Science.gov

Sample records for nuclear progesterone-binding protein

  1. Characterization of progesterone-binding moieties in the little skate Raja erinacea.

    PubMed

    Paolucci, M; Callard, I P

    1998-01-01

    In this study we report evidence of a [3H]progesterone-binding moiety in the liver and oviduct of the little skate Raja erinacea. It is characterized by high affinity, low capacity and DNA-cellulose-binding activity. Furthermore Western blot analysis revealed that monoclonal antibodies against the chicken progesterone receptor (PR) subunits A and B cross-reacted with a 110-kDa band in the liver and a 80-kDa band in the oviduct. When analyzed by DEAE-Sepharose ion-exchange column chromatography, [3H]progesterone-binding molecules resolved into two peaks, one nonadherent and one adherent to the column. The liver adherent peak eluted in a linear gradient at a NaCl concentration of about 0.07 M and resolved on Western blot as a single band of a 110 kDa. The oviduct adherent peak eluted at about 0.14 M NaCl and resolved on Western blot as a single band of 80 kDa. Competition studies showed that the progesterone-binding moiety in the cytosol was specific for progesterone. On the contrary, the nuclear component is not specific for progesterone; it also binds testosterone and estradiol 17 beta in the oviduct, and progesterone, testosterone, dihydrotestosterone, estradiol 17 beta, mibolerone, and R5020 in the liver. The [3H]progesterone-binding activity was monitored in both liver and oviduct of females in different reproductive stages. Females were separated into three groups; laying, nonlaying, and immature. [3H]Progesterone-binding activity levels were higher in the liver of immature than of nonlaying skates, and it was undetectable in laying skates. [3H]Progesterone binding was higher in the oviduct of laying and nonlaying skates than of immature skates. This PR-binding moiety has many characteristics of a true receptor: high affinity, low capacity, binds to DNA, and cross-reacts with antibodies against chicken PR. However, while the cytosolic form of this progesterone-binding component was quite specific for P, nuclear extracted material was nonspecific. If these

  2. Dermatophyte-hormone relationships: characterization of progesterone-binding specificity and growth inhibition in the genera Trichophyton and Microsporum.

    PubMed Central

    Clemons, K V; Schär, G; Stover, E P; Feldman, D; Stevens, D A

    1988-01-01

    We reported previously that Trichophyton mentagrophytes contains a cytoplasmic macromolecule which specifically binds progesterone. Progesterone is also an effective inhibitor of growth of the fungus. We report here studies which characterize more fully the specific binding properties and the functional responses of T. mentagrophytes and taxonomically related fungi to a series of mammalian steroid hormones. Scatchard analysis of [3H]progesterone binding in both the + and - mating types of Arthroderma benhamiae and in Microsporum canis revealed a single class of binding sites with approximately the same affinity as that in T. mentagrophytes (Kd, 1 X 10(-7) to 2 X 10(-7) M). Trichophyton rubrum had a protein with a higher binding affinity (Kd, 1.6 X 10(-8) M). Characterization of the [3H]progesterone-binding sites in T. mentagrophytes showed the binder to be a protein which was destroyed by trypsin and heating to 56 degrees C. Previous examination of the steroid-binding specificity in T. mentagrophytes had demonstrated that deoxycorticosterone (DOC) and dihydrotestosterone (DHT) were effective competitors for [3H]progesterone binding. Expansion of this study to include other competitors revealed that R5020 (a synthetic progestin), androstenedione, and dehydroepiandosterone possessed relative binding affinities which were 20, 11, and 9% of that of progesterone, respectively. Other ligands tested were less effective. Competition studies for the binder in M. canis resulted in similar findings: DOC and DHT were effective competitors for [3H]progesterone binding. The growth of A. benhamiae + and -, M. canis, and T. rubrum were all inhibited by progesterone in a dose-responsive manner, with 50% inhibition achieved at concentrations of 9.8 x 10(-6), 1.2 x 10(-5), 1.5 x 10(-5), and 2.7 x 10(-6) M. respectively,. PMID:3182998

  3. Properties of proteins binding plasma progesterone in pregnant Cape porcupines (Hystrix africaeaustralis).

    PubMed

    Louw, A I; van Wyk, V; van Aarde, R J

    1992-09-01

    The properties of progesterone-binding proteins in plasma of pregnant Cape porcupines were investigated using radiolabelled progesterone and either progesterone or cortisol as competing ligands as well as native plasma and heated (60 degrees C for 30 min) plasma. The results demonstrated that plasma from pregnant porcupines contains corticosteroid-binding globulin, but that it constitutes a significant portion of plasma progesterone-binding proteins only during the early stages of pregnancy. Corticosteroid-binding globulin of porcupines appears to be as heat labile as that of guinea-pigs. Concentrations of progesterone-binding proteins in plasma increased during pregnancy to reach concentrations at the eleventh week that were 25 times higher than those of progesterone; concentrations increased significantly (r2 = 0.88) with the increase in progesterone concentration. The results indicate that plasma progesterone-binding proteins in Cape porcupines (Old World hystricomorph) are similar in composition to those in guinea-pigs (New World hystricomorph). PMID:1432942

  4. GAPDH mediates nitrosylation of nuclear proteins.

    PubMed

    Kornberg, Michael D; Sen, Nilkantha; Hara, Makoto R; Juluri, Krishna R; Nguyen, Judy Van K; Snowman, Adele M; Law, Lindsey; Hester, Lynda D; Snyder, Solomon H

    2010-11-01

    S-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref. 3). The high reactivity of the nitric oxide group with protein thiols, but the selective nature of nitrosylation within the cell, implies the existence of targeting mechanisms. Specificity of nitric oxide signalling is often achieved by the binding of nitric oxide synthase (NOS) to target proteins, either directly or through scaffolding proteins such as PSD-95 (ref. 5) and CAPON. As the three principal isoforms of NOS--neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)--are primarily non-nuclear, the mechanisms by which nuclear proteins are selectively nitrosylated have been elusive. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is physiologically nitrosylated at its Cys 150 residue. Nitrosylated GAPDH (SNO-GAPDH) binds to Siah1, which possesses a nuclear localization signal, and is transported to the nucleus. Here, we show that SNO-GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK). Our findings reveal a novel mechanism for targeted nitrosylation of nuclear proteins and suggest that protein-protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction. PMID:20972425

  5. Optogenetic control of nuclear protein export

    PubMed Central

    Niopek, Dominik; Wehler, Pierre; Roensch, Julia; Eils, Roland; Di Ventura, Barbara

    2016-01-01

    Active nucleocytoplasmic transport is a key mechanism underlying protein regulation in eukaryotes. While nuclear protein import can be controlled in space and time with a portfolio of optogenetic tools, protein export has not been tackled so far. Here we present a light-inducible nuclear export system (LEXY) based on a single, genetically encoded tag, which enables precise spatiotemporal control over the export of tagged proteins. A constitutively nuclear, chromatin-anchored LEXY variant expands the method towards light inhibition of endogenous protein export by sequestering cellular CRM1 receptors. We showcase the utility of LEXY for cell biology applications by regulating a synthetic repressor as well as human p53 transcriptional activity with light. LEXY is a powerful addition to the optogenetic toolbox, allowing various novel applications in synthetic and cell biology. PMID:26853913

  6. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  7. Active Nuclear Import of Membrane Proteins Revisited.

    PubMed

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker's yeast. PMID:26473931

  8. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments

    PubMed Central

    Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N.

    2015-01-01

    The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. PMID:26712748

  9. Insight into protein nuclear magnetic resonance research.

    PubMed

    Stoven, V; Lallemand, J Y; Abergel, D; Bouaziz, S; Delsuc, M A; Ekondzi, A; Guittet, E; Laplante, S; Le Goas, R; Malliavin, T

    1990-08-01

    Nuclear magnetic resonance (NMR) is one of the most powerful techniques to investigate the geometry of molecules in solution. It has been widely applied, in recent years, to the study of protein conformation. However, full reconstruction of the 3-D structure of such macro-molecules, still constitutes a real challenge for the spectroscopist. Skills as diverse as biology, spectroscopy, signal processing, or computer sciences, are required. This paper presents various aspects of the research in that domain, and our contribution to it. PMID:2126458

  10. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces.

    PubMed

    Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E

    2015-04-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256

  11. The nuclear envelope LEM-domain protein emerin

    PubMed Central

    Berk, Jason M; Tifft, Kathryn E; Wilson, Katherine L

    2013-01-01

    Emerin, a conserved LEM-domain protein, is among the few nuclear membrane proteins for which extensive basic knowledge—biochemistry, partners, functions, localizations, posttranslational regulation, roles in development and links to human disease—is available. This review summarizes emerin and its emerging roles in nuclear “lamina” structure, chromatin tethering, gene regulation, mitosis, nuclear assembly, development, signaling and mechano-transduction. We also highlight many open questions, exploration of which will be critical to understand how this intriguing nuclear membrane protein and its “family” influence the genome. PMID:23873439

  12. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    SciTech Connect

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  13. Dynamic Nuclear Polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces

    PubMed Central

    Wylie, Benjamin J; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2016-01-01

    We demonstrate that dynamic nuclear polarization (DNP) of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of 6-fold for the dimeric protein. The enhancement affect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256

  14. Protein quality control at the inner nuclear membrane

    PubMed Central

    Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J.; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D.; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O.; Knop, Michael

    2015-01-01

    The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression1. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER) and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by ER-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc72,3. However, little is known regarding protein quality control at the INM. Here we describe a protein degradation pathway at the INM mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi34. We report that the As complex functions together with the ubiquitin conjugating enzymes Ubc6andUbc7to degrade soluble and integral membrane proteins. Genetic evidence suggest that the Asi ubiquitin ligase defines a pathway distinct from but complementary to ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer (tFT)5, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquity ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalised integral membrane proteins, thus acting to maintain and safeguard the identity of the INM. PMID:25519137

  15. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis[W

    PubMed Central

    Goto, Chieko; Tamura, Kentaro; Fukao, Yoichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2014-01-01

    In animals, the nuclear lamina is a fibrillar meshwork on the inner surface of the nuclear envelope, composed of coiled-coil lamin proteins and lamin binding membrane proteins. Plants also have a meshwork on the inner surface of the nuclear envelope, but little is known about its composition other than the presence of members of the CROWDED NUCLEI (CRWN) protein family, possible plant lamin analogs. Here, we describe a candidate lamina component, based on two Arabidopsis thaliana mutants (kaku2 and kaku4) with aberrant nuclear morphology. The responsible gene in kaku2 encodes CRWN1, and the responsible gene in kaku4 encodes a plant-specific protein of unknown function (KAKU4) that physically interacts with CRWN1 and its homolog CRWN4. Immunogold labeling revealed that KAKU4 localizes at the inner nuclear membrane. KAKU4 deforms the nuclear envelope in a dose-dependent manner, in association with nuclear membrane invagination and stack formation. The KAKU4-dependent nuclear envelope deformation was enhanced by overaccumulation of CRWN1, although KAKU4 can deform the nuclear envelope even in the absence of CRWN1 and/or CRWN4. Together, these results suggest that plants have evolved a unique lamina-like structure to modulate nuclear shape and size. PMID:24824484

  16. Cilia and Nuclear Pore Proteins: Pore No More?

    PubMed

    Obado, Samson O; Rout, Michael P

    2016-09-12

    Nuclear pore proteins at the base of cilia were thought to regulate transport into cilia. In this issue of Developmental Cell, Del Viso et al. (2016) challenge this view, showing instead that pore proteins localize to ciliary basal bodies and that their perturbation leads to congenital heart disease. PMID:27623377

  17. PML, SUMO, and RNF4: guardians of nuclear protein quality.

    PubMed

    Gärtner, Anne; Muller, Stefan

    2014-07-01

    In this issue of Molecular Cell, Guo et al. (2014) report that misfolded or aggregated nuclear proteins, such as pathogenic polyQ proteins, are cleared by a SUMO-dependent quality control pathway, which involves the E3 SUMO ligase PML and the SUMO-targeted ubiquitin ligase RNF4. PMID:24996060

  18. Protein phosphatase 1 is a key player in nuclear events.

    PubMed

    Rebelo, Sandra; Santos, Mariana; Martins, Filipa; da Cruz e Silva, Edgar F; da Cruz e Silva, Odete A B

    2015-12-01

    Reversible protein phosphorylation at serine (Ser), threonine (Thr) and tyrosine (Tyr) residues is among the major regulatory mechanism in eukaryotic cells. The eukaryotic genome encodes many protein kinases and protein phosphatases. However, the localization, activity and specificity towards phosphatase substrates are dictated by a large array of phosphatase binding and regulatory subunits. For protein phosphatase 1 (PP1) more than 200 binding subunits have been described. The various PP1 isoforms and the binding subunits can be located throughout the cell, including in the nucleus. It follows that several nuclear specific PP1 binding proteins (PIPs) have been described and these will be discussed. Among them are PNUTS (phosphatase 1 nuclear targeting subunit), NIPP1 (nuclear inhibitor of PP1) and CREB (cAMP-responsive element-binding protein), which have all been associated with transcription. In fact PP1 can associate with transcription factors fulfilling an important regulatory function, in this respect it can bind to Hox11, human factor C1 (HCF1) and myocyte enhancer factor-2 (MEF2). PP1 also regulates cell cycle progression and centrosome maturation and splitting, again by binding to specific regulatory proteins. Moreover, PP1 together with other protein phosphatases control the entry into mitosis by regulating the activity of mitotic kinases. Thus, PP1, its binding proteins and/or the phosphorylation states of both, directly control a vast array of cell nucleus associated functions, many of which are starting to be unraveled. PMID:26275498

  19. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    SciTech Connect

    Lloyd, Richard E.

    2015-05-15

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.

  20. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins.

    PubMed

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra; Tijssen, Peter

    2014-10-01

    Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. Importance: Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid

  1. Nuclear export of proteins and drug resistance in cancer

    PubMed Central

    Turner, Joel G.; Dawson, Jana; Sullivan, Daniel M.

    2015-01-01

    The intracellular location of a protein is crucial to its normal functioning in a cell. Cancer cells utilize the normal processes of nuclear-cytoplasmic transport through the nuclear pore complex of a cell to effectively evade anti-neoplastic mechanisms. CRM1-mediated export is increased in various cancers. Proteins that are exported in cancer include tumor-suppressive proteins such as retinoblastoma, APC, p53, BRAC1, FOXO proteins, INI1/hSNF5, galectin-3, Bok, nucleophosmin, RASSF2, Merlin, p21CIP, p27KIP1, N-WASP/FAK, estradiol receptor and Tob, drug targets topoisomerase I and IIα and BCR-ABL, and the molecular chaperone protein Hsp90. Here, we review in detail the current processes and known structures involved in the export of a protein through the nuclear pore complex. We also discuss the export receptor molecule CRM1 and its binding to the leucine-rich nuclear export signal of the cargo protein and the formation of a nuclear export trimer with RanGTP. The therapeutic potential of various CRM1 inhibitors will be addressed, including leptomycin B, ratjadone, KOS-2464, and specific small molecule inhibitors of CRM1, N-azolylacrylate analogs, FOXO export inhibitors, valtrate, acetoxychavicol acetate, CBS9106, and SINE inhibitors. We will also discuss examples of how drug resistance may be reversed by targeting the exported proteins topoisomerase IIα, BCR-ABL, and galectin-3. As effective and less toxic CRM1 export inhibitors become available, they may be used as both single agents and in combination with current chemotherapeutic drugs. We believe that the future development of low-toxicity, small-molecule CRM1 inhibitors may provide a new approach to treating cancer. PMID:22209898

  2. Nuclear Proteins Hijacked by Mammalian Cytoplasmic Plus Strand RNA Viruses

    PubMed Central

    Lloyd, Richard E.

    2015-01-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. PMID:25818028

  3. HMG Nuclear Proteins: Linking Chromatin Structure to Cellular Phenotype

    PubMed Central

    Reeves, Raymond

    2009-01-01

    I. Summary Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed. PMID:19748605

  4. Female breast carcinomas: nuclear and cytoplasmic proteins versus steroid receptors.

    PubMed

    Bryś, M; Romanowicz-Makowska, H; Nawrocka, A; Krajewska, W M

    2000-01-01

    Nuclear and cytoplasmic proteins of human female breast cancer were analysed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Oestrogen receptor and progesterone receptor expression was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. The electropherograms were developed by silver nitrate staining and quantitative analysis was carried out by video densitometer using the software Gel-Pro Analyzer. Nuclear and cytoplasmic proteins of breast carcinomas and normal tissue differed both qualitatively and quantitatively. Nuclear polypeptides of 108, 53 and 48 kD as well as the 36 kD cytoplasmic polypeptide were specific for tumour samples, while the 51 kD nuclear polypeptide was detected only in normal tissue. Quantitative differences in band density were noted in the 32 kD nuclear polypeptide. This polypeptide was expressed in greatest concentration in infiltrating ductal carcinomas which also indicated the greatest oestrogen receptor gene expression. This relationship appeared to be statistically significant (p < 0.005). No correlations were evident between the 32 kD protein expression and the progesterone receptor gene expression in any of the tissue types examined, nor between the 32 kD protein and the patient's age or tumour grade. PMID:10756981

  5. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release.

    PubMed

    Lindenboim, Liora; Sasson, Tiki; Worman, Howard J; Borner, Christoph; Stein, Reuven

    2014-01-01

    Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE. PMID:25482068

  6. Molecular chaperone-mediated nuclear protein dynamics.

    PubMed

    Echtenkamp, Frank J; Freeman, Brian C

    2014-05-01

    Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus. PMID:24694369

  7. Karyopherins in nuclear transport of homeodomain proteins during development

    PubMed Central

    Ye, Wenduo; Lin, Wenbo; Tartakoff, Alan M.; Tao, Tao

    2013-01-01

    Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation and organ development. Interestingly, their homeodomain signature structure is important for both their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic distribution of these proteins is essential for their functions. We summarize information on a) the roles of karyopherins for import and export of homeoproteins, b) the regulation of their nuclear transport during development, and c) the corresponding complexity of homeoprotein nucleocytoplasmic transport signals. PMID:21256166

  8. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro.

    PubMed

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-09-16

    Structural protein 4.1, which has crucial interactions within the spectrin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher-resolution detergent-extracted cell whole-mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under nonperturbing conditions, the total nuclear actin population is retained and visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As nuclear lamina assembled, but preceding DNA synthesis, actin distributed in a reticulated pattern throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical. PMID:12960380

  9. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    PubMed Central

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-01-01

    Structural protein 4.1, which has crucial interactions within the spectrin–actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher-resolution detergent-extracted cell whole-mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under nonperturbing conditions, the total nuclear actin population is retained and visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As nuclear lamina assembled, but preceding DNA synthesis, actin distributed in a reticulated pattern throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1–actin interactions may be critical. PMID:12960380

  10. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    SciTech Connect

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  11. Evolutionary relationship of nuclear genes encoding mitochondrial proteins across grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative genome studies were done across taxa to provide a basic understanding of genome evolution regarding nuclear genes encoding for mitochondrial proteins and their conservation in grass species. Two different mitochondria-related gene sets, one from rice and another from Arabidopsis, were us...

  12. Rapid flow cytometric measurement of protein inclusions and nuclear trafficking.

    PubMed

    Whiten, D R; San Gil, R; McAlary, L; Yerbury, J J; Ecroyd, H; Wilson, M R

    2016-01-01

    Proteinaceous cytoplasmic inclusions are an indicator of dysfunction in normal cellular proteostasis and a hallmark of many neurodegenerative diseases. We describe a simple and rapid new flow cytometry-based method to enumerate, characterise and, if desired, physically recover protein inclusions from cells. This technique can analyse and resolve a broad variety of inclusions differing in both size and protein composition, making it applicable to essentially any model of intracellular protein aggregation. The method also allows rapid quantification of the nuclear trafficking of fluorescently labelled molecules. PMID:27516358

  13. Rapid flow cytometric measurement of protein inclusions and nuclear trafficking

    PubMed Central

    Whiten, D. R.; San Gil, R.; McAlary, L.; Yerbury, J. J.; Ecroyd, H.; Wilson, M. R.

    2016-01-01

    Proteinaceous cytoplasmic inclusions are an indicator of dysfunction in normal cellular proteostasis and a hallmark of many neurodegenerative diseases. We describe a simple and rapid new flow cytometry-based method to enumerate, characterise and, if desired, physically recover protein inclusions from cells. This technique can analyse and resolve a broad variety of inclusions differing in both size and protein composition, making it applicable to essentially any model of intracellular protein aggregation. The method also allows rapid quantification of the nuclear trafficking of fluorescently labelled molecules. PMID:27516358

  14. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

    SciTech Connect

    Kang, Won Kyung . E-mail: wkkang@riken.jp; Kurihara, Masaaki . E-mail: mkuri@riken.jp; Matsumoto, Shogo . E-mail: smatsu@riken.jp

    2006-06-20

    The BRO proteins of Bombyx mori nucleopolyhedrovirus (BmNPV) display a biphasic pattern of intracellular localization during infection. At early times, they reside in the nucleus but then show both cytoplasmic and nuclear localization as the infection proceeds. Therefore, we examined the possibility of nuclear export. Using inhibitors, we reveal that BmNPV BRO proteins shuttle between the nucleus and cytoplasm. Mutations on the leucine-rich region of BRO proteins resulted in nuclear accumulation of transiently expressed proteins, suggesting that this region functions as a CRM1-dependent nuclear export signal (NES). On the contrary, mutant BRO-D with an altered NES did not show nuclear accumulation in infected cells, although protein production seemed to be reduced. RT-PCR analysis showed that the lower level of protein production was due to a reduction in RNA synthesis. Taken together, our results suggest that BRO proteins are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway.

  15. Nuclear and nucleolar targeting of human ribosomal protein S6.

    PubMed Central

    Schmidt, C; Lipsius, E; Kruppa, J

    1995-01-01

    Chimeric proteins were constructed to define the nuclear localization signals (NLSs) of human ribosomal protein S6. The complete cDNA sequence, different cDNA fragments and oligonucleotides of the human ribosomal proteins S6, respectively, were joined to the 5' end of the entire LacZ gene of Escherichia coli by using recombinant techniques. The hybrid genes were transfected into L cells, transiently expressed, and the intracellular location of the fusion proteins was determined by their beta-galactosidase activity. Three NLSs were identified in the C-terminal half of the S6 protein. Deletion mutagenesis demonstrated that a single NLS is sufficient for targeting the corresponding S6-beta-galactosidase chimera into the nucleus. Removal of all three putative NLSs completely blocked the nuclear import of the resulting S6-beta-galactosidase fusion protein, which instead became evenly distributed in the cytoplasm. Chimeras containing deletion mutants of S6 with at least one single NLS or unmodified S6 accumulated in the nucleolus. Analysis of several constructs reveals the existence of a specific domain that is essential but not sufficient for nucleolar accumulation of S6. Images PMID:8590812

  16. Regulation of Nuclear Localization of Signaling Proteins by Cytokinin

    SciTech Connect

    Kieber, J.J.

    2010-05-01

    Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.

  17. DPF2 regulates OCT4 protein level and nuclear distribution.

    PubMed

    Liu, Chao; Zhang, Dijuan; Shen, Yuxian; Tao, Xiaofang; Liu, Lihua; Zhong, Yongwang; Fang, Shengyun

    2015-12-01

    The amount of transcription factor OCT4 is strictly regulated. A tight regulation of OCT4 levels is crucial for mammalian embryonic development and oncogenesis. However, the mechanisms underlying regulation of OCT4 protein expression and nuclear distribution are largely unknown. Here, we report that DPF2, a plant homeodomain (PHD) finger protein, is upregulated during H9 cell differentiation induced by retinoic acid. Endogenous interaction between DPF2 and OCT4 in P19 cells was revealed by an immunoprecipitation assay. GST-pull down assay proved that OCT4 protein in H9 cells and recombinant OCT4 can precipitate with DPF2 in vitro. In vitro ubiquitination assay demonstrated DPF2 might serve as an E3 ligase. Knock down of dpf2 using siRNA increased OCT4 protein level and stability in P19 cells. DPF2 siRNAs also up-regulates OCT4 but not NANOG in H9 cells. However, RA fails to downregulates OCT4 protein level in cells infected by lenitviruses containing DPF2 siRNA. Moreover, overexpression of both DPF2 and OCT4 in 293 cells proved the DPF2-OCT4 interaction. DPF2 but not PHD2 mutant DPF2 enhanced ubiquitination and degradation of OCT4 in 293 cells co-expressed DPF2 and OCT4. Both wild type DPF2 and PHD2 mutant DPF2 redistributes nuclear OCT4 without affecting DPF2-OCT4 interaction. Further analysis indicated that DPF2 decreases monomeric and mono-ubiquitinated OCT4, assembles poly-ubiquitin chains on OCT4 mainly through Ub-K48 linkage. These findings contribute to an understanding of how OCT4 protein level and nuclear distribution is regulated by its associated protein. PMID:26417682

  18. [Comparative biochemical studies of polyhedral proteins of nuclear polyhedrosis viruses].

    PubMed

    Kozlov, E A; Levitina, T L; Gusak, N M; Larionov, G V; Veremeĭchenko, S N

    1978-12-01

    Using disc polyacrylamide gel electrophoresis, the molecular weights of polyhedral proteins of nuclear polyhedrosis viruses (NPV) of Porthetria dispar, Mamestra brassicae, and Aporia crataegi were found to be 28000 +/- 3000. It was shown that NPV polyhedra of Bombyx mori, Galleria mellonella, P. dispar, and M. brassicae contain a protease. During dissolution of the polyhedra at pH 10,5 this protease specifically cleaves the matrix protein into 2--5 fragments. The amino acid compositions of NPV polyhedral proteins of P. dispar, M. brassicae, A. crataegi, Hyphantria cunae were shown to be very similar. It was found that tyrosine is a C-terminal amino acid of NPV polyhedral proteins of P. dispar, M. brassicae, and A. crataegi. PMID:33725

  19. An evolving understanding of nuclear receptor coregulator proteins

    PubMed Central

    Millard, Christopher J.; Watson, Peter J.; Fairall, Louise; Schwabe, John W.R.

    2014-01-01

    Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin; and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge. PMID:24203923

  20. Proteomic Approach to Identify Nuclear Proteins in Wheat Grain.

    PubMed

    Bancel, Emmanuelle; Bonnot, Titouan; Davanture, Marlène; Branlard, Gérard; Zivy, Michel; Martre, Pierre

    2015-10-01

    The nuclear proteome of the grain of the two cultivated wheat species Triticum aestivum (hexaploid wheat; genomes A, B, and D) and T. monococcum (diploid wheat; genome A) was analyzed in two early stages of development using shotgun-based proteomics. A procedure was optimized to purify nuclei, and an improved protein sample preparation was developed to efficiently remove nonprotein substances (starch and nucleic acids). A total of 797 proteins corresponding to 528 unique proteins were identified, 36% of which were classified in functional groups related to DNA and RNA metabolism. A large number (107 proteins) of unknown functions and hypothetical proteins were also found. Some identified proteins may be multifunctional and may present multiple localizations. On the basis of the MS/MS analysis, 368 proteins were present in the two species, and in two stages of development, some qualitative differences between species and stages of development were also found. All of these data illustrate the dynamic function of the grain nucleus in the early stages of development. PMID:26228564

  1. Nuclear Pore Basket Proteins Are Tethered to the Nuclear Envelope and Can Regulate Membrane Curvature

    PubMed Central

    Mészáros, Noémi; Cibulka, Jakub; Mendiburo, Maria Jose; Romanauska, Anete; Schneider, Maren; Köhler, Alwin

    2015-01-01

    Summary Nuclear pore complexes (NPCs) are selective transport channels embedded in the nuclear envelope. The cylindrical NPC core forms a protein coat lining a highly curved membrane opening and has a basket-like structure appended to the nucleoplasmic side. How NPCs interact with lipids, promoting membrane bending and NPC integrity, is poorly understood. Here we show that the NPC basket proteins Nup1 and Nup60 directly induce membrane curvature by amphipathic helix insertion into the lipid bilayer. In a cell-free system, both Nup1 and Nup60 transform spherical liposomes into highly curved membrane structures. In vivo, high levels of the Nup1/Nup60 amphipathic helices cause deformation of the yeast nuclear membrane, whereas adjacent helical regions contribute to anchoring the basket to the NPC core. Basket amphipathic helices are functionally linked to distinct transmembrane nucleoporins of the NPC core, suggesting a key contribution to the membrane remodeling events that underlie NPC assembly. PMID:25942622

  2. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein.

    PubMed

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  3. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  4. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments.

    PubMed

    Na, Insung; Meng, Fanchi; Kurgan, Lukasz; Uversky, Vladimir N

    2016-08-16

    Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy. PMID:27377881

  5. Assembly of nuclear pore complexes mediated by major vault protein.

    PubMed

    Vollmar, Friederike; Hacker, Christian; Zahedi, René-Peiman; Sickmann, Albert; Ewald, Andrea; Scheer, Ulrich; Dabauvalle, Marie-Christine

    2009-03-15

    During interphase growth of eukaryotic cells, nuclear pore complexes (NPCs) are continuously incorporated into the intact nuclear envelope (NE) by mechanisms that are largely unknown. De novo formation of NPCs involves local fusion events between the inner and outer nuclear membrane, formation of a transcisternal membranous channel of defined diameter and the coordinated assembly of hundreds of nucleoporins into the characteristic NPC structure. Here we have used a cell-free system based on Xenopus egg extract, which allows the experimental separation of nuclear-membrane assembly and NPC formation. Nuclei surrounded by a closed double nuclear membrane, but devoid of NPCs, were first reconstituted from chromatin and a specific membrane fraction. Insertion of NPCs into the preformed pore-free nuclei required cytosol containing soluble nucleoporins or nucleoporin subcomplexes and, quite unexpectedly, major vault protein (MVP). MVP is the main component of vaults, which are ubiquitous barrel-shaped particles of enigmatic function. Our results implicate MVP, and thus also vaults, in NPC biogenesis and provide a functional explanation for the association of a fraction of vaults with the NE and specifically with NPCs in intact cells. PMID:19240118

  6. The Nuclear Envelope Protein, LAP1B, Is a Novel Protein Phosphatase 1 Substrate

    PubMed Central

    Santos, Mariana; Rebelo, Sandra; Van Kleeff, Paula J. M.; Kim, Connie E.; Dauer, William T.; Fardilha, Margarida; da Cruz e Silva, Odete A.; da Cruz e Silva, Edgar F.

    2013-01-01

    Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases. PMID:24116158

  7. Characterization of nuclear protein kinases of Xenopus laevis oocytes

    SciTech Connect

    Leiva, L.; Gonzalez, C.; Allende, C.; Allende, J.

    1986-05-01

    Xenopus laevis oocytes contain large nuclei (germinal vesicles) that can be isolated in very pure form and which permit the study of enzymatic activities present in these organelles. Incubation of pure oocyte nuclear homogenates with /sup 32/P in a buffered solution containing 5 mM MgCl/sub 2/ results in the phosphorylation of a large number of proteins by endogenous protein kinases. This phosphorylation is not affected by the addition of cyclic nucleotides or calcium ion and calmodulin. On the other hand the nuclear kinases are considerably stimulated by spermine and spermidine and strongly inhibited by heparin (10 ..mu..g/ml). Addition of exogenous protein substrates shows that the major oocyte kinases are very active with casein and phosvitin as substrates but do not phosphorylate histones or protamines. DEAE-Sephadex chromatography of the nuclear extract fractionates the casein phosphorylating activity in two main peaks. The first peak is not retained on the column equilibrated with 0.1 M NH/sub 2/SO/sub 4/ and uses exclusively ATP as phosphate donor and is insensitive to polyamines or heparin. The second peak which corresponds to 70% of the casein phosphorylation elutes at 0.27 M NH/sub 2/SO/sub 4/ and uses both ATP and GTP as phosphate donors and is greatly stimulated by polyamines and completely inhibited by 10 ..mu..g/ml heparin. On this evidence the authors conclude that the major protein kinase peak corresponds to casein kinase type II which has been found in mammalian nuclei.

  8. Degradation-mediated protein quality control at the inner nuclear membrane

    PubMed Central

    Boban, Mirta; Foisner, Roland

    2016-01-01

    abstract An intricate machinery protects cells from the accumulation of misfolded, non-functional proteins and protein aggregates. Protein quality control pathways have been best described in the cytoplasm and the endoplasmic reticulum, however, recent findings indicate that the nucleus is also an important compartment for protein quality control. Several nuclear ubiquitinylation pathways target soluble and membrane proteins in the nucleus and mediate their degradation through nuclear proteasomes. In addition, emerging data suggest that nuclear envelope components are also degraded by autophagy, although the mechanisms by which cytoplasmic autophagy machineries get access to nuclear targets remain unclear. In this minireview we summarize the nuclear ubiquitin-proteasome pathways in yeast, focusing on pathways involved in the protein degradation at the inner nuclear membrane. In addition, we discuss potential mechanisms how nuclear targets at the nuclear envelope may be delivered to the cytoplasmic autophagy pathways in yeast and mammals. PMID:26760377

  9. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2002-05-31

    Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium. PMID:11919178

  10. Mitogen activated protein kinase at the nuclear pore complex

    PubMed Central

    Faustino, Randolph S; Maddaford, Thane G; Pierce, Grant N

    2011-01-01

    Abstract Mitogen activated protein (MAP) kinases control eukaryotic proliferation, and import of kinases into the nucleus through the nuclear pore complex (NPC) can influence gene expression to affect cellular growth, cell viability and homeostatic function. The NPC is a critical regulatory checkpoint for nucleocytoplasmic traffic that regulates gene expression and cell growth, and MAP kinases may be physically associated with the NPC to modulate transport. In the present study, highly enriched NPC fractions were isolated and investigated for associated kinases and/or activity. Endogenous kinase activity was identified within the NPC fraction, which phosphorylated a 30 kD nuclear pore protein. Phosphomodification of this nucleoporin, here termed Nup30, was inhibited by apigenin and PD-98059, two MAP kinase antagonists as well as with SB-202190, a pharmacological blocker of p38. Furthermore, high throughput profiling of enriched NPCs revealed constitutive presence of all members of the MAP kinase family, extracellular regulated kinases (ERK), p38 and Jun N-terminal kinase. The NPC thus contains a spectrum of associated MAP kinases that suggests an intimate role for ERK and p38 in regulation of nuclear pore function. PMID:20497490

  11. Identification of a bipartite nuclear localization signal in the silkworm Masc protein.

    PubMed

    Sugano, Yudai; Kokusho, Ryuhei; Ueda, Masamichi; Fujimoto, Masaru; Tsutsumi, Nobuhiro; Shimada, Toru; Kiuchi, Takashi; Katsuma, Susumu

    2016-07-01

    The silkworm Masculinizer (Masc) gene encodes a CCCH-tandem zinc finger protein that controls both masculinization and dosage compensation. Masc protein is a nuclear protein, but the mechanism underlying the transport of this protein into the nucleus has not yet been elucidated. Here, we identified a functional bipartite nuclear localization signal (NLS) located between residues 274 and 290 of the Masc protein. Sequence comparison revealed that this bipartite NLS is evolutionarily conserved in Masc proteins from other lepidopteran insects. Furthermore, we showed that the degree of nuclear localization is not associated with the masculinizing activity of the Masc protein. PMID:27277067

  12. Characterization of nuclear targeting signal of hepatitis delta antigen: nuclear transport as a protein complex.

    PubMed Central

    Xia, Y P; Yeh, C T; Ou, J H; Lai, M M

    1992-01-01

    Hepatitis delta antigen (HDAg) is the only protein encoded by hepatitis delta virus (HDV). HDAg has been demonstrated in the nuclei of HDV-infected hepatocytes, and its nuclear transport may be important for the replication of HDV RNA. In this report, we investigated the mechanism of nuclear transport of HDAg. By expressing fusion proteins consisting of the different portions of HDAg and alpha-globin, we have identified a nuclear localization signal (NLS) within the N-terminal one-third of HDAg. It consists of two stretches of basic amino acid domains separated by a short run of nonbasic amino acids. Both of the basic domains are necessary for the efficient nuclear transport of HDAg. The nonbasic spacer amino acids could be removed without affecting the nuclear targeting of HDAg significantly. Thus, the HDAg NLS belongs to a newly identified class of NLS which consists of two discontiguous stretches of basic amino acids. This NLS is separated from a stretch of steroid receptor NLS-like sequence, which is also present but not functioning as an NLS, in HDAg. Furthermore, we have shown that subfragments of HDAg which do not contain the NLS can be passively transported into the nucleus by a trans-acting full-length HDAg, provided that these subfragments contain the region with a leucine zipper sequence. Thus, our results indicate that HDAg forms aggregates in the cytoplasm and that the HDAg oligomerization is probably mediated by the leucine zipper sequence. Therefore, HDAg is likely transported into the nucleus as a protein complex. Images PMID:1731113

  13. Protein conformation and proton nuclear-magnetic-resonance chemical shifts.

    PubMed

    Pardi, A; Wagner, G; Wüthrich, K

    1983-12-15

    The nuclear magnetic resonance (NMR) chemical shifts of the polypeptide backbone protons in basic pancreatic trypsin inhibitor from bovine organs and the inhibitors E and K from the venom of Dendroaspis polylepis polylepis have been analyzed. Using the corresponding shifts in model peptides, the chemical shifts observed in the proteins were decomposed into random-coil shifts and conformation-dependent shifts. Correlations between contributions to the latter term and the polypeptide conformation were investigated by using the crystal structure of the bovine inhibitor. In addition to the well-known ring-current effects, a correlation was found between chemical shifts of amide and C alpha protons and the length of the hydrogen bonds formed by these protons with nearby oxygen atoms as acceptor groups. There remain sizeable and as yet unexplained residual conformation shifts. Overall, the present treatment provides a satisfactory qualitative explanation for the outstandingly large shifts of backbone hydrogen atoms in these diamagnetic proteins. PMID:6198174

  14. Nuclear targeting of the maize R protein requires two nuclear localization sequences

    SciTech Connect

    Shieh, M.W.; Raikhel, N.V. ); Wessler, S.R. )

    1993-02-01

    Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is found in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.

  15. Dynamics of Protein Kinases: Insights from Nuclear Magnetic Resonance

    PubMed Central

    Xiao, Yao; Liddle, Jennifer C.; Pardi, Arthur; Ahn, Natalie G.

    2015-01-01

    CONSPECTUS Protein kinases are ubiquitous enzymes with critical roles in cellular processes and pathology. As a result, researchers have studied their activity and regulatory mechanisms extensively. Thousands of X-ray structures give snapshots of the architectures of protein kinases in various states of activation and ligand binding. However, the extent of and manner by which protein motions and conformational dynamics underlie the function and regulation of these important enzymes is not well understood. Nuclear magnetic resonance (NMR) methods provide complementary information about protein conformation and dynamics in solution. However, until recently, the large size of these enzymes prevented researchers from using these methods with kinases. Developments in transverse relaxation-optimized spectroscopy (TROSY)-based techniques and more efficient isotope labeling strategies are now allowing researchers to carry out NMR studies on full-length protein kinases. In this Account, we describe recent insights into the role of dynamics in protein kinase regulation and catalysis that have been gained from NMR measurements of chemical shift changes and line broadening, residual dipolar couplings, and relaxation. These findings show strong associations between protein motion and events that control kinase activity. Dynamic and conformational changes occurring at ligand binding sites and other regulatory domains of these proteins propagate to conserved kinase core regions that mediate catalytic function. NMR measurements of slow time scale (microsecond to millisecond) motions also reveal that kinases carry out global exchange processes that synchronize multiple residues and allosteric interconversion between conformational states. Activating covalent modifications or ligand binding to form the Michaelis complex can induce these global processes. Inhibitors can also exploit the exchange properties of kinases by using conformational selection to form dynamically quenched

  16. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis.

    PubMed

    Shahbazi, Jeyran; Lock, Richard; Liu, Tao

    2013-01-01

    Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a stress-induced p53-target gene whose expression is modulated by transcription factors such as p53, p73, and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. In association with homeodomain-interacting protein kinase-2 (HIPK2), TP53INP1 phosphorylates p53 protein at Serine-46. This enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53-target genes such as p21 and PIG3, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis, whereas TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment. PMID:23717325

  17. Redistribution of the nuclear mitotic apparatus protein (NuMA) during mitosis and nuclear assembly. Properties of purified NuMA protein.

    PubMed

    Price, C M; Pettijohn, D E

    1986-10-01

    Monoclonal antibodies and human autoimmune sera specific for the nuclear mitotic apparatus protein (NuMA protein) were applied to study the structure of this protein and its intracellular distribution. The NuMA protein was purified using immuno-affinity columns. Studies on this large (250 kD) nuclear protein indicated that it is a highly asymmetric phosphoprotein. It is present in all mammalian cells examined and in those of some non-mammals. Immunofluorescence studies on fixed cells demonstrated that its intracellular distribution is essentially the same in all species at all stages of the cell cycle. Immunoblot (western blot) analysis showed that the size of the NuMA protein varies slightly in different species. At the onset of mitosis the NuMA protein redistributes from the nucleus to two centrosomal structures that later will become part of the mitotic spindle pole. This occurs at the time of nuclear breakdown and eventually leads to an accumulation of the NuMA protein at the polar region of the mitotic spindle. After anaphase the protein redistributes from the spindle polar region into the reforming nucleus and concentrates initially at the site where nuclear lamins and perichomatin have been reported to assemble. Living cells microinjected with fluorescent anti-NuMA antibodies were studied to examine parameters that effect the redistribution of the NuMA protein in vivo. These experiments indicate that microtubule assembly is essential for the NuMA protein to accumulate in the polar region. PMID:3527729

  18. Protein targeting to the nuclear pore. What can we learn from plants. [Nuclear pore complex

    SciTech Connect

    Smith, H.M.S.; Raikhel, N.V. . DOE Plant Research Lab.)

    1999-04-01

    Characteristic of eukaryotic cells are the numerous types of membrane-bound organelles or compartments found in the cytoplasm, with each type carrying out an essential function for the cell. The spatial separation of proteins and biochemical pathways typical of the various types of organelles requires selective targeting apparatuses. Because each type of organelle contains its own targeting apparatus, proteins destined for a particular organelle must contain the proper targeting signal(s) for entry. These signal-dependent targeting pathways ensure that proteins are targeted to the proper organelle. Understanding how proteins are targeted to the different types of organelles is an important goal in the field of cell biology. In plants recent studies have highlighted a number of unusual features, and as the understanding of import in plants increases, the authors have gained new insights, such as a model for the targeting of proteins from the cytoplasm to the NPC. These advances will contribute to further expansion of the knowledge of nuclear import in eukaryotes.

  19. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin

    PubMed Central

    Wilhelmsen, Kevin; Litjens, Sandy H.M.; Kuikman, Ingrid; Tshimbalanga, Ntambua; Janssen, Hans; van den Bout, Iman; Raymond, Karine; Sonnenberg, Arnoud

    2005-01-01

    Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)–1 and –2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin α6β4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton. PMID:16330710

  20. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations.

    PubMed

    Wilkie, Gavin S; Korfali, Nadia; Swanson, Selene K; Malik, Poonam; Srsen, Vlastimil; Batrakou, Dzmitry G; de las Heras, Jose; Zuleger, Nikolaj; Kerr, Alastair R W; Florens, Laurence; Schirmer, Eric C

    2011-01-01

    Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights. PMID:20876400

  1. Several Novel Nuclear Envelope Transmembrane Proteins Identified in Skeletal Muscle Have Cytoskeletal Associations*

    PubMed Central

    Wilkie, Gavin S.; Korfali, Nadia; Swanson, Selene K.; Malik, Poonam; Srsen, Vlastimil; Batrakou, Dzmitry G.; de las Heras, Jose; Zuleger, Nikolaj; Kerr, Alastair R. W.; Florens, Laurence; Schirmer, Eric C.

    2011-01-01

    Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights. PMID:20876400

  2. An unbiased nuclear proteomics approach reveals novel nuclear protein components that participates in MAMP-triggered immunity

    PubMed Central

    Fakih, Zainab; Ahmed, Md Bulbul; Letanneur, Claire; Germain, Hugo

    2016-01-01

    ABSTRACT (MAMP)-triggered immunity (MTI) is the first layer of molecular defense encountered by pathogens. Genetic screens have contributed to our knowledge of MTI, but are limited to phenotype-causing mutations. Here we attempt to identify novel factors involved in the early event leading to plant MTI by comparing the nuclear proteomes of two Arabidopsis genotypes treated with chitosan. Our approach revealed that following chitosan treatment, cerk1 plants had many nuclear accumulating proteins in common, but also some unique ones, when compared with Col-0 plants. Analysis of the identified proteins revealed a nuclear accumulation of DNA-modifying enzymes, RNA-binding proteins and ribosomal proteins. Our results demonstrate that nuclear proteomic is a valid, phenotype-independent approach to uncover factor involved in cellular processes. PMID:27177187

  3. An unbiased nuclear proteomics approach reveals novel nuclear protein components that participates in MAMP-triggered immunity.

    PubMed

    Fakih, Zainab; Ahmed, Md Bulbul; Letanneur, Claire; Germain, Hugo

    2016-06-01

    (MAMP)-triggered immunity (MTI) is the first layer of molecular defense encountered by pathogens. Genetic screens have contributed to our knowledge of MTI, but are limited to phenotype-causing mutations. Here we attempt to identify novel factors involved in the early event leading to plant MTI by comparing the nuclear proteomes of two Arabidopsis genotypes treated with chitosan. Our approach revealed that following chitosan treatment, cerk1 plants had many nuclear accumulating proteins in common, but also some unique ones, when compared with Col-0 plants. Analysis of the identified proteins revealed a nuclear accumulation of DNA-modifying enzymes, RNA-binding proteins and ribosomal proteins. Our results demonstrate that nuclear proteomic is a valid, phenotype-independent approach to uncover factor involved in cellular processes. PMID:27177187

  4. Nuclear inelastic scattering of heme proteins: from iron ligand vibrations to low energy protein modes

    NASA Astrophysics Data System (ADS)

    Moeser, Beate; Janoschka, Adam; Wolny, Juliusz A.; Filipov, Igor; Chumakov, Aleksandr I.; Walker, F. Ann; Schünemann, Volker

    2012-03-01

    The binding of the signal molecule nitric oxide (NO) to the NO transporter protein Nitrophorin 2 (NP2) from the bloodsucking insect Rhodnius prolixus has been characterized by Mössbauer spectroscopy as well as nuclear forward scattering (NFS) and nuclear inelastic scattering (NIS). A striking feature of the vibrational spectrum obtained from NP2-NO is a vibration at 594 cm - 1. This mode is assigned to a Fe-NO stretching mode via simulation of the NIS data by density functional theory (DFT) coupled with molecular mechanics (MM) methods. At frequencies below 100 cm - 1 collective motions like heme doming occur which could explain spectroscopic features observed by NIS at these low energies.

  5. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins

    PubMed Central

    Ju Shin, Yeong; Kyun Park, Seung; Jung Jung, Yoo; Na Kim, Ye; Sung Kim, Ki; Kyu Park, Ok; Kwon, Seung-Hae; Ho Jeon, Sung; Trinh, Le A.; Fraser, Scott E.; Kee, Yun; Joon Hwang, Byung

    2015-01-01

    Targeted protein degradation is a powerful tool in determining the function of specific proteins or protein complexes. We fused nanobodies to SPOP, an adaptor protein of the Cullin-RING E3 ubiquitin ligase complex, resulting in rapid ubiquitination and subsequent proteasome-dependent degradation of specific nuclear proteins in mammalian cells and zebrafish embryos. This approach is easily modifiable, as substrate specificity is conferred by an antibody domain that can be adapted to target virtually any protein. PMID:26373678

  6. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    SciTech Connect

    Sakamoto, Hikaru; Sakata, Keiko; Kusumi, Kensuke; Kojima, Mikiko; Sakakibara, Hitoshi; Iba, Koh

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  7. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    SciTech Connect

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  8. Radioprotective Thiolamines WR-1065 and WR-33278 Selectively Denature Nonhistone Nuclear Proteins

    NASA Technical Reports Server (NTRS)

    Booth, Valerie K.; Roberts, Jeanette C.; Warters, Raymond L.; Wilmore, Britta H.; Lepock, James R.

    2000-01-01

    Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca (2+) ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.

  9. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins.

    PubMed

    Davies, Rebecca G; Wagstaff, Kylie M; McLaughlin, Eileen A; Loveland, Kate L; Jans, David A

    2013-12-01

    Regulation of nuclear protein import is central to many cellular processes such as development, with a key mechanism being factors that retain cargoes in the cytoplasm that normally localize in the nucleus. The breast cancer antigen BRCA1-binding protein BRAP2 has been reported as a novel negative regulator of nuclear import of various nuclear localization signal (NLS)-containing viral and cellular proteins, but although implicated in differentiation pathways and highly expressed in tissues including testis, the gamut of targets for BRAP2 action in a developmental context is unknown. As a first step towards defining the BRAP2 interactome, we performed a yeast-2-hybrid screen to identify binding partners of BRAP2 in human testis. Here we report characterization for the first time of three of these: the high mobility group (HMG)-box-domain-containing chromatin component HMG20A, nuclear mitotic apparatus protein NuMA1 and synaptic nuclear envelope protein SYNE2. Co-immunoprecipitation experiments indicate association of BRAP2 with HMG20A, NuMA1, and SYNE2 in testis, underlining the physiological relevance of the interactions, with immunohistochemistry showing that where BRAP2 is co-expressed with HMG20A and NuMA1, both are present in the cytoplasm, in contrast to their nuclear localization in other testicular cell types. Importantly, quantitative confocal microscopic analysis of cultured cells indicates that ectopic expression of BRAP2 inhibits nuclear localization of HMG20A and NuMA1, and prevents nuclear envelope accumulation of SYNE2, the first report of BRAP2 altering localization of a non-nuclear protein. These results imply for the first time that BRAP2 may have an important role in modulating subcellular localization during testicular development. PMID:23707952

  10. Intracellular distribution of an integral nuclear pore membrane protein fused to green fluorescent protein--localization of a targeting domain.

    PubMed

    Söderqvist, H; Imreh, G; Kihlmark, M; Linnman, C; Ringertz, N; Hallberg, E

    1997-12-15

    The 121-kDa pore membrane protein (POM121) is a bitopic integral membrane protein specifically located in the pore membrane domain of the nuclear envelope with its short N-terminal tail exposed on the luminal side and its major C-terminal portion adjoining the nuclear pore complex. In order to locate a signal for targeting of POM121 to the nuclear pores, we overexpressed selected regions of POM121 alone or fused to the green fluorescent protein (GFP) in transiently transfected COS-1 cells or in a stably transfected neuroblastoma cell line. Microscopic analysis of the GFP fluorescence or immunostaining was used to determine the intracellular distribution of the overexpressed proteins. The endofluorescent GFP tag had no effect on the distribution of POM121, since the chimerical POM121-GFP fusion protein was correctly targeted to the nuclear pores of both COS-1 cells and neuroblastoma cells. Based on the differentiated intracellular sorting of the POM121 variants, we conclude that the first 128 amino acids of POM121 contains signals for targeting to the continuous endoplasmic reticulum/nuclear envelope membrane system but not specifically to the nuclear pores and that a specific nuclear pore targeting signal is located between amino acids 129 and 618 in the endoplasmically exposed portion of POM121. PMID:9461306

  11. Nucleus-Specific Importin Alpha Proteins and Nucleoporins Regulate Protein Import and Nuclear Division in the Binucleate Tetrahymena thermophila▿ †

    PubMed Central

    Malone, Colin D.; Falkowska, Katarzyna A.; Li, Alanna Y.; Galanti, Sarah E.; Kanuru, Reshi C.; LaMont, Elizabeth G.; Mazzarella, Kate C.; Micev, Alan J.; Osman, Morwan M.; Piotrowski, Nicholas K.; Suszko, Jason W.; Timm, Adam C.; Xu, Ming-Ming; Liu, Lucy; Chalker, Douglas L.

    2008-01-01

    The ciliate Tetrahymena thermophila, having both germ line micronuclei and somatic macronuclei, must possess a specialized nucleocytoplasmic transport system to import proteins into the correct nucleus. To understand how Tetrahymena can target proteins to distinct nuclei, we first characterized FG repeat-containing nucleoporins and found that micro- and macronuclei utilize unique subsets of these proteins. This finding implicates these proteins in the differential permeability of the two nuclei and implies that nuclear pores with discrete specificities are assembled within a single cell. To identify the import machineries that interact with these different pores, we characterized the large families of karyopherin homologs encoded within the genome. Localization studies of 13 putative importin (imp) α- and 11 imp β-like proteins revealed that imp α-like proteins are nucleus specific—nine localized to the germ line micronucleus—but that most imp β-like proteins localized to both types of nuclei. These data suggest that micronucleus-specific proteins are transported by specific imp α adapters. The different imp α proteins exhibit substantial sequence divergence and do not appear to be simply redundant in function. Disruption of the IMA10 gene encoding an imp α-like protein that accumulates in dividing micronuclei results in nuclear division defects and lethality. Thus, nucleus-specific protein import and nuclear function in Tetrahymena are regulated by diverse, specialized karyopherins. PMID:18676955

  12. Gene Activation in Eukaryotes: Are Nuclear Acidic Proteins the Cause or the Effect?

    PubMed Central

    Pederson, Thoru

    1974-01-01

    Nuclear acidic proteins have been implicated in the positive control of gene transcription in eukaryotes. This hypothesis was examined in greater detail by analysis of these proteins during experimental gene activation by a technique for fractionating nuclei into chromatin and the ribonucleoprotein particles that contain heterogeneous nuclear RNA. When synthesis of rat-liver heterogeneous nuclear RNA was stimulated by administration of hydrocortisone, there was a parallel increase in the labeling of acidic proteins in ribonucleoprotein particles. However, there was no detectable effect on the labeling of either acidic chromatin proteins or histones. Thus, the nuclear acidic proteins that respond to the hormone are concerned with a post-transcriptional event, namely the assembly and processing of ribonucleoprotein particles that contain heterogeneous RNA, rather than with direct gene activation. Increases in synthesis of “chromatin” acidic proteins during gene activation observed by others may reflect the presence of these ribonucleoprotein particles in crude chromatin preparations. Images PMID:4522777

  13. Probing protein quinary interactions by in-cell nuclear magnetic resonance spectroscopy.

    PubMed

    Majumder, Subhabrata; Xue, Jing; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2015-05-01

    Historically introduced by McConkey to explain the slow mutation rate of highly abundant proteins, weak protein (quinary) interactions are an emergent property of living cells. The protein complexes that result from quinary interactions are transient and thus difficult to study biochemically in vitro. Cross-correlated relaxation-induced polarization transfer-based in-cell nuclear magnetic resonance allows the characterization of protein quinary interactions with atomic resolution inside live prokaryotic and eukaryotic cells. We show that RNAs are an important component of protein quinary interactions. Protein quinary interactions are unique to the target protein and may affect physicochemical properties, protein activity, and interactions with drugs. PMID:25894651

  14. The Bovine Immunodeficiency Virus Rev Protein: Identification of a Novel Nuclear Import Pathway and Nuclear Export Signal among Retroviral Rev/Rev-Like Proteins

    PubMed Central

    Gomez Corredor, Andrea

    2012-01-01

    The Rev protein is essential for the replication of lentiviruses. Rev is a shuttling protein that transports unspliced and partially spliced lentiviral RNAs from the nucleus to the cytoplasm via the nucleopore. To transport these RNAs, the human immunodeficiency virus type 1 (HIV-1) Rev uses the karyopherin β family importin β and CRM1 proteins that interact with the Rev nuclear localization signal (NLS) and nuclear exportation signal (NES), respectively. Recently, we reported the presence of new types of bipartite NLS and nucleolar localization signal (NoLS) in the bovine immunodeficiency virus (BIV) Rev protein. Here we report the characterization of the nuclear import and export pathways of BIV Rev. By using an in vitro nuclear import assay, we showed that BIV Rev is transported into the nucleus by a cytosolic and energy-dependent importin α/β classical pathway. Results from glutathione S-transferase (GST) pulldown assays that showed the binding of BIV Rev with importins α3 and α5 were in agreement with those from the nuclear import assay. We also identified a leptomycin B-sensitive NES in BIV Rev, which indicates that the protein is exported via CRM1 like HIV-1 Rev. Mutagenesis experiments showed that the BIV Rev NES maps between amino acids 109 to 121 of the protein. Remarkably, the BIV Rev NES was found to be of the cyclic AMP (cAMP)-dependent protein kinase inhibitor (PKI) type instead of the HIV-1 Rev type. In summary, our data showed that the nuclear import mechanism of BIV Rev is novel among Rev proteins characterized so far in lentiviruses. PMID:22379104

  15. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein

    SciTech Connect

    Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki . E-mail: yigarash@pharm.hokudai.ac.jp

    2006-05-12

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLS might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.

  16. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels

    PubMed Central

    Schraivogel, Daniel; Schindler, Susann G.; Danner, Johannes; Kremmer, Elisabeth; Pfaff, Janina; Hannus, Stefan; Depping, Reinhard; Meister, Gunter

    2015-01-01

    MicroRNAs (miRNAs) guide Argonaute (Ago) proteins to distinct target mRNAs leading to translational repression and mRNA decay. Ago proteins interact with a member of the GW protein family, referred to as TNRC6A-C in mammals, which coordinate downstream gene-silencing processes. The cytoplasmic functions of TNRC6 and Ago proteins are reasonably well established. Both protein families are found in the nucleus as well. Their detailed nuclear functions, however, remain elusive. Furthermore, it is not clear which import routes Ago and TNRC6 proteins take into the nucleus. Using different nuclear transport assays, we find that Ago as well as TNRC6 proteins shuttle between the cytoplasm and the nucleus. While import receptors might function redundantly to transport Ago2, we demonstrate that TNRC6 proteins are imported by the Importin-β pathway. Finally, we show that nuclear localization of both Ago2 and TNRC6 proteins can depend on each other suggesting actively balanced cytoplasmic Ago – TNRC6 levels. PMID:26170235

  17. Structure of nuclear ribonucleoprotein: heterogeneous nuclear RNA is complexed with a major sextet of proteins in vivo.

    PubMed Central

    Economidis, I V; Pederson, T

    1983-01-01

    Mouse erythroleukemia cells were pulse-labeled with [3H]uridine and irradiated with 254-nm light to produce covalent crosslinks between RNA and proteins in close proximity to one another in vivo. Nuclear ribonucleoprotein particles containing heterogeneous nuclear RNA were isolated and digested with nucleases, and the resulting proteins were subjected to gel electrophoresis. Proteins carrying covalently crosslinked [3H]uridine nucleotides were identified by fluorography. The results demonstrate that heterogeneous nuclear RNA is complexed in vivo with a set of six major proteins having molecular weights between 32,500 and 41,500. Analysis of chromatin fractions indicates that nascent heterogeneous nuclear RNA chains assemble with these six proteins as a very early post-transcriptional event. These data, and other results [Nevins, J. R. & Darnell, J. E. (1981) Cell 15, 1477-1493], lead us to propose the usual order of post-transcriptional events to be: heterogeneous nuclear RNA-ribonucleoprotein particle assembly leads to poly(A) addition leads to splicing. Images PMID:6572923

  18. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins

    PubMed Central

    Zhou, Xiao; Meier, Iris

    2014-01-01

    Increasing evidence suggests that nuclear migration is important for eukaryotic development. Although nuclear migration is conserved in plants, its importance for plant development has not yet been established. The most extraordinary plant nuclear migration events involve plant fertilization, which is starkly different from that of animals. Instead of evolving self-propelled sperm cells (SCs), plants use pollen tubes to deliver SCs, in which the pollen vegetative nucleus (VN) and the SCs migrate as a unit toward the ovules, a fundamental but barely understood process. Here, we report that WPP domain-interacting proteins (WIPs) and their binding partners the WPP domain-interacting tail-anchored proteins (WITs) are essential for pollen nuclear migration. Loss-of-function mutations in WIT and/or WIP gene families resulted in impaired VN movement, inefficient SC delivery, and defects in pollen tube reception. WIPs are Klarsicht/ANC-1/Syne-1 Homology (KASH) analogs in plants. KASH proteins are key players in animal nuclear migration. Thus, this study not only reveals an important nuclear migration mechanism in plant fertilization but also, suggests that similar nuclear migration machinery is conserved between plants and animals. PMID:25074908

  19. Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS).

    PubMed

    Wehler, Pierre; Niopek, Dominik; Eils, Roland; Di Ventura, Barbara

    2016-01-01

    Many biological processes are regulated by the timely import of specific proteins into the nucleus. The ability to spatiotemporally control the nuclear import of proteins of interest therefore allows study of their role in a given biological process as well as controlling this process in space and time. The light-inducible nuclear localization signal (LINuS) was developed based on a natural plant photoreceptor that reversibly triggers the import of proteins of interest into the nucleus with blue light. Each LINuS is a small, genetically encoded domain that is fused to the protein of interest at the N or C terminus. These protocols describe how to carry out initial microscopy-based screening to assess which LINuS variant works best with a protein of interest. © 2016 by John Wiley & Sons, Inc. PMID:27258691

  20. Nuclear association of cyclin D1 in human fibroblasts: tight binding to nuclear structures and modulation by protein kinase inhibitors.

    PubMed

    Scovassi, A I; Stivala, L A; Rossi, L; Bianchi, L; Prosperi, E

    1997-11-25

    The association of cyclin D1 with nuclear structures was investigated in normal human fibroblasts by using hypotonic detergent extraction procedures, immunofluorescence quantitation with flow cytometry, and Western blot analysis. About 20% of the total cellular levels of cyclin D1 was found to be tightly bound to nuclear structures, being the complex formation resistant to DNase I treatment and to high salt extraction. Maximal levels of the insoluble form of the protein were found in the middle to late G1 phase of the cell cycle. Cell fractionation and immunoprecipitation techniques after in vivo 32P-labeling showed that both soluble and nuclear-bound forms of cyclin D1 were phosphorylated. Both fractions were reactive to an anti-phosphotyrosine antibody, while only the latter was detectable with an anti-phosphoserine antibody. Treatment with the protein kinase inhibitor staurosporine, which induces a cell cycle arrest in early G1 phase, strongly reduced cyclin D1 phosphorylation. Concomitantly, the ratio of nuclear-bound/total cyclin D1 levels was reduced by about 60%, compared with the control value. The protein kinase A specific inhibitor isoquinoline-sulfonamide (H-89) induced a similar reduction in the ratio, with no significant modification in the total amount of protein. In contrast, both calphostin C and bisindolylmaleimide, specific inhibitors of protein kinase C, consistently increased by 30-50% the ratio of nuclear-bound/total amount of the cyclin protein. These results suggest that, during the G1 phase, formation of an insoluble complex of cyclin D1 occurs at nuclear matrix structures and that this association is mediated by a protein kinase A-dependent pathway. PMID:9417875

  1. In Situ Detection of Interactions Between Nuclear Envelope Proteins and Partners.

    PubMed

    Barateau, Alice; Buendia, Brigitte

    2016-01-01

    Proximity ligation assay (PLA) appears as a quick and easy technique to visualize within fixed cells the occurrence and in situ distribution of protein complexes. PLA has been validated to detect protein-protein interactions within the nuclear compartment. Here, we describe a protocol which allows the detection of interactions between A-type nuclear lamins and either LEM-domain proteins (such as emerin, integrated within the inner nuclear membrane, and LAP2α which accumulates within the nucleoplasm) or gene regulatory factors (e.g., the transcription factor SREBP1). The distinct amounts and patterns of PLA signals obtained for various complexes highlight the pertinence of using PLA to reveal in situ where and to which extent nuclear envelope proteins bind specific partners. PMID:27147040

  2. Characterization of the nuclear localization signals of duck circovirus replication proteins.

    PubMed

    Wang, X; Wu, Z; Xiang, Q; Li, Z; Zhang, R; Chen, J; Xia, L; Lin, S; Yu, W; Ma, Z; Xie, Z; Jiang, S

    2015-12-01

    Duck circovirus (DuCV) possess a circular, single-stranded DNA genome that requires the replication protein (Rep) for its replication. Based on the viral genotype, there are two categories of Rep proteins: Rep1 and Rep2. To characterize the nuclear localization signals (NLSs) conferring the nuclear localization of the Rep proteins, defined coding regions of the rep gene of two genotypes of DuCV were cloned and co-expressed with the red fluorescent protein DsRed2. The results showed that deleting the putative N-terminal NLS located at amino acid residues 10-37 of Rep1 and Rep2 abrogated nuclear translocation, while deleting the putative C-terminal NLS located at residues 244-274 of Rep1 did not significantly alter its subcellular localization, confirming that only the NLS located at residues 10-37 in the N-termini of the Rep proteins had nuclear targeting activity. PMID:26666192

  3. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2.

    PubMed

    Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya

    2015-09-11

    Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients. PMID:26245896

  4. Progressive changes in the protein composition of the nuclear matrix during rat osteoblast differentiation.

    PubMed Central

    Dworetzky, S I; Fey, E G; Penman, S; Lian, J B; Stein, J L; Stein, G S

    1990-01-01

    Primary cultures of fetal rat calvarial osteoblasts undergo a developmental sequence with respect to the temporal expression of genes encoding osteoblast phenotypic markers. Based on previous suggestions that gene-nuclear matrix associations are involved in regulating cell- and tissue-specific gene expression, we investigated the protein composition of the nuclear matrix during this developmental sequence by using high-resolution two-dimensional gel electrophoresis. The nuclear matrix was isolated at times during a 4-week culture period that represent the three principal osteoblast phenotypic stages: proliferation, extracellular matrix (ECM) maturation, and mineralization. The most dramatic changes in the nuclear matrix protein patterns occurred during transitions from the proliferation to the ECM maturation stage and from ECM maturation to the mineralization period, with only minor variations in the profiles within each period. These stage-specific changes, corresponding to the major transition points in gene expression, indicate that the nuclear matrix proteins reflect the progressive differentiation of the bone cell phenotype. Subcultivation of primary cells delays mineralization, and a corresponding delay was observed for the nuclear matrix protein patterns. Thus, the sequential changes in protein composition of the nuclear matrix that occur during osteoblast differentiation represent distinct stage-specific markers for maturation of the osteoblast to an osteocytic cell in a bone-like mineralized ECM. These changes are consistent with a functional involvement of the nuclear matrix in mediating modifications of developmental gene expression. Images PMID:2352938

  5. Identification of an unconventional nuclear localization signal in human ribosomal protein S2

    SciTech Connect

    Antoine, M.; Reimers, K.; Wirz, W.; Gressner, A.M.; Mueller, R.; Kiefer, P. . E-Mail: pkiefer@ukaachen.de

    2005-09-16

    Ribosomal proteins must be imported into the nucleus after being synthesized in the cytoplasm. Since the rpS2 amino acid sequence does not contain a typical nuclear localization signal, we used deletion mutant analysis and rpS2-{beta}-galactosidase chimeric proteins to identify the nuclear targeting domains in rpS2. Nuclear rpS2 is strictly localized in the nucleoplasm and is not targeted to the nucleoli. Subcellular localization analysis of deletion mutants of rpS2-{beta}-galactosidase chimeras identified a central domain comprising 72 amino acids which is necessary and sufficient to target the chimeric {beta}-galactosidase to the nucleus. The nuclear targeting domain shares no significant similarity to already characterized nuclear localization signals in ribosomal proteins or other nuclear proteins. Although a Nup153 fragment containing the importin{beta} binding site fused to VP22 blocks nuclear import of rpS2-{beta}-galactosidase fusion proteins, nuclear uptake of rpS2 could be mediated by several import receptors since it binds to importin{alpha}/{beta} and transportin.

  6. Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore

    PubMed Central

    Ohba, Tomoyuki; Schirmer, Eric C.; Nishimoto, Takeharu; Gerace, Larry

    2004-01-01

    Resident integral proteins of the inner nuclear membrane (INM) are synthesized as membrane-integrated proteins on the peripheral endoplasmic reticulum (ER) and are transported to the INM throughout interphase using an unknown trafficking mechanism. To study this transport, we developed a live cell assay that measures the movement of transmembrane reporters from the ER to the INM by rapamycin-mediated trapping at the nuclear lamina. Reporter constructs with small (<30 kD) cytosolic and lumenal domains rapidly accumulated at the INM. However, increasing the size of either domain by 47 kD strongly inhibited movement. Reduced temperature and ATP depletion also inhibited movement, which is characteristic of membrane fusion mechanisms, but pharmacological inhibition of vesicular trafficking had no effect. Because reporter accumulation at the INM was inhibited by antibodies to the nuclear pore membrane protein gp210, our results support a model wherein transport of integral proteins to the INM involves lateral diffusion in the lipid bilayer around the nuclear pore membrane, coupled with active restructuring of the nuclear pore complex. PMID:15611332

  7. ANP32B is a nuclear target of henipavirus M proteins.

    PubMed

    Bauer, Anja; Neumann, Sebastian; Karger, Axel; Henning, Ann-Kristin; Maisner, Andrea; Lamp, Boris; Dietzel, Erik; Kwasnitschka, Linda; Balkema-Buschmann, Anne; Keil, Günther M; Finke, Stefan

    2014-01-01

    Membrane envelopment and budding of negative strand RNA viruses (NSVs) is mainly driven by viral matrix proteins (M). In addition, several M proteins are also known to be involved in host cell manipulation. Knowledge about the cellular targets and detailed molecular mechanisms, however, is poor for many M proteins. For instance, Nipah Virus (NiV) M protein trafficking through the nucleus is essential for virus release, but nuclear targets of NiV M remain unknown. To identify cellular interactors of henipavirus M proteins, tagged Hendra Virus (HeV) M proteins were expressed and M-containing protein complexes were isolated and analysed. Presence of acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) in the complex suggested that this protein represents a direct or indirect interactor of the viral matrix protein. Over-expression of ANP32B led to specific nuclear accumulation of HeV M, providing a functional link between ANP32B and M protein. ANP32B-dependent nuclear accumulation was observed after plasmid-driven expression of HeV and NiV matrix proteins and also in NiV infected cells. The latter indicated that an interaction of henipavirus M protein with ANP32B also occurs in the context of virus replication. From these data we conclude that ANP32B is a nuclear target of henipavirus M that may contribute to virus replication. Potential effects of ANP32B on HeV nuclear shuttling and host cell manipulation by HeV M affecting ANP32B functions in host cell survival and gene expression regulation are discussed. PMID:24823948

  8. Enhancement of cell surface expression and receptor functions of membrane progestin receptor α (mPRα) by progesterone receptor membrane component 1 (PGRMC1): evidence for a role of PGRMC1 as an adaptor protein for steroid receptors.

    PubMed

    Thomas, Peter; Pang, Yefei; Dong, Jing

    2014-03-01

    A variety of functions have been proposed for progesterone receptor membrane component 1 (PGRMC1), including acting as a component of a membrane progestin receptor and as an adaptor protein. Here we show that stable overexpression of human PGRMC1 in nuclear progesterone receptor (PR)-negative breast cancer cell lines causes increased expression of PGRMC1 and membrane progesterone receptor α (mPRα) on cell membranes that is associated with increased specific [(3)H]progesterone binding. The membrane progestin binding affinity and specificity were characteristic of mPRα, with a Kd of 4.7 nM and high affinity for the mPR-specific agonist, Org OD 02-0, and low affinity for corticosteroids. Progestin treatment caused activation of G proteins, further evidence for increased expression of functional mPRs on PGRMC1-transfected cell membranes. Immunocytochemical and coimmunoprecipitation studies showed a close association of PGRMC1 with mPRα in cell membranes. Transfection of PGRMC1 into spontaneously immortalized rat granulosa cells was associated with membrane expression of PGRMC1 and mPRα as well as antiapoptotic effects of progestins that were abolished after cotransfection with small interfering RNA for mPRα. These data demonstrate that PGRMC1 can act as an adaptor protein, transporting mPRα to the cell surface, and that the progestin binding and apoptotic functions previously ascribed to PGRMC1 are dependent on cell surface expression of mPRα. Collectively, the results suggest PGRMC1 and mPRα are components of a membrane progesterone receptor protein complex. Increased expression of estrogen receptor β was also observed in the membranes of PGRMC1-transfected cells, suggesting that PGRMC1 can act as an adaptor protein for multiple classes of steroid receptors. PMID:24424068

  9. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    PubMed

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function. PMID:15755682

  10. Nuclear Protein of the Testis Midline Carcinoma Masquerading as a Primary Mediastinal Seminoma

    PubMed Central

    Sayapina, Maria S.; Savelov, Nikita A.; Karseladze, Apollon I.; Bulanov, Anatoly A.; Tryakin, Alexey A.; Nosov, Dmitry A.; Garin, Avgust M.; Tjulandin, Sergey A.

    2016-01-01

    Nuclear protein of the testis (NUT) midline carcinomas are rare aggressive carcinomas characterized by chromosomal rearrangements that involve the gene encoding the NUT. This article reviews the clinicopathologic features and the differential diagnosis of these malignancies. PMID:27441078

  11. Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization.

    PubMed

    Viennet, Thibault; Viegas, Aldino; Kuepper, Arne; Arens, Sabine; Gelev, Vladimir; Petrov, Ognyan; Grossmann, Tom N; Heise, Henrike; Etzkorn, Manuel

    2016-08-26

    Nuclear magnetic resonance (NMR) spectroscopy has the intrinsic capabilities to investigate proteins in native environments. In general, however, NMR relies on non-natural protein purity and concentration to increase the desired signal over the background. We here report on the efficient and specific hyperpolarization of low amounts of a target protein in a large isotope-labeled background by combining dynamic nuclear polarization (DNP) and the selectivity of protein interactions. Using a biradical-labeled ligand, we were able to direct the hyperpolarization to the protein of interest, maintaining comparable signal enhancement with about 400-fold less radicals than conventionally used. We could selectively filter out our target protein directly from crude cell lysate obtained from only 8 mL of fully isotope-enriched cell culture. Our approach offers effective means to study proteins with atomic resolution in increasingly native concentrations and environments. PMID:27351143

  12. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin.

    PubMed

    Zhong, Meigong; Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Jin, Fujun; Ma, Kaiqi; Qiu, Xianxiu; Wang, Qiaoli; Peng, Tao; Kitazato, Kaio; Wang, Yifei

    2014-01-01

    Although it is known that inhibitors of heat shock protein 90 (Hsp90) can inhibit herpes simplex virus type 1 (HSV-1) infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5) at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance. PMID:24901434

  13. Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein

    SciTech Connect

    Au, Victoria; Yu Mei; Carstens, Eric B.

    2009-03-01

    The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) single-stranded DNA binding protein LEF-3 is a multi-functional protein that is required to transport the helicase protein P143 into the nucleus of infected cells where they function to replicate viral DNA. The N-terminal 56 amino acid region of LEF-3 is required for nuclear transport. In this report, we analyzed the effect of site-specific mutagenesis of LEF-3 on its intracellular distribution. Fluorescence microscopy of expression plasmid-transfected cells demonstrated that the residues 28 to 32 formed the core nuclear localization signal, but other adjacent positively-charged residues augmented these sequences. Comparison with other group I Alphabaculoviruses suggested that this core region functionally duplicated residues including 18 and 19. This was demonstrated by the loss of nuclear localization when the equivalent residues (18 to 20) in Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) LEF-3 were mutated. The AcMNPV LEF-3 nuclear localization domain was also shown to drive nuclear transport in mammalian cells indicating that the protein nuclear import systems in insect and mammalian cells are conserved. We also demonstrated by mutagenesis that two conserved cysteine residues located at 82 and 106 were not essential for nuclear localization or for interaction with P143. However, by using a modified construct of P143 that localized on its own to the nucleus, we demonstrated that a functional nuclear localization domain on LEF-3 was required for interaction between LEF-3 and P143.

  14. Isolation of nuclear proteins from flax (Linum usitatissimum L.) seed coats for gene expression regulation studies

    PubMed Central

    2012-01-01

    Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies. PMID:22230709

  15. Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Opella, Stanley J.

    2013-06-01

    Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.

  16. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization

    PubMed Central

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2016-01-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958

  17. Evidence for Ubiquitin-Regulated Nuclear and Subnuclear Trafficking among Paramyxovirinae Matrix Proteins

    PubMed Central

    Pentecost, Mickey; Vashisht, Ajay A.; Beaty, Shannon M.; Park, Arnold; Wang, Yao E.; Yun, Tatyana E; Freiberg, Alexander N.; Wohlschlegel, James A.; Lee, Benhur

    2015-01-01

    The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear

  18. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins.

    PubMed

    Pentecost, Mickey; Vashisht, Ajay A; Lester, Talia; Voros, Tim; Beaty, Shannon M; Park, Arnold; Wang, Yao E; Yun, Tatyana E; Freiberg, Alexander N; Wohlschlegel, James A; Lee, Benhur

    2015-03-01

    The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear

  19. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    SciTech Connect

    Mao, Grace; Brody, James P.

    2007-11-09

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s{sup -1}. We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase.

  20. Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Opella, Stanley J.

    2014-01-01

    Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein–coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy. PMID:23577669

  1. Nuclear distribution of eIF3g and its interacting nuclear proteins in breast cancer cells

    PubMed Central

    ZHENG, QIAOLI; LIU, HAO; YE, JINGJIA; ZHANG, HUI; JIA, ZHENYU; CAO, JIANG

    2016-01-01

    Eukaryotic translation initiation factor 3 subunit g (eIF3g) is a core subunit of the eukaryotic translation initiation factor 3 complex, and is important in the initiation of translation. It is also involved in caspase-mediated apoptosis, and is upregulated in multidrug-resistant cancer cells. In the present study, the nuclear distribution of eIF3g was determined by performing co-immunoprecipitation of proteins that potentially interact with eIF3g in the nucleus. Mass spectrometry characterization showed that three proteins, heterogeneous nuclear ribonucleoprotein U/scaffold attachment factor A, HSZFP36/zinc finger protein 823 and β-actin, were among the candidate eIF3g-interacting proteins in the nucleus. The protein-protein interaction was further confirmed by cross-linking and a glutathione S-transferase pull-down assay, followed by western blotting. The co-localization of these proteins was determined by confocal microscopy. These findings provide novel insight into the possible functions of eIF3g in the nucleus and serves as an important first step for further investigation of the roles of eIF3g in cancer development. PMID:26935993

  2. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus.

    PubMed Central

    Kang, K I; Devin, J; Cadepond, F; Jibard, N; Guiochon-Mantel, A; Baulieu, E E; Catelli, M G

    1994-01-01

    In target tissue extracts, heat shock protein hsp90 has been found associated to all unliganded steroid receptors. Modulation of important functions of these receptors, including prevention of DNA binding and optimization of transcriptional activity, has been attributed to hsp90. However no unequivocal in vivo demonstration of interaction between receptors and hsp90 has been presented. We targeted chicken hsp90, a mainly cytoplasmic protein, with the nucleoplasmin nuclear localization signal (90NLS). After transfection into COS-7 cells, 90NLS was found in the nucleus with specific immunofluorescence and confocal microscopy techniques. A human glucocorticosteroid receptor mutant devoid of NLS sequence was also expressed in COS-7 cells and found exclusively cytoplasmic. Coexpression of 90NLS and of the cytoplasmic human glucocorticosteroid receptor mutant led to complete nuclear localization of the receptor, indicating its piggyback transport by 90NLS and thus physical and functional interaction between the two proteins in the absence of hormone. The same nuclear localization was obtained after cotransfection of 90NLS and a cytoplasmic rabbit progesterone receptor mutant. Finally, coexpression of wild-type rabbit progesterone receptor (nuclear) and wildtype hsp90 (cytoplasmic) into COS-7 cells provoked partial relocalization of hsp90 into the nucleus. These experiments lay the groundwork on which to study hsp90 as a chaperone, regulating activities of steroid receptors and possibly participating in their nuclear-cytoplasmic shuttling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8278390

  3. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

    SciTech Connect

    Wang, Tianying; Yu, Bohai; Lin, Lexun; Zhai, Xia; Han, Yelu; Qin, Ying; Guo, Zhiwei; Wu, Shuo; Zhong, Xiaoyan; Wang, Yan; Tong, Lei; Zhang, Fengmin; Si, Xiaoning; Zhao, Wenran; Zhong, Zhaohua

    2012-11-25

    The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB. - Highlights: Black-Right-Pointing-Pointer The VP1 protein of coxsackievirus B3 can specifically localize in the nucleus. Black-Right-Pointing-Pointer The nuclear localization signal of coxsackievirus B3 VP1 protein locates near its C-terminal. Black-Right-Pointing-Pointer The VP1 nuclear localization of coxsackievirus B3 can deregulate cell cycle. Black-Right-Pointing-Pointer There is a domain in the VP1 that determines it dotted distributed in the cytoplasm.

  4. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane

    PubMed Central

    Salpingidou, Georgia; Smertenko, Andrei; Hausmanowa-Petrucewicz, Irena; Hussey, Patrick J.; Hutchison, Chris J.

    2007-01-01

    The type II inner nuclear membrane protein emerin is a component of the LINC complex that connects the nuclear lamina to the actin cytoskeleton. In emerin-null or -deficient human dermal fibroblasts we find that the centrosome is detached from the nucleus. Moreover, following siRNA knockdown of emerin in wild-type fibroblasts, the centrosome also becomes detached from the nucleus. We show that emerin interacts with tubulin, and that nocadozole-treated wild-type cells phenocopy the detached centrosome characteristic of emerin-null/deficient cells. We also find that a significant fraction of emerin is located at the outer nuclear membrane and peripheral ER, where it interacts directly with the centrosome. Our data provide the first evidence in mammalian cells as to the nature of the linkage of the centrosome, and therefore the tubulin cytoskeleton, with the outer nuclear membrane. PMID:17785515

  5. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    SciTech Connect

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  6. Autoantibodies to purified nuclear proteins related to DNA metabolism during ageing and in SLE patients.

    PubMed Central

    Astaldi Ricotti, G C; Pazzaglia, M; Martelli, A M; Cerino, A; Bestagno, M; Caprelli, A; Riva, S; Pedrini, M A; Facchini, A

    1987-01-01

    In this study the specificity of circulating autoantibodies in ANA+ aged donors, ANA- donors and SLE patients was investigated by immunoblotting on total nuclear proteins and by ELISA on purified nuclear proteins, possibly related to DNA metabolism, such as DNA polymerase alpha, DNA-dependent ATPase, DNA Topoisomerase I, ssDBP, hnRNP, HMG and histones. Immunoblotting showed that sera from ANA+ aged donors present fewer antibodies to nuclear proteins, especially to those between 21,000 and 45,000, molecular weight (MW), than sera from SLE patients. When the specificity of antisera was further studied on purified nuclear proteins, it was found that the majority of sera from SLE patients react with most of the proteins tested, whereas sera from ANA+ aged donors mainly react with DNA polymerase alpha, DNA-dependent ATPase, DNA Topoisomerase I and histones. In addition, sera from a few ANA- donors also reacted with certain purified nuclear proteins in a statistically significant age-related manner. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3497092

  7. Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions.

    PubMed

    Tange, Yoshie; Chikashige, Yuji; Takahata, Shinya; Kawakami, Kei; Higashi, Masato; Mori, Chie; Kojidani, Tomoko; Hirano, Yasuhiro; Asakawa, Haruhiko; Murakami, Yota; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-08-01

    Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability. PMID:27334362

  8. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus.

    PubMed

    Chaumet, Alexandre; Wright, Graham D; Seet, Sze Hwee; Tham, Keit Min; Gounko, Natalia V; Bard, Frederic

    2015-01-01

    Endocytosis directs molecular cargo along three main routes: recycling to the cell surface, transport to the Golgi apparatus or degradation in endolysosomes. Pseudomonas exotoxin A (PE) is a bacterial protein that typically traffics to the Golgi and then the endoplasmic reticulum before translocating to the cytosol. Here we show that a substantial fraction of internalized PE is also located in nuclear envelope-associated endosomes (NAE), which display limited mobility, exhibit a propensity to undergo fusion and readily discharge their contents into the nuclear envelope. Electron microscopy and protein trapping in the nucleus indicate that NAE mediate PE transfer into the nucleoplasm. RNAi screening further revealed that NAE-mediated transfer depends on the nuclear envelope proteins SUN1 and SUN2, as well as the Sec61 translocon complex. These data reveal a novel endosomal route from the cell surface to the nucleoplasm that facilitates the accumulation of extracellular and cell surface proteins in the nucleus. PMID:26356418

  9. Identification of a Functional, CRM-1-Dependent Nuclear Export Signal in Hepatitis C Virus Core Protein

    PubMed Central

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified. We show here that the aa(109–133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1–173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication. Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection. PMID:22039426

  10. Nuclear Cytoplasmic Trafficking of Proteins is a Major Response of Human Fibroblasts to Oxidative Stress

    PubMed Central

    Baqader, Noor O.; Radulovic, Marko; Crawford, Mark; Stoeber, Kai; Godovac-Zimmermann, Jasminka

    2014-01-01

    We have used a subcellular spatial razor approach based on LC–MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function. PMID:25133973

  11. Type B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for nuclear reassembly.

    PubMed Central

    Meier, J; Georgatos, S D

    1994-01-01

    p58 (also referred to as the lamin B receptor) is an integral membrane protein of the nuclear envelope known to form a multimeric complex with the lamins and other nuclear proteins during interphase. To examine the fate of this complex during mitosis, we have investigated the partitioning and the molecular interactions of p58 in dividing chicken hepatoma (DU249) cells. Using confocal microscopy and double immunolabelling, we show here that lamins B1 and B2 co-localize with p58 during all phases of mitosis and co-assemble around reforming nuclei. A close juxtaposition of p58/lamin B-containing vesicles and chromosomes is already detectable in metaphase; however, p58 and lamin reassembly proceeds slowly and is completed in late telophase--G1. Flotation of mitotic membranes in sucrose density gradients and analysis of mitotic vesicles by immunoelectron microscopy confirms that p58 and most of the type B lamins reside in the same compartment. Co-immunoprecipitation of both proteins by affinity-purified anti-p58 antibodies shows that they are physically associated in the context of a mitotic p58 'sub-complex'. This sub-assembly does not include the type A lamins which are fully solubilized during mitosis. Our data provide direct, in vivo and in vitro evidence that the majority of type B lamins remain connected to nuclear membrane 'receptors' during mitosis. The implications of these findings in nuclear envelope reassembly are discussed below. Images PMID:8168487

  12. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding.

    PubMed

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS(SV40)) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS(SV40) in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS(SV40) formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS(SV40) likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS(SV40) can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. PMID:26032495

  13. Implications for proteasome nuclear localization revealed by the structure of the nuclear proteasome tether protein Cut8

    PubMed Central

    Takeda, Kojiro; Tonthat, Nam K.; Glover, Tiffany; Xu, Weijun; Koonin, Eugene V.; Yanagida, Mitsuhiro; Schumacher, Maria A.

    2011-01-01

    Degradation of nuclear proteins by the 26S proteasome is essential for cell viability. In yeast, the nuclear envelope protein Cut8 mediates nuclear proteasomal sequestration by an uncharacterized mechanism. Here we describe structures of Schizosaccharomyces pombe Cut8, which shows that it contains a unique, modular fold composed of an extended N-terminal, lysine-rich segment that when ubiquitinated binds the proteasome, a dimer domain followed by a six-helix bundle connected to a flexible C tail. The Cut8 six-helix bundle shows structural similarity to 14-3-3 phosphoprotein-binding domains, and binding assays show that this domain is necessary and sufficient for liposome and cholesterol binding. Moreover, specific mutations in the 14-3-3 regions corresponding to putative cholesterol recognition/interaction amino acid consensus motifs abrogate cholesterol binding. In vivo studies confirmed that the 14-3-3 region is necessary for Cut8 membrane localization and that dimerization is critical for its function. Thus, the data reveal the Cut8 organization at the nuclear envelope. Reconstruction of Cut8 evolution suggests that it was present in the last common ancestor of extant eukaryotes and accordingly that nuclear proteasomal sequestration is an ancestral eukaryotic feature. The importance of Cut8 for cell viability and its absence in humans suggests it as a possible target for the development of specific chemotherapeutics against invasive fungal infections. PMID:21976488

  14. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium. PMID:15896312

  15. Cytoplasmic Sequestration of Rel Proteins by IκBα Requires CRM1-Dependent Nuclear Export

    PubMed Central

    Tam, Winnie F.; Lee, Linda H.; Davis, Laura; Sen, Ranjan

    2000-01-01

    Rel and IκB protein families form a complex cellular regulatory network. A major regulatory function of IκB proteins is to retain Rel proteins in the cell cytoplasm. In addition, IκB proteins have also been postulated to serve nuclear functions. These include the maintenance of inducible NF-κB-dependent gene transcription, as well as termination of inducible transcription. We show that IκBα shuttles between the nucleus and the cytoplasm, utilizing the nuclear export receptor CRM1. A CRM1-binding export sequence was identified in the N-terminal domain of IκBα but not in that of IκBβ or IκBɛ. By reconstituting major aspects of NF-κB–IκB sequestration in yeast, we demonstrate that cytoplasmic retention of p65 (also called RelA) by IκBα requires Crm1p-dependent nuclear export. In mammalian cells, inhibition of CRM1 by leptomycin B resulted in nuclear localization of cotransfected p65 and IκBα in COS cells and enhanced nuclear relocation of endogenous p65 in T cells. These observations suggest that the main function of IκBα is that of a nuclear export chaperone rather than a cytoplasmic tether. We propose that the nucleus is the major site of p65-IκBα association, from where these complexes must be exported in order to create the cytoplasmic pool. PMID:10688673

  16. Nuclear Import and the Evolution of a Multifunctional RNA-binding Protein

    PubMed Central

    Rosenblum, Jonathan S.; Pemberton, Lucy F.; Bonifaci, Neris; Blobel, Günter

    1998-01-01

    La (SS-B) is a highly expressed protein that is able to bind 3′-oligouridylate and other common RNA sequence/structural motifs. By virtue of these interactions, La is present in a myriad of nuclear and cytoplasmic ribonucleoprotein complexes in vivo where it may function as an RNA-folding protein or RNA chaperone. We have recently characterized the nuclear import pathway of the S. cerevisiae La, Lhp1p. The soluble transport factor, or karyopherin, that mediates the import of Lhp1p is Kap108p/Sxm1p. We have now determined a 113-amino acid domain of Lhp1p that is brought to the nucleus by Kap108p. Unexpectedly, this domain does not coincide with the previously identified nuclear localization signal of human La. Furthermore, when expressed in Saccharomyces cerevisiae, the nuclear localization of Schizosaccharomyces pombe, Drosophila, and human La proteins are independent of Kap108p. We have been able to reconstitute the nuclear import of human La into permeabilized HeLa cells using the recombinant human factors karyopherin α2, karyopherin β1, Ran, and p10. As such, the yeast and human La proteins are imported using different sequence motifs and dissimilar karyopherins. Our results are consistent with an intermingling of the nuclear import and evolution of La. PMID:9817748

  17. Cloning of a complementary DNA encoding an 80 kilodalton nuclear cap binding protein.

    PubMed Central

    Kataoka, N; Ohno, M; Kangawa, K; Tokoro, Y; Shimura, Y

    1994-01-01

    It has been shown that the monomethylated cap structure plays important roles in nuclear events. The cap structure has been implicated in the enhancement of pre-mRNA splicing. More recently, this structure has also been suggested to facilitate RNA transport from the nucleus to the cytoplasm. We have previously identified and purified an 80kD Nuclear Cap Binding Protein (NCBP) from a HeLa cell nuclear extract, which could possibly mediate these nuclear activities. In this report, we describe cloning of complementary DNA (cDNA) encoding NCBP. The partial protein sequences of NCBP were determined, and the full-length cDNA of NCBP was isolated from HeLa cDNA libraries. This cDNA encoded an open reading frame of 790 amino acids with a calculated molecular mass of 91,734 daltons, which contained most of the determined protein sequences. However, the protein sequence had no significant homology to any known proteins. Transfection experiments demonstrated that the epitope-tagged NCBP, transiently expressed in HeLa cells, was localized exclusively in the nucleoplasm. Similar experiments using a truncated NCBP cDNA indicated that this nuclear localization activity is conferred by the N-terminal 70 amino-acid region. Images PMID:7937105

  18. The bovine papillomavirus type 1 E2 transactivator and repressor proteins use different nuclear localization signals.

    PubMed

    Skiadopoulos, M H; McBride, A A

    1996-02-01

    The E2 gene of bovine papillomavirus type 1 encodes at least three nuclear phosphoproteins that regulate viral transcription and DNA replication. All three proteins have a common C-terminal domain that has DNA-binding and dimerization activities. A basic region in this domain forms an alpha helix which makes direct contact with the DNA target. In this study, it is shown that in addition to its role in DNA binding, this basic region functions as a nuclear localization signal both in the E2 DNA-binding domain and in a heterologous protein. Deletion of this signal sequence resulted in increased accumulation of the E2 transactivator and repressor proteins in the cytoplasm, but nuclear localization was not eliminated. In the full-length transactivator protein, another signal, present in the N-terminal transactivation domain, is used for transport to the nucleus, and the C-terminal nuclear localization signal(s) are masked. The use of different nuclear localization signals could potentially allow differential regulation of the subcellular localization of the E2 transactivator and repressor proteins at some stage in the viral life cycle. PMID:8551571

  19. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    SciTech Connect

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-02-05

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  20. Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence

    PubMed Central

    Giampieri, Enrico; De Cecco, Marco; Remondini, Daniel; Sedivy, John; Castellani, Gastone

    2015-01-01

    The amount of cellular proteins is a crucial parameter that is known to vary between cells as a function of the replicative passages, and can be important during physiological aging. The process of protein degradation is known to be performed by a series of enzymatic reactions, ranging from an initial step of protein ubiquitination to their final fragmentation by the proteasome. In this paper we propose a stochastic dynamical model of nuclear proteins concentration resulting from a balance between a constant production of proteins and their degradation by a cooperative enzymatic reaction. The predictions of this model are compared with experimental data obtained by fluorescence measurements of the amount of nuclear proteins in murine tail fibroblast (MTF) undergoing cellular senescence. Our model provides a three-parameter stationary distribution that is in good agreement with the experimental data even during the transition to the senescent state, where the nuclear protein concentration changes abruptly. The estimation of three parameters (cooperativity, saturation threshold, and maximal velocity of the reaction), and their evolution during replicative passages shows that only the maximal velocity varies significantly. Based on our modeling we speculate the reduction of functionality of the protein degradation mechanism as a possible competitive inhibition of the proteasome. PMID:26115222

  1. Studies in protein dynamics using heteronuclear nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vugmeyster, Liliya

    Dynamic processes in proteins are important for their biological function. Several issues in protein dynamics are addressed by applying existing NMR methodologies to investigate dynamics of several small proteins. Amide H/D exchange rates have been measured for the N-terminal domain of the ribosomal protein L9, residues 1--56. The results suggest that the structure of the domain is preserved in isolation and that the stability of the isolated domain is comparable to the stability of this domain in intact L9. Single domain proteins can fold in vitro at rates in excess of 1 x 104 s-1. Measurement of folding rates of this magnitude poses a considerable technical challenge. Off-resonance 15N R1rho measurements are shown to be capable of measuring such fast protein folding rates. The measurements were performed on a sample of the peripheral subunit-binding domain from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus 15N labeled at Ala 11. Fast intramolecular motions (on ps-ns time scale) can be studied by heteronuclear laboratory frame NMR relaxation. The temperature dependence of the backbone dynamics of the 36-resiude subdomain of the F-actin bundling protein villin has been investigated by studying the temperature dependence of order parameters obtained from 15N relaxation measurements. The results support the hypothesis that one of the possible mechanisms of thermostability is to lower the heat capacity difference between the folded and unfolded states by lowering the contribution from the backbone dynamics. A commonly used model-free approach for the interpretation of the relaxation data for macromolecules in solution is modified to correct for the decoupling approximation between the overall and internal motions.

  2. Multidimensional profiling of cell surface proteins and nuclear markers

    SciTech Connect

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  3. CGGBP1 is a nuclear and midbody protein regulating abscission

    SciTech Connect

    Singh, Umashankar Westermark, Bengt

    2011-01-15

    Abscission marks the completion of cell division and its failure is associated with delayed cytokinesis and even tetraploidization. Aberrant abscission and consequential ploidy changes can underlie various diseases including cancer. Midbody, a transient structure formed in the intercellular bridge during telophase, contains several proteins including Aurora kinase B (AURKB), which participate in abscission. We report here an unexpected expression pattern and function of the transcription repressor protein CGG triplet repeat-binding protein 1 (CGGBP1), in normal human fibroblasts. We show that CGGBP1, a chromatin-associated protein, trans-localizes to spindle midzone and midbodies in a manner similar to that of AURKB. CGGBP1 depletion resulted in a cell cycle block at G2, characterized by failure of cells to undergo mitosis and also reduced entry into S phase. Consistent with its presence in the midbodies, live microscopy showed that CGGBP1 deficiency caused mitotic failure at abscission resulting in tetraploidy, which could be rescued by CGGBP1 overexpression. These results show that CGGBP1 is a bona fide midbody protein required for normal abscission and mitosis in general.

  4. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin; Lan Zijian

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  5. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  6. Mechanisms Directing the Nuclear Localization of the CtBP Family Proteins

    PubMed Central

    Verger, Alexis; Quinlan, Kate G. R.; Crofts, Linda A.; Spanò, Stefania; Corda, Daniela; Kable, Eleanor P. W.; Braet, Filip; Crossley, Merlin

    2006-01-01

    The C-terminal binding protein (CtBP) family includes four proteins (CtBP1 [CtBP1-L], CtBP3/BARS [CtBP1-S], CtBP2, and RIBEYE) which are implicated both in transcriptional repression and in intracellular trafficking. However, the precise mechanisms by which different CtBP proteins are targeted to different subcellular regions remains unknown. Here, we report that the nuclear import of the various CtBP proteins and splice isoforms is differentially regulated. We show that CtBP2 contains a unique nuclear localization signal (NLS) located within its N-terminal region, which contributes to its nuclear accumulation. Using heterokaryon assays, we show that CtBP2 is capable of shuttling between the nucleus and cytoplasm of the cell. Moreover, CtBP2 can heterodimerize with CtBP1-L and CtBP1-S and direct them to the nucleus. This effect strongly depends on the CtBP2 NLS. PXDLS motif-containing transcription factors, such as BKLF, that bind CtBP proteins can also direct them to the nucleus. We also report the identification of a splice isoform of CtBP2, CtBP2-S, that lacks the N-terminal NLS and localizes to the cytoplasm. Finally, we show that mutation of the CtBP NADH binding site impairs the ability of the proteins to dimerize and to associate with BKLF. This reduces the nuclear accumulation of CtBP1. Our results suggest a model in which the nuclear localization of CtBP proteins is influenced by the CtBP2 NLS, by binding to PXDLS motif partner proteins, and through the effect of NADH on CtBP dimerization. PMID:16782877

  7. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs.

    PubMed

    Matsuura, Yoshiyuki

    2016-05-22

    Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza. PMID:26519791

  8. Transport of nuclear-encoded proteins into secondarily evolved plastids.

    PubMed

    Hempel, Franziska; Bozarth, Andrew; Sommer, Maik S; Zauner, Stefan; Przyborski, Jude M; Maier, Uwe-G

    2007-09-01

    Many algal groups evolved by engulfment and intracellular reduction of a eukaryotic phototroph within a heterotrophic cell. Via this process, so-called secondary plastids evolved, surrounded by three or four membranes. In these organisms most of the genetic material encoding plastid functions is localized in the cell nucleus, with the result that many proteins have to pass three, four, or even five membranes to reach their final destination within the plastid. In this article, we review recent models and findings that help to explain important cellular mechanisms involved in the complex process of protein transport into secondary plastids. PMID:17696773

  9. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities

    SciTech Connect

    Swanson, M.S.; Dreyfuss, G.

    1988-05-01

    Several proteins of heterogeneous nuclear ribonucleoprotein (hnRNP) particles display very high binding affinities for different ribonucleotide homopolymers. The specificity of some of these proteins at high salt concentrations and in the presence of heparin allows for their rapid one-step purification from HeLa nucleoplasm. The authors show that the hnRNP proteins are poly(U)-binding proteins and compare their specificity to that of the previously described cytoplasmic poly(A)-binding protein. These findings provide a useful tool for the classification and purification of hnRNP proteins from various tissues and organisms and indicate that different hnRNP proteins have different RNA-binding specificities.

  10. Isolation of CA1 nuclear enriched fractions from hippocampal slices to study activity-dependent nuclear import of synapto-nuclear messenger proteins.

    PubMed

    Yuanxiang, Pingan; Bera, Sujoy; Karpova, Anna; Kreutz, Michael R; Mikhaylova, Marina

    2014-01-01

    Studying activity dependent protein expression, subcellular translocation, or phosphorylation is essential to understand the underlying cellular mechanisms of synaptic plasticity. Long-term potentiation (LTP) and long-term depression (LTD) induced in acute hippocampal slices are widely accepted as cellular models of learning and memory. There are numerous studies that use live cell imaging or immunohistochemistry approaches to visualize activity dependent protein dynamics. However these methods rely on the suitability of antibodies for immunocytochemistry or overexpression of fluorescence-tagged proteins in single neurons. Immunoblotting of proteins is an alternative method providing independent confirmation of the findings. The first limiting factor in preparation of subcellular fractions from individual tetanized hippocampal slices is the low amount of material. Second, the handling procedure is crucial because even very short and minor manipulations of living slices might induce activation of certain signaling cascades. Here we describe an optimized workflow in order to obtain sufficient quantity of nuclear enriched fraction of sufficient purity from the CA1 region of acute hippocampal slices from rat brain. As a representative example we show that the ERK1/2 phosphorylated form of the synapto-nuclear protein messenger Jacob actively translocates to the nucleus upon induction of LTP and can be detected in a nuclear enriched fraction from CA1 neurons. PMID:25145907

  11. Identification and characterisation of a nuclear localisation signal in the SMN associated protein, Gemin4

    SciTech Connect

    Lorson, Monique A.; Dickson, Alexa M.; Shaw, Debra J.; Todd, Adrian G.; Young, Elizabeth C.; Morse, Robert; Wolstencroft, Catherine; Lorson, Christian L.; Young, Philip J.

    2008-10-10

    Gemin4 is a ubiquitously expressed multifunctional protein that is involved in U snRNP assembly, apoptosis, nuclear/cytoplasmic transportation, transcription, and RNAi pathways. Gemin4 is one of the core components of the Gemin-complex, which also contains survival motor neuron (SMN), the seven Gemin proteins (Gemin2-8), and Unrip. Mutations in the SMN1 gene cause the autosomal recessive disorder spinal muscular atrophy (SMA). Although the functions assigned to Gemin4 predominantly occur in the nucleus, the mechanisms that mediate the nuclear import of Gemin4 remain unclear. Here, using a novel panel of Gemin4 constructs we identify a canonical nuclear import sequence (NLS) in the N-terminus of Gemin4. The Gemin4 NLS is necessary and independently sufficient to mediate nuclear import of Gemin4. This is the first functional NLS identified within the SMN-Gemin complex.

  12. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  13. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    PubMed

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  14. MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope.

    PubMed Central

    Gindullis, F; Peffer, N J; Meier, I

    1999-01-01

    The interaction of chromatin with the nuclear matrix via matrix attachment region (MAR) DNA is considered to be of fundamental importance for chromatin organization in all eukaryotic cells. MAR binding filament-like protein 1 (MFP1) from tomato is a novel plant protein that specifically binds to MAR DNA. Its filament protein-like structure makes it a likely candidate for a structural component of the nuclear matrix. MFP1 is located at nuclear matrix-associated, specklelike structures at the nuclear envelope. Here, we report the identification of a novel protein that specifically interacts with MFP1 in yeast two-hybrid and in vitro binding assays. MFP1 associated factor 1 (MAF1) is a small, soluble, serine/threonine-rich protein that is ubiquitously expressed and has no similarity to known proteins. MAF1, like MFP1, is located at the nuclear periphery and is a component of the nuclear matrix. These data suggest that MFP1 and MAF1 are in vivo interaction partners and that both proteins are components of a nuclear substructure, previously undescribed in plants, that connects the nuclear envelope and the internal nuclear matrix. PMID:10488241

  15. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  16. Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish.

    PubMed

    Beyer, Hannes M; Juillot, Samuel; Herbst, Kathrin; Samodelov, Sophia L; Müller, Konrad; Schamel, Wolfgang W; Römer, Winfried; Schäfer, Eberhard; Nagy, Ferenc; Strähle, Uwe; Weber, Wilfried; Zurbriggen, Matias D

    2015-09-18

    Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices. PMID:25803699

  17. Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm.

    PubMed Central

    Loewinger, L; McKeon, F

    1988-01-01

    We have constructed a series of mutations in the human A lamin cDNA to identify and alter the nuclear localization signal using an in vivo functional assay system. The nuclear localization signal in the lamin proteins has both structural and functional similarities with that of the SV40 large T-antigen. Mutations within this functional domain result in the assembly of cytoplasmic tubular structures, and the behavior of these mutants suggests a post-translational dimerization of the lamin proteins prior to their transport into the nucleus. In the course of this work other regions of the carboxy terminus of the A/C lamin proteins have been implicated in the proper assembly and structure of the nuclear envelope. Images PMID:3056713

  18. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2.

    PubMed

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  19. A new subclass of nucleoporins that functionally interact with nuclear pore protein NSP1.

    PubMed Central

    Wimmer, C; Doye, V; Grandi, P; Nehrbass, U; Hurt, E C

    1992-01-01

    NSP1 is a nuclear pore protein (nucleoporin) essential for cell growth. To identify the components that functionally interact with NSP1 in the living cell, we developed a genetic screen for mutants that are lethal in a genetic background of mutated, but not wild type NSP1. Fourteen synthetic lethal mutants were obtained, belonging to at least four different complementation groups. The genes of two complementation groups, NSP116 and NSP49, were cloned. Like the previously described nucleoporins, these genes encode proteins with many repeat sequences. NSP116 and NSP49, however, contain a new repetitive sequence motif 'GLFG', which classifies them as a subclass of nucleoporins. NSP116 and NSP49, tagged with the IgG binding domain of protein A and expressed in yeast, are located at the nuclear envelope. These data provide in vivo evidence that distinct subclasses of nucleoporins physically interact or share overlapping function in nuclear pore complexes. Images PMID:1464327

  20. Specific interaction with the nuclear transporter importin α2 can modulate paraspeckle protein 1 delivery to nuclear paraspeckles

    PubMed Central

    Major, Andrew T.; Hogarth, Cathryn A.; Miyamoto, Yoichi; Sarraj, Mai A.; Smith, Catherine L.; Koopman, Peter; Kurihara, Yasuyuki; Jans, David A.; Loveland, Kate L.

    2015-01-01

    Importin (IMP) superfamily members mediate regulated nucleocytoplasmic transport, which is central to key cellular processes. Although individual IMPα proteins exhibit dynamic synthesis and subcellular localization during cellular differentiation, including during spermatogenesis, little is known of how this affects cell fate. To investigate how IMPαs control cellular development, we conducted a yeast two-hybrid screen for IMPα2 cargoes in embryonic day 12.5 mouse testis, a site of peak IMPα2 expression coincident with germ-line masculization. We identified paraspeckle protein 1 (PSPC1), the original defining component of nuclear paraspeckles, as an IMPα2-binding partner. PSPC1-IMPα2 binding in testis was confirmed in immunoprecipitations and pull downs, and an enzyme-linked immunosorbent assay–based assay demonstrated direct, high-affinity PSPC1 binding to either IMPα2/IMPβ1 or IMPα6/IMPβ1. Coexpression of full-length PSPC1 and IMPα2 in HeLa cells yielded increased PSPC1 localization in nuclear paraspeckles. High-throughput image analysis of >3500 cells indicated IMPα2 levels can directly determine PSPC1-positive nuclear speckle numbers and size; a transport-deficient IMPα2 isoform or small interfering RNA knockdown of IMPα2 each reduced endogenous PSPC1 accumulation in speckles. This first validation of an IMPα2 nuclear import cargo in fetal testis provides novel evidence that PSPC1 delivery to paraspeckles, and consequently paraspeckle function, may be controlled by modulated synthesis of specific IMPs. PMID:25694451

  1. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants.

    PubMed

    Zhou, Xiao; Graumann, Katja; Wirthmueller, Lennart; Jones, Jonathan D G; Meier, Iris

    2014-06-01

    Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain-interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions. PMID:24891605

  2. Association of Bovine Papillomavirus E2 Protein with Nuclear Structures In Vivo

    PubMed Central

    Kurg, Reet; Sild, Kristiina; Ilves, Aigi; Sepp, Mari; Ustav, Mart

    2005-01-01

    Papillomaviruses are small DNA viruses which have the capacity to establish a persistent infection in mammalian epithelial cells. The papillomavirus E2 protein is a central coordinator of viral gene expression, genome replication, and maintenance. We have investigated the distribution of bovine papillomavirus E2 protein in nuclei of proliferating cells and found that E2 is associated with cellular chromatin. This distribution does not change during the entire cell cycle. The N-terminal transactivation domain, but not the C-terminal DNA-binding domain, of the E2 protein is responsible for this association. The majority of the full-length E2 protein can only be detected in chromatin-enriched fractions but not as a free protein in the nucleus. Limited micrococcal nuclease digestion revealed that the E2 protein partitioned to different chromatin regions. A fraction of the E2 protein was located at nuclear sites that are resistant against nuclease attack, whereas the remaining E2 resided on compact chromatin accessible to micrococcal nuclease. These data suggest that there are two pools of E2 in the cell nucleus: one that localizes on transcriptionally inactive compact chromatin and the other, which compartmentalizes to transcriptionally active nuclear structures of the cell. Our data also suggest that E2 associates with chromatin through cellular protein(s), which in turn is released from chromatin at 0.4 M salt. PMID:16051845

  3. Control of nuclear activities by substrate-selective and protein-group SUMOylation.

    PubMed

    Jentsch, Stefan; Psakhye, Ivan

    2013-01-01

    Reversible modification of proteins by SUMO (small ubiquitin-like modifier) affects a large number of cellular processes. In striking contrast to the related ubiquitin pathway, only a few enzymes participate in the SUMO system, although this pathway has numerous substrates as well. Emerging evidence suggests that SUMOylation frequently targets entire groups of physically interacting proteins rather than individual proteins. Protein-group SUMOylation appears to be triggered by recruitment of SUMO ligases to preassembled protein complexes. Because SUMOylation typically affects groups of proteins that bear SUMO-interaction motifs (SIMs), protein-group SUMOylation may foster physical interactions between proteins through multiple SUMO-SIM interactions. Individual SUMO modifications may act redundantly or additively, yet they may mediate dedicated functions as well. In this review, we focus on the unorthodox principles of this pathway and give examples for SUMO-controlled nuclear activities. We propose that collective SUMOylation is typical for nuclear assemblies and argue that SUMO serves as a distinguishing mark for functionally engaged protein fractions. PMID:24016193

  4. Association of bovine papillomavirus E2 protein with nuclear structures in vivo.

    PubMed

    Kurg, Reet; Sild, Kristiina; Ilves, Aigi; Sepp, Mari; Ustav, Mart

    2005-08-01

    Papillomaviruses are small DNA viruses which have the capacity to establish a persistent infection in mammalian epithelial cells. The papillomavirus E2 protein is a central coordinator of viral gene expression, genome replication, and maintenance. We have investigated the distribution of bovine papillomavirus E2 protein in nuclei of proliferating cells and found that E2 is associated with cellular chromatin. This distribution does not change during the entire cell cycle. The N-terminal transactivation domain, but not the C-terminal DNA-binding domain, of the E2 protein is responsible for this association. The majority of the full-length E2 protein can only be detected in chromatin-enriched fractions but not as a free protein in the nucleus. Limited micrococcal nuclease digestion revealed that the E2 protein partitioned to different chromatin regions. A fraction of the E2 protein was located at nuclear sites that are resistant against nuclease attack, whereas the remaining E2 resided on compact chromatin accessible to micrococcal nuclease. These data suggest that there are two pools of E2 in the cell nucleus: one that localizes on transcriptionally inactive compact chromatin and the other, which compartmentalizes to transcriptionally active nuclear structures of the cell. Our data also suggest that E2 associates with chromatin through cellular protein(s), which in turn is released from chromatin at 0.4 M salt. PMID:16051845

  5. Impaired nuclear import of mammalian Dlx4 proteins as a consequence of rapid sequence divergence

    SciTech Connect

    Coubrough, Melissa L.; Bendall, Andrew J. . E-mail: abendall@uoguelph.ca

    2006-11-15

    Dlx genes encode a developmentally important family of transcription factors with a variety of functions and sites of action during vertebrate embryogenesis. The murine Dlx4 gene is an enigmatic member of the family; little is known about the normal developmental function(s) of Dlx4. Here, we show that Dlx4 is expressed in the murine placenta and in a trophoblast cell line where the protein localizes to both the nucleus and cytoplasm. Despite the presence of several leucine/valine-rich motifs that match known nuclear export sequences, cytoplasmic Dlx4 is not due to CRM-1-mediated nuclear export. Rather, nuclear import of Dlx4 is compromised by specific residues that flank the nuclear localization signal. One of these residues represents a novel conserved feature of the Dlx4 protein in placental mammals, and the second represents novel variation within mouse Dlx4 isoforms. Comparison of orthologous protein sequences reveals a particularly high rate of non-synonymous change in the coding regions of mammalian Dlx4 genes. Since impaired nuclear localization is unlikely to enhance the function of a nuclear transcription factor, these data point to reduced selection pressure as the basis for the rapid divergence of the Dlx4 gene within the mammalian clade.

  6. Turnip vein clearing virus movement protein nuclear activity: Do Tobamovirus movement proteins play a role in immune response suppression?

    PubMed Central

    Levy, Amit

    2015-01-01

    Plant viruses' cell-to-cell movement requires the function of virally encoded movement proteins (MPs). The Tobamovirus, Tobacco mosaic virus (TMV) has served as the model virus to study the activities of single MPs. However, since TMV does not infect the model plant Arabidopsis thaliana I have used a related Tobamovirus, Turnip vein-clearing virus (TVCV). I recently showed that, despite belonging to the same genus, the behavior of the 2 viruses MPs differ significantly during infection. Most notably, MPTVCV, but not MPTMV, targets the nucleus and induces the formation of F actin-containing filaments that associate with chromatin. Mutational analyses showed that nuclear localization of MPTVCV was necessary for TVCV local and systemic infection in both Nicotiana benthamiana and Arabidopsis. In this addendum, I propose possible targets for the MPTVCV nuclear activity, and suggest viewing MPs as viral effector-like proteins, playing a role in the inhibition of plant defense. PMID:26237173

  7. Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation

    PubMed Central

    Zimmerman, Seth P.; Bear, James E.; Goldstein, Bob; Hahn, Klaus; Kuhlman, Brian

    2015-01-01

    Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo. PMID:26083500

  8. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    SciTech Connect

    Sheren, Jamie E.; Kassenbrock, C. Kenneth

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequence (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.

  9. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution

    PubMed Central

    Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong

    2016-01-01

    The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844

  10. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution.

    PubMed

    Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong

    2016-01-01

    The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844

  11. The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes

    PubMed Central

    Shibano, Takashi; Mamada, Hiroshi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Taira, Masanori

    2015-01-01

    The inner nuclear membrane (INM) protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs) and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein. PMID:25946333

  12. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    PubMed

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments. PMID:23331309

  13. Dynamic Nuclear Polarization Methods in Solids and Solutions to Explore Membrane Proteins and Membrane Systems

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yuan; Han, Songi

    2013-04-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  14. Characterization of a nuclear compartment shared by nuclear bodies applying ectopic protein expression and correlative light and electron microscopy

    SciTech Connect

    Richter, Karsten; Reichenzeller, Michaela; Goerisch, Sabine M.; Schmidt, Ute; Scheuermann, Markus O.; Herrmann, Harald; Lichter, Peter . E-mail: m.macleod@dkfz.de

    2005-02-01

    To investigate the accessibility of interphase nuclei for nuclear body-sized particles, we analyzed in cultured cells from human origin by correlative fluorescence and electron microscopy (EM) the bundle-formation of Xenopus-vimentin targeted to the nucleus via a nuclear localization signal (NLS). Moreover, we investigated the spatial relationship of speckles, Cajal bodies, and crystalline particles formed by Mx1 fused to yellow fluorescent protein (YFP), with respect to these bundle arrays. At 37 deg C, the nucleus-targeted, temperature-sensitive Xenopus vimentin was deposited in focal accumulations. Upon shift to 28 deg C, polymerization was induced and filament arrays became visible. Within 2 h after temperature shift, arrays were found to be composed of filaments loosely embedded in the nucleoplasm. The filaments were restricted to limited areas of the nucleus between focal accumulations. Upon incubation at 28 deg C for several hours, NLS vimentin filaments formed bundles looping throughout the nuclei. Speckles and Cajal bodies frequently localized in direct neighborhood to vimentin bundles. Similarly, small crystalline particles formed by YFP-tagged Mx1 also located next to vimentin bundles. Taking into account that nuclear targeted vimentin locates in the interchromosomal domain (ICD), we conclude that nuclear body-sized particles share a common nuclear space which is controlled by higher order chromatin organization.

  15. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    SciTech Connect

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A. . E-mail: eshelden@wsu.edu

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.

  16. Identification of Nuclear Protein Targets for Six Leukemogenic Tyrosine Kinases Governed by Post-Translational Regulation

    PubMed Central

    Pierce, Andrew; Williamson, Andrew; Jaworska, Ewa; Griffiths, John R.; Taylor, Sam; Walker, Michael; O’Dea, Mark Aspinall; Spooncer, Elaine; Unwin, Richard D.; Poolman, Toryn; Ray, David; Whetton, Anthony D.

    2012-01-01

    Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases. PMID:22745689

  17. Changes in the nuclear protein kinase activities in the regenerating liver of partially irradiated rat

    SciTech Connect

    Asami, K.; Kobayashi, H.; Fujiwara, A.; Yasumasu, I. )

    1989-09-01

    X rays (4.8 Gy) inhibit both DNA synthesis and phosphorylation of histone H1 in the regenerating liver of the rat. To determine the cause of the inhibition of histone H1 phosphorylation, changes in the nuclear protein kinase activities during the prereplicative phase of regeneration were measured. The cAMP-dependent protein kinase activity was low during regeneration, and the changes in the activity were not statistically significant. The cAMP-independent protein kinase activity increased at 15 h, decreased at 18 h, and increased again at 24 h after partial hepatectomy. X irradiation prior to partial hepatectomy did not inhibit the increase at 15 h, but it did inhibit the increase at 24 h. The activity was not inhibited by isoquinolinesulfonamide inhibitors such as H-7, and it was activated by a commercial preparation of an inhibitor protein of the cAMP-dependent kinase. It was also inhibited by quercetin. The possibility that the radiation-sensitive nuclear protein kinase is a nuclear cAMP-independent protein kinase specific for histone H1 is considered.

  18. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome–nucleus association and transcriptional signaling

    PubMed Central

    Meyer, Adam J.; Almendrala, Donna K.; Go, Minjoung M.; Krauss, Sharon Wald

    2011-01-01

    The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus–centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome–nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export. PMID:21486941

  19. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation

    PubMed Central

    Zhang, Hua; Song, Lei; Cong, Haolong

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5′ untranslated region (5′UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection

  20. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation

    PubMed Central

    Batrakou, Dzmitry G.; de las Heras, Jose I.; Czapiewski, Rafal; Mouras, Rabah; Schirmer, Eric C.

    2015-01-01

    Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity. PMID:26024229

  1. Characterization of the nuclear localization signal of high risk HPV16 E2 protein

    SciTech Connect

    Klucevsek, Kristin; Wertz, Mary; Lucchi, John; Leszczynski, Anna; Moroianu, Junona . E-mail: moroianu@bc.edu

    2007-03-30

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA-binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells, we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of EGFP-E2 and EGFP-cE2 determined that the C domain contains an {alpha} helix cNLS that overlaps with the DNA-binding region. Mutational analysis revealed that the arginine and lysine residues in this cNLS are essential for nuclear localization of HPV16 E2. Interestingly, these basic amino acid residues are well conserved among the E2 proteins of BPV-1 and some high risk HPV types but not in the low risk HPV types, suggesting that there are differences between the NLSs and corresponding nuclear import pathways between these E2 proteins.

  2. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export

    PubMed Central

    Li, Ping; Noegel, Angelika A.

    2015-01-01

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. PMID:26476453

  3. The Karyopherin Kap142p/Msn5p Mediates Nuclear Import and Nuclear Export of Different Cargo Proteins

    PubMed Central

    Yoshida, Kimihisa; Blobel, Günter

    2001-01-01

    We have identified a novel pathway for protein import into the nucleus. Although the product of Saccharomyces cerevisiae gene MSN5 was previously shown to function as a karyopherin (Kap) for nuclear export of various proteins, we discovered a nuclear import pathway mediated by Msn5p (also referred to as Kap142p). We have purified from yeast cytosol a complex containing Kap142p and the trimeric replication protein A (RPA), which is required for multiple aspects of DNA metabolism, including DNA replication, DNA repair, and recombination. In wild-type cells, RPA was localized primarily to the nucleus but, in a KAP142 deletion strain, RPA was mislocalized to the cytoplasm and the strain was highly sensitive to bleomycin (BLM). BLM causes DNA double-strand breaks and, in S. cerevisiae, the DNA damage is repaired predominantly by RPA-dependent homologous recombination. Therefore, our results indicate that in wild-type cells a critical portion of RPA was imported into the nucleus by Kap142p. Like several other import-related Kap–substrate complexes, the endogenous RPA–Kap142p complex was dissociated by RanGTP, but not by RanGDP. All three RPA genes are essential for viability, whereas KAP142 is not. Perhaps explaining this disparity, we observed an interaction between RPA and Kap95p in a strain lacking Kap142p. This interaction could provide a mechanism for import of RPA into the nucleus and cell viability in the absence of Kap142p. Together with published results (Kaffman, A., N.M. Rank, E.M. O'Neill, L.S. Huang, and E.K. O'Shea. 1998. Nature. 396:482–486; Blondel, M., P.M. Alepuz, L.S. Huang, S. Shaham, G. Ammerer, and M. Peter. 1999. Genes Dev. 13:2284–2300; DeVit, M.J., and M. Johnston. 1999. Curr. Biol. 9:1231–1241; Mahanty, S.K., Y. Wang, F.W. Farley, and E.A. Elion. 1999. Cell. 98:501–512) our data indicate that the karyopherin Kap142p is able to mediate nuclear import of one set of proteins and nuclear export of a different set of proteins. PMID

  4. Antibodies against distinct nuclear matrix proteins are characteristic for mixed connective tissue disease.

    PubMed Central

    Habets, W J; de Rooij, D J; Salden, M H; Verhagen, A P; van Eekelen, C A; van de Putte, L B; van Venrooij, W J

    1983-01-01

    Specific nuclear proteins, separated according to their molecular weight (mol. wt) by polyacrylamide gel electrophoresis (PAGE) and subsequently transferred to nitrocellulose sheets, are able to bind antibodies in sera from patients suffering from different types of connective tissue diseases. Antibodies against a characteristic set of nuclear protein antigens are found in sera from patients with mixed connective tissue disease (MCTD). Screening of 21 MCTD sera revealed a typical immunoblot pattern with major protein antigens of mol. wt 70,000 (20/21) (not identical with the Scl-70 antigen characteristic for scleroderma), mol. wt 31,000 (17/21), two proteins around mol. wt 23,000 (15/21) and two around mol. wt 19,000 (10/21). The 70,000, 23,000 and 19,000 antigens appeared to be rather insoluble nuclear proteins (i.e. components of the nuclear matrix). On behalf of their structural character they were present in nuclei from several types of cells but only in low amounts detectable in salt extracts of thymus acetone powder. The presence of antibodies directed against the mol. wt 70,000 antigen correlated strongly with the diagnosis of MCTD. This 70,000 antigen is not identical with the RNP antigen, a soluble ribonuclease sensitive ribonucleoprotein, since antibodies against nuclear RNP can be separated from anti-nuclear matrix antibodies by affinity chromatography using immobilized thymus salt extract. The distinct character of soluble nuclear RNP and structural nuclear matrix antigens is further supported by the fact that from 14 other anti-RNP sera obtained from patients with systemic lupus erythematosus (SLE), only three contained antibodies against the mol. wt 70,000 protein. Since the immunoblot pattern obtained with MCTD sera mostly was clearly distinguishable from the patterns obtained with sera from patients with related connective tissue diseases our results suggest that the immunoblotting technique might be useful as a diagnostic tool and support the

  5. Ubc9 Mediates Nuclear Localization and Growth Suppression of BRCA1 and BRCA1a Proteins

    PubMed Central

    QIN, YUNLONG; XU, JINGYAO; AYSOLA, KARTIK; BEGUM, NURJAHAN; REDDY, VAISHALI; CHAI, YULI; GRIZZLE, WILLIAM E.; PARTRIDGE, EDWARD E.; REDDY, E. SHYAM P.; RAO, VEENA N.

    2012-01-01

    BRCA1 gene mutations are responsible for hereditary breast and ovarian cancers. In sporadic breast tumors, BRCA1 dysfunction or aberrant subcellular localization is thought to be common. BRCA1 is a nuclear–cytoplasm shuttling protein and the reason for cytoplasmic localization of BRCA1 in young breast cancer patients is not yet known. We have previously reported BRCA1 proteins unlike K109R and cancer-predisposing mutant C61G to bind Ubc9 and modulate ER-α turnover. In the present study, we have examined the consequences of altered Ubc9 binding and knockdown on the subcellular localization and growth inhibitory function of BRCA1 proteins. Our results using live imaging of YFP, GFP, RFP-tagged BRCA1, BRCA1a and BRCA1b proteins show enhanced cytoplasmic localization of K109 R and C61G mutant BRCA1 proteins in normal and cancer cells. Furthermore, down-regulation of Ubc9 in MCF-7 cells using Ubc9 siRNA resulted in enhanced cytoplasmic localization of BRCA1 protein and exclusive cytoplasmic retention of BRCA1a and BRCA1b proteins. These mutant BRCA1 proteins were transforming and impaired in their capacity to inhibit growth of MCF-7 and CAL51 breast cancer cells. Interestingly, cytoplasmic BRCA1a mutants showed more clonogenicity in soft agar and higher levels of expression of Ubc9 than parental MCF7 cells. This is the first report demonstrating the physiological link between cytoplasmic mislocalization of mutant BRCA1 proteins, loss of ER-α repression, loss of ubiquitin ligase activity and loss of growth suppression of BRCA1 proteins. Thus, binding of BRCA1 proteins to nuclear chaperone Ubc9 provides a novel mechanism for nuclear import and control of tumor growth. PMID:21344391

  6. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. PMID:26847544

  7. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    NASA Astrophysics Data System (ADS)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  8. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins

    PubMed Central

    Klupp, Barbara G.; Granzow, Harald; Fuchs, Walter; Keil, Günther M.; Finke, Stefan; Mettenleiter, Thomas C.

    2007-01-01

    Although the nuclear envelope is a dynamic structure that disassembles and reforms during mitosis, the formation of membranous vesicles derived from the nuclear envelope has not yet been described in noninfected cells. However, during herpesvirus maturation, intranuclear capsids initiate transit to the cytosol for final maturation by budding at the inner nuclear membrane. Two conserved herpesvirus proteins are required for this primary envelopment, designated in the alphaherpesviruses as pUL31 and pUL34. Here, we show that simultaneous expression of pUL31 and pUL34 of the alphaherpesvirus pseudorabies virus in stably transfected rabbit kidney cells resulted in the formation of vesicles in the perinuclear space that resemble primary envelopes without a nucleocapsid. They contain pUL31 and pUL34 as shown by immunolabeling and are derived from the nuclear envelope. Thus, coexpression of only two conserved herpesvirus proteins without any other viral factor is sufficient to induce the formation of vesicles from the nuclear membrane. This argues for the contribution of cellular factors in this process either recruited from their natural cytoplasmic location or not yet identified as components of the nuclear compartment. PMID:17426144

  9. A Nonerythroid Isoform of Protein 4.1R Interacts with the Nuclear Mitotic Apparatus (NuMA) Protein

    PubMed Central

    Mattagajasingh, Subhendra N.; Huang, Shu-Ching; Hartenstein, Julia S.; Snyder, Michael; Marchesi, Vincent T.; Benz, Edward J.

    1999-01-01

    Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788–1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22–24-kD domain. PMID:10189366

  10. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine.

    PubMed Central

    Heese-Peck, A; Cole, R N; Borkhsenious, O N; Hart, G W; Raikhel, N V

    1995-01-01

    Only a few nuclear pore complex (NPC) proteins, mainly in vertebrates and yeast but none in plants, have been well characterized. As an initial step to identify plant NPC proteins, we examined whether NPC proteins from tobacco are modified by N-acetylglucosamine (GlcNAc). Using wheat germ agglutinin, a lectin that binds specifically to GlcNAc in plants, specific labeling was often found associated with or adjacent to NPCs. Nuclear proteins containing GlcNAc can be partially extracted by 0.5 M salt, as shown by a wheat germ agglutinin blot assay, and at least eight extracted proteins were modified by terminal GlcNAc, as determined by in vitro galactosyltransferase assays. Sugar analysis indicated that the plant glycans with terminal GlcNAc differ from the single O-linked GlcNAc of vertebrate NPC proteins in that they consist of oligosaccharides that are larger in size than five GlcNAc residues. Most of these appear to be bound to proteins via a hydroxyl group. This novel oligosaccharide modification may convey properties to the plant NPC that are different from those of vertebrate NPCs. PMID:8589629

  11. SUMOylation regulates the nuclear mobility of CREB binding protein and its association with nuclear bodies in live cells

    SciTech Connect

    Ryan, Colm M.; Kindle, Karin B.; Collins, Hilary M.; Heery, David M.

    2010-01-01

    The lysine acetyltransferase CREB binding protein (CBP) is required for chromatin modification and transcription at many gene promoters. In fixed cells, a large proportion of CBP colocalises to PML or nuclear bodies. Using live cell imaging, we show here that YFP-tagged CBP expressed in HEK293 cells undergoes gradual accumulation in nuclear bodies, some of which are mobile and migrate towards the nuclear envelope. Deletion of a short lysine-rich domain that contains the major SUMO acceptor sites of CBP abrogated its ability to be SUMO modified, and prevented its association with endogenous SUMO-1/PML speckles in vivo. This SUMO-defective CBP showed enhanced ability to co-activate AML1-mediated transcription. Deletion mapping revealed that the SUMO-modified region was not sufficient for targeting CBP to PML bodies, as C-terminally truncated mutants containing this domain showed a strong reduction in accumulation at PML bodies. Fluorescence recovery after photo-bleaching (FRAP) experiments revealed that YFP-CBP{Delta}998-1087 had a retarded recovery time in the nucleus, as compared to YFP-CBP. These results indicate that SUMOylation regulates CBP function by influencing its shuttling between nuclear bodies and chromatin microenvironments.

  12. MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion

    PubMed Central

    Sardiello, Marco; Licciulli, Flavio; Catalano, Domenico; Attimonelli, Marcella; Caggese, Corrado

    2003-01-01

    Mitochondria are organelles present in the cytoplasm of most eukaryotic cells; although they have their own DNA, the majority of the proteins necessary for a functional mitochondrion are coded by the nuclear DNA and only after transcription and translation they are imported in the mitochondrion as proteins. The primary role of the mitochondrion is electron transport and oxidative phosphorylation. Although it has been studied for a long time, the interest of researchers in mitochondria is still alive thanks to the discovery of mitochondrial role in apoptosis, aging and cancer. Aim of the MitoDrome database is to annotate the Drosophila melanogaster nuclear genes coding for mitochondrial proteins in order to contribute to the functional characterization of nuclear genes coding for mitochondrial proteins and to knowledge of gene diseases related to mitochondrial dysfunctions. Indeed D. melanogaster is one of the most studied organisms and a model for the Human genome. Data are derived from the comparison of Human mitochondrial proteins versus the Drosophila genome, ESTs and cDNA sequence data available in the FlyBase database. Links from the MitoDrome entries to the related homologous entries available in MitoNuC will be soon imple-mented. The MitoDrome database is available at http://bighost.area.ba.cnr.it/BIG/MitoDrome. Data are organised in a flat-file format and can be retrieved using the SRS system. PMID:12520013

  13. Identification and purification of a calcium-binding protein in hepatic nuclear membranes.

    PubMed

    Gilchrist, J S; Pierce, G N

    1993-02-25

    Recent evidence suggests that nuclei possess Ca2+ transport mechanisms to regulate nucleoplasmic/cytosolic Ca2+ gradients. We, therefore, investigated the possibility that Ca(2+)-binding proteins may also exist within the nucleus. Electrophoretic analysis revealed the presence of an acidic 93-kDa protein (p93) in the membranes of isolated nuclei. p93 stained blue with "Stains-All" in SDS-polyacrylamide gels and was the major 45Ca(2+)- and ruthenium red-binding nuclear envelope protein in electroblot overlays. p93 was resistant to extraction by 6 M urea but was solubilized in 2% Triton X-100. Citric acid was highly effective in removing the outer nuclear membrane (ER) with concomitant reduction (< 10-fold) of mannose-6-phosphatase activity, but not p93. 45Ca(2+)-binding assays of purified p93 revealed the presence of high capacity Ca(2+)-binding sites comparable to calreticulin. This evidence strongly suggests that p93 is a major Ca(2+)-binding protein of the inner nuclear envelope membrane. Partial amino acid sequence analysis revealed that p93 was close to 100% homologous with a recently identified ER Ca(2+)-binding protein known as calnexin. It is likely, therefore, that p93 is calnexin. However, mild CHAPS detergent treatment of nuclear envelopes and ER revealed distinctly different solubility properties of each membrane for the extraction of p93. This, together with the citrate data, strongly suggests that p93/calnexin, in isolated nuclear envelopes, is mostly bound to the inner membrane. It is possible that p93 may be involved with the regulation of Ca2+ transients between the nucleoplasm and perinuclear space. PMID:8440713

  14. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. PMID:26074086

  15. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Sadqi, Mourad; de Alba, Eva; Muñoz, Victor

    2013-01-01

    The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism. PMID:22987355

  16. Nuclear PRP20 protein is required for mRNA export.

    PubMed Central

    Amberg, D C; Fleischmann, M; Stagljar, I; Cole, C N; Aebi, M

    1993-01-01

    The yeast PRP20 protein is highly homologous in structure and function to the RCC1 protein of higher eukaryotes. The RCC1 protein is involved in the regulation of the onset of mitosis, whereas the PRP20 protein was shown to be required for accurate and efficient mRNA metabolism. The first observable phenotype in mutant prp20 cells when shifted from permissive to non-permissive temperature is a loss of nuclear PRP20 protein. Concomitantly, an accumulation of poly(A)+ RNA in the nucleus is observed. The temperature-sensitive RCC1 allele in the mutant hamster cell line tsBN2 leads to a similar accumulation of mRNA in the nucleus. Images PMID:7679070

  17. Characterization of the nuclear localization signal of the mouse TET3 protein

    SciTech Connect

    Xiao, Peng; Zhou, Xiao-long; Zhang, Hong-xiao; Xiong, Kai; Teng, Yun; Huang, Xian-ju; Cao, Rui; Wang, Yi; Liu, Hong-lin

    2013-09-27

    Highlights: •Amino acid sequence KKRK is responsible for nuclear localization of TET3. •Amino acid sequence KKRK are capable of targeting the cytoplasmic proteins to the nucleus. •Amino acid sequence KKRK are conserved in TET3 orthologs. -- Abstract: DNA demethylation is associated with gene activation and is mediated by a family of ten-eleven translocation (TET) dioxygenase. The TET3 protein is a 1668-amino-acid DNA demethylase that is predicted to possess five nuclear localization signals (NLSs). In this paper, we used a series of green fluorescent protein-tagged and mutation constructs to identify a conserved NLS (KKRK) embedded between amino acid 1615 and 1618 of mouse TET3. The KKRK sequence facilitates the cytoplasmic protein’s translocation into the nucleus. Additionally TET3 may be imported into the nucleus by importin-α and importin-β.

  18. Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells.

    PubMed

    Martel, V; Filhol, O; Nueda, A; Gerber, D; Benitez, M J; Cochet, C

    2001-11-01

    We have generated fusion proteins between the subunits of CK2 and GFP and characterized their behaviour in living cells. The expressed fusion proteins were functional and interacted with endogenous CK2. Imaging of NIH3T3 cells expressing low level of GFP-CK2alpha or GFP-CK2beta showed that both proteins were mostly nuclear in interphase. Both CK2 subunits contain nuclear localization domains that target them independently to the nucleus. Once in the nucleus, both subunits diffused rapidly in the nucleoplasm. In mitotic cells, CK2 subunits were dispersed throughout the cytoplasm and were not associated to chromatin. Our data are compatible with the idea that each subunit can translocate individually to the nucleus to interact with each other or with important cellular partners. Understanding the molecular mechanisms which regulate the dynamic localization of CK2 subunits will be of central importance. PMID:11827178

  19. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    SciTech Connect

    Ostlund, Cecilia; Guan, Tinglu; Figlewicz, Denise A.; Hays, Arthur P.; Worman, Howard J.; Gerace, Larry; Schirmer, Eric C.

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  20. A Crowdsourced nucleus: Understanding nuclear organization in terms of dynamically networked protein function

    PubMed Central

    Wood, Ashley M.; Garza-Gongora, Arturo G.; Kosak, Steven T.

    2014-01-01

    The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. PMID:24412853

  1. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    SciTech Connect

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.

  2. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number. PMID:15325281

  3. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-01-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents. PMID:26048327

  4. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  5. A Single Herpesvirus Protein Can Mediate Vesicle Formation in the Nuclear Envelope*

    PubMed Central

    Lorenz, Michael; Vollmer, Benjamin; Unsay, Joseph D.; Klupp, Barbara G.; García-Sáez, Ana J.; Mettenleiter, Thomas C.; Antonin, Wolfram

    2015-01-01

    Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission. PMID:25605719

  6. Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila

    SciTech Connect

    Liu, Jun; Song, Kiwon; Wolfner, M.F.

    1995-12-01

    The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutant alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that Ya function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function might interact with itself either directly or indirectly. 27 refs., 6 figs.

  7. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown

    PubMed Central

    Turgay, Yagmur; Champion, Lysie; Balazs, Csaba; Held, Michael; Toso, Alberto; Gerlich, Daniel W.; Meraldi, Patrick

    2014-01-01

    SUN proteins reside in the inner nuclear membrane and form complexes with KASH proteins of the outer nuclear membrane that connect the nuclear envelope (NE) to the cytoskeleton. These complexes have well-established functions in nuclear anchorage and migration in interphase, but little is known about their involvement in mitotic processes. Our analysis demonstrates that simultaneous depletion of human SUN1 and SUN2 delayed removal of membranes from chromatin during NE breakdown (NEBD) and impaired the formation of prophase NE invaginations (PNEIs), similar to microtubule depolymerization or down-regulation of the dynein cofactors NudE/EL. In addition, overexpression of dominant-negative SUN and KASH constructs reduced the occurrence of PNEI, indicating a requirement for functional SUN–KASH complexes in NE remodeling. Codepletion of SUN1/2 slowed cell proliferation and resulted in an accumulation of morphologically defective and disoriented mitotic spindles. Quantification of mitotic timing revealed a delay between NEBD and chromatin separation, indicating a role of SUN proteins in bipolar spindle assembly and mitotic progression. PMID:24662567

  8. Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin.

    PubMed

    Barton, Lacy J; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K

    2016-07-01

    The nuclear lamina is an extensive protein network that underlies the inner nuclear envelope. This network includes the LAP2-emerin-MAN1-domain (LEM-D) protein family, proteins that share an association with the chromatin binding protein Barrier-to-autointegration factor (BAF). Loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Mechanisms associated with laminopathies are not yet understood. Here we present our studies of one of the Drosophila nuclear lamina LEM-D proteins, Otefin (Ote), a homologue of emerin. Previous studies have shown that Ote is autonomously required for the survival of female germline stem cells (GSCs). We demonstrate that Ote is also required for survival of somatic cells in the ovarian niche, with loss of Ote causing a decrease in cap cell number and altered signal transduction. We show germ cell-restricted expression of Ote rescues these defects, revealing a non-autonomous function for Ote in niche maintenance and emphasizing that GSCs contribute to the maintenance of their own niches. Further, we investigate the requirement of Ote in the male fertility. We show that ote mutant males become prematurely sterile as they age. Parallel to observations in females, this sterility is associated with GSC loss and changes in somatic cells of the niche, phenotypes that are largely rescued by germ cell-restricted Ote expression. Taken together, our studies demonstrate that Ote is required autonomously for survival of two stem cell populations, as well as non-autonomously for maintenance of two somatic niches. Finally, our data add to growing evidence that LEM-D proteins have critical roles in stem cell survival and tissue homeostasis. PMID:27174470

  9. Primary structure of a human arginine-rich nuclear protein that colocalizes with spliceosome components

    SciTech Connect

    Chaudhary, N.; McMahon, C.; Blobel, G. )

    1991-09-15

    The cDNA for a 54-kDa nuclear protein (p54) has been cloned from a human hepatoma expression library. Contained within p54 is an arginine/serine-rich region similar to segments of several proteins that participate in pre-mRNA splicing including the 70-kDa component of U1 small nuclear ribonucleoprotein particle (snRNP) and the Drosophila transformer and suppressor-of-white-apricot proteins. The arginine/serine-rich region is dominated by a series of 8-amino acid imperfect repetitive motifs (consensus sequence, Arg-Arg-Ser-Arg-Ser-Arg-Ser-Arg). Antibodies raised against synthetic peptides of p54 react with an {approximately}70-kDa protein on immunoblots of HeLa cell and rat liver nuclear proteins. This apparent discrepancy in mass is also observed when p54 mRNA is translated in vitro. Indirect immunofluorescence studies in HeLa cells show that p54 is distributed throughout the nucleus in a speckled pattern, with an additional diffuse labeling of the nucleus excluding the nucleoli. Double immunofluorescence experiments indicate that these punctate regions are coincident with the speckles seen in cells stained with antibodies against several constituents of the pre-mRNA splicing machinery. Sedimentation analysis of HeLa cell extracts on sucrose gradients showed that p54 migrates at 4-6 S, indicating that the protein is not a tightly associated component of snRNPs. Although the function of p54 is not yet known, the structure and immunolocalization data suggest that this protein may have a role in pre-mRNA processing.

  10. Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization.

    PubMed

    Sjöberg, Marcela K; Shestakova, Elena; Mansuroglu, Zeyni; Maccioni, Ricardo B; Bonnefoy, Eliette

    2006-05-15

    The microtubule-associated tau protein participates in the organization and integrity of the neuronal cytoskeleton. A nuclear form of tau has been described in neuronal and non-neuronal cells, which displays a nucleolar localization during interphase but is associated with nucleolar-organizing regions in mitotic cells. In the present study, based on immunofluorescence, immuno-FISH and confocal microscopy, we show that nuclear tau is mainly present at the internal periphery of nucleoli, partially colocalizing with the nucleolar protein nucleolin and human AT-rich alpha-satellite DNA sequences organized as constitutive heterochromatin. By using gel retardation, we demonstrate that tau not only colocalizes with, but also specifically binds to, AT-rich satellite DNA sequences apparently through the recognition of AT-rich DNA stretches. Here we propose a functional role for nuclear tau in relation to the nucleolar organization and/or heterochromatinization of a portion of RNA genes. Since nuclear tau has also been found in neurons from patients with Alzheimer's disease (AD), aberrant nuclear tau could affect the nucleolar organization during the course of AD. We discuss nucleolar tau associated with AT-rich alpha-satellite DNA sequences as a potential molecular link between trisomy 21 and AD. PMID:16638814

  11. Nuclear Importation of Mariner Transposases among Eukaryotes: Motif Requirements and Homo-Protein Interactions

    PubMed Central

    Demattei, Marie-Véronique; Hedhili, Sabah; Sinzelle, Ludivine; Bressac, Christophe; Casteret, Sophie; Moiré, Nathalie; Cambefort, Jeanne; Thomas, Xavier; Pollet, Nicolas; Gantet, Pascal; Bigot, Yves

    2011-01-01

    Mariner-like elements (MLEs) are widespread transposable elements in animal genomes. They have been divided into at least five sub-families with differing host ranges. We investigated whether the ability of transposases encoded by Mos1, Himar1 and Mcmar1 to be actively imported into nuclei varies between host belonging to different eukaryotic taxa. Our findings demonstrate that nuclear importation could restrict the host range of some MLEs in certain eukaryotic lineages, depending on their expression level. We then focused on the nuclear localization signal (NLS) in these proteins, and showed that the first 175 N-terminal residues in the three transposases were required for nuclear importation. We found that two components are involved in the nuclear importation of the Mos1 transposase: an SV40 NLS-like motif (position: aa 168 to 174), and a dimerization sub-domain located within the first 80 residues. Sequence analyses revealed that the dimerization moiety is conserved among MLE transposases, but the Himar1 and Mcmar1 transposases do not contain any conserved NLS motif. This suggests that other NLS-like motifs must intervene in these proteins. Finally, we showed that the over-expression of the Mos1 transposase prevents its nuclear importation in HeLa cells, due to the assembly of transposase aggregates in the cytoplasm. PMID:21876763

  12. Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins

    SciTech Connect

    Cano-Monreal, Gina L.; Wylie, Kristine M.; Cao, Feng; Tavis, John E.; Morrison, Lynda A.

    2009-09-15

    Herpesviruses must cross the inner nuclear membrane and underlying lamina to exit the nucleus. HSV-1 US3 and PKC can phosphorylate lamins and induce their dispersion but do not elicit all of the phosphorylated lamin species produced during infection. UL13 is a serine threonine protein kinase conserved among many herpesviruses. HSV-1 UL13 phosphorylates US3 and thereby controls UL31 and UL34 nuclear rim localization, indicating a role in nuclear egress. Here, we report that HSV-2 UL13 alone induced conformational changes in lamins A and C and redistributed lamin B1 from the nuclear rim to intranuclear granular structures. HSV-2 UL13 directly phosphorylated lamins A, C, and B1 in vitro, and the lamin A1 tail domain. HSV-2 infection recapitulated the lamin alterations seen upon expression of UL13 alone, and other alterations were also observed, indicating that additional viral and/or cellular proteins cooperate with UL13 to alter lamins during HSV-2 infection to allow nuclear egress.

  13. Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins

    PubMed Central

    Cano-Monreal, Gina L.; Wylie, Kristine M.; Cao, Feng; Tavis, John E.; Morrison, Lynda A.

    2009-01-01

    Herpesviruses must cross the inner nuclear membrane and underlying lamina to exit the nucleus. HSV-1 US3 and PKC can phosphorylate lamins and induce their dispersion but do not elicit all of the phosphorylated lamin species produced during infection. UL13 is a serine threonine protein kinase conserved among many herpesviruses. HSV-1 UL13 phosphorylates US3 and thereby controls UL31 and UL34 nuclear rim localization, indicating a role in nuclear egress. Here, we report that HSV-2 UL13 alone induced conformational changes in lamins A and C and redistributed lamin B1 from the nuclear rim to intranuclear granular structures. HSV-2 UL13 directly phosphorylated lamins A, C, and B1 in vitro, and the lamin A1 tail domain. HSV-2 infection recapitulated the lamin alterations seen upon expression of UL13 alone, and other alterations were also observed, indicating that additional viral and/or cellular proteins cooperate with UL13 to alter lamins during HSV-2 infection to allow nuclear egress. PMID:19640559

  14. Deciphering the Nuclear Import Pathway for the Cytoskeletal Red Cell Protein 4.1R

    PubMed Central

    Gascard, Philippe; Nunomura, Wataru; Lee, Gloria; Walensky, Loren D.; Krauss, Sharon Wald; Takakuwa, Yuichi; Chasis, Joel A.; Mohandas, Narla; Conboy, John G.

    1999-01-01

    The erythroid membrane cytoskeletal protein 4.1 is the prototypical member of a genetically and topologically complex family that is generated by combinatorial alternative splicing pathways and is localized at diverse intracellular sites including the nucleus. To explore the molecular determinants for nuclear localization, we transfected COS-7 cells with epitope-tagged versions of natural red cell protein 4.1 (4.1R) isoforms as well as mutagenized and truncated derivatives. Two distant topological sorting signals were required for efficient nuclear import of the 4.1R80 isoform: a basic peptide, KKKRER, encoded by alternative exon 16 and acting as a weak core nuclear localization signal (4.1R NLS), and an acidic peptide, EED, encoded by alternative exon 5. 4.1R80 isoforms lacking either of these two exons showed decreased nuclear import. Fusion of various 4.1R80 constructs to the cytoplasmic reporter protein pyruvate kinase confirmed a requirement for both motifs for full NLS function. 4.1R80 was efficiently imported in the nuclei of digitonin-permeabilized COS-7 cells in the presence of recombinant Rch1 (human importin α2), importin β, and GTPase Ran. Quantitative analysis of protein–protein interactions using a resonant mirror detection technique showed that 4.1R80 bound to Rch1 in vitro with high affinity (KD = 30 nM). The affinity decreased at least 7- and 20-fold, respectively, if the EED motif in exon 5 or if 4.1R NLS in exon 16 was lacking or mutated, confirming that both motifs were required for efficient importin-mediated nuclear import of 4.1R80. PMID:10359596

  15. Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2

    PubMed Central

    Barrales, Ramón Ramos; Forn, Marta; Georgescu, Paula Raluca; Sarkadi, Zsuzsa; Braun, Sigurd

    2016-01-01

    Transcriptionally silent chromatin localizes to the nuclear periphery, which provides a special microenvironment for gene repression. A variety of nuclear membrane proteins interact with repressed chromatin, yet the functional role of these interactions remains poorly understood. Here, we show that, in Schizosaccharomyces pombe, the nuclear membrane protein Lem2 associates with chromatin and mediates silencing and heterochromatin localization. Unexpectedly, we found that these functions can be separated and assigned to different structural domains within Lem2, excluding a simple tethering mechanism. Chromatin association and tethering of centromeres to the periphery are mediated by the N-terminal LEM (LAP2–Emerin–MAN1) domain of Lem2, whereas telomere anchoring and heterochromatin silencing require exclusively its conserved C-terminal MSC (MAN1–Src1 C-terminal) domain. Particularly, silencing by Lem2 is epistatic with the Snf2/HDAC (histone deacetylase) repressor complex SHREC at telomeres, while its necessity can be bypassed by deleting Epe1, a JmjC protein with anti-silencing activity. Furthermore, we found that loss of Lem2 reduces heterochromatin association of SHREC, which is accompanied by increased binding of Epe1. This reveals a critical function of Lem2 in coordinating these antagonistic factors at heterochromatin. The distinct silencing and localization functions mediated by Lem2 suggest that these conserved LEM-containing proteins go beyond simple tethering to play active roles in perinuclear silencing. PMID:26744419

  16. Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    PubMed Central

    2011-01-01

    The Epstein-Barr virus (EBV) encoded Latent Membrane Protein 1 (LMP1) has been shown to increase the expression of promyelocytic leukemia protein (PML) and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs). PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1. PMID:21975125

  17. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    SciTech Connect

    Siyam, Arwa; Wang, Suzhen; Qin, Chunlin; Mues, Gabriele; Stevens, Roy; D'Souza, Rena N.; Lu, Yongbo

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nuclear localization of DMP1 in various cell lines. Black-Right-Pointing-Pointer Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. Black-Right-Pointing-Pointer Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  18. Cloning and characterisation of a nuclear, site specific ssDNA binding protein.

    PubMed

    Smidt, M P; Russchen, B; Snippe, L; Wijnholds, J; Ab, G

    1995-07-11

    Estradiol inducible, liver-specific expression of the apoVLDL II gene is mediated through the estrogen receptor and a variety of other DNA-binding proteins. In the present study we report the cloning and characterisation of a single-strand DNA binding protein that interacts with the lower strand of a complex regulatory site, which includes the major estrogen responsive element and a site that resembles the rat albumin site D (apoVLDL II site D). Based on its binding specificity determined with electro-mobility shift assays, the protein is named single-strand D-box binding factor (ssDBF). Analysis of the deduced 302 amino acid sequence revealed that the protein belongs to the heteronuclear ribonucleoprotein A/B family (hnRNP A/B) and resembles other known eukaryotic single-strand DNA binding proteins. Transient transfection experiments in a chicken liver cell-line showed that the protein represses estrogen-induced transcription. A protein with similar binding characteristics is present in liver nuclear extract. The relevance of the occurrence of this protein to the expression of the apoVLDL II gene is discussed. PMID:7630716

  19. Degradation of HaloTag-fused nuclear proteins using bestatin-HaloTag ligand hybrid molecules.

    PubMed

    Tomoshige, Shusuke; Naito, Mikihiko; Hashimoto, Yuichi; Ishikawa, Minoru

    2015-10-14

    We have developed a protein knockdown technology using hybrid small molecules designed as conjugates of a ligand for the target protein and a ligand for ubiquitin ligase cellular inhibitor of apoptosis protein 1 (cIAP1). However, this technology has several limitations. Here, we report the development of a novel protein knockdown system to address these limitations. In this system, target proteins are fused with HaloTag to provide a common binding site for a degradation inducer. We designed and synthesized small molecules consisting of alkyl chloride as the HaloTag-binding degradation inducer, which binds to HaloTag, linked to BE04 (2), which binds to cIAP1. Using this system, we successfully knocked down HaloTag-fused cAMP responsive element binding protein 1 (HaloTag-CREB1) and HaloTag-fused c-jun (HaloTag-c-jun), which are ligand-unknown nuclear proteins, in living cells. HaloTag-binding degradation inducers can be synthesized easily, and are expected to be useful as biological tools for pan-degradation of HaloTag-fused proteins. PMID:26338696

  20. Histone H3 Interacts and Colocalizes with the Nuclear Shuttle Protein and the Movement Protein of a Geminivirus ▿ †

    PubMed Central

    Zhou, Yanchen; Rojas, Maria R.; Park, Mi-Ri; Seo, Young-Su; Lucas, William J.; Gilbertson, Robert L.

    2011-01-01

    Geminiviruses are plant-infecting viruses with small circular single-stranded DNA genomes. These viruses utilize nuclear shuttle proteins (NSPs) and movement proteins (MPs) for trafficking of infectious DNA through the nuclear pore complex and plasmodesmata, respectively. Here, a biochemical approach was used to identify host factors interacting with the NSP and MP of the geminivirus Bean dwarf mosaic virus (BDMV). Based on these studies, we identified and characterized a host nucleoprotein, histone H3, which interacts with both the NSP and MP. The specific nature of the interaction of histone H3 with these viral proteins was established by gel overlay and in vitro and in vivo coimmunoprecipitation (co-IP) assays. The NSP and MP interaction domains were mapped to the N-terminal region of histone H3. These experiments also revealed a direct interaction between the BDMV NSP and MP, as well as interactions between histone H3 and the capsid proteins of various geminiviruses. Transient-expression assays revealed the colocalization of histone H3 and NSP in the nucleus and nucleolus and of histone H3 and MP in the cell periphery and plasmodesmata. Finally, using in vivo co-IP assays with a Myc-tagged histone H3, a complex composed of histone H3, NSP, MP, and viral DNA was recovered. Taken together, these findings implicate the host factor histone H3 in the process by which an infectious geminiviral DNA complex forms within the nucleus for export to the cell periphery and cell-to-cell movement through plasmodesmata. PMID:21900168

  1. Identification of a functional nuclear export signal in the green fluorescent protein asFP499

    SciTech Connect

    Mustafa, Huseyin . E-mail: huseyinm@hotmail.com; Strasser, Bernd; Rauth, Sabine; Irving, Robert A.; Wark, Kim L.

    2006-04-21

    The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified {sub 194}LRMEKLNI{sub 201} as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES.

  2. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    PubMed Central

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W.W.; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2014-01-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure. PMID:26052177

  3. Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin

    SciTech Connect

    Kurooka, Hisanori; Kato, Keizo; Minoguchi, Shigeru

    1997-02-01

    In a yeast artificial chromosome contig close to the nude locus on mouse chromosome 11, we identified a novel gene, nucleoredoxin, that encodes a protein with similarity to the active site of thioredoxins. Nucleoredoxin is conserved between mammalian species, and two homologous genes were found in Caenorhabditis elegans. The nucleoredoxin transcripts are expressed in all adult tissues examined, but restricted to the nervous system and the limb buds in Day 10.5-11.5 embryos. The nucleoredoxin protein is predominantly localized in the nucleus of cells transfected with the nucleoredoxin expression construct. Since the bacterially expressed protein of nucleoredoxin showed oxidoreductase activity of the insulin disulfide bonds with kinetics similar to that of thioredoxin, it may be a redox regulator of the nuclear proteins, such as transcription factors. 40 refs., 6 figs.

  4. Coordinate inhibition of expression of several genes for protein subunits of human nuclear RNase P

    PubMed Central

    Kovrigina, Elizaveta; Wesolowski, Donna; Altman, Sidney

    2003-01-01

    The deliberate inhibition of expression of one of the protein subunits (Rpp38) of human nuclear RNase P is achievable by using external guide sequence (EGS) technology. Both the protein product and the mRNA are greatly reduced 24 h after transient transfection with a gene coding for an appropriate EGS. Control experiments indicated that four other protein subunits of RNase P and their RNAs are also inhibited with no external manipulation. The remaining RNase P proteins, their mRNAs, and the RNA subunit of RNase P all are unchanged. Several short nucleotide sequences adjacent to the ORFs for the inhibited genes are similar and could be targets for transcriptional repression. The explanation of coordinate inhibition of the expression of the product of one particular gene by the transfection of an EGS (or RNA interference) requires some care in terms of interpreting phenotypic effects because, in our case, several gene products that are not targeted are also inhibited. PMID:12552092

  5. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    NASA Astrophysics Data System (ADS)

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W. W.; , Francis E. Jenney, Jr.; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2013-12-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  6. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles.

    PubMed

    Chen, Min; von Mikecz, Anna

    2005-04-15

    Despite of their exponentially growing use, little is known about cell biological effects of nanoparticles. Here, we report uptake of silica (SiO(2)) nanoparticles to the cell nucleus where they induce aberrant clusters of topoisomerase I (topo I) in the nucleoplasm that additionally contain signature proteins of nuclear domains, and protein aggregation such as ubiquitin, proteasomes, cellular glutamine repeat (polyQ) proteins, and huntingtin. Formation of intranuclear protein aggregates (1) inhibits replication, transcription, and cell proliferation; (2) does not significantly alter proteasomal activity or cell viability; and (3) is reversible by Congo red and trehalose. Since SiO(2) nanoparticles trigger a subnuclear pathology resembling the one occurring in expanded polyglutamine neurodegenerative disorders, we suggest that integrity of the functional architecture of the cell nucleus should be used as a read out for cytotoxicity and considered in the development of safe nanotechnology. PMID:15777787

  7. Cytomegalovirus Assembly Protein Precursor and Proteinase Precursor Contain Two Nuclear Localization Signals That Mediate Their Own Nuclear Translocation and That of the Major Capsid Protein

    PubMed Central

    Plafker, Scott M.; Gibson, Wade

    1998-01-01

    The cytomegalovirus (CMV) assembly protein precursor (pAP) interacts with the major capsid protein (MCP), and this interaction is required for nuclear translocation of the MCP, which otherwise remains in the cytoplasm of transfected cells (L. J. Wood et al., J. Virol. 71:179–190, 1997). We have interpreted this finding to indicate that the CMV MCP lacks its own nuclear localization signal (NLS) and utilizes the pAP as an NLS-bearing escort into the nucleus. The CMV pAP amino acid sequence has two clusters of basic residues (e.g., KRRRER [NLS1] and KARKRLK [NLS2], for simian CMV) that resemble the simian virus 40 large-T-antigen NLS (D. Kalderon et al., Cell 39:499–509, 1984) and one of these (NLS1) has a counterpart in the pAP homologs of other herpesviruses. The work described here establishes that NLS1 and NLS2 are mutually independent NLS that can act (i) in cis to translocate pAP and the related proteinase precursor (pNP1) into the nucleus and (ii) in trans to transport MCP into the nucleus. By using combinations of NLS mutants and carboxy-terminal deletion constructs, we demonstrated a self-interaction of pAP and cytoplasmic interactions of pAP with pNP1 and of pNP1 with itself. The relevance of these findings to early steps in capsid assembly, the mechanism of MCP nuclear transport, and the possible cytoplasmic formation of protocapsomeric substructures is discussed. PMID:9733808

  8. Development of an ELISA detecting Tumor Protein 53-Induced Nuclear Protein 1 in serum of prostate cancer patients.

    PubMed

    Saadi, Houda; Seillier, Marion; Sandi, Maria José; Peuget, Sylvain; Kellenberger, Christine; Gravis, Gwenaëlle; Dusetti, Nelson J; Iovanna, Juan L; Rocchi, Palma; Amri, Mohamed; Carrier, Alice

    2013-01-01

    Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) plays an important role during cell stress response in synergy with the potent "genome-keeper" p53. In human, the gene encoding TP53INP1 is expressed at very high level in some pathological situations, such as inflammation and prostate cancer (PC). TP53INP1 overexpression in PC seems to be a worse prognostic factor, particularly predictive of biological cancer relapse, making TP53INP1 a relevant specific target for molecular therapy of Castration Resistant (CR) PC. In that context, detection of TP53INP1 in patient biological fluids is a promising diagnostic avenue. We report here successful development of a new Enzyme-Linked Immunosorbent Assay (ELISA) detecting TP53INP1, taking advantage of molecular tools (monoclonal antibodies (mAbs) and recombinant proteins) generated in the laboratory during the course of basic functional investigations devoted to TP53INP1. The ELISA principle is based on a sandwich immunoenzymatic system, TP53INP1 protein being trapped by a first specific mAb coated on microplate then recognized by a second specific mAb. This new assay allows specific detection of TP53INP1 in serum of several PC patients. This breakthrough paves the way towards investigation of a large cohort of patients and assessment of clinical applications of TP53INP1 dosage. PMID:24600558

  9. Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity

    SciTech Connect

    Iwanaga, Kentaro; Sueoka, Naoko; Sato, Akemi; Hayashi, Shinichiro; Sueoka, Eisaburo . E-mail: sueokae@post.saga-med.ac.jp

    2005-08-05

    Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression.

  10. MitoNuc: a database of nuclear genes coding for mitochondrial proteins. Update 2002.

    PubMed

    Attimonelli, Marcella; Catalano, Domenico; Gissi, Carmela; Grillo, Giorgio; Licciulli, Flavio; Liuni, Sabino; Santamaria, Monica; Pesole, Graziano; Saccone, Cecilia

    2002-01-01

    Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organelle genomes. Mitochondrial genomes have been extensively sequenced and analysed and data have been collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc, a database containing detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa. The MitoNuc database can be retrieved through SRS and is available via the web site http://bighost.area.ba.cnr.it/mitochondriome where other mitochondrial databases developed by our group, the complete list of the sequenced mitochondrial genomes, links to other mitochondrial sites and related information, are available. The MitoAln database, related to MitoNuc in the previous release, reporting the multiple alignments of the relevant homologous protein coding regions, is no longer supported in the present release. In order to keep the links among entries in MitoNuc from homologous proteins, a new field in the database has been defined: the cluster identifier, an alpha numeric code used to identify each cluster of homologous proteins. A comment field derived from the corresponding SWISS-PROT entry has been introduced; this reports clinical data related to dysfunction of the protein. The logic scheme of MitoNuc database has been implemented in the ORACLE DBMS. This will allow the end-users to retrieve data through a friendly interface that will be soon implemented. PMID:11752284

  11. MitoNuc: a database of nuclear genes coding for mitochondrial proteins. Update 2002

    PubMed Central

    Attimonelli, Marcella; Catalano, Domenico; Gissi, Carmela; Grillo, Giorgio; Licciulli, Flavio; Liuni, Sabino; Santamaria, Monica; Pesole, Graziano; Saccone, Cecilia

    2002-01-01

    Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organelle genomes. Mitochondrial genomes have been extensively sequenced and analysed and data have been collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc, a database containing detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa. The MitoNuc database can be retrieved through SRS and is available via the web site http://bighost.area.ba.cnr.it/mitochondriome where other mitochondrial databases developed by our group, the complete list of the sequenced mitochondrial genomes, links to other mitochondrial sites and related information, are available. The MitoAln database, related to MitoNuc in the previous release, reporting the multiple alignments of the relevant homologous protein coding regions, is no longer supported in the present release. In order to keep the links among entries in MitoNuc from homologous proteins, a new field in the database has been defined: the cluster identifier, an alpha numeric code used to identify each cluster of homologous proteins. A comment field derived from the corresponding SWISS-PROT entry has been introduced; this reports clinical data related to dysfunction of the protein. The logic scheme of MitoNuc database has been implemented in the ORACLE DBMS. This will allow the end-users to retrieve data through a friendly interface that will be soon implemented. PMID:11752284

  12. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    PubMed

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. PMID:19000924

  13. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay.

    PubMed

    Bresson, Stefan M; Conrad, Nicholas K

    2013-01-01

    Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. PMID:24146636

  14. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope

    PubMed Central

    Lamm, Christian E.; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-01-01

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell’s nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein. PMID:26978388

  15. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-01-01

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein. PMID:26978388

  16. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex

    PubMed Central

    Popken, Petra; Ghavami, Ali; Onck, Patrick R.; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    Nuclear pore complexes (NPCs) allow selective import and export while forming a barrier for untargeted proteins. Using fluorescence microscopy, we measured in vivo the permeability of the Saccharomyces cerevisiae NPC for multidomain proteins of different sizes and found that soluble proteins of 150 kDa and membrane proteins with an extralumenal domain of 90 kDa were still partly localized in the nucleus on a time scale of hours. The NPCs thus form only a weak barrier for the majority of yeast proteins, given their monomeric size. Using FGΔ-mutant strains, we showed that specific combinations of Nups, especially with Nup100, but not the total mass of FG-nups per pore, were important for forming the barrier. Models of the disordered phase of wild-type and mutant NPCs were generated using a one bead per amino acid molecular dynamics model. The permeability measurements correlated with the density predictions from coarse-grained molecular dynamics simulations in the center of the NPC. The combined in vivo and computational approach provides a framework for elucidating the structural and functional properties of the permeability barrier of nuclear pore complexes. PMID:25631821

  17. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly.

    PubMed

    Schütz, Sabina; Fischer, Ute; Altvater, Martin; Nerurkar, Purnima; Peña, Cohue; Gerber, Michaela; Chang, Yiming; Caesar, Stefanie; Schubert, Olga T; Schlenstedt, Gabriel; Panse, Vikram G

    2014-01-01

    Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers-termed here escortins-to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. PMID:25144938

  18. LaRbp38: A Leishmania amazonensis protein that binds nuclear and kinetoplast DNAs

    SciTech Connect

    Lira, C.B.B.; Siqueira Neto, J.L.; Giardini, M.A.; Winck, F.V.; Ramos, C.H.I.; Cano, M.I.N. . E-mail: micano@ibb.unesp.br

    2007-07-06

    Leishmania amazonensis causes a wide spectrum of leishmaniasis. There are no vaccines or adequate treatment for leishmaniasis, therefore there is considerable interest in the identification of new targets for anti-leishmania drugs. The central role of telomere-binding proteins in cell maintenance makes these proteins potential targets for new drugs. In this work, we used a combination of purification chromatographies to screen L. amazonensis proteins for molecules capable of binding double-stranded telomeric DNA. This approach resulted in the purification of a 38 kDa polypeptide that was identified by mass spectrometry as Rbp38, a trypanosomatid protein previously shown to stabilize mitochondrial RNA and to associate with nuclear and kinetoplast DNAs. Western blotting and supershift assays confirmed the identity of the protein as LaRbp38. Competition and chromatin immunoprecipitation assays confirmed that LaRbp38 interacted with kinetoplast and nuclear DNAs in vivo and suggested that LaRbp38 may have dual cellular localization and more than one function.

  19. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1

    SciTech Connect

    Hoppe, George . E-mail: hoppeg@ccf.org; Talcott, Katherine E.; Bhattacharya, Sanjoy K.; Crabb, John W.; Sears, Jonathan E.

    2006-11-01

    Oxidative stress can induce a covalent disulfide bond between protein and peptide thiols that is reversible through enzymatic catalysis. This process provides a post-translational mechanism for control of protein function and may also protect thiol groups from irreversible oxidation. High mobility group protein B1 (Hmgb1), a DNA-binding structural chromosomal protein and transcriptional co-activator was identified as a substrate of glutaredoxin. Hmgb1 contains 3 cysteines, Cys23, 45, and 106. In mild oxidative conditions, Cys23 and Cys45 readily form an intramolecular disulfide bridge, whereas Cys106 remains in the reduced form. The disulfide bond between Cys23 and Cys45 is a target of glutathione-dependent reduction by glutaredoxin. Endogenous Hmgb1 as well as GFP-tagged wild-type Hmgb1 co-localize in the nucleus of CHO cells. While replacement of Hmgb1 Cys23 and/or 45 with serines did not affect the nuclear distribution of the mutant proteins, Cys106-to-Ser and triple cysteine mutations impaired nuclear localization of Hmgb1. Our cysteine targeted mutational analysis suggests that Cys23 and 45 induce conformational changes in response to oxidative stress, whereas Cys106 appears to be critical for the nucleocytoplasmic shuttling of Hmgb1.

  20. Early auxin-induced genes encode short-lived nuclear proteins.

    PubMed Central

    Abel, S; Oeller, P W; Theologis, A

    1994-01-01

    The plant growth hormone indoleacetic acid (IAA) transcriptionally activates gene expression in plants. Some of the genes whose expression is induced by IAA encode a family of proteins in pea (PS-IAA4 and PS-IAA6) and Arabidopsis (IAA1 and IAA2) that contain putative nuclear localization signals that direct a beta-glucuronidase reporter protein into the nucleus. Pulse-chase and immunoprecipitation experiments have defined the t1/2 of the PS-IAA4 and PS-IAA6 proteins to be 8 and 6 min, respectively. Their most prominent feature is the presence of a beta alpha alpha motif similar to the beta-sheet DNA-binding domain found in prokaryotic repressors of the Arc family. Based on these data, we suggest that plant tissues express short-lived nuclear proteins as a primary response to IAA. We propose that these proteins act as activators or repressors of genes responsible for mediating the various auxin responses. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278386

  1. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly

    PubMed Central

    Schütz, Sabina; Fischer, Ute; Altvater, Martin; Nerurkar, Purnima; Peña, Cohue; Gerber, Michaela; Chang, Yiming; Caesar, Stefanie; Schubert, Olga T; Schlenstedt, Gabriel; Panse, Vikram G

    2014-01-01

    Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers—termed here escortins—to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. DOI: http://dx.doi.org/10.7554/eLife.03473.001 PMID:25144938

  2. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus.

    PubMed

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-02-01

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. PMID:23174505

  3. Nuclear Microinjection to Assess How Heterologously Expressed Proteins Impact Ca2+ Signals in Xenopus Oocytes

    PubMed Central

    Lin-Moshier, Yaping; Marchant, Jonathan S.

    2014-01-01

    The Xenopus oocyte is frequently used for heterologous expression and for studying the spatiotemporal patterning of Ca2+ signals. Here, we outline a protocol for nuclear microinjection of the Xenopus oocyte for the purpose of studying how subsequently expressed proteins impact intracellular Ca2+ signals evoked by inositol trisphosphate (InsP3). Injected oocytes can easily be identified by reporter technologies and the impact of heterologously expressed proteins on the generation and properties of InsP3-evoked Ca2+ signals can be resolved using caged InsP3 and fluorescent Ca2+ indicators. PMID:23457340

  4. BGLF4 Kinase Modulates the Structure and Transport Preference of the Nuclear Pore Complex To Facilitate Nuclear Import of Epstein-Barr Virus Lytic Proteins

    PubMed Central

    Chang, Chou-Wei; Lee, Chung-Pei; Su, Mei-Tzu; Tsai, Ching-Hwa

    2014-01-01

    ABSTRACT BGLF4 kinase, the only Ser/Thr protein kinase encoded by the Epstein-Barr virus (EBV) genome, phosphorylates multiple viral and cellular substrates to optimize the cellular environment for viral DNA replication and the nuclear egress of nucleocapsids. Previously, we found that nuclear targeting of BGLF4 is through direct interaction with the FG repeat-containing nucleoporins (FG-Nups) Nup62 and Nup153 independently of cytosolic transport factors. Here, we investigated the regulatory effects of BGLF4 on the structure and biological functions of the nuclear pore complex (NPC). In EBV-positive NA cells, the distribution of FG-Nups was modified during EBV reactivation. In transfected cells, BGLF4 changed the staining pattern of Nup62 and Nup153 in a kinase activity-dependent manner. Detection with anti-phospho-Ser/Thr-Pro MPM-2 antibody demonstrated that BGLF4 induced the phosphorylation of Nup62 and Nup153. The nuclear targeting of importin β was attenuated in the presence of BGLF4, leading to inhibition of canonical nuclear localization signal (NLS)-mediated nuclear import. An in vitro nuclear import assay revealed that BGLF4 induced the nuclear import of larger molecules. Notably, we found that BGLF4 promoted the nuclear import of several non-NLS-containing EBV proteins, including the viral DNA-replicating enzymes BSLF1, BBLF2/3, and BBLF4 and the major capsid protein (VCA), in cotransfected cells. The data presented here suggest that BGLF4 interferes with the normal functions of Nup62 and Nup153 and preferentially helps the nuclear import of viral proteins for viral DNA replication and assembly. In addition, the nuclear import-promoting activity was found in cells expressing the BGLF4 homologs of another two gammaherpesviruses but not those from alpha- and betaherpesviruses. IMPORTANCE During lytic replication, many EBV genome-encoded proteins need to be transported into the nucleus, not only for viral DNA replication but also for the assembly of

  5. Phenotype Clustering of Breast Epithelial Cells in Confocal Imagesbased on Nuclear Protein Distribution Analysis

    SciTech Connect

    Long, Fuhui; Peng, Hanchuan; Sudar, Damir; Levievre, Sophie A.; Knowles, David W.

    2006-09-05

    Background: The distribution of the chromatin-associatedproteins plays a key role in directing nuclear function. Previously, wedeveloped an image-based method to quantify the nuclear distributions ofproteins and showed that these distributions depended on the phenotype ofhuman mammary epithelial cells. Here we describe a method that creates ahierarchical tree of the given cell phenotypes and calculates thestatistical significance between them, based on the clustering analysisof nuclear protein distributions. Results: Nuclear distributions ofnuclear mitotic apparatus protein were previously obtained fornon-neoplastic S1 and malignant T4-2 human mammary epithelial cellscultured for up to 12 days. Cell phenotype was defined as S1 or T4-2 andthe number of days in cultured. A probabilistic ensemble approach wasused to define a set of consensus clusters from the results of multipletraditional cluster analysis techniques applied to the nucleardistribution data. Cluster histograms were constructed to show how cellsin any one phenotype were distributed across the consensus clusters.Grouping various phenotypes allowed us to build phenotype trees andcalculate the statistical difference between each group. The resultsshowed that non-neoplastic S1 cells could be distinguished from malignantT4-2 cells with 94.19 percent accuracy; that proliferating S1 cells couldbe distinguished from differentiated S1 cells with 92.86 percentaccuracy; and showed no significant difference between the variousphenotypes of T4-2 cells corresponding to increasing tumor sizes.Conclusion: This work presents a cluster analysis method that canidentify significant cell phenotypes, based on the nuclear distributionof specific proteins, with high accuracy.

  6. Chromatin De-Compaction By The Nucleosomal Binding Protein HMGN5 Impairs Nuclear Sturdiness

    PubMed Central

    Furusawa, Takashi; Rochman, Mark; Taher, Leila; Dimitriadis, Emilios K.; Nagashima, Kunio; Anderson, Stasia; Bustin, Michael

    2014-01-01

    In most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin de-compaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity, and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina, and die of cardiac malfunction. Chromatin de-compaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions. PMID:25609380

  7. Utilization of nuclear structural proteins for targeted therapy and detection of proliferative and differentiation disorders

    DOEpatents

    Lelievre, Sophie; Bissell, Mina

    2001-01-01

    The localization of nuclear apparatus proteins (NUMA) is used to identify tumor cells and different stages in the tumor progression and differentiation processes. There is a characteristic organization of NuMA in tumor cells and in phenotypically normal cells. NuMA distribution patterns are significantly less diffuse in proliferating non-malignant cells compared to malignant cells. The technique encompasses cell immunostaining using a NuMA specific antibody, and microscopic analysis of NuMA distribution within each nucleus.

  8. TGF-β induces the expression of SAP30L, a novel nuclear protein

    PubMed Central

    Lindfors, Katri; Viiri, Keijo M; Niittynen, Marjo; Heinonen, Taisto YK; Mäki, Markku; Kainulainen, Heikki

    2003-01-01

    Background We have previously set up an in vitro mesenchymal-epithelial cell co-culture model which mimics the intestinal crypt villus axis biology in terms of epithelial cell differentiation. In this model the fibroblast-induced epithelial cell differentiation from secretory crypt cells to absorptive enterocytes is mediated via transforming growth factor-β (TGF-β), the major inhibitory regulator of epithelial cell proliferation known to induce differentiation in intestinal epithelial cells. The aim of this study was to identify novel genes whose products would play a role in this TGF-β-induced differentiation. Results Differential display analysis resulted in the identification of a novel TGF-β upregulated mRNA species, the Sin3-associated protein 30-like, SAP30L. The mRNA is expressed in several human tissues and codes for a nuclear protein of 183 amino acids 70% identical with Sin3 associated protein 30 (SAP30). The predicted nuclear localization signal of SAP30L is sufficient for nuclear transport of the protein although mutating it does not completely remove SAP30L from the nuclei. In the nuclei SAP30L concentrates in small bodies which were shown by immunohistochemistry to colocalize with PML bodies only partially. Conclusions By reason of its nuclear localization and close homology to SAP30 we believe that SAP30L might have a role in recruiting the Sin3-histone deacetylase complex to specific corepressor complexes in response to TGF-β, leading to the silencing of proliferation-driving genes in the differentiating intestinal epithelial cells. PMID:14680513

  9. A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95

    SciTech Connect

    Sugiura, Takeyuki Yamaguchi, Aya; Miyamoto, Kentaro

    2008-04-15

    RNF43 is a recently discovered RING finger protein that is implicated in colon cancer pathogenesis. This protein possesses growth-promoting activity but its mechanism remains unknown. In this study, to gain insight into the biological action of RNF43 we characterized it biochemically and intracellularly. A combination of indirect immunofluorescence analysis and biochemical fractionation experiments suggests that RNF43 resides in the endoplasmic reticulum (ER) as well as in the nuclear envelope. Sucrose density gradient fractionation demonstrates that RNF43 co-exists with emerin, a representative inner nuclear membrane protein in the nuclear subcompartment. The cell-free system with pure components reveals that recombinant RNF43 fused with maltose-binding protein has autoubiquitylation activity. By the yeast two-hybrid screening we identified HAP95, a chromatin-associated protein interfacing the nuclear envelope, as an RNF43-interacting protein and substantiated this interaction in intact cells by the co-immunoprecipitation experiments. HAP95 is ubiquitylated and subjected to a proteasome-dependent degradation pathway, however, the experiments in which 293 cells expressing both RNF43 and HAP95 were treated with a proteasome inhibitor, MG132, show that HAP95 is unlikely to serve as a substrate of RNF43 ubiquitin ligase. These results infer that RNF43 is a resident protein of the ER and, at least partially, the nuclear membrane, with ubiquitin ligase activity and may be involved in cell growth control potentially through the interaction with HAP95.

  10. Heat shock disassembles the nucleolus and inhibits nuclear protein import and poly(A)+ RNA export.

    PubMed Central

    Liu, Y; Liang, S; Tartakoff, A M

    1996-01-01

    Heat shock causes major positive and negative changes in gene expression, drastically alters the appearance of the nucleolus and inhibits rRNA synthesis. We here show that it causes many yeast nucleolar proteins, including the fibrillarin homolog Nop1p, to relocate to the cytoplasm. Relocation depends on several proteins implicated in mRNA transport (Mtrps) and is reversible. Two observations indicate, surprisingly, that disassembly results from a reduction in Ssa protein (Hsp70) levels: (i) selective depletion of Ssa1p leads to disassembly of the nucleolus; (ii) preincubation at 37 degrees C protects the nucleolus against disassembly by heat shock, unless expression of Ssa proteins is specifically inhibited. We observed that heat shock or reduction of Ssa1p levels inhibits protein import into the nucleus and therefore we propose that inhibition of import leads to disassembly of the nucleolus. These observations provide a simple explanation of the effects of heat shock on the anatomy of the nucleolus and rRNA transcription. They also extend understanding of the path of nuclear export. Since a number of nucleoplasmic proteins also relocate upon heat shock, these observations can provide a general mechanism for regulation of gene expression. Relocation of the hnRNP-like protein Mtr13p (= Npl3p, Nop3p), explains the heat shock sensitivity of export of average poly(A)+ RNA. Strikingly, Hsp mRNA export appears not to be affected. Images PMID:8978700

  11. Proteomic Analysis of Nuclear Factors Binding to an Intronic Enhancer in the Myelin Proteolipid Protein Gene

    PubMed Central

    Dobretsova, Anna; Johnson, Jennifer W.; Jones, Richard C.; Edmondson, Ricky D.; Wight, Patricia A.

    2015-01-01

    The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated – peaking during the active myelination period of CNS development. Previously we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. EMSA analysis demonstrated that specific DNA binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over twenty sequence-specific DNA-binding proteins. Supplementary Western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Purα and Purβ rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE. PMID:18266931

  12. Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition

    PubMed Central

    Azmi, Asfar S.; Muqbil, Irfana; Wu, Jack; Aboukameel, Amro; Senapedis, William; Baloglu, Erkan; Bollig-Fischer, Aliccia; Dyson, Gregory; Kauffman, Michael; Landesman, Yosef; Shacham, Sharon; Philip, Philip A.; Mohammad, Ramzi M.

    2015-01-01

    Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (–ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore. PMID:26536918

  13. Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition.

    PubMed

    Azmi, Asfar S; Muqbil, Irfana; Wu, Jack; Aboukameel, Amro; Senapedis, William; Baloglu, Erkan; Bollig-Fischer, Aliccia; Dyson, Gregory; Kauffman, Michael; Landesman, Yosef; Shacham, Sharon; Philip, Philip A; Mohammad, Ramzi M

    2015-01-01

    Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (-ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore. PMID:26536918

  14. MECHANISM AND A PEPTIDE MOTIF FOR TARGETING PERIPHERAL PROTEINS TO THE YEAST INNER NUCLEAR MEMBRANE

    PubMed Central

    Lai, Tsung-Po; Stauffer, Karen A.; Murthi, Athulaprabha; Shaheen, Hussam H.; Peng, Gang; Martin, Nancy C.; Hopper, Anita K.

    2009-01-01

    Trm1 is a tRNA specific m22G methyltransferase shared by nuclei and mitochondria in Saccharomyces cerevisiae. In nuclei Trm1 is peripherally associated with the inner nuclear membrane (INM). We investigated the mechanism delivering/tethering Trm1 to the INM. Analyses of mutations of the Ran pathway and nuclear pore components showed that Trm1 accesses the nucleoplasm via the classical nuclear import pathway. We identified a Trm1 cis-acting sequence sufficient to target passenger proteins to the INM. Detailed mutagenesis of this region uncovered specific amino acids necessary for authentic Trm1 to locate at the INM. The INM information is contained within a sequence of <20 amino acids, defining the first motif for addressing a peripheral protein to this important subnuclear location. The combined studies provide a multi-step process to direct Trm1 to the INM: (1) translation in the cytoplasm; (2) Ran-dependent import into the nucleoplasm; and (3) redistribution from the nucleoplasm to the INM via the INM motif. Furthermore, we demonstrate that the Trm1 mitochondrial targeting and nuclear localization signals are in competition with each other, as Trm1 becomes mitochondrial if prevented from entering the nucleus. PMID:19602197

  15. Protein profiles of bovine placenta derived from somatic cell nuclear transfer.

    PubMed

    Kim, Hong Rye; Kang, Jae Ku; Yoon, Jong Taek; Seong, Hwan Hoo; Jung, Jin Kwan; Lee, Hong Mie; Sik Park, Chang; Jin, Dong Il

    2005-11-01

    Practical application of animal cloning by somatic cell nuclear transfer (SCNT) has been hampered by an extremely low success rate. To address whether placental dysfunction in SCNT causes fetal loss during pregnancy, we have used a global proteomics approach using 2-DE and MS to analyze the differential protein patterns of three placentae from the afterbirth of cases of postnatal death, derived from SCNT of Korean Native cattle, and three normal placentae obtained from the afterbirth of fetuses derived from artificial insemination. Proteins within a pI range of 4.0-7.0 and 6.0-9.0 were analyzed separately by 2-DE in triplicate. A total of approximately 2000 spots were detected in placental 2-DE gels stained with CBB. In the comparison of normal and SCNT samples, 60 spots were identified as differentially expressed proteins, of which 33 spots were up-regulated proteins in SCNT placentae, while 27 spots were down-regulated proteins. Most of the proteins identified in this analysis appeared to be related with protein repair or protection, cytoskeleton, signal transduction, immune system, metabolism, extracellular matrix and remodeling, transcription regulation, cell structure or differentiation and ion transport. One of up-regulated proteins in SCNT was TIMP-2 protein known to be related to extracellular matrix and remodeling during pregnancy. Western blot analysis showed an increased level of TIMP-2 in SCNT placenta compared to normal. Our results revealed composite profiles of key proteins involved in abnormal placenta derived from SCNT, and suggested expression abnormality of these genes in SCNT placenta, resulting in fetal losses following SCNT. PMID:16196098

  16. Nuclear Expression of Hepatitis B Virus X Protein Is Associated with Recurrence of Early-Stage Hepatocellular Carcinomas: Role of Viral Protein in Tumor Recurrence

    PubMed Central

    Jin, Jing; Jung, Hae Yoen; Lee, Kyu Ho; Yi, Nam-Joon; Suh, Kyung-Suk; Jang, Ja-June; Lee, Kyoung-Bun

    2016-01-01

    Background: Hepatitis B virus (HBV) plays well-known roles in tumorigenesis of hepatocellular carcinoma (HCC) in infected patients. However, HBV-associated protein status in tumor tissues and the relevance to tumor behavior has not been reported. Our study aimed to examine the expression of HBV-associated proteins in HCC and adjacent nontumorous tissue and their clinicopathologic implication in HCC patients. Methods: HBV surface antigen (HBsAg), HBV core antigen (HBcAg), and HBV X protein (HBx) were assessed in 328 HBV-associated HCCs and in 155 matched nontumorous tissues by immunohistochemistry staining. Results: The positive rates of HBsAg and cytoplasmic HBx staining in tumor tissue were lower than those in nontumorous tissue (7.3% vs. 57.4%, p < .001; 43.4% vs. 81.3%, p < .001). Conversely, nuclear HBx was detected more frequently in tumors than in nontumorous tissue (52.1% vs. 30.3%, p < .001). HCCs expressing HBsAg, HBcAg, or cytoplasmic HBx had smaller size; lower Edmondson-Steiner (ES) nuclear grade, pT stage, and serum alpha-fetoprotein, and less angioinvasion than HCCs not expressing HBV-associated proteins. Exceptionally, nuclear HBx-positive HCCs showed higher ES nuclear grade and more frequent large-vessel invasion than did nuclear HBx-negative HCCs. In survival analysis, only nuclear HBx-positive HCCs had shorter disease-free survival than nuclear HBx-negative HCCs in pT1 and ES nuclear grade 1–2 HCC subgroup (median, 126 months vs. 35 months; p = .015). Conclusions: Our data confirmed that expression of normal HBV-associated proteins generally decreases in tumor cells in comparison to nontumorous hepatocytes, with the exception of nuclear HBx, which suggests that nuclear HBx plays a role in recurrence of well-differentiated and early-stage HCCs. PMID:27086597

  17. Kinesin-like proteins are involved in postmitotic nuclear migration of the unicellular green alga Micrasterias denticulata.

    PubMed

    Holzinger, Andreas; Lütz-Meindl, Ursula

    2002-01-01

    The unicellular green alga Micrasterias denticulata performs a two-directional postmitotic nuclear migration during development, a passive migration into the growing semicell, and a microtubule mediated backward migration towards the cell centre. The present study provides first evidence for force generation by motor proteins of the kinesin family in this process. The new kinesin specific inhibitor adociasulfate-2 causes abnormal nuclear displacement at 18 microM. AMP-PNP, a non hydrolyseable ATP analogue or the general ATPase inhibitors calyculin A and sodium orthovanadate also disturb nuclear migration. In addition kinesin-like proteins are detected by means of immunoblotting using antibodies against brain kinesin, plant derived antibodies to kinesin-like proteins and a calmodulin binding kinesin-like protein. Immunoelectron microscopy suggests a correlation of conventional kinesin-like proteins, but not of the calmodulin binding kinesin-like protein to the microtubule apparatus associated with the migrating nucleus. PMID:12175672

  18. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors

    PubMed Central

    Mojica, Sergio A.; Hovis, Kelley M.; Frieman, Matthew B.; Tran, Bao; Hsia, Ru-ching; Ravel, Jacques; Jenkins-Houk, Clifton; Wilson, Katherine L.; Bavoil, Patrik M.

    2015-01-01

    SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci–infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP–transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear “lamina” structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci. PMID:25788290

  19. Developmentally Regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a Nuclear-Cytoplasmic Trafficking Protein, Forms TAR DNA-binding Protein 43 (TDP-43)-mediated Cytoplasmic Aggregates.

    PubMed

    Mashiko, Takafumi; Sakashita, Eiji; Kasashima, Katsumi; Tominaga, Kaoru; Kuroiwa, Kenji; Nozaki, Yasuyuki; Matsuura, Tohru; Hamamoto, Toshiro; Endo, Hitoshi

    2016-07-15

    Cytoplasmic protein aggregates are one of the pathological hallmarks of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several RNA-binding proteins have been identified as components of inclusion bodies. Developmentally regulated RNA-binding protein 1 (Drb1)/RNA-binding motif protein 45 is an RNA-binding protein that was recently described as a component in ALS- and FTLD-related inclusion bodies. However, the molecular mechanism underlying cytoplasmic Drb1 aggregation remains unclear. Here, using an in vitro cellular model, we demonstrated that Drb1 co-localizes with cytoplasmic aggregates mediated by TAR DNA-binding protein 43, a major component of ALS and FTLD-related inclusion bodies. We also defined the domains involved in the subcellular localization of Drb1 to clarify the role of Drb1 in the formation of cytoplasmic aggregates in ALS and FTLD. Drb1 predominantly localized in the nucleus via a classical nuclear localization signal in its carboxyl terminus and is a shuttling protein between the nucleus and cytoplasm. Furthermore, we identify a double leucine motif serving as a nuclear export signal. The Drb1 mutant, presenting mutations in both nuclear localization signal and nuclear export signal, is prone to aggregate in the cytoplasm. The mutant Drb1-induced cytoplasmic aggregates not only recruit TAR DNA-binding protein 43 but also decrease the mitochondrial membrane potential. Taken together, these results indicate that perturbation of Drb1 nuclear-cytoplasmic trafficking induces toxic cytoplasmic aggregates, suggesting that mislocalization of Drb1 is involved in the cause of cytotoxicity in neuronal cells. PMID:27226551

  20. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain

    PubMed Central

    Rowe, Caitlin L.; Wagstaff, Kylie M.; Oksayan, Sibil; Glover, Dominic J.

    2016-01-01

    Rabies virus P-protein is expressed as five isoforms (P1-P5) which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP)-recognised nuclear localization sequence in the N-terminal region (N-NLS), the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD) can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES). However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2), and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein

  1. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain.

    PubMed

    Rowe, Caitlin L; Wagstaff, Kylie M; Oksayan, Sibil; Glover, Dominic J; Jans, David A; Moseley, Gregory W

    2016-01-01

    Rabies virus P-protein is expressed as five isoforms (P1-P5) which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP)-recognised nuclear localization sequence in the N-terminal region (N-NLS), the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD) can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES). However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2), and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein

  2. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    PubMed

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  3. Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors

    PubMed Central

    2015-01-01

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  4. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4.

    PubMed

    Viollet, B; Kahn, A; Raymondjean, M

    1997-08-01

    Hepatocyte nuclear factor 4 (HNF4), a liver-enriched transcription factor of the nuclear receptor superfamily, is critical for development and liver-specific gene expression. Here, we demonstrate that its DNA-binding activity is modulated posttranslationally by phosphorylation in vivo, ex vivo, and in vitro. In vivo, HNF4 DNA-binding activity is reduced by fasting and by inducers of intracellular cyclic AMP (cAMP) accumulation. A consensus protein kinase A (PKA) phosphorylation site located within the A box of its DNA-binding domain has been identified, and its role in phosphorylation-dependent inhibition of HNF4 DNA-binding activity has been investigated. Mutants of HNF4 in which two potentially phosphorylatable serines have been replaced by either neutral or charged amino acids were able to bind DNA in vitro with affinity similar to that of the wild-type protein. However, phosphorylation by PKA strongly repressed the binding affinity of the wild-type factor but not that of HNF4 mutants. Accordingly, in transfection assays, expression vectors for the mutated HNF4 proteins activated transcription more efficiently than that for the wild-type protein-when cotransfected with the PKA catalytic subunit expression vector. Therefore, HNF4 is a direct target of PKA which might be involved in the transcriptional inhibition of liver genes by cAMP inducers. PMID:9234678

  5. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4.

    PubMed Central

    Viollet, B; Kahn, A; Raymondjean, M

    1997-01-01

    Hepatocyte nuclear factor 4 (HNF4), a liver-enriched transcription factor of the nuclear receptor superfamily, is critical for development and liver-specific gene expression. Here, we demonstrate that its DNA-binding activity is modulated posttranslationally by phosphorylation in vivo, ex vivo, and in vitro. In vivo, HNF4 DNA-binding activity is reduced by fasting and by inducers of intracellular cyclic AMP (cAMP) accumulation. A consensus protein kinase A (PKA) phosphorylation site located within the A box of its DNA-binding domain has been identified, and its role in phosphorylation-dependent inhibition of HNF4 DNA-binding activity has been investigated. Mutants of HNF4 in which two potentially phosphorylatable serines have been replaced by either neutral or charged amino acids were able to bind DNA in vitro with affinity similar to that of the wild-type protein. However, phosphorylation by PKA strongly repressed the binding affinity of the wild-type factor but not that of HNF4 mutants. Accordingly, in transfection assays, expression vectors for the mutated HNF4 proteins activated transcription more efficiently than that for the wild-type protein-when cotransfected with the PKA catalytic subunit expression vector. Therefore, HNF4 is a direct target of PKA which might be involved in the transcriptional inhibition of liver genes by cAMP inducers. PMID:9234678

  6. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA

    PubMed Central

    Wang, Shunfang; Liu, Shuhui

    2015-01-01

    An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one. PMID:26703574

  7. Production and Characterization of Monoclonal Antibodies against Human Nuclear Protein FAM76B.

    PubMed

    Zheng, Xiaojing; Li, Yanqing; Zhao, Junli; Wang, Dongyang; Xia, Haibin; Mao, Qinwen

    2016-01-01

    Human FAM76B (hFAM76B) is a 39 kDa protein that contains homopolymeric histidine tracts, a targeting signal for nuclear speckles. FAM76B is highly conserved among different species, suggesting that it may play an important physiological role in normal cellular functions. However, a lack of appropriate tools has hampered study of this potentially important protein. To facilitate research into the biological function(s) of FAM76B, murine monoclonal antibodies (MAbs) against hFAM76B were generated by using purified, prokaryotically expressed hFAM76B protein. Six strains of MAbs specific for hFAM76B were obtained and characterized. The specificity of MAbs was validated by using FAM76B-/- HEK 293 cell line. Double immunofluorescence followed by laser confocal microscopy confirmed the nuclear speckle localization of hFAM76B, and the specific domains recognized by different MAbs were further elucidated by Western blot. Due to the high conservation of protein sequences between mouse and human FAM76B, MAbs against hFAM76B were shown to react with mouse FAM76B (mFAM76B) specifically. Lastly, FAM76B was found to be expressed in the normal tissues of most human organs, though to different extents. The MAbs produced in this study should provide a useful tool for investigating the biological function(s) of FAM76B. PMID:27018871

  8. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.

    PubMed

    Tomas, Martin; Blumhardt, Philipp; Deutzmann, Anja; Schwarz, Tobias; Kromm, Dimitri; Leitenstorfer, Alfred; Ferrando-May, Elisa

    2013-08-01

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. PMID:23420601

  9. Production and Characterization of Monoclonal Antibodies against Human Nuclear Protein FAM76B

    PubMed Central

    Zheng, Xiaojing; Li, Yanqing; Zhao, Junli; Wang, Dongyang; Xia, Haibin; Mao, Qinwen

    2016-01-01

    Human FAM76B (hFAM76B) is a 39 kDa protein that contains homopolymeric histidine tracts, a targeting signal for nuclear speckles. FAM76B is highly conserved among different species, suggesting that it may play an important physiological role in normal cellular functions. However, a lack of appropriate tools has hampered study of this potentially important protein. To facilitate research into the biological function(s) of FAM76B, murine monoclonal antibodies (MAbs) against hFAM76B were generated by using purified, prokaryotically expressed hFAM76B protein. Six strains of MAbs specific for hFAM76B were obtained and characterized. The specificity of MAbs was validated by using FAM76B-/- HEK 293 cell line. Double immunofluorescence followed by laser confocal microscopy confirmed the nuclear speckle localization of hFAM76B, and the specific domains recognized by different MAbs were further elucidated by Western blot. Due to the high conservation of protein sequences between mouse and human FAM76B, MAbs against hFAM76B were shown to react with mouse FAM76B (mFAM76B) specifically. Lastly, FAM76B was found to be expressed in the normal tissues of most human organs, though to different extents. The MAbs produced in this study should provide a useful tool for investigating the biological function(s) of FAM76B. PMID:27018871

  10. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing.

    PubMed

    Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles

  11. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.

    PubMed

    Boyer, Patrick D; Ganesh, Sairaam; Qin, Zhao; Holt, Brian D; Buehler, Markus J; Islam, Mohammad F; Dahl, Kris Noel

    2016-02-10

    Single-walled carbon nanotubes (SWCNTs) have great potential for cell-based therapies due to their unique intrinsic optical and physical characteristics. Consequently, broad classes of dispersants have been identified that individually suspend SWCNTs in water and cell media in addition to reducing nanotube toxicity to cells. Unambiguous control and verification of the localization and distribution of SWCNTs within cells, particularly to the nucleus, is needed to advance subcellular technologies utilizing nanotubes. Here we report delivery of SWCNTs to the nucleus by noncovalently attaching the tail domain of the nuclear protein lamin B1 (LB1), which we engineer from the full-length LMNB1 cDNA. More than half of this low molecular weight globular protein is intrinsically disordered but has an immunoglobulin-fold composed of a central hydrophobic core, which is highly suitable for associating with SWCNTs, stably suspending SWCNTs in water and cell media. In addition, LB1 has an exposed nuclear localization sequence to promote active nuclear import of SWCNTs. These SWCNTs-LB1 dispersions in water and cell media display near-infrared (NIR) absorption spectra with sharp van Hove peaks and an NIR fluorescence spectra, suggesting that LB1 individually disperses nanotubes. The dispersing capability of SWCNTs by LB1 is similar to that by albumin proteins. The SWCNTs-LB1 dispersions with concentrations ≥150 μg/mL (≥30 μg/mL) in water (cell media) remain stable for ≥75 days (≥3 days) at 4 °C (37 °C). Further, molecular dynamics modeling of association of LB1 with SWCNTs reveal that the exposure of the nuclear localization sequence is independent of LB1 binding conformation. Measurements from confocal Raman spectroscopy and microscopy, NIR fluorescence imaging of SWCNTs, and fluorescence lifetime imaging microscopy show that millions of these SWCNTs-LB1 complexes enter HeLa cells, localize to the nucleus of cells, and interact with DNA. We postulate that the

  12. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing

    PubMed Central

    Dasenko, Mark A.

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles

  13. Nuclear Export and Centrosome Targeting of the Protein Phosphatase 2A Subunit B56α

    PubMed Central

    Flegg, Cameron P.; Sharma, Manisha; Medina-Palazon, Cahora; Jamieson, Cara; Galea, Melanie; Brocardo, Mariana G.; Mills, Kate; Henderson, Beric R.

    2010-01-01

    Protein phosphatase (PP) 2A is a heterotrimeric enzyme regulated by specific subunits. The B56 (or B′/PR61/PPP2R5) class of B-subunits direct PP2A or its substrates to different cellular locations, and the B56α, -β, and -ϵ isoforms are known to localize primarily in the cytoplasm. Here we studied the pathways that regulate B56α subcellular localization. We detected B56α in the cytoplasm and nucleus, and at the nuclear envelope and centrosomes, and show that cytoplasmic localization is dependent on CRM1-mediated nuclear export. The inactivation of CRM1 by leptomycin B or by siRNA knockdown caused nuclear accumulation of ectopic and endogenous B56α. Conversely, CRM1 overexpression shifted B56α to the cytoplasm. We identified a functional nuclear export signal at the C terminus (NES; amino acids 451–469), and site-directed mutagenesis of the NES (L461A) caused nuclear retention of full-length B56α. Active NESs were identified at similar positions in the cytoplasmic B56-β and ϵ isoforms, but not in the nuclear-localized B56-δ or γ isoforms. The transient expression of B56α induced nuclear export of the PP2A catalytic (C) subunit, and this was blocked by the L461A NES mutation. In addition, B56α co-located with the PP2A active (A) subunit at centrosomes, and its centrosome targeting involved sequences that bind to the A-subunit. Fluorescence Recovery after Photobleaching (FRAP) assays revealed dynamic and immobile pools of B56α-GFP, which was rapidly exported from the nucleus and subject to retention at centrosomes. We propose that B56α can act as a PP2A C-subunit chaperone and regulates PP2A activity at diverse subcellular locations. PMID:20378546

  14. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    SciTech Connect

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  15. Influence of cargo size on Ran and energy requirements for nuclear protein import

    PubMed Central

    Lyman, Susan K.; Guan, Tinglu; Bednenko, Janna; Wodrich, Harald; Gerace, Larry

    2002-01-01

    Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin α/β and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin β and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC. PMID:12370244

  16. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex.

    PubMed

    Vovk, Andrei; Gu, Chad; Opferman, Michael G; Kapinos, Larisa E; Lim, Roderick Yh; Coalson, Rob D; Jasnow, David; Zilman, Anton

    2016-01-01

    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function. PMID:27198189

  17. An Apicoplast Localized Ubiquitylation System Is Required for the Import of Nuclear-encoded Plastid Proteins

    PubMed Central

    Ponts, Nadia; van Dooren, Giel G.; Prudhomme, Jacques; Brooks, Carrie F.; Rodrigues, Elisadra M.; Tan, John C.; Ferdig, Michael T.; Striepen, Boris; Le Roch, Karine G.

    2013-01-01

    Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment. Most apicoplast proteins are nuclear encoded and have to be imported into the organelle. Recently, a protein translocon typically required for endoplasmic reticulum associated protein degradation (ERAD) has been proposed to act in apicoplast protein import. Here, we show ubiquitylation to be a conserved and essential component of this process. We identify apicoplast localized ubiquitin activating, conjugating and ligating enzymes in Toxoplasma gondii and Plasmodium falciparum and observe biochemical activity by in vitro reconstitution. Using conditional gene ablation and complementation analysis we link this activity to apicoplast protein import and parasite survival. Our studies suggest ubiquitylation to be a mechanistic requirement of apicoplast protein import independent to the proteasomal degradation pathway. PMID:23785288

  18. Reverse micelles as a platform for dynamic nuclear polarization in solution NMR of proteins.

    PubMed

    Valentine, Kathleen G; Mathies, Guinevere; Bédard, Sabrina; Nucci, Nathaniel V; Dodevski, Igor; Stetz, Matthew A; Can, Thach V; Griffin, Robert G; Wand, A Joshua

    2014-02-19

    Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule. Unfortunately, these EPR transitions lie in the microwave range of the electromagnetic spectrum where bulk water absorbs strongly, often resulting in catastrophic heating. Furthermore, the residence times of water on the surface of the protein in bulk solution are generally too short for efficient transfer of polarization. Here we take advantage of the properties of solutions of encapsulated proteins dissolved in low viscosity solvents to implement DNP in liquids. Such samples are largely transparent to the microwave frequencies required and thereby avoid significant heating. Nitroxide radicals are introduced into the reverse micelle system in three ways: attached to the protein, embedded in the reverse micelle shell, and free in the aqueous core. Significant enhancements of the water resonance ranging up to ∼-93 at 0.35 T were observed. We also find that the hydration properties of encapsulated proteins allow for efficient polarization transfer from water to the protein. These and other observations suggest that merging reverse micelle encapsulation technology with DNP offers a route to a significant increase in the sensitivity of solution NMR spectroscopy of proteins and other biomolecules. PMID:24456213

  19. Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the C-terminal (Glu307-Glu-Asp-Gly-Pro-Gln-Lys-Lys-Lys-Arg-Arg-Leu318) amino acid sequence of the polyomavirus minor capsid protein VP2. The importance of this amino acid sequence for nuclear transport of newly synthesized VP2 was demonstrated by a genetic "subtractive" study using the constructs pSG5VP2 (expressing full-length VP2) and pSG5 delta 3VP2 (expressing truncated VP2, lacking amino acids Glu307-Leu318). These constructs were transfected into COS-7 cells, and the intracellular localization of the VP2 protein was determined by indirect immunofluorescence. These studies revealed that the full-length VP2 was localized in the nucleus, while the truncated VP2 protein was localized in the cytoplasm and not transported to the nucleus. A biochemical "additive" approach was also used to determine whether this sequence could target nonnuclear proteins to the nucleus. A synthetic peptide identical to VP2 amino acids Glu307-Leu318 was cross-linked to the nonnuclear proteins bovine serum albumin (BSA) or immunoglobulin G (IgG). The conjugates were then labeled with fluorescein isothiocyanate and microinjected into the cytoplasm of NIH 3T6 cells. Both conjugates localized in the nucleus of the microinjected cells, whereas unconjugated BSA and IgG remained in the cytoplasm. Taken together, these genetic subtractive and biochemical additive approaches have identified the C-terminal sequence of polyoma-virus VP2 (containing amino acids Glu307-Leu318) as the NLS of this protein.

  20. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization

    SciTech Connect

    Kim, Chung Kwon; Lee, Sang Bae; Nguyen, Truong L.X.; Lee, Kyung-Hoon; Um, Sung Hee; Kim, Jihoe; Ahn, Jee-Yin

    2012-01-15

    p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.

  1. Evidence for a Menkes-like protein with a nuclear targeting sequence.

    PubMed Central

    Reddy, M C; Majumdar, S; Harris, E D

    2000-01-01

    Extracts from three human cell lines were found to contain abridged Menkes disease gene transcripts with novel insertion sequences. The transcript variant that is the focus of the present study codes for a 103-residue protein containing the first heavy-metal-binding domain (Hmb1) of ATP7A, the Cu-ATPase associated with Menkes disease. This transcript variant has a 45-bp nucleotide insert interposed between exons 1 and 2 of ATP7A that starts with a 5' ATG that is in-frame with the downstream ATG translation start site of ATP7A. We report here that the 66-bp nucleotides positioned between the upstream and downstream ATG sites encode 22 amino acid residues whose primary structure in part meets the criteria for a nuclear-localization sequence (NLS). We have referred to the transcript as nuclear Menkes-like (NML) 45. A green fluorescent protein (GFP) construct with NML45 when transfected in Chinese hamster ovary cells localized to the cell nucleus. A similar construct without the 66-bp segment exhibited a random dispersed fluorescent pattern in the cytosol. GFP constructs encoding ATP7A exons likewise failed to direct GFP into the cell nucleus, suggesting the nuclear determinant is not in an internal domain of the protein. The data suggest that the 22-residue segment contains an NLS for an 11.2-kDa protein with one Cu-binding site that may function as a chaperone to transport Cu into the nucleus of mammalian cells. PMID:10970802

  2. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    SciTech Connect

    Lalime, Erin N.; Pekosz, Andrew

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  3. Mapping of nuclear import signal and importin {alpha}3 binding regions of 52K protein of bovine adenovirus-3

    SciTech Connect

    Paterson, Carolyn P.; Ayalew, Lisanework E.; Tikoo, Suresh K.

    2012-10-10

    The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acid 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.

  4. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  5. Phorbol 12-myristate 13-acetate promotes nuclear translocation of hepatic steroid response element binding protein-2.

    PubMed

    Wong, Tsz Yan; Tan, Yan Qin; Lin, Shu-Mei; Leung, Lai K

    2016-06-01

    Sterol regulatory element-binding protein (SREBP)-2 is a pivotal transcriptional factor in cholesterol metabolism. Factors interfering with the proper functioning of SREBP-2 potentially alter plasma lipid profiles. Phorbol 12-myristate 13-acetate (PMA), which is a common protein kinase C (PKC) activator, was shown to promote the post-translational processing and nuclear translocation of SREBP-2 in hepatic cells in the current study. Following SREBP-2 translocation, the transcripts of its target genes HMGCR and LDLR were upregulated as demonstrated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Electrophoretic mobility shift assays (EMSA) also demonstrated an induced DNA-binding activity on the sterol response element (SRE) domain under PMA treatment. The increase of activated Srebp-2 without the concurrent induced mRNA expression was also observed in an animal model. As the expression of SREBP-2 was not increased by PMA, the activation of PKC was the focus of investigation. Specific PKC isozyme inhibition and overexpression supported that PKCβ was responsible for the promoting effect. Further studies showed that the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK), but not 5' adenosine monophosphate-activated protein kinase (AMPK), were the possible downstream signaling proteins of PKCβ. In conclusion, this study illustrated that PKCβ increased SREBP-2 nuclear translocation in a pathway mediated by MEK/ERK and JNK, rather than the one dictated by AMPK. These results revealed a novel signaling target of PKCβ in the liver cells. PMID:27032751

  6. Physical modeling of the conformation of the unfolded proteins of the Nuclear Pore Complex

    NASA Astrophysics Data System (ADS)

    Zilman, Anton; Opferman, Michael; Coalson, Rob; Jasnow, David

    2013-03-01

    Nuclear Pore Complex (NPC) is a biological ``nano-machine'' that controls the macromolecular transport between the cell nucleus and the cytoplasm. NPC functions without direct input of metabolic energy and without transitions of the gate from a ``closed'' to an ``open'' state during transport. The key and unique aspect of transport is the interaction of the transported molecules with the unfolded, natively unstructured proteins that cover the lumen of the NPC. Recently, the NPC inspired creation of artificial bio-mimetic for nano-technology applications. Although several models have been proposed, it is still not clear how the passage of the transport factors is coupled to the conformational dynamics of the unfolded proteins within the NPC. Morphology changes in assemblies of the unfolded proteins induced by the transport factors have been investigated experimentally in vitro. I will present a coarse-grained theoretical and simulation framework that mimics the interactions of unfolded proteins with nano-sized transport factors. The simple physical model predicts morphology changes that explain the recent puzzling experimental results and suggests possible new modes of transport through the NPC. It also provides insights into the physics of the behavior of unfolded proteins.

  7. Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators

    SciTech Connect

    Wu, M.-H.; Huang, C.-J.; Liu, S.-T.; Liu, P.-Y.; Ho, C.-L. . E-mail: shihming@ndmctsgh.edu.tw

    2007-05-11

    In addition to the human papillomavirus (HPV)-induced immortalization of epithelial cells, which usually requires integration of the viral DNA into the host cell genome, steroid hormone-activated nuclear receptors (NRs) are thought to bind to specific DNA sequences within transcriptional regulatory regions on the long control region to either increase or suppress transcription of dependent genes. In this study, our data suggest that the NR coactivator function of HPV E2 proteins might be mediated through physical and functional interactions with not only NRs but also the NR coactivators GRIP1 (glucocorticoid receptor-interacting protein 1) and Zac1 (zinc-finger protein which regulates apoptosis and cell cycle arrest 1), reciprocally regulating their transactivation activities. GRIP1 and Zac1 both were able to act synergistically with HPV E2 proteins on the E2-, androgen receptor-, and estrogen receptor-dependent transcriptional activation systems. GRIP1 and Zac1 might selectively function with HPV E2 proteins on thyroid receptor- and p53-dependent transcriptional activation, respectively. Hence, the transcriptional function of E2 might be mediated through NRs and NR coactivators to regulate E2-, NR-, and p53-dependent transcriptional activations.

  8. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35

    SciTech Connect

    Salsman, Jayme; Wang Xueqi; Frappier, Lori

    2011-06-05

    The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.

  9. Nuclear trafficking of the human cytomegalovirus pp71 (ppUL82) tegument protein

    SciTech Connect

    Shen Weiping; Westgard, Elizabeth; Huang Liqun; Ward, Michael D.; Osborn, Jodi L.; Chau, Nha H.; Collins, Lindsay; Marcum, Benjamin; Koach, Margaret A.; Bibbs, Jennifer; Semmes, O. John; Kerry, Julie A.

    2008-06-20

    The human cytomegalovirus tegument protein pp71 localizes to the nucleus immediately upon infection, and functions to initiate viral gene expression. Analysis of a series of random insertion mutations revealed that sequences within the mid region (MR) of pp71 are important for localization to the nucleus. Fusion of MR sequences with eGFP revealed that amino acids 94 to 300 were sufficient to target proteins to the nucleus. Random substitution mutagenesis within this domain resulted in two double substitution mutants, pp71P203T/T223M and pp71T228M/L275Q, with a predominantly cytoplasmic localization. Disruption of nuclear targeting resulted in relocalization of the fusion proteins to a distinct perinuclear region. Using tandem mass spectrometry, we determined that threonine 223 can be phosphorylated. Mutation of this residue to a phosphomimetic amino acid resulted in abrogation of nuclear targeting. These results strongly suggest that the intracellular trafficking of pp71 is regulated by phosphorylation.

  10. Nuclear pore complex proteins mark the implantation window in human endometrium

    PubMed Central

    Guffanti, Elisa; Kittur, Nupur; Brodt, Z. Nilly; Polotsky, Alex J.; Kuokkanen, Satu M.; Heller, Debra S.; Young, Steven L.; Santoro, Nanette; Meier, U. Thomas

    2009-01-01

    Summary Nucleolar channel systems (NCSs) are membranous organelles appearing transiently in the epithelial cell nuclei of postovulatory human endometrium. Their characterization and use as markers for a healthy receptive endometrium have been limited because they are only identifiable by electron microscopy. Here we describe the light microscopic detection of NCSs using immunofluorescence. Specifically, the monoclonal nuclear pore complex antibody 414 shows that NCSs are present in about half of all human endometrial epithelial cells but not in any other cell type, tissue or species. Most nuclei contain only a single NCS of uniform 1 μm diameter indicating a tightly controlled organelle. The composition of NCSs is as unique as their structure; they contain only a subset each of the proteins of nuclear pore complexes, inner nuclear membrane, nuclear lamina and endoplasmic reticulum. Validation of our robust NCS detection method on 95 endometrial biopsies defines a 6-day window, days 19-24 (±1) of an idealized 28 day cycle, wherein NCSs occur. Therefore, NCSs precede and overlap with the implantation window and serve as potential markers of uterine receptivity. The immunodetection assay, combined with the hitherto underappreciated prevalence of NCSs, now enables simple screening and further molecular and functional dissection. PMID:18505792

  11. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    PubMed Central

    Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas

    2016-01-01

    Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839

  12. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein

    SciTech Connect

    Klucevsek, K.; Daley, J.; Darshan, M.S.; Bordeaux, J.; Moroianu, J. . E-mail: moroianu@bc.edu

    2006-08-15

    We have investigated the nuclear import strategies of high-risk HPV18 L2 minor capsid protein. HPV18 L2 interacts with Kap {alpha}{sub 2} adapter, and Kap {beta}{sub 2} and Kap {beta}{sub 3} nuclear import receptors. Moreover, binding of RanGTP to either Kap {beta}{sub 2} or Kap {beta}{sub 3} inhibits their interaction with L2, suggesting that these Kap {beta}/L2 complexes are import competent. Mapping studies show that HPV18 L2 contains two NLSs: in the N-terminus (nNLS) and in the C-terminus (cNLS), both of which can independently mediate nuclear import. Both nNLS and cNLS form a complex with Kap {alpha}{sub 2}{beta}{sub 1} heterodimer and mediate nuclear import via a classical pathway. The nNLS is also essential for the interaction of HPV18 L2 with Kap {beta}{sub 2} and Kap {beta}{sub 3}. Interestingly, both nNLS and cNLS interact with the viral DNA and this DNA binding occurs without nucleotide sequence specificity. Together, the data suggest that HPV18 L2 can interact via its NLSs with several Kaps and the viral DNA and may enter the nucleus via multiple import pathways mediated by Kap {alpha}{sub 2}{beta}{sub 1} heterodimers, Kap {beta}{sub 2} and Kap {beta}{sub 3}.

  13. MicroRNA-205 promotes the tumorigenesis of nasopharyngeal carcinoma through targeting tumor protein p53-inducible nuclear protein 1

    PubMed Central

    NIE, GUOHUI; DUAN, HONGFANG; LI, XIAOQING; YU, ZHENDONG; LUO, LIANG; LU, RUIJING; JI, ZILIANG; ZHANG, WEI

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a common type of cancer in southern China, miRNAs have been shown to be involved in the tumorigenesis of multiple cancer types. The present study aimed to explore the potential role of miR-205 in NPC. Reverse transcription quantitative polymerase chain reaction was used to determine the expression levels of miR-205 in 20 fresh NPC specimens and 20 normal nasopharyngeal tissues. The function of miR-205 in the proliferation, migration, invasion and apoptosis of NPC-derived cells was detected by MTT assay, colony formation assay, wound healing assay, Transwell assay and flow cytometry. Furthermore, a target gene of miR-205 was identified using the luciferase reporter assay. The expression of miR-205 was increased in NPC tissues compared with that in normal tissues. Overexpression of miR-205 was found to promote the proliferation, migration and invasion of NPC-derived cells, while apoptosis was suppressed. Tumor protein p53-inducible nuclear protein 1 was identified as a target gene of miR-205. Overall, the present study demonstrated that miR-205 may function as an oncogene in NPC tumorigenesis. PMID:26252115

  14. MiR-155 Knockout in Fibroblasts Improves Cardiac Remodeling by Targeting Tumor Protein p53-Inducible Nuclear Protein 1.

    PubMed

    He, Wangwei; Huang, He; Xie, Qiang; Wang, Zhiqiang; Fan, Yang; Kong, Bin; Huang, Dan; Xiao, Yali

    2016-07-01

    Cardiac remodeling caused by acute myocardial infarction (AMI) represents a major challenge for heart failure research. MiR-155 has been identified as a key mediator of cardiac inflammation and hypertrophy. In this study, we investigate the role of miR-155 in cardiac remodeling induced by AMI. We demonstrate that miR-155 expressed in cardiac fibroblasts is a potent contributor to cardiac remodeling. We reveal that in vivo, miR-155 knockout improves left ventricular function, reduces infarct size, and attenuates collagen deposition, whereas overexpression of miR-155 produces the opposite effects. MiR-155 knockout also inhibits cardiac fibroblast proliferation and differentiation into myofibroblasts. In addition, downregulation of tumor protein p53-inducible nuclear protein 1 (TP53INP1) by small interfering RNA reverses the effects of miR-155 knockout on cardiac fibroblasts. Our data reveal that knockout of miR-155 in cardiac fibroblasts improves cardiac remodeling by targeting TP53INP1, which may be a novel treatment strategy for cardiac remodeling. PMID:26589288

  15. Novel nuclear protein ALC-INTERACTING PROTEIN1 is expressed in vascular and mesocarp cells in Arabidopsis.

    PubMed

    Wang, Fang; Shi, Dong-Qiao; Liu, Jie; Yang, Wei-Cai

    2008-07-01

    Pod shattering is an agronomical trait that is a result of the coordinated action of cell differentiation and separation. In Arabidopsis, pod shattering is controlled by a complex genetic network in which ALCATRAZ (ALC), a member of the basic helix-loop-helix family, is critical for cell separation during fruit dehiscence. Herein, we report the identification of ALC-INTERACTING PROTEIN1 (ACI1) via the yeast two-hybrid screen. ACI1 encodes a nuclear protein with a lysine-rich domain and a C-terminal serine-rich domain. ACI1 is mainly expressed in the vascular system throughout the plant and mesocarp of the valve in siliques. Our data showed that ACI1 interacts strongly with the N-terminal portion of ALC in yeast cells and in plant cells in the nucleus as demonstrated by bimolecular fluorescence complementation assay. Both ACI1 and ALC share an overlapping expression pattern, suggesting that they likely function together in planta. However, no detectable phenotype was found in plants with reduced ACI1 expression by RNA interference technology, suggesting that ACI1 may be redundant. Taken together, these data indicate that ALC may interact with ACI1 and its homologs to control cell separation during fruit dehiscence in Arabidopsis. PMID:18713402

  16. HIV-1 Uncoating: Connection to Nuclear Entry and Regulation by Host Proteins

    PubMed Central

    Ambrose, Zandrea; Aiken, Christopher

    2014-01-01

    The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed by a capsid shell that dissociates within the cell in a multistep process known as uncoating, which influences completion of reverse transcription of the viral genome. Double-stranded viral DNA is imported into the nucleus for integration into the host genome, a hallmark of retroviral infection. Reverse transcription, nuclear entry, and integration are coordinated by a capsid uncoating process that is regulated by cellular proteins. Although uncoating is not well understood, recent studies have revealed insights into the process, particularly with respect to nuclear import pathways and protection of the viral genome from DNA sensors. Understanding uncoating will be valuable toward developing novel antiretroviral therapies for HIV-infected individuals. PMID:24559861

  17. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins.

    PubMed

    Ambrose, Zandrea; Aiken, Christopher

    2014-04-01

    The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed by a capsid shell that dissociates within the cell in a multistep process known as uncoating, which influences completion of reverse transcription of the viral genome. Double-stranded viral DNA is imported into the nucleus for integration into the host genome, a hallmark of retroviral infection. Reverse transcription, nuclear entry, and integration are coordinated by a capsid uncoating process that is regulated by cellular proteins. Although uncoating is not well understood, recent studies have revealed insights into the process, particularly with respect to nuclear import pathways and protection of the viral genome from DNA sensors. Understanding uncoating will be valuable toward developing novel antiretroviral therapies for HIV-infected individuals. PMID:24559861

  18. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins

    SciTech Connect

    Ambrose, Zandrea; Aiken, Christopher

    2014-04-15

    The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed by a capsid shell that dissociates within the cell in a multistep process known as uncoating, which influences completion of reverse transcription of the viral genome. Double-stranded viral DNA is imported into the nucleus for integration into the host genome, a hallmark of retroviral infection. Reverse transcription, nuclear entry, and integration are coordinated by a capsid uncoating process that is regulated by cellular proteins. Although uncoating is not well understood, recent studies have revealed insights into the process, particularly with respect to nuclear import pathways and protection of the viral genome from DNA sensors. Understanding uncoating will be valuable toward developing novel antiretroviral therapies for HIV-infected individuals.

  19. Nuclear Import of Bovine Papillomavirus Type 1 E1 Protein Is Mediated by Multiple Alpha Importins and Is Negatively Regulated by Phosphorylation near a Nuclear Localization Signal▿

    PubMed Central

    Bian, Xue-Lin; Rosas-Acosta, Germán; Wu, Yu-Chieh; Wilson, Van G.

    2007-01-01

    Papillomavirus DNA replication occurs in the nucleus of infected cells and requires the viral E1 protein, which enters the nuclei of host epithelial cells and carries out enzymatic functions required for the initiation of viral DNA replication. In this study, we investigated the pathway and regulation of the nuclear import of the E1 protein from bovine papillomavirus type 1 (BPV1). Using an in vitro binding assay, we determined that the E1 protein interacted with importins α3, α4, and α5 via its nuclear localization signal (NLS) sequence. In agreement with this result, purified E1 protein was effectively imported into the nucleus of digitonin-permeabilized HeLa cells after incubation with importin α3, α4, or α5 and other necessary import factors. We also observed that in vitro binding of E1 protein to all three α importins was significantly decreased by the introduction of pseudophosphorylation mutations in the NLS region. Consistent with the binding defect, pseudophosphorylated E1 protein failed to enter the nucleus of digitonin-permeabilized HeLa cells in vitro. Likewise, the pseudophosphorylation mutant showed aberrant intracellular localization in vivo and accumulated primarily on the nuclear envelope in transfected HeLa cells, while the corresponding alanine replacement mutant displayed the same cellular location pattern as wild-type E1 protein. Collectively, our data demonstrate that BPV1 E1 protein can be transported into the nucleus by more than one importin α and suggest that E1 phosphorylation by host cell kinases plays a regulatory role in modulating E1 nucleocytoplasmic localization. This phosphoregulation of nuclear E1 protein uptake may contribute to the coordination of viral replication with keratinocyte proliferation and differentiation. PMID:17192311

  20. EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin

    PubMed Central

    Golovnin, Anton; Melnikova, Larisa; Shapovalov, Igor; Kostyuchenko, Margarita; Georgiev, Pavel

    2015-01-01

    Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization. PMID:26489095

  1. Cellular Solid-State NMR Investigation of a Membrane Protein Using Dynamic Nuclear Polarization

    PubMed Central

    Yamamoto, Kazutoshi; Caporini, Marc A.; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-01-01

    While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR approaches to obtain such information in a cellular setting. As long as the proteins inside the living cell tumble rapidly in the NMR timescale, recently developed in-cell solution NMR approaches can be applied towards the determination of 3D structural information. However, there are numerous challenges that need to be overcome to study membrane proteins inside a cell. Research in our laboratory is focused on developing a combination of solid-state NMR and biological approaches to overcome these challenges with a specific emphasis on obtaining high-resolution structural insights into electron transfer biological processes mediated by membrane-bound proteins like mammalian cytochrome b5, cytochrome P450 and cytochrome P450 reductase. In this study, we demonstrate the feasibility of using the signal-enhancement rendered by dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR spectroscopy for in-cell studies on a membrane-anchored protein. Our experimental results obtained from 13C-labeled membrane-anchored cytochrome b5 in native Escherichia coli cells show a ~16-fold DNP signal enhancement (ε). Further, results obtained from a 2D 13C/13C chemical shift correlation MAS experiment demonstrates that it is highly possible to suppress the background signals from other cellular contents for high-resolution structural studies on membrane proteins. We believe that this study would pave new avenues for high-resolution 3D structural studies on a variety of membrane-associated proteins and their complexes in the cellular context to fully understand their functional roles in physiological processes. PMID:25017802

  2. Profiles of embryonic nuclear protein binding to the proximal promoter region of the soybean β-conglycinin α subunit gene.

    PubMed

    Yoshino, M; Tsutsumi, K; Kanazawa, A

    2015-01-01

    β-Conglycinin, a major component of seed storage protein in soybean, comprises three subunits: α, α' and β. The expression of genes for these subunits is strictly controlled during embryogenesis. The proximal promoter region up to 245 bp upstream of the transcription start site of the α subunit gene sufficiently confers spatial and temporal control of transcription in embryos. Here, the binding profile of nuclear proteins in the proximal promoter region of the α subunit gene was analysed. DNase I footprinting analysis indicated binding of proteins to the RY element and DNA regions including box I, a region conserved in cognate gene promoters. An electrophoretic mobility shift assay (EMSA) using different portions of box I as a probe revealed that multiple portions of box I bind to nuclear proteins. In addition, an EMSA using nuclear proteins extracted from embryos at different developmental stages indicated that the levels of major DNA-protein complexes on box I increased during embryo maturation. These results are consistent with the notion that box I is important for the transcriptional control of seed storage protein genes. Furthermore, the present data suggest that nuclear proteins bind to novel motifs in box I including 5'-TCAATT-3' rather than to predicted cis-regulatory elements. PMID:24943483

  3. DETECTION OF EXTRA-NUCLEAR HIGH MOBILITY GROUP BOX-1 PROTEIN IN A CANINE MODEL OF MYOCARDIAL INFARCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high mobility group box-1 protein (HMGB-1) is a well-characterized nuclear protein recently shown to be involved in endotoxin-induced inflammation and injury. Studies have linked HMGB-1 release to the production of pro-inflammatory cytokines; however, a role for HMGB-1 in other disorders involvi...

  4. Solution structures of Mengovirus Leader protein, its phosphorylated derivatives, and in complex with nuclear transport regulatory protein, RanGTPase

    PubMed Central

    Bacot-Davis, Valjean R.; Ciomperlik, Jessica J.; Basta, Holly A.; Cornilescu, Claudia C.; Palmenberg, Ann C.

    2014-01-01

    Cardiovirus Leader (L) proteins induce potent antihost inhibition of active cellular nucleocytoplasmic trafficking by triggering aberrant hyperphosphorylation of nuclear pore proteins (Nup). To achieve this, L binds protein RanGTPase (Ran), a key trafficking regulator, and diverts it into tertiary or quaternary complexes with required kinases. The activity of L is regulated by two phosphorylation events not required for Ran binding. Matched NMR studies on the unphosphorylated, singly, and doubly phosphorylated variants of Mengovirus L (LM) show both modifications act together to partially stabilize a short internal α-helix comprising LM residues 43–46. This motif implies that ionic and Van der Waals forces contributed by phosphorylation help organize downstream residues 48–67 into a new interface. The full structure of LM as bound to Ran (unlabeled) and Ran (216 aa) as bound by LM (unlabeled) places LM into the BP1 binding site of Ran, wrapped by the conformational flexible COOH tail. The arrangement explains the tight KD for this complex and places the LM zinc finger and phosphorylation interface as surface exposed and available for subsequent reactions. The core structure of Ran, outside the COOH tail, is not altered by LM binding and remains accessible for canonical RanGTP partner interactions. Pull-down assays identify at least one putative Ran:LM partner as an exportin, Crm1, or CAS. A model of Ran:LM:Crm1, based on the new structures suggests LM phosphorylation status may mediate Ran’s selection of exportin(s) and cargo(s), perverting these native trafficking elements into the lethal antihost Nup phosphorylation pathways. PMID:25331866

  5. Isolation and characterization of a Xenopus laevis C protein cDNA: structure and expression of a heterogeneous nuclear ribonucleoprotein core protein.

    PubMed Central

    Preugschat, F; Wold, B

    1988-01-01

    The C proteins are major components of heterogeneous nuclear ribonucleoprotein complexes in nuclei of vertebrate cells. To begin to describe their structure, expression, and function we isolated and determined the DNA sequence of Xenopus laevis C protein cDNA clones. The protein predicted from the DNA sequence has a molecular mass of 30,916 kDa and is very similar to its human counterpart. Although mammalian genomes contain many copies of C protein sequence, the Xenopus genome contains few copies. When C protein RNA was synthesized in vitro and microinjected into stage-VI Xenopus oocytes, newly synthesized C proteins were efficiently localized in the nucleus. In vitro rabbit reticulocyte lysate and in vivo Xenopus oocyte translation systems both produce from a single mRNA two discrete polypeptide species that accumulate in a ratio similar to that of mammalian C1 and C2 proteins in vivo. Images PMID:2904678

  6. Transmembrane protein TMEM170A is a newly discovered regulator of ER and nuclear envelope morphogenesis in human cells

    PubMed Central

    Christodoulou, Andri; Santarella-Mellwig, Rachel; Santama, Niovi

    2016-01-01

    ABSTRACT The mechanism of endoplasmic reticulum (ER) morphogenesis is incompletely understood. ER tubules are shaped by the reticulons (RTNs) and DP1/Yop1p family members, but the mechanism of ER sheet formation is much less clear. Here, we characterize TMEM170A, a human transmembrane protein, which localizes in ER and nuclear envelope membranes. Silencing or overexpressing TMEM170A in HeLa K cells alters ER shape and morphology. Ultrastructural analysis reveals that downregulation of TMEM170A specifically induces tubular ER formation, whereas overexpression of TMEM170A induces ER sheet formation, indicating that TMEM170A is a newly discovered ER-sheet-promoting protein. Additionally, downregulation of TMEM170A alters nuclear shape and size, decreases the density of nuclear pore complexes (NPCs) in the nuclear envelope and causes either a reduction in inner nuclear membrane (INM) proteins or their relocalization to the ER. TMEM170A interacts with RTN4, a member of the reticulon family; simultaneous co-silencing of TMEM170A and RTN4 rescues ER, NPC and nuclear-envelope-related phenotypes, implying that the two proteins have antagonistic effects on ER membrane organization, and nuclear envelope and NPC formation. PMID:26906412

  7. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  8. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  9. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages

    PubMed Central

    Redrejo-Rodríguez, Modesto; Muñoz-Espín, Daniel; Holguera, Isabel; Mencía, Mario; Salas, Margarita

    2012-01-01

    A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1–37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5′ DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes. PMID:23091024

  10. Nuclear envelope morphology constrains diffusion and promotes asymmetric protein segregation in closed mitosis

    PubMed Central

    Boettcher, Barbara; Marquez-Lago, Tatiana T.; Bayer, Mathias; Weiss, Eric L.

    2012-01-01

    During vegetative growth, Saccharomyces cerevisiae cells divide asymmetrically: the mother cell buds to produce a smaller daughter cell. This daughter asymmetrically inherits the transcription factor Ace2, which activates daughter-specific transcriptional programs. In this paper, we investigate when and how this asymmetry is established and maintained. We show that Ace2 asymmetry is initiated in the elongated, but undivided, anaphase nucleus. At this stage, the nucleoplasm was highly compartmentalized; little exchange was observed for nucleoplasmic proteins between mother and bud. Using photobleaching and in silico modeling, we show that diffusion barriers compartmentalize the nuclear membranes. In contrast, the behavior of proteins in the nucleoplasm is well explained by the dumbbell shape of the anaphase nucleus. This compartmentalization of the nucleoplasm promoted Ace2 asymmetry in anaphase nuclei. Thus, our data indicate that yeast cells use the process of closed mitosis and the morphological constraints associated with it to asymmetrically segregate nucleoplasmic components. PMID:22711697

  11. An N-terminal nuclear export signal regulates trafficking and aggregation of Huntingtin (Htt) protein exon 1.

    PubMed

    Zheng, Zhiqiang; Li, Aimin; Holmes, Brandon B; Marasa, Jayne C; Diamond, Marc I

    2013-03-01

    Huntington disease is a dominantly inherited neurodegenerative condition caused by polyglutamine expansion in the N terminus of the huntingtin protein (Htt). The first 17 amino acids (N17) of Htt play a key role in regulating its toxicity and aggregation. Both nuclear export and cytoplasm retention functions have been ascribed to N17. We have determined that N17 acts as a nuclear export sequence (NES) within Htt exon and when fused to yellow fluorescent protein. We have defined amino acids within N17 that constitute the nuclear export sequence (NES). Mutation of any of the conserved residues increases nuclear accumulation of Htt exon 1. Nuclear export of Htt is sensitive to leptomycin B and is reduced by knockdown of exportin 1. In HEK293 cells, NES mutations decrease overall Htt aggregation but increase the fraction of cells with nuclear inclusions. In primary cultured neurons, NES mutations increase nuclear accumulation and increase overall aggregation. This work defines a bona fide nuclear export sequence within N17 and links it to effects on protein aggregation. This may help explain the important role of N17 in controlling Htt toxicity. PMID:23319588

  12. Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate.

    PubMed

    Caly, Leon; Kassouf, Vicki T; Moseley, Gregory W; Diefenbach, Russell J; Cunningham, Anthony L; Jans, David A

    2016-02-12

    Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72L mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. PMID:26792716

  13. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. PMID:25329362

  14. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    SciTech Connect

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  15. [The nuclear matrix proteins (mol. mass 38 and 50 kDa) are transported by chromosomes in mitosis].

    PubMed

    Murasheva, M I; Chentsov, Iu S

    2010-01-01

    It was shown by immunofluorescence method that serum M68 and serum K43 from patients with autoimmune disease stain interphase nuclei and periphery of mitotic chromosomes of pig kidney cells. Western blotting reveals the polypeptide with mol. mass of 50 kDa in serum M68, and the polypeptide with mol. mass of 38 kDa in serum K43. In the nuclear protein matrix, the antibodies to protein with mol. mass of 38 kDa stained only nucleolar periphery, while the antibodies to the protein with mol. mass of 50 kDa stained both the nucleolar periphery and all the interphase nucleus. It shows that among all components of nuclear protein matrix (lamina, internuclear network, residual nucleoli) only nucleolar periphery contains the 38 kDa protein, while the 50 kDa protein is a part of residual nucleolar periphery and takes part in nuclear protein network formation. In the interphase cells, both proteins were in situ localized in the nuclei, but one of them with mol. mass of 50 kDa was in the form of small clearly outlined granules, while the other (38 kDa) was in the form of small bright granules against the background of diffusely stained nuclei. Both proteins were also revealed as continuous ring around nucleolar periphery. During all mitotic stages, the 50 kDa protein was seen on the chromosomal periphery as a cover, and the 38 kDa protein formed separate fragments and granules around them. After nuclear and chromosome decondensation induced by hypotonic treatment, both antibodies stain interphase nuclei in diffuse manner, but in mitotic cells they stained the surface of the swollen chromosomes. The polypeptide with mol. mass of 50 kDa maintained strong connection with chromosome periphery both in norm and under condition of decondensation induced by hypotonic treatment and at subsequent recondensation in isotonic medium. In contrast, the protein with mol. mass of 38 kDa partially lost the contact with a chromosome during recondensation appearing also in the form of granules in

  16. Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor.

    PubMed

    Ye, K; Compton, D A; Lai, M M; Walensky, L D; Snyder, S H

    1999-12-15

    Protein 4.1N is a neuronal selective isoform of the erythrocyte membrane cytoskeleton protein 4.1R. In the present study, we demonstrate an interaction between 4.1N and nuclear mitotic apparatus protein (NuMA), a nuclear protein required for mitosis. The binding involves the C-terminal domain of 4.1N. In PC12 cells treatment with nerve growth factor (NGF) elicits translocation of 4. 1N to the nucleus and promotes its association with NuMA. Specific targeting of 4.1N to the nucleus arrests PC12 cells at the G1 phase and produces an aberrant nuclear morphology. Inhibition of 4.1N nuclear translocation prevents the NGF-mediated arrest of cell division, which can be reversed by overexpression of 4.1N. Thus, nuclear 4.1N appears to mediate the antiproliferative actions of NGF by antagonizing the role of NuMA in mitosis. PMID:10594058

  17. Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis thaliana cell cultures.

    PubMed

    Chaki, Mounira; Shekariesfahlan, Azam; Ageeva, Alexandra; Mengel, Alexander; von Toerne, Christine; Durner, Jörg; Lindermayr, Christian

    2015-09-01

    Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation--the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus. PMID:26259180

  18. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons

    SciTech Connect

    Young, Kevin G.; Kothary, Rashmi

    2008-09-10

    Dystonin/Bpag1 proteins are cytoskeletal linkers whose loss of function in mice results in a hereditary sensory neuropathy with a progressive loss of limb coordination starting in the second week of life. These mice, named dystonia musculorum (dt), succumb to the disease and die of unknown causes prior to sexual maturity. Previous evidence indicated that cytoskeletal defects in the axon are a primary cause of dt neurodegeneration. However, more recent data suggests that other factors may be equally important contributors to the disease process. In the present study, we demonstrate perikaryal defects in dorsal root ganglion (DRG) neurons at stages preceding the onset of loss of limb coordination in dt mice. Abnormalities include alterations in endoplasmic reticulum (ER) chaperone protein expression, indicative of an ER stress response. Dystonin in sensory neurons localized in association with the ER and nuclear envelope (NE). A fusion protein ofthe dystonin-a2 isoform, which harbors an N-terminal transmembrane domain, associated with and reorganized the ER in cell culture. This isoform also interacts with the NE protein nesprin-3{alpha}, but not nesprin-3{beta}. Defects in dt mice, as demonstrated here, may ultimately result in pathogenesis involving ER dysfunction and contribute significantly to the dt phenotype.

  19. Quantitative assessment of complex formation of nuclear-receptor accessory proteins.

    PubMed

    Graumann, K; Jungbauer, A

    2000-02-01

    Like other nuclear receptors, steroid hormone receptors form large protein hetero-complexes in their inactive, ligand-friendly state. Several heat-shock proteins, immunophilins and others have been identified as members of these highly dynamic complexes. The interaction kinetics and dynamics of hsp90, hsp70, p60 (Hop), FKBP52, FKBP51, p48 (Hip) and p23 have been assessed by a biosensor approach measuring the complex formation in real time. A core chaperone complex has been reconstituted from p60, hsp90 and hsp70. p60 forms a molecular bridge between hsp90 and hsp70 with an affinity in the range of 10(5) M(-1). Dynamics of hsp90-p60 complex formation is modulated by ATP through changes in the co-operativity of interaction. At low protein concentrations ATP stabilizes the complex. Binding of p23 to hsp90 did not change the affinity of the hsp90-p60 complex and the stabilizing effect of ATP. Saturation of the p48-hsp70 interaction could not be achieved, suggesting multiple binding sites. A picture of the protein complex, including stoichiometric coefficients, co-operativity of interaction and equilibrium-binding constants, has been formed. PMID:10642522

  20. Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity.

    PubMed

    Darricarrère, Nicole; Liu, Na; Watanabe, Toshiaki; Lin, Haifan

    2013-01-22

    The Piwi protein subfamily is essential for Piwi-interacting RNA (piRNA) biogenesis, transposon silencing, and germ-line development, all of which have been proposed to require Piwi endonuclease activity, as validated for two cytoplasmic Piwi proteins in mice. However, recent evidence has led to questioning of the generality of this mechanism for the Piwi members that reside in the nucleus. Drosophila offers a distinct opportunity to study the function of nuclear Piwi proteins because, among three Drosophila Piwi proteins--called Piwi, Aubergine, and Argonaute 3--Piwi is the only member of this subfamily that is localized in the nucleus and expressed in both germ-line and somatic cells in the gonad, where it is responsible for piRNA biogenesis and regulatory functions essential for fertility. In this study, we demonstrate beyond doubt that the slicer activity of Piwi is not required for any known functions in vivo. We show that, in transgenic flies with the DDX catalytic triad of PIWI mutated, neither primary nor secondary piRNA biogenesis is detectably affected, transposons remain repressed, and fertility is normal. Our observations demonstrate that the mechanism of Piwi is independent of its in vitro endonuclease activity. Instead, it is consistent with the alternative mode of Piwi function as a molecule involved in the piRNA-directed guidance of epigenetic factors to chromatin. PMID:23297219

  1. Nuclear Pore Complex Protein Sequences Determine Overall Copolymer Brush Structure and Function?

    NASA Astrophysics Data System (ADS)

    Ando, David; Kim, Yongwoon; Zandi, Roya; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

    2015-03-01

    Disordered proteins are an interesting class of unfolded protein biopolymers which are functionally versatile. Their sequences are unconstrained by a sequence-structure relationship, and allow for a wide range of chemical and physical polymer properties. The Nuclear Pore Complex (NPC) contains over one hundred of such proteins (FG nups), which collectively function to regulate the exchange of all materials between the nucleus and cytoplasm. We perform coarse grained simulations of both individual FG nups and grafted rings of nups mimicking the in vivo geometry of the NPC, supplemented with polymer brush modeling. Our results indicate that different regions or ``blocks'' of an individual FG nup can have distinctly different forms of disorder, and that this property appears to be a conserved feature across eukarya. Furthermore, this block structure at the individual protein level is critical to the formation of a unique higher-order polymer brush architecture. Because the interactions between FG nups may be modulated by certain forms of transport factors, our results indicate that transitions between brush morphologies could play an important role in regulating transport across the NPC, suggesting novel forms of gated transport across membrane pores with wide biomimetic applicability.

  2. A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein

    PubMed Central

    Li, Zhuo; Huang, Richard Y.-C.; Yopp, Daniel C.; Hileman, Travis H.; Santangelo, Thomas J.; Hurwitz, Jerard; Hudgens, Jeffrey W.; Kelman, Zvi

    2014-01-01

    Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that associates with and influences the activity of many proteins participating in DNA metabolic processes and cell cycle progression. Previously, an uncharacterized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably interact with PCNA in vivo. Here, we show that this protein, designated Thermococcales inhibitor of PCNA (TIP), binds to PCNA in vitro and inhibits PCNA-dependent activities likely by preventing PCNA trimerization. Using hydrogen/deuterium exchange mass spectrometry and site-directed mutagenesis, the interacting regions of PCNA and TIP were identified. Most proteins bind to PCNA via a PCNA-interacting peptide (PIP) motif that interacts with the inter domain connecting loop (IDCL) on PCNA. TIP, however, lacks any known PCNA-interacting motif, suggesting a new mechanism for PCNA binding and regulation of PCNA-dependent activities, which may support the development of a new subclass of therapeutic biomolecules for inhibiting PCNA. PMID:24728986

  3. Protein and gene expression characteristics of heterogeneous nuclear ribonucleoprotein H1 in esophageal squamous cell carcinoma

    PubMed Central

    Sun, Yu-Lin; Liu, Fei; Liu, Fang; Zhao, Xiao-Hang

    2016-01-01

    AIM To investigate the expression characteristics of heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) mRNA and protein in cell lines and tissues of esophageal squamous cell carcinoma (ESCC). METHODS Western blotting was used to assess the expression of HNRNPH1 protein in seven ESCC cell lines and 30 paired fresh tissue specimens. The subcellular localization of HNRNPH1 was determined by immunofluorescence in ESCC cells. The RNA sequencing data from 87 patients with ESCC were obtained from the cancer genome atlas (TCGA), and the expression and clinical characteristics analysis of different transcript variants of HNRNPH1 were evaluated in this dataset. In addition, immunohistochemistry was carried out to detect the expression of HNRNPH1 protein in 125 patients. RESULTS The expression of HNRNPH1 protein varied across different ESCC cell lines. It was exclusively restricted to the nucleus of the ESCC cells. There are two transcript variants of the HNRNPH1 gene. Variant 1 was constitutively expressed, and its expression did not change during tumorigenesis. In contrast, levels of variant 2 were low in non-tumorous tissues and were dramatically increased in ESCC (P = 0.0026). The high levels of variant 2 were associated with poorer differentiated tumors (P = 0.0287). Furthermore, in paired fresh tissue specimens, HNRNPH1 protein was overexpressed in 73.3% (22/30) of neoplastic tissues. HNRNPH1 was significantly upregulated in ESCC, with strong staining in 43.2% (54/125) of tumor tissues and 22.4% (28/125) of matched non-cancerous tissues (P = 0.0005). Positive HNRNPH1 expression was significantly associated with poor tumor differentiation degree (P = 0.0337). CONCLUSION The different alternative transcript variants of HNRNPH1 exhibited different expression changes during tumorigenesis. Its mRNA and protein were overexpressed in ESCC and associated with poorer differentiation of tumor cells. These findings highlight the potential of HNRNPH1 in the therapy and diagnosis

  4. Studies with GFP-Vpr fusion proteins: induction of apoptosis but ablation of cell-cycle arrest despite nuclear membrane or nuclear localization.

    PubMed

    Waldhuber, Megan G; Bateson, Michael; Tan, Judith; Greenway, Alison L; McPhee, Dale A

    2003-08-15

    The human immunodeficiency virus type 1 (HIV-1) Vpr protein is known to arrest the cell cycle in G(2)/M and induce apoptosis following arrest. The functions of Vpr relative to its location in the cell remain unresolved. We now demonstrate that the location and function of Vpr are dependent on the makeup of fusion proteins and that the functions of G(2)/M arrest and apoptosis are separable. Using green fluorescence protein mutants (EGFP or EYFP), we found that fusion at either the N- or C-terminus compromised the ability of Vpr to arrest cell cycling, relative to that of His-Vpr or wild-type protein. Additionally, utilizing the ability to specifically identify cells expressing the fusion proteins, we confirm that Vpr can induce apoptosis, but appears to be independent of cell-cycle arrest in G(2)/M. Both N- and C-terminal Vpr/EYFP fusion proteins induced apoptosis but caused minimal G(2)/M arrest. These studies with Vpr fusion proteins indicate that the functions of Vpr leading to G(2)/M arrest and apoptosis are separable and that fusion of Vpr to EGFP or EYFP affected the localization of the protein. Our findings suggest that nuclear membrane localization and nuclear import and export are strongly governed by modification of the N-terminus of Vpr. PMID:12951024

  5. Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles.

    PubMed Central

    Wurtz-T; Kiseleva, E; Nacheva, G; Alzhanova-Ericcson, A; Rosén, A; Daneholt, B

    1996-01-01

    Balbiani ring (BR) granules are premessenger ribonucleoprotein particles (RNPs) generated in giant chromosomal puffs, the BRs, in the larval salivary glands of the dipteran chironomus tentans. Monoclonal antibodies were raised against nuclear proteins collected on a single-stranded-DNA-agarose affinity column, and two of them were used to identify RNA-binding proteins in BR granules. First, in Western blots (immunoblots), one of the antibodies recognized a 36-kDa protein and the other recognized a 45-KDa protein. Second, both antibodies bound to the BRs in immunocytological experiments. It was shown in cross-linking experiments that the two proteins are associated with heterogeneous nuclear RNP (hnRNP) complexes extracted from C. tentans nuclei. By immunoelectron microscopy of isolated and partly unfolded BR RNPs, it was specifically demonstrated that the BR granules contain the two proteins and, in addition, that both proteins are distributed frequently along the RNP fiber of the particles. Thus, the 36- and 45-KDa proteins are likely to be abundant, RNA-binding proteins in the BR particles. To elucidate to what extent the two proteins are also present in other hnRNPs, we studied the binding of the antibodies to chromosomal puffs in general. It was observed that many puffs in addition to the BRs harbor the two proteins, but there are also puffs containing only one of the components, either the 36- or the 45-kDa protein. We conclude that the two proteins are not randomly bound to all hnRNPs but that each of them seems to be linked to a specific subset of the particles. PMID:8657116

  6. A novel nuclear localization signal in the human single-minded proteins SIM1 and SIM2.

    PubMed

    Yamaki, Akiko; Kudoh, Jun; Shimizu, Nobuyoshi; Shimizu, Yoshiko

    2004-01-16

    Human Single-minded 1 (SIM1) and SIM2 genes were found as homologs of Drosophila sim gene which plays a key role in the midline cell lineage of the central nervous system. SIM proteins belong to a family of transcription factors, called bHLH/PAS. Here we examined the intracellular localization of SIM proteins using the expression constructs of whole SIM2 or SIM1 protein fused with enhanced green fluorescent protein (EGFP). The transient expression analysis revealed the nuclear localization of SIM proteins in the cultured cells. To identify the nuclear localization signal, we made expression constructs of EGFP-fusion protein consisting of various portions of SIM proteins. Transfection assay showed the presence of NLS activity in the small region of 23 and 21 amino acid residues at the central part of SIM2 and SIM1 proteins, respectively. Further analysis with amino acid substitution of this small region of SIM2 protein revealed the critical role of five amino acid residues (Arg367, Lys373, Pro385, Tyr386, and Gln389) in NLS activity. The consensus sequence of RKxxKx[K/R]xxxxKxKxRxxPY was estimated as a presumptive NLS in SIM proteins from various species. Thus, the NLS consisting of a cluster of basic amino acids with Pro and Tyr at the C-terminal end is novel and well conserved in the SIM proteins during evolution. PMID:14697214

  7. Identification of novel residues involved in nuclear localization of a baculovirus polyhedrin protein.

    PubMed

    Katsuma, S; Deng, D X; Zhou, C L; Iwanaga, M; Noguchi, Y; Kobayashi, M; Maeda, S

    2000-10-01

    A baculovirus polyhedrin protein has proven to possess a nuclear localization signal (NLS) sequence and a domain required for supramolecular assembly. Here we investigated five Bombyx mori nucleopolyhedrovirus (BmNPV) mutants that did not produce polyhedra. Two of five mutants were generated during routine baculoviral expression vector screening, and three were isolated by treatment with the mutagen 5-bromo-2'-deoxyuridine (BrdU). Marker rescue mapping and nucleotide sequence analysis showed that mutations in the polyhedrin gene caused the altered phenotype of these mutants. Biochemical fractionation indicated that cells infected with these mutants exhibited polyhedrin protein in both the nucleus and the cytoplasm. Electron microscopic observation revealed that polyhedrin produced by these mutants ocurred in both the nucleus and the cytoplasm, but did not form a crystalline lattice. Despite the incompleteness of polyhedrin nuclear localization, the NLSs of the five mutants were unchanged, although some of the mutations occurred within residues just outside of the domain reported to be required for polyhedron assembly (4). This result suggests that (a) the polyhedrin NLS directs polyhedrin to the nucleus, but the efficiency of this localization is regulated by regions other than the NLS (probably, polyhedrin conformation and its association with the nucleus are also involved), and (b) formation of a crystalline lattice may also be determined by several domains within polyhedrin. PMID:11129641

  8. Variants within the SP110 nuclear body protein modify risk of canine degenerative myelopathy

    PubMed Central

    Ivansson, Emma L.; Kozyrev, Sergey V.; Murén, Eva; Körberg, Izabella Baranowska; Swofford, Ross; Koltookian, Michele; Tonomura, Noriko; Zeng, Rong; Kolicheski, Ana L.; Hansen, Liz; Katz, Martin L.; Johnson, Gayle C.; Johnson, Gary S.; Coates, Joan R.; Lindblad-Toh, Kerstin

    2016-01-01

    Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and -unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs (P = 1.5 × 10−5), and was associated with increased probability of developing DM (P = 4.8 × 10−6) and earlier onset of disease (P = 1.7 × 10−5). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds. PMID:27185954

  9. Interaction between the human nuclear cap-binding protein complex and hnRNP F.

    PubMed Central

    Gamberi, C; Izaurralde, E; Beisel, C; Mattaj, I W

    1997-01-01

    hnRNP F was identified in a screen for proteins that interact with human CBP80 and CBP20, the components of the nuclear cap-binding complex (CBC). In vitro interaction studies showed that hnRNP F can bind to both CBP20 and CBP80 individually. hnRNP F and CBC bind independently to RNA, but hnRNP F binds preferentially to CBC-RNA complexes rather than to naked RNA. The hnRNP H protein, which is 78% identical to hnRNP F and also interacts with both CBP80 and CBP20 in vitro, does not discriminate between naked RNA and CBC-RNA complexes, showing that this effect is specific. Depletion of hnRNP F from HeLa cell nuclear extract decreases the efficiency of pre-mRNA splicing, a defect which can be partially compensated by addition of recombinant hnRNP F. Thus, hnRNP F is required for efficient pre-mRNA splicing in vitro and may participate in the effect of CBC on pre-mRNA splicing. PMID:9111328

  10. Variants within the SP110 nuclear body protein modify risk of canine degenerative myelopathy.

    PubMed

    Ivansson, Emma L; Megquier, Kate; Kozyrev, Sergey V; Murén, Eva; Körberg, Izabella Baranowska; Swofford, Ross; Koltookian, Michele; Tonomura, Noriko; Zeng, Rong; Kolicheski, Ana L; Hansen, Liz; Katz, Martin L; Johnson, Gayle C; Johnson, Gary S; Coates, Joan R; Lindblad-Toh, Kerstin

    2016-05-31

    Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and -unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs (P = 1.5 × 10(-5)), and was associated with increased probability of developing DM (P = 4.8 × 10(-6)) and earlier onset of disease (P = 1.7 × 10(-5)). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds. PMID:27185954

  11. Identification of a nuclear export signal sequence for bovine papillomavirus E1 protein

    SciTech Connect

    Rosas-Acosta, German; Wilson, Van G.

    2008-03-30

    Recent studies have demonstrated nuclear export by papillomavirus E1 proteins, but the requisite export sequence(s) for bovine papillomavirus (BPV) E1 were not defined. In this report we identify three functional nuclear export sequences (NES) present in BPV E1, with NES2 being the strongest in reporter assays. Nuclear localization of BPV1 E1 was modulated by over- or under-expression of CRM1, the major cellular exportin, and export was strongly reduced by the CRM1 inhibitor, Leptomycin B, indicating that E1 export occurs primarily through a CRM1-dependent process. Consistent with the in vivo functional results, E1 bound CRM1 in an in vitro pull-down assay. In addition, sumoylated E1 bound CRM1 more effectively than unmodified E1, suggesting that E1 export may be regulated by SUMO modification. Lastly, an E1 NES2 mutant accumulated in the nucleus to a greater extent than wild-type E1, yet was defective for viral origin replication in vivo. However, NES2 exhibited no intrinsic replication defect in an in vitro replication assay, implying that nucleocytoplasmic shuttling may be required to maintain E1 in a replication competent state.

  12. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    SciTech Connect

    Cambier, Linda; Pomies, Pascal

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  13. Yes-Associated Protein (YAP) Promotes the Nuclear Import of p73

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-01-01

    p73 has been identified as a structural and functional homolog of the tumor suppressor p53. However, mechanisms that regulate the localization of p73 have not been fully clarified. The Yes-associated protein (YAP) is a transcriptional coactivator. As a transcriptional coactivator, YAP needs to bind transcription factors to stimulate gene expression. p73 is a reported YAP target transcription factors and YAP has been shown to positively regulate p73 in promoting apoptosis. Previous studies show that p73 interacts with YAP through its PPPY motif, and increases p73 transactivation of apoptotic genes. In this study, we focused on YAP's regulation of the localization of p73. After transient transfection into Rat pheochromocytoma (PC12) cells and Human embryonic kidney 293T cells with GFP-YAP and/or YFP-p73, and incubated for 24 hours expression. p73 was fused to YFP to allow the examination of its subcellular localization. When expressed alone, YFP-p73 was distributed throughout the cell. When coexpressed with YAP, nuclear accumulation of YFP-p73 became evident. We quantitated the effect of YAP on the redistribution of YFP-p73 by counting cells with nuclear-only YFP signal. We found that YAP can influence the subcellular distribution of p73. Altogether, coexpression with YAP affected the subcellular distribution of the p73 protein. Our studies attribute a central role to YAP in regulating p73 accumulation and YAP, at least in part, might promote the nuclear import of p73.

  14. Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81

    PubMed Central

    Batsios, Petros; Ren, Xiang; Baumann, Otto; Larochelle, Denis A.; Gräf, Ralph

    2016-01-01

    The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11–646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture. PMID:26999214

  15. Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system.

    PubMed

    Motohashi, Tomoko; Shimojima, Tsukasa; Fukagawa, Tatsuo; Maenaka, Katsumi; Park, Enoch Y

    2005-01-21

    Silkworm is one of the most attractive hosts for large-scale production of eukaryotic proteins as well as recombinant baculoviruses for gene transfer to mammalian cells. The bacmid system of Autographa californica nuclear polyhedrosis virus (AcNPV) has already been established and widely used. However, the AcNPV does not have a potential to infect silkworm. We developed the first practical Bombyx mori nuclear polyhedrosis virus bacmid system directly applicable for the protein expression of silkworm. By using this system, the green fluorescence protein was successfully expressed in silkworm larvae and pupae not only by infection of its recombinant virus but also by direct injection of its bacmid DNA. This method provides the rapid protein production in silkworm as long as 10 days, is free from biohazard, thus will be a powerful tool for the future production factory of recombinant eukaryotic proteins and baculoviruses. PMID:15596136

  16. Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3'-untranslated region of amyloid protein precursor mRNA.

    PubMed

    Zaidi, S H; Malter, J S

    1995-07-21

    The central nervous system deposition by neurons and glia of beta A4 amyloid protein is an important contributing factor to the development of Alzheimer's disease. Amyloidogenic cells overexpress amyloid precursor protein (APP) mRNAs suggesting a transcriptional or post-transcriptional defect may contribute to this process. We have previously shown that APP mRNAs display regulated stability which is dependent on a 29-base element within the 3'-untranslated region (UTR). This domain specifically interacted with several cytoplasmic RNA-binding proteins. We have purified these APP RNA-binding proteins from a human T-cell leukemia and demonstrate that five cytoplasmic proteins of 70, 48, 47, 39, and 38 kDa form the previously observed APP RNA protein complexes. Amino acid sequence analyses showed that the 70-, 48-, and 47-kDa proteins were fragments of nucleolin and that the 39- and 38-kDa proteins were heterogeneous nuclear ribonucleoprotein (hnRNP) C protein. Northwestern and Western blot analyses of purified material further confirmed these data. Nucleolin protein is known to shuttle between the nucleus and cytoplasm but hnRNP C has not been reported within the cytoplasm. This report of sequence specific, mRNA binding by nucleolin and hnRNP C suggests that these proteins participate in the post-transcriptional regulation of APP mRNA through 3'-UTR, site-specific interactions. PMID:7615529

  17. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    SciTech Connect

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-11-10

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7{sub 39-98} localized mostly to the nucleus. The GST-11E7 and GST-11cE7{sub 39-98} were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.

  18. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution.

    PubMed Central

    Doye, V.; Wepf, R.; Hurt, E. C.

    1994-01-01

    Temperature-sensitive nucleoporin nup49-316 mutant cells accumulate poly(A)+ RNA inside the nucleus when shifted to restrictive temperature. We performed a synthetic lethal screen with this mutant allele to identify further components of the mRNA export machinery. A synthetic lethal mutant slv21 was isolated, which exhibited a ts phenotype and showed nuclear accumulation of poly(A)+ RNA at 37 degrees C. The wild-type gene complementing slv21 was cloned and sequenced. It encodes a novel protein Nup133p which is located at the nuclear pore complex. NUP133 is not an essential gene, but cells in which NUP133 is disrupted grow slowly at permissive temperatures and stop growing at 37 degrees C. Concomitant with the growth inhibition, nup133- cells accumulate poly(A)+ RNA inside the nucleus whereas nuclear import of a karyophilic reporter protein is not altered. Strikingly, nup133- cells display extensive clustering of nuclear pore complexes at a few sites on the nuclear envelope. However, the nuclear pore clustering phenotype and intranuclear accumulation of poly(A)+ RNA are not obligatorily linked, since an amino-terminally truncated Nup133p allows normal poly(A)+ RNA export, but does not complement the clustering phenotype of nup133- cells. Images PMID:7813444

  19. A Nuclear Factor of High Mobility Group Box Protein in Toxoplasma gondii

    PubMed Central

    Wang, Hui; Lei, Tao; Liu, Jing; Li, Muzi; Nan, Huizhu; Liu, Qun

    2014-01-01

    High mobility group box 1 (HMGB1) is a nuclear factor that usually binds DNA and modulates gene expression in multicellular organisms. Three HMGB1 orthologs were predicted in the genome of Toxoplasma gondii, an obligate intracellular protozoan pathogen, termed TgHMGB1a, b and c. Phylogenetic and bioinformatic analyses indicated that these proteins all contain a single HMG box and which shared in three genotypes. We cloned TgHMGB1a, a 33.9 kDa protein that can stimulates macrophages to release TNF-α, and, we demonstrated that the TgHMGB1a binds distorted DNA structures such as cruciform DNA in electrophoretic mobility shift assays (EMSA). Immunofluorescence assay indicated TgHMGB1a concentrated in the nucleus of intracellular tachyzoites but translocated into the cytoplasm while the parasites release to extracellular. There were no significant phenotypic changes when the TgHMGB1a B box was deleted, while transgenic parasites that overexpressed TgHMGB1a showed slower intracellular growth and caused delayed death in mouse, further quantitative RT-PCR analyses showed that the expression levels of many important genes, including virulence factors, increased when TgHMGB1a was overexpressed, but no significant changes were observed in TgHMGB1a B box-deficient parasites. Our findings demonstrated that TgHMGB1a is indeed a nuclear protein that maintains HMG box architectural functions and is a potential proinflammatory factor during the T.gondii infection. Further studies that clarify the functions of TgHMGB1s will increase our knowledge of transcriptional regulation and parasite virulence, and might provide new insight into host–parasite interactions for T. gondii infection. PMID:25369210

  20. Brd4-mediated nuclear retention of the papillomavirus E2 protein contributes to its stabilization in host cells.

    PubMed

    Li, Jing; Li, Qing; Diaz, Jason; You, Jianxin

    2014-01-01

    Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B) fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions. PMID:24448221

  1. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins.

    PubMed

    Kralt, Annemarie; Jagalur, Noorjahan B; van den Boom, Vincent; Lokareddy, Ravi K; Steen, Anton; Cingolani, Gino; Fornerod, Maarten; Veenhoff, Liesbeth M

    2015-09-15

    Endoplasmic reticulum-synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins. PMID:26179916

  2. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins

    PubMed Central

    Kralt, Annemarie; Jagalur, Noorjahan B.; van den Boom, Vincent; Lokareddy, Ravi K.; Steen, Anton; Cingolani, Gino; Fornerod, Maarten; Veenhoff, Liesbeth M.

    2015-01-01

    Endoplasmic reticulum–synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins. PMID:26179916

  3. Protein kinase C modulates aryl hydrocarbon receptor nuclear translocator protein-mediated transactivation potential in a dimer context.

    PubMed

    Long, W P; Chen, X; Perdew, G H

    1999-04-30

    Protein kinase C (PKC)- and protein kinase A (PKA)-mediated modulation of the transactivation potential of human aryl hydrocarbon receptor nuclear translocator (hARNT), a basic helix-loop-helix (bHLH)-PAS transcription factor, and the bHLH-ZIP transcription factors USF-1 (for upstream regulatory factor 1) and c-Myc were examined. An 81 nM dose of the PKC activator phorbol-12-myristate-13-acetate (PMA), shown here to specifically activate PKC in COS-1 cells, or a 1 nM dose of the PKA activator 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) results in 2. 6- and 1.9-fold enhancements, respectively, in hARNT-mediated transactivation of the class B, E-box-driven reporter pMyc3E1bLuc relative to identically transfected, carrier solvent-treated COS-1 cells. In contrast, 81 nM PMA and 1 nM 8-Br-cAMP did not enhance transactivation of pMyc3E1bLuc-driven by USF-1 and c-Myc expression relative to identically transfected, carrier-treated COS-1 cells. Co-transfection of pcDNA3/ARNT-474-Flag, expressing a hARNT carboxyl-terminal transactivation domain deletion, and pMyc3E1bLuc does not result in induction of reporter activity, suggesting PMA's effects do not involve formation of unknown hARNT-protein heterodimers. Additionally, PMA had no effect on hARNT expression relative to Me2SO-treated cells. Metabolic 32P labeling of hARNT in cells treated with carrier solvent or 81 nM PMA demonstrates that PMA does not increase the overall phosphorylation level of hARNT. These results demonstrate, for the first time, that the transactivation potential of ARNT in a dimer context can be specifically modulated by PKC or PKA stimulation and that the bHLH-PAS and bHLH-ZIP transcription factors are differentially regulated by these pathways in COS-1 cells. PMID:10212212

  4. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  5. The nuclear protein Sam68 is recruited to the cytoplasmic stress granules during enterovirus 71 infection.

    PubMed

    Zhang, Hua; Chen, Ning; Li, Pengfei; Pan, Ziye; Ding, Yun; Zou, Dehua; Li, Liyang; Xiao, Lijie; Shen, Binglei; Liu, Shuxia; Cao, Hongwei; Cui, Yudong

    2016-07-01

    Our previous study found that the nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), is translocated to the cytoplasm and forms punctate pattern during enterovirus 71 (EV71) infection [Virus Research, 180 (2014), 1-11]. However, the exact function of this punctate pattern in cytoplasm during EV71 infection remains unknown. In this study, we firstly have examined this punctate pattern of Sam68 re-localization in the cytoplasm, and observed the obvious recruitments of Sam68 to the EV71-induced stress granules (SGs). Sam68, belongs to the KH domain family of RNA binding proteins (RBPs), was then confirmed that its KH domain was essential for this recruitment. Nevertheless, Knockdown of Sam68 expression using ShRNA had no effects on SGs assembly, indicating that Sam68 is not a constitutive component of the SGs during EV71 infection. Lastly, we investigated the importance of microtubulin transport to SGs aggregation, and revealed that microtubule depolymerization inhibited SGs formation, suggesting that EV71-induced SGs move throughout the cytoplasm in a microtubule-dependent manner. Taken together, these results illuminated that EV71 infections can induce SGs formation, and Sam68, as a SGs component, migrates alone with SGs dependent on intact microtubule upon the viral infections. These findings may provide novel underlying mechanism for delineating the role of SGs during EV71 infection. PMID:27057671

  6. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    SciTech Connect

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  7. Cotyledon nuclear proteins bind to DNA fragments harboring regulatory elements of phytohemagglutinin genes.

    PubMed Central

    Riggs, C D; Voelker, T A; Chrispeels, M J

    1989-01-01

    The effects of deleting DNA sequences upstream from the phytohemagglutinin-L gene of Phaseolus vulgaris have been examined with respect to the level of gene product produced in the seeds of transgenic tobacco. Our studies indicate that several upstream regions quantitatively modulate expression. Between -1000 and -675, a negative regulatory element reduces expression approximately threefold relative to shorter deletion mutants that do not contain this region. Positive regulatory elements lie between -550 and -125 and, compared with constructs containing only 125 base pairs of upstream sequences (-125), the presence of these two regions can be correlated with a 25-fold and a 200-fold enhancement of phytohemagglutinin-L levels. These experiments were complemented by gel retardation assays, which demonstrated that two of the three regions bind cotyledon nuclear proteins from mid-mature seeds. One of the binding sites maps near a DNA sequence that is highly homologous to protein binding domains located upstream from the soybean seed lectin and Kunitz trypsin inhibitor genes. Competition experiments demonstrated that the upstream regions of a bean beta-phaseolin gene, the soybean seed lectin gene, and an oligonucleotide from the upstream region of the trypsin inhibitor gene can compete differentially for factor binding. We suggest that these legume genes may be regulated in part by evolutionarily conserved protein/DNA interactions. PMID:2535513

  8. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex

    PubMed Central

    Vovk, Andrei; Gu, Chad; Opferman, Michael G; Kapinos, Larisa E; Lim, Roderick YH; Coalson, Rob D; Jasnow, David; Zilman, Anton

    2016-01-01

    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function. DOI: http://dx.doi.org/10.7554/eLife.10785.001 PMID:27198189

  9. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Simpson, Craig G.; Ciesiolka, Adam; Szewc, Lukasz; Lewandowska, Dominika; McNicol, Jim; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2010-01-01

    The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site. PMID:19864257

  10. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.

    PubMed

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-03-17

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  11. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells

    PubMed Central

    Niopek, Dominik; Benzinger, Dirk; Roensch, Julia; Draebing, Thomas; Wehler, Pierre; Eils, Roland; Di Ventura, Barbara

    2014-01-01

    The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light. PMID:25019686

  12. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability

    PubMed Central

    Yan, Caifeng; Chen, Jinfeng; Chen, Nuoqi

    2016-01-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is implicated in liver cell proliferation. However, its role in hepatic steatosis and insulin resistance remain poorly understood. The aim of this study was to investigate the effects of MALAT1 on hepatic lipid accumulation and its potential targets. As expected, MALAT1 expression is increased in hepatocytes exposed to palmitate and livers of ob/ob mice. Knockdown of MALAT1 expression dramatically suppressed palmitate-induced lipid accumulation and the increase of nuclear SREBP-1c protein in HepG2 cells. In addition, RNA immunoprecipitation and RNA pull-down assay confirmed that MALAT1 interacted with SREBP-1c to stabilize nuclear SREBP-1c protein. Finally, injection of si-MALAT1 prevented hepatic lipid accumulation and insulin resistance in ob/ob mice. In conclusion, our observations suggest that MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. PMID:26935028

  13. MitoNuc and MitoAln: two related databases of nuclear genes coding for mitochondrial proteins

    PubMed Central

    Pesole, Graziano; Gissi, Carmela; Catalano, Domenico; Grillo, Giorgio; Licciulli, Flavio; Liuni, Sabino; Attimonelli, Marcella; Saccone, Cecilia

    2000-01-01

    Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organellar genomes. Mitochondrial genomes have been extensively sequenced and analysed and the data collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc and MitoAln, two related databases containing, respectively, detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa and yeast, and the multiple alignments of the relevant homologous protein coding regions. MitoNuc and MitoAln retrieval through SRS at http://bio-www.ba.cnr.it:8000/srs6/ can easily allow the extraction of sequence data, subsequences defined by specific features and nucleotide or amino acid multiple alignments. PMID:10592211

  14. C++ OPPS, a new software for the interpretation of protein dynamics from nuclear magnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Zerbetto, Mirco; Polimeno, Antonino; Meirovitch, Eva

    Nuclear magnetic resonance (NMR) is a powerful tool for elucidating protein dynamics because of the possibility to interpret nuclear spin relaxation properties in terms of microdynamic parameters. Magnetic relaxation times T1, T2, and NOE depend on dipolar and quadrupolar interactions, on chemical shift anisotropy and cross-correlation effects. Within the framework of given motional model, it is possible to express the NMR relaxation times as functions of spectral densities (Abragam, The Principles of Nuclear Magnetism; Oxford University Press: Clarendon, London, 1961), obtaining the connection between macroscopic observables and microscopic properties. In this context, recently Meirovitch et al. (Shapiro et al., Biochemistry 2002, 41, 6271, Meirovitch et al., J Phys Chem B 2006, 110, 20615, Meirovitch et al., J Phys Chem B 2007, 111, 12865) applied the dynamical model introduced by Polimeno and Freed (Polimeno and Freed, Adv Chem Phys 1993, 83, 89, Polimeno and Freed, J Phys Chem 1995, 99, 10995), known as the slowly relaxing local structure (SRLS) model, to the study of NMR data. The program C++OPPS (http://www.chimica.unipd.it/licc/), developed in our laboratory, implements the SRLS model in an user-friendly way with a graphical user interface (GUI), introduced to simplify the work to users who do not feel at ease with the complex mathematics of the model and the difficulties of command line based programs. The program is an evolution of the old FORTRAN 77 implementation COPPS (COupled Protein Probe Smoluchowski) and presents a number of new features: the presence of an easy to use GUI written in JAVA; high calculation performance thanks to features of C++ language, employment of BLAS (basic linear algebra subprograms) library (Blackford et al., Trans Math Soft 2002, 28, 135) in handling matrix-vector operations and parallelization of the code under the MPI (message passing interface) paradigm (Gropp et al., Parallel Comput 1996, 22, 789, Gropp and Lusk, User

  15. The Drosophila Hrb98DE locus encodes four protein isoforms homologous to the A1 protein of mammalian heterogeneous nuclear ribonucleoprotein complexes.

    PubMed Central

    Haynes, S R; Raychaudhuri, G; Beyer, A L

    1990-01-01

    The Drosophila Hrb98DE locus encodes proteins that are highly homologous to the mammalian A1 protein, a major component of heterogeneous nuclear ribonucleoprotein (RNP) particles. The Hrb98DE locus is transcribed throughout development, with the highest transcript levels found in ovaries, early embryos, and pupae. Eight different transcripts are produced by the use of combinations of alternative promoters, exons, and splice acceptor sites; the various species are not all equally abundant. The 3'-most exon is unusual in that it is completely noncoding. These transcripts can potentially generate four protein isoforms that differ in their N-terminal 16 to 21 amino acids but are identical in the remainder of the protein, including the RNP consensus motif domain and the glycine-rich domain characteristic of the mammalian A1 protein. We suggest that these sequence differences could affect the affinities of the proteins for RNA or other protein components of heterogeneous nuclear RNP complexes, leading to differences in function. Images PMID:2104660

  16. Heterogeneous nuclear ribonuclear protein U associates with YAP and regulates its co-activation of Bax transcription.

    PubMed

    Howell, Michael; Borchers, Christoph; Milgram, Sharon L

    2004-06-18

    Although initially described as a cytosolic scaffolding protein, YAP (Yes-associated protein of 65 kDa) is known to associate with multiple transcription factors in the nucleus. Using affinity chromatography and mass spectrometry, we show that YAP interacts with heterogeneous nuclear ribonuclear protein U (hnRNP U), an RNA- and DNA-binding protein enriched in the nuclear matrix that also plays a role in the regulation of gene expression. hnRNP U interacts specifically with the proline-rich amino terminus of YAP, a region of YAP that is not found in the related protein TAZ. Although hnRNP U and YAP localize to both the nucleus and the cytoplasm, YAP does not translocate to the nucleus in an hnRNP U-dependent manner. Furthermore, hnRNP U and YAP only interact in the nucleus, suggesting that the association between the two proteins is regulated. Co-expression of hnRNP U attenuates the ability of YAP to increase the activity of a p73-driven Bax-luciferase reporter plasmid. In contrast, hnRNP U has no effect when co-expressed with a truncated YAP protein lacking the hnRNP U-binding site. Because YAP is distinguished from the homologue TAZ by its proline-rich amino terminus, the YAP-hnRNP U interaction may uniquely regulate the nuclear function(s) of YAP. The YAP-hnRNP U interaction provides another mechanism of YAP transcriptional regulation. PMID:15096513

  17. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity.

    PubMed

    Görner, W; Durchschlag, E; Martinez-Pastor, M T; Estruch, F; Ammerer, G; Hamilton, B; Ruis, H; Schüller, C

    1998-02-15

    Msn2p and the partially redundant factor Msn4p are key regulators of stress-responsive gene expression in Saccharomyces cerevisiae. They are required for the transcription of a number of genes coding for proteins with stress-protective functions. Both Msn2p and Msn4p are Cys2His2 zinc finger proteins and bind to the stress response element (STRE). In vivo footprinting studies show that the occupation of STREs is enhanced in stressed cells and dependent on the presence of Msn2p and Msn4p. Both factors accumulate in the nucleus under stress conditions, such as heat shock, osmotic stress, carbon-source starvation, and in the presence of ethanol or sorbate. Stress-induced nuclear localization was found to be rapid, reversible, and independent of protein synthesis. Nuclear localization of Msn2p and Msn4p was shown to be correlated inversely to cAMP levels and protein kinase A (PKA) activity. A region with significant homologies shared between Msn2p and Msn4p is sufficient to confer stress-regulated localization to a SV40-NLS-GFP fusion protein. Serine to alanine or aspartate substitutions in a conserved PKA consensus site abolished cAMP-driven nuclear export and cytoplasmic localization in unstressed cells. We propose stress and cAMP-regulated intracellular localization of Msn2p to be a key step in STRE-dependent transcription and in the general stress response. PMID:9472026

  18. Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement.

    PubMed

    Rigothier, Claire; Saleem, Moin Ahson; Bourget, Chantal; Mathieson, Peter William; Combe, Christian; Welsh, Gavin Iain

    2016-10-01

    IQGAP1, a protein that links the actin cytoskeleton to slit diaphragm proteins, is involved in podocyte motility and permeability. Its regulation in glomerular disease is not known. We have exposed human podocytes to puromycin aminonucleoside (PAN), an inducer of nephrotic syndrome in rats, and studied the effects on IQGAP1 biology and function. In human podocytes exposed to PAN, a nuclear translocation of IQGAP1 was observed by immunocytolocalization and confirmed by Western blot after selective nuclear/cytoplasmic extraction. In contrast to IQGAP1, IQGAP2 expression remained cytoplasmic. IQGAP1 nuclear translocation was associated with a significant decrease in its interaction with nephrin and podocalyxin. Activation of the ERK pathway was observed in PAN treated podocytes with a preponderant nuclear localization of the phosphorylated form of ERK (P-ERK). The interaction between IQGAP1 and P-ERK increased upon podocyte exposure to PAN. Inhibitors of ERK pathway activation blocked IQGAP1 nuclear translocation (p<0.02). Chromatin interaction protein assays demonstrated an interaction of IQGAP1 with chromatin and with Histone H3, which increased in response to PAN. In summary, PAN induces the ERK dependent translocation of IQGAP1 into the nuclei in human podocytes which leads to the interaction of IQGAP1 with chromatin and Histone H3, and decreased interactions between IQGAP1 and slit-diaphragm proteins. Therefore, IQGAP1 may have a role in podocyte gene regulation in glomerular disease. PMID:27377965

  19. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies.

    PubMed

    Zhang, Mei; Mahoney, Emilia; Zuo, Tao; Manchanda, Parmeet K; Davuluri, Ramana V; Kirschner, Lawrence S

    2014-01-01

    The Protein Kinase A (PKA) and Wnt signaling cascades are fundamental pathways involved in cellular development and maintenance. In the osteoblast lineage, these pathways have been demonstrated functionally to be essential for the production of mineralized bone. Evidence for PKA-Wnt crosstalk has been reported both during tumorigenesis and during organogenesis, and the nature of the interaction is thought to rely on tissue and cell context. In this manuscript, we analyzed bone tumors arising from mice with activated PKA caused by mutation of the PKA regulatory subunit Prkar1a. In primary cells from these tumors, we observed relocalization of β-catenin to intranuclear punctuate structures, which were identified as PML bodies. Cellular redistribution of β-catenin could be recapitulated by pharmacologic activation of PKA. Using 3T3-E1 pre-osteoblasts as a model system, we found that PKA phosphorylation sites on β-catenin were required for nuclear re-localization. Further, β-catenin's transport to the nucleus was accompanied by an increase in canonical Wnt-dependent transcription, which also required the PKA sites. PKA-Wnt crosstalk in the cells was bi-directional, including enhanced interactions between β-catenin and the cAMP-responsive element binding protein (CREB) and transcriptional crosstalk between the Wnt and PKA signaling pathways. Increases in canonical Wnt/β-catenin signaling were associated with a decrease in the activity of the non-canonical Wnt/Ror2 pathway, which has been shown to antagonize canonical Wnt signaling. Taken together, this study provides a new understanding of the complex regulation of the subcellular distribution of β-catenin and its differential protein-protein interaction that can be modulated by PKA signaling. PMID:25299576

  20. The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins.

    PubMed Central

    Paces-Fessy, Mélanie; Boucher, Dominique; Petit, Emile; Paute-Briand, Sandrine; Blanchet-Tournier, Marie-Françoise

    2004-01-01

    Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression, tissue distribution and biochemical properties of mSufu (mouse Sufu) protein. We identified several mSufu variants of which some were phosphorylated. A yeast two-hybrid screen with mSufu as bait allowed us to identify several nuclear proteins as potential partners of mSufu. Most of these partners, such as SAP18 (Sin3-associated polypeptide 18), pCIP (p300/CBP-cointegrator protein) and PIAS1 (protein inhibitor of activated signal transduction and activators of transcription 1), are involved in either repression or activation of transcription and two of them, Galectin3 and hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), have a nuclear function in pre-mRNA splicing. We confirmed the mSufu-SAP18 and mSufu-Galectin3 interactions by independent biochemical assays. Using a cell transfection assay, we also demonstrated that mSufu protein (484 amino acids) is predominantly cytoplasmic but becomes mostly nuclear when a putative nuclear export signal is mutated or after treatment of the cells with leptomycin B. Moreover, mSufu is translocated to the nucleus when co-expressed with SAP18, which is normally found in this compartment. In contrast, Galectin3 is translocated to the cytoplasm when it is co-expressed with mSufu. Our findings indicate that mSufu is a shuttle protein that appears to be extremely versatile in its ability to bind different proteins in both the cytoplasm and nucleus. PMID:14611647

  1. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    PubMed

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes. PMID:22733202

  2. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB

    PubMed Central

    Coelho, Miguel B; Attig, Jan; Bellora, Nicolás; König, Julian; Hallegger, Martina; Kayikci, Melis; Eyras, Eduardo; Ule, Jernej; Smith, Christopher WJ

    2015-01-01

    Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3. PMID:25599992

  3. Las1 Is an Essential Nuclear Protein Involved in Cell Morphogenesis and Cell Surface Growth

    PubMed Central

    Doseff, A. I.; Arndt, K. T.

    1995-01-01

    Saccharomyces cerevisiae mutations that cause a requirement for SSD1-v for viability were isolated, yielding one new gene, LAS1, and three previously identified genes, SIT4, BCK1/SLK1, and SMP3. Three of these genes, LAS1, SIT4, and BCK1/SLK1, encode proteins that have roles in bud formation or morphogenesis. LAS1 is essential and loss of LAS1 function causes the cells to arrest as 80% unbudded cells and 20% large budded cells that accumulate many vesicles at the mother-daughter neck. Overexpression of LAS1 results in extra cell surface projections in the mother cell, alterations in actin and SPA2 localization, and the accumulation of electron-dense structures along the periphery of both the mother cell and the bud. The nuclear localization of LAS1 suggests a role of LAS1 for regulating bud formation and morphogenesis via the expression of components that function directly in these processes. PMID:8582632

  4. Requirement for nuclear autoantigenic sperm protein mRNA expression in bovine preimplantation development.

    PubMed

    Nagatomo, Hiroaki; Kohri, Nanami; Akizawa, Hiroki; Hoshino, Yumi; Yamauchi, Nobuhiko; Kono, Tomohiro; Takahashi, Masashi; Kawahara, Manabu

    2016-03-01

    Nuclear autoantigenic sperm protein (NASP) is associated with DNA replication, cell proliferation, and cell cycle progression through its specific binding to histones. The aim of this study was to examine the roles of NASP in bovine preimplantation embryonic development. Using NASP gene knockdown (KD), we confirmed the reduction of NASP messenger RNA (mRNA) expression during preimplantation development. NASP KD did not affect cleavage but significantly decreased development of embryos into the blastocyst stage. Furthermore, blastocyst hatching was significantly decreased in NASP KD embryos. Cell numbers in the inner cell mass of NASP KD blastocysts were also decreased compared to those of controls. These results suggest that NASP mRNA expression is required for preimplantation development into the blastocyst stage in cattle. PMID:26690724

  5. The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production.

    PubMed

    Schmid, Manfred; Olszewski, Pawel; Pelechano, Vicent; Gupta, Ishaan; Steinmetz, Lars M; Jensen, Torben Heick

    2015-07-01

    Polyadenylation of mRNA is a key step in eukaryotic gene expression. However, despite the major impact of poly(A) tails on mRNA metabolism, the precise roles of poly(A)-binding proteins (PABPs) in nuclear mRNA biogenesis remain elusive. Here, we demonstrate that rapid nuclear depletion of the S. cerevisiae PABP Nab2p leads to a global loss of cellular mRNA, but not of RNA lacking poly(A) tails. Disappearance of mRNA is a nuclear event, but not due to decreased transcription. Instead, the absence of Nab2p results in robust nuclear mRNA decay by the ribonucleolytic RNA exosome in a polyadenylation-dependent process. We conclude that Nab2p is required to protect early mRNA and therefore constitutes a crucial nuclear mRNA biogenesis factor. PMID:26119729

  6. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N.

    PubMed

    Ye, K; Hurt, K J; Wu, F Y; Fang, M; Luo, H R; Hong, J J; Blackshaw, S; Ferris, C D; Snyder, S H

    2000-12-01

    While cytoplasmic PI3Kinase (PI3K) is well characterized, regulation of nuclear PI3K has been obscure. A novel protein, PIKE (PI3Kinase Enhancer), interacts with nuclear PI3K to stimulate its lipid kinase activity. PIKE encodes a 753 amino acid nuclear GTPase. Dominant-negative PIKE prevents the NGF enhancement of PI3K and upregulation of cyclin D1. NGF treatment also leads to PIKE interactions with 4.1N, which has translocated to the nucleus, fitting with the initial identification of PIKE based on its binding 4.1N in a yeast two-hybrid screen. Overexpression of 4.1N abolishes PIKE effects on PI3K. Activation of nuclear PI3K by PIKE is inhibited by the NGF-stimulated 4.1N translocation to the nucleus. Thus, PIKE physiologically modulates the activation by NGF of nuclear PI3K. PMID:11136977

  7. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function

    PubMed Central

    Tadevosyan, Artavazd; Vaniotis, George; Allen, Bruce G; Hébert, Terence E; Nattel, Stanley

    2012-01-01

    G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders. PMID:22183719

  8. Electron-nuclear interactions as probes of domain motion in proteins

    PubMed Central

    Shapira, Boaz; Prestegard, James H.

    2010-01-01

    Long range interactions between nuclear spins and paramagnetic ions can serve as a sensitive monitor of internal motion of various parts of proteins, including functional loops and separate domains. In the case of interdomain motion, the interactions between the ion and NMR-observable nuclei are modulated in direction and magnitude mainly by a combination of overall and interdomain motions. The effects on observable parameters such as paramagnetic relaxation enhancement (PRE) and pseudocontact shift (PCS) can, in principle, be used to characterize motion. These parameters are frequently used for the purpose of structural refinements. However, their use to probe actual domain motions is less common and is lacking a proper theoretical treatment from a motional perspective. In this work, a suitable spin Hamiltonian is incorporated in a two body diffusion model to produce the time correlation function for the nuclear spin–paramagnetic ion interactions. Simulated observables for nuclei in different positions with respect to the paramagnetic ion are produced. Based on these simulations, it demonstrated that both the PRE and the PCS can be very sensitive probes of domain motion. Results for different nuclei within the protein sense different aspects of the motions. Some are more sensitive to the amplitude of the internal motion, others are more sensitive to overall diffusion rates, allowing separation of these contributions. Experimentally, the interaction strength can also be tuned by substitution of different paramagnetic ions or by varying magnetic field strength (in the case of lanthanides) to allow the use of more detailed diffusion models without reducing the reliability of data fitting. PMID:20331317

  9. Identification of the methylation preference region in heterogeneous nuclear ribonucleoprotein K by protein arginine methyltransferase 1 and its implication in regulating nuclear/cytoplasmic distribution

    SciTech Connect

    Chang, Yuan-I; Hsu, Sheng-Chieh; Chau, Gar-Yang; Huang, Chi-Ying F.; Sung, Jung-Sung; Hua, Wei-Kai; Lin, Wey-Jinq

    2011-01-21

    Research highlights: {yields} Verifying by direct methylation assay the substrate sites of PRMT1 in the hnRNP K protein. {yields} Identifying the preferred PMRT1 methylation regions in hnRNP K by kinetic analysis. {yields} Linking methylation in regulating nuclear localization of hnRNP K. -- Abstract: Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates, here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.

  10. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    SciTech Connect

    Bennett, Shauna M.; Zhao, Linbo; Bosard, Catherine; Imperiale, Michael J.

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  11. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein.

    PubMed

    Fidelak, Jeremy; Ferrer, Silvia; Oberlin, Michael; Moras, Dino; Dejaegere, Annick; Stote, Roland H

    2010-10-01

    Peroxisome proliferator-activated receptor-γ nuclear receptor (PPAR-γ) belongs to the superfamily of nuclear receptor proteins that function as ligand-dependent transcription factors and plays a specific physiological role as a regulator of lipid metabolism. A number of experimental studies have suggested that allostery plays an important role in the functioning of PPAR-γ. Here we use normal-mode analysis of PPAR-γ to characterize a network of dynamically coupled amino acids that link physiologically relevant binding surfaces such as the ligand-dependent activation domain AF-2 with the ligand binding site and the heterodimer interface. Multiple calculations were done in both the presence and absence of the agonist rosiglitazone, and the differences in dynamics were characterized. The global dynamics of the ligand binding domain were affected by the ligand, and in particular, changes to the network of dynamically correlated amino acids were observed with only small changes in conformation. These results suggest that changes in dynamic couplings can be functionally significant with respect to the transmission of allosteric signals. PMID:20496064

  12. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response.

    PubMed

    Kang, Sung-Hwan; Qu, Feng; Morris, T Jack

    2015-12-01

    The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV. PMID:26299399

  13. Nuclear inclusions mimicking poly(A)-binding protein nuclear 1 inclusions in a case of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia with a novel mutation in the valosin-containing protein gene.

    PubMed

    Matsubara, Shiro; Shimizu, Toshio; Komori, Takashi; Mori-Yoshimura, Madoka; Minami, Narihiro; Hayashi, Yukiko K

    2016-07-01

    A middle-aged Japanese man presented with slowly progressive asymmetric weakness of legs and arm but had neither ptosis nor dysphagia. He had a family history of similar condition suggestive of autosomal dominant inheritance. A muscle biopsy showed mixture of neurogenic atrophy and myopathy with rimmed vacuoles. Furthermore we found intranuclear inclusions that had a fine structure mimicking that of inclusions reported in oculopharyngeal muscular dystrophy (OPMD). Immunohistochemical staining for polyadenylate-binding nuclear protein 1, which is identified within the nuclear inclusions of OPMD, demonstrated nuclear positivity in this case. However, OPMD was thought unlikely based on the clinical features and results of genetic analyses. Instead, a novel mutation in valosin-containing protein, c.376A>T (p.Ile126Phe), was revealed. A diagnosis of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia was made. This is the first report of polyadenylate-binding nuclear protein 1-positive nuclear inclusions in the muscle of this condition. PMID:27209344

  14. The reaction of proteins with 3-hydroxyanthranilic acid as a possible model for senile nuclear cataract in man.

    PubMed

    Truscott, R J; Martin, F

    1989-12-01

    Proteins, including lens proteins, were incubated in the presence of 3-hydroxyanthranilic acid (30 HA) under oxidizing conditions. Samples were monitored for alterations in color, fluorescence, sulfhydryl content, lysine availability, methionine content, tryptophan content and protein size. Incubation of proteins with 30 HA produced rapid brown coloration and a correspondingly rapid decrease in sulfhydryl content. Alpha-, beta- and gamma-crystallins were all found to react with 30 HA. An increase in protein fluorescence (excitation 340/emission 425 nm) accompanied the color development. No significant decrease in the content of tryptophan or any other amino acid was detected by amino acid analysis. The levels of available lysine were not affected significantly by treatment with 30 HA. Oxidation of methionine to methionine sulfoxide and the covalent cross-linking of polypeptides was obtained by subsequent treatment of the tanned proteins with H2O2. The modifications observed are very similar to those found in the senile nuclear cataract lens. PMID:2515071

  15. A Visual Screen of a Gfp-Fusion Library Identifies a New Type of Nuclear Envelope Membrane Protein

    PubMed Central

    Rolls, Melissa M.; Stein, Pascal A.; Taylor, Stephen S.; Ha, Edward; McKeon, Frank; Rapoport, Tom A.

    1999-01-01

    The nuclear envelope (NE) is a distinct subdomain of the ER, but few membrane components have been described that are specific to it. We performed a visual screen in tissue culture cells to identify proteins targeted to the NE. This approach does not require assumptions about the nature of the association with the NE or the physical separation of NE and ER. We confirmed that screening a library of fusions to the green fluorescent protein can be used to identify proteins targeted to various subcompartments of mammalian cells, including the NE. With this approach, we identified a new NE membrane protein, named nurim. Nurim is a multispanning membrane protein without large hydrophilic domains that is very tightly associated with the nucleus. Unlike the known NE membrane proteins, it is neither associated with nuclear pores, nor targeted like lamin-associated membrane proteins. Thus, nurim is a new type of NE membrane protein that is localized to the NE by a distinct mechanism. PMID:10402458

  16. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    PubMed

    Stuerner, Elisabeth; Kuraku, Shigehiro; Hochstrasser, Mark; Kreft, Stefan G

    2012-01-01

    Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs), but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS). A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH) and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments. PMID:23071509

  17. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana

    PubMed Central

    Batzenschlager, Morgane; Masoud, Kinda; Janski, Natacha; Houlné, Guy; Herzog, Etienne; Evrard, Jean-Luc; Baumberger, Nicolas; Erhardt, Mathieu; Nominé, Yves; Kieffer, Bruno; Schmit, Anne-Catherine; Chabouté, Marie-Edith

    2013-01-01

    During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs) are nucleated from γ-Tubulin Complexes (γ-TuCs) located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope (NE) are currently unknown. The γ-TuC Protein 3 (GCP3)-Interacting Protein 1 (GIP1) is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects. In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fiber robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the NE. These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and NE organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum. PMID:24348487

  18. SU-E-J-61: Electrodynamics and Nano-Scale Fluid Dynamics in Protein Localization of Nuclear Pore Complexes

    SciTech Connect

    Cunningham, J; Gatenby, R

    2014-06-01

    Purpose: To develop a simulation to catalyze a reevaluation of common assumptions about 3 dimensional diffusive processes and help cell biologists gain a more nuanced, intuitive understanding of the true physical hurdles of protein signaling cascades. Furthermore, to discuss the possibility of intracellular electrodynamics as a critical, unrecognized component of cellular biology and protein dynamics that is necessary for optimal information flow from the cell membrane to the nucleus. Methods: The Unity 3D gaming physics engine was used to build an accurate virtual scale model of the cytoplasm within a few hundred nanometers of the nuclear membrane. A cloud of simulated pERK proteins is controlled by the physics simulation, where diffusion is based on experimentally measured values and the electrodynamics are based on theoretical nano-fluid dynamics. The trajectories of pERK within the cytoplasm and through the 1250 nuclear pores on the nuclear surface is recorded and analyzed. Results: The simulation quickly demonstrates that pERKs moving solely by diffusion will rarely locate and come within capture distance of a nuclear pore. The addition of intracellular electrodynamics between charges on the nuclear pore complexes and on pERKs increases the number of successful translocations by allowing the electro-physical attractive effects to draw in pERKs from the cytoplasm. The effects of changes in intracellular shielding ion concentrations allowed for estimation of the “capture radius” under varying conditions. Conclusion: The simulation allows a shift in perspective that is paramount in attempting to communicate the scale and dynamics of intracellular protein cascade mechanics. This work has allowed researchers to more fully understand the parameters involved in intracellular electrodynamics, such as shielding anion concentration and protein charge. As these effects are still far below the spatial resolution of currently available measurement technology this

  19. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits

    PubMed Central

    Verheyen, Toon; Görnemann, Janina; Verbinnen, Iris; Boens, Shannah; Beullens, Monique; Van Eynde, Aleyde; Bollen, Mathieu

    2015-01-01

    Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the α, β and γ isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1β emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits. PMID:25990731

  20. High-frequency dynamic nuclear polarization in MAS spectra of membrane and soluble proteins.

    PubMed

    Rosay, Melanie; Lansing, Jonathan C; Haddad, Kristin C; Bachovchin, William W; Herzfeld, Judith; Temkin, Richard J; Griffin, Robert G

    2003-11-12

    One of the principal promises of solid-state NMR (SSNMR) magic angle spinning (MAS) experiments has been the possibility of determining the structures of molecules in states that are not accessible via X-ray or solution NMR experiments-e.g., membrane or amyloid proteins. However, the low sensitivity of SSNMR often restricts structural studies to small-model compounds and precludes many higher-dimensional solid-state MAS experiments on such systems. To address the sensitivity problem, we have developed experiments that utilize dynamic nuclear polarization (DNP) to enhance sensitivity. In this communication, we report the successful application of MAS DNP to samples of cryoprotected soluble and membrane proteins. In particular, we have observed DNP signal enhancements of up to 50 in 15N MAS spectra of bacteriorhodopsin (bR) and alpha-lytic protease (alpha-LP). The spectra were recorded at approximately 90 K where MAS is experimentally straightforward, and the results suggest that the described protocol will be widely applicable. PMID:14599177

  1. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Carino, Adriana; Marchianò, Silvia; Cipriani, Sabrina; Chiara Monti, Maria; Del Sordo, Rachele; Schiaroli, Elisabetta; Distrutti, Eleonora; Baldelli, Franco; Fiorucci, Stefano

    2015-01-01

    Liver disease is the second most common cause of mortality in HIV-infected persons. Exactly how HIV infection per se affects liver disease progression is unknown. Here we have investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in HepG2 cells upon stimulation with the HIV matrix protein p17. This viral protein regulated mRNA expression of some NRs among which LXRα and its transcriptional co-activator MED1 were highly induced at mRNA level. Dissection of p17 downstream intracellular pathway demonstrated that p17 mediated activation of Jak/STAT signaling is responsible for the promoter dependent activation of LXR. The treatment of both HepG2 as well as primary hepatocytes with HIV p17 results in the transcriptional activation of LXR target genes (SREBP1c and FAS) and lipid accumulation. These effects are lost in HepG2 cells pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide as well as in HepG2 cells pre-incubated with the natural LXR antagonist gymnestrogenin. These results suggest that HIV p17 affects NRs and their related signal transduction thus contributing to the progression of liver disease in HIV infected patients. PMID:26469385

  2. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    SciTech Connect

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa; Yoon, Hyun-Joo; Yoo, Hae Yong; Choi, Cheol Yong

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  3. Nuclear quadrupole interaction of111Cd on type-1 Cu-sites in blue copper proteins

    NASA Astrophysics Data System (ADS)

    Tröger, W.; Butz, T.; Danielsen, E.; Bauer, R.; Thoenes, U.; Messerschmidt, A.; Huber, R.; Canters, G. W.; den Blaauwen, T.

    1993-03-01

    The nuclear quadrupole interaction (NQI) of111Cd substituted for Cu(II) on type-1 sites in blue copper proteins is characterized by high values of ω0 in the region of 300 Mrad/s, close to that for the catalytic zinc site in alcohol dehydrogenase. Type-1 Cu has usually two sulfur ligands and two nitrogen ligands and in some cases an oxygen ligand in either a distorted tetrahedral geometry or in a trigonal bipyramidal geometry. The near tetrahedral arrangement together with the ligand sphere containing the same number of sulfur ligands explains the value of ω0 in the blue copper proteins. The present work determined the partial NQI for methionine using the known structure of azurin. This value was then used in the angular overlap model to calculate the NQI for ascorbate oxidase the structure of which is also known and gave good agreement with experiment. NQI data for laccase and stellacyanin the structures of which are unknown, are also given.

  4. Constitutive Nuclear Expression of Dentin Matrix Protein 1 Fails to Rescue the Dmp1-null Phenotype*

    PubMed Central

    Lin, Shuxian; Zhang, Qi; Cao, Zhengguo; Lu, Yongbo; Zhang, Hua; Yan, Kevin; Liu, Ying; McKee, Marc D.; Qin, Chunlin; Chen, Zhi; Feng, Jian Q.

    2014-01-01

    Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with αvβ3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as NLSDMP1) or to the extracellular matrix as the WT type (referred to as SPDMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted NLSDMP1 transgene driven by a 3.6-kb rat Col 1α1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the SPDMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes. PMID:24917674

  5. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein.

    PubMed

    Mao, Shanping; Xiong, Guoxiang; Zhang, Lei; Dong, Huimin; Liu, Baohui; Cohen, Noam A; Cohen, Akiva S

    2016-01-01

    A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60. PMID:27242450

  6. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    SciTech Connect

    Sugioka-Sugiyama, Rie; Sugiyama, Tomoyasu

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  7. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein

    PubMed Central

    Mao, Shanping; Xiong, Guoxiang; Zhang, Lei; Dong, Huimin; Liu, Baohui; Cohen, Noam A.; Cohen, Akiva S.

    2016-01-01

    A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60. PMID:27242450

  8. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    SciTech Connect

    Eto, Masumi; Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi; Kim, Jee In

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  9. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web.

    PubMed

    Levin, Aviad; Neufeldt, Christopher J; Pang, Daniel; Wilson, Kristen; Loewen-Dobler, Darci; Joyce, Michael A; Wozniak, Richard W; Tyrrell, D Lorne J

    2014-01-01

    The hepatitis C virus (HCV) is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS) and nuclear export signals (NES) have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC) proteins (termed nucleoporins or Nups) are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1), importin β3 (IPO5/kap β3), and exportin 1 (XPO1/CRM1) both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication. PMID:25485706

  10. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.

    PubMed

    Walker, Erin J; Younessi, Parisa; Fulcher, Alex J; McCuaig, Robert; Thomas, Belinda J; Bardin, Philip G; Jans, David A; Ghildyal, Reena

    2013-01-01

    Human Rhinovirus (HRV) infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups) that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C) able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis. PMID:23951130

  11. Functional Characterization of Nuclear Localization and Export Signals in Hepatitis C Virus Proteins and Their Role in the Membranous Web

    PubMed Central

    Levin, Aviad; Neufeldt, Christopher J.; Pang, Daniel; Wilson, Kristen; Loewen-Dobler, Darci; Joyce, Michael A.; Wozniak, Richard W.; Tyrrell, D. Lorne J

    2014-01-01

    The hepatitis C virus (HCV) is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS) and nuclear export signals (NES) have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC) proteins (termed nucleoporins or Nups) are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1), importin β3 (IPO5/kap β3), and exportin 1 (XPO1/CRM1) both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication. PMID:25485706

  12. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    PubMed

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. PMID:27129202

  13. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    PubMed Central

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2014-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1 mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  14. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes.

    PubMed

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2015-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  15. TSH stimulates 32P-labeling of thyroid nuclear HMG 14, a protein associated with actively transcribed chromatin

    SciTech Connect

    Cooper, E.; Palmer, R.J.; Spaulding, S.W.

    1982-04-01

    Thyroid slices were incubated with 32P with or without TSH. 32P-labeling of acid-soluble nuclear proteins was then examined by two-dimensional polyacrylamide gel electrophoresis and autoradiography. We found that TSH enhanced the labeling of the high mobility group protein HMG 14, a protein that is preferentially associated with actively transcribed chromatin. This observation suggests that changes in HMG 14 phosphorylation may be involved in mediating TSH-induced effects on the structure and function of active chromatin.

  16. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells.

    PubMed

    Wooten, R M; Modur, V R; McIntyre, T M; Weis, J J

    1996-11-15

    Lyme disease is caused by infection with Borrelia burgdorferi, and is characterized by bacterial persistence and inflammation in a number of host tissues. B. burgdorferi outer surface lipoproteins possess cytokine stimulatory properties that may be responsible for localized inflammation. B. burgdorferi presence is correlated with severity of disease, and the pathology of many tissues, particularly the arthritic joint, is consistent with localized cytokine production. Spirochete invasion of tissues requires interaction with and penetration of vascular endothelium, suggesting endothelial cells may participate in the inflammation of Lyme disease. In this study, outer surface protein A (OspA), a model B. burgdorferi lipoprotein, was found to be a potent stimulant of nuclear factor-kappa B (NF-kappa B) nuclear translocation in human endothelial cells, resulting in nuclear levels similar to those seen in response to known inflammatory mediators. Only the lipid-modified OspA had activity, and activity was not due to contamination with LPS. Nuclear NF-kappa B was detectable within 15 min, suggesting that OspA directly mediates NF-kappa B nuclear translocation. OspA also rapidly up-regulated endothelial cell production of several proteins whose transcription is dependent on NF-kappa B: the cytokine IL-6; the chemokine IL-8; and the adhesion molecules E-selectin, VCAM-1, and ICAM-1. The adhesion molecules were functional, as demonstrated by enhanced binding of neutrophils to OspA-stimulated endothelial monolayers. These data suggest that OspA may initiate synthesis of many proteins essential for localized inflammation via the direct activation of NF-kappa B-dependent transcription. These observations suggest that the interaction of B. burgdorferi lipoproteins with the endothelium may directly induce the inflammation responsible for the symptoms of Lyme disease. PMID:8906837

  17. Novel nuclear targeting coiled-coil protein of Helicobacter pylori showing Ca(2+)-independent, Mg(2+)-dependent DNase I activity.

    PubMed

    Kwon, Young Chul; Kim, Sinil; Lee, Yong Seok; Lee, Je Chul; Cho, Myung-Je; Lee, Woo-Kon; Kang, Hyung-Lyun; Song, Jae-Young; Baik, Seung Chul; Ro, Hyeon Su

    2016-05-01

    HP0059, an uncharacterized gene of Helicobacter pylori, encodes a 284-aa-long protein containing a nuclear localization sequence (NLS) and multiple leucine-rich heptad repeats. Effects of HP0059 proteins in human stomach cells were assessed by incubation of recombinant HP0059 proteins with the AGS human gastric carcinoma cell line. Wild-type HP0059 proteins showed cytotoxicity in AGS cells in a concentration-dependent manner, whereas NLS mutant protein showed no effect, suggesting that the cytotoxicity is attributed to host nuclear localization. AGS cells transfected with pEGFP-HP0059 plasmid showed strong GFP signal merged to the chromosomal DNA region. The chromosome was fragmented into multiple distinct dots merged with the GFP signal after 12 h of incubation. The chromosome fragmentation was further explored by incubation of AGS chromosomal DNA with recombinant HP0059 proteins, which leaded to complete degradation of the chromosomal DNA. HP0059 protein also degraded circular plasmid DNA without consensus, being an indication of DNase I activity. The DNase was activated by MgCl2, but not by CaCl2. The activity was completely blocked by EDTA. The optimal pH and temperature for DNase activity were 7.0-8.0 and 55°C, respectively. These results indicate that HP0059 possesses a novel DNase I activity along with a role in the genomic instability of human gastric cells, which may result in the transformation of gastric cells. PMID:27095458

  18. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    PubMed

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. PMID:27329527

  19. Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus

    SciTech Connect

    Munoz-Fontela, C.; Collado, M.; Rodriguez, E.; Garcia, M.A.; Alvarez-Barrientos, A.; Arroyo, J.; Nombela, C.; Rivas, C. . E-mail: mdcrivas@farm.ucm.es

    2005-11-15

    LANA2 is a latent protein detected in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected B cells that inhibits p53-dependent transcriptional transactivation and apoptosis and PKR-dependent apoptosis, suggesting an important role in the transforming activity of the virus. It has been reported that LANA2 localizes into the nucleus of both KSHV-infected B cells and transiently transfected HeLa cells. In this study, we show that LANA2 is a nucleocytoplasmic shuttling protein that requires a Rev-type nuclear export signal located in the C-terminus to direct the protein to the cytoplasm, through an association with the export receptor CRM1. In addition, a functional protein kinase B (PKB)/Akt phosphorylation motif partially overlapping with the nuclear export signal was identified. Nuclear exclusion of LANA2 was negatively regulated by the phosphorylation of threonine 564 by Akt. The ability of LANA2 to shuttle between nucleus and cytoplasm has implications for the function of this viral protein.

  20. A fifth Epstein-Barr virus nuclear protein (EBNA3C) is expressed in latently infected growth-transformed lymphocytes.

    PubMed Central

    Petti, L; Sample, J; Wang, F; Kieff, E

    1988-01-01

    Three distantly homologous neighboring long open reading frames in the Epstein-Barr virus (EBV) genome are preceded by short open reading frames. The leftmost short and long open reading frames encode EBNA3, a nuclear protein which is slightly smaller (145 kilodaltons [kDa]) than two other nuclear proteins (150 to 155 kDa) detected in Western blots (immunoblots) of latently infected cell protein (K. Hennessy, F. Wang, E. Woodland-Bushman, and E. Kieff, Proc. Natl. Acad. Sci. USA 83:5693-5697, 1986; I. Joab, D. T. Rowe, M. Bodescot, J.-C. Nicolas, P. J. Farrell, and M. Perricaudet, J. Virol. 61:3340-3344, 1987). We have demonstrated that the most rightward short (BERF3) and long (BERF4) open reading frames are spliced in frame at the 3' end of a 5-kilobase latently infected cell RNA and that this RNA begins within or upstream of the EBV long internal repeat. EBV-immune human antibodies specific for the long open reading frame translation product identified a 155-kDa protein on Western blots of latently infected cell protein and specifically reacted with large nonnucleolar nuclear granules in every latently infected cell. Expression of the cDNA in BALB/c 3T3 cells resulted in translation of full-size EBNA3C but had no effect on cell morphology, contact inhibition, or serum independence. Images PMID:2831394

  1. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene

    SciTech Connect

    Shannon, M.F.; Gamble, J.R.; Vadas, M.A.

    1988-02-01

    The gene for human granulocyte/macrophage colony-stimulating factor (GM-CSF) is expressed in a tissue-specific as well as an activation-dependent manner. The interaction of nuclear proteins with the promoter region of the GM-CSF gene that is likely to be responsible for this pattern of GM-CSF expression was investigated. The authors show that nuclear proteins interact with DNA fragments from the GM-CSF promoter in a cell-specific manner. A region spanning two cytokine-specific sequences, cytokine 1 (CK-1, 5', GAGATTCCAC 3') and cytokine 2 (CK-2, 5' TCAGGTA 3') bound two nuclear proteins from GM-CSF-expressing cells in gel retardation assays. NF-GMb was inducible with phorbol 12-myristate 13-acetate and accompanied induction of GM-CSF message. NF-GMb was absent in cell lines not producing GM-CSF, some of which had other distinct binding proteins. NF-GMa and NF-GMb eluted from a heparin-Sepharose column at 0.3 and 0.6 M KCl, respectively. They hypothesize that the sequences CK-1 and CK-2 bind specific proteins and regulate GM-CSF transcription.

  2. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: Members of the nuclear DAPC associate with the nuclear matrix

    SciTech Connect

    Fuentes-Mera, Lizeth; Rodriguez-Munoz, Rafael; Gonzalez-Ramirez, Ricardo; Garcia-Sierra, Francisco; Gonzalez, Everardo; Mornet, Dominique; Cisneros, Bulmaro . E-mail: bcisnero@cinvestav.mx

    2006-10-01

    Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, {beta}-sarcoglycan, {beta}-dystroglycan, {alpha}- and {beta}-syntrophin, {alpha}1- and {beta}-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, {beta}-dystroglycan, nNOS, {beta}-sarcoglycan, {alpha}/{beta} syntrophin, {alpha}1-dystrobrevin and {beta}-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, {beta}-dystroglycan and {beta}-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture.

  3. Decreased activity and enhanced nuclear export of CCAAT-enhancer-binding protein beta during inhibition of adipogenesis by ceramide.

    PubMed Central

    Sprott, Kam M; Chumley, Michael J; Hanson, Janean M; Dobrowsky, Rick T

    2002-01-01

    To identify novel molecular mechanisms by which ceramide regulates cell differentiation, we examined its effect on adipogenesis of 3T3-L1 preadipocytes. Hormonal stimulation of 3T3-L1 preadipocytes induced formation of triacylglycerol-laden adipocytes over 7 days; in part, via the co-ordinated action of CCAAT-enhancer-binding proteins alpha, beta and delta (C/EBP-alpha, -beta and -delta) and peroxisome-proliferator-activated receptor gamma (PPARgamma). The addition of exogenous N-acetylsphingosine (C2-ceramide) or increasing endogenous ceramide levels inhibited the expression of C/EBPalpha and PPARgamma, and blocked adipocyte development. C2-ceramide did not decrease the cellular expression of C/EBPbeta, which is required for expression of C/EBPalpha and PPARgamma, but significantly blocked its transcriptional activity from a promoter construct after 24 h. The ceramide-induced decrease in the transcriptional activity of C/EBPbeta correlated with a strong decrease in its phosphorylation, DNA-binding ability and nuclear localization at 24 h. However, ceramide did not change the nuclear level of C/EBPbeta after a period of 4 or 16 h, suggesting that it was not affecting nuclear import. CRM1 (more recently named 'exportin-1') is a nuclear membrane protein that regulates protein export from the nucleus by binding to a specific nuclear export sequence. Leptomycin B is an inhibitor of CRM1/exportin-1, and reversed the ceramide-induced decrease in nuclear C/EBPbeta at 24 h. Taken together, these data support the hypothesis that ceramide may inhibit adipogenesis, at least in part, by enhancing dephosphorylation and premature nuclear export of C/EBPbeta at a time when its maximal transcriptional activity is required to drive adipogenesis. PMID:12071851

  4. Adenovirus type 5 E4 Orf3 protein targets promyelocytic leukaemia (PML) protein nuclear domains for disruption via a sequence in PML isoform II that is predicted as a protein interaction site by bioinformatic analysis.

    PubMed

    Leppard, Keith N; Emmott, Edward; Cortese, Marc S; Rich, Tina

    2009-01-01

    Human adenovirus type 5 infection causes the disruption of structures in the cell nucleus termed promyelocytic leukaemia (PML) protein nuclear domains or ND10, which contain the PML protein as a critical component. This disruption is achieved through the action of the viral E4 Orf3 protein, which forms track-like nuclear structures that associate with the PML protein. This association is mediated by a direct interaction of Orf3 with a specific PML isoform, PMLII. We show here that the Orf3 interaction properties of PMLII are conferred by a 40 aa residue segment of the unique C-terminal domain of the protein. This segment was sufficient to confer interaction on a heterologous protein. The analysis was informed by prior application of a bioinformatic tool for the prediction of potential protein interaction sites within unstructured protein sequences (predictors of naturally disordered region analysis; PONDR). This tool predicted three potential molecular recognition elements (MoRE) within the C-terminal domain of PMLII, one of which was found to form the core of the Orf3 interaction site, thus demonstrating the utility of this approach. The sequence of the mapped Orf3-binding site on PML protein was found to be relatively poorly conserved across other species; however, the overall organization of MoREs within unstructured sequence was retained, suggesting the potential for conservation of functional interactions. PMID:19088278

  5. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    SciTech Connect

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan . E-mail: dyoo@uoguelph.ca

    2006-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  6. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.

    PubMed

    Vrensen, Gijs F J M; Otto, Cees; Lenferink, Aufried; Liszka, Barbara; Montenegro, Gustavo A; Barraquer, Rafael I; Michael, Ralph

    2016-04-01

    A combination of Raman spectroscopy, imaging, hierarchical cluster analysis (HCA) and peak ratio analysis was used to analyze protein profiles in the superficial cortex (SC), deep cortex (DC) and nucleus of old human lenses with cortical, nuclear and mixed cataracts. No consistent differences were observed in protein spectra and after cluster analysis between the three locations irrespective of the presence or absence of cortical opacities and/or coloration. A sharp increase (∼15%-∼33%) in protein content from SC to DC, normal for human lenses, was found in 7 lenses. In 4 lenses, characterized by the absence of cortical opacities, the SC has a protein content of ∼35%. A significant increase in the disulfide-to-protein ratio is found only in the SC of the 7 cortical cataracts. No changes were found in sulfhydryl-to-protein ratio. The relative contents of α-helices and β-sheets increase from SC to nucleus. β-Sheets are more common in the SC of lenses with cortical cataract. The absence of significant and consistent changes in protein profiles between nucleus and cortex even in cases of severe coloration is not favoring the prevailing concept that ubiquitous protein oxidation is a key factor for age related nuclear (ARN) cataracts. The observations favor the idea that multilamellar bodies or protein aggregates at very low volume densities are responsible for the rise in Mie light scatter as a main cause of ARN cataracts leaving the short-range-order of the fiber cytoplasm largely intact. The absence of significant changes in the protein spectra of the deep cortical opacities, milky white as a result of the presence of vesicle-like features, indicate they are packed with relatively undisturbed crystallins. PMID:26611157

  7. Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies.

    PubMed

    Miguel, Laetitia; Frébourg, Thierry; Campion, Dominique; Lecourtois, Magalie

    2011-02-01

    Recently, the TAR DNA-binding protein-43 (TDP-43) has been identified as a major constituent of nuclear and/or cytoplasmic ubiquitin-positive inclusions in patient with amyotrophic lateral sclerosis or frontotemporal lobar degeneration. Pathological proteins are abnormally hyperphosphorylated and partially cleaved to generate C-terminal fragments. In this issue, we addressed the mechanism underlying TDP-43 toxicity in vivo, using Drosophila as an experimental model. We developed new Drosophila transgenic models expressing different variants of full-length human TDP-43 proteins presenting different subcellular localizations: a wild-type form of hTDP-43 and two mutants forms of the protein, hTDP-43mutNLS and hTDP43mutNES, which lack nuclear localization signals (NLS) and nuclear export signals (NES), respectively. Using an inducible GAL4 system, we found that both nuclear and cytoplasmic accumulations of TDP-43 in adult neurons lead to reduction of lifespan in Drosophila, the gradient of toxicity being hTDP-43>hTDP-43mutNLS>hTDP43mutNES. This toxicity occurs regardless of inclusions formation. In the other hand, in retina, muscle and glial cells, only the accumulation of cytoplasmic species of TDP-43 was toxic. Biochemical data showed that human TDP-43 proteins expressed in adult fly neurons are abnormally phosphorylated on the disease-specific Ser409/Ser410 site and processed. In conclusion, our data show that TDP-43 expression in flies recapitulates several biochemical key features of human TDP-43 proteinopathies, including abnormal phosphorylation on a disease-specific site and processing of the protein. Moreover, our TDP-43 Drosophila models indicate that distinct pathways of TDP-43 toxicity might operate depending on the cell type. PMID:20951205

  8. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein

    PubMed Central

    Shi, Chao; Huang, Xuan; Zhang, Bin; Zhu, Dan; Luo, Huqiao; Lu, Quqin; Xiong, Wen-Cheng; Mei, Lin; Luo, Shiwen

    2015-01-01

    Background Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear. Results In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs). Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP). The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells. Conclusions Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD. PMID:26414348

  9. Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway.

    PubMed

    Saito, Shoko; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke

    2016-07-01

    Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system. PMID:27114368

  10. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences.

    PubMed

    Ishiwata, Keisuke; Sasaki, Go; Ogawa, Jiro; Miyata, Takashi; Su, Zhi-Hui

    2011-02-01

    Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects. PMID:21075208

  11. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  12. Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation

    PubMed Central

    Khan, Shahid N.; Charlier, Cyril; Augustyniak, Rafal; Salvi, Nicola; Déjean, Victoire; Bodenhausen, Geoffrey; Lequin, Olivier; Pelupessy, Philippe; Ferrage, Fabien

    2015-01-01

    Intrinsically disordered proteins and intrinsically disordered regions (IDRs) are ubiquitous in the eukaryotic proteome. The description and understanding of their conformational properties require the development of new experimental, computational, and theoretical approaches. Here, we use nuclear spin relaxation to investigate the distribution of timescales of motions in an IDR from picoseconds to nanoseconds. Nitrogen-15 relaxation rates have been measured at five magnetic fields, ranging from 9.4 to 23.5 T (400–1000 MHz for protons). This exceptional wealth of data allowed us to map the spectral density function for the motions of backbone NH pairs in the partially disordered transcription factor Engrailed at 11 different frequencies. We introduce an approach called interpretation of motions by a projection onto an array of correlation times (IMPACT), which focuses on an array of six correlation times with intervals that are equidistant on a logarithmic scale between 21 ps and 21 ns. The distribution of motions in Engrailed varies smoothly along the protein sequence and is multimodal for most residues, with a prevalence of motions around 1 ns in the IDR. We show that IMPACT often provides better quantitative agreement with experimental data than conventional model-free or extended model-free analyses with two or three correlation times. We introduce a graphical representation that offers a convenient platform for a qualitative discussion of dynamics. Even when relaxation data are only acquired at three magnetic fields that are readily accessible, the IMPACT analysis gives a satisfactory characterization of spectral density functions, thus opening the way to a broad use of this approach. PMID:26331256

  13. Converging Nuclear Magnetic Shielding Calculations with Respect to Basis and System Size in Protein Systems

    PubMed Central

    Hartman, Joshua D.; Neubauer, Thomas J.; Caulkins, Bethany G.; Mueller, Leonard J.; Beran, Gregory J. O.

    2015-01-01

    Ab initio chemical shielding calculations greatly facilitate the interpretation of nuclear magnetic resonance (NMR) chemical shifts in biological systems, but the large sizes of these systems requires approximations in the chemical models used to represent them. Achieving good convergence in the predicted chemical shieldings is necessary before one can unravel how other complex structural and dynamical factors affect the NMR measurements. Here, we investigate how to balance trade-offs between using a better basis set or a larger cluster model for predicting the chemical shieldings of the substrates in two representative examples of protein-substrate systems involving different domains in tryptophan synthase: the N-(4′-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F9) ligand which binds in the α active site, and the 2-aminophenol (2AP) quinonoid intermediate formed in the β active site. We first demonstrate that a chemically intuitive three-layer, locally dense basis model that uses a large basis on the substrate, a medium triple-zeta basis to describe its hydrogen-bonding partners and/or surrounding van derWaals cavity, and a crude basis set for more distant atoms provides chemical shieldings in good agreement with much more expensive large basis calculations. Second, long-range quantum mechanical interactions are important, and one can accurately estimate them as a small-basis correction to larger-basis calculations on a smaller cluster. The combination of these approaches enables one to perform density functional theory NMR chemical shift calculations in protein systems that are well-converged with respect to both basis set and cluster size. PMID:25993979

  14. Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters.

    PubMed Central

    Bartlett, J S; Sethna, M; Ramamurthy, L; Gowen, S A; Samulski, R J; Marzluff, W F

    1996-01-01

    Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8799116

  15. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application

    PubMed Central

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-01-01

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs. PMID:27114541

  16. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    SciTech Connect

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential ({delta}{psi}{sub m}). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression.

  17. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region.

    PubMed Central

    Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S

    1989-01-01

    The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877

  18. N-terminal determinants of human cytomegalovirus IE1 protein in nuclear targeting and disrupting PML-associated subnuclear structures

    SciTech Connect

    Lee, Hye-Ra; Huh, Yong Ho; Kim, Young-Eui; Lee, Karim; Kim, Sunyoung; Ahn, Jin-Hyun . E-mail: jahn@med.skku.ac.kr

    2007-05-04

    The 72-kDa IE1 protein of human cytomegalovirus disrupts PML-associated subnuclear structures (PODs) by inducing PML desumoylation. This process correlates with the functions of IE1 in transcriptional regulation and efficient viral replication. Here, we defined the N-terminal regions of IE1 required for nuclear targeting and POD-disrupting activity. Although the 24 N-terminal amino acids encoded by exon 2, which were previously shown to be essential for nuclear targeting, did not appear to contain typical basic nuclear localization signals, these residues were able to efficiently convey the GFP protein into the nucleus, suggesting a role in promoting nuclear translocation. In assays using a series of N-terminal truncation IE1 mutants, which were forced to enter the nucleus, exon 2 was completely dispensable for POD disruption. However, the predicted two {alpha}-helix regions in exon 3 were identified as important structural determinants for protein stability and for the correlating activities in POD disruption and PML desumoylation.

  19. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus.

    PubMed

    Hu, Shi-Bin; Xiang, Jian-Feng; Li, Xiang; Xu, Yefen; Xue, Wei; Huang, Min; Wong, Catharine C; Sagum, Cari A; Bedford, Mark T; Yang, Li; Cheng, Donghang; Chen, Ling-Ling

    2015-03-15

    In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3' untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54(nrb). However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54(nrb), resulting in reduced binding of p54(nrb) to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein-RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1. PMID:25792598

  20. Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins

    PubMed Central

    Kollmar, Martin

    2015-01-01

    The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope. PMID:26024016

  1. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity

    PubMed Central

    Cikala, Mihai; Alexandrova, Olga; David, Charles N; Pröschel, Matthias; Stiening, Beate; Cramer, Patrick; Böttger, Angelika

    2004-01-01

    Background Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of phosphatidylserine on the outer leaflet. Surface exposure of phosphatidylserine is recognised by a specific receptor (phosphatidylserine receptor, PSR) and is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. Results We have cloned the PSR receptor from Hydra in order to investigate its function in this early metazoan. Bioinformatic analysis of the Hydra PSR protein structure revealed the presence of three nuclear localisation signals, an AT-hook like DNA binding motif and a putative 2-oxoglutarate (2OG)-and Fe(II)-dependent oxygenase activity. All of these features are conserved from human PSR to Hydra PSR. Expression of GFP tagged Hydra PSR in hydra cells revealed clear nuclear localisation. Deletion of one of the three NLS sequences strongly diminished nuclear localisation of the protein. Membrane localisation was never detected. Conclusions Our results suggest that Hydra PSR is a nuclear 2-oxoglutarate (2OG)-and Fe(II)-dependent oxygenase. This is in contrast with the proposed function of Hydra PSR as a cell surface receptor involved in the recognition of apoptotic cells displaying phosphatidylserine on their surface. The conservation of the protein from Hydra to human infers that our results also apply to PSR from higher animals. PMID:15193161

  2. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    PubMed Central

    2009-01-01

    Background Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression. Methods Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer. Results The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies. Conclusion The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer. PMID:19878561

  3. Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2

    SciTech Connect

    Guarda, Alessia; Bolognese, Fabrizio; Bonapace, Ian Marc; Badaracco, Gianfranco

    2009-07-01

    The nuclear membrane has an important role for the dynamic regulation of the genome, besides the well-established cytoskeletal function. The nuclear lamina is emerging as an important player in the organization of the position and functional state of interphase chromosomes. Epigenetic modifications such as DNA methylation and histone modifications are required for genome reprogramming during development, tissue-specific gene expression and global gene silencing. The Methyl-CpG binding protein MeCP2 binds methyl-CpG dinucleotides in the mammalian genome and functions as a transcriptional repressor in vivo by interacting with Sin3A, thereby recruiting histone deacetylases (HDAC). MeCP2 also mediates the formation of higher-order chromatin structures contributing to determine the architectural organization of the nucleus. In this paper, we show that MeCP2 interacts in vitro and in vivo with the inner nuclear membrane protein LBR and that the unstructured aminoacidic sequence linking the MBD and TRD domains of MeCP2 is responsible for this association. The formation of an LBR-MeCP2 protein complex might help providing a molecular explanation to the distribution of part of the heterochromatin at the nuclear periphery linked to inner membrane.

  4. Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein.

    PubMed

    Uhrig, Joachim F; Canto, Tomas; Marshall, David; MacFarlane, Stuart A

    2004-08-01

    The P19 protein of tomato bushy stunt virus (TBSV) is a multifunctional pathogenicity determinant involved in suppression of posttranscriptional gene silencing, virus movement, and symptom induction. Here, we report that P19 interacts with the conserved RNA-binding domain of an as yet uncharacterized family of plant ALY proteins that, in animals, are involved in export of RNAs from the nucleus and transcriptional coactivation. We show that the four ALY proteins encoded by the Arabidopsis genome and two ALY proteins from Nicotiana benthamiana are localized to the nucleus. Moreover, and in contrast to animal ALY, all but one of the proteins are also in the nucleolus, with distinct subnuclear localizations. Infection of plants by TBSV or expression of P19 from Agrobacterium results in relocation of three of the six ALY proteins from the nucleus to the cytoplasm demonstrating specific targeting of the ALY proteins by P19. The differential effects on subcellular localization indicate that, in plants, the various ALY proteins may have different functions. Interaction with and relocalization of ALY is prevented by mutation of P19 at residues previously shown to be important for P19 function in plants. Down-regulation of expression of two N. benthamiana ALY genes by virus-induced gene silencing did not interfere with posttranscriptional gene silencing. Targeting of ALY proteins during TBSV infection may therefore be related to functions of P19 in addition to its silencing suppression activity. PMID:15299117

  5. Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein

    PubMed Central

    Zhang, Zhen; An, Xiuxiang; Yang, Kui; Perlstein, Deborah L.; Hicks, Leslie; Kelleher, Neil; Stubbe, JoAnne; Huang, Mingxia

    2006-01-01

    Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides and is an essential enzyme for DNA replication and repair. Cells have evolved intricate mechanisms to regulate RNR activity to ensure high fidelity of DNA replication during normal cell-cycle progression and of DNA repair upon genotoxic stress. The RNR holoenzyme is composed of a large subunit R1 (α, oligomeric state unknown) and a small subunit R2 (β2). R1 binds substrates and allosteric effectors; R2 contains a diferric-tyrosyl radical [(Fe)2-Y·] cofactor that is required for catalysis. In Saccharomyces cerevisiae, R1 is predominantly localized in the cytoplasm, whereas R2, which is a heterodimer (ββ′), is predominantly in the nucleus. When cells encounter DNA damage or stress during replication, ββ′ is redistributed from the nucleus to the cytoplasm in a checkpoint-dependent manner, resulting in the colocalization of R1 and R2. We have identified two proteins that have an important role in ββ′ nuclear localization: the importin β homolog Kap122 and the WD40 repeat protein Wtm1. Deletion of either WTM1 or KAP122 leads to loss of ββ′ nuclear localization. Wtm1 and its paralog Wtm2 are both nuclear proteins that are in the same protein complex with ββ′. Wtm1 also interacts with Kap122 in vivo and requires Kap122 for its nuclear localization. Our results suggest that Wtm1 acts either as an adaptor to facilitate nuclear import of ββ′ by Kap122 or as an anchor to retain ββ′ in the nucleus. PMID:16432237

  6. A bromodomain-containing host protein mediates the nuclear importation of a satellite RNA of Cucumber mosaic virus.

    PubMed

    Chaturvedi, Sonali; Kalantidis, Kriton; Rao, A L N

    2014-02-01

    Replication of the satellite RNA (satRNA) of Cucumber Mosaic Virus is dependent on replicase proteins of helper virus (HV). However, we recently demonstrated that like with Potato spindle tuber viroid (PSTVd), a satRNA associated with Cucumber Mosaic Virus strain Q (Q-satRNA) has the propensity to localize in the nucleus and generate multimers that subsequently serve as templates for HV-dependent replication. But the mechanism regulating the nuclear importation of Q-satRNA is unknown. Here we show that the nuclear importation of Q-satRNA is mediated by a bromodomain-containing host protein (BRP1), which is also apparently involved in the nuclear localization of PSTVd. A comparative analysis of nuclear and cytoplasmic fractions from Nicotiana benthamiana plants coinfected with Q-satRNA and its HV confirmed the association of Q-satRNA but not HV with the nuclear compartment. A combination of the MS2-capsid protein-based RNA tagging assay and confocal microscopy demonstrated that the nuclear localization of Q-satRNA was completely blocked in transgenic lines of Nicotiana benthamiana (ph5.2nb) that are defective in BRP1 expression. This defect, however, was restored when the ph5.2nb lines of N. benthamiana were trans-complemented by ectopically expressed BRP1. The binding specificity of BRP1 with Q-satRNA was confirmed in vivo and in vitro by coimmunoprecipitation and electrophoretic mobility shift assays, respectively. Finally, infectivity assays involving coexpression of Q-satRNA and its HV in wild-type and ph5.2nb lines of N. benthamiana accentuated a biological role for BRP1 in the Q-satRNA infection cycle. The significance of these results in relation to a possible evolutionary relationship to viroids is discussed. PMID:24284314

  7. Moderate hypothermia induces marked increase in levels and nuclear accumulation of SUMO2/3-conjugated proteins in neurons

    PubMed Central

    Wang, Liangli; Ma, Qing; Yang, Wei; Mackensen, G. Burkhard; Paschen, Wulf

    2012-01-01

    Deep hypothermia protects the brain from ischemic damage and is therefore used during major cardiovascular surgeries requiring cardiopulmonary bypass and a period of circulatory arrest. Here, we demonstrated that small ubiquitin-like modifier (SUMO1-3) conjugation is markedly activated in the brain during deep to moderate hypothermia. Animals were subjected to normothermic (37°C) or deep to moderate (18°C, 24°C, 30°C) hypothermic cardiopulmonary bypass, and the effects of hypothermia on SUMO conjugation were evaluated by Western blot and immunohistochemistry. Exposure to moderate 30°C hypothermia was sufficient to markedly increased levels and nuclear accumulation of SUMO2/3-conjugated proteins in these cells. Deep hypothermia induced nuclear translocation of the SUMO conjugating enzyme Ubc9, suggesting that the increase in nuclear levels of SUMO2/3-conjugated proteins observed in brains of hypothermic animals is an active process. Exposure of primary neuronal cultures to deep hypothermia induced only a moderate rise in levels of SUMO2/3-conjugated proteins. This suggests that neurons in vivo have a higher capacity than neurons in vitro to activate this endogenous potentially neuroprotective pathway upon exposure to hypothermia. Identifying proteins that are SUMO2/3 conjugated during hypothermia could help to design new strategies for preventive and therapeutic interventions to make neurons more resistant to a transient interruption of blood supply. PMID:22891650

  8. The N-terminus of porcine circovirus type 2 replication protein is required for nuclear localization and ori binding activities

    SciTech Connect

    Lin, W.-L.; Chien, M.-S.; Du, Y.-W.; Wu, P.-C.; Huang Chienjin

    2009-02-20

    Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.

  9. Polyalanine-independent Conformational Conversion of Nuclear Poly(A)-binding Protein 1 (PABPN1)*

    PubMed Central

    Winter, Reno; Kühn, Uwe; Hause, Gerd; Schwarz, Elisabeth

    2012-01-01

    Oculopharyngeal muscular dystrophy is a late-onset disease caused by an elongation of a natural 10-alanine segment within the N-terminal domain of the nuclear poly(A)-binding protein 1 (PABPN1) to maximally 17 alanines. The disease is characterized by intranuclear deposits consisting primarily of PABPN1. In previous studies, we could show that the N-terminal domain of PABPN1 forms amyloid-like fibrils. Here, we analyze fibril formation of full-length PABPN1. Unexpectedly, fibril formation was independent of the presence of the alanine segment. With regard to fibril formation kinetics and resistance against denaturants, fibrils formed by full-length PABPN1 had completely different properties from those formed by the N-terminal domain. Fourier transformed infrared spectroscopy and limited proteolysis showed that fibrillar PABPN1 has a structure that differs from native PABPN1. Circumstantial evidence is presented that the C-terminal domain is involved in fibril formation. PMID:22570486

  10. Ribosome Protein L4 is essential for Epstein–Barr Virus Nuclear Antigen 1 function

    PubMed Central

    Shen, Chih-Lung; Liu, Cheng-Der; You, Ren-In; Ching, Yung-Hao; Liang, Jun; Ke, Liangru; Chen, Ya-Lin; Chen, Hong-Chi; Hsu, Hao-Jen; Liou, Je-Wen; Kieff, Elliott; Peng, Chih-Wen

    2016-01-01

    Epstein–Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection. PMID:26858444

  11. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation

    PubMed Central

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K.; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-01-01

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism. PMID:26461067

  12. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    PubMed Central

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate–early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  13. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA.

    PubMed

    Orzalli, Megan H; Conwell, Sara E; Berrios, Christian; DeCaprio, James A; Knipe, David M

    2013-11-19

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate-early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  14. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain

    PubMed Central

    Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL–TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  15. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio )

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  16. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain.

    PubMed

    Song, Jie; Mu, Yabing; Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL-TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  17. A case of anti-nuclear matrix protein 2 antibody positive myopathy associated with lung cancer.

    PubMed

    Ohta, Shin; Unoda, Ki-Ichi; Nakajima, Hideto; Ikeda, Soichiro; Hamaguchi, Yasuhito; Kimura, Fumiharu

    2016-08-31

    Myositis-specific autoantibodies (MSAs) are associated with myositis. Anti-nuclear matrix protein 2 (NXP-2) antibody was recently identified as a major MSA and was observed mostly in juvenile dermatomyositis. We report the case of a 44-year-old man who presented with myopathy with anti-NXP-2 antibody and large cell carcinoma of the lung. He was hospitalized because of myalgia and edema of limbs. Neurological examination revealed mild proximal-dominant weakness in all four extremities, and laboratory studies showed elevated creatine kinase level (6,432 IU/l). Needle electromyography showed myogenic patterns. MRI of the lower limbs demonstrated inflammatory lesions in the thighs. Biopsied specimen from the left quadriceps femoris muscle showed mild mononuclear inflammatory infiltrate surrounding muscle fibres but no fiber necrosis. He was diagnosed with myopathy based on neurological examinations and clinical symptoms. His chest X-ray and CT showed tumor shadow on the right upper lung field, but CT didn't indicate the findings of interstitial lung disease. This was surgically removed, and a histological diagnosis of non-small cell lung cancer was suspected. He was also treated with definitive chemoradiotherapy before and after operation. His symptoms of myopathy promptly remitted with the preoperative chemotherapy. His serum analysis was positive for the anti-NXP-2. Further investigation and experience of MSAs are necessary to evaluate the therapeutic strategy against cancer-associated myopathy/myositis. PMID:27477574

  18. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function.

    PubMed

    Shen, Chih-Lung; Liu, Cheng-Der; You, Ren-In; Ching, Yung-Hao; Liang, Jun; Ke, Liangru; Chen, Ya-Lin; Chen, Hong-Chi; Hsu, Hao-Jen; Liou, Je-Wen; Kieff, Elliott; Peng, Chih-Wen

    2016-02-23

    Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection. PMID:26858444

  19. Nuclear protein I{kappa}B-{zeta} inhibits the activity of STAT3

    SciTech Connect

    Wu, Zhihao; Zhang, Xiaoai; Yang, Juntao; Wu, Guangzhou; Zhang, Ying; Yuan, Yanzhi; Jin, Chaozhi; Chang, Zhijie; Wang, Jian; Yang, Xiaoming; He, Fuchu; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032

    2009-09-18

    STAT3 (Signal transducer and activator of transcription 3) is a key transcription factor of the JAK-STAT (Janus kinase/signal transducer and activator of transcription) pathway that regulates cell proliferation and apoptosis. Activation of STAT3 is under tight regulation, and yet the different signaling pathways and the mechanisms that regulate its activity remain to be elucidated. Using a yeast two-hybrid screening, we have identified a nuclear protein I{kappa}B-{zeta} that interacts in a novel way with STAT3. This physical interaction was further confirmed by co-immunoprecipitation assays. The interaction regions were mapped to the coiled-coil domain of STAT3 and the C-terminal of I{kappa}B-{zeta}. Overexpression of I{kappa}B-{zeta} inhibited the transcriptional activity of STAT3. It also suppressed cell growth and induced cell apoptosis in SRC-simulated cells, which is partially mediated by down-regulation of expression of a known STAT3 target gene, MCL1. Our results suggest that I{kappa}B-{zeta} is a negative regulator of STAT3, and demonstrate a novel mechanism in which a component of the NF-{kappa}B signaling pathway inhibits the activation of STAT3.

  20. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    SciTech Connect

    Steen, Hakan; Lindholm, Dan

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent to the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.

  1. Nuclear Export of African Swine Fever Virus p37 Protein Occurs through Two Distinct Pathways and Is Mediated by Three Independent Signals

    PubMed Central

    Eulálio, Ana; Nunes-Correia, Isabel; Carvalho, Ana Luísa; Faro, Carlos; Citovsky, Vitaly; Salas, José; Salas, Maria L.; Simões, Sérgio; de Lima, Maria C. Pedroso

    2006-01-01

    Nucleocytoplasmic shuttling activity of the African swine fever virus p37 protein, a major structural protein of this highly complex virus, has been recently reported. The systematic characterization of the nuclear export ability of this protein constituted the major purpose of the present study. We report that both the N- and C-terminal regions of p37 protein are actively exported from the nucleus to the cytoplasm of yeast and mammalian cells. Moreover, experiments using leptomycin B and small interfering RNAs targeting the CRM1 receptor have demonstrated that the export of p37 protein is mediated by both the CRM1-dependent and CRM1-independent nuclear export pathways. Two signals responsible for the CRM1-mediated nuclear export of p37 protein were identified at the N terminus of the protein, and an additional signal was identified at the C-terminal region, which mediates the CRM1-independent nuclear export. Interestingly, site-directed mutagenesis revealed that hydrophobic amino acids are critical to the function of these three nuclear export signals. Overall, our results demonstrate that two distinct pathways contribute to the strong nuclear export of full-length p37 protein, which is mediated by three independent nuclear export signals. The existence of overlapping nuclear export mechanisms, together with our observation that p37 protein is localized in the nucleus at early stages of infection and exclusively in the cytoplasm at later stages, suggests that the nuclear transport ability of this protein may be critical to the African swine fever virus replication cycle. PMID:16415017

  2. Regulation of Stress-Inducible Phosphoprotein 1 Nuclear Retention by Protein Inhibitor of Activated STAT PIAS1

    PubMed Central

    Soares, Iaci N.; Caetano, Fabiana A.; Pinder, Jordan; Rodrigues, Bruna Roz; Beraldo, Flavio H.; Ostapchenko, Valeriy G.; Durette, Chantal; Pereira, Grace Schenatto; Lopes, Marilene H.; Queiroz-Hazarbassanov, Nicolle; Cunha, Isabela W.; Sanematsu, Paulo I.; Suzuki, Sergio; Bleggi-Torres, Luiz F.; Schild-Poulter, Caroline; Thibault, Pierre; Dellaire, Graham; Martins, Vilma R.; Prado, Vania F.; Prado, Marco A. M.

    2013-01-01

    Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450–480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity. PMID:23938469

  3. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation.

    PubMed

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2016-02-01

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β. PMID:26546155

  4. Levels of synthesis of primate-specific nuclear proteins differ between growth-arrested and proliferating cells

    SciTech Connect

    Celis, J.E.; Madsen, P.; Nielsen, S.; Ratz, G.P.; Lauridsen, J.B.; Celis, A.

    1987-02-01

    A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of (/sup 35/S)methionine-labelled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation.

  5. Nuclear Magnetic Resonance Characterization of the Type III Secretion System Tip Chaperone Protein PcrG of Pseudomonas aeruginosa.

    PubMed

    Chaudhury, Sukanya; Nordhues, Bryce A; Kaur, Kawaljit; Zhang, Na; De Guzman, Roberto N

    2015-11-01

    Lung infection with Pseudomonas aeruginosa is the leading cause of death among cystic fibrosis patients. To initiate infection, P. aeruginosa assembles a protein nanomachine, the type III secretion system (T3SS), to inject bacterial proteins directly into target host cells. An important regulator of the P. aeruginosa T3SS is the chaperone protein PcrG, which forms a complex with the tip protein, PcrV. In addition to its role as a chaperone to the tip protein, PcrG also regulates protein secretion. PcrG homologues are also important in the T3SS of other pathogens such as Yersinia pestis, the causative agent of bubonic plague. The atomic structure of PcrG or any member of the family of tip protein chaperones is currently unknown. Here, we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that PcrG lacks a tertiary structure. However, it is not completely disordered but contains secondary structures dominated by two long α-helices from residue 16 to 41 and from residue 55 to 76. The helices of PcrG are partially formed, have similar backbone dynamics, and are flexible. NMR titrations show that the entire length of PcrG residues from position 9 to 76 is involved in binding to PcrV. PcrG adds to the growing list of partially folded or unstructured proteins with important roles in type III secretion. PMID:26451841

  6. The Nuclear Zinc Finger Protein Zfat Maintains FoxO1 Protein Levels in Peripheral T Cells by Regulating the Activities of Autophagy and the Akt Signaling Pathway.

    PubMed

    Ishikura, Shuhei; Iwaihara, Yuri; Tanaka, Yoko; Luo, Hao; Nishi, Kensuke; Doi, Keiko; Koyanagi, Midori; Okamura, Tadashi; Tsunoda, Toshiyuki; Shirasawa, Senji

    2016-07-15

    Forkhead box O1 (FoxO1) is a key molecule for the development and functions of peripheral T cells. However, the precise mechanisms regulating FoxO1 expression in peripheral T cells remain elusive. We previously reported that Zfat(f/f)-CD4Cre mice showed a marked decline in FoxO1 protein levels in peripheral T cells, partially through proteasomal degradation. Here we have identified the precise mechanisms, apart from proteasome-mediated degradation, of the decreased FoxO1 levels in Zfat-deficient T cells. First, we confirmed that tamoxifen-inducible deletion of Zfat in Zfat(f/f)-CreERT2 mice coincidently decreases FoxO1 protein levels in peripheral T cells, indicating that Zfat is essential for maintaining FoxO1 levels in these cells. Although the proteasome-specific inhibitors lactacystin and epoxomicin only moderately increase FoxO1 protein levels, the inhibitors of lysosomal proteolysis bafilomycin A1 and chloroquine restore the decreased FoxO1 levels in Zfat-deficient T cells to levels comparable with those in control cells. Furthermore, Zfat-deficient T cells show increased numbers of autophagosomes and decreased levels of p62 protein, together indicating that Zfat deficiency promotes lysosomal FoxO1 degradation through autophagy. In addition, Zfat deficiency increases the phosphorylation levels of Thr-308 and Ser-473 of Akt and the relative amounts of cytoplasmic to nuclear FoxO1 protein levels, indicating that Zfat deficiency causes Akt activation, leading to nuclear exclusion of FoxO1. Our findings have demonstrated a novel role of Zfat in maintaining FoxO1 protein levels in peripheral T cells by regulating the activities of autophagy and the Akt signaling pathway. PMID:27226588

  7. Primary structure of human nuclear ribonucleoprotein particle C proteins: conservation of sequence and domain structures in heterogeneous nuclear RNA, mRNA, and pre-rRNA-binding proteins.

    PubMed Central

    Swanson, M S; Nakagawa, T Y; LeVan, K; Dreyfuss, G

    1987-01-01

    In the eucaryotic nucleus, heterogeneous nuclear RNAs exist in a complex with a specific set of proteins to form heterogeneous nuclear ribonucleoprotein particles (hnRNPs). The C proteins, C1 and C2, are major constituents of hnRNPs and appear to play a role in RNA splicing as suggested by antibody inhibition and immunodepletion experiments. With the use of a previously described partial cDNA clone as a hybridization probe, full-length cDNAs for the human C proteins were isolated. All of the cDNAs isolated hybridized to two poly(A)+ RNAs of 1.9 and 1.4 kilobases (kb). DNA sequencing of a cDNA clone for the 1.9-kb mRNA (pHC12) revealed a single open reading frame of 290 amino acids coding for a protein of 31,931 daltons and two polyadenylation signals, AAUAAA, approximately 400 base pairs apart in the 3' untranslated region of the mRNA. DNA sequencing of a clone corresponding to the 1.4-kb mRNA (pHC5) indicated that the sequence of this mRNA is identical to that of the 1.9-kb mRNA up to the first polyadenylation signal which it uses. Both mRNAs therefore have the same coding capacity and are probably transcribed from a single gene. Translation in vitro of the 1.9-kb mRNA selected by hybridization with a 3'-end subfragment of pHC12 demonstrated that it by itself can direct the synthesis of both C1 and C2. The difference between the C1 and C2 proteins which results in their electrophoretic separation is not known, but most likely one of them is generated from the other posttranslationally. Since several hnRNP proteins appeared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as multiple antigenically related polypeptides, this raises the possibility that some of these other groups of hnRNP proteins are also each produced from a single mRNA. The predicted amino acid sequence of the protein indicates that it is composed of two distinct domains: an amino terminus that contains what we have recently described as a RNP consensus sequence, which is the putative

  8. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  9. The nuclear localization of SOCS6 requires the N-terminal region and negatively regulates Stat3 protein levels

    SciTech Connect

    Hwang, Mi-Na; Min, Chan-Hee; Kim, Hyung Sik; Lee, Ho; Yoon, Kyong-Ah; Park, Sung Yong; Lee, Eun Sook; Yoon, Sungpil . E-mail: yoons@ncc.re.kr

    2007-08-24

    We determined that endogenous- and overexpressed- SOCS6 was localized in both the nucleus and cytoplasm. The localization of SOCS6 depended on amino acids 1-210 in the N-terminal region of the protein, which contains an unidentified domain. GFP-tagged SOCS6 or the N-terminal region, was exclusively localized and widely distributed throughout the entire nucleus, whereas the C-terminal region displayed a nuclear omission pattern. We also demonstrated that the SOCS6 protein could decrease the levels of the Stat3 protein in the nucleus, and that its negative regulation of the Stat3 protein level was dependent on its C-terminal region. These observations suggest that SOCS6 is composed of at least two functional domains required for its biological role in localizing and degrading Stat3 in the nucleus.

  10. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO{sub 2} nanoparticles

    SciTech Connect

    Chen Min; Mikecz, Anna von . E-mail: mikecz@uni-duesseldorf.de

    2005-04-15

    Despite of their exponentially growing use, little is known about cell biological effects of nanoparticles. Here, we report uptake of silica (SiO{sub 2}) nanoparticles to the cell nucleus where they induce aberrant clusters of topoisomerase I (topo I) in the nucleoplasm that additionally contain signature proteins of nuclear domains, and protein aggregation such as ubiquitin, proteasomes, cellular glutamine repeat (polyQ) proteins, and huntingtin. Formation of intranuclear protein aggregates (1) inhibits replication, transcription, and cell proliferation; (2) does not significantly alter proteasomal activity or cell viability; and (3) is reversible by Congo red and trehalose. Since SiO{sub 2} nanoparticles trigger a subnuclear pathology resembling the one occurring in expanded polyglutamine neurodegenerative disorders, we suggest that integrity of the functional architecture of the cell nucleus should be used as a read out for cytotoxicity and considered in the development of safe nanotechnology.

  11. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells.

    PubMed

    Sides, Mark D; Block, Gregory J; Shan, Bin; Esteves, Kyle C; Lin, Zhen; Flemington, Erik K; Lasky, Joseph A

    2011-07-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  12. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    SciTech Connect

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.; Osorio, Fernando A.; Hiscox, Julian A.

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.

  13. Characterization of specific antigenic epitopes and the nuclear export signal of the Porcine circovirus 2 ORF3 protein.

    PubMed

    Gu, Jinyan; Wang, Lun; Jin, Yulan; Lin, Cui; Wang, Huijuan; Zhou, Niu; Xing, Gang; Liao, Min; Zhou, Jiyong

    2016-02-29

    Porcine circovirus 2 (PCV2) is the etiological agent of postweaning multisystemic wasting syndrome. PCV2 ORF3 protein is a nonstructural protein known to induce apoptosis, but little is known about the biological function of ORF3 protein. Therefore, we undertook this study to map ORF3 protein epitopes recognized by a panel of monoclonal antibodies (mAbs) and to characterize putative nuclear localization (NLS) and nuclear export (NES) sequences in ORF3. The linear epitopes targeted by two previously published mAbs 3B1 and 1H3 and a novel mouse mAb 3C3 were defined using overlapping pools of peptides. Here, we find that ORF3 in PCV2 infected cells contains a conformational epitope targeted by the antibody 3C3, which is distinct from linear epitopes recognized by the antibodies 3B1 and 1H3 in recombinant ORF3 protein. These results suggest that the linear epitope recognized by 3B1 and 1H3 is masked in PCV2 infected cells, and that the conformational epitope is unique to PCV2 infection. Furthermore, we find that ORF3 protein expressed in cytoplasm in early stages of PCV2 infection and then accumulated in nucleus over time. Moreover, we localize a NES at the N-terminus (residues 1-35aa) of ORF3 which plays critical role in nuclear export activity. These findings provide a novel insight that deepens our understanding of the biological function of PCV2 ORF3. PMID:26854343

  14. Nucleocytoplasmic shuttling of the rabies virus P protein requires a nuclear localization signal and a CRM1-dependent nuclear export signal

    SciTech Connect

    Pasdeloup, David; Poisson, Nicolas; Raux, Helene; Gaudin, Yves; Ruigrok, Rob W.H. . E-mail: danielle.blondel@vms.cnrs-gif.fr

    2005-04-10

    Rabies virus P protein is a co-factor of the viral RNA polymerase. It has been shown previously that P mRNA directs the synthesis of four N-terminally truncated P products P2, P3, P4, and P5 due to translational initiation by a leaky scanning mechanism at internal Met codons. Whereas P and P2 are located in the cytoplasm, P3, P4, and P5 are found in the nucleus. Here, we have analyzed the molecular basis of the subcellular localization of these proteins. Using deletion mutants fused to GFP protein, we show the presence of a nuclear localization signal (NLS) in the C-terminal part of P (172-297). This domain contains a short lysine-rich stretch ({sup 211}KKYK{sup 214}) located in close proximity with arginine 260 as revealed by the crystal structure of P. We demonstrate the critical role of lysine 214 and arginine 260 in NLS activity. In the presence of Leptomycin B, P is retained in the nucleus indicating that it contains a CRM1-dependent nuclear export signal (NES). The subcellular distribution of P deletion mutants indicates that the domain responsible for export is the amino-terminal part of the protein. The use of fusion proteins that have amino terminal fragments of P fused to {beta}-galactosidase containing the NLS of SV40 T antigen allows us to identify a NES between residues 49 and 58. The localization of NLS and NES determines the cellular distribution of the P gene products.

  15. Co-localization of the amyloid precursor protein and the Notch intracellular domains in nuclear transcription factories

    PubMed Central

    Konietzko, Uwe; Goodger, Zoë V.; Meyer, Michelle; Kohli, Bernhard M.; Bosset, Jérôme; Lahiri, Debomoy K.; Nitsch, Roger M.

    2009-01-01

    The β-amyloid precursor protein (APP) plays a major role in Alzheimer’s disease. The APP intracellular domain (AICD), together with Fe65 and Tip60, localizes to spherical nuclear AFT complexes that might represent sites of transcription. We now show that endogenous AICD is targeted to similar nuclear spots. AFT complexes were closely associated with Cajal and PML bodies but did not localize to nucleoli or splicing speckles. Live imaging revealed that AFT complexes were highly mobile within nuclei. Following pharmacological inhibition of transcription AFT complexes merged into a few large assemblies. We have previously shown that AICD regulates the expression of its own precursor APP. Transfection of APP promoter plasmids as substrates resulted in cytosolic AFT complex formation at the labeled APP promoter plasmids. In addition, identification of chromosomal APP or KAI1 gene loci by fluorescence in situ hybridization showed their close association with nuclear AFT complexes. The transcriptional activator Notch intracellular domain (NICD) localized to the same nuclear spots as occupied by AFT complexes, suggesting that these nuclear compartments correspond to transcription factories. Fe65 and Tip60 also co-localized with APP in the neurites of primary neurons. Pre-assembled AFT complexes may serve to assist fast nuclear signaling upon endoproteolytic APP cleavage. PMID:18403052

  16. The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies.

    PubMed

    Sarkari, Feroz; Wang, Xueqi; Nguyen, Tin; Frappier, Lori

    2011-01-01

    The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity. PMID:21305000

  17. Proteomic analysis for nuclear proteins related to tumour malignant progression: a comparative proteomic study between malignant progressive cells and regressive cells.

    PubMed

    Kuramitsu, Yasuhiro; Hayashi, Eiko; Okada, Futoshi; Tanaka, Toshiyuki; Zhang, Xiulian; Ueyama, Yoshiya; Nakamura, Kazuyuki

    2010-06-01

    Tumour development and progression consists a series of multiple changes in gene expression. Progressive tumour cells acquire more aggressive properties manifested by rapid growth, invasiveness and metastatic ability, as well as increased genetic instability leading to multiple genetic alterations. Therefore, it is crucial to identify the possible intracellular and extracellular molecular mechanisms that accelerate tumour progression, in particular to identify nuclear proteins which interact with DNA. Nuclear proteomics provides an opportunity to qualitatively and quantitatively examine protein effectors that contribute to cellular phenotype. This study performed a differential display analysis for the expression of nuclear proteome between regressive tumour cell clone QR-32 and malignant progressive tumour cell clone QRsP-11 using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Eight nuclear proteins whose expressions were different between QR-32 and QRsP-11 cells were identified. Seven of those protein spots, zinc finger protein ZXDC, lamin-A/C, far upstream clement-binding protein 1, heterogeneous nuclear ribonucleoprotein K, heterogeneous nuclear ribonucleoprotein A/B and guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1, were down-regulated in QRsP-11, while one protein, nucleolin, was up-regulated in QRsP-11. PMID:20651356

  18. Leishmania major Telomerase TERT Protein Has a Nuclear/Mitochondrial Eclipsed Distribution That Is Affected by Oxidative Stress

    PubMed Central

    Campelo, Riward; Díaz Lozano, Isabel; Figarella, Katherine; Osuna, Antonio

    2014-01-01

    In its canonical role the reverse transcriptase telomerase recovers the telomeric repeats that are lost during DNA replication. Other locations and activities have been recently described for the telomerase protein subunit TERT in mammalian cells. In the present work, using biochemistry, molecular biology, and electron microscopy techniques, we found that in the human parasite Leishmania major, TERT (and telomerase activity) shared locations between the nuclear, mitochondrial, and cytoplasmic compartments. Also, some telomerase activity and TERT protein could be found in ∼100-nm nanovesicles. In the mitochondrial compartment, TERT appears to be mainly associated with the kinetoplast DNA. When Leishmania cells were exposed to H2O2, TERT changed its relative abundance and activity between the nuclear and mitochondrial compartments, with the majority of activity residing in the mitochondrion. Finally, overexpression of TERT in Leishmania transfected cells not only increased the parasitic cell growth rate but also increased their resistance to oxidative stress. PMID:25312950

  19. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization.

    PubMed

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. PMID:26188516

  20. Heterogeneous nuclear ribonuclear protein K interacts with Sindbis virus nonstructural proteins and viral subgenomic mRNA

    SciTech Connect

    Burnham, Andrew J.; Gong, Lei; Hardy, Richard W.

    2007-10-10

    Alphaviruses are a group of arthropod-borne human and animal pathogens that can cause epidemics of significant public health and economic consequence. Alphavirus RNA synthesis requires four virally encoded nonstructural proteins and probably a number of cellular proteins. Using comparative two-dimensional electrophoresis we were able to identify proteins enriched in cytoplasmic membrane fractions containing viral RNA synthetic complexes following infection with Sindbis virus. Our studies demonstrated the following: (i) the host protein hnRNP K is enriched in cytoplasmic membrane fractions following Sindbis virus infection, (ii) viral nonstructural proteins co-immunoprecipitate with hnRNP K, (iii) nsP2 and hnRNP K co-localize in the cytoplasm of Sindbis virus infected cells, (iv) Sindbis virus subgenomic mRNA, but not genomic RNA co-immunoprecipitates with hnRNP K, (v) viral RNA does not appear to be required for the interaction of hnRNP K with the nonstructural proteins. Potential functions of hnRNP K during virus replication are discussed.

  1. Structural basis of nucleic acid recognition by FK506-binding protein 25 (FKBP25), a nuclear immunophilin

    PubMed Central

    Prakash, Ajit; Shin, Joon; Rajan, Sreekanth; Yoon, Ho Sup

    2016-01-01

    The nuclear immunophilin FKBP25 interacts with chromatin-related proteins and transcription factors and is suggested to interact with nucleic acids. Currently the structural basis of nucleic acid binding by FKBP25 is unknown. Here we determined the nuclear magnetic resonance (NMR) solution structure of full-length human FKBP25 and studied its interaction with DNA. The FKBP25 structure revealed that the N-terminal helix-loop-helix (HLH) domain and C-terminal FK506-binding domain (FKBD) interact with each other and that both of the domains are involved in DNA binding. The HLH domain forms major-groove interactions and the basic FKBD loop cooperates to form interactions with an adjacent minor-groove of DNA. The FKBP25–DNA complex model, supported by NMR and mutational studies, provides structural and mechanistic insights into the nuclear immunophilin-mediated nucleic acid recognition. PMID:26762975

  2. The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration

    PubMed Central

    Bone, Courtney R.; Tapley, Erin C.; Gorjánácz, Mátyás; Starr, Daniel A.

    2014-01-01

    Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus. PMID:25057012

  3. [Application of nuclear magnetic resonance for the determination of the structure of proteins in solution].

    PubMed

    Charretier, E; Guéron, M

    1991-01-01

    Knowledge of three-dimensional structure is a key factor in protein engineering. It is useful, for example, in predicting and understanding the functional consequences of specific substitution of one or more amino acids of the polypeptide chain. It is also necessary for the design of new effectors or analogs of the substrates of enzymes and receptors. X-ray diffraction by crystals of the biomolecule was for a long time the only method of determining three-dimensional structures. In the last 5 years, it has been joined by a new technique, two-dimensional nuclear magnetic resonance (2D NMR), which can resolve the structure of middle-sized proteins (less than 10 kilodaltons). The technique is applied on solutions whose pH, ionic strength, and temperature can be chosen and changed. The two basic measurements, COSY and NOESY, detect respectively the systems of hydrogen nuclei, or protons, coupled through covalent bonds, and those in which the interproton distances are less than 0.5 nm. A systematic strategy leads from resonance assignments of the two-dimensional spectrum to molecular modeling with constraints and finally to the determination of the molecular structure in the solution. Much sophistication is needed even today for the first task, the assignment of the resonances. Each of the COSY and NOESY spectra is a two-dimensional map, where the diagonal line is the one-dimensional spectrum, and the off-diagonal peaks indicate connectives between protons. Peak assignment to a specific type of amino acid is based on the pattern of scalar couplings observed in the COSY spectrum. Next, the amino acids are positioned in the primary sequence, using the spatial proximities of polypeptide chain protons, as observed in the NOESY spectrum. The principal secondary structures (alpha helix, beta sheets, etc.) are then identified by their specific connectivities. The tertiary structure is detected by NOESY connectivities between protons of different amino acids which are far apart

  4. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A)-binding protein are distinct processes mediated by two Epstein Barr virus proteins.

    PubMed

    Park, Richard; El-Guindy, Ayman; Heston, Lee; Lin, Su-Fang; Yu, Kuan-Ping; Nagy, Mate; Borah, Sumit; Delecluse, Henri-Jacques; Steitz, Joan; Miller, George

    2014-01-01

    Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors. PMID:24705134

  5. A novel inhibitor of apoptosis protein (IAP)-interacting protein, Vestigial-like (Vgl)-4, counteracts apoptosis-inhibitory function of IAPs by nuclear sequestration

    SciTech Connect

    Jin, Hyung-Seung; Park, Hyung-Sun; Shin, Jun-Ha; Kim, Dong-Hwan; Jun, Sung-Hun; Lee, Chang-Jun; Lee, Tae H.

    2011-09-02

    Highlights: {yields} We identified a new IAP binding protein Vgl-4. {yields} Vgl-4 is expressed mainly in the nucleus and triggers a relocalization of IAPs from the cytoplasm to the nucleus. {yields} Vgl-4-mediated IAP nuclear localization was blocked by TRAF2 coexpression. {yields} Vgl-4 suppresses the ability of IAPs to prevent cell death, however TRAF2 can revere the effect of Vgl-4. {yields} Vgl-4 functions as an IAP regulator by binding to IAPs and altering their sub-cellular localization. -- Abstract: The inhibitors of apoptosis proteins (IAP), which include cIAP1, cIAP2 and XIAP, suppress apoptosis through the inhibition of caspases, and the activity of IAPs is regulated by a variety of IAP-binding proteins. Herein, we report the identification of a Vestigial-like 4 (Vgl-4), which functions as a transcription cofactor in cardiac myocytes, as a new IAP binding protein. Vgl-4 is expressed predominantly in the nucleus and its overexpression triggers a relocalization of IAPs from the cytoplasm to the nucleus. cIAP1/2-interacting protein TRAF2 (TNF receptor-associated factor 2) prevented the Vgl-4-driven nuclear localization of cIAP2. Accordingly, the forced relocation of IAPs to the nucleus by Vgl-4 significantly reduced their ability to prevent Bax- and TNF{alpha}-induced apoptosis, which can be recovered by co-expression with TRAF2. Our results suggest that Vgl-4 may play a role in the apoptotic pathways by regulating translocation of IAPs between different cell compartments.

  6. Propiverine-induced accumulation of nuclear and cytosolic protein in F344 rat kidneys: Isolation and identification of the accumulating protein

    SciTech Connect

    Dietrich, D.R. Heussner, A.H.; O'Brien, E.; Gramatte, T.; Runkel, M.; Rumpf, S.; Day, B.W.

    2008-12-15

    Male and female F344 rats but not B6C3F1 mice exposed for 104 weeks to propiverine hydrochloride (1-methylpiperid-4-yl 2,2-diphenyl-2-(1-propoxy)acetate hydrochloride), used for treatment of patients with neurogenic detrusor overactivity (NDO) and overactive bladder (OAB), presented with an accumulation of proteins in the cytosol and nuclei of renal proximal tubule epithelial cells, yet despite this, no increased renal tumor incidence was observed. In order to provide an improved interpretation of these findings and a better basis for human health risk assessment, male and female F344 rats were exposed for 16 weeks to 1000 ppm propiverine in the diet, the accumulating protein was isolated from the kidneys via cytosolic and nuclear preparations or laser-capture microdissection and analyzed using molecular weight determination and mass spectrometry. The accumulating protein was found to be D-amino acid oxidase (DAAO), an enzyme involved in amino and fatty acid metabolism. Subsequent reanalysis of kidney homogenate and nuclear samples as well as tissue sections using western blot and DAAO-immunohistochemistry, confirmed the presence and localization of DAAO in propiverine-treated male and female F344 rats. The accumulation of DAAO only in rats, and the limited similarity of rat DAAO with other species, including humans, suggests a rat-specific mechanism underlying the drug-induced renal DAAO accumulation with little relevance for patients chronically treated with propiverine.

  7. Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation

    PubMed Central

    Chen, Fenfang; Lin, Xia; Xu, Pinglong; Zhang, Zhengmao; Chen, Yanzhen; Wang, Chao; Han, Jiahuai; Zhao, Bin; Xiao, Mu

    2015-01-01

    Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation. PMID:25755279

  8. Domains involved in calcineurin phosphatase inhibition and nuclear localisation in the African swine fever virus A238L protein

    SciTech Connect

    Abrams, Charles C.; Chapman, Dave A.G.; Silk, Rhiannon; Liverani, Elisabetta; Dixon, Linda K.

    2008-05-10

    The African swine fever virus A238L protein inhibits calcineurin phosphatase activity and activation of NF-{kappa}B and p300 co-activator. An 82 amino acid domain containing residues 157 to 238 at the C-terminus of A238L was expressed in E. coli and purified. This purified A238L fragment acted as a potent inhibitor of calcineurin phosphatase in vitro with an IC{sub 50} of approximately 70 nM. Two putative nuclear localisation signals were identified between residues 80 to 86 (NLS-1) and between residues 203 to 207 overlapping with the N-terminus of the calcineurin docking motif (NLS-2). Mutation of these motifs independently did not reduce nuclear localisation compared to the wild type A238L protein, whereas mutation of both motifs significantly reduced nuclear localisation of A238L. Mutation of the calcineurin docking motif resulted in a dramatic increase in the nuclear localisation of A238L provided an intact NLS was present. We propose that binding of calcineurin to A238L masks NLS-2 contributing to the cytoplasmic retention of A238L.

  9. Nuclear localization of the Hermes transposase depends on basic amino acid residues at the N-terminus of the protein.

    PubMed

    Michel, K; Atkinson, P W

    2003-07-01

    For the Hermes transposable element to be mobilized in its eukaryotic host, the transposase, encoded by the element, must make contact with its DNA. After synthesis in the cytoplasm, the transposase has to be actively imported into the nucleus because its size of 70.1 kDa prevents passive diffusion through the nuclear pore. Studies in vitro using transient expression of a Hermes-EGFP fusion protein in Drosophila melanogaster Schneider 2 cells showed the transposase was located predominantly in the nucleus. In silico sequence analysis, however, did not reveal any nuclear localization signal (NLS). To identify the sequence(s) responsible for localization of Hermes transposase in the nucleus, truncated or mutated forms of the transposase were examined for their influence on sub-cellular localization of marker proteins fused to the transposase. Using the same expression system and a GFP-GUS fusion double marker, residues 1-110 were recognized as sufficient, and residues 1-32 as necessary, for nuclear localization. Amino acid K25 greatly facilitated nuclear localization, indicating that at least this basic amino acid plays a significant role in this process. This sequence overlaps the proposed DNA binding region of the Hermes transposase and is not necessarily conserved in all members of the hAT transposable element family. PMID:12858343

  10. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin.

    PubMed

    Chalkiadaki, Angeliki; Talianidis, Iannis

    2005-06-01

    Posttranslational modification by SUMO elicits a repressive effect on many transcription factors. In principle, sumoylation may either influence transcription factor activity on promoters, or it may act indirectly by targeting the modified factors to specific cellular compartments. To provide direct experimental evidence for the above, not necessarily mutually exclusive models, we analyzed the role of SUMO modification on the localization and the activity of the orphan nuclear receptor LRH-1. We demonstrate, by using fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) assays, that sumoylated LRH-1 is exclusively localized in promyelocytic leukemia protein (PML) nuclear bodies and that this association is a dynamic process. Release of LRH-1 from nuclear bodies correlated with its desumoylation, pointing to the pivotal role of SUMO conjugation in keeping LRH-1 in these locations. SUMO-dependent shuttling of LRH-1 into PML bodies defines two spatially separated pools of the protein, of which only the soluble, unmodified one is associated with actively transcribed target genes. The results suggest that SUMO-PML nuclear bodies may primarily function as dynamic molecular reservoirs, controlling the availability of certain transcription factors to active chromatin domains. PMID:15923626

  11. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus

    PubMed Central

    Hu, Shi-Bin; Xiang, Jian-Feng; Li, Xiang; Xu, Yefen; Xue, Wei; Huang, Min; Wong, Catharine C.; Sagum, Cari A.; Bedford, Mark T.; Yang, Li

    2015-01-01

    In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3′ untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54nrb. However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54nrb, resulting in reduced binding of p54nrb to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein–RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1. PMID:25792598

  12. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells

    SciTech Connect

    Turck, Natacha; Gross, Isabelle; Gendry, Patrick; Stutzmann, Jeanne; Freund, Jean-Noel; Kedinger, Michele; Simon-Assmann, Patricia; Launay, Jean-Francois . E-mail: Jean-Francois.Launay@inserm.u-strasbg.fr

    2005-02-15

    Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins.

  13. Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans

    SciTech Connect

    Ji Qiongmei; Huang, C.-H. . E-mail: chuang@nybloodcenter.org; Peng Jianbin; Hashmi, Sarwar; Ye Tianzhang; Chen Ying

    2007-04-15

    We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.

  14. A novel role for the nuclear localization signal in regulating hnRNP K protein stability in vivo.

    PubMed

    Hutchins, Erica J; Belrose, Jamie L; Szaro, Ben G

    2016-09-16

    hnRNP K is a highly conserved nucleocytoplasmic shuttling protein, which associates with RNAs through synergistic binding via its three KH domains. hnRNP K is required for proper nuclear export and translational control of its mRNA targets, and these processes are controlled by hnRNP K's movement between subcellular compartments. Whereas the nuclear export and localization of hnRNP K that is associated with mRNP complexes has been well studied, the trafficking of hnRNP K that is unbound to mRNA has yet to be elucidated. To that end, we expressed an EGFP-tagged RNA binding-defective form of hnRNP K in intact Xenopus embryos, and found it was rapidly degraded in vivo. Deleting hnRNP K's nuclear localization signal (NLS), which contains two prospective ubiquitination sites, rescued the protein from degradation. These data demonstrate a novel activity for the NLS of hnRNP K in regulating the protein's stability in vivo when it is unbound to nucleic acids. PMID:27501755

  15. Essential Function for the Nuclear Protein Akirin2 in B Cell Activation and Humoral Immune Responses.

    PubMed

    Tartey, Sarang; Matsushita, Kazufumi; Imamura, Tomoko; Wakabayashi, Atsuko; Ori, Daisuke; Mino, Takashi; Takeuchi, Osamu

    2015-07-15

    Akirin2, an evolutionarily conserved nuclear protein, is an important factor regulating inflammatory gene transcription in mammalian innate immune cells by bridging the NF-κB and SWI/SNF complexes. Although Akirin is critical for Drosophila immune responses, which totally rely on innate immunity, the mammalian NF-κB system is critical not only for the innate but also for the acquired immune system. Therefore, we investigated the role of mouse Akirin2 in acquired immune cells by ablating Akirin2 function in B lymphocytes. B cell-specific Akirin2-deficient (Cd19(Cre/+)Akirin2(fl/fl)) mice showed profound decrease in the splenic follicular (FO) and peritoneal B-1, but not splenic marginal zone (MZ), B cell numbers. However, both Akirin2-deficient FO and MZ B cells showed severe proliferation defect and are prone to undergo apoptosis in response to TLR ligands, CD40, and BCR stimulation. Furthermore, B cell cycling was defective in the absence of Akirin2 owing to impaired expression of genes encoding cyclin D and c-Myc. Additionally, Brg1 recruitment to the Myc and Ccnd2 promoter was severely impaired in Akirin2-deficient B cells. Cd19(Cre/+)Akirin2(fl/fl) mice showed impaired in vivo immune responses to T-dependent and -independent Ags. Collectively, these results demonstrate that Akirin2 is critical for the mitogen-induced B cell cycle progression and humoral immune responses by controlling the SWI/SNF complex, further emphasizing the significant function of Akirin2 not only in the innate, but also in adaptive immune cells. PMID:26041538

  16. HCC-DETECT: a combination of nuclear, cytoplasmic, and oncofetal proteins as biomarkers for hepatocellular carcinoma.

    PubMed

    Attallah, Abdelfattah M; El-Far, Mohamed; Malak, Camelia A Abdel; Omran, Mohamed M; Shiha, Gamal E; Farid, Khaled; Barakat, Lamiaa A; Albannan, Mohamed S; Attallah, Ahmed A; Abdelrazek, Mohamed A; Elbendary, Mohamed S; Sabry, Refaat; Hamoda, Gehan A; Elshemy, Mohamed M; Ragab, Abdallah A; Foda, Basma M; Abdallah, Sanaa O

    2015-09-01

    Currently, the search for suitable hepatocellular carcinoma (HCC) biomarkers is very intensive. Besides, efficacy and cost/effectiveness of screening and surveillance of cirrhotics for the diagnosis of HCC is still debated. So, the present study is concerned with the evaluation of cytokeratin-1 (CK-1) and nuclear matrix protein-52 (NMP-52) for identifying HCC. Two-hundred and eighty individuals categorized into three groups [liver fibrosis (F1-F3), cirrhosis (F4), and HCC] constituted this study. Western blot was used for identifying CK-1 and NMP-52 in serum samples. As a result, a single immunoreactive band was shown at 67 and 52 kDa corresponding to CK-1 and NMP-52, respectively. Both CK-1 and NMP-52 bands were cut and electroeluted separately. These markers were quantified in sera using ELISA. Patients with HCC were associated with higher concentrations of CK-1 and NMP-52 than those without HCC with a significant difference (P < 0.0001). CK-1 showed an area under receiver-operating characteristic curve (AUC) of 0.83 with 75 % sensitivity and 82 % specificity while NMP-52 yielded 0.72 AUC with 62 % sensitivity and 70 % specificity for identifying HCC. HCC-DETECT comprising CK-1 and NMP-52 together with AFP was then constructed yielding 0.90 AUC for identifying HCC with 80 % sensitivity and 92 % specificity. HCC-DETECT was then tested for separating HCC from F1-F3 showing 0.94 AUC with 80 % sensitivity and 93 % specificity. In conclusion, CK-1 in conjunction with NMP-52 and AFP could have a potential role for improving the detection of HCC with a high degree of accuracy. PMID:25929809

  17. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4.

    PubMed

    Chou, Wan-Chih; Prokova, Vassiliki; Shiraishi, Keiko; Valcourt, Ulrich; Moustakas, Aristidis; Hadzopoulou-Cladaras, Margarita; Zannis, Vassilis I; Kardassis, Dimitris

    2003-03-01

    We have shown previously that the transforming growth factor-beta (TGFbeta)-regulated Sma-Mad (Smad) protein 3 and Smad4 proteins transactivate the apolipoprotein C-III promoter in hepatic cells via a hormone response element that binds the nuclear receptor hepatocyte nuclear factor 4 (HNF-4). In the present study, we show that Smad3 and Smad4 but not Smad2 physically interact with HNF-4 via their Mad homology 1 domains both in vitro and in vivo. The synergistic transactivation of target promoters by Smads and HNF-4 was shown to depend on the specific promoter context and did not require an intact beta-hairpin/DNA binding domain of the Smads. Using glutathione S-transferase interaction assays, we established that two regions of HNF-4, the N-terminal activation function 1 (AF-1) domain (aa 1-24) and the C-terminal F domain (aa 388-455) can mediate physical Smad3/HNF-4 interactions in vitro. In vivo, Smad3 and Smad4 proteins enhanced the transactivation function of various GAL4-HNF-4 fusion proteins via the AF-1 and the adjacent DNA binding domain, whereas a single tyrosine to alanine substitution in AF-1 abolished coactivation by Smads. The findings suggest that the transcriptional cross talk between the TGFbeta-regulated Smads and HNF-4 is mediated by specific functional domains in the two types of transcription factors. Furthermore, the specificity of this interaction for certain target promoters may play an important role in various hepatocyte functions, which are regulated by TGFbeta and the Smads. PMID:12631740

  18. A protein required for nuclear-protein import, Mog1p, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae ran homologue.

    PubMed

    Oki, M; Nishimoto, T

    1998-12-22

    We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors-PDE2, NTF2, and a gene designated MOG1-all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1