cells to grow in soft agar, whereas it failed to affect ras-induced focus formation in NIH3T3 cells. These results suggest that pp32 may play a key role in self-renewing cell populations where it may act in the nucleus to limit their sensitivity to transformation. Images PMID:8970164

  15. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    SciTech Connect

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit [National Centre for Cell science, University of Pune Campus, Ganeshkhind, Pune 411007, Maharashtra (India); Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar [Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore (India); Mitra, Debashis [National Centre for Cell science, University of Pune Campus, Ganeshkhind, Pune 411007, Maharashtra (India); Chattopadhyay, Samit, E-mail: samit@nccs.res.i [National Centre for Cell science, University of Pune Campus, Ganeshkhind, Pune 411007, Maharashtra (India)

    2010-04-25

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  16. Studies of a nuclear matrix protein restricted to normal brain cells and lead-induced intranuclear inclusion bodies of kidney

    SciTech Connect

    Shelton, K.; Egle, P.; Redford, K.; Bigbee, J.

    1986-05-01

    A nuclear matrix protein, p32/6.3, with an unusual tissue distribution, has been identified. Protein from 21 tissues was surveyed by immunoprobing Western blots. In normal adult rats p32/6.3 is found only in grey matter from the cerebrum and the cerebellum, occurring in both neurons and astrocytes. Other brain cell types have not been examined. The protein appears to be developmentally regulated. It is detectable in the brain within a few days after birth and reaches adult levels within one to two weeks. Brain p32/6.3 has been found in all animals tested including rat, mouse, dog, cow, pig, chicken and human. This conservation indicates a fundamental role for p32/6.3 in the nucleus of brain cells. Possible functions for p32/6.3 may be indicated by a second novel occurrence. Chronic lead poisoning characteristically induces intranuclear inclusion bodies in the cells lining kidney proximal tubules. p32/6.3 is a major constituent of these inclusion bodies. They are also rich in lead and other metals including calcium, iron, zinc, copper and cadmium. These diverse observations suggest that p32/6.3 may have a role in metal homeostasis in the brain of normal animals.

  17. The L1 major capsid protein of human papillomavirus type 11 interacts with kap ?2 and kap ?3 nuclear import receptors

    Microsoft Academic Search

    Lisa M Nelson; Robert C Rose; Junona Moroianu

    2003-01-01

    We have previously shown that the L1 major capsid protein of low-risk HPV11 binds to the Kap ?2 adapter and enters the nucleus via a Kap ?2?1-mediated pathway. In this study, we discovered that HPV11 L1 capsomeres bind to Kap ?2 import receptor, known to mediate nuclear import of hnRNP A1 via interaction with its nuclear localization signal termed M9.

  18. emb-5 , a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans , encodes a protein similar to the yeast nuclear protein SPT6

    Microsoft Academic Search

    Kiyoji Nishiwaki; Tohru Sano; Johji Miwa

    1993-01-01

    The emb-5 gene is required for the correct timing of division of gut precursor cells during gastrulation in Caenorhabditis elegans. We have now characterized the molecular structure of emb-5. The predicted emb-5-encoded protein (EMB-5) possesses an extremely acidic amino-terminus and overall similarity to the Saccharomyces cerevisiae nuclear protein SPT6, which has been shown to affect the transcription of a variety

  19. CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins.

    PubMed

    Gao, Jie; Schatton, Désirée; Martinelli, Paola; Hansen, Henriette; Pla-Martin, David; Barth, Esther; Becker, Christian; Altmueller, Janine; Frommolt, Peter; Sardiello, Marco; Rugarli, Elena I

    2014-10-27

    Mitochondrial function requires coordination of two genomes for protein biogenesis, efficient quality control mechanisms, and appropriate distribution of the organelles within the cell. How these mechanisms are integrated is currently not understood. Loss of the Clu1/CluA homologue (CLUH) gene led to clustering of the mitochondrial network by an unknown mechanism. We find that CLUH is coregulated both with genes encoding mitochondrial proteins and with genes involved in ribosomal biogenesis and translation. Our functional analysis identifies CLUH as a cytosolic messenger ribonucleic acid (RNA; mRNA)-binding protein. RNA immunoprecipitation experiments followed by next-generation sequencing demonstrated that CLUH specifically binds a subset of mRNAs encoding mitochondrial proteins. CLUH depletion decreased the levels of proteins translated by target transcripts and caused mitochondrial clustering. A fraction of CLUH colocalizes with tyrosinated tubulin and can be detected close to mitochondria, suggesting a role in regulating transport or translation of target transcripts close to mitochondria. Our data unravel a novel mechanism linking mitochondrial biogenesis and distribution. PMID:25349259

  20. CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins

    PubMed Central

    Gao, Jie; Schatton, Désirée; Martinelli, Paola; Hansen, Henriette; Pla-Martin, David; Barth, Esther; Becker, Christian; Altmueller, Janine; Frommolt, Peter; Sardiello, Marco

    2014-01-01

    Mitochondrial function requires coordination of two genomes for protein biogenesis, efficient quality control mechanisms, and appropriate distribution of the organelles within the cell. How these mechanisms are integrated is currently not understood. Loss of the Clu1/CluA homologue (CLUH) gene led to clustering of the mitochondrial network by an unknown mechanism. We find that CLUH is coregulated both with genes encoding mitochondrial proteins and with genes involved in ribosomal biogenesis and translation. Our functional analysis identifies CLUH as a cytosolic messenger ribonucleic acid (RNA; mRNA)–binding protein. RNA immunoprecipitation experiments followed by next-generation sequencing demonstrated that CLUH specifically binds a subset of mRNAs encoding mitochondrial proteins. CLUH depletion decreased the levels of proteins translated by target transcripts and caused mitochondrial clustering. A fraction of CLUH colocalizes with tyrosinated tubulin and can be detected close to mitochondria, suggesting a role in regulating transport or translation of target transcripts close to mitochondria. Our data unravel a novel mechanism linking mitochondrial biogenesis and distribution. PMID:25349259

  1. Assembly of the Trypanosoma brucei 60S Ribosomal Subunit Nuclear Export Complex Requires Trypanosome-Specific Proteins P34 and P37? †

    PubMed Central

    Prohaska, Kimberly; Williams, Noreen

    2009-01-01

    We previously identified two Trypanosoma brucei RNA binding proteins, P34 and P37, and determined that they are essential for proper ribosomal assembly in this organism. Loss of these proteins via RNA interference is lethal and causes a decrease in both 5S rRNA levels and formation of 80S ribosomes, concomitant with a decrease in total cellular protein synthesis. These data suggest that these proteins are involved at some point in the ribosomal biogenesis pathway. In the current study, we have performed subcellular fractionation in conjunction with immune capture experiments specific for 60S ribosomal proteins and accessory factors in order to determine when and where P34 and P37 are involved in the ribosomal biogenesis pathway. These studies demonstrate that P34 and P37 associate with the 60S ribosomal subunit at the stage of the nucleolar 90S particle and remain associated subsequent to nuclear export. In addition, P34 and P37 associate with conserved 60S ribosomal subunit nuclear export factors exportin 1 and Nmd3, suggesting that they are components of the 60S ribosomal subunit nuclear export complex in T. brucei. Most significantly, the pre-60S complex does not associate with exportin 1 or Nmd3 in the absence of P34 and P37. These results demonstrate that, although T. brucei 60S ribosomal subunits utilize a nuclear export complex similar to that described for other organisms, trypanosome-specific factors are essential to the process. PMID:18723605

  2. Nuclear Resonance Vibrational Spectroscopy (NRVS) of Fe S model compounds, Fe S proteins, and nitrogenase

    NASA Astrophysics Data System (ADS)

    Cramer, Stephen P.; Xiao, Yuming; Wang, Hongxin; Guo, Yisong; Smith, Matt C.

    2006-06-01

    We have used nuclear resonance vibrational spectroscopy (NRVS) to examine the nature of the Fe S unit. Specifically, vibrational characteristics have been determined, and through incremental steps in model system complexity, applied to analysis of the enzyme nitrogenase. This stepwise strategy demonstrates NRVS as a viable bioinorganic tool, and will undoubtedly increase the application of synchrotron spectroscopy to biological problems.

  3. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells.

    PubMed

    Kleinow, Tatjana; Tanwir, Fariha; Kocher, Cornelia; Krenz, Björn; Wege, Christina; Jeske, Holger

    2009-09-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata. PMID:19628237

  4. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells

    SciTech Connect

    Kleinow, Tatjana, E-mail: tatjana.kleinow@bio.uni-stuttgart.d [Institute of Biology, Department of Molecular Biology and Plant Virology, Universitaet Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Tanwir, Fariha; Kocher, Cornelia; Krenz, Bjoern; Wege, Christina; Jeske, Holger [Institute of Biology, Department of Molecular Biology and Plant Virology, Universitaet Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)

    2009-09-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.

  5. Hydrogen peroxide stimulates nuclear import of the POU homeodomain protein Oct-1 and its repressive effect on the expression of Cdx-2

    PubMed Central

    2010-01-01

    Background The ubiquitously expressed POU homeodomain protein Oct-1 serves as a sensor for stress induced by irradiation. We found recently that in pancreatic and intestinal endocrine cells, Oct-1 also functions as a sensor for cyclic AMP (cAMP). The caudal homeobox gene Cdx-2 is a transactivator of proglucagon (gcg) and pro-insulin genes. Oct-1 binds to Cdx-2 promoter and represses its expression. cAMP elevation leads to increased nuclear exclusion of Oct-1, associated with reduced recruitment of nuclear co-repressors to the Cdx-2 promoter and increased Cdx-2 expression. Results We show in this study that inducing oxidative stress by hydrogen peroxide (H2O2) increased nuclear Oct-1 content in both pancreatic ? and ? cell lines, as well as in a battery of other cells. This increase was then attributed to accelerated nuclear import of Oct-1, assessed by Fluorescence Recovery After Photobleaching (FRAP) using green fluorescence protein (EGFP) tagged Oct-1 molecule. H2O2 treatment was then shown to stimulate the activities of DNA-dependent protein kinase (DNA-PK) and c-jun N-terminal kinase (JNK). Finally, increased Oct-1 nuclear content upon H2O2 treatment in a pancreatic ? cell line was associated with reduced Cdx-2 and gcg mRNA expression. Conclusion These observations suggest that Oct-1 functions as a sensor for both metabolic and stress/survival signaling pathways via altering its nuclear-cytoplasmic shuttling. PMID:20637099

  6. Multimer Formation Is Not Essential for Nuclear Export of Human T-Cell Leukemia Virus Type 1 Rex trans-Activator Protein

    PubMed Central

    Heger, Peter; Rosorius, Olaf; Koch, Claudia; Casari, Georg; Grassmann, Ralph; Hauber, Joachim

    1998-01-01

    The Rex trans-regulatory protein of human T-cell leukemia virus type 1 (HTLV-1) is required for the nuclear export of incompletely spliced and unspliced viral mRNAs and is therefore essential for virus replication. Rex is a nuclear phosphoprotein that directly binds to its cis-acting Rex response element RNA target sequence and constantly shuttles between the nucleus and cytoplasm. Moreover, Rex induces nuclear accumulation of unspliced viral RNA. Three protein domains which mediate nuclear import-RNA binding, nuclear export, and Rex oligomerization have been mapped within the 189-amino-acid Rex polypeptide. Here we identified a different region in the carboxy-terminal half of Rex which is also required for biological activity. In inactive mutants with mutations that map within this region, as well as in mutants that are deficient in Rex-specific multimerization, Rex trans activation could be reconstituted by fusion to a heterologous leucine zipper dimerization interface. The intracellular trafficking capabilities of wild-type and mutant Rex proteins reveal that biologically inactive and multimerization-deficient Rex mutants are still efficiently translocated from the nucleus to the cytoplasm. This observation indicates that multimerization is essential for Rex function but is not required for nuclear export. Finally, we are able to provide an improved model of the HTLV-1 Rex domain structure. PMID:9765406

  7. From nuclear structure concepts to protein folding and non-conventional drug design

    NASA Astrophysics Data System (ADS)

    Broglia, R. A.

    2006-05-01

    Some of the paradigms emerging from the study of the phenomena of phase transitions in finite many-body systems, like e.g. the atomic nuclues, can be used at profit to solve the protein folding problem (how does a linear sequence of amino acids, immersed in the solvent, code for a unique, biological active, three dimensional native structure of the protein?), within the framework of simple (although not oversimplified) models. Also to design non-conventional drugs which do not create resistance (do not induce mutations in the virus or bacteria expressing the protein). The application of these concepts to the design of inhibitors of the HIV-1-PR, an enzyme which plays a central role in the life cycle of the HIV virus will be illustrated in terms of all-atom simulations and in vitro experimental results.

  8. Self-organization of cellular structures induced by the overexpression of nuclear envelope proteins: a correlative light and electron microscopy study.

    PubMed

    Volkova, Ekaterina G; Kurchashova, Svetlana Y; Polyakov, Vladimir Y; Sheval, Eugene V

    2011-01-01

    The mechanisms by which the supramolecular order is formed inside the cell nucleus remain poorly understood. So far, two major hypotheses - ordered assembly and stochastic self-organization - have been discussed. To determine which mechanism is responsible for the formation of nuclear envelope, cells overexpressing one of the nuclear envelope proteins (lamin A, lamin B1, pom121 or ndc1) were investigated. According to the ordered assembly model, the presence of an excessive amount of a component has no effect in the formation of the normal structure of a nuclear envelope because it is programmed and cannot be distorted. In contrast, according to the self-organization concept, there is no such strictly determined cellular structures, and an excessive amount of even one component will affect the cellular organization. In the present study, formation of a redundant nuclear envelope was observed in the case of lamin B1 and lamin A overexpression. In the case of the nucleoporins pom121 and ndc1, no incorporation of the overexpressed proteins into the nuclear envelope was observed on the first day after transfection; however, the remodeling of endoplasmic reticulum elements and the formation of membrane aggregates in the cytoplasm were observed. After mitosis, pom121 from the cytoplasmic aggregates was translocated into the redundant nuclear envelope in which it induced inner nuclear membrane protrusions. Therefore, our results indicate that the formation of the nuclear envelope is not predetermined and that an excessive amount of even one protein component can affect cellular structure formation. This study concluded that nuclear envelope formation is achieved by the self-organization mechanism. PMID:20926432

  9. Small Interfering RNA-Mediated Reduction in Heterogeneous Nuclear Ribonucleoparticule A1\\/A2 Proteins Induces Apoptosis in Human Cancer Cells but not in Normal Mortal Cell Lines

    Microsoft Academic Search

    Caroline Patry; Louise Bouchard; Pascale Labrecque; Daniel Gendron; Bruno Lemieux; Johanne Toutant; Elvy Lapointe; Raymund Wellinger; Benoit Chabot

    To prevent their recognition as DNA breaks, the ends of linear chro- mosomes are organized into telomeres, which are made of proteins bound to telomere-specific, double-stranded repeats and to single-stranded DNA extensions, the G-tails. The mammalian heterogeneous nuclear ribo- nucleoparticule A1 and A2 proteins can bind with high affinity to such G-tails. Moreover, previous work established that in certain mouse

  10. O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar

    Microsoft Academic Search

    Lance Wells; Gerald W. Hart

    2003-01-01

    O-linked ?-N-acetylglucosamine (O-GlcNAc) is a dynamic nucleocytoplasmic post-translational modification more analogous to phosphorylation than to classical complex O-glycosylation. A large number of nuclear and cytosolic proteins are modified by O-GlcNAc. Proteins modified by O-GlcNAc include transcription factors, signaling components, and metabolic enzymes. While the modification has been known for almost 20 years, functions for the monosaccharide modification are just now

  11. Lead exposure activates nuclear factor kappa B, activator protein-1, c-Jun N-terminal kinase and caspases in the rat brain

    Microsoft Academic Search

    Govindarajan T Ramesh; Sunil K Manna; Bharat B Aggarwal; Arun L Jadhav

    2001-01-01

    How lead manifests its neurotoxicity is not well understood. The hypothesis that lead may activate nuclear transcription factors NF-?B, activator protein-1 (AP-1), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase (MAPKK) and caspases in the rat brain leading to the manifestation of its neurotoxic effects, was tested in 21-day-old male Long–Evans rats exposed to 50 ppm Pb in drinking water

  12. Previously Identified Protein of Uncertain Function is Karyopherin alpha and Together with karyopherin beta Docks Imports Substrate at Nuclear Pore Complexes

    Microsoft Academic Search

    Junona Moroianu; Gunter Blobel; Aurelian Radu

    1995-01-01

    Previously, we had purified a cytosolic protein complex, termed karyopherin, that functions in docking import substrate at the nuclear envelope in digitoninpermeabilized cells and also had molecularly cloned and sequenced its 97-kDa beta subunit. We now report that the karyopherin alpha subunit is the previously identified protein NPI-1\\/SRP-1 of hitherto uncertain function. Using purified recombinant karyopherin alpha or beta subunit,

  13. Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI\\/SNF protein ATRX

    Microsoft Academic Search

    Alexander M. Ishov; Olga V. Vladimirova; Gerd G. Maul

    2004-01-01

    Placing regulatory proteins into different multiprotein complexes should modify key cellular processes. Here, we show that the transcription repressor Daxx and the SWI\\/SNF protein ATRX are both associated with two intranuclear domains: ND10\\/PML bodies and heterochromatin. The accumulation of ATRX at nuclear domain 10 (ND10) was mediated by its interaction with the N-terminus of Daxx. Binding of this complex to

  14. Marek's disease virus latent protein MEQ: delineation of an epitope in the BR1 domain involved in nuclear localization.

    PubMed

    Lee, Lucy F; Liu, J-L; Cui, X-P; Kung, H-J

    2003-12-01

    Marek's disease virus latent protein MEQ (MDV Eco Q) is abundantly expressed and consistently detected in MDV-induced tumors and cell lines. Deletion mutants were constructed to study the domain structure of MEQ. Four deletion mutants were obtained in the basic regions of MEQ, namely basic region 1 (DeltaBR1), basic region 2 (DeltaBR2), basic regions 1 and 2 (DeltaBR1 and 2), and the C-terminal (bZIP) domain. The BR1 and BR2 are nuclear localization signals and either is sufficient to cause transport of MEQ into the nucleus. In addition, the BR2 is also responsible for MEQ's nucleolar localization. A monoclonal antibody (Mab 23B46) was produced using recombinant fowlpox virus (rFPV) expressing MEQ (rFPV/MEQ) as a source of protein. The isotype of Mab 23B46 is IgG1 and immunoprecipitated a band in rFPV/MEQ infected cells with molecular weight of 60 kDa specific to MEQ protein. We detected abundant expression of MEQ in (rFPV/MEQ), recombinant baculovirus (rBac) (rBac/MEQ), and lymphoid tumors induced by MDV. In order to delineate the epitope of MEQ reactive with Mab 23B46, we used four deletion mutants from the basic and bZIP domains. We found the deletions in the N-terminal region including BR1 (DeltaBR1), and (DeltaBR1 and 2) completely abolished the specific binding with Mab 23B46 as shown by Western blot analysis and immunofluoresence test. Deletion of BR2 (DeltaBR2) and the C-terminal (bZIP) domain had no effect on antibody binding. These data provide direct evidence that monoclonal antibody reactive epitope is localized in the BR1 domain of the molecule. Since both BR1 and BR2 domains contain sequences important for nuclear entry, we now have reagent to further study and elucidate the mechanism of MEQ's involvement in nuclear and nucleolar localization. PMID:14618081

  15. Protein–energy malnutrition increases activation of the transcription factor, nuclear factor ?B, in the gerbil hippocampus following global ischemia?

    PubMed Central

    Ji, Liang; Nazarali, Adil J.; Paterson, Phyllis G.

    2013-01-01

    Protein–energy malnutrition (PEM) exacerbates functional impairment caused by brain ischemia. This is correlated with reactive gliosis, which suggests an increased inflammatory response. The objective of the current study was to investigate if PEM increases hippocampal activation of nuclear factor ?B (NF?B), a transcription factor that amplifies the inflammatory response involved in ischemic brain injury. Mongolian gerbils (11–12 weeks old) were randomly assigned to control diet (12.5% protein) or protein-deficient diet (2%) for 4 weeks. The 2% protein group had a 15% decrease in voluntary food intake (P<.001; unpaired t test), resulting in PEM. Body weight after 4 weeks was 20% lower in the PEM group (P<.001). Gerbils were then exposed to sham surgery or global ischemia induced by 5-min bilateral common carotid artery occlusion. PEM independently increased hippocampal NF?B activation detected by electrophoretic mobility shift assay at 6 h after surgery (P=.014; 2-factor ANOVA). Ischemia did not significantly affect NF?B activation nor was there interaction between diet and ischemia. Serum glucose and cortisol concentrations at 6 h postischemia were unaltered by diet or ischemia. A second experiment using gerbils of the same age and feeding paradigm demonstrated that PEM also increases hippocampal NF?B activation in the absence of surgery. These findings suggest that PEM, which exists in 16% of elderly patients at admission for stroke, may worsen outcome by increasing activation of NF?B. Since PEM increased NF?B activation independent of ischemia or surgery, the data also have implications for the inflammatory response of the many individuals affected globally by PEM. PMID:18430555

  16. Identification of numatrin, the nuclear matrix protein associated with induction of mitogenesis, as the nucleolar protein B23. Implication for the role of the nucleolus in early transduction of mitogenic signals.

    PubMed

    Feuerstein, N; Chan, P K; Mond, J J

    1988-08-01

    We have previously described and characterized a nuclear protein at 40 kDa/pI 5 termed "numatrin" which is tightly bound to the nuclear matrix. We demonstrated that a rapid increase in the synthesis of numatrin at early G1 phase is closely correlated with receptor-mediated induction of cellular proliferation by various mitogens and that elevated amounts of numatrin are found in tumor cells, suggesting that numatrin may have an important role in regulation of cellular growth in normal and malignant cells. Further experiments were undertaken to compare the biochemical characteristics of numatrin to those of other known proteins that are associated with cellular mitogenesis. Comparison of the electrophoretic mobility of numatrin with the proliferation cell nuclear antigen/cyclin showed that these proteins are not identical. However, numatrin had an identical electrophoretic migration on two-dimensional gel electrophoresis to that of a previously described nucleolar protein B23. The tryptic digest peptide map of 125I-labeled B23 was identical to that of numatrin on two-dimensional thin layer electrophoresis/chromatography. Labeling of cells with 32P further showed that numatrin is a major phosphoprotein as previously reported for protein B23. Using the protocol for purification of B23, we purified numatrin from nucleoli of HL-60 cells and produced two polyclonal antibodies (303 and 339) to this protein. We further show that numatrin is recognized by anti-B23 monoclonal antibody as well as by polyclonal antibodies 303 and 339 in enzyme-linked immunosorbent assay. Conversely, these anti-numatrin polyclonal antibodies cross-react with protein B23 as shown in immunoblot analysis. These results, taken collectively, prove that numatrin is identical to the nucleolar protein B23 and thus suggest that protein B23 and events which occur at the nucleolus might have an important role in early transduction of mitogenic signals at the G1 phase of the cell cycle. PMID:3392030

  17. Sorting of inner nuclear membrane-directed proteins at the endoplasmic reticulum membrane 

    E-print Network

    Saksena, Suraj

    2006-04-12

    protein ODV-E66 (E66) showed that E66 trafficking to the INM is mediated via an INM sorting signal (Sorting Motif or SM). In this study, using a site-specific crosslinking approach we demonstrate that following ER membrane integration, the SM is adjacent...

  18. Model-based assignment and inference of protein backbone nuclear magnetic resonances.

    E-print Network

    Vitek, Jan

    Ubiquitin and Cold-shock protein A from E. coli. In addition, we provide simulations showing the impact; structural genomics Dept. of Statistics, Purdue University. Dept. of Computer Sciences, Purdue University their function. The emerging field of structural genomics [6] requires new methods that provide structural

  19. Nuclear import of the homeodomain protein Extradenticle in response to Wg and Dpp signalling

    Microsoft Academic Search

    Richard S. Mann; Muna Abu-Shaar

    1996-01-01

    IN Drosophila, Decapentaplegic (Dpp)1 and Wingless (Wg)2 are two secreted signalling proteins of the transforming growth factor (TGF)-beta and Wnt families, respectively. Although both are often required during development, only a few downstream components of these signalling pathways have been described. Here we present evidence that in the embryonic midgut both signalling pathways control the subcellular localization of the homeodomain

  20. Nuclear Magnetic Resonance based Characterization of the Protein Binding Pocket using Hyperpolarized Ligand

    E-print Network

    Min, Hlaing

    2014-08-04

    spins. Saturation Transfer Difference (STD)-NMR was employed as an independent method to measure the protein-ligand interaction. The fit parameters in the STD-NMR equations, the dissociation constant (K_(D)) and a cross-relaxation rate (?_(STD)), were...

  1. Venezuelan Equine Encephalitis Virus Capsid Protein Inhibits Nuclear Import in Mammalian but Not in Mosquito Cells

    Microsoft Academic Search

    Svetlana Atasheva; Natalia Garmashova; Ilya Frolov; Elena Frolova

    2008-01-01

    Venezuelan equine encephalitis virus (VEEV) represents a continuous public health threat in the United States. It has the ability to cause fatal disease in humans and in horses and other domestic animals. We recently demonstrated that replicating VEEV interferes with cellular transcription and uses this phenomenon as a means of downregulating a cellular antiviral response. VEEV capsid protein was found

  2. Trypanosoma brucei RNA Binding Proteins p34 and p37 Mediate NOPP44/46 Cellular Localization via the Exportin 1 Nuclear Export Pathway?

    PubMed Central

    Hellman, Kristina; Prohaska, Kimberly; Williams, Noreen

    2007-01-01

    We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to interact with a family of nucleolar phosphoproteins, NOPP44/46, in Trypanosoma brucei. These proteins are nearly identical, the major difference being an 18-amino-acid insert in the N terminus of p37. In order to characterize the interaction between p34 and p37 and NOPP44/46, we have utilized an RNA interference (RNAi) cell line that specifically targets p34 and p37. Within these RNAi cells, we detected a disruption of a higher-molecular-weight complex containing NOPP44/46, as well as a dramatic increase in nuclear NOPP44/46 protein levels. We demonstrated that no change occurred in NOPP44/46 mRNA steady-state levels or stability, nor was there a change in cellular protein levels. These results led us to investigate whether p34 and p37 regulate NOPP44/46 cellular localization. Examination of the p34 and p37 amino acid sequences revealed a leucine-rich nuclear export signal, which interacts with the nuclear export factor exportin 1. Immune capture experiments demonstrated that p34, p37, and NOPP44/46 associate with exportin 1. When these experiments were performed with p34/p37 RNAi cells, NOPP44/46 no longer associated with exportin 1. Sequential immune capture experiments demonstrated that p34, p37, NOPP44/46, and exportin 1 exist in a common complex. Inhibiting exportin 1-mediated nuclear export led to an increase in nuclear NOPP44/46 proteins, indicating that they are exported from the nucleus via this pathway. Together, our results demonstrate that p34 and p37 regulate NOPP44/46 cellular localization by facilitating their association with exportin 1. PMID:17921352

  3. Trypanosoma brucei RRM1 Is a Nuclear RNA-Binding Protein and Modulator of Chromatin Structure

    PubMed Central

    Naguleswaran, Arunasalam; Gunasekera, Kapila; Schimanski, Bernd; Heller, Manfred; Hemphill, Andrew; Ochsenreiter, Torsten

    2015-01-01

    ABSTRACT TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. PMID:25784696

  4. The T-loop Extension of the Tomato Protein Kinase AvrPto-dependent Pto-interacting Protein 3 (Adi3) Directs Nuclear Localization for Suppression of Plant Cell Death*

    PubMed Central

    Ek-Ramos, María J.; Avila, Julian; Cheng, Cheng; Martin, Gregory B.; Devarenne, Timothy P.

    2010-01-01

    In tomato (Solanum lycopersicum), resistance to Pseudomonas syringae pv. tomato is elicited by the interaction of the host Pto kinase with the pathogen effector protein AvrPto, which leads to various immune responses including localized cell death termed the hypersensitive response. The AGC kinase Adi3 functions to suppress host cell death and interacts with Pto only in the presence of AvrPto. The cell death suppression (CDS) activity of Adi3 requires phosphorylation by 3-phosphoinositide-dependent protein kinase 1 (Pdk1) and loss of Adi3 function is associated with the hypersensitive response cell death initiated by the Pto/AvrPto interaction. Here we studied the relationship between Adi3 cellular localization and its CDS activity. Adi3 is a nuclear-localized protein, and this localization is dictated by a nuclear localization signal found in the Adi3 T-loop extension, an ?80 amino acid insertion into the T-loop, or activation loop, which is phosphorylated for kinase activation. Nuclear localization of Adi3 is required for its CDS activity and loss of nuclear localization causes elimination of Adi3 CDS activity and induction of cell death. This nuclear localization of Adi3 is dependent on Ser-539 phosphorylation by Pdk1 and non-nuclear Adi3 is found in punctate structures throughout the cell. Our data support a model in which Pdk1 phosphorylation of Adi3 directs nuclear localization for CDS and that disruption of Adi3 nuclear localization may be a mechanism for induction of cell death such as that during the Pto/AvrPto interaction. PMID:20371603

  5. Phosphoinositide-specific Phospholipase C ? 1b (PI-PLC?1b) Interactome: Affinity Purification-Mass Spectrometry Analysis of PI-PLC?1b with Nuclear Protein*

    PubMed Central

    Piazzi, Manuela; Blalock, William L.; Bavelloni, Alberto; Faenza, Irene; D'Angelo, Antonietta; Maraldi, Nadir M.; Cocco, Lucio

    2013-01-01

    Two isoforms of inositide-dependent phospholipase C ?1 (PI-PLC?1) are generated by alternative splicing (PLC?1a and PLC?1b). Both isoforms are present within the nucleus, but in contrast to PLC?1a, the vast majority of PLC?1b is nuclear. In mouse erythroid leukemia cells, PI-PLC?1 is involved in the regulation of cell division and the balance between cell proliferation and differentiation. It has been demonstrated that nuclear localization is crucial for the enzymatic function of PI-PLC?1, although the mechanism by which this nuclear import occurs has never been fully characterized. The aim of this study was to characterize both the mechanism of nuclear localization and the molecular function of nuclear PI-PLC?1 by identifying its interactome in Friend's erythroleukemia isolated nuclei, utilizing a procedure that coupled immuno-affinity purification with tandem mass spectrometry analysis. Using this procedure, 160 proteins were demonstrated to be in association with PI-PLC?1b, some of which have been previously characterized, such as the splicing factor SRp20 (Srsf3) and Lamin B (Lmnb1). Co-immunoprecipitation analysis of selected proteins confirmed the data obtained via mass spectrometry. Of particular interest was the identification of the nuclear import proteins Kpna2, Kpna4, Kpnb1, Ran, and Rangap1, as well as factors involved in hematological malignancies and several anti-apoptotic proteins. These data give new insight into possible mechanisms of nuclear trafficking and functioning of this critical signaling molecule. PMID:23665500

  6. Simultaneous characterization of protein coated iron oxide nanoparticles with nuclear inelastic scattering and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Marx, J.; Huang, H.; Faus, I.; Rackwitz, S.; Wolny, J. A.; Schlage, K.; Ulber, R.; Wille, H.-C.; Schünemann, V.

    2014-04-01

    Bovine serum albumin coated magnetic iron oxide nanoparticles (IONPs), which were synthesized using a co-precipitation method with 57Fe have been subject to a combined study using atomic force microscopy (AFM) and nuclear inelastic scattering (NIS). The obtained partial density of vibrational states (pDOS) shows evidence for lattice stiffening and a pronounced mode at 23 meV compared to thin film magnetite at room temperature.

  7. Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization.

    PubMed

    Ene, Chibawanye I; Edwards, Lincoln; Riddick, Gregory; Baysan, Mehmet; Woolard, Kevin; Kotliarova, Svetlana; Lai, Chen; Belova, Galina; Cam, Maggie; Walling, Jennifer; Zhou, Ming; Stevenson, Holly; Kim, Hong Sug; Killian, Keith; Veenstra, Timothy; Bailey, Rolanda; Song, Hua; Zhang, Wei; Fine, Howard A

    2012-01-01

    Histone methylation regulates normal stem cell fate decisions through a coordinated interplay between histone methyltransferases and demethylases at lineage specific genes. Malignant transformation is associated with aberrant accumulation of repressive histone modifications, such as polycomb mediated histone 3 lysine 27 (H3K27me3) resulting in a histone methylation mediated block to differentiation. The relevance, however, of histone demethylases in cancer remains less clear. We report that JMJD3, a H3K27me3 demethylase, is induced during differentiation of glioblastoma stem cells (GSCs), where it promotes a differentiation-like phenotype via chromatin dependent (INK4A/ARF locus activation) and chromatin independent (nuclear p53 protein stabilization) mechanisms. Our findings indicate that deregulation of JMJD3 may contribute to gliomagenesis via inhibition of the p53 pathway resulting in a block to terminal differentiation. PMID:23236496

  8. Histone Demethylase Jumonji D3 (JMJD3) as a Tumor Suppressor by Regulating p53 Protein Nuclear Stabilization

    PubMed Central

    Ene, Chibawanye I.; Edwards, Lincoln; Riddick, Gregory; Baysan, Mehmet; Woolard, Kevin; Kotliarova, Svetlana; Lai, Chen; Belova, Galina; Cam, Maggie; Walling, Jennifer; Zhou, Ming; Stevenson, Holly; Kim, Hong Sug; Killian, Keith; Veenstra, Timothy; Bailey, Rolanda; Song, Hua; Zhang, Wei; Fine, Howard A.

    2012-01-01

    Histone methylation regulates normal stem cell fate decisions through a coordinated interplay between histone methyltransferases and demethylases at lineage specific genes. Malignant transformation is associated with aberrant accumulation of repressive histone modifications, such as polycomb mediated histone 3 lysine 27 (H3K27me3) resulting in a histone methylation mediated block to differentiation. The relevance, however, of histone demethylases in cancer remains less clear. We report that JMJD3, a H3K27me3 demethylase, is induced during differentiation of glioblastoma stem cells (GSCs), where it promotes a differentiation-like phenotype via chromatin dependent (INK4A/ARF locus activation) and chromatin independent (nuclear p53 protein stabilization) mechanisms. Our findings indicate that deregulation of JMJD3 may contribute to gliomagenesis via inhibition of the p53 pathway resulting in a block to terminal differentiation. PMID:23236496

  9. Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization

    SciTech Connect

    Wydner, K.L.; McNeil, J.A. [Univ. of Masssachusetts Medical Center, Worcester, MA (United States)] [Univ. of Masssachusetts Medical Center, Worcester, MA (United States); Lin, Feng [Columbia Univ., New York, NY (United States)] [and others] [Columbia Univ., New York, NY (United States); and others

    1996-03-05

    We have used fluorescence in situ hybridization to establish precise chromosomal localizations for three human genes encoding four different nuclear envelope proteins. Lamin A/C (LMN1, HGMW-approved symbol LMNA) mapped to 1q21.2-q21.3, with a most probable gene assignment to 1q21.3; lamin B receptor (LBR) was localized to 1q42.1; and lamin B1 (LMNB1) was mapped to the interface of bands 5q23.3-q31.1. Assignments were determined by direct placement of signals relative to high-resolution DAPI or G-bands. Comparison of these results of band positions predicted from fractional length measurements to signal placement indicated that more accurate predictions are made using Francke idiograms and that measurement strategy avoids variance due to polymorphic chromosome segments. 30 refs., 2 figs., 1 tab.

  10. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    SciTech Connect

    Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia)] [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia); Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia)] [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  11. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity.

    PubMed

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C; MacPherson, Laura; Ruan, Hai-Bin; Wu, Jing; Pedersen, Thomas Å; Steffensen, Knut R; Yang, Xiaoyong; Matthews, Jason; Mandrup, Susanne; Nebb, Hilde I; Grønning-Wang, Line M

    2015-04-01

    Liver X receptor (LXR)? and LXR? play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked ?-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin-independent effects of feeding on LXR-mediated lipogenic gene expression in vivo, we subjected control and streptozotocin-treated LXR?/?(+/+) and LXR?/?(-/-) mice to a fasting-refeeding regime. We show that under hyperglycemic and hypoinsulinemic conditions, LXRs maintain their ability to upregulate the expression of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBP?, and the newly identified shorter isoform ChREBP?. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBP? promoter was mediated, at least in part, by O-GlcNAc transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBP? promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity. PMID:25724563

  12. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    PubMed

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL. PMID:25974308

  13. Macelignan attenuates activations of mitogen-activated protein kinases and nuclear factor kappa B induced by lipopolysaccharide in microglial cells.

    PubMed

    Ma, Jinhua; Hwang, Yoo Kyeong; Cho, Woo-Hyun; Han, Seol-Heui; Hwang, Jae Kwan; Han, Jung-Soo

    2009-06-01

    A previous study showed that macelignan extracted from Myristica fragrans has anti-inflammatory properties using hippocampal neuronal and primary microglial cells. Subsequently, a study using animals with chronic lipopolysaccharide (LPS) infusion into the brain showed that oral treatments of macelignan reduced the hippocampal microglial activation and hippocampal-dependent spatial memory impairments induced by LPS. However, the molecular mechanisms responsible for the anti-inflammatory activity of macelignan have not been elucidated in the microglia. Therefore, the present study was conducted to determine if mitogen-activated protein kinase (MAPK) signaling and nuclear factor-kappa B (NF-kappaB) activities are related to the anti-inflammatory effects of macelignan on LPS-stimulated BV-2 microglial cells. The results show that macelignan suppresses both the phosphorylations of MAPKs and the degradation of inhibitory-kappa B (IkappaBalpha) and increases of nuclear NF-kappaB in LPS-stimulated BV-2 microglial cells. These results suggest that macelignan has an anti-inflammatory effect on the affected brain through regulation of the inflammation through the MAPK signal pathway. PMID:19483320

  14. Fatty Acid-binding Proteins Transport N-Acylethanolamines to Nuclear Receptors and Are Targets of Endocannabinoid Transport Inhibitors*

    PubMed Central

    Kaczocha, Martin; Vivieca, Stephanie; Sun, Jing; Glaser, Sherrye T.; Deutsch, Dale G.

    2012-01-01

    N-Acylethanolamines (NAEs) are bioactive lipids that engage diverse receptor systems. Recently, we identified fatty acid-binding proteins (FABPs) as intracellular NAE carriers. Here, we provide two new functions for FABPs in NAE signaling. We demonstrate that FABPs mediate the nuclear translocation of the NAE oleoylethanolamide, an agonist of nuclear peroxisome proliferator-activated receptor ? (PPAR?). Antagonism of FABP function through chemical inhibition, dominant-negative approaches, or shRNA-mediated knockdown reduced PPAR? activation, confirming a requisite role for FABPs in this process. In addition, we show that NAE analogs, traditionally employed as inhibitors of the putative endocannabinoid transmembrane transporter, target FABPs. Support for the existence of the putative membrane transporter stems primarily from pharmacological inhibition of endocannabinoid uptake by such transport inhibitors, which are widely employed in endocannabinoid research despite lacking a known cellular target(s). Our approach adapted FABP-mediated PPAR? signaling and employed in vitro binding, arachidonoyl-[1-14C]ethanolamide ([14C]AEA) uptake, and FABP knockdown to demonstrate that transport inhibitors exert their effects through inhibition of FABPs, thereby providing a molecular rationale for the underlying physiological effects of these compounds. Identification of FABPs as targets of transport inhibitors undermines the central pharmacological support for the existence of an endocannabinoid transmembrane transporter. PMID:22170058

  15. p95vavAssociates with the Nuclear Protein Ku-70

    Microsoft Academic Search

    FRANCISCO ROMERO; CATHERINE DARGEMONT; FRANCOISE POZO; WESTLEY H. REEVES; JACQUES CAMONIS; SYLVIE GISSELBRECHT; ANDSIEGMUND FISCHER

    The proto-oncogene vav is expressed solely in hematopoietic cells and plays an important role in cell signaling, although little is known about the proteins involved in these pathways. To gain further information, the Src homology 2 (SH2) and 3 (SH3) domains of Vav were used to screen a lymphoid cell cDNA library by the yeast two-hybrid system. Among the positive

  16. Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: Discovery of a new leucine-rich nuclear export signal site

    SciTech Connect

    Fukasawa, Masashi; Ge, Qing; Wynn, R. Max; Ishii, Seiji [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States)] [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States); Uyeda, Kosaku, E-mail: Kosaku.Uyeda@utsouthwestern.edu [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States) [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States); Dallas Veterans Affairs Medical Center, Dallas, TX 75216 (United States)

    2010-01-08

    Carbohydrate response element binding protein (ChREBP) is responsible for conversion of dietary carbohydrate to storage fat in liver by coordinating expression of the enzymes that channel glycolytic pyruvate into lipogenesis. The activation of ChREBP in response to high glucose is nuclear localization and transcription, and the inactivation of ChREBP under low glucose involves export from the nucleus to the cytosol. Here we report a new nuclear export signal site ('NES1') of ChREBP. Together these signals provide ChREBP with two NES sequences, both the previously reported NES2 and now the new NES1 coordinate to interact together with CRM1 (exportin) for nuclear export of the carbohydrate response element binding protein.

  17. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: Evidence for roles in nuclear receptor signaling and RNA metabolism

    SciTech Connect

    Mansure, Jose Joao [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Furtado, Daniel Rodrigues [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Bastos de Oliveira, Francisco Meirelles [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rumjanek, Franklin David [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Franco, Gloria Regina [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970 (Brazil); Fantappie, Marcelo Rosado [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)]. E-mail: fantappie@bioqmed.ufrj.br

    2005-10-07

    The most studied arginine methyltransferase is the type I enzyme, which catalyzes the transfer of an S-adenosyl-L-methionine to a broad spectrum of substrates, including histones, RNA-transporting proteins, and nuclear hormone receptor coactivators. We cloned a cDNA encoding a protein arginine methyltransferase in Schistosoma mansoni (SmPRMT1). SmPRMT1 is highly homologous to the vertebrate PRMT1 enzyme. In vitro methylation assays showed that SmPRMT1 recombinant protein was able to specifically methylate histone H4. Two schistosome proteins likely to be involved in RNA metabolism, SMYB1 and SmSmD3, that display a number of RGG motifs, were strongly methylated by SmPRMT1. In vitro GST pull-down assays showed that SMYB1 and SmSmD3 physically interacted with SmPRMT1. Additional GST pull-down assay suggested the occurrence of a ternary complex including SmPRMT1, SmRXR1 nuclear receptor, and the p160 (SRC-1) nuclear receptor coactivator. Together, these data suggest a mechanism by which SmPRMT1 plays a role in nuclear receptor-mediated chromatin remodeling and RNA transactions.

  18. A ?XaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence.

    PubMed

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R; Kehn-Hall, Kylene; Omichinski, James G

    2015-05-12

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ?XaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ?XaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ?XaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ?XaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH. PMID:25918396

  19. BRD–NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells

    Microsoft Academic Search

    C A French; C L Ramirez; J Kolmakova; T T Hickman; M J Cameron; M E Thyne; J L Kutok; J A Toretsky; A K Tadavarthy; U R Kees; J A Fletcher; J C Aster

    2008-01-01

    An unusual group of carcinomas, here termed nuclear protein in testis (NUT) midline carcinomas (NMC), are characterized by translocations that involve NUT, a novel gene on chromosome 15. In about 2\\/3rds of cases, NUT is fused to BRD4 on chromosome 19. Using a candidate gene approach, we identified two NMCs harboring novel rearrangements that result in the fusion of NUT

  20. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome

    Microsoft Academic Search

    Kadir Turan; Masaki Mibayashi; Kenji Sugiyama; Shoko Saito; Akiko Numajiri; Kyosuke Nagata

    2004-01-01

    Mx proteins belong to the dynamin superfamily of high molecular weight GTPases and interfere with multiplication of a wide variety of viruses. Earlier studies show that nuclear mouse Mx1 and human MxA designed to be localized in the nucleus inhibit the transcription step of the influenza virus genome. Here we set a transient influenza virus transcription system using luciferase as

  1. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by a variety of viruses alters the nuclear-cytoplasmic trafficking of certain host cell proteins. In our continued search for interacting factors, we reported the re-localization of RNA helicase A (RHA) from the nucleus to the cytoplasm in cells infected with foot-and-mouth disease virus ...

  2. Monoclonal Antibodies Against Muscleblind-like 3, a Protein with Punctate Nuclear Localization

    PubMed Central

    Lee, Kyung-Soon; Lewis, K.A.; Tom, Susan; Wayner, Elizabeth A.

    2011-01-01

    Muscleblind-like 3 (MBNL3) belongs to a family of RNA binding proteins that regulate alternative splicing. We have generated a set of monoclonal antibodies (MAbs) against mouse MBNL3, three of which do not cross-react with the other muscleblind-like (MBNL) proteins, MBNL1 and MBNL2. Epitope mapping revealed that MAbs P1C7, P1E7, SP1C2, and P2E6 recognize distinct, non-overlapping segments of the MBNL3 polypeptide sequence. Immunohistochemical staining of proliferating muscle precursor cells localized MBNL3 to the nucleus in a punctate pattern, characteristic of subcellular structures in the nucleus enriched in pre-messenger RNA splicing factors. Although MBNL3 did not co-localize with SC35 and PSP1 (widely used markers of splicing speckles and paraspeckles), the punctate localization pattern of MBNL3 within interchromatin regions of the nucleus is highly predictive of proteins involved in pre-mRNA processing. Monoclonal antibodies specific for mouse MBNL3 will facilitate further investigation of the expression pattern and unique functions of this splicing factor during development and in different adult mouse tissues. PMID:21529292

  3. Nuclear lymphocyte-specific protein tyrosine kinase and its interaction with CR6-interacting factor 1 promote the survival of human leukemic T cells

    PubMed Central

    VAHEDI, SHAHROOZ; CHUEH, FU-YU; DUTTA, SUJOY; CHANDRAN, BALA; YU, CHAO-LAN

    2015-01-01

    Overexpression and hyperactivation of lymphocyte-specific protein tyrosine kinase (Lck) have been associated with leukemia development. We previously showed that, other than its known function as a cytoplasmic signal transducer, Lck also acts as a nuclear transcription factor in mouse leukemic cells. In the present study, we demonstrated the presence of nuclear Lck in human leukemic T cells and in primary cells. We further established a positive correlation between Lck nuclear localization and its kinase activity. Proteomic analysis identified CR6-interacting factor 1 (CRIF1) as one of the Lck-interacting proteins. CRIF1 and Lck association in the nucleus was confirmed both by immunofluorescence microscopy and co-immunoprecipitation in human leukemic T cells. Close-range interaction between Lck and CRIF1 was validated by in situ proximity ligation assay (PLA). Consistent with the role of nuclear CRIF1 as a tumor suppressor, CRIF1 silencing promotes leukemic T cell survival in the absence of growth factors. This protective effect can be recapitulated by endogenous Lck or reconstituted Lck in leukemic T cells. All together, our results support a novel function of nuclear Lck in promoting human leukemic T cell survival through interaction with a tumor suppressor. It has important implications in defining a paradigm shift of non-canonical protein tyrosine kinase signaling. PMID:25997448

  4. Nuclear lymphocyte-specific protein tyrosine kinase and its interaction with CR6-interacting factor 1 promote the survival of human leukemic T cells.

    PubMed

    Vahedi, Shahrooz; Chueh, Fu-Yu; Dutta, Sujoy; Chandran, Bala; Yu, Chao-Lan

    2015-07-01

    Overexpression and hyperactivation of lymphocyte-specific protein tyrosine kinase (Lck) have been associated with leukemia development. We previously showed that, other than its known function as a cytoplasmic signal transducer, Lck also acts as a nuclear transcription factor in mouse leukemic cells. In the present study, we demonstrated the presence of nuclear Lck in human leukemic T cells and in primary cells. We further established a positive correlation between Lck nuclear localization and its kinase activity. Proteomic analysis identified CR6-interacting factor 1 (CRIF1) as one of the Lck-interacting proteins. CRIF1 and Lck association in the nucleus was confirmed both by immunofluorescence microscopy and co-immunoprecipitation in human leukemic T cells. Close-range interaction between Lck and CRIF1 was validated by in situ proximity ligation assay (PLA). Consistent with the role of nuclear CRIF1 as a tumor suppressor, CRIF1 silencing promotes leukemic T cell survival in the absence of growth factors. This protective effect can be recapitulated by endogenous Lck or reconstituted Lck in leukemic T cells. All together, our results support a novel function of nuclear Lck in promoting human leukemic T cell survival through interaction with a tumor suppressor. It has important implications in defining a paradigm shift of non-canonical protein tyrosine kinase signaling. PMID:25997448

  5. The Karyopherin Kap95 and the C-Termini of Rfa1, Rfa2, and Rfa3 Are Necessary for Efficient Nuclear Import of Functional RPA Complex Proteins in Saccharomyces cerevisiae

    PubMed Central

    Griffith, Amanda L.; Baker, Heather L.; Hansen, Jeanne N.; Simmons Kovacs, Laura A.; Seconi, Justin S.; Strine, Andrew C.

    2011-01-01

    Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5? deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein–protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit. PMID:21332387

  6. Suppression of RNA Silencing by a Geminivirus Nuclear Protein, AC2, Correlates with Transactivation of Host Genes†

    PubMed Central

    Trinks, Daniela; Rajeswaran, R.; Shivaprasad, P. V.; Akbergenov, Rashid; Oakeley, Edward J.; Veluthambi, K.; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing. PMID:15681452

  7. African swine fever virus protein p30 interaction with heterogeneous nuclear ribonucleoprotein K (hnRNP-K) during infection

    PubMed Central

    Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga

    2008-01-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) was identified as interacting cellular protein with the abundant immediate early protein p30 from African swine fever virus (ASFV) in a macrophage cDNA library screening. The interacting regions of hnRNP-K with p30 were established within residues 35–197, which represent KH1 and KH2 domains responsible for RNA binding. Colocalization of hnRNP-K and p30 was observed mainly in the nucleus, but not in the cytoplasm of infected cells and infection modified hnRNP-K subcellular distribution and decreased the incorporation of 5-fluorouridine into nascent RNA. Since similar effects were observed in cells transiently expressing p30, this interaction provides new insights into p30 function and could represent a possible additional mechanism by which ASFV downregulates host cell mRNA translation. Structured summary MINT-6742660: hnRNP-K (uniprotkb:P61978) physically interacts (MI:0218) with p30 (uniprotkb:Q8V1E7) by pull down (MI:0096) MINT-6742673, MINT-6742696, MINT-6742729: hnRNP-K (uniprotkb:P61978) physically interacts (MI:0218) with p30 (uniprotkb:Q8V1E7) by two hybrid (MI:0018) MINT-6742711: p30 (uniprotkb:Q8V1E7) and hnRNP-K (uniprotkb:P61978) colocalize (MI:0403) by fluorescence microscopy (MI:0416) PMID:18775702

  8. The transforming acidic coiled coil (TACC1) protein modulates the transcriptional activity of the nuclear receptors TR and RAR

    PubMed Central

    2010-01-01

    Background The transcriptional activity of Nuclear hormone Receptors (NRs) is regulated by interaction with coactivator or corepressor proteins. Many of these cofactors have been shown to have a misregulated expression or to show a subcellular mislocalization in cancer cell lines or primary tumors. Therefore they can be factors involved in the process of oncogenesis. Results We describe a novel NR coregulator, TACC1, which belongs to the Transforming Acidic Coiled Coil (TACC) family. The interaction of TACC1 with Thyroid Hormone Receptors (TR) and several other NRs has been shown in a yeast two-hybrid screen and confirmed by GST pulldown, colocalization and co-immunoprecipitation experiments. TACC1 interacts preferentially with unliganded NRs. In F9 cells, endogenous TACC1 localized in the chromatin-enriched fraction of the nucleus and interacted with Retinoid Acid Receptors (RAR?) in the nucleus. TACC1 depletion in the cell led to decreased RAR? and TR? ligand-dependent transcriptional activity and to delocalization of TR from the nucleus to the cytoplasm. Conclusions From these experimental studies we propose that TACC1 might be a scaffold protein building up a transcriptional complex around the NRs we studied. This function of TACC1 might account for its involvement in several forms of tumour development. PMID:20078863

  9. G-protein-coupled receptors, channels, and Na+-H+ exchanger in nuclear membranes of heart, hepatic, vascular endothelial, and smooth muscle cells.

    PubMed

    Bkaily, Ghassan; Nader, Moni; Avedanian, Levon; Choufani, Sana; Jacques, Danielle; D'Orléans-Juste, Pedro; Gobeil, Fernand; Chemtob, Sylvain; Al-Khoury, Johny

    2006-01-01

    The action of several peptides and drugs is thought to be primarily dependent on their interactions with specific cell surface G-protein-coupled receptors and ionic transporters such as channels and exchangers. Recent development of 3-D confocal microscopy allowed several laboratories, including ours, to identify and study the localization of receptors, channels, and exchangers at the transcellular level of several cell types. Using this technique, we demonstrated in the nuclei of several types of cells the presence of Ca(2+) channels as well as Na(+)-H(+) exchanger and receptors such as endothelin-1 and angiotensin II receptors. Stimulation of these nuclear membrane G-protein-coupled receptors induced an increase of nuclear Ca(2+). Our results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell. This article will emphasize these findings. PMID:16902588

  10. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone.

    PubMed

    Cheng, Shu-Meng; Lin, Wei-Hsiang; Lin, Chin-Sheng; Ho, Ling-Jun; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lai, Jenn-Haung; Yang, Shih-Ping

    2015-01-01

    Amiodarone, a common and effective antiarrhythmic drug, has been reported to have anti-inflammatory effects such as reducing the activation and movement of neutrophils. However, its effects on human T cells remain unclear. The aim of this study was to elucidate the effects and possible underlying mechanisms of amiodarone on human T cells. We isolated human primary T cells from the peripheral blood of healthy volunteers and performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, electrophoretic mobility shift assay, luciferase assay, and Western blotting to evaluate the modulatory effects of amiodarone on human T cells. We found that amiodarone dose dependently inhibited the production of cytokines, including interleukin-2 (IL-2), IL-4, tumor necrosis factor-alpha, and interferon-gamma in activated human T cells. By flow cytometry, we demonstrated that amiodarone suppressed the expression of IL-2 receptor-alpha (CD25) and CD69, the cell surface markers of activated T cells. Moreover, molecular investigations revealed that amiodarone down-regulated activator protein-1 (AP-1) and nuclear factor kappa-B (NF-?B) DNA-binding activities in activated human T cells and also inhibited DNA binding and transcriptional activities of both AP-1 and NF-?B in Jurkat cells. Finally, by Western blotting, we showed that amiodarone reduced the activation of c-Jun NH(2)-terminal protein kinase and P38 mitogen-activated protein kinase, and suppressed stimuli-induced I-kappa B-alpha degradation in activated human T cells. Through regulation of AP-1 and NF-?B signaling, amiodarone inhibits cytokine production and T cell activation. These results show the pleiotropic effects of amiodarone on human T cells and suggest its therapeutic potential in inflammation-related cardiovascular disorders. PMID:25073960

  11. Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance.

    PubMed

    Bazzacco, Paola; Billon-Denis, Emmanuelle; Sharma, K Shivaji; Catoire, Laurent J; Mary, Sophie; Le Bon, Christel; Point, Elodie; Banères, Jean-Louis; Durand, Grégory; Zito, Francesca; Pucci, Bernard; Popot, Jean-Luc

    2012-02-21

    Nonionic amphipols (NAPols) synthesized by homotelomerization of an amphiphatic monomer are able to keep membrane proteins (MPs) stable and functional in the absence of detergent. Some of their biochemical and biophysical properties and applications have been examined, with particular attention being paid to their complementarity with the classical polyacrylate-based amphipol A8-35. Bacteriorhodopsin (BR) from Halobacterium salinarum and the cytochrome b(6)f complex from Chlamydomonas reinhardtii were found to be in their native state and highly stable following complexation with NAPols. NAPol-trapped BR was shown to undergo its complete photocycle. Because of the pH insensitivity of NAPols, solution nuclear magnetic resonance (NMR) two-dimensional (1)H-(15)N heteronuclear single-quantum coherence spectra of NAPol-trapped outer MP X from Escherichia coli (OmpX) could be recorded at pH 6.8. They present a resolution similar to that of the spectra of OmpX/A8-35 complexes recorded at pH 8.0 and give access to signals from solvent-exposed rapidy exchanging amide protons. Like A8-35, NAPols can be used to fold MPs to their native state as demonstrated here with BR and with the ghrelin G protein-coupled receptor GHS-R1a, thus extending the range of accessible folding conditions. Following NAPol-assisted folding, GHS-R1a bound four of its specific ligands, recruited arrestin-2, and activated binding of GTP?S by the G(?q) protein. Finally, cell-free synthesis of MPs, which is inhibited by A8-35 and sulfonated amphipols, was found to be very efficient in the presence of NAPols. These results open broad new perspectives on the use of amphipols for MP studies. PMID:22304405

  12. Surface plasmon resonance analysis of nuclear factor-kappaB protein interactions with the sesquiterpene lactone helenalin.

    PubMed

    Büchele, Berthold; Zugmaier, Waltraud; Lunov, Oleg; Syrovets, Tatiana; Merfort, Irmgard; Simmet, Thomas

    2010-06-01

    Sesquiterpene lactones such as helenalin have generally been considered as highly promising compounds for the treatment of inflammatory disorders. Although sesquiterpene lactones are known to inhibit signaling through transcription factor nuclear factor-kappaB (NF-kappaB), the nature of their molecular targets remains controversial. To characterize the interactions of helenalin with putative target proteins, a surface plasmon resonance-based method was developed and validated to analyze the interactions of helenalin with the NF-kappaB protein p65/RelA, with recombinant IkappaB kinases (IKKs) alpha and beta, and with the intracellular antioxidant glutathione, all immobilized on sensor chips. At pH 7.4, helenalin is interacting with RelA (K(D)=4.8microM), yet it failed to bind either IKKalpha or IKKbeta. When DNA with NF-kappaB binding sites was immobilized on sensor chips, the binding of RelA was inhibited by helenalin with an IC(50) of 5.0microM. At pH 8.0, helenalin was also able to interact with reduced, but not oxidized, glutathione with a K(D) of 24microM, but no significant interaction was observed at pH 7.4. Thus, with this optimized method, we showed that the sesquiterpene lactone helenalin interacts with the NF-kappaB protein RelA but not with IKKalpha or IKKbeta. Moreover, at physiological pH, helenalin does not interact with glutathione to any significant extent. PMID:20175984

  13. Nuclear proteins that bind the pre-mRNA 3' splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n.

    PubMed Central

    Ishikawa, F; Matunis, M J; Dreyfuss, G; Cech, T R

    1993-01-01

    HeLa cell nuclear proteins that bind to single-stranded d(TTAGGG)n, the human telomeric DNA repeat, were identified and purified by a gel retardation assay. Immunological data and peptide sequencing experiments indicated that the purified proteins were identical or closely related to the heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2-B1, D, and E and to nucleolin. These proteins bound to RNA oligonucleotides having r(UUAGGG) repeats more tightly than to DNA of the same sequence. The binding was sequence specific, as point mutation of any of the first 4 bases [r(UUAG)] abolished it. The fraction containing D and E hnRNPs was shown to bind specifically to a synthetic oligoribonucleotide having the 3' splice site sequence of the human beta-globin intervening sequence 1, which includes the sequence UUAGG. Proteins in this fraction were further identified by two-dimensional gel electrophoresis as D01, D02, D1*, and E0; intriguingly, these members of the hnRNP D and E groups are nuclear proteins that are not stably associated with hnRNP complexes. These studies establish the binding specificities of these D and E hnRNPs. Furthermore, they suggest the possibility that these hnRNPs could perhaps bind to chromosome telomeres, in addition to having a role in pre-mRNA metabolism. Images PMID:8321232

  14. The Interaction of CRM1 and the Nuclear Pore Protein Tpr

    PubMed Central

    Moussavi-Baygi, Ruhollah; Mofrad, Mohammad R. K.

    2014-01-01

    While much has been devoted to the study of transport mechanisms through the nuclear pore complex (NPC), the specifics of interactions and binding between export transport receptors and the NPC periphery have remained elusive. Recent work has demonstrated a binding interaction between the exportin CRM1 and the unstructured carboxylic tail of Tpr, on the nuclear basket. Strong evidence suggests that this interaction is vital to the functions of CRM1. Using molecular dynamics simulations and a newly refined method for determining binding regions, we have identified nine candidate binding sites on CRM1 for C-Tpr. These include two adjacent to RanGTP – from which one is blocked in the absence of RanGTP – and three next to the binding region of the cargo Snurportin. We report two additional interaction sites between C-Tpr and Snurportin, suggesting a possible role for Tpr import into the nucleus. Using bioinformatics tools we have conducted conservation analysis and functional residue prediction investigations to identify which parts of the obtained binding sites are inherently more important and should be highlighted. Also, a novel measure based on the ratio of available solvent accessible surface (RASAS) is proposed for monitoring the ligand/receptor binding process. PMID:24722547

  15. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi [Department of Biochemistry, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kang, Dong-Ku [Department of Biochemistry, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Protein Chip Center, Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Hak Yong [Department of Biochemistry, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kang, Sang Sun [School of Science Education, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Chang, Soo-Ik [Department of Biochemistry, Chungbuk National University, Cheongju 361-763 (Korea, Republic of) and Protein Chip Center, Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)]. E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  16. Protein folding and non-conventional drug design: a primer for nuclear structure physicists

    NASA Astrophysics Data System (ADS)

    Broglia, R. A.; Tiana, G.; Provasi, D.

    2004-02-01

    Some of the paradigms emerging from the study of the phenomena of phase transitions in finite many-body systems, like e.g. the atomic nucleus can be used at profit to solve the protein folding problem within the framework of simple (although not oversimplified) models. From this solution a paradigm emerges for the design of non-conventional drugs, which inhibit enzymatic action without inducing resistance (mutations). The application of these concepts to the design of an inhibitor to the HIV-protease central in the life cycle of the HIV virus is discussed.

  17. An analysis of the protein interactions involved in classical nuclear import 

    E-print Network

    Reedy, Brian Michael Thomas

    1999-01-01

    the aminopropyl groups similarly to those in the HIV-1 matrix protein 42 42 3. 3 Aminoalkylated dihydroxybenzene NLS mimcs 43 3. 4 Photoswitchable mp-ABC linked SV40 derivative 44 3. 5 Isomerization of mp-ABC by UV irradiation 45 3. 6 Formation of the semi... of the carbohydrate scaffold NLS mimics . . . . . . . . . . . . 55 3. 10 In-vitro assay of the linked resorcinol scaffold NLS mimics . . . . . . . . . 56 3. 11 Comparison of the HIV1-NLS to the mimic 57 3. 12 The In-vitro assay of the SV40 NLS containing mp...

  18. Nanotopography Alters Nuclear Protein Expression, Proliferation and Differentiation of Human Mesenchymal Stem/Stromal Cells

    PubMed Central

    Kulangara, Karina; Yang, Jennifer; Chellappan, Malathi; Yang, Yong; Leong, Kam W.

    2014-01-01

    Mesenchymal stem/stromal cells respond to physical cues present in their microenvironment such as substrate elasticity, geometry, or topography with respect to morphology, proliferation, and differentiation. Although studies have demonstrated the role of focal adhesions in topography-mediated changes of gene expression, information linking substrate topography to the nucleus remains scarce. Here we show by two-dimensional gel electrophoresis and western blotting that A-type lamins and retinoblastoma protein are downregulated in mesenchymal stem/stromal cells cultured on 350 nm gratings compared to planar substrates; these changes lead to a decrease in proliferation and changes in differentiation potential. PMID:25521962

  19. Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii.

    PubMed

    Lauersen, Kyle J; Berger, Hanna; Mussgnug, Jan H; Kruse, Olaf

    2013-08-20

    Microalgae are diverse photosynthetic microbes which offer the potential for production of a number of high value products (HVP) such as pigments, oils, and bio-active compounds. Fast growth rates, ease of photo-autotrophic cultivation, unique metabolic properties and continuing progress in algal transgenics have raised interest in the use of microalgae systems for recombinant protein (RP) production. This work demonstrates the development of an advanced RP production and secretion system for the green unicellular model alga Chlamydomonas reinhardtii. We generated a versatile expression vector that employs the secretion signal of the native extracellular C. reinhardtii carbonic anhydrase for efficient RP secretion into the culture medium. Unique restriction sites were placed between the regulatory elements to allow fast and easy sub-cloning of sequences of interest. Positive transformants can rapidly be identified by high-throughput plate-level screens via a coupled Gaussia luciferase marker. The vector was tested in Chlamydomonas wild type CC-1883 (WT) and in the transgene expression transformant UVM4. Compared to the native secretion signal of the Gaussia luciferase, up to 84% higher RP production could be achieved. With this new expression system we could generate transformants that express up to 10 mg RP per liter culture without further optimization. The target RP is found exclusively in culture medium and can therefore easily be isolated and purified. We conclude that this new expression system will be a valuable tool for many heterologous protein expression applications from C. reinhardtii in the future. PMID:23099045

  20. Hematopoietic prostaglandin D synthase (H-Pgds) is expressed in the early embryonic gonad and participates to the initial nuclear translocation of the SOX9 protein.

    PubMed

    Moniot, Brigitte; Farhat, Andalib; Aritake, Kosuke; Declosmenil, Faustine; Nef, Serge; Eguchi, Naomi; Urade, Yoshihiro; Poulat, Francis; Boizet-Bonhoure, Brigitte

    2011-10-01

    In mammals, the Prostaglandin D(2) (PGD(2) ) signaling pathway is involved in male gonadal development, regulating Sox9 gene expression and SOX9 protein subcellular localization through lipocalin prostaglandin D synthase (L-Pgds) activity. Nevertheless, because L-Pgds is downstream of Sox9, its expression cannot explain the initial nuclear translocation of the SOX9 protein. Here, we show that another source of PGD(2) , hematopoietic-Pgds (H-Pgds) enzyme is expressed in somatic and germ cells of the embryonic gonad of both sexes, as early as embryonic day (E) 10.5, before the onset of L-Pgds expression. Inhibition of H-Pgds activity by the specific HQL-79 inhibitor leads to impaired nuclear translocation of SOX9 protein in E11.5 Sertoli cells. Furthermore, analysis of H-Pgds(-/-) male embryonic gonads confirms abnormal subcellular localization of SOX9 protein at the E11.5 early stage of mouse testicular differentiation suggesting a role for H-Pgds-produced PGD(2) in the initial nuclear translocation of SOX9. PMID:21887724

  1. Baculovirus VP80 Protein and the F-Actin Cytoskeleton Interact and Connect the Viral Replication Factory with the Nuclear Periphery?

    PubMed Central

    Marek, Martin; Merten, Otto-Wilhelm; Galibert, Lionel; Vlak, Just M.; van Oers, Monique M.

    2011-01-01

    Recently, we showed that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) VP80 protein is essential for the formation of both virion types, budded virus (BV) and occlusion-derived virus (ODV). Deletion of the vp80 gene did not affect assembly of nucleocapsids. However, these nucleocapsids were not able to migrate from the virogenic stroma to the nuclear periphery. In the current paper, we constructed a baculovirus recombinant with enhanced-green fluorescent protein (EGFP)-tagged VP80, allowing visualization of the VP80 distribution pattern during infection. In baculovirus-infected cells, the EGFP-VP80 protein is entirely localized in nuclei, adjacent to the virus-triggered F-actin scaffold that forms a highly organized three-dimensional network connecting the virogenic stroma physically with the nuclear envelope. Interaction between VP80 and host actin was confirmed by coimmunoprecipitation. We further showed that VP80 is associated with the nucleocapsid fraction of both BVs and ODVs, typically at one end of the nucleocapsids. In addition, the presence of sequence motifs with homology to invertebrate paramyosin proteins strongly supports a role for VP80 in the polar transport of nucleocapsids to the periphery of the nucleus on their way to the plasma membrane to form BVs and for assembly in the nuclear periphery to form ODVs for embedding in viral occlusion bodies. PMID:21450830

  2. Isotope-detected /sup 1/H NMR studies of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application to phage lambda repressor

    SciTech Connect

    Weiss, M.A.; Redfield, A.G.; Griffey, R.H.

    1986-03-01

    A strategy for editing interproton nuclear Overhauser effects (NOEs) in proteins is proposed and illustrated. Selective incorporation of /sup 13/C- (or /sup 15/N)-labeled amino acids into a protein permits NOEs involving the labeled residues to be identified by heteronuclear difference decoupling. Such heteronuclear editing simplifies the NOE difference spectrum and avoids ambiguities due to spin diffusion. Isotope-detected /sup 1/H NMR thus opens to study proteins too large for conventional one- and two-dimensional NMR methods (20-75 kDa). The authors have applied this strategy to the N-terminal domain of phage lambda repressor, a protein of dimer molecular mass 23 kDa. A tertiary NOE from an internal aromatic ring (Phe-51) to a ..beta..-/sup 13/C-labeled alanine residue (Ala-62) is demonstrated.

  3. Isotope-detected 1H NMR studies of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application to phage lambda repressor.

    PubMed Central

    Weiss, M A; Redfield, A G; Griffey, R H

    1986-01-01

    A strategy for editing interproton nuclear Overhauser effects (NOEs) in proteins is proposed and illustrated. Selective incorporation of 13C- (or 15N)-labeled amino acids into a protein permits NOEs involving the labeled residues to be identified by heteronuclear difference decoupling. Such heteronuclear editing simplifies the NOE difference spectrum and avoids ambiguities due to spin diffusion. Isotope-detected 1H NMR thus opens to study proteins too large for conventional one- and two-dimensional NMR methods (20-75 kDa). We have applied this strategy to the N-terminal domain of phage lambda repressor, a protein of dimer molecular mass 23 kDa. A tertiary NOE from an internal aromatic ring (Phe-51) to a beta-13C-labeled alanine residue (Ala-62) is demonstrated. PMID:3006046

  4. Proteomic analysis of the major cellular proteins of bovine trophectoderm cell lines derived from IVP, parthenogenetic, and nuclear transfer embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear cloning of cattle is currently very inefficient in terms of the production and survival of nuclear cloned calves. Because of the great promise of using nuclear cloning technology in farm animals to genetically improve their production and quality traits, nuclear cloning in cattle, and other...

  5. Nuclear matrix-associated protein SMAR1 regulates alternative splicing via HDAC6-mediated deacetylation of Sam68

    PubMed Central

    Nakka, Kiran Kumar; Chaudhary, Nidhi; Joshi, Shruti; Bhat, Jyotsna; Singh, Kulwant; Chatterjee, Subhrangsu; Malhotra, Renu; De, Abhijit; Santra, Manas Kumar; Dilworth, F. Jeffrey; Chattopadhyay, Samit

    2015-01-01

    Pre-mRNA splicing is a complex regulatory nexus modulated by various trans-factors and their posttranslational modifications to create a dynamic transcriptome through alternative splicing. Signal-induced phosphorylation and dephosphorylation of trans-factors are known to regulate alternative splicing. However, the role of other posttranslational modifications, such as deacetylation/acetylation, methylation, and ubiquitination, that could modulate alternative splicing in either a signal-dependent or -independent manner remain enigmatic. Here, we demonstrate that Scaffold/matrix-associated region-binding protein 1 (SMAR1) negatively regulates alternative splicing through histone deacetylase 6 (HDAC6)-mediated deacetylation of RNA-binding protein Sam68 (Src-associated substrate during mitosis of 68 kDa). SMAR1 is enriched in nuclear splicing speckles and associates with the snRNAs that are involved in splice site recognition. ERK–MAPK pathway that regulates alternative splicing facilitates ERK-1/2–mediated phosphorylation of SMAR1 at threonines 345 and 360 and localizes SMAR1 to the cytoplasm, preventing its interaction with Sam68. We showed that endogenously, SMAR1 through HDAC6 maintains Sam68 in a deacetylated state. However, knockdown or ERK-mediated phosphorylation of SMAR1 releases the inhibitory SMAR1–HDAC6–Sam68 complex, facilitating Sam68 acetylation and alternative splicing. Furthermore, loss of heterozygosity at the Chr.16q24.3 locus in breast cancer cells, wherein the human homolog of SMAR1 (BANP) has been mapped, enhances Sam68 acetylation and CD44 variant exon inclusion. In addition, tail-vein injections in mice with human breast cancer MCF-7 cells depleted for SMAR1 showed increased CD44 variant exon inclusion and concomitant metastatic propensity, confirming the functional role of SMAR1 in regulation of alternative splicing. Thus, our results reveal the complex molecular mechanism underlying SMAR1-mediated signal-dependent and -independent regulation of alternative splicing via Sam68 deacetylation. PMID:26080397

  6. Nuclear matrix-associated protein SMAR1 regulates alternative splicing via HDAC6-mediated deacetylation of Sam68.

    PubMed

    Nakka, Kiran Kumar; Chaudhary, Nidhi; Joshi, Shruti; Bhat, Jyotsna; Singh, Kulwant; Chatterjee, Subhrangsu; Malhotra, Renu; De, Abhijit; Santra, Manas Kumar; Dilworth, F Jeffrey; Chattopadhyay, Samit

    2015-06-30

    Pre-mRNA splicing is a complex regulatory nexus modulated by various trans-factors and their posttranslational modifications to create a dynamic transcriptome through alternative splicing. Signal-induced phosphorylation and dephosphorylation of trans-factors are known to regulate alternative splicing. However, the role of other posttranslational modifications, such as deacetylation/acetylation, methylation, and ubiquitination, that could modulate alternative splicing in either a signal-dependent or -independent manner remain enigmatic. Here, we demonstrate that Scaffold/matrix-associated region-binding protein 1 (SMAR1) negatively regulates alternative splicing through histone deacetylase 6 (HDAC6)-mediated deacetylation of RNA-binding protein Sam68 (Src-associated substrate during mitosis of 68 kDa). SMAR1 is enriched in nuclear splicing speckles and associates with the snRNAs that are involved in splice site recognition. ERK-MAPK pathway that regulates alternative splicing facilitates ERK-1/2-mediated phosphorylation of SMAR1 at threonines 345 and 360 and localizes SMAR1 to the cytoplasm, preventing its interaction with Sam68. We showed that endogenously, SMAR1 through HDAC6 maintains Sam68 in a deacetylated state. However, knockdown or ERK-mediated phosphorylation of SMAR1 releases the inhibitory SMAR1-HDAC6-Sam68 complex, facilitating Sam68 acetylation and alternative splicing. Furthermore, loss of heterozygosity at the Chr.16q24.3 locus in breast cancer cells, wherein the human homolog of SMAR1 (BANP) has been mapped, enhances Sam68 acetylation and CD44 variant exon inclusion. In addition, tail-vein injections in mice with human breast cancer MCF-7 cells depleted for SMAR1 showed increased CD44 variant exon inclusion and concomitant metastatic propensity, confirming the functional role of SMAR1 in regulation of alternative splicing. Thus, our results reveal the complex molecular mechanism underlying SMAR1-mediated signal-dependent and -independent regulation of alternative splicing via Sam68 deacetylation. PMID:26080397

  7. Mutagenesis and Nuclear Magnetic Resonance Analyses of the Fusion Peptide of Helicoverpa armigera Single Nucleocapsid Nucleopolyhedrovirus F Protein?

    PubMed Central

    Tan, Ying; Jiang, Ling; Wang, Manli; Yin, Feifei; Deng, Fei; Liu, Maili; Hu, Zhihong; Wang, Hualin

    2008-01-01

    The entry of enveloped viruses into cells is normally mediated by fusion between viral and cellular membranes, in which the fusion peptide plays a crucial role. The fusion peptides of group II nucleopolyhedrovirus (NPV) F proteins are quite conserved, with a hydrophobic region located at the N terminal of the F1 fragment. For this report, we used mutagenesis and nuclear magnetic resonance (NMR) to study the structure and function of the fusion peptide of the Helicoverpa armigera single-nucleocapsid NPV (HearNPV) F protein (HaF). Five mutations in the fusion peptide of HaF, N1G, N1L, I2N, G3L, and D11L, were generated separately, and the mutated f genes were transformed into the f-null HearNPV bacmid. The mutations N1L, I2N, and D11L were found to completely abolish the ability of the recombinant bacmids to produce infectious budded virus, while the mutations N1G and G3L did not. The low-pH-induced envelope fusion assay demonstrated that the N1G substitution increased the fusogenicity of HaF, while the G3L substitution reduced its fusogenicity. NMR spectroscopy was used to determine the structure of a synthetic fusion peptide of HaF in the presence of sodium dodecyl sulfate micelles at pH 5.0. The fusion peptide appeared to be an amphiphilic structure composed of a flexible coil in the N terminus from N1 to N5, a 310-helix from F6 to G8, a turn at S9, and a regular ?-helix from V10 to D19. The data provide the first NMR structure of a baculovirus fusion peptide and allow us to further understand the relationship of structure and function of the fusion peptide. PMID:18524820

  8. Mutagenesis and nuclear magnetic resonance analyses of the fusion peptide of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus F protein.

    PubMed

    Tan, Ying; Jiang, Ling; Wang, Manli; Yin, Feifei; Deng, Fei; Liu, Maili; Hu, Zhihong; Wang, Hualin

    2008-08-01

    The entry of enveloped viruses into cells is normally mediated by fusion between viral and cellular membranes, in which the fusion peptide plays a crucial role. The fusion peptides of group II nucleopolyhedrovirus (NPV) F proteins are quite conserved, with a hydrophobic region located at the N terminal of the F(1) fragment. For this report, we used mutagenesis and nuclear magnetic resonance (NMR) to study the structure and function of the fusion peptide of the Helicoverpa armigera single-nucleocapsid NPV (HearNPV) F protein (HaF). Five mutations in the fusion peptide of HaF, N(1)G, N(1)L, I(2)N, G(3)L, and D(11)L, were generated separately, and the mutated f genes were transformed into the f-null HearNPV bacmid. The mutations N(1)L, I(2)N, and D(11)L were found to completely abolish the ability of the recombinant bacmids to produce infectious budded virus, while the mutations N(1)G and G(3)L did not. The low-pH-induced envelope fusion assay demonstrated that the N(1)G substitution increased the fusogenicity of HaF, while the G(3)L substitution reduced its fusogenicity. NMR spectroscopy was used to determine the structure of a synthetic fusion peptide of HaF in the presence of sodium dodecyl sulfate micelles at pH 5.0. The fusion peptide appeared to be an amphiphilic structure composed of a flexible coil in the N terminus from N(1) to N(5), a 3(10)-helix from F(6) to G(8), a turn at S(9), and a regular alpha-helix from V(10) to D(19). The data provide the first NMR structure of a baculovirus fusion peptide and allow us to further understand the relationship of structure and function of the fusion peptide. PMID:18524820

  9. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    PubMed Central

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-01-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. PMID:25010278

  10. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    SciTech Connect

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Neto Paiva, Claudia; Torres Bozza, Marcelo [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)] [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rosado Fantappie, Marcelo, E-mail: fantappie@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  11. Neutron scattering and nuclear magnetic resonance spectroscopy structural studies of protein-DNA complexes

    SciTech Connect

    Bradbury, E.M.; Catasti, P.; Chen, X.; Gupta, G.; Imai, B.; Moyzis, R.; Ratliff, R.; Velupillai, S.

    1996-03-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to employ advanced biophysical measurements to study the structure of nucleosomes and the structure of origins of DNA replication. The fundamental repeating unit of human chromosomes is the nucleosome, which contains about 200 base pairs of DNA and 9 histone proteins. Genome replication is strictly associated with the reversible acetylations of histones that unfold chromatin to allow access of factors to origins of DNA replications. The authors have studied two major structural problems: (1) the effects of histone acetylation on nucleosome structure, and (2) the structure of DNA origins of replication. They have recently completed preliminary X-ray scattering experiments at Stanford on positioned nucleosomes with defined DNA sequence and length, histone composition and level of acetylation. These experiments have shown that lengths of the DNA and acetylations of the histone H4 result in nucleosome structural changes. To understand internucleosomal interactions and the roles of histone H1 the authors have made preliminary x-ray scatter studies on native dinucleosomes that have demonstrated the feasibility of these experiments. The DNA sequence of the yeast replication origin has been synthesized for structure determination by multi-dimensional NMR spectroscopy.

  12. ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML

    SciTech Connect

    Kunapuli, Padmaja [Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Kasyapa, Chitta S. [Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Chin, Suet-Feung [Cancer Genomics Program, Hutchison/MRC Research Centre, Cambridge CB2 2XZ (United Kingdom); Caldas, Carlos [Cancer Genomics Program, Hutchison/MRC Research Centre, Cambridge CB2 2XZ (United Kingdom); Cowell, John K. [Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States)]. E-mail: John.Cowell@RoswellPark.org

    2006-11-15

    The ZNF198/FGFR1 fusion gene in atypical myeloproliferative disease produces a constitutively active cytoplasmic tyrosine kinase, unlike ZNF198 which is normally a nuclear protein. We have now shown that the ZNF198/FGFR1 fusion kinase interacts with the endogenous ZNF198 protein suggesting that the function of ZNF198 may be compromised in cells expressing it. Little is currently known about the endogenous function of ZNF198 and to investigate this further we performed a yeast two-hybrid analysis and identified SUMO-1 as a binding partner of ZNF198. These observations were confirmed using co-immunoprecipitation which demonstrated that ZNF198 is covalently modified by SUMO-1. Since many of the SUMO-1-modified proteins are targeted to the PML nuclear bodies we used confocal microscopy to show that SUMO-1, PML and ZNF198 colocalize to punctate structures, shown by immunocytochemistry to be PML bodies. Using co-immunoprecipitation we now show that PML and sumoylated ZNF198 can be found in a protein complex in the cell. Mutation of the SUMO-1 binding site in wild-type ZNF198 resulted in loss of distinct PML bodies, reduced PML levels and a more dispersed nuclear localization of the PML protein. In cells expressing ZNF198/FGFR1, which also lack the SUMO-1 binding site, SUMO-1 is preferentially localized in the cytoplasm, which is associated with loss of distinct PML bodies. Recently, arsenic trioxide (ATO) was proposed as an alternative therapy for APL that was resistant to traditional therapy. Treatment of cells expressing ZNF198/FGFR1 with ATO demonstrated reduced autophosphorylation of the ZNF198/FGFR1 protein and induced apoptosis, which is not seen in cells expressing wild-type ZNF198. Overall our results suggest that the sumoylation of ZNF198 is important for PML body formation and that the abrogation of sumoylation of ZNF198 in ZNF198/FGFR1 expressing cells may be an important mechanism in cellular transformation.

  13. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex

    PubMed Central

    1996-01-01

    Ran is a nuclear Ras-like GTPase that is required for the bidirectional transport of proteins and ribnucleoproteins across the nuclear pore complex (NPC). A key regulator of the Ran GTP/GDP cycle is the 70-kD Ran-GTPase-activating protein RanGAP1. Here, we report the identification and localization of a novel form of RanGAP1. Using peptide sequence analysis and specific mAbs, RanGAP1 was found to be modified by conjugation to a ubiquitin-like protein. Immunoblot analysis and immunolocalization by light and EM demonstrated that the 70-kD unmodified from of RanGAP1 is exclusively cytoplasmic, whereas the 90-kD modified form of RanGAP1 is associated with the cytoplasmic fibers of the NPC. The modified form of RanGAP1 also appeared to associated with the mitotic spindle apparatus during mitosis. These findings have specific implications for Ran function and broad implications for protein regulation by ubiquitin-like modifications. Moreover, the variety and function of ubiquitin-like protein modifications in the cell may be more diverse than previously realized. PMID:8978815

  14. Gene for proliferating-cell nuclear antigen (DNA polymerase delta auxiliary protein) is present in both mammalian and higher plant genomes.

    PubMed Central

    Suzuka, I; Daidoji, H; Matsuoka, M; Kadowaki, K; Takasaki, Y; Nakane, P K; Moriuchi, T

    1989-01-01

    Proliferating-cell nuclear antigen (PCNA; also called cyclin) was originally described in proliferating mammalian cells as a nuclear protein with an apparent Mr of 33,000-36,000 and recently was found to be a DNA polymerase delta auxiliary protein. To elucidate whether PCNA/cyclin is a universal protein necessary for proliferation of eukaryotes, a search was conducted for PCNA/cyclin homologues in higher plants. In Southern blot-hybridization analysis, a rat PCNA/cyclin cDNA probe hybridized with homologous sequences in genomic DNAs from rice, soybean, and tobacco. A PCNA/cyclin-related molecular clone (pCJ-1) was isolated from rice DNA and was partially sequenced. The pCJ-1 probe hybridized with a 1.2-kilobase transcript in RNA from rice root tips and shoots. Immunoblot analysis of the soluble extract of soybean root tips with monospecific anti-PCNA/cyclin identified an immunoreactive protein with an apparent Mr of 34,000. Immunohistochemical analysis revealed the presence of an immunoreactive PCNA/cyclin protein in the nuclei of cells in the meristem of soybean root tips. The highly homologous nature of the gene for PCNA/cyclin throughout the animal and plant kingdoms suggests that the product of the gene plays an essential role in DNA replication in eukaryotes. Images PMID:2566167

  15. Sustained Activation of Nuclear Erythroid 2-Related Factor 2/Antioxidant Response Element Signaling Promotes Reductive Stress in the Human Mutant Protein Aggregation Cardiomyopathy in Mice

    PubMed Central

    Varadharaj, Saradhadevi; Khanderao, Gayatri D.; Davidson, Christopher J.; Kannan, Sankaranarayanan; Firpo, Matthew A.; Zweier, Jay L.; Benjamin, Ivor J.

    2011-01-01

    Abstract Inheritable missense mutations in small molecular weight heat-shock proteins (HSP) with chaperone-like properties promote self-oligomerization, protein aggregation, and pathologic states such as hypertrophic cardiomyopathy in humans. We recently described that human mutant ?B-crystallin (hR120GCryAB) overexpression that caused protein aggregation cardiomyopathy (PAC) was genetically linked to dysregulation of the antioxidant system and reductive stress (RS) in mice. However, the molecular mechanism that induces RS remains only partially understood. Here we define a critical role for the regulatory nuclear erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein (Keap1) pathway—the master transcriptional controller of antioxidants, in the pathogenesis of PAC and RS. In myopathic mice, increased reactive oxygen species signaling during compensatory hypertrophy (i.e., 3 months) was associated with upregulation of key antioxidants in a manner consistent with Nrf2/antioxidant response element (ARE)-dependent transactivation. In transcription factor assays, we further demonstrate increased binding of Nrf2 to ARE during the development of cardiomyopathy. Of interest, we show that the negative regulator Keap1 was predominantly sequestrated in protein aggregates (at 6 months), suggesting that sustained nuclear translocation of activated Nrf2 may be a contributing mechanism for RS. Our findings implicate a novel pathway for therapeutic targeting and abrogating RS linked to experimental cardiomyopathy in humans. Antioxid. Redox Signal. 14, 957–971. PMID:21126175

  16. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein.

    PubMed

    Kaltimbacher, Valérie; Bonnet, Crystel; Lecoeuvre, Gaëlle; Forster, Valérie; Sahel, José-Alain; Corral-Debrinski, Marisol

    2006-07-01

    As previously established in yeast, two sequences within mRNAs are responsible for their specific localization to the mitochondrial surface-the region coding for the mitochondrial targeting sequence and the 3'UTR. This phenomenon is conserved in human cells. Therefore, we decided to use mRNA localization as a tool to address to mitochondria, a protein that is not normally imported. For this purpose, we associated a nuclear recoded ATP6 gene with the mitochondrial targeting sequence and the 3'UTR of the nuclear SOD2 gene, which mRNA exclusively localizes to the mitochondrial surface in HeLa cells. The ATP6 gene is naturally located into the organelle and encodes a highly hydrophobic protein of the respiratory chain complex V. In this study, we demonstrated that hybrid ATP6 mRNAs, as the endogenous SOD2 mRNA, localize to the mitochondrial surface in human cells. Remarkably, fusion proteins localize to mitochondria in vivo. Indeed, ATP6 precursors synthesized in the cytoplasm were imported into mitochondria in a highly efficient way, especially when both the MTS and the 3'UTR of the SOD2 gene were associated with the re-engineered ATP6 gene. Hence, these data indicate that mRNA targeting to the mitochondrial surface represents an attractive strategy for allowing the mitocho