Science.gov

Sample records for nuclear receptor shp

  1. Role of Nuclear Receptor SHP in Metabolism and Cancer

    PubMed Central

    Zhang, Yuxia; Hagedorn, Curt H.; Wang, Li

    2010-01-01

    Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers. PMID:20970497

  2. Nuclear receptor SHP inhibition of Dnmt1 expression via ERRγ.

    PubMed

    Zhang, Yuxia; Wang, Li

    2011-05-01

    We describe a transcriptional mechanism regulating the expression of Dnmt1 by nuclear receptors. We show that ERRγ functions as a transcriptional activator of mouse and human Dnmt1 expression by direct binding to its response elements (ERE1/ERE2) in the dnmt1/DNMT1 promoters. The induction of Dnmt1 by ERRγ is repressed by SHP through SHP inhibition of ERRγ transactivity, diminishing ERRγ recruitment to the Dnmt1 promoter, and altering the conformation of local chromatin from an active mode by ERRγ to an inactive mode. Our study provides the first evidence for nuclear receptor mediated regulation of Dnmt1 expression through ERRγ and SHP crosstalk. PMID:21459093

  3. Nuclear receptor SHP inhibition of Dnmt1 expression via ERRγ

    PubMed Central

    Zhang, Yuxia; Wang, Li

    2011-01-01

    We describe a transcriptional mechanism regulating the expression of Dnmt1 by nuclear receptors. We show that ERRγ functions as a transcriptional activator of mouse and human Dnmt1 expression by direct binding to its response elements (ERE1/ERE2) in the dnmt1/DNMT1 promoters. The induction of Dnmt1 by ERRγ is repressed by SHP through SHP inhibition of ERRγ transactivity, diminishing ERRγ recruitment to the Dnmt1 promoter, and altering the conformation of local chromatin from an active mode by ERRγ to an inactive mode. Our study provides the first evidence for nuclear receptor mediated regulation of Dnmt1 expression through ERRγ and SHP crosstalk. PMID:21459093

  4. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer

    PubMed Central

    Zou, An; Lehn, Sarah; Magee, Nancy; Zhang, Yuxia

    2015-01-01

    Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease. PMID:26504773

  5. Bile acids inhibit duodenal secretin expression via orphan nuclear receptor small heterodimer partner (SHP).

    PubMed

    Lam, Ian P Y; Lee, Leo T O; Choi, Hueng-Sik; Alpini, Gianfranco; Chow, Billy K C

    2009-07-01

    Small heterodimer partner (SHP) is an orphan nuclear receptor in which gene expression can be upregulated by bile acids. It regulates its target genes by repressing the transcriptional activities of other nuclear receptors including NeuroD, which has been shown to regulate secretin gene expression. Here, we evaluated the regulation on duodenal secretin gene expression by SHP and selected bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). In vitro treatment of CDCA or fexaramine elevated the SHP transcript level and occupancy on secretin promoter. The increase in the SHP level, induced by bile acid treatment or overexpression, reduced secretin gene expression, whereas this gene inhibitory effect was reversed by silencing of endogenous SHP. In in vivo studies, double-immunofluorescence staining demonstrated the coexpression of secretin and SHP in mouse duodenum. Feeding mice with 1% CA-enriched rodent chow resulted in upregulation of SHP and a concomitant decrease in secretin transcript and protein levels in duodenum compared with the control group fed with normal chow. A diet enriched with 5% cholestyramine led to a decrease in SHP level and a corresponding increase in secretin expression. Overall, this study showed that bile acids via SHP inhibit duodenal secretin gene expression. Because secretin is a key hormone that stimulates bile flow in cholangiocytes, this pathway thus provides a novel means to modulate secretin-stimulated choleresis in response to intraduodenal bile acids. PMID:19372104

  6. Enhanced ethanol catabolism in orphan nuclear receptor SHP-null mice.

    PubMed

    Park, Jung Eun; Lee, Mikang; Mifflin, Ryan; Lee, Yoon Kwang

    2016-05-15

    Deficiency of the orphan nuclear hormone receptor small heterodimer partner (SHP, NR0B2) protects mice from diet-induced hepatic steatosis, in part, via repression of peroxisome proliferator-activated receptor (PPAR)-γ2 (Pparg2) gene expression. Alcoholic fatty liver diseases (AFLD) share many common pathophysiological features with non-AFLD. To study the role of SHP and PPARγ2 in AFLD, we used a strategy of chronic ethanol feeding plus a single binge ethanol feeding to challenge wild-type (WT) and SHP-null (SHP(-/-)) mice with ethanol. The ethanol feeding induced liver fat accumulation and mRNA expression of hepatic Pparg2 in WT mice, which suggests that a high level of PPARγ2 is a common driving force for fat accumulation induced by ethanol or a high-fat diet. Interestingly, ethanol-fed SHP(-/-) mice displayed hepatic fat accumulation similar to that of ethanol-fed WT mice, even though their Pparg2 expression level remained lower. Mortality of SHP(-/-) mice after ethanol binge feeding was significantly reduced and their acetaldehyde dehydrogenase (Aldh2) mRNA level was higher than that of their WT counterparts. After an intoxicating dose of ethanol, SHP(-/-) mice exhibited faster blood ethanol clearance and earlier wake-up time than WT mice. Higher blood acetate, the end product of ethanol metabolism, and lower acetaldehyde levels were evident in the ethanol-challenged SHP(-/-) than WT mice. Ethanol-induced inflammatory responses and lipid peroxidation were also lower in SHP(-/-) mice. The current data show faster ethanol catabolism and extra fat storage through conversion of acetate to acetyl-CoA before its release into the circulation in this ethanol-feeding model in SHP(-/-) mice. PMID:26968209

  7. Interactions Between Nuclear receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice

    PubMed Central

    Tsuchiya, Hiroyuki; da Costa, Kerry-Ann; Lee, Sangmin; Renga, Barbara; Jaeschke, Hartmut; Yang, Zhihong; Orena, Stephen J.; Goedken, Michael J.; Zhang, Yuxia; Kong, B; Lebofsky, Margitta; Rudraiah, Swetha; Smalling, Rana; Guo, Grace; Fiorucci, Stefano; Zeisel, Steven H.; Wang, Li

    2015-01-01

    BACKGROUND & AIMS Hyperhomocysteinemia is often associated with liver and metabolic diseases. We studied nuclear receptors that mediate oscillatory control of homocysteine homeostasis in mice. METHODS We studied mice with disruptions in Nr0b2 (called SHP-null mice) Bhmt, or both genes (BHMT-null/SHP-null mice), along with mice with wild-type copies of these genes (controls). Hyperhomocysteinemia was induced by feeding mice alcohol (the NIAAA binge model) or chow diets along with water containing 0.18% DL-homocysteine. Some mice were placed on diets containing cholic acid (1%) or cholestyramine (2%), or high-fat diets (60%). Serum and livers were collected over a 24 hr light–dark cycle and analyzed by RNA-seq, metabolomic, and quantitative PCR, immunoblot, and chromatin immunoprecipitation assays. RESULTS SHP-null mice had altered timing in expression of genes that regulate homocysteine metabolism, compared with control mice. Oscillatory production of S-adenosylmethionine, betaine, choline, phosphocholine, glyceophosphocholine, cystathionine, cysteine, hydrogen sulfide, glutathione disulfide, and glutathione, differed between SHP-null mice and control mice. SHP inhibited transcriptional activation of Bhmt and Cth by FOXA1. Expression of Bhmt and Cth was decreased when mice were fed cholic acid but increased when they were placed on diets containing cholestyramine or high-fat content. Diets containing ethanol or homocysteine induced hyperhomocysteinemia and glucose intolerance in control but not SHP-null mice. In BHMT-null and BHMT-null/SHP-null mice fed a control liquid, lipid vacuoles were observed in livers. Ethanol feeding induced accumulation of macrovesicular lipid vacuoles to the greatest extent in BHMT-null and BHMT-null/SHP-null mice. CONCLUSIONS Disruption of Shp in mice alters timing of expression of genes that regulate homocysteine metabolism and the liver responses to ethanol and homocysteine. SHP inhibits the transcriptional activation of Bhmt and Cth

  8. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    SciTech Connect

    Oiwa, Ako; Kakizawa, Tomoko . E-mail: tkaki@hsp.md.shinshu-u.ac.jp; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-02-23

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions.

  9. Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis.

    PubMed

    Kerr, Thomas A; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W; Schwarz, Margrit

    2002-06-01

    The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size. PMID:12062084

  10. Regulation of miR-200c by nuclear receptors PPAR{alpha}, LRH-1 and SHP

    SciTech Connect

    Zhang, Yuxia; Yang, Zhihong; Whitby, Richard; Wang, Li

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Knockdown of PPAR{alpha} and LRH-1 abolishes miR-200c inhibition of HCC cell migration. Black-Right-Pointing-Pointer SHP represses miR-200c expression via inhibition of the activity of PPAR{alpha} and LRH-1. Black-Right-Pointing-Pointer RJW100 exhibits strong ability to downregulate ZEB1 and ZEB2 proteins. -- Abstract: We investigated regulation of miR-200c expression by nuclear receptors. Ectopic expression of miR-200c inhibited MHCC97H cell migration, which was abrogated by the synergistic effects of PPAR{alpha} and LRH-1 siRNAs. The expression of miR-200c was decreased by PPAR{alpha}/LRH-1 siRNAs and increased by SHP siRNAs, and overexpression of the receptors reversed the effects of their respective siRNAs. SHP siRNAs also drastically enhanced the ability of the LRH-1 agonist RJW100 to induce miR-200c and downregulate ZEB1 and ZEB2 proteins. Co-expression of PPAR{alpha} and LRH-1 moderately transactivated the miR-200c promoter, which was repressed by SHP co-expression. RJW100 caused strong activation of the miR-200c promoter. This is the first report to demonstrate that miR-200c expression is controlled by nuclear receptors.

  11. Bile acid regulates c-Jun expression through the orphan nuclear receptor SHP induction in gastric cells

    SciTech Connect

    Park, Won Il; Park, Min Jung; An, Jin Kwang; Choi, Yung Hyun; Kim, Hye Young; Cheong, JaeHun Yang, Ung Suk

    2008-05-02

    Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}. These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.

  12. Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma.

    PubMed

    Song, Guisheng; Wang, Li

    2008-10-01

    MicroRNAs (miRNAs, miRs) are genomically encoded small approximately 22 nt RNA molecules that have been shown to mediate translational repression of target mRNAs involved in cellular proliferation, differentiation and death. Despite intensive studies on their physiological and pathological functions, the molecular mechanism of how miRNA gene transcription is regulated remains largely unknown. Microarray profiling revealed 21 miRNAs clustered on chromosome 12, including miR-433 and miR-127, that were co-upregulated in small heterodimer partner (SHP, NR0B2) SHP knockouts (SHP(-/-)) liver. Gene cloning revealed that the 3'-coding region of pri-miR-433 served as the promoter region of pri-miR-127. Estrogen related receptor (ERRgamma, NR3B3) robustly activated miR-433 and miR-127 promoter reporters through ERRE, which was transrepressed by SHP. The strong elevation of miR-433 and miR-127 in Hepa-1 cells correlated with the down-regulation of SHP and up-regulation of ERRgamma. Ectopic expression of ERRgamma induced miR-433 and miR-127 expression, which was repressed by SHP coexpression. In contrast, knockdown ERRgamma decreased miR-433 and miR-127 expression. In addition, the ERRgamma agonist GSK4716 induced miR-433 and miR-127 expression both in vitro and in vivo, respectively. In summary, the coupled miR-433 and miR-127 genes were transcribed from independent promoters regulated by nuclear receptors ERRgamma/SHP in a compact space by using overlapping genomic regions. PMID:18776219

  13. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.

    PubMed

    Chen, Ying-Nan P; LaMarche, Matthew J; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G; Dobson, Jason R; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J; Sellers, William R; Stams, Travis; Fortin, Pascal D

    2016-07-01

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers. PMID:27362227

  14. Small heterodimer partner SHP mediates liver X receptor (LXR)-dependent suppression of inflammatory signaling by promoting LXR SUMOylation specifically in astrocytes.

    PubMed

    Lee, Jee Hoon; Kim, Hyunmi; Park, Soo Jung; Woo, Joo Hong; Joe, Eun-Hye; Jou, Ilo

    2016-01-01

    Liver X receptors (LXRs) suppress the expression of inflammatory genes in a context-specific manner. In astrocytes, SUMOylation of LXRs promotes their anti-inflammatory effects. We found that small heterodimer partner (SHP), also known as NR0B2 (nuclear receptor subfamily 0, group B, member 2), facilitates the anti-inflammatory actions of LXRs by promoting their SUMOylation. Knockdown of SHP abrogated SUMOylation of LXRs, preventing their anti-inflammatory effects, in primary rat astrocytes but not macrophages. The underlying mechanisms differed according to LXR isoform. SHP promoted SUMO2 and SUMO3 attachment to LXRα by interacting directly with the histone deacetylase and E3 SUMO ligase HDAC4. In contrast, SHP promoted SUMO1 attachment to LXRβ by stabilizing the E3 SUMO ligase PIAS1. SHP bound PIAS1 and disrupted its interaction with the E3 ubiquitin ligase SIAH1. Knocking down SIAH1 rescued LXRβ SUMOylation in SHP-deficient astrocytes. Our data collectively suggested that SHP mediates the anti-inflammatory actions of LXRs through differential regulation of receptor SUMOylation specifically in astrocytes, thereby revealing potential avenues for therapeutic development in diseases associated with brain inflammation. PMID:27485016

  15. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal.

    PubMed

    Maeda, A; Kurosaki, M; Ono, M; Takai, T; Kurosaki, T

    1998-04-20

    Paired immunoglobulin-like receptor B (PIR-B) (p91) molecule has been proposed to function as an inhibitory receptor in B cells and myeloid lineage cells. We demonstrate here that the cytoplasmic region of PIR-B is capable of inhibiting B cell activation. Mutational analysis of five cytoplasmic tyrosines indicate that tyrosine 771 in the motif VxYxxL plays the most crucial role in mediating the inhibitory signal. PIR-B-mediated inhibition was markedly reduced in the SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 double-deficient DT40 B cells, whereas this inhibition was unaffected in the inositol polyphosphate 5'-phosphatase SHIP-deficient cells. These data demonstrate that PIR-B can negatively regulate B cell receptor activation and that this PIR-B-mediated inhibition requires redundant functions of SHP-1 and SHP-2. PMID:9547347

  16. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  17. SHP-2 Mediates C-type Lectin Receptors-induced Syk Activation and Anti-fungal TH17 Responses

    PubMed Central

    Deng, Zihou; Ma, Shixin; Zhou, Hao; Zang, Aiping; Fang, Yiyuan; Li, Tiantian; Shi, Huanjing; Liu, Mei; Du, Min; Taylor, Patricia R.; Zhu, Helen H.; Chen, Jiangye; Meng, Guangxun; Li, Fubin; Chen, Changbin; Zhang, Yan; Jia, Xin-Ming; Lin, Xin; Zhang, Xiaoming; Pearlman, Eric; Li, Xiaoxia; Feng, Gen-Sheng; Xiao, Hui

    2015-01-01

    SUMMARY Fungal infection stimulates the canonical C-type lectin receptors (CLRs) signaling pathway via Syk activation. Here we show that SHP-2 plays a crucial role in mediating CLRs-induced Syk activation. Genetic ablation of Shp-2 (Ptpn11) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated pro-inflammatory gene expression following fungal stimulation. Mechanistically, SHP-2 operates as a scaffold facilitating the recruitment of Syk to dectin-1 or FcRγ, through its N-SH2 domain and a previously unrecognized C-terminal ITAM motif. We demonstrate that DC-derived SHP-2 is crucial for the induction of IL-1β, IL-6 and IL-23, and anti-fungal TH17 cell responses to control Candida albicans infection. Together, these data reveal a mechanism by which SHP-2 mediates Syk activation in response to fungal infections PMID:25915733

  18. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling. PMID:17074765

  19. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease.

    PubMed

    Benet, Marta; Guzmán, Carla; Pisonero-Vaquero, Sandra; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Martínez-Chantar, M Luz; Donato, M Teresa; Castell, José Vicente; Jover, Ramiro

    2015-04-01

    The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD. PMID:25576488

  20. SHP1-ing thymic selection.

    PubMed

    Gascoigne, Nicholas R J; Brzostek, Joanna; Mehta, Monika; Acuto, Oreste

    2016-09-01

    Thymocyte development and maintenance of peripheral T-cell numbers and functions are critically dependent on T-cell receptor (TCR) signal strength. SHP1 (Src homology region 2 domain-containing phosphatase-1), a tyrosine phosphatase, acts as a negative regulator of TCR signal strength. Moreover, germline SHP1 knockout mice have shown impaired thymic development. However, this has been recently questioned by an analysis of SHP1 conditional knockout mice, which reported normal thymic development of SHP1 deficient thymocytes. Using this SHP1 conditional knockout mice, in this issue of the European Journal of Immunology, Martinez et al. [Eur. J. Immunol. 2016. 46: 2103-2110] show that SHP1 indeed does have a role in the negative regulation of TCR signal strength in positively selected thymocytes, and in the final maturation of single positive thymocytes. They report that thymocyte development in such mice shows loss of mature, post-selection cells. This is due to increased TCR signal transduction in thymocytes immediately post positive-selection, and increased cell death in response to weak TCR ligands. Thus, SHP1-deficiency shows strong similarities to deficiency in the T-cell specific SHP1-associated protein Themis. PMID:27600672

  1. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants

    PubMed Central

    Iwai, Leo K.; Payne, Leo S.; Luczynski, Maciej T.; Chang, Francis; Xu, Huifang; Clinton, Ryan W.; Paul, Angela; Esposito, Edward A.; Gridley, Scott; Leitinger, Birgit; Naegle, Kristen M.; Huang, Paul H.

    2013-01-01

    Collagen is an important extracellular matrix component that directs many fundamental cellular processes including differentiation, proliferation and motility. The signalling networks driving these processes are propagated by collagen receptors such as the β1 integrins and the DDRs (discoidin domain receptors). To gain an insight into the molecular mechanisms of collagen receptor signalling, we have performed a quantitative analysis of the phosphorylation networks downstream of collagen activation of integrins and DDR2. Temporal analysis over seven time points identified 424 phosphorylated proteins. Distinct DDR2 tyrosine phosphorylation sites displayed unique temporal activation profiles in agreement with in vitro kinase data. Multiple clustering analysis of the phosphoproteomic data revealed several DDR2 candidate downstream signalling nodes, including SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), NCK1 (non-catalytic region of tyrosine kinase adaptor protein 1), LYN, SHIP-2 [SH2 (Src homology 2)-domain-containing inositol phosphatase 2], PIK3C2A (phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2α) and PLCL2 (phospholipase C-like 2). Biochemical validation showed that SHP-2 tyrosine phosphorylation is dependent on DDR2 kinase activity. Targeted proteomic profiling of a panel of lung SCC (squamous cell carcinoma) DDR2 mutants demonstrated that SHP-2 is tyrosine-phosphorylated by the L63V and G505S mutants. In contrast, the I638F kinase domain mutant exhibited diminished DDR2 and SHP-2 tyrosine phosphorylation levels which have an inverse relationship with clonogenic potential. Taken together, the results of the present study indicate that SHP-2 is a key signalling node downstream of the DDR2 receptor which may have therapeutic implications in a subset of DDR2 mutations recently uncovered in genome-wide lung SCC sequencing screens. PMID:23822953

  2. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function

    PubMed Central

    Zhang, Yuxia; Liu, Chune; Barbier, Olivier; Smalling, Rana; Tsuchiya, Hiroyuki; Lee, Sangmin; Delker, Don; Zou, An; Hagedorn, Curt H.; Wang, Li

    2016-01-01

    Bile acid (BA) metabolism is tightly controlled by nuclear receptor signaling to coordinate regulation of BA synthetic enzymes and transporters. Here we reveal a molecular cascade consisting of the antiapoptotic protein BCL2, nuclear receptor Shp, and long non-coding RNA (lncRNA) H19 to maintain BA homeostasis. Bcl2 was overexpressed in liver of C57BL/6J mice using adenovirus mediated gene delivery for two weeks. Hepatic overexpression of Bcl2 caused drastic accumulation of serum BA and bilirubin levels and dysregulated BA synthetic enzymes and transporters. Bcl2 reactivation triggered severe liver injury, fibrosis and inflammation, which were accompanied by a significant induction of H19. Bcl2 induced rapid SHP protein degradation via the activation of caspase-8 pathway. The induction of H19 in Bcl2 overexpressed mice was contributed by a direct loss of Shp transcriptional repression. H19 knockdown or Shp re-expression largely rescued Bcl2-induced liver injury. Strikingly different than Shp, the expression of Bcl2 and H19 was hardly detectable in adult liver but was markedly increased in fibrotic/cirrhotic human and mouse liver. We demonstrated for the first time a detrimental effect of Bcl2 and H19 associated with cholestatic liver fibrosis and an indispensable role of Shp to maintain normal liver function. PMID:26838806

  3. [Nuclear receptors PPARalpha].

    PubMed

    Soska, V

    2006-06-01

    Mechanism of the fibrates action is mediated by nuclear PPARalpha receptors (Peroxisome Proliferator-Activated Receptor). These receptors regulate a number of genes that are involved both in lipids and lipoproteins metabolism and other mediators (e.g. inflammatory mediatores). Due to PPARalpha activation by fibrates, triglycerides and small dense LDL concentration is decreased, HDL cholesterol is increased and both inflammation and prothrombotic status are reduced. These effects are very important in patients with metabolic syndrom. PMID:16871768

  4. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2

    PubMed Central

    Takamatsu, Masako; Kobayashi-Imanishi, Wakana; Hashimoto-Tane, Akiko; Azuma, Miyuki

    2012-01-01

    Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation. PMID:22641383

  5. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    SciTech Connect

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  6. Historical overview of nuclear receptors.

    PubMed

    Gustafsson, Jan-Ake

    2016-03-01

    This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described. PMID:25797032

  7. POD-1/TCF21 Reduces SHP Expression, Affecting LRH-1 Regulation and Cell Cycle Balance in Adrenocortical and Hepatocarcinoma Tumor Cells

    PubMed Central

    França, Monica Malheiros; Ferraz-de-Souza, Bruno; Lerario, Antonio Marcondes; Fragoso, Maria Candida Barisson Villares; Lotfi, Claudimara Ferini Pacicco

    2015-01-01

    POD-1/TCF21 may play a crucial role in adrenal and gonadal homeostasis and represses Sf-1/SF-1 expression in adrenocortical tumor cells. SF-1 and LRH-1 are members of the Fzt-F1 subfamily of nuclear receptors. LRH-1 is involved in several biological processes, and both LRH-1 and its repressor SHP are involved in many types of cancer. In order to assess whether POD-1 can regulate LRH-1 via the same mechanism that regulates SF-1, we analyzed the endogenous mRNA levels of POD-1, SHP, and LRH-1 in hepatocarcinoma and adrenocortical tumor cells using qRT-PCR. Hereafter, these tumor cells were transiently transfected with pCMVMycPod-1, and the effect of POD-1 overexpression on E-box elements in the LRH-1 and SHP promoter region were analyzed by ChIP assay. Also, Cyclin E1 protein expression was analyzed to detect cell cycle progression. We found that POD-1 overexpression significantly decreased SHP/SHP mRNA and protein levels through POD-1 binding to the E-box sequence in the SHP promoter. Decreased SHP expression affected LRH-1 regulation and increased Cyclin E1. These findings show that POD-1/TCF21 regulates SF-1 and LRH-1 by distinct mechanisms, contributing to the understanding of POD-1 involvement and its mechanisms of action in adrenal and liver tumorigenesis, which could lead to the discovery of relevant biomarkers. PMID:26421305

  8. Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset cholestasis.

    PubMed

    Anakk, Sayeepriyadarshini; Watanabe, Mitsuhiro; Ochsner, Scott A; McKenna, Neil J; Finegold, Milton J; Moore, David D

    2011-01-01

    Bile acid homeostasis is tightly regulated via a feedback loop operated by the nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP). Contrary to current models, which place FXR upstream of SHP in a linear regulatory pathway, here we show that the phenotypic consequences in mice of the combined loss of both receptors are much more severe than the relatively modest impact of the loss of either Fxr or Shp alone. Fxr-/-Shp-/- mice exhibited cholestasis and liver injury as early as 3 weeks of age, and this was linked to the dysregulation of bile acid homeostatic genes, particularly cytochrome P450, family 7, subfamily a, polypeptide 1 (Cyp7a1). In addition, double-knockout mice showed misregulation of genes in the C21 steroid biosynthesis pathway, with strong induction of cytochrome P450, family 17, subfamily a, polypeptide 1 (Cyp17a1), resulting in elevated serum levels of its enzymatic product 17-hydroxyprogesterone (17-OHP). Treatment of WT mice with 17-OHP was sufficient to induce liver injury that reproduced many of the histopathological features observed in the double-knockout mice. Therefore, our data indicate a pathologic role for increased production of 17-hydroxy steroid metabolites in liver injury and suggest that Fxr-/-Shp-/- mice could provide a model for juvenile onset cholestasis. PMID:21123943

  9. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2.

    PubMed

    Gavrieli, Maya; Watanabe, Norihiko; Loftin, Susan K; Murphy, Theresa L; Murphy, Kenneth M

    2003-12-26

    B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2. PMID:14652006

  10. Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor

    PubMed Central

    Klaver, Elsenoor J.; Kuijk, Loes M.; Lindhorst, Thisbe K.; Cummings, Richard D.; van Die, Irma

    2015-01-01

    Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses. PMID:25897665

  11. Nuclear Receptors and Inflammatory Diseases

    PubMed Central

    Wang, Kun; Wan, Yu-Jui Yvonne

    2014-01-01

    It is well known that the steroid hormone glucocorticoid and its nuclear receptor regulate the inflammatory process, a crucial component in the pathophysiological process related to human diseases that include atherosclerosis, obesity and type II diabetes, inflammatory bowel disease, Alzheimer’s disease, multiple sclerosis, and liver tumors. Growing evidence demonstrates that orphan and adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors, liver × receptors, the farnesoid × receptor, NR4As, retinoid × receptors, and the pregnane × receptor, regulate the inflammatory and metabolic profiles in a ligand-dependent or -independent manner in human and animal models. This review summarizes the regulatory roles of these nuclear receptors in the inflammatory process and the underlying mechanisms. PMID:18375823

  12. Adamantyl-Substituted Retinoid-Derived Molecules That Interact with the Orphan Nuclear Receptor Small Heterodimer Partner: Effects of Replacing the 1-Adamantyl or Hydroxyl Group on Inhibition of Cancer Cell Growth, Induction of Cancer Cell Apoptosis, and Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Activity

    PubMed Central

    Dawson, Marcia I.; Xia, Zebin; Jiang, Tao; Ye, Mao; Fontana, Joseph A.; Farhana, Lulu; Patel, Bhaumik; Xue, Li Ping; Bhuiyan, Mohammad; Pellicciari, Roberto; Macchiarulo, Antonio; Nuti, Roberto; Zhang, Xiao-Kun; Han, Young-Hoon; Tautz, Lutz; Hobbs, Peter D.; Jong, Ling; Waleh, Nahid; Chao, Wan-ru; Feng, Gen-Sheng; Pang, Yuhong; Su, Ying

    2014-01-01

    (E)-4-[3-(1-Adamantyl)-4′-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces the cell-cycle arrest and apoptosis of leukemia and cancer cells. Studies demonstrated that 3-Cl-AHPC bound to the atypical orphan nuclear receptor small heterodimer partner (SHP). Although missing a DNA-binding domain, SHP heterodimerizes with the ligand-binding domains of other nuclear receptors to repress their abilities to induce or inhibit gene expression. 3-Cl-AHPC analogues having the 1-adamantyl and phenolic hydroxyl pharmacophoric elements replaced with isosteric groups were designed, synthesized, and evaluated for their inhibition of proliferation and induction of human cancer cell apoptosis. Structure–anticancer activity relationship studies indicated the importance of both groups to apoptotic activity. Docking of 3-Cl-AHPC and its analogues to an SHP computational model that was based on the crystal structure of ultraspiracle complexed with 1-stearoyl-2-palmitoylglycero-3-phosphoethanolamine suggested why these 3-Cl-AHPC groups could influence SHP activity. Inhibitory activity against Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp-2) was also assessed. The most active Shp-2 inhibitor was found to be the 3′-(3,3-dimethylbutynyl) analogue of 3-Cl-AHPC. PMID:18759424

  13. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    SciTech Connect

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  14. Steroid receptor coupling becomes nuclear.

    PubMed

    Galigniana, Mario D

    2012-06-22

    In this issue of Chemistry & Biology, Grossman et al. report a study on aldosterone-dependent nuclear translocation of the mineralocorticoid receptor (MR). They analyze the dependency of MR retrotransport, DNA-binding, and transcriptional activity on Hsp90 and demonstrate that MR dimerization is a nuclear event. PMID:22726677

  15. Nuclear Receptors and Endocrine Disruptors in Fetal and Neonatal Testes: A Gapped Landscape

    PubMed Central

    Rouiller-Fabre, Virginie; Guerquin, Marie Justine; N’Tumba-Byn, Thierry; Muczynski, Vincent; Moison, Delphine; Tourpin, Sophie; Messiaen, Sébastien; Habert, René; Livera, Gabriel

    2015-01-01

    During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways. PMID:25999913

  16. SHP-2 expression negatively regulates NK cell function1,2

    PubMed Central

    Purdy, Amanda K.; Campbell, Kerry S.

    2009-01-01

    Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2)4 is required for full activation of Ras/ERK in many cytokine and growth factor receptor signaling pathways. In contrast, SHP-2 inhibits activation of human natural killer (NK) cells upon recruitment to killer cell Ig-like receptors (KIR)4. To determine how SHP-2 impacts NK cell activation in KIR-dependent or KIR-independent signaling pathways, we employed knockdown and overexpression strategies in NK-like cell lines and analyzed the consequences on functional responses. In response to stimulation with susceptible target cells, SHP-2-silenced NK cells had elevated cytolytic activity and IFN-γ production, whereas cells overexpressing wild type or gain-of-function mutants of SHP-2 exhibited dampened activities. Increased levels of SHP-2 expression over this range significantly suppressed microtubule organizing center (MTOC)4 polarization and granzyme B release in response to target cells. Interestingly, NK-target cell conjugation was only reduced by overexpressing SHP-2, but not potentiated in SHP-2-silenced cells, indicating that conjugation is not influenced by physiological levels of SHP-2 expression. KIR-dependent inhibition of cytotoxicity was unaffected by significant reductions in SHP-2 levels, presumably because KIR were still capable of recruiting the phosphatase under these limiting conditions. In contrast, the general suppressive effect of SHP-2 on cytotoxicity and cytokine release was much more sensitive to changes in cellular SHP-2 levels. In summary, our studies have identified a new, KIR-independent role for SHP-2 in dampening NK cell activation in response to tumor target cells in a concentration-dependent manner. This suppression of activation impacts MTOC-based cytoskeletal rearrangement and granule release. PMID:19915046

  17. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  18. Nuclear Receptors, RXR & the Big Bang

    PubMed Central

    Evans, Ronald M.; Mangelsdorf, David J.

    2014-01-01

    Summary Isolation of genes encoding the receptors for steroids, retinoids, vitamin D and thyroid hormone, and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors, and in particular of the retinoid X receptor (RXR), positioned nuclear receptors at the epicenter of the “Big Bang” of molecular endocrinology. This review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multi-cellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  19. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    SciTech Connect

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua; Turchi, John J.; Zhang, Zhong-Yin

    2013-10-04

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.

  20. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  1. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  2. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  3. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: identification, molecular cloning and effects on cell migration.

    PubMed Central

    Zannettino, Andrew C W; Roubelakis, Maria; Welldon, Katie J; Jackson, Denise E; Simmons, Paul J; Bendall, Linda J; Henniker, Anthony; Harrison, Kate L; Niutta, Silvana; Bradstock, Kenneth F; Watt, Suzanne M

    2003-01-01

    SHP-2 (Src homology phosphatase type-2) is essential for haematopoietic skeletal and vascular development. Thus the identification of its binding partners is critically important. In the present study, we describe a unique monoclonal antibody, WM78, which interacts with PZR, a SHP-2 binding partner. Furthermore, we identify two novel isoforms of PZR, PZRa and PZRb, derived by differential splicing from a single gene transcription unit on human chromosome 1q24. All are type 1 transmembrane glycoproteins with identical extracellular and transmembrane domains, but differ in their cytoplasmic tails. The PZR intracellular domain contains two SHP-2 binding immunoreceptor tyrosine-based inhibitory motifs (VIY(246)AQL and VVY(263)ADI) which are not present in PZRa and PZRb. Using the WM78 monoclonal antibody, which recognizes the common extracellular domain of the PZR isoforms, we demonstrate that the PZR molecules are expressed on mesenchymal and haematopoietic cells, being present on the majority of CD34(+)CD38(+) and early clonogenic progenitors, and at lower levels on CD34(+)CD38(-) cells and the hierarchically more primitive pre-colony forming units. Interestingly, we show by reverse transcriptase-PCR that the PZR isoforms are differentially expressed in haematopoietic, endothelial and mesenchymal cells. Both PZR and PZRb are present in CD133(+) precursors and endothelial cells, PZRb predominates in mesenchymal and committed myelomonocytic progenitor cells, and all three isoforms occur in erythroid precursor cell lines. Importantly, using SHP-2 mutant (Delta 46-110) and SHP-2 rescue of embryonic fibroblasts stably expressing the PZR isoforms, we demonstrate for the first time that PZR, but not PZRa or PZRb, facilitates fibronectin- dependent migration of cells expressing a competent SHP-2 molecule. These observations will be instrumental in determining the mechanisms whereby PZR isoforms regulate cell motility. PMID:12410637

  4. What are Nuclear Receptor Ligands?

    PubMed Central

    Sladek, Frances M.

    2010-01-01

    Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation. PMID:20615454

  5. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1

    PubMed Central

    Ahn, Hwa Young; Kim, Hwan Hee; Kim, Ye An; Kim, Min; Ohn, Jung Hun; Chung, Sung Soo; Lee, Yoon-Kwang; Park, Do Joon; Park, Kyong Soo

    2015-01-01

    Background Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1). Methods We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line Results Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding. Conclusion We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1. PMID:26485468

  6. Nuclear receptors: the evolution of diversity.

    PubMed

    Schwabe, John W R; Teichmann, Sarah A

    2004-01-27

    Nuclear receptors are an ancient family of transcription factors. Some receptors are regulated by small lipophilic ligands, whereas others are constitutive transcriptional activators or repressors. The evolution of this diversity is poorly understood, and it remains an open question as to whether or not the ancestral receptor was ligand-regulated. The recent cloning, from a snail, of an estrogen receptor that does not bind estrogen not only suggests that the steroid receptors are much more ancient than previous thought, but also points toward a mechanism through which nuclear receptors can lose the ability to be ligand regulated. PMID:14747695

  7. Molecular Basis of Gain-of-Function LEOPARD Syndrome-Associated SHP2 Mutations

    PubMed Central

    2015-01-01

    The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme’s catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation. PMID:24935154

  8. ALT telomeres get together with nuclear receptors.

    PubMed

    Aeby, Eric; Lingner, Joachim

    2015-02-26

    Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI). PMID:25723159

  9. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  10. Molecular Mechanism for the Shp-2 Tyrosine Phosphatase Function in Promoting Growth Factor Stimulation of Erk Activity

    PubMed Central

    Shi, Zhong-Qing; Yu, De-Hua; Park, Morag; Marshall, Mark; Feng, Gen-Sheng

    2000-01-01

    We have previously shown that activation of extracellular signal-regulated kinase (Erk) by epidermal growth factor (EGF) treatment was significantly decreased in mouse fibroblast cells expressing a mutant Shp-2 molecule lacking 65 amino acids in the SH2-N domain, Shp-2Δ46-110. To address the molecular mechanism for the positive role of Shp-2 in mediating Erk induction, we evaluated the activation of signaling components upstream of Erk in Shp-2 mutant cells. EGF-stimulated Ras, Raf, and Mek activation was significantly attenuated in Shp-2 mutant cells, suggesting that Shp-2 acts to promote Ras activation or to suppress the down-regulation of activated Ras. Biochemical analyses indicate that upon EGF stimulation, Shp-2 is recruited into a multiprotein complex assembled on the Gab1 docking molecule and that Shp-2 seems to exert its biological function by specifically dephosphorylating an unidentified molecule of 90 kDa in the complex. The mutant Shp-2Δ46-110 molecule failed to participate in the Gab1-organized complex for dephosphorylation of p90, correlating with a defective activation of the Ras-Raf-Mek-Erk cascade in EGF-treated Shp-2 mutant cells. Evidence is also presented that Shp-2 does not appear to modulate the signal relay from EGF receptor to Ras through the Shc, Grb2, and Sos proteins. These results begin to elucidate the mechanism of Shp-2 function downstream of a receptor tyrosine kinase to promote the activation of the Ras-Erk pathway, with potential therapeutic applications in cancer treatment. PMID:10669730

  11. CD5-mediated inhibition of TCR signaling proceeds normally in the absence of SHP-1

    PubMed Central

    DONG, BAOXIA; SOMANI, ALLY-KHAN; LOVE, PAUL E.; ZHENG, XUAN; CHEN, XIEQUN; ZHANG, JINYI

    2016-01-01

    The CD5 transmembrane glycoprotein functions as a co-receptor in the signaling pathway linking T-cell antigen receptor (TCR) engagement to activation and differentiation. Although CD5 effects on TCR signaling have been shown to be primarily inhibitory, the underlying mechanisms remain unclear. In view of recent data revealing the ability of CD5 to associate with the SHP-1 tyrosine phosphatase, a protein that also downregulates TCR signaling, we examined the role of SHP-1 in modulating CD5 function using thymocytes from SHP-1-deficient viable motheaten (mev) mice. The results revealed the association of SHP-1 with CD5 to be markedly increased following TCR stimulation and indicated that this interaction was enhanced by and was dependent on CD5 tyrosine phosphorylation. However, there was no difference of the tyrosine phosphorylation status of CD5 between resting and TCR-stimulated cells in SHP-1-deficient compared to wild-type thymocytes. Lack of SHP-1 activity did not affect the levels of CD5 surface expression, CD5 co-immunoprecipitable tyrosine phosphatase activity and intracellular calcium increase following co-crosslinking of the TCR and CD5. Similarly, an analysis of T-cell thymocyte populations in mev mice expressing an H-Y transgene as well as a construct mediating T-cell restricted CD5 overexpression, revealed that the reduction in the positive selection conferred by CD5 overexpression was unaffected by SHP-1 deficiency. CD5 is not a SHP-1 substrate and SHP-1 is not required for and possibly not involved in the CD5-mediated modulation of TCR signaling. PMID:27221212

  12. CD5-mediated inhibition of TCR signaling proceeds normally in the absence of SHP-1.

    PubMed

    Dong, Baoxia; Somani, Ally-Khan; Love, Paul E; Zheng, Xuan; Chen, Xiequn; Zhang, Jinyi

    2016-07-01

    The CD5 transmembrane glycoprotein functions as a co-receptor in the signaling pathway linking T-cell antigen receptor (TCR) engagement to activation and differentiation. Although CD5 effects on TCR signaling have been shown to be primarily inhibitory, the underlying mechanisms remain unclear. In view of recent data revealing the ability of CD5 to associate with the SHP-1 tyrosine phosphatase, a protein that also downregulates TCR signaling, we examined the role of SHP-1 in modulating CD5 function using thymocytes from SHP-1‑deficient viable motheaten (mev) mice. The results revealed the association of SHP-1 with CD5 to be markedly increased following TCR stimulation and indicated that this interaction was enhanced by and was dependent on CD5 tyrosine phosphorylation. However, there was no difference of the tyrosine phosphorylation status of CD5 between resting and TCR-stimulated cells in SHP-1‑deficient compared to wild-type thymocytes. Lack of SHP-1 activity did not affect the levels of CD5 surface expression, CD5 co-immunoprecipitable tyrosine phosphatase activity and intracellular calcium increase following co-crosslinking of the TCR and CD5. Similarly, an analysis of T‑cell thymocyte populations in mev mice expressing an H-Y transgene as well as a construct mediating T‑cell restricted CD5 overexpression, revealed that the reduction in the positive selection conferred by CD5 overexpression was unaffected by SHP-1 deficiency. CD5 is not a SHP-1 substrate and SHP-1 is not required for and possibly not involved in the CD5-mediated modulation of TCR signaling. PMID:27221212

  13. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells

    SciTech Connect

    Kiyan, Julia Haller, Hermann; Dumler, Inna

    2009-04-01

    The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor {beta} (PDGFR-{beta}), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-{beta}. Active PDGFR-{beta} was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-{beta} and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling.

  14. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling

    PubMed Central

    Tsai, Wan-Chen; Chen, Chien-Lin; Chen, Hong-Chen

    2015-01-01

    Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells. PMID:26204488

  15. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling.

    PubMed

    Tsai, Wan-Chen; Chen, Chien-Lin; Chen, Hong-Chen

    2015-09-15

    Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells. PMID:26204488

  16. Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization.

    PubMed

    Zhao, Lifang; Xia, Jingyan; Li, Tiantian; Zhou, Hui; Ouyang, Wei; Hong, Zhuping; Ke, Yuehai; Qian, Jing; Xu, Feng

    2016-08-15

    Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection. PMID:27330052

  17. Cytoplasmic and nuclear cytokine receptor complexes.

    PubMed

    Mertani, H C; Morel, G; Lobie, P E

    1999-01-01

    Much of our understanding on how hormones and cytokines transmit their message into the cell is based on the receptor activation at the plasma membrane. Many experimental in vitro models have established the paradigm for cytokine action based upon such activation of their cell surface receptor. The signaling from the plasma membrane activated cytokine receptor is driven to the nucleus by a rapid ricochet of protein phosphorylation, ultimately integrated as a differentiative, proliferative, or transcriptional message. The Janus kinase (JAK)--signal transducers and activators of transcription (STAT) pathway that was first thought to be cytokine receptor specific now appears to be activated by other noncytokine receptors. Also, evidence is accumulating showing that cytokines modulate the signal transduction machinery of the tyrosine kinase receptors and that of the heterotrimeric guanosine triphosphate (GTP)-binding protein-coupled receptors. Thus cytokine receptor signaling has become much more complex than originally hypothesized, challenging the established model of specificity of the action of a given cytokine. This review is focused on another level of complexity emerging within cytokine receptor superfamily signaling. Over the past 10 years, data from different laboratories have shown that cytokines and their receptors localize to intracellular compartments including the nucleus, and, in some cases, biological responses have been correlated with this unexpected location, raising the possibility that cytokines act as their own messenger through inter-actions with nuclear proteins. Thus, the interplay between cytokine receptor engagement and cellular signaling turns out to be more dynamic than originally suspected. The mechanisms and regulations of intracellular translocation of the cytokines, their receptors, and their signaling proteins are discussed in the context that such compartmentalization provides some of the specificity of the responses mediated by each

  18. Nuclear receptors and pathogenesis of pancreatic cancer.

    PubMed

    Polvani, Simone; Tarocchi, Mirko; Tempesti, Sara; Galli, Andrea

    2014-09-14

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. PMID:25232244

  19. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  20. Nuclear receptors, mitochondria and lipid metabolism.

    PubMed

    Alaynick, William A

    2008-09-01

    Lipid metabolism is a continuum from emulsification and uptake of lipids in the intestine to cellular uptake and transport to compartments such as mitochondria. Whether fats are shuttled into lipid droplets in adipose tissue or oxidized in mitochondria and peroxisomes depends on metabolic substrate availability, energy balance and endocrine signaling of the organism. Several members of the nuclear hormone receptor superfamily are lipid-sensing factors that affect all aspects of lipid metabolism. The physiologic actions of glandular hormones (e.g. thyroid, mineralocorticoid and glucocorticoid), vitamins (e.g. vitamins A and D) and reproductive hormones (e.g. progesterone, estrogen and testosterone) and their cognate receptors are well established. The peroxisome-proliferator activated receptors (PPARs) and liver X receptors (LXRs), acting in concert with PPARgamma Coactivator 1alpha (PGC-1alpha), have been shown to regulate insulin sensitivity and lipid handling. These receptors are the focus of intense pharmacologic studies to expand the armamentarium of small molecule ligands to treat diabetes and the metabolic syndrome (hypertension, insulin resistance, hyperglycemia, dyslipidemia and obesity). Recently, additional partners of PGC-1alpha have moved to the forefront of metabolic research, the estrogen-related receptors (ERRs). Although no endogenous ligands for these receptors have been identified, phenotypic analyses of knockout mouse models demonstrate an important role for these molecules in substrate sensing and handling as well as mitochondrial function. PMID:18375192

  1. Adrenocorticotrophic hormone stimulates phosphotyrosine phosphatase SHP2 in bovine adrenocortical cells: phosphorylation and activation by cAMP-dependent protein kinase.

    PubMed Central

    Rocchi, S; Gaillard, I; van Obberghen, E; Chambaz, E M; Vilgrain, I

    2000-01-01

    During activation of adrenocortical cells by adrenocorticotrophic hormone (ACTH), tyrosine dephosphorylation of paxillin is stimulated and this correlates with protrusion of filopodial structures and a decreased number of focal adhesions. These effects are inhibited by Na(3)VO(4), a phosphotyrosine phosphatase inhibitor [Vilgrain, Chinn, Gaillard, Chambaz and Feige (1998) Biochem. J. 332, 533-540]. However, the tyrosine phosphatases involved in these processes remain to be identified. In this study, we provide evidence that the Src homology domain (SH)2-containing phosphotyrosine phosphatase (SHP)2, but not SHP1, is expressed in adrenocortical cells and is phosphorylated upon ACTH challenge. ACTH (10(-8) M) treatment of (32)P-labelled adrenocortical cells resulted in an increase in phosphorylated SHP2. By probing SHP2-containing immunoprecipitates with an antibody to phosphoserine we found that SHP2 was phosphorylated on serine in ACTH-treated cells in a dose- and time-dependent manner. Furthermore, using an in vitro kinase assay, we showed that SHP2 was a target for cAMP-dependent protein kinase (PKA). Serine was identified as the only target amino acid phosphorylated in SHP2. Phosphorylation of SHP2 by PKA resulted in a dramatic stimulation of phosphatase activity measured either with insulin receptor substrate-1 or with the synthetic peptide [(32)P]poly(Glu/Tyr) as substrate. In an in-gel assay of SHP2-containing immunoprecipitates, phosphorylated in vitro by PKA or isolated from adrenocortical cells treated with 10 nM ACTH, a pronounced activation of SHP2 activity was shown. These observations clearly support the idea that a PKA-mediated signal transduction pathway contributes to SHP2 regulation in adrenocortical cells and point to SHP2 as a possible mediator of the effects of ACTH. PMID:11085942

  2. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  3. Families of Nuclear Receptors in Vertebrate Models: Characteristic and Comparative Toxicological Perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Yanbin; Zhang, Kun; Giesy, John P.; Hu, Jianying

    2015-02-01

    Various synthetic chemicals are ligands for nuclear receptors (NRs) and can cause adverse effects in vertebrates mediated by NRs. While several model vertebrates, such as mouse, chicken, western clawed frog and zebrafish, are widely used in toxicity testing, few NRs have been well described for most of these classes. In this report, NRs in genomes of 12 vertebrates are characterized via bioinformatics approaches. Although numbers of NRs varied among species, with 40-42 genes in birds to 66-74 genes in teleost fishes, all NRs had clear homologs in human and could be categorized into seven subfamilies defined as NR0B-NR6A. Phylogenetic analysis revealed conservative evolutionary relationships for most NRs, which were consistent with traditional morphology-based systematics, except for some exceptions in Dolphin (Tursiops truncatus). Evolution of PXR and CAR exhibited unexpected multiple patterns and the existence of CAR possibly being traced back to ancient lobe-finned fishes and tetrapods (Sarcopterygii). Compared to the more conservative DBD of NRs, sequences of LBD were less conserved: Sequences of THRs, RARs and RXRs were >=90% similar to those of the human, ERs, AR, GR, ERRs and PPARs were more variable with similarities of 60%-100% and PXR, CAR, DAX1 and SHP were least conserved among species.

  4. Families of Nuclear Receptors in Vertebrate Models: Characteristic and Comparative Toxicological Perspective

    PubMed Central

    Zhao, Yanbin; Zhang, Kun; Giesy, John P.; Hu, Jianying

    2015-01-01

    Various synthetic chemicals are ligands for nuclear receptors (NRs) and can cause adverse effects in vertebrates mediated by NRs. While several model vertebrates, such as mouse, chicken, western clawed frog and zebrafish, are widely used in toxicity testing, few NRs have been well described for most of these classes. In this report, NRs in genomes of 12 vertebrates are characterized via bioinformatics approaches. Although numbers of NRs varied among species, with 40–42 genes in birds to 66–74 genes in teleost fishes, all NRs had clear homologs in human and could be categorized into seven subfamilies defined as NR0B-NR6A. Phylogenetic analysis revealed conservative evolutionary relationships for most NRs, which were consistent with traditional morphology-based systematics, except for some exceptions in Dolphin (Tursiops truncatus). Evolution of PXR and CAR exhibited unexpected multiple patterns and the existence of CAR possibly being traced back to ancient lobe-finned fishes and tetrapods (Sarcopterygii). Compared to the more conservative DBD of NRs, sequences of LBD were less conserved: Sequences of THRs, RARs and RXRs were ≥90% similar to those of the human, ERs, AR, GR, ERRs and PPARs were more variable with similarities of 60%–100% and PXR, CAR, DAX1 and SHP were least conserved among species. PMID:25711679

  5. Families of nuclear receptors in vertebrate models: characteristic and comparative toxicological perspective.

    PubMed

    Zhao, Yanbin; Zhang, Kun; Giesy, John P; Hu, Jianying

    2015-01-01

    Various synthetic chemicals are ligands for nuclear receptors (NRs) and can cause adverse effects in vertebrates mediated by NRs. While several model vertebrates, such as mouse, chicken, western clawed frog and zebrafish, are widely used in toxicity testing, few NRs have been well described for most of these classes. In this report, NRs in genomes of 12 vertebrates are characterized via bioinformatics approaches. Although numbers of NRs varied among species, with 40-42 genes in birds to 66-74 genes in teleost fishes, all NRs had clear homologs in human and could be categorized into seven subfamilies defined as NR0B-NR6A. Phylogenetic analysis revealed conservative evolutionary relationships for most NRs, which were consistent with traditional morphology-based systematics, except for some exceptions in Dolphin (Tursiops truncatus). Evolution of PXR and CAR exhibited unexpected multiple patterns and the existence of CAR possibly being traced back to ancient lobe-finned fishes and tetrapods (Sarcopterygii). Compared to the more conservative DBD of NRs, sequences of LBD were less conserved: Sequences of THRs, RARs and RXRs were ≥90% similar to those of the human, ERs, AR, GR, ERRs and PPARs were more variable with similarities of 60%-100% and PXR, CAR, DAX1 and SHP were least conserved among species. PMID:25711679

  6. Calreticulin Is a Receptor for Nuclear Export

    PubMed Central

    Holaska, James M.; Black, Ben E.; Love, Dona C.; Hanover, John A.; Leszyk, John; Paschal, Bryce M.

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739–14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  7. Calreticulin Is a receptor for nuclear export.

    PubMed

    Holaska, J M; Black, B E; Love, D C; Hanover, J A; Leszyk, J; Paschal, B M

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739-14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  8. Emerging roles of orphan nuclear receptors in cancer.

    PubMed

    Baek, Sung Hee; Kim, Keun Il

    2014-01-01

    A growing body of evidence suggests that a subset of orphan nuclear receptors are amplified and prognostic for some human cancers. However, the specific roles of these orphan nuclear receptors in tumor progression and their utility as drug targets are not fully understood. In this review, we summarize recent progress in elucidating the direct and indirect involvement of orphan nuclear receptors in cancer as well as their therapeutic potential in a variety of human cancers. Furthermore, we contrast the role of orphan nuclear receptors in cancer with the known roles of estrogen receptor and androgen receptor in hormone-dependent cancers. PMID:24215441

  9. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  10. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia. PMID:25790452

  11. The control of reactive oxygen species production by SHP-1 in oligodendrocytes.

    PubMed

    Gruber, Ross C; LaRocca, Daria; Minchenberg, Scott B; Christophi, George P; Hudson, Chad A; Ray, Alex K; Shafit-Zagardo, Bridget; Massa, Paul T

    2015-10-01

    We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP-1 activity seems to be a critical regulator of oligodendrocyte gene expression and function. Consistent with this role, this study demonstrates that oligodendrocytes of motheaten mice and SHP-1-depleted N20.1 cells produce higher levels of reactive oxygen species (ROS) and exhibit corresponding markers of increased oxidative stress. In agreement with these findings, we demonstrate that increased production of ROS coincides with ROS-induced signaling pathways known to affect myelin gene expression in oligodendrocytes. Antioxidant treatment of SHP-1-deficient oligodendrocytes reversed the pathological changes in these cells, with increased myelin protein gene expression and decreased expression of nuclear factor (erythroid-2)-related factor 2 (Nrf2) responsive gene, heme oxygenase-1 (HO-1). Furthermore, we demonstrate that SHP-1 is expressed in human white matter oligodendrocytes, and there is a subset of multiple sclerosis subjects that demonstrate a deficiency of SHP-1 in normal-appearing white matter. These studies reveal critical pathways controlled by SHP-1 in oligodendrocytes that relate to susceptibility of SHP-1-deficient mice to both developmental defects in myelination and to inflammatory demyelinating diseases. PMID:25919645

  12. Nuclear Receptors in Bone Physiology and Diseases

    PubMed Central

    Youn, Min-Young; Inoue, Kazuki; Takada, Ichiro; Kouzmenko, Alexander; Kato, Shigeaki

    2013-01-01

    During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders. PMID:23589826

  13. Prep1 Controls Insulin Glucoregulatory Function in Liver by Transcriptional Targeting of SHP1 Tyrosine Phosphatase

    PubMed Central

    Oriente, Francesco; Iovino, Salvatore; Cabaro, Serena; Cassese, Angela; Longobardi, Elena; Miele, Claudia; Ungaro, Paola; Formisano, Pietro; Blasi, Francesco; Beguinot, Francesco

    2011-01-01

    OBJECTIVE We investigated the function of the Prep1 gene in insulin-dependent glucose homeostasis in liver. RESEARCH DESIGN AND METHODS Prep1 action on insulin glucoregulatory function has been analyzed in liver of Prep1-hypomorphic mice (Prep1i/i), which express 2–3% of Prep1 mRNA. RESULTS Based on euglycemic hyperinsulinemic clamp studies and measurement of glycogen content, livers from Prep1i/i mice feature increased sensitivity to insulin. Tyrosine phosphorylation of both insulin receptor (IR) and insulin receptor substrate (IRS)1/2 was significantly enhanced in Prep1i/i livers accompanied by a specific downregulation of the SYP and SHP1 tyrosine phosphatases. Prep1 overexpression in HepG2 liver cells upregulated SYP and SHP1 and inhibited insulin-induced IR and IRS1/2 phosphorylation and was accompanied by reduced glycogen content. Consistently, overexpression of the Prep1 partner Pbx1, but not of p160MBP, mimicked Prep1 effects on tyrosine phosphorylations, glycogen content, and on SYP and SHP1 expression. In Prep1 overexpressing cells, antisense silencing of SHP1, but not that of SYP, rescued insulin-dependent IR phosphorylation and glycogen accumulation. Both Prep1 and Pbx1 bind SHP1 promoter at a site located between nucleotides −2,113 and −1,778. This fragment features enhancer activity and induces luciferase function by 7-, 6-, and 30-fold, respectively, in response to Prep1, Pbx1, or both. CONCLUSIONS SHP1, a known silencer of insulin signal, is a transcriptional target of Prep1. In liver, transcriptional activation of SHP1 gene by Prep1 attenuates insulin signal transduction and reduces glucose storage. PMID:20864515

  14. Cytoplasmic Tyrosine Phosphatase Shp2 Coordinates Hepatic Regulation of Bile Acid and FGF15/19 Signaling to Repress Bile Acid Synthesis

    PubMed Central

    Li, Shuangwei; Hsu, Diane D.F.; Li, Bing; Luo, Xiaolin; Alderson, Nazilla; Qiao, Liping; Ma, Lina; Zhu, Helen H.; He, Zhao; Suino-Powell, Kelly; Ji, Kaihong; Li, Jiefu; Shao, Jianhua; Xu, H. Eric; Li, Tiangang; Feng, Gen-Sheng

    2015-01-01

    Summary Bile acid (BA) biosynthesis is tightly controlled by intrahepatic negative feedback signaling elicited by BA binding to farnesoid X receptor (FXR), and also by enterohepatic communication involving ileal BA reabsorption and FGF15/19 secretion. However, how these pathways are coordinated is poorly understood. We show here that non-receptor tyrosine phosphatase Shp2 is a critical player that couples and regulates the intrahepatic and enterohepatic signals for repression of BA synthesis. Ablating Shp2 in hepatocytes suppressed signal relay from FGFR4, receptor for FGF15/19, and attenuated BA activation of FXR signaling, resulting in elevation of systemic BA levels and chronic hepatobiliary disorders in mice. Acting immediately downstream of FGFR4, Shp2 associates with FRS2α and promotes the receptor activation and signal relay to several pathways. These results elucidate a molecular mechanism for the control of BA homeostasis by Shp2 through orchestration of multiple signals in hepatocytes. PMID:24981838

  15. Cysteine Sulfinic Acid Decarboxylase Regulation: A Role for FXR and SHP in Murine Hepatic Taurine Metabolism

    PubMed Central

    Kerr, Thomas A.; Matsumoto, Yuri; Matsumoto, Hitoshi; Xie, Yan; Hirschberger, Lawrence L.; Stipanuk, Martha H.; Anakk, Sayeepriyadarshini; Moore, David D.; Watanabe, Mitsuhiro; Kennedy, Susan

    2014-01-01

    Background Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor15/19 (FGF15/19). Because bile acid synthesis involves amino acid conjugation, we hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids. Aims To investigate CSAD regulation by bile acids and CSAD regulatory mechanisms. Methods Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To gain mechanistic insight into CSAD regulation, we utilized GW4064 (FXR agonist), FGF19, or T-0901317 (LXR agonist) and Shp−/− mice. Tissue mRNA expression was determined by qRT-PCR. Amino acids were measured by HPLC. Results Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA expression while those receiving cholestyramine exhibited increased hepatic CSAD mRNA expression. Activation of FXR suppressed CSAD mRNA expression whereas hepatic CSAD mRNA expression was increased in Shp−/− mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp−/− mice with a corresponding increase in serum (but not hepatic) taurine-conjugated bile acids. FGF19 administration suppressed hepatic CYP7A1 mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. Conclusion CSAD mRNA expression is physiologically regulated by bile acids in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These novel findings implicate bile acids as regulators of CSAD mRNA via mechanisms shared in part with CYP7A1. PMID:24033844

  16. Non-canonical modulators of nuclear receptors.

    PubMed

    Tice, Colin M; Zheng, Ya-Jun

    2016-09-01

    Like G protein-coupled receptors (GPCRs) and protein kinases, nuclear receptors (NRs) are a rich source of pharmaceutical targets. Over 80 NR-targeting drugs have been approved for 18 NRs. The focus of drug discovery in NRs has hitherto been on identifying ligands that bind to the canonical ligand binding pockets of the C-terminal ligand binding domains (LBDs). Due to the development of drug resistance and selectivity concerns, there has been considerable interest in exploring other, non-canonical ligand binding sites. Unfortunately, the potencies of compounds binding at other sites have generally not been sufficient for clinical development. However, the situation has changed dramatically over the last 3years, as compounds with sufficient potency have been reported for several NR targets. Here we review recent developments in this area from a medicinal chemistry point of view in the hope of stimulating further interest in this area of research. PMID:27503683

  17. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan. PMID:15563547

  18. Shp2 SUMOylation promotes ERK activation and hepatocellular carcinoma development

    PubMed Central

    Deng, Rong; Zhao, Xian; Qu, YingYing; Chen, Cheng; Zhu, Changhong; Zhang, Hailong; Yuan, Haihua; Jin, Hui; Liu, Xin; Wang, Yanli; Chen, Qin; Huang, Jian; Yu, Jianxiu

    2015-01-01

    Shp2, an ubiquitously expressed protein tyrosine phosphatase, is essential for regulation of Ras/ERK signaling pathway and tumorigenesis. Here we report that Shp2 is modified by SUMO1 at lysine residue 590 (K590) in its C-terminus, which is reduced by SUMO1-specific protease SENP1. Analysis of wild-type Shp2 and SUMOylation-defective Shp2K590R mutant reveals that SUMOylation of Shp2 promotes EGF-stimulated ERK signaling pathway and increases anchorage-independent cell growth and xenografted tumor growth of hepatocellular carcinoma (HCC) cell lines. Furthermore, we find that mutant Shp2K590R reduces its binding with the scaffolding protein Gab1, and consistent with this, knockdown of SENP1 increased the interaction between Shp2 and Gab1. More surprisingly, we show that human Shp2 (hShp2) and mouse Shp2 (mShp2) have differential effects on ERK activation as a result of different SUMOylation level, which is due to the event of K590 at hShp2 substituted by R594 at mShp2. In summary, our data demonstrate that SUMOylation of Shp2 promotes ERK activation via facilitating the formation of Shp2-Gab1 complex and thereby accelerates HCC cell and tumor growth, which presents a novel regulatory mechanism underlying Shp2 in regulation of HCC development. PMID:25823821

  19. Protein tyrosine phosphatase SHP-1 sensitizes EGFR/HER-2 positive breast cancer cells to trastuzumab through modulating phosphorylation of EGFR and HER-2

    PubMed Central

    Wu, Yifen; Li, Rong; Zhang, Junyi; Wang, Gang; Liu, Bin; Huang, Xiaofang; Zhang, Tao; Luo, Rongcheng

    2015-01-01

    Background Trastuzumab resistance in HER-2 positive breast cancer cells is closely related to overexpression of both epidermal growth factor receptor (EGFR) and human epidermal receptor (HER-2). SHP-1 has been demonstrated to downregulate tyrosine kinase activity including EGFR via its phosphatase function, but its effect on HER-2 activity is still unknown. Here, we examined the hypothesis that SHP-1 enhances the anticancer efficacy of trastuzumab in EGFR/HER-2 positive breast cancer cells through combining dual inhibition of EGFR and HER-2. Methods Trastuzumab-resistant breast cancer SKBr-3 cells were generated by long-term in vitro culture of SKBr-3cells in the presence of trastuzumab. The SHP-1 was ectopically expressed by stable transfection. The activity and expression of EGFR, HER-2, and downstream signaling pathways were tested by Western blot. Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was examined by flow cytometry. The binding between SHP-1 and EGFR/HER-2 was evaluated by immunoprecipitation assay and bimolecular fluorescence complementation. The effects of SHP-1 on tumorigenicity and trastuzumab sensitivity were confirmed via in vivo xenograft model. Results Trastuzumab-resistant SKBr-3 cells showed aberrant co-expression of EGFR and HER-2. Introduction of wild-type SHP-1 inhibited cell proliferation, clone formation, and promoted the apoptosis induced by trastuzumab. Meanwhile, SHP-1 overexpression reduced phosphorylation levels of EGFR and HER-2 both in parental and trastuzumab-resistant SKBr-3 cells. In vivo study showed an increased antitumor effect of trastuzumab in SHP-1 overexpressed xenografts. At last, we discovered that SHP-1 can make complexes with both EGFR and HER-2, and both phospho-EGFR and phosphor-HER-2 levels in wild-type SHP-1 immunoprecipitates were less than those in phosphatase-inactive SHP-1 (C453S) immunoprecipitates, indicating that EGFR and HER-2 are

  20. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  1. Intestinal nuclear receptors in HDL cholesterol metabolism.

    PubMed

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-07-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  2. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  3. Ubiquitylation of Nuclear Receptors: New Linkages and Therapeutic Implications

    PubMed Central

    Helzer, Kyle T.; Hooper, Christopher; Miyamoto, Shigeki; Alarid, Elaine T.

    2015-01-01

    The nuclear receptor superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology, and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to nuclear receptor-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the nuclear receptor signaling pathway. In this review, we explore the role of nuclear receptor ubiquitylation and discuss how the expanding roles of ubiquitin might be leveraged to identify additional entry points to control receptor function for future therapeutic development. PMID:25943391

  4. Nuclear hormone receptors put immunity on sterols.

    PubMed

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system. PMID:26222181

  5. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unu...

  6. REV-ERB and ROR nuclear receptors as drug targets

    PubMed Central

    Kojetin, Douglas J.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders. PMID:24577401

  7. Research Resources for Nuclear Receptor Signaling Pathways.

    PubMed

    McKenna, Neil J

    2016-08-01

    Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research. PMID:27216565

  8. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-11-15

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  9. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed Central

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-01-01

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  10. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response.

    PubMed

    Riggins, Rebecca B; Mazzotta, Mary M; Maniya, Omar Z; Clarke, Robert

    2010-09-01

    Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRalpha and ERRgamma) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor alpha. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer. PMID:20576803

  11. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  12. H-2Dd engagement of Ly49A leads directly to Ly49A phosphorylation and recruitment of SHP1

    PubMed Central

    Daws, M R; Eriksson, M; Öberg, L; Ullén, A; Sentman, C L

    1999-01-01

    We have used a number of in vitro and in vivo techniques to identify the molecules that can bind to the cytoplasmic tail of the Ly49A receptor. Affinity chromatography using peptides corresponding to the N-terminal 18 amino acids of Ly49A allowed the recovery of a number of proteins that bound preferentially to the tyrosine-phosphorylated peptide, including SH2-containing phosphatase-1 (SHP1) and the SH2-containing inositol 5′ phosphatase (SHIP). In another approach, using the entire cytoplasmic domain of the Ly49A receptor, we found that SHP2 also interacted with the tyrosine-phosphorylated form of the Ly49A cytoplasmic tail. Using BIACORE®2000 analysis, we determined that both SHP1 and SHP2 bound to the tyrosine-phosphorylated cytoplasmic tail of Ly49A with affinities in the nanomolar range, whilst SHIP showed no binding. Mutation of tyrosine-36 to phenylalanine did not significantly affect the affinities of these proteins for the tyrosine-phosphorylated cytoplasmic tail of Ly49A. In addition, using a whole-cell system with T-cell lymphoma cell lines that expressed the Ly49A receptor or its H-2Dd ligand, we determined that engagement of Ly49A by its major histocompatibility complex (MHC) ligand leads to tyrosine-phosphorylation events and recruitment of SHP1. Recruitment of SHP1 was rapid and transient, reaching a maximum after 5 min. These data suggest that mechanisms for the inhibitory signal are generated following receptor engagement. They also provide direct evidence that ligand engagement of the Ly49A receptor is responsible for recruitment of downstream signalling molecules. PMID:10457220

  13. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury

    PubMed Central

    Stedman, Catherine A. M.; Liddle, Christopher; Coulter, Sally A.; Sonoda, Junichiro; Alvarez, Jacqueline G. A.; Moore, David D.; Evans, Ronald M.; Downes, Michael

    2005-01-01

    Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders. PMID:15684063

  14. The Orphan Nuclear Receptors at Their 25th Year Reunion

    PubMed Central

    Mullican, Shannon E.; DiSpirito, Joanna R.; Lazar, Mitchell A.

    2013-01-01

    The Nuclear Receptor superfamily includes many receptors identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology and the molecular pathology of disease. Here we provide a compendium of these so-called Orphan Receptors, and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise. PMID:24096517

  15. Nuclear receptor variants in liver disease.

    PubMed

    Zimmer, Vincent; Liebe, Roman; Lammert, Frank

    2015-01-01

    This snapshot reviews the current state of knowledge on genetic variants of nuclear receptors (NRs) involved in regulating various aspects of liver metabolism. Interindividual differences in responses to diet and other 'in-' and environmental stressors can be caused by variants in components of the NR regulatory gene network. We recapitulate recent evidence for the application of NRs in genetic diagnosis of monogenic liver disease. Genetic analysis of multifactorial liver diseases, such as nonalcoholic fatty liver disease and diabetes mellitus, pinpoints key players in disease predisposition and progression. In particular, NR1H4 variants have been associated with intrahepatic cholestasis of pregnancy and gallstone disease. Other examples include studies of NR1I2 and NR1I3 polymorphisms in patients with drug-induced liver injury and NR5A2 variation in cholangiocarcinoma. Associations of NR gene variants have been identified in patients with dyslipidemia and other metabolic syndrome-associated traits by genome-wide studies. Evidence from these analyses confirms a role for NR variation in common diseases, linking regulatory networks to complex and variable phenotypes. These new insights into the impact of NR variants offer perspectives for their future use in diagnosis and treatment of common diseases. PMID:26045277

  16. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    PubMed

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  17. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    PubMed Central

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  18. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  19. Hairless is a nuclear receptor corepressor essential for skin function

    PubMed Central

    Thompson, Catherine C.

    2009-01-01

    The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling. PMID:20087431

  20. Identification of the link between the hypothalamo-pituitary axis and the testicular orphan nuclear receptor NR0B2 in adult male mice.

    PubMed

    Vega, Aurélie; Martinot, Emmanuelle; Baptissart, Marine; De Haze, Angélique; Saru, Jean-Paul; Baron, Silvère; Caira, Françoise; Schoonjans, Kristina; Lobaccaro, Jean-Marc A; Volle, David H

    2015-02-01

    The small heterodimer partner (SHP, nuclear receptor subfamily 0, group B, member 2; NR0B2) is an atypical nuclear receptor known mainly for its role in bile acid homeostasis in the enterohepatic tract. We previously showed that NR0B2 controls testicular functions such as testosterone synthesis. Moreover, NR0B2 mediates the deleterious testicular effects of estrogenic endocrine disruptors leading to infertility. The endocrine homeostasis is essential for health, because it controls many physiological functions. This is supported by a large number of studies demonstrating that alterations of steroid activity lead to several kinds of diseases such as obesity and infertility. Within the testis, the functions of the Leydig cells are mainly controlled by the hypothalamo-pituitary axis via LH/chorionic gonadotropin (CG). Here, we show that LH/CG represses Nr0b2 expression through the protein kinase A-AMP protein kinase pathway. Moreover, using a transgenic mouse model invalidated for Nr0b2, we point out that NR0B2 mediates the repression of testosterone synthesis and subsequent germ cell apoptosis induced by exposure to anti-GnRH compound. Together, our data demonstrate a new link between hypothalamo-pituitary axis and NR0B2 in testicular androgen metabolism, making NR0B2 a major actor of testicular physiology in case of alteration of LH/CG levels. PMID:25426871

  1. Substrate Specificity of Protein Tyrosine Phosphatases 1B, RPTPα, SHP-1, and SHP-2†

    PubMed Central

    Ren, Lige; Chen, Xianwen; Luechapanichkul, Rinrada; Selner, Nicholas G.; Meyer, Tiffany M.; Wavreille, Anne-Sophie; Chan, Richard; Iorio, Caterina; Zhou, Xiang; Neel, Benjamin G.; Pei, Dehua

    2011-01-01

    We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately two orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active towards multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY−1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY, but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY−1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme’s in vivo substrate specificity. PMID:21291263

  2. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  3. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  4. ROR nuclear receptors: structures, related diseases, and drug discovery

    PubMed Central

    Zhang, Yan; Luo, Xiao-yu; Wu, Dong-hai; Xu, Yong

    2015-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs. PMID:25500868

  5. Progesterone receptors in human breast cancer. Stoichiometric translocation and nuclear receptor processing.

    PubMed

    Mockus, M B; Horwitz, K B

    1983-04-25

    In a subline of T47D human breast cancer cells, progesterone receptors (PR) are synthesized at very high levels, but their synthesis is not estrogen-dependent. Despite the unusual control of synthesis, the physicochemical properties of PR are normal. These are, therefore, ideal cells to study PR regulation by progesterone, free of estrogen effects. In this paper, we show that nuclear translocation of PR is stoichiometric, and that an unusual and very rapid nuclear turnover, or processing step, characterizes receptor-DNA interactions. In intact T47D cells, PR are translocated to the nucleus only by progestins; 70-90% of cytoplasmic receptors are depleted at 37 degrees C within 5 min of progestin addition. After PR are translocated by 0.1 muM progesterone, they can be quantitatively recovered from nuclei only in the first 5 min; thereafter, a rapid nuclear processing step results in loss of 50-80% of the newly translocated sites. Rapid processing may be inherent to PR; it also occurs in PR of MCF-7 cells. The extent of receptor translocation and of nuclear receptor processing is dependent on the progesterone concentration and on the treatment time, and can be masked by endogenous hormones. Proteolytic enzyme inhibitors (leupeptin, antipain) do not prevent nuclear PR loss. G-C specific DNA intercalators that prevent nuclear estrogen receptor processing (actinomycin D, chromomycin A3) also fail to prevent PR loss, but some A-T specific DNA-binding dyes (chloroquine, primaquine, quinacrine) protect 50-75% of nuclear PR. We conclude that translocated nuclear PR can be quantitatively measured only at early time points because the nuclear receptors are rapidly processed. Furthermore, the processing step may involve an interaction of receptors with DNA since it can be partially blocked by DNA-binding agents. PMID:6833276

  6. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Sauer, Sascha

    2015-10-01

    Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases. PMID:26435213

  7. Nuclear Receptors as Drug Targets for Metabolic Disease

    PubMed Central

    2010-01-01

    Nuclear hormone receptors comprise a superfamily of ligand-activated transcription factors that control development, differentiation, and homeostasis. Over the last 15 years a growing number of nuclear receptors have been identified that coordinate genetic networks regulating lipid metabolism and energy utilization. Several of these receptors directly sample the levels of metabolic intermediates including fatty acids and cholesterol derivatives and use this information to regulate the synthesis, transport, and breakdown of the metabolite of interest. In contrast, other family members sense metabolic activity via the presence or absence of interacting proteins. The ability of these nuclear receptors to impact metabolism will be discussed and the challenges facing drug discovery efforts for this class of targets will be highlighted. PMID:20655343

  8. SHP-1: the next checkpoint target for cancer immunotherapy?

    PubMed

    Watson, H Angharad; Wehenkel, Sophie; Matthews, James; Ager, Ann

    2016-04-15

    The immense power of the immune system is harnessed in healthy individuals by a range of negative regulatory signals and checkpoints. Manipulating these checkpoints through inhibition has resulted in striking immune-mediated clearance of otherwise untreatable tumours and metastases; unfortunately, not all patients respond to treatment with the currently available inhibitors of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Combinatorial studies using both anti-CTLA-4 and anti-PD-1 demonstrate synergistic effects of targeting multiple checkpoints, paving the way for other immune checkpoints to be targeted. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T-cells. This review will discuss the potential value of SHP-1 inhibition in future tumour immunotherapy. PMID:27068940

  9. RNA interference targeting SHP-1 attenuates myocardial infarction in rats.

    PubMed

    Sugano, Masahiro; Tsuchida, Keiko; Hata, Tomoji; Makino, Naoki

    2005-12-01

    The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1) plays a key role in apoptosis and decreases phosphorylation of Akt. Apoptosis of cardiomyocytes is thought to contribute to the increased area of acute myocardial infarction (AMI), and Akt activation exerts a powerful cardioprotective effect after ischemia. Thus, a therapeutic strategy designed to inhibit expression of SHP-1 would be beneficial in AMI. Here we report that siRNA targeting SHP-1 reduced infarct size in a rat model of AMI. Upon injection into the ischemic left ventricular wall, the vector-based siRNA significantly suppressed the increase in the SHP-1 mRNA and the SHP-1 protein levels. The siRNA vector also significantly reduced the SHP-1 that bound to Fas-R. The SHP-1 siRNA vector increased phospho-Akt and reduced DNA fragmentation and caspase activity compared with the scramble siRNA vector. Finally, the area of myocardial infarction was significantly smaller with the SHP-1 siRNA vector than with the scramble siRNA vector at 2 days after LCA ligation. In conclusion, SHP-1 in the heart increased from the early stage of AMI, and this increase was thought to contribute to the increased area of myocardial infarction. Suppression of SHP-1 with the SHP-1 siRNA vector markedly reduced the infarct size in AMI. PMID:16223786

  10. Pan-cancer analyses of the nuclear receptor superfamily

    PubMed Central

    Long, Mark D.; Campbell, Moray J.

    2016-01-01

    Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression. PMID:27200367

  11. Regulation of avoidant behaviors and pain by the anti-inflammatory tyrosine phosphatase SHP-1

    PubMed Central

    HUDSON, CHAD A.; CHRISTOPHI, GEORGE P.; CAO, LING; GRUBER, ROSS C.

    2007-01-01

    The protein tyrosine phosphatase SHP-1 is a critical regulator of cytokine signaling and inflammation. Mice homozygous for a null allele at the SHP-1 locus have a phenotype of severe inflammation and are hyper-responsive to the TLR4 ligand LPS. TLR4 stimulation in the CNS has been linked to both neuropathic pain and sickness behaviors. To determine if reduction in SHP-1 expression affects LPS-induced behaviors, responses of heterozygous SHP-1-deficient (me/+) and wild-type (+/+) mice to LPS were measured. Chronic (4-week) treatment with LPS induced avoidant behaviors indicative of fear/anxiety in me/+, but not +/+, mice. These behaviors were correlated with a LPS-induced type 2 cytokine, cytokine receptor, and immune effector arginase profile in the brains of me/+ mice not found in +/+ mice. Me/+ mice also had a constitutively greater level of TLR4 in the CNS than +/+ mice. Additionally, me/+ mice displayed constitutively increased thermal sensitivity compared to +/+ mice, measured by the tail-flick test. Moreover, me/+ glial cultures were more responsive to LPS than +/+ glia. Therefore, the reduced expression of SHP-1 in me/+ imparts haploinsufficiency with respect to the control of CNS TLR4 and pain signaling. Furthermore, type 2 cytokines become prevalent during chronic TLR4 hyperstimulation in the CNS and are associated positively with behaviors that are usually linked to type 1 pro-inflammatory cytokines. These findings question the notion that type 2 immunity is solely anti-inflammatory in the CNS and indicate that type 2 immunity induces/potentiates CNS inflammatory processes. PMID:18250891

  12. Human FXR Regulates SHP Expression through Direct Binding to an LRH-1 Binding Site, Independent of an IR-1 and LRH-1

    PubMed Central

    Hoeke, Martijn O.; Heegsma, Janette; Hoekstra, Mark; Moshage, Han; Faber, Klaas Nico

    2014-01-01

    Background Farnesoid X receptor/retinoid X receptor-alpha (FXR/RXRα) is the master transcriptional regulator of bile salt synthesis and transport in liver and intestine. FXR is activated by bile acids, RXRα by the vitamin A–derivative 9-cis retinoic acid (9cRA). Remarkably, 9cRA inhibits binding of FXR/RXRα to its response element, an inverted repeat-1 (IR-1). Still, most FXR/RXRα target genes are maximally expressed in the presence of both ligands, including the small heterodimer partner (SHP). Here, we revisited the FXR/RXRα-mediated regulation of human SHP. Methods A 579-bp hSHP promoter element was analyzed to locate FXR/chenodeoxycholic acid (CDCA)- and RXRα/9cRA-responsive elements. hSHP promoter constructs were analyzed in FXR/RXRα-transfected DLD-1, HEK293 and HepG2 cells exposed to CDCA, GW4064 (synthetic FXR ligand) and/or 9cRA. FXR-DNA interactions were analyzed by in vitro pull down assays. Results hSHP promoter elements lacking the previously identified IR-1 (−291/−279) largely maintained their activation by FXR/CDCA, but were unresponsive to 9cRA. FXR-mediated activation of the hSHP promoter was primarily dependent on the −122/−69 region. Pull down assays revealed a direct binding of FXR to the −122/−69 sequence, which was abrogated by site-specific mutations in a binding site for the liver receptor homolog-1 (LRH-1) at −78/−70. These mutations strongly impaired the FXR/CDCA-mediated activation, even in the context of a hSHP promoter containing the IR-1. LRH-1 did not increase FXR/RXRα-mediated activation of hSHP promoter activity. Conclusion FXR/CDCA-activated expression of SHP is primarily mediated through direct binding to an LRH-1 binding site, which is not modulated by LRH-1 and unresponsive to 9cRA. 9cRA-induced expression of SHP requires the IR-1 that overlaps with a direct repeat-2 (DR-2) and DR-4. This establishes for the first time a co-stimulatory, but independent, action of FXR and RXRα agonists. PMID:24498423

  13. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers

    PubMed Central

    Kojetin, Douglas J.; Matta-Camacho, Edna; Hughes, Travis S.; Srinivasan, Sathish; Nwachukwu, Jerome C.; Cavett, Valerie; Nowak, Jason; Chalmers, Michael J.; Marciano, David P.; Kamenecka, Theodore M.; Shulman, Andrew I.; Rance, Mark; Griffin, Patrick R.; Bruning, John B.; Nettles, Kendall W.

    2015-01-01

    A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. PMID:26289479

  14. Recent progress on nuclear receptor RORγ modulators.

    PubMed

    Cyr, Patrick; Bronner, Sarah M; Crawford, James J

    2016-09-15

    The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators. PMID:27542308

  15. ERAP140, a conserved tissue-specific nuclear receptor coactivator.

    PubMed

    Shao, Wenlin; Halachmi, Shlomit; Brown, Myles

    2002-05-01

    We report here the identification and characterization of a novel nuclear receptor coactivator, ERAP140. ERAP140 was isolated in a screen for ER alpha-interacting proteins using the ER alpha ligand binding domain as a probe. The ERAP140 protein shares no sequence and has little structural homology with other nuclear receptor cofactors. However, homologues of ERAP140 have been identified in mouse, Drosophila, and Caenorhabditis elegans. The expression of ERAP140 is cell and tissue type specific and is most abundant in the brain, where its expression is restricted to neurons. In addition to interacting with ER alpha, ERAP140 also binds ER beta, TR beta, PPAR gamma, and RAR alpha. ERAP140 interacts with ER alpha via a noncanonical interaction motif. The ER alpha-ERAP140 association can be competed by coactivator NR boxes, indicating ERAP140 binds ER alpha on a surface similar to that of other coactivators. ERAP140 can enhance the transcriptional activities of nuclear receptors with which it interacts. In vivo, ERAP140 is recruited by estrogen-bound ER alpha to the promoter region of endogenous ER alpha target genes. Furthermore, the E(2)-induced recruitment of ERAP140 to the promoter follows a cyclic pattern similar to that of other coactivators. Our results suggest that ERAP140 represents a distinct class of nuclear receptor coactivators that mediates receptor signaling in specific target tissues. PMID:11971969

  16. Regulation of the cytosolic sulfotransferases by nuclear receptors

    PubMed Central

    Runge-Morris, Melissa; Kocarek, Thomas A.; Falany, Charles N.

    2013-01-01

    The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted. PMID:23330539

  17. Orphan Nuclear Receptors as Targets for Drug Development

    PubMed Central

    Mukherjee, Subhajit

    2012-01-01

    Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs. PMID:20372994

  18. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity.

    PubMed

    Matalon, Omri; Fried, Sophia; Ben-Shmuel, Aviad; Pauker, Maor H; Joseph, Noah; Keizer, Danielle; Piterburg, Marina; Barda-Saad, Mira

    2016-01-01

    Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells. PMID:27221712

  19. Female breast carcinomas: nuclear and cytoplasmic proteins versus steroid receptors.

    PubMed

    Bryś, M; Romanowicz-Makowska, H; Nawrocka, A; Krajewska, W M

    2000-01-01

    Nuclear and cytoplasmic proteins of human female breast cancer were analysed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Oestrogen receptor and progesterone receptor expression was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. The electropherograms were developed by silver nitrate staining and quantitative analysis was carried out by video densitometer using the software Gel-Pro Analyzer. Nuclear and cytoplasmic proteins of breast carcinomas and normal tissue differed both qualitatively and quantitatively. Nuclear polypeptides of 108, 53 and 48 kD as well as the 36 kD cytoplasmic polypeptide were specific for tumour samples, while the 51 kD nuclear polypeptide was detected only in normal tissue. Quantitative differences in band density were noted in the 32 kD nuclear polypeptide. This polypeptide was expressed in greatest concentration in infiltrating ductal carcinomas which also indicated the greatest oestrogen receptor gene expression. This relationship appeared to be statistically significant (p < 0.005). No correlations were evident between the 32 kD protein expression and the progesterone receptor gene expression in any of the tissue types examined, nor between the 32 kD protein and the patient's age or tumour grade. PMID:10756981

  20. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'. PMID:26159912

  1. The HR97 (NR1L) group of nuclear receptors: a new group of nuclear receptors discovered in Daphnia species.

    PubMed

    Li, Yangchun; Ginjupalli, Gautam K; Baldwin, William S

    2014-09-15

    The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups. PMID:25092536

  2. Genome-wide identification, evolution and expression analysis of nuclear receptor superfamily in Nile tilapia, Oreochromis niloticus.

    PubMed

    Cheng, Yun-Ying; Tao, Wen-Jing; Chen, Jin-Lin; Sun, Li-Na; Zhou, Lin-Yan; Song, Qiang; Wang, De-Shou

    2015-09-10

    The nuclear receptor (NR) superfamily, which is divided into 7 subfamilies, constitutes one of the largest classes of transcription factors. In this study, through comprehensive database search, we identified all NRs (including 4 novel members) from the tilapia (75), common carp (137), zebrafish (73), fugu (73), tetraodon (72), stickleback (70), medaka (69), coelacanth (55), spotted gar (51) and elephant shark (50). For 21 NRs, two duplicates were found in teleosts, while only one in tetrapods. These duplicates, except those of DAX1, SHP and GCNF found in the elephant shark, were derived from 3R (third round of genome duplication). The linkage duplication of 5 syntenic blocks (comprising 14 duplicated NR couples) in teleosts further supported their 3R origin. Based on transcriptome data from adult tilapia, 53 NRs were found to be expressed in more than one tissue (brain, head kidney, heart, liver, kidney, muscle, ovary and testis), and 4 were tissue-specific, indicating their essential roles in the corresponding tissue. Based on the XX and XY gonadal transcriptome data from four developmental stages, 65 NRs were detected in gonads, with 21, 31, 11 and 29 expressed sexual dimorphically at 5, 30, 90 and 180days after hatching, respectively. The expression of four selected genes was examined by in situ hybridization (ISH) and quantitative PCR (qPCR) to validate the spatial and temporal expression profiles of NRs. Comparative analyses of the expression profiles of duplicated NRs revealed divergence in gene expression as well as gene function. Our results demonstrated that NRs may play important roles in sex determination and gonadal development in teleosts. PMID:26024593

  3. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  4. Comparison between different forms of estrogen cytosol receptor and the nuclear receptor extracted by micrococcal nuclease.

    PubMed

    Rochefort, H; André, J

    1978-11-01

    As an approach to the mechanism of the nuclear translocation of estrogen receptor, the estradiol nuclear receptor (RN) of lamb endometrium was extracted with micrococcal nuclease at 2--4 degrees and compared to the "native" 8S and to the Ca2+-transformed cytosol receptors. After extensive digestion of chromatin, giving up to 10% perchloric acid-soluble DNA and a majority of nucleosome monomers, up to 80% of the RN was extracted and under low ionic strength. This RN was found to be completely different from the partially proteolyzed Ca2+-transformed cytosol receptor. It migrated with a sedimentation constant of 4 and 6 S. The Stokes radius of the predominant form as determined by ACA 34 chromatography was 5.3 nm. The calculated apparent molecular weights were 130,000 and 90,000, respectively. The RN was able to bind DNA and was eluted from a diethylaminoethyl cellulose column at 0.23 and 0.30 M KCl. We conclude that the mechanism proposed by Puca et al., according to which the Ca2+-transformed cytosol receptor is split by a Ca2+ receptor-transforming factor into a smaller form able to cross the nuclear membrane, is very unlikely. PMID:698961

  5. Nuclear receptor coregulators as a new paradigm for therapeutic targeting

    PubMed Central

    Hsia, Elaine Y.; Goodson, Michael L.; Zou, June X.; Privalsky, Martin L.; Chen, Hong-Wu

    2012-01-01

    The complex function and regulation of nuclear receptors cannot be fully understood without a thorough knowledge of the receptor-associated coregulators that either enhance (coactivators) or inhibit (corepressors) transcription. While nuclear receptors themselves have garnered much attention as therapeutic targets, the clinical and etiological relevance of the coregulators to human diseases is increasingly recognized. Aberrant expression or function of coactivators and corepressors has been associated with malignant and metabolic disease development. Many of them are key epigenetic regulators and utilize enzymatic activities to modify chromatin through histone acetylation/deacetylation, histone methylation/demethylation or chromatin remodeling. In this review, we showcase and evaluate coregulators with the most promising therapeutic potential based on their physiological roles and involvement in various diseases that are revealed thus far. We also describe the structural features of the coactivator and corepressor functional domains and highlight areas that can be further explored for molecular targeting. PMID:20933027

  6. Nuclear bile acid signaling through the farnesoid X receptor.

    PubMed

    Mazuy, Claire; Helleboid, Audrey; Staels, Bart; Lefebvre, Philippe

    2015-05-01

    Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways. PMID:25511198

  7. Intravenous immunoglobulins modulate neutrophil activation and vascular injury through FcγRIII and SHP-1

    PubMed Central

    Jang, Jung-Eun; Hidalgo, Andrés; Frenette, Paul S.

    2012-01-01

    Rationale Intravascular neutrophil recruitment and activation are a key pathogenic factor that contributes to vascular injury. Intravenous immunoglobulin (IVIG) has been shown to have a beneficial effect in systemic inflammatory disorders; however, the mechanisms underlying IVIG’s inhibitory effect on neutrophil recruitment and activation are not understood. Objective We studied the mechanisms by which IVIG exerts protection from neutrophil-mediated acute vascular injury. Methods and Results We examined neutrophil behavior in response to IVIG in vivo using real time intravital microscopy. We found that an antibody that blocks both FcγRIII and its inhibitory receptor counterpart, FcγRIIB, abrogated the inhibitory effect of IVIG on leukocyte recruitment and heterotypic RBC interactions with adherent leukocytes in wild-type mice. In the context of sickle cell disease, the blockade of both FcγRIIB and III abrogated the protective effect of IVIG on acute vaso-occlusive crisis caused by neutrophil recruitment and activation. Analysis of FcγRIIB- and FcγRIII-deficient mice revealed the predominant expression of FcγRIII on circulating neutrophils. FcγRIII mediated IVIG-triggered inhibition of leukocyte recruitment, circulating RBC capture, and enhanced Mac-1 activity, whereas FcγRIIB was dispensable. In addition, FcγRIII-induced IVIG anti-inflammatory activity in neutrophils was mediated by recruitment of Src homology 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1). Indeed, the protective effect of IVIG on leukocyte recruitment and activation was abrogated in SHP-1-mutant mice. Conclusions FcγRIII, a classical activating receptor, has an unexpected inhibitory role on neutrophil adhesion and activation via recruitment of SHP-1 in response to IVIG. Our results identify SHP-1 as a therapeutic target in neutrophil-mediated vascular injury. PMID:22415018

  8. Re-adopting classical nuclear receptors by cholesterol metabolites.

    PubMed

    Umetani, Michihisa

    2016-03-01

    Since the first cloning of the human estrogen receptor (ER) α in 1986 and the subsequent cloning of human ERβ, there has been extensive investigation of the role of estrogen/ER. Estrogens/ER play important roles not only in sexual development and reproduction but also in a variety of other functions in multiple tissues. Selective Estrogen Receptor Modulators (SERMs) are ER lignds that act as agonists or antagonists depending on the target genes and tissues, and until recently, only synthetic SERMs have been recognized. However, the discovery of the first endogenous SERM, 27-hydroxycholesterol (27HC), opened a new dimension of ER action in health and disease. In addition to the identification of 27HC as a SERM, oxysterols have been recently demonstrated as indirect modulators of ER through interaction with the nuclear receptor Liver X Receptor (LXR) β. In this review, the recent progress on these novel roles of oxysterols in ER modulation is summarized. PMID:26563834

  9. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  10. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    PubMed Central

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-01-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  11. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  12. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects.

    PubMed

    di Masi, Alessandra; De Marinis, Elisabetta; Ascenzi, Paolo; Marino, Maria

    2009-10-01

    Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease. PMID:19427329

  13. Nuclear Receptor Coactivators Are Coexpressed with Steroid Receptors and Regulated by Estradiol in Mouse Brain

    PubMed Central

    Tognoni, Christina M.; Chadwick, Joseph G.; Ackeifi, Courtney A.; Tetel, Marc J.

    2011-01-01

    Background/Aims The steroid hormones, including estradiol (E) and progesterone, act in the brain to regulate female reproductive behavior and physiology. These hormones mediate many of their biological effects by binding to their respective intracellular receptors. The receptors for estrogens (ER) and progestins (PR) interact with nuclear receptor coactivators to initiate transcription of steroid-responsive genes. Work from our laboratory and others reveals that nuclear receptor coactivators, including steroid receptor coactivator-1 (SRC-1) and SRC-2, function in brain to modulate ER-mediated induction of the PR gene and hormone-dependent behaviors. In order for steroid receptors and coactivators to function together, both must be expressed in the same cells. Methods Triple-label immunofluorescence was used to determine if E-induced PR cells also express SRC-1 or SRC-2 in reproductively relevant brain regions of the female mouse. Results The majority of E-induced PR cells in the medial preoptic area (61%), ventromedial nucleus of the hypothalamus (63%) and arcuate nucleus (76%) coexpressed both SRC-1 and SRC-2. A smaller proportion of PR cells expressed either SRC-1 or SRC-2, while a few PR cells expressed neither coactivator. In addition, compared to control animals, 17β-estradiol benzoate (EB) treatment increased SRC-1 levels in the arcuate nucleus, but not the medial preoptic area or the ventromedial nucleus of the hypothalamus. EB did not alter SRC-2 expression in any of the three brain regions analyzed. Conclusions Taken together, the present findings identify a population of cells in which steroid receptors and nuclear receptor coactivators may interact to modulate steroid sensitivity in brain and regulate hormone-dependent behaviors in female mice. Given that cell culture studies reveal that SRC-1 and SRC-2 can mediate distinct steroid-signaling pathways, the present findings suggest that steroids can produce a variety of complex responses in these

  14. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases.

    PubMed

    Chen, Mei-Kuang; Hung, Mien-Chie

    2015-10-01

    Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications. PMID:26096795

  15. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  16. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  17. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation

    PubMed Central

    Wong, Madeline M; Guo, Chun; Zhang, Jinsong

    2014-01-01

    Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy. PMID:25374920

  18. Novel roles of nuclear angiotensin receptors and signaling mechanisms.

    PubMed

    Gwathmey, TanYa M; Alzayadneh, Ebaa M; Pendergrass, Karl D; Chappell, Mark C

    2012-03-01

    The renin-angiotensin system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. The dysregulation of the RAS is considered a major influence in the development and progression of cardiovascular disease and other pathologies. Indeed, experimental and clinical evidence indicates that blockade of this system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin type 1 receptor (AT1R) antagonists is an effective therapy to attenuate hypertension and diabetic renal injury, and to improve heart failure. Originally defined as a circulating system, multiple tissues express a complete RAS, and compelling evidence now favors an intracellular system involved in cell signaling and function. Within the kidney, intracellular expression of the three predominant ANG receptor subtypes is evident in the nuclear compartment. The ANG type 1 receptor (AT1R) is coupled to the generation of reactive oxygen species (ROS) through the activation of phosphoinositol-3 kinase (PI3K) and PKC. In contrast, both ANG type 2 (AT2R) and ANG-(1-7) (AT7R) receptors stimulate nitric oxide (NO) formation, which may involve nuclear endothelial NO synthase (eNOS). Moreover, blockade of either ACE2-the enzyme that converts ANG II to ANG-(1-7)-or the AT7 receptor exacerbates the ANG II-ROS response on renal nuclei. Finally, in a model of fetal programmed hypertension, the nuclear ROS response to ANG II is enhanced, while both AT2 and AT7 stimulation of NO is attenuated, suggesting that an imbalance in the intracellular RAS may contribute to the development of programming events. We conclude that a functional intracellular or nuclear RAS may have important implications in the therapeutic approaches to cardiovascular disease. PMID:22170620

  19. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    SciTech Connect

    Barbarin, Alice; Séité, Paule; Godet, Julie; Bensalma, Souheyla; Muller, Jean-Marc; Chadéneau, Corinne

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  20. The yeast nuclear import receptor is required for mitosis.

    PubMed Central

    Loeb, J D; Schlenstedt, G; Pellman, D; Kornitzer, D; Silver, P A; Fink, G R

    1995-01-01

    The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7644471

  1. Nuclear receptors linking circadian rhythms and cardiometabolic control

    PubMed Central

    Duez, Hélène; Staels, Bart

    2010-01-01

    Many behavioral and physiological processes, including locomotor activity, blood pressure, body temperature, sleep(fasting)/wake(feeding) cycles as well as metabolic regulation display diurnal rhythms. The biological clock ensures proper metabolic alignment of energy substrate availability and processing. Studies in animals and humans highlight a strong link between circadian disorders and altered metabolic responses and cardiovascular events. Shiftwork, for instance, increases the risk to develop metabolic abnormalities resembling the Metabolic Syndrome. Nuclear receptors have long been known as metabolic regulators. Several of them (ie. Rev-erbα, RORα, PPARs) are subjected to circadian variations and are integral components of the molecular clock machinery. In turn, these nuclear receptors regulate downstream target genes in a circadian manner, acting to properly gate metabolic events to the appropriate circadian time window. PMID:20631353

  2. An evolving understanding of nuclear receptor coregulator proteins

    PubMed Central

    Millard, Christopher J.; Watson, Peter J.; Fairall, Louise; Schwabe, John W.R.

    2014-01-01

    Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin; and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge. PMID:24203923

  3. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila.

    PubMed

    Sieber, Matthew H; Thummel, Carl S

    2009-12-01

    Triacylglycerol (TAG) homeostasis is an integral part of normal physiology and essential for proper energy metabolism. Here we show that the single Drosophila ortholog of the PXR and CAR nuclear receptors, DHR96, plays an essential role in TAG homeostasis. DHR96 mutants are sensitive to starvation, have reduced levels of TAG in the fat body and midgut, and are resistant to diet-induced obesity, while DHR96 overexpression leads to starvation resistance and increased TAG levels. We show that DHR96 function is required in the midgut for the breakdown of dietary fat and that it exerts this effect through the CG5932 gastric lipase, which is essential for TAG homeostasis. This study provides insights into the regulation of dietary fat metabolism in Drosophila and demonstrates that the regulation of lipid metabolism is an ancestral function of the PXR/CAR/DHR96 nuclear receptor subfamily. PMID:19945405

  4. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling.

    PubMed

    Grossmann, Claudia; Ruhs, Stefanie; Langenbruch, Lisa; Mildenberger, Sigrid; Strätz, Nicole; Schumann, Katja; Gekle, Michael

    2012-06-22

    The mineralocorticoid receptor (MR), a member of the steroid receptor superfamily, regulates water-electrolyte balance and mediates pathophysiological effects in the renocardiovascular system. Previously, it was assumed that after binding aldosterone, the MR dissociates from HSP90, forms homodimers, and then translocates into the nucleus where it acts as a transcription factor (Guiochon-Mantel et al., 1989; Robertson et al., 1993; Savory et al., 2001). We found that, during aldosterone-induced nuclear translocation, MR is bound to HSP90 both in the cytosol and the nucleus. Homodimerization measured by eBRET and FRET takes place when the MR is already predominantly nuclear. In vitro binding of MR to DNA was independent of ligand but could be partially inhibited by geldanamycin. Overall, here we provide insights into classical MR signaling necessary for elucidating the mechanisms of pathophysiological MR effects and MR specificity. PMID:22726688

  5. A comprehensive nuclear receptor network for breast cancer cells.

    PubMed

    Kittler, Ralf; Zhou, Jie; Hua, Sujun; Ma, Lijia; Liu, Yuwen; Pendleton, Elisha; Cheng, Chao; Gerstein, Mark; White, Kevin P

    2013-02-21

    In breast cancer, nuclear receptors (NRs) play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs) that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer. PMID:23375374

  6. Improving the classification of nuclear receptors with feature selection.

    PubMed

    Gao, Qing-Bin; Jin, Zhi-Chao; Ye, Xiao-Fei; Wu, Cheng; Lu, Jian; He, Jia

    2009-01-01

    Nuclear receptors are involved in multiple cellular signaling pathways that affect and regulate processes. Because of their physiology and pathophysiology significance, classification of nuclear receptors is essential for the proper understanding of their functions. Bhasin and Raghava have shown that the subfamilies of nuclear receptors are closely correlated with their amino acid composition and dipeptide composition [29]. They characterized each protein by a 400 dimensional feature vector. However, using high dimensional feature vectors for characterization of protein sequences will increase the computational cost as well as the risk of overfitting. Therefore, using only those features that are most relevant to the present task might improve the prediction system, and might also provide us with some biologically useful knowledge. In this paper a feature selection approach was proposed to identify relevant features and a prediction engine of support vector machines was developed to estimate the prediction accuracy of classification using the selected features. A reduced subset containing 30 features was accepted to characterize the protein sequences in view of its good discriminative power towards the classes, in which 18 are of amino acid composition and 12 are of dipeptide composition. This reduced feature subset resulted in an overall accuracy of 98.9% in a 5-fold cross-validation test, higher than 88.7% of amino acid composition based method and almost as high as 99.3% of dipeptide composition based method. Moreover, an overall accuracy of 93.7% was reached when it was evaluated on a blind data set of 63 nuclear receptors. On the other hand, an overall accuracy of 96.1% and 95.2% based on the reduced 12 dipeptide compositions was observed simultaneously in the 5-fold cross-validation test and the blind data set test, respectively. These results demonstrate the effectiveness of the present method. PMID:19601913

  7. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine. PMID:27561454

  8. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  9. Nuclear receptor coactivators: Essential players in steroid hormone action in brain and behavior

    PubMed Central

    Tetel, Marc J.

    2009-01-01

    Steroid hormones act in brain and throughout the body to influence behavior and physiology. Many of these effects of steroid hormones are elicited by transcriptional events mediated by their respective receptors. A variety of cell culture studies reveal that nuclear receptor coactivators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coactivators are essential for steroid-dependent transactivation of genes. This review will discuss the mounting evidence that nuclear receptor coactivators are critical in modulating steroid hormone action in brain and the regulation of behavior. PMID:19207820

  10. Ginkgetin Blocks Constitutive STAT3 Activation and Induces Apoptosis through Induction of SHP-1 and PTEN Tyrosine Phosphatases.

    PubMed

    Baek, Seung Ho; Lee, Jae Hwi; Ko, Jeong-Hyeon; Lee, Hanwool; Nam, Dongwoo; Lee, Seok Geun; Yang, Woong Mo; Um, Jae-Young; Lee, Junhee; Kim, Sung-Hoon; Shim, Bum Sang; Ahn, Kwang Seok

    2016-04-01

    Ginkgetin, a biflavone from Ginkgo biloba leaves, is known to exhibit antiinflammatory, antifungal, neuroprotective, and antitumor activities, but its precise mechanism of action has not been fully elucidated. Because the aberrant activation of STAT3 has been linked with regulation of inflammation, proliferation, invasion, and metastasis of tumors, we hypothesized that ginkgetin modulates the activation of STAT3 in tumor cells. We found that ginkgetin clearly suppressed constitutive phosphorylation of STAT3 through inhibition of the activation of upstream JAK1 and c-Src kinases and nuclear translocation of STAT3 on both A549 and FaDu cells. Treatment with sodium pervanadate reversed the ginkgetin-induced down-modulation of STAT3, thereby indicating a critical role for a PTP. We also found that ginkgetin strongly induced the expression of the SHP-1 and PTEN proteins and its mRNAs. Further, deletion of SHP-1 and PTEN genes by siRNA suppressed the induction of SHP-1 and PTEN, and reversed the inhibition of STAT3 activation. Ginkgetin induced apoptosis as characterized by an increased accumulation of cells in subG1 phase, positive Annexin V binding, loss of mitochondrial membrane potential, down-regulation of STAT3-regulated gene products, and cleavage of PARP. Overall, ginkgetin abrogates STAT3 signaling pathway through induction of SHP-1 and PTEN proteins, thus attenuating STAT3 phosphorylation and tumorigenesis. PMID:27059688

  11. Harnessing the nuclear receptor PPARγ to inhibit the growth of lung adenocarcinoma by rewiring metabolic circuitries

    PubMed Central

    Yenerall, Paul; Kittler, Ralf

    2015-01-01

    Altered metabolism and nuclear receptor activity have been reported in various cancer types. Here, we discuss our recent finding that the metabolic state of lung adenocarcinoma cells expressing the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) can be modulated by thiazolidinediones, culminating in accumulation of reactive oxygen species and decreased proliferation. PMID:27308443

  12. Harnessing the nuclear receptor PPARγ to inhibit the growth of lung adenocarcinoma by rewiring metabolic circuitries.

    PubMed

    Yenerall, Paul; Kittler, Ralf

    2015-01-01

    Altered metabolism and nuclear receptor activity have been reported in various cancer types. Here, we discuss our recent finding that the metabolic state of lung adenocarcinoma cells expressing the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) can be modulated by thiazolidinediones, culminating in accumulation of reactive oxygen species and decreased proliferation. PMID:27308443

  13. Nuclear receptors and their relevance to diseases related to lipid metabolism.

    PubMed

    Berkenstam, Anders; Gustafsson, Jan-Ake

    2005-04-01

    Drugs that target the nuclear hormone receptor family constitute one of the largest and most potent groups of pharmaceuticals currently in use. However, although many of these human nuclear receptors have been clearly demonstrated to be key sensors and regulators of lipid metabolism, the full pharmacological potential of this drug target class has not been fully explored. There are two main reasons for this. First, a rationale approach is needed to identify pharmacologically selective drug candidates to nuclear receptors that have a large therapeutic window between the beneficial effects and the unwanted side effects. This appears to apply to all ligand-regulated nuclear receptors, including those nuclear receptors more recently proposed as novel targets for diseases related to lipid metabolism such as the peroxisome proliferator-activated receptors, liver X receptors and farnesoid X-activated receptor. The second reason is that any sub-group of nuclear receptors important for the regulation of lipid metabolism might be pharmacologically inaccessible by conventional low molecular weight compounds, owing to the lack of a classical ligand-binding-pocket, as recently revealed by X-ray crystallography. Accordingly, targeting of classical nuclear receptor family members with better characterized endocrinology and roles in lipid metabolism, such as the thyroid and steroid hormone receptors, could become of renewed pharmacological interest, as these targets provide well-characterized alternatives to the more recently discovered nuclear receptors. PMID:15780827

  14. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  15. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  16. Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis.

    PubMed

    Su, Jung-Chen; Mar, Ai-Chung; Wu, Szu-Hsien; Tai, Wei-Tien; Chu, Pei-Yi; Wu, Chia-Yun; Tseng, Ling-Ming; Lee, Te-Chang; Chen, Kuen-Feng; Liu, Chun-Yu; Chiu, Hao-Chieh; Shiau, Chung-Wai

    2016-01-01

    Patients with triple-negative breast cancer (TNBC) had an increased likelihood of distant recurrence and death, as compared with those with non-TNBC subtype. Regorafenib is a multi-receptor tyrosine kinase (RTK) inhibitor targeting oncogenesis and has been approved for metastatic colorectal cancer and advanced gastrointestinal stromal tumor. Recent studies suggest regorafenib acts as a SHP-1 phosphatase agonist. Here, we investigated the potential of regorafenib to suppress metastasis of TNBC cells through targeting SHP-1/p-STAT3/VEGF-A axis. We found a significant correlation between cancer cell migration and SHP-1/p-STAT3/VEGF-A expression in human TNBC cells. Clinically, high VEGF-A expression is associated with worse disease-free and distant metastasis-free survival. Regorafenib induced significant anti-migratory effects, in association with downregulation of p-STAT3 and VEGF-A. To exclude the role of RTK inhibition in regorafenib-induced anti-metastasis, we synthesized a regorafenib derivative, SC-78, that had minimal effect on VEGFR2 and PDGFR kinase inhibition, while having more potent effects on SHP-1 activation. SC-78 demonstrated superior in vitro and in vivo anti-migration to regorafenib. Furthermore, VEGF-A dependent autocrine/paracrine loops were disrupted by regorafenib and SC-78. This study implies that SHP-1/p-STAT3/VEGF-A axis is a potential therapeutic target for metastatic TNBC, and the more potent SC-78 may be a promising lead for suppressing metastasis of TNBC. PMID:27364975

  17. Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis

    PubMed Central

    Su, Jung-Chen; Mar, Ai-Chung; Wu, Szu-Hsien; Tai, Wei-Tien; Chu, Pei-Yi; Wu, Chia-Yun; Tseng, Ling-Ming; Lee, Te-Chang; Chen, Kuen-Feng; Liu, Chun-Yu; Chiu, Hao-Chieh; Shiau, Chung-Wai

    2016-01-01

    Patients with triple-negative breast cancer (TNBC) had an increased likelihood of distant recurrence and death, as compared with those with non-TNBC subtype. Regorafenib is a multi-receptor tyrosine kinase (RTK) inhibitor targeting oncogenesis and has been approved for metastatic colorectal cancer and advanced gastrointestinal stromal tumor. Recent studies suggest regorafenib acts as a SHP-1 phosphatase agonist. Here, we investigated the potential of regorafenib to suppress metastasis of TNBC cells through targeting SHP-1/p-STAT3/VEGF-A axis. We found a significant correlation between cancer cell migration and SHP-1/p-STAT3/VEGF-A expression in human TNBC cells. Clinically, high VEGF-A expression is associated with worse disease-free and distant metastasis-free survival. Regorafenib induced significant anti-migratory effects, in association with downregulation of p-STAT3 and VEGF-A. To exclude the role of RTK inhibition in regorafenib-induced anti-metastasis, we synthesized a regorafenib derivative, SC-78, that had minimal effect on VEGFR2 and PDGFR kinase inhibition, while having more potent effects on SHP-1 activation. SC-78 demonstrated superior in vitro and in vivo anti-migration to regorafenib. Furthermore, VEGF-A dependent autocrine/paracrine loops were disrupted by regorafenib and SC-78. This study implies that SHP-1/p-STAT3/VEGF-A axis is a potential therapeutic target for metastatic TNBC, and the more potent SC-78 may be a promising lead for suppressing metastasis of TNBC. PMID:27364975

  18. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    PubMed

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27041449

  19. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    PubMed

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. PMID:27048878

  20. Post-translational modifications of nuclear receptors and human disease

    PubMed Central

    Anbalagan, Muralidharan; Huderson, Brandy; Murphy, Leigh; Rowan, Brian G.

    2012-01-01

    Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy’s Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments. PMID:22438791

  1. Modulation of steroid action in the central and peripheral nervous systems by nuclear receptor coactivators

    PubMed Central

    Tetel, Marc J.

    2009-01-01

    Steroid hormones act in the central and peripheral nervous systems to regulate a variety of functions, including development, cell proliferation, cognition and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the nuclear receptor superfamily of transcriptional activators. A variety of cell culture studies reveal that nuclear receptor coactivators are recruited to the steroid receptor complex and are critical in modulating steroid-dependent transcription. Thus, in addition to the availability of the hormone and its receptor, the expression of nuclear receptor coactivators is essential for modulating steroid receptor mediated transcription. This review will discuss the significance of nuclear receptor coactivators in modulating steroid-dependent gene expression in the central and peripheral nervous systems and the regulation of behavior. PMID:19541426

  2. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    NASA Astrophysics Data System (ADS)

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.

  3. Bile acid nuclear receptor FXR and digestive system diseases

    PubMed Central

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-01-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  4. Human Xenobiotic Nuclear Receptor PXR Augments Mycobacterium tuberculosis Survival.

    PubMed

    Bhagyaraj, Ella; Nanduri, Ravikanth; Saini, Ankita; Dkhar, Hedwin Kitdorlang; Ahuja, Nancy; Chandra, Vemika; Mahajan, Sahil; Kalra, Rashi; Tiwari, Drishti; Sharma, Charu; Janmeja, Ashok Kumar; Gupta, Pawan

    2016-07-01

    Mycobacterium tuberculosis can evade host defense processes, thereby ensuring its survival and pathogenesis. In this study, we investigated the role of nuclear receptor, pregnane X receptor (PXR), in M. tuberculosis infection in human monocyte-derived macrophages. In this study, we demonstrate that PXR augments M. tuberculosis survival inside the host macrophages by promoting the foamy macrophage formation and abrogating phagolysosomal fusion, inflammation, and apoptosis. Additionally, M. tuberculosis cell wall lipids, particularly mycolic acids, crosstalk with human PXR (hPXR) by interacting with its promiscuous ligand binding domain. To confirm our in vitro findings and to avoid the reported species barrier in PXR function, we adopted an in vivo mouse model expressing hPXR, wherein expression of hPXR in mice promotes M. tuberculosis survival. Therefore, pharmacological intervention and designing antagonists to hPXR may prove to be a promising adjunct therapy for tuberculosis. PMID:27233963

  5. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    PubMed Central

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors. PMID:26823026

  6. Bile acid nuclear receptor FXR and digestive system diseases.

    PubMed

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-03-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  7. Hepatocyte growth factor (HGF) signals through SHP2 to regulate primary mouse myoblast proliferation

    SciTech Connect

    Li, Ju; Reed, Sarah A.; Johnson, Sally E.

    2009-08-01

    Niche localized HGF plays an integral role in G{sub 0} exit and the return to mitotic activity of adult skeletal muscle satellite cells. HGF actions are regulated by MET initiated intracellular signaling events that include recruitment of SHP2, a protein tyrosine phosphatase. The importance of SHP2 in HGF-mediated signaling was examined in myoblasts and primary cultures of satellite cells. Myoblasts stably expressing SHP2 (23A2-SHP2) demonstrate increased proliferation rates by comparison to controls or myoblasts expressing a phosphatase-deficient SHP2 (23A2-SHP2DN). By comparison to 23A2 myoblasts, treatment of 23A2-SHP2 cells with HGF does not further increase proliferation rates and 23A2-SHP2DN myoblasts are unresponsive to HGF. Importantly, the effects of SHP2 are independent of downstream ERK1/2 activity as inclusion of PD98059 does not blunt the HGF-induced proliferative response. SHP2 function was further evaluated in primary satellite cell cultures. Ectopic expression of SHP2 in satellite cells tends to decrease proliferation rates and siSHP2 causes an increase the percentage of dividing myogenic cells. Interestingly, treatment of satellite cells with high concentrations of HGF (50 ng/ml) inhibits proliferation, which can be overcome by knockdown of SHP2. From these results, we conclude that HGF signals through SHP2 in myoblasts and satellite cells to directly alter proliferation rates.

  8. Characterization of DNA complexes formed by the nuclear receptor constitutive androstane receptor.

    PubMed

    Frank, Christian; Gonzalez, Manuel Macias; Oinonen, Carita; Dunlop, Thomas W; Carlberg, Carsten

    2003-10-31

    The nuclear receptor constitutive androstane receptor (CAR) acts as a xenobiotic sensor and regulates the expression of enzymes, such as several cytochromes P450s and the UDP-glucuronosyltransferase (UGT) type 1A1. CAR binds as a heterodimer with the retinoid X receptor (RXR) to specific DNA sites, called response elements (REs). Clusters of CAR REs, referred to as phenobarbital response enhancer modules (PBREMs), have been identified in several CAR target genes. In this study we confirm that REs formed by direct repeats of two AGTTCA hexamers with 4 spacing nucleotides are optimal for the binding of CAR-RXR heterodimers. In addition, we found that the heterodimers also form complexes on everted repeat-type arrangements with 8 spacing nucleotides. We also observed that CAR is able to bind DNA as a monomer and to interact in this form with different coregulators even in the presence of RXR. Systematic variation of the nucleotides 5'-flanking to both AGTTCA hexamers showed that the dinucleotide sequence modulates the DNA complex formation of CAR monomers and CAR-RXR heterodimer by a factor of up to 20. The highest preference was found for the sequence AG and lowest for CC. The increased DNA affinity of CAR is mediated by the positively charged arginines 90 and 91 located in the carboxyl-terminal extension of the DNA-binding domain of the receptor. Furthermore, we show that one of the three CAR REs of the human UGT1A1 PBREM is exclusively bound by CAR monomers and this is regulated by ligands that bind to this nuclear receptor. This points to a physiological role for CAR monomers. Therefore, both CAR-RXR heterodimers and CAR monomers can contribute to the gene activating function of PBREMs in CAR target genes. PMID:12896978

  9. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    EPA Science Inventory

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  10. Minireview: Nuclear Receptor and Coregulator Proteomics—2012 and Beyond

    PubMed Central

    Malovannaya, Anna; Qin, Jun

    2012-01-01

    The focus of our decade-long National Institutes of Health-sponsored NURSA Proteomics Atlas was to catalog and understand the composition of the steady-state interactome for all nuclear receptor coregulator complexes in a human cell. In this Perspective, we present a summary of the proteomics of coregulator complexes with examples of how one might use the NURSA data for future exploitation. The application of this information to the identification of the coregulator proteins that contribute to the molecular basis of polygenic diseases is emphasized. PMID:22745194

  11. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis

    PubMed Central

    Watson, Neva B.; Schneider, Karin M.; Massa, Paul T.

    2015-01-01

    Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the central nervous system causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator SHP-1, which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler’s murine encephalomyelitis virus infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification with loss of ambulation in wild type mice. Surprisingly, although similar extensive myofiber infection and inflammation is observed in SHP-1-deficient (SHP-1−/−) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1−/− muscle, and an increased infiltration of immature monocytes/macrophages correlated with absence of clinical disease in SHP-1−/− mice, while mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy. PMID:25681345

  12. Nuclear localization signal receptor importin alpha associates with the cytoskeleton.

    PubMed Central

    Smith, H M; Raikhel, N V

    1998-01-01

    Importin alpha is the nuclear localization signal (NLS) receptor that is involved in the nuclear import of proteins containing basic NLSs. Using importin alpha as a tool, we were interested in determining whether the cytoskeleton could function in the transport of NLS-containing proteins from the cytoplasm to the nucleus. Double-labeling immunofluorescence studies showed that most of the cytoplasmic importin alpha coaligned with microtubules and microfilaments in tobacco protoplasts. Treatment of tobacco protoplasts with microtubule- or microfilament-depolymerizing agents disrupted the strands of importin alpha in the cytoplasm, whereas a microtubule-stabilizing agent had no effect. Biochemical analysis showed that importin alpha associated with microtubules and microfilaments in vitro in an NLS-dependent manner. The interaction of importin alpha with the cytoskeleton could be an essential element of protein transport from the cytoplasm to the nucleus in vivo. PMID:9811789

  13. Dynamic correlation networks in human peroxisome proliferator-activated receptornuclear receptor protein.

    PubMed

    Fidelak, Jeremy; Ferrer, Silvia; Oberlin, Michael; Moras, Dino; Dejaegere, Annick; Stote, Roland H

    2010-10-01

    Peroxisome proliferator-activated receptornuclear receptor (PPAR-γ) belongs to the superfamily of nuclear receptor proteins that function as ligand-dependent transcription factors and plays a specific physiological role as a regulator of lipid metabolism. A number of experimental studies have suggested that allostery plays an important role in the functioning of PPAR-γ. Here we use normal-mode analysis of PPAR-γ to characterize a network of dynamically coupled amino acids that link physiologically relevant binding surfaces such as the ligand-dependent activation domain AF-2 with the ligand binding site and the heterodimer interface. Multiple calculations were done in both the presence and absence of the agonist rosiglitazone, and the differences in dynamics were characterized. The global dynamics of the ligand binding domain were affected by the ligand, and in particular, changes to the network of dynamically correlated amino acids were observed with only small changes in conformation. These results suggest that changes in dynamic couplings can be functionally significant with respect to the transmission of allosteric signals. PMID:20496064

  14. Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor

    SciTech Connect

    Kollara, Alexandra; Brown, Theodore J. . E-mail: brown@mshri.on.ca

    2006-07-28

    Aryl hydrocarbon receptor (AhR) transcriptional activity is enhanced by interaction with p160 coactivators. We demonstrate here that NcoA4, a nuclear receptor coactivator, interacts with and amplifies AhR action. NcoA4-AhR and NcoA4-ARNT interactions were demonstrated by immunoprecipitation in T47D breast cancer and COS cells and was independent of ligand. Overexpression of NcoA4 enhanced AhR transcriptional activity 3.2-fold in the presence of dioxin, whereas overexpression of a splice variant, NcoA4{beta}, as well as a variant lacking the C-terminal region enhanced AhR transcriptional activity by only 1.6-fold. Enhanced AhR signaling by NcoA4 was independent of the LXXLL and FXXLF motifs or of the activation domain. NcoA4 protein localized to cytoplasm in the absence of dioxin and in both the cytoplasm and nucleus following dioxin treatment. NcoA4-facilitation of AhR activity was abolished by overexpression of androgen receptor, suggesting a potential competition of AhR and androgen receptor for NcoA4. These findings thus demonstrate a functional interaction between NcoA4 and AhR that may alter AhR activity to affect disease development and progression.

  15. The Promiscuity of Allosteric Regulation of Nuclear Receptors by Retinoid X Receptor.

    PubMed

    Clark, Alexander K; Wilder, J Heath; Grayson, Aaron W; Johnson, Quentin R; Lindsay, Richard J; Nellas, Ricky B; Fernandez, Elias J; Shen, Tongye

    2016-08-25

    The promiscuous protein retinoid X receptor (RXR) displays essential allosteric regulation of several members in the nuclear hormone receptor superfamily via heterodimerization and (anti)cooperative binding of cognate ligands. Here, the structural basis of the positive allostery of RXR and constitutive androstane receptor (CAR) is revealed. In contrast, a similar computational approach had previously revealed the mechanism for negative allostery in the complex of RXR and thyroid receptor (TR). By comparing the positive and negative allostery of RXR complexed with CAR and TR respectively, we reported the promiscuous allosteric control involving RXR. We characterize the allosteric mechanism by expressing the correlated dynamics of selected residue-residue contacts which was extracted from atomistic molecular dynamics simulation and statistical analysis. While the same set of residues in the binding pocket of RXR may initiate the residue-residue interaction network, RXR uses largely different sets of contacts (only about one-third identical) and allosteric modes to regulate TR and CAR. The promiscuity of RXR control may originate from multiple factors, including (1) the frustrated fit of cognate ligand 9c to the RXR binding pocket and (2) the different ligand-binding features of TR (loose) versus CAR (tight) to their corresponding cognate ligands. PMID:27110634

  16. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    PubMed Central

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-01-01

    Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway. PMID:26839216

  17. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  18. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2.

    PubMed

    Breitkopf, Susanne B; Yang, Xuemei; Begley, Michael J; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A; Hong, Pengyu; Kontaridis, Maria I; Cantley, Lewis C; Perrimon, Norbert; Asara, John M

    2016-01-01

    Using a series of immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway. PMID:26839216

  19. Who’s in charge? Nuclear receptor coactivator and corepressor function in brain and behavior

    PubMed Central

    Tetel, Marc J.; Auger, Anthony P.; Charlier, Thierry D.

    2009-01-01

    Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior. PMID:19401208

  20. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney.

    PubMed

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  1. Role of nuclear receptors in breast cancer stem cells.

    PubMed

    Papi, Alessio; Orlandi, Marina

    2016-03-26

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  2. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney

    PubMed Central

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  3. The role of nuclear hormone receptors in cutaneous wound repair

    PubMed Central

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S.

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25529612

  4. Role of nuclear receptors in breast cancer stem cells

    PubMed Central

    Papi, Alessio; Orlandi, Marina

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  5. Deciphering the nuclear bile acid receptor FXR paradigm

    PubMed Central

    Modica, Salvatore; Gadaleta, Raffaella M.; Moschetta, Antonio

    2010-01-01

    Originally called retinoid X receptor interacting protein 14 (RIP14), the farnesoid X receptor (FXR) was renamed after the ability of its rat form to bind supra-physiological concentrations of farnesol. In 1999 FXR was de-orphanized since primary bile acids were identified as natural ligands. Strongly expressed in the liver and intestine, FXR has been shown to be the master transcriptional regulator of several entero-hepatic metabolic pathways with relevance to the pathophysiology of conditions such as cholestasis, fatty liver disease, cholesterol gallstone disease, intestinal inflammation and tumors. Furthermore, given the importance of FXR in the gut-liver axis feedbacks regulating lipid and glucose homeostasis, FXR modulation appears to have great input in diseases such as metabolic syndrome and diabetes. Exciting results from several cellular and animal models have provided the impetus to develop synthetic FXR ligands as novel pharmacological agents. Fourteen years from its discovery, FXR has gone from bench to bedside; a novel nuclear receptor ligand is going into clinical use. PMID:21383957

  6. Immunological quantitation of nuclear steroid receptors to optimize the biological classification of breast tumors.

    PubMed

    Díez-Gibert, O; Huguet, J; Rosel, P; Bonnín, M R; Navarro, M A

    1998-01-01

    We used immunological methods to determine cytosolic and nuclear steroid receptors to evaluate the advantages of nuclear receptor measurement in the selection of breast cancer patients for treatment. Around 75% of tumors showed coincidence between nuclear and cytosolic receptors (+/+ or -/-) for estrogen receptor (ER) and for progesterone receptor (PgR). Only cytosolic receptors were detected in around 20% of tumors. Distributed in the ER/PgR phenotypes according to the nuclear or cytosolic receptors, 64% of tumors remained in the same subgroup, whereas 16% of tumors were classified as hormone dependent according to cytosolic and independent according to nuclear receptors, which could be considered as 'false-positive' results. 6% of tumors would be classified as negative according to cytosolic receptors but positive according to nuclear receptors and would correspond to 'false-negative' results by conventional methods. Cytosolic receptor results may overrate the hormone dependence and cause some 'misclassifications' of patients. This could partially explain the lack of response to therapy in some cases. PMID:9679731

  7. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  8. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function.

    PubMed

    Priyanka; Kotiya, Deepak; Rana, Manjul; Subbarao, N; Puri, Niti; Tyagi, Rakesh K

    2016-01-15

    Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the nuclear receptor superfamily of ligand-modulated transcription factors. PXR plays an important role in metabolism and elimination of diverse noxious endobiotics and xenobiotics. Like in case of some nuclear receptors its function may also be differentially altered, positively or negatively, by various post-translational modifications. In this context, regulation of PXR function by SUMOylation is the subject of present investigation. Here, we report that human PXR is modified by SUMO-1 resulting in its enhanced transcriptional activity. RT-PCR analysis showed that PXR SUMOylation in presence of rifampicin also enhances the endogenous expression levels of key PXR-regulated genes like CYP3A4, CYP2C9, MDR1 and UGT1A1. In addition, mammalian two-hybrid assay exhibited enhanced interaction between PXR and co-activator SRC-1. EMSA results revealed that SUMOylation has no influence on the DNA binding ability of PXR. In silico analysis suggested that PXR protein contains four putative SUMOylation sites, centered at K108, K129, K160 and K170. In addition to this, we identified the presence of NDSM (Negative charge amino acid Dependent SUMOylation Motif) in PXR. Substitution of all its four putative lysine residues along with NDSM abolished the effect of SUMO-1-mediated transactivation function of PXR. Furthermore, we show that interaction between PXR and E2-conjugation enzyme UBCh9, an important step for implementation of SUMOylation event, was reduced in case of NDSM mutant PXRD115A. Overall, our results suggest that SUMOylation at specific sites on PXR protein are involved in enhancement of transcription function of this receptor. PMID:26549688

  9. Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2

    PubMed Central

    Xia, L-x; Hua, W; Jin, Y; Tian, B-p; Qiu, Z-w; Zhang, C; Che, L-q; Zhou, H-b; Wu, Y-f; Huang, H-q; Lan, F; Ke, Y-h; Lee, J J; Li, W; Ying, S-m; Chen, Z-h; Shen, H-h

    2016-01-01

    SHP2 participates in multiple signaling events by mediating T-cell development and function, and regulates cytokine-dependent granulopoiesis. To explore whether and how SHP2 can regulate bone-marrow eosinophil differentiation, we investigate the contribution of SHP2 in the bone-marrow eosinophil development in allergic mice. Blockade of SHP2 function by SHP2 inhibitor PHPS-1 or conditional shp2 knockdown by adenovirus-inhibited bone-marrow-derived eosinophil differentiation in vitro, with no detectable effects on the apoptosis of eosinophils. Furthermore, SHP2 induced eosinophil differentiation via regulation of the extracellular signal-regulated kinase pathway. Myeloid shp2 conditional knockout mice (LysMcreshp2flox/flox) failed to induce eosinophilia as well as airway hyper-responsiveness. The SHP2 inhibitor PHPS-1 also alleviated eosinophilic airway inflammation and airway hyper-responsiveness, accompanied by significantly reduced levels of systemic eosinophils and eosinophil lineage-committed progenitors in allergic mice. We demonstrate that inhibition of eosinophil development is SHP2-dependent and SHP2 is sufficient to promote eosinophil formation in vivo. Our data reveal SHP2 as a critical regulator of eosinophil differentiation, and inhibition of SHP2 specifically in myeloid cells alleviates allergic airway inflammation. PMID:27054330

  10. Identification of two functional nuclear localization signals mediating nuclear import of liver receptor homologue-1.

    PubMed

    Yang, Feng-Ming; Lin, Yu-Chi; Hu, Meng-Chun

    2011-04-01

    Liver receptor homologue-1 (LRH-1) is a member of the nuclear receptor superfamily. We characterized two functional nuclear localization signals (NLSs) in LRH-1. NLS1 (residues 117-168) overlaps the second zinc finger in the DNA binding domain. Mutagenesis showed that the zinc finger structure and two basic clusters on either side of the zinc finger loop are critical for nuclear import of NLS1. NLS2 (residues 169-204) is located in the Ftz-F1 box that contains a bipartite signal. In full-length LRH-1, mutation of either NLS1 or NLS2 had no effect on nuclear localization, but disruption of both NLS1 and NLS2 resulted in the cytoplasmic accumulation of LRH-1. Either NLS1 or NLS2 alone was sufficient to target LRH-1 to the nucleus. Both NLS1 and NLS2 mediate nuclear transport by a mechanism involving importin α/β. Finally, we showed that three crucial basic clusters in the NLSs are involved in the DNA binding and transcriptional activities of LRH-1. PMID:20853131

  11. SHP-1 and IL-1α conspire to provoke neutrophilic dermatoses

    PubMed Central

    Lukens, John R; Kanneganti, Thirumala-Devi

    2014-01-01

    Neutrophilic dermatoses are a spectrum of autoinflammatory skin disorders that are characterized by extensive infiltration of neutrophils into the epidermis and dermis. The underlining biological pathways that are responsible for this heterogeneous group of cutaneous diseases have remained elusive. However, recent work from our laboratory and other groups has shown that missense mutations in Ptpn6, which encodes for the non-receptor protein tyrosine phosphatase Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1), results in a skin disease with many of the major histopathological and clinical features that encompass neutrophilic dermatoses in humans. In particular, we found that loss-of-function mutation in Ptpn6 results in unremitting footpad swelling, suppurative inflammation, and neutrophilia. Dysregulated wound healing responses were discovered to contribute to chronic inflammatory skin disease in SHP-1 defective mice and genetic abrogation of interleukin-1 receptor (IL-1R) protected mice from cutaneous inflammation, suggesting that IL-1-mediated events potentiate disease. Surprisingly, inflammasome activation and IL-1β-mediated events were dispensable for Ptpn6spin-mediated footpad disease. Instead, RIP1-mediated regulation of IL-1α was identified to be the major driver of inflammation and tissue damage. PMID:25054090

  12. Bmal1 is a direct transcriptional target of the orphan nuclear receptor, NR2F1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orphan nuclear receptor NR2F1 (also known as COUP-TFI, Chicken Ovalbumin Upstream Promoter Transcription Factor I) is a highly conserved member of the nuclear receptor superfamily. NR2F1 plays a critical role during embryonic development, particularly in the central and peripheral nervous systems a...

  13. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis

    PubMed Central

    Hyter, Stephen; Indra, Arup K

    2013-01-01

    Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management. PMID:23395795

  14. Identification of Farnesoid X Receptor β as a Novel Mammalian Nuclear Receptor Sensing Lanosterol

    PubMed Central

    Otte, Kerstin; Kranz, Harald; Kober, Ingo; Thompson, Paul; Hoefer, Michael; Haubold, Bernhard; Remmel, Bettina; Voss, Hartmut; Kaiser, Carmen; Albers, Michael; Cheruvallath, Zaccharias; Jackson, David; Casari, Georg; Koegl, Manfred; Pääbo, Svante; Mous, Jan; Kremoser, Claus; Deuschle, Ulrich

    2003-01-01

    Nuclear receptors are ligand-modulated transcription factors. On the basis of the completed human genome sequence, this family was thought to contain 48 functional members. However, by mining human and mouse genomic sequences, we identified FXRβ as a novel family member. It is a functional receptor in mice, rats, rabbits, and dogs but constitutes a pseudogene in humans and primates. Murine FXRβ is widely coexpressed with FXR in embryonic and adult tissues. It heterodimerizes with RXRα and stimulates transcription through specific DNA response elements upon addition of 9-cis-retinoic acid. Finally, we identified lanosterol as a candidate endogenous ligand that induces coactivator recruitment and transcriptional activation by mFXRβ. Lanosterol is an intermediate of cholesterol biosynthesis, which suggests a direct role in the control of cholesterol biosynthesis in nonprimates. The identification of FXRβ as a novel functional receptor in nonprimate animals sheds new light on the species differences in cholesterol metabolism and has strong implications for the interpretation of genetic and pharmacological studies of FXR-directed physiologies and drug discovery programs. PMID:12529392

  15. The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation.

    PubMed

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-05-22

    Estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRalpha is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRgamma in osteoblast differentiation. Here, we showed that ERRgamma is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRgamma reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRgamma expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRgamma plays an important role in osteoblast differentiation. In addition, ERRgamma significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRgamma physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRgamma strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRgamma is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  16. The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation*

    PubMed Central

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T.; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-01-01

    Estrogen receptor-related receptor γ (ERRγ/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRα is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRγ in osteoblast differentiation. Here, we showed that ERRγ is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRγ reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRγ expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRγ plays an important role in osteoblast differentiation. In addition, ERRγ significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRγ physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRγ strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRγ is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  17. Nuclear receptors and metabolism: from feast to famine.

    PubMed

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs. PMID:24619218

  18. Nuclear receptors and AMPK: can exercise mimetics cure diabetes?

    PubMed

    Wall, Christopher E; Yu, Ruth T; Atkins, Anne R; Downes, Michael; Evans, Ronald M

    2016-07-01

    Endurance exercise can lead to systemic improvements in insulin sensitivity and metabolic homeostasis, and is an effective approach to combat metabolic diseases. Pharmacological compounds that recapitulate the beneficial effects of exercise, also known as 'exercise mimetics', have the potential to improve disease symptoms of metabolic syndrome. These drugs, which can increase energy expenditure, suppress hepatic gluconeogenesis, and induce insulin sensitization, have accordingly been highly scrutinized for their utility in treating metabolic diseases including diabetes. Nevertheless, the identity of an efficacious exercise mimetic still remains elusive. In this review, we highlight several nuclear receptors and cofactors that are putative molecular targets for exercise mimetics, and review recent studies that provide advancements in our mechanistic understanding of how exercise mimetics exert their beneficial effects. We also discuss evidence from clinical trials using these compounds in human subjects to evaluate their efficacy in treating diabetes. PMID:27106806

  19. 9-cis-retinoic acid improves sensitivity to platelet-derived growth factor-BB via RXRα and SHP-1 in diabetic retinopathy.

    PubMed

    Chen, Yu; Wang, Wen; Liu, Fen; Tang, Luosheng; Tang, Renhong; Li, Wenjie

    2015-10-01

    Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus. But few efficient therapeutic methods have been reported. This study discussed the functions of 9-cis-retinoic acid (9-cis-RA) in sensitizing retinal pericytes to platelet-derived growth factor (PDGF)-BB. Using streptozotocin (STZ)-induced diabetic mice and high glucose-treated bovine retinal pericytes (BRPC), we analyzed the impacts of 9-cis-RA by detecting cell apoptosis via DNA fragmentation assay and detecting related factors through adenovirus or lentivirus infection and western blot. Results showed that in retinas of STZ-induced diabetic mice, 9-cis-RA significantly inhibited expression of SHP-1 (P < 0.01), thus promoting p-AKT and p-ERK1/2, which reflected the improved sensitivity to PDGF-BB. In BRPC, 9-cis-RA also improved sensitivity to PDGF-BB and suppressed cell apoptosis (P < 0.01) via down-regulating SHP-1. Further mechanism analyses showed that the efficient functioning of 9-cis-RA relied on the existence of its receptor, retinoic X receptor α (RXRα), independent of the previous reported protein kinase C delta (PKCδ)/SHP-1 axis. Because 9-cis-RA could not inhibit SHP-1 or improve sensitivity to PDGF-BB when RXRα was knocked down, while it still suppressed SHP-1 after overexpression of PKCδ. Taken together, these results indicated the vital roles of 9-cis-RA in improving sensitivity to PDGF-BB of retinal pericytes in DR, and provided basic evidences of new therapeutic targets like RXRα for further DR treatment. PMID:26310807

  20. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling.

    PubMed

    Noda, Saori; Takahashi, Atsushi; Hayashi, Takeru; Tanuma, Sei-ichi; Hatakeyama, Masanori

    2016-01-22

    SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylated parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin. PMID:26742426

  1. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    PubMed Central

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    2016-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  2. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    PubMed

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S

    2016-01-01

    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3×10(-5)mol/L and GW0742 IC50 4.9×10(-6)mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5)mol/L), beraprost (10(-5)mol/L) and GW0742 (10(-5)mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors. PMID:26686607

  3. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility.

    PubMed

    Zhu, Jing-Xu; Cao, Gaoyuan; Williams, James T; Delisser, Horace M

    2010-10-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in endothelial cell motility during angiogenesis. Although there is evidence that SHP-2 plays a role in PECAM-1-dependent cell motility, the molecular basis of the activity of SHP-2 in this process has not been defined. To investigate the requirement of SHP-2 in PECAM-1-dependent cell motility, studies were done in which various constructs of SHP-2 were expressed in cell transfectants expressing PECAM-1. We observed that the levels of PECAM-1 tyrosine phosphorylation and SHP-2 association with PECAM-1 were significantly increased in cells expressing a phosphatase-inactive SHP-2 mutant, suggesting that the level of PECAM-1 tyrosine phosphorylation, and thus SHP-2 binding are regulated in part by bound, catalytically active SHP-2. We subsequently found that expression of PECAM-1 stimulated wound-induced migration and the formation of filopodia (a morphological feature of motile cells). These activities were associated with increased mitogen-activated protein kinase (MAPK) activation and the dephosphorylation of paxillin (an event implicated in the activation of MAPK). The phosphatase-inactive SHP-2 mutant, however, suppressed these PECAM-1-dependent phenomena, whereas the activity of PECAM-1 expressing cells was not altered by expression of wild-type SHP-2 or SHP-2 in which the scaffold/adaptor function had been disabled. Pharmacological inhibition of SHP-2 phosphatase activity also suppressed PECAM-1-dependent motility. Furthermore, PECAM-1 expression also stimulates tube formation, but none of the SHP-2 constructs affected this process. These findings therefore suggest a model for the involvement of SHP-2 in PECAM-1-dependent motility in which SHP-2, recruited by its interaction with PECAM-1, targets paxillin to ultimately activate the MAPK pathway and downstream events required for cell motility. PMID:20631249

  4. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells

    PubMed Central

    Abedin, S. Asad; Thorne, James L.; Battaglia, Sebastiano; Maguire, Orla; Hornung, Laura B.; Doherty, Alan P.; Mills, Ian G.; Campbell, Moray J.

    2009-01-01

    Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) γ and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARγ, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription–polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARγ and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced. PMID:19126649

  5. Current in vitro high throughput screening approaches to assess nuclear receptor activation.

    PubMed

    Raucy, Judy L; Lasker, Jerome M

    2010-11-01

    The screening of new drug candidates for nuclear receptor activation can identify agents with the potential to produce drug-drug interactions or elicit adverse drug effects. The nuclear receptors of interest are those that control the expression of drug metabolizing enzymes and drug transporters, and include the constitutive androstane receptor (CAR, NR1I3), the pregnane X receptor (PXR, NR1I2) and the aryl hydrocarbon receptor (AhR). This review will focus on the methods currently used to assess activation of these receptors. Assessment of nuclear receptor activation can be accomplished using direct or indirect approaches. Indirect methods quantify specific gene products that result from nuclear receptor activation while direct approaches measure either the binding of ligands to the receptors or the transcriptional events produced by ligand binding. Assays that directly quantify nuclear receptor activation are growing in popularity and, importantly, are amenable to high throughput screening (HTS). Several ligand binding assays are currently being utilized, including radioligand competition binding, where compounds compete with radiolabelled ligand for binding to PXR or CAR, such as the scintillation proximity binding assay that measures the reaction of ligands with receptor-coated beads. A fluorescence resonance energy transfer assay has also been developed, where the fluorescent signal is generated via the ligand-dependent interaction between the fluorescently-labeled ligand binding domain of a nuclear receptor and co-activator proteins. Other in vitro activation assays include transient- and stably-transfected cell lines incorporating an expression vector for PXR, CAR or AhR plus a reporter gene vector containing response elements. The methods focused on in this review will be limited to the more direct in vitro approaches that are amenable to high throughput screening. PMID:21189134

  6. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-06-22

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  7. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    PubMed Central

    Li, Guodong; L. Guo, Grace

    2015-01-01

    The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration. PMID:26579433

  8. Orphan Nuclear Receptor Estrogen-Related Receptor γ (ERRγ) Is Key Regulator of Hepatic Gluconeogenesis*

    PubMed Central

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-01-01

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  9. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective

    PubMed Central

    Wallace, Bret D.; Redinbo, Matthew R.

    2016-01-01

    Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs. PMID:23210723

  10. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR

    PubMed Central

    2013-01-01

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism. PMID:22414897

  11. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  12. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  13. [The Biological Function of SHP2 in Human Disease].

    PubMed

    Li, S M

    2016-01-01

    Tyrosyl phosphorylation participates in various pathological and physiological processes, which are regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). The Src homology-2 domain containing phosphatase SHP2 (encoded by PTPN11) is an important phosphatase, which was found to be implicated in the regulation of genetic disease, development, metabolic, neurological, muscle, skeletal disease and cancer. Germline mutations in PTPN11 cause the Noonan Syndrome, LEOPARD syndrome and metachondromatosis. Somatic PTPN11 mutations occur in hematologic malignancies and in solid tumors. SHP2 is also an important component in oncogenic signaling pathways. It may play different roles in different stages and positions of human cancers. Whether SHP2 is an oncogene or cancer suppressor gene remains to be elucidated. Elucidation of the regulatory mechanisms of SHP2 in human disease will provide new insights into disease and new targets for therapy. Here, we summarized the structural basis and recent research progression on SHP2 in various human disease, including genetic and cancer diseases. PMID:27028808

  14. ATP-dependent release of glucocorticoid receptors from the nuclear matrix.

    PubMed Central

    Tang, Y; DeFranco, D B

    1996-01-01

    Glucocorticoid receptors (GRs) have the capacity to shuttle between the nuclear and cytoplasmic compartments, sharing that trait with other steroid receptors and unrelated nuclear proteins of diverse function. Although nuclear import of steroid receptors, like that of nearly all other karyophilic proteins examined to date, requires ATP, there appear to be different energetic requirements for export of proteins, including steroid receptors, from nuclei. In an attempt to reveal which steps, if any, in the nuclear export pathway utilized by steroid receptors require ATP, we have used indirect immunofluorescence to visualize GRs within cells subjected to a reversible ATP depletion. Under conditions which lead to >95% depletion of cellular ATP levels within 90 min, GRs remain localized within nuclei and do not efflux into the cytoplasm. Under analogous conditions of ATP depletion, transfected progesterone receptors are also retained within nuclei. Importantly, GRs which accumulate within nuclei of ATP-depleted cells are distinguished from nuclear receptors in metabolically active cells by their resistance to in situ extraction with a hypotonic, detergent-containing buffer. GRs in ATP-depleted cells are not permanently trapped in this nuclear compartment, as nuclear receptors rapidly regain their capacity to be extracted upon restoration of cellular ATP, even in the absence of de novo protein synthesis. More extensive extraction of cells with high salt and detergent, coupled with DNase I digestion, established that a significant fraction of GRs in ATP-depleted cells are associated with an RNA-containing nuclear matrix. Quantitative Western blot (immunoblot) analysis confirmed the dramatic increase in GR binding to the nuclear matrix of ATP-depleted cells, while confocal microscopy revealed that GRs are bound to the matrix throughout all planes of the nucleus. ATP depletion does not lead to wholesale collapse of nuclear proteins onto the matrix, as the interaction of a

  15. Road to Exercise Mimetics: Targeting Nuclear Receptors in Skeletal Muscle

    PubMed Central

    Fan, Weiwei; Atkins, Annette R; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.

    2014-01-01

    Skeletal muscle comprises the largest organ in the human body and is the major site for energy expenditure. It exhibits remarkable plasticity in response to physiological stimuli such as exercise. Physical exercise remodels skeletal muscle and enhances its capability to burn calories, which has been shown to be beneficial for many clinical conditions including metabolic syndrome and cancer. Nuclear receptors (NRs) comprise a class of transcription factors found only in metazoans that regulate major biological processes such as reproduction, development, and metabolism. Recent studies have demonstrated crucial roles for NRs and their co-regulators in regulating skeletal muscle energy metabolism and exercise-induced muscle remodeling. While nothing can fully replace exercise, development of exercise mimetics that enhance or even substitute for the beneficial effects of physical exercise would be of great benefit. The unique property of NRs that allows modulation by endogenous or synthetic ligands makes them bona fide therapeutic targets. In this review, we present an overview of the current understanding of NRs and their co-regulators in skeletal muscle oxidative metabolism and summarize recent progress in the development of exercise mimetics that target NRs and their co-regulators. PMID:24280961

  16. Nuclear receptor coregulators: modulators of pathology and therapeutic targets

    PubMed Central

    Lonard, David M.; O’Malley, Bert W.

    2013-01-01

    The nuclear receptor superfamily includes transcription factors that transduce steroid, thyroid and retinoid hormones and other ligands in conjunction with coregulators. To date, over 350 coregulators have been reported in the literature, and advances in proteomic analyses of coregulator protein complexes have revealed that a far greater number of coregulator-interacting proteins also exist. Coregulator dysfunction has been implicated in diverse pathological states, genetic syndromes and cancer. A hallmark of disease related to the disruption of normal coregulator function is the pleiotropic effect on animal physiology, which is frequently manifested as the dysregulation of metabolic and neurological systems. Coregulators have broad physiological and pathological functions that make them promising new drug targets for diseases such as hormone-dependent cancers. Advances in proteomics, genomics and transcriptomics have provided novel insights into the biology of coregulators at a system-wide level and will lead the way to a new understanding of how coregulators can be evaluated in the context of complex and multifaceted genetic factors, hormones, diet, the environment and stress. Ultimately, better knowledge of the associations that exist between coregulator function and human diseases is expected to expand the indications for the use of future coregulator-targeted drugs. PMID:22733267

  17. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  18. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    PubMed Central

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Background Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. Methods RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Results Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Conclusion Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue. PMID:12559052

  19. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  20. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  1. LASSO-ing Potential Nuclear Receptor Agonists and Antagonists: A New Computational Method for Database Screening

    EPA Science Inventory

    Nuclear receptors (NRs) are important biological macromolecular transcription factors that are implicated in multiple biological pathways and may interact with other xenobiotics that are endocrine disruptors present in the environment. Examples of important NRs include the androg...

  2. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    EPA Science Inventory

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  3. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers.

    PubMed Central

    Chen, J D; Umesono, K; Evans, R M

    1996-01-01

    Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8755515

  4. Identification of liver receptor homolog-1 as a novel regulator of apolipoprotein AI gene transcription.

    PubMed

    Delerive, Philippe; Galardi, Cristin M; Bisi, John E; Nicodeme, Edwige; Goodwin, Bryan

    2004-10-01

    The orphan nuclear receptor liver receptor homolog-1 (LRH-1) has been reported to play a role in bile acid biosynthesis and reverse cholesterol transport. In this study, we examined the role of LRH-1 in the regulation of the apolipoprotein AI (APOAI) gene. Using RNA interference and adenovirus-mediated overexpression, we show that LRH-1 directly regulates APOAI gene transcription. Transient transfection experiments and EMSAs revealed that LRH-1 directly regulates APOAI transcription by binding to an LRH-1 response element located in the proximal APOAI promoter region. Chromatin immunoprecipitation experiments revealed that LRH-1 binds to the human APO AI promoter in vivo. Finally, we show that the transcriptional repressor SHP (small heterodimer partner) suppressed APOAI gene expression by inhibiting LRH-1 transcriptional activity. Taken together, our results demonstrate that LRH-1 is a novel regulator of APOAI transcription and underscore the role of this receptor in cholesterol homeostasis. PMID:15218078

  5. Nuclear receptors of the honey bee: annotation and expression in the adult brain

    PubMed Central

    Velarde, Rodrigo A; Robinson, Gene E; Fahrbach, Susan E

    2006-01-01

    The Drosophila genome encodes 18 canonical nuclear receptors. All of the Drosophila nuclear receptors are here shown to be present in the genome of the honey bee (Apis mellifera). Given that the time since divergence of the Drosophila and Apis lineages is measured in hundreds of millions of years, the identification of matched orthologous nuclear receptors in the two genomes reveals the fundamental set of nuclear receptors required to ‘make’ an endopterygote insect. The single novelty is the presence in the A. mellifera genome of a third insect gene similar to vertebrate photoreceptor-specific nuclear receptor (PNR). Phylogenetic analysis indicates that this novel gene, which we have named AmPNR-like, is a new member of the NR2 subfamily not found in the Drosophila or human genomes. This gene is expressed in the developing compound eye of the honey bee. Like their vertebrate counterparts, arthropod nuclear receptors play key roles in embryonic and postembryonic development. Studies in Drosophila have focused primarily on the role of these transcription factors in embryogenesis and metamorphosis. Examination of an expressed sequence tag library developed from the adult bee brain and analysis of transcript expression in brain using in situ hybridization and quantitative RT-PCR revealed that several members of the nuclear receptor family (AmSVP, AmUSP, AmERR, AmHr46, AmFtz-F1, and AmHnf-4) are expressed in the brain of the adult bee. Further analysis of the expression of AmUSP and AmSVP in the mushroom bodies, the major insect brain centre for learning and memory, revealed changes in transcript abundance and, in the case of AmUSP, changes in transcript localization, during the development of foraging behaviour in the adult. Study of the honey bee therefore provides a model for understanding nuclear receptor function in the adult brain. PMID:17069634

  6. The HR97 (NR1L) Group of Nuclear Receptors: A New Group up of Nuclear Receptors Discovered in Daphnia species

    PubMed Central

    Li, Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2014-01-01

    The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups. PMID:25092536

  7. The xenobiotic-sensing nuclear receptors pregnane X receptor, constitutive androstane receptor, and orphan nuclear receptor hepatocyte nuclear factor 4alpha in the regulation of human steroid-/bile acid-sulfotransferase.

    PubMed

    Echchgadda, Ibtissam; Song, Chung S; Oh, Taesung; Ahmed, Mohamed; De La Cruz, Isidro John; Chatterjee, Bandana

    2007-09-01

    The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are the primary transcription factors coordinating induced expression of the enzymes and proteins directing oxidative, conjugative, and transport phases of endobiotic and xenobiotic metabolism, whereas hepatocyte nuclear factor 4alpha (HNF4alpha), a regulator of hepatic lipid homeostasis, can modify the PXR/CAR response. Steroid- and bile acid-sulfotransferase (SULT2A1) promotes phase II metabolism through its sulfonating action on certain endobiotics, including steroids and bile acids, and on diverse xenobiotics, including therapeutic drugs. This study describes characterization of a PXR- and CAR-inducible composite element in the human SULT2A1 promoter and its synergistic interaction with HNF4alpha. Inverted and direct repeats of AG(G/T)TCA (IR2 and DR4), both binding to PXR and CAR, define the composite element. Differential recognition of the composite element by PXR and CAR is evident because single-site mutation at either IR2 or DR4 in the natural gene abolished the PXR response, whereas mutations at both repeats were necessary to abrogate completely the CAR response. The composite element conferred xenobiotic response to a heterologous promoter, and the cognate ligands induced PXR and CAR recruitment to the chromatin-associated response region. An HNF4alpha element adjacent to the -30 position enhanced basal promoter activity. Although functioning as a synergizer, the HNF4alpha element was not essential for the PXR/CAR response. An emerging role of SULT2A1 in lipid and caloric homeostasis suggests that illumination on the regulatory interactions driving human SULT2A1 expression may reveal new avenues to control certain metabolic disorders. PMID:17595319

  8. Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4.

    PubMed

    Lin, Shin-Jen; Zhang, Yanqing; Liu, Ning-Chun; Yang, Dong-Rong; Li, Gonghui; Chang, Chawnshang

    2014-06-01

    Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus. It has been shown to play important roles in cerebellar development, forebrain myelination, folliculogenesis, gluconeogenesis, lipogenesis, muscle development, bone development, and prostate cancer progression. Here we provide a comprehensive summary of TR4 signaling including its upstream ligands/activators/suppressors, transcriptional coactivators/repressors, downstream targets, and their in vivo functions with potential impacts on TR4-related diseases. Importantly, TR4 shares similar ligands/activators with another key nuclear receptor, peroxisome proliferator-activated receptor γ, which raised several interesting questions about how these 2 nuclear receptors may collaborate with or counteract each other's function in their related diseases. Clear dissection of such molecular mechanisms and their differential roles in various diseases may help researchers to design new potential drugs with better efficacy and fewer side effects to battle TR4 and peroxisome proliferator-activated receptor γ involved diseases. PMID:24702179

  9. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate.

    PubMed

    Tyagi, R K; Amazit, L; Lescop, P; Milgrom, E; Guiochon-Mantel, A

    1998-11-01

    Steroid hormone receptors are, in most cases, mainly nuclear proteins that undergo a continuous nucleocytoplasmic shuttling. The mechanism of the nuclear export of these proteins remains largely unknown. To approach this problem experimentally in vivo, we have prepared cell lines permanently coexpressing the wild-type nuclear progesterone receptor (PR) and a cytoplasmic receptor mutant deleted of its nuclear localization signal (NLS) [(deltaNLS)PR]. Each receptor species was deleted from the epitope recognized by a specific monoclonal antibody, thus allowing separated observation of the two receptor forms in the same cells. Administration of hormone provoked formation of heterodimers during nucleocytoplasmic shuttling and import of (deltaNLS)PR into the nucleus. Washing out of the hormone allowed us to follow the export of (deltaNLS)PR into the cytoplasm. Microinjection of BSA coupled to a NLS inhibited the export of (deltaNLS)PR. On the contrary, microinjection of BSA coupled to a nuclear export signal (NES) was without effect. Moreover, leptomycin B, which inhibits NES-mediated export, was also without effect. tsBN2 cells contain a thermosensitive RCC1 protein (Ran GTP exchange protein). At the nonpermissive temperature, the nuclear export of (deltaNLS)PR could be observed, whereas the export of NES-BSA was suppressed. Microinjection of GTPgammaS confirmed that the export of (deltaNLS)PR was not dependent on GTP hydrolysis. These experiments show that the nuclear export of PR is not NES mediated but probably involves the NLS. It does not involve Ran GTP, and it is not dependent on the hydrolysis of GTP. The nucleocytoplasmic shuttling of steroid hormone receptors thus appears to utilize mechanisms different from those previously described for some viral, regulatory, and heterogeneous ribonuclear proteins. PMID:9817595

  10. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. PMID:23180608

  11. How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands

    SciTech Connect

    Jiang, Ying-Ying; Kong, De-Xin; Qin, Tao; Zhang, Hong-Yu

    2010-01-08

    It is well known that oxygen rise greatly facilitated biological evolution. However, the underlying mechanisms remain elusive. Recently, Raymond and Segre revealed that molecular oxygen allows 1000 more metabolic reactions than can occur in anoxic conditions. From the novel metabolites produced in aerobic metabolism, we serendipitously found that some of the metabolites are signaling molecules that target nuclear receptors. Since nuclear signaling systems are indispensable to superior organisms, we speculated that aerobic metabolism may facilitate biological evolution through promoting the establishment of nuclear signaling systems. This hypothesis is validated by the observation that most (97.5%) nuclear receptor ligands are produced by aerobic metabolism, which is further explained in terms of the chemical criteria (appropriate volume and rather high hydrophobicity) of nuclear receptor ligands that aerobic metabolites are more ready than anaerobic counterparts to satisfy these criteria.

  12. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking

    PubMed Central

    Hellmuth, Klaus; Grosskopf, Stefanie; Lum, Ching Tung; Würtele, Martin; Röder, Nadine; von Kries, Jens Peter; Rosario, Marta; Rademann, Jörg; Birchmeier, Walter

    2008-01-01

    The protein tyrosine phosphatase Shp2 is a positive regulator of growth factor signaling. Gain-of-function mutations in several types of leukemia define Shp2 as a bona fide oncogene. We performed a high-throughput in silico screen for small-molecular-weight compounds that bind the catalytic site of Shp2. We have identified the phenylhydrazonopyrazolone sulfonate PHPS1 as a potent and cell-permeable inhibitor, which is specific for Shp2 over the closely related tyrosine phosphatases Shp1 and PTP1B. PHPS1 inhibits Shp2-dependent cellular events such as hepatocyte growth factor/scatter factor (HGF/SF)-induced epithelial cell scattering and branching morphogenesis. PHPS1 also blocks Shp2-dependent downstream signaling, namely HGF/SF-induced sustained phosphorylation of the Erk1/2 MAP kinases and dephosphorylation of paxillin. Furthermore, PHPS1 efficiently inhibits activation of Erk1/2 by the leukemia-associated Shp2 mutant, Shp2-E76K, and blocks the anchorage-independent growth of a variety of human tumor cell lines. The PHPS compound class is therefore suitable for further development of therapeutics for the treatment of Shp2-dependent diseases. PMID:18480264

  13. Transcriptomine, a web resource for nuclear receptor signaling transcriptomes.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; McOwiti, Apollo; Xu, Xueping; Darlington, Yolanda F; Dehart, Michael D; Cooney, Austin J; Steffen, David L; Becnel, Lauren B; McKenna, Neil J

    2012-09-01

    The nuclear receptor (NR) superfamily of ligand-regulated transcription factors directs ligand- and tissue-specific transcriptomes in myriad developmental, metabolic, immunological, and reproductive processes. The NR signaling field has generated a wealth of genome-wide expression data points, but due to deficits in their accessibility, annotation, and integration, the full potential of these studies has not yet been realized. We searched public gene expression databases and MEDLINE for global transcriptomic datasets relevant to NRs, their ligands, and coregulators. We carried out extensive, deep reannotation of the datasets using controlled vocabularies for RNA Source and regulating molecule and resolved disparate gene identifiers to official gene symbols to facilitate comparison of fold changes and their significance across multiple datasets. We assembled these data points into a database, Transcriptomine (http://www.nursa.org/transcriptomine), that allows for multiple, menu-driven querying strategies of this transcriptomic "superdataset," including single and multiple genes, Gene Ontology terms, disease terms, and uploaded custom gene lists. Experimental variables such as regulating molecule, RNA Source, as well as fold-change and P value cutoff values can be modified, and full data records can be either browsed or downloaded for downstream analysis. We demonstrate the utility of Transcriptomine as a hypothesis generation and validation tool using in silico and experimental use cases. Our resource empowers users to instantly and routinely mine the collective biology of millions of previously disparate transcriptomic data points. By incorporating future transcriptome-wide datasets in the NR signaling field, we anticipate Transcriptomine developing into a powerful resource for the NR- and other signal transduction research communities. PMID:22786849

  14. The nuclear receptor NR2E1/TLX controls senescence

    PubMed Central

    Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M.; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2014-01-01

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumours including glioblastomas. Despite NR2E1 regulating targets like p21CIP1 or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that Polycomb repressive complexes (PRC) also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the Polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16INK4a and direct repression of p21CIP1. In addition NR2E1 expression also counteracts oncogene-induced senescence (OIS). The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of Polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer. PMID:25328137

  15. Origin and evolution of the ligand-binding ability of nuclear receptors.

    PubMed

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  16. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors. PMID:26610729

  17. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    PubMed Central

    Powell, Emily; Kuhn, Peter; Xu, Wei

    2007-01-01

    Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators. PMID:17389765

  18. Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease

    PubMed Central

    Swaroop, Anand

    2012-01-01

    Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342

  19. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    PubMed Central

    Vázquez, Mary Carmen; Rigotti, Attilio; Zanlungo, Silvana

    2012-01-01

    Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition. PMID:22132343

  20. Nuclear receptor coactivators: Regulators of steroid action in brain and behavior

    PubMed Central

    Tetel, Marc J.; Acharya, Kalpana D.

    2013-01-01

    Steroid hormones act in specific regions of the brain to alter behavior and physiology. While it has been well established that the bioavailability of the steroid and the expression of its receptor is critical to understanding steroid action in brain, the importance of nuclear receptor coactivators in brain is becoming more apparent. This review will focus on the function of the p160 family of coactivators, which includes steroid receptor coactivator-1 (SRC-1), SRC-2 and SRC-3, in steroid receptor action in brain. The expression, regulation and function of these coactivators in steroid-dependent gene expression in brain and behavior will be discussed. PMID:23795583

  1. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes.

    PubMed

    Yin, Kelvin; Smith, Aaron G

    2016-10-01

    The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis. PMID:27544210

  2. Hepatocyte nuclear factor-4α, a multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism.

    PubMed

    Tavares-Sanchez, Olga Lidia; Rodriguez, Carmen; Gortares-Moroyoqui, Pablo; Estrada, Maria Isabel

    2015-01-01

    Cardiovascular diseases (CVDs), the leading cause of death worldwide, are associated with high plasma cholesterol levels. The conversion of cholesterol to bile acids (BAs) accounts for about 50% of total cholesterol elimination from the body. This phenomenon occurs in the liver and is regulated by nuclear receptors such as hepatocyte nuclear factor-4α (HNF-4α). Therefore, special emphasis is given to HNF-4α properties and its multifunctional role, particularly in the conversion of cholesterol to BAs. HNF-4α is a highly conserved transcription factor that has the potential capacity to transactivate a vast number of genes, including CYP7 which codes for cholesterol 7α-hydroxylase (CYP7A1; EC 1.14.13.17), the rate-limiting enzyme of BA biosynthesis. The fact that HNF-4α transactivation potential can be modulated via phosporylation is of particular interest. Additional findings on structural and functional characteristics of HNF-4α may eventually present alternatives to control the levels of cholesterol in the body and consequently reduce the risk of CVDs. PMID:24848804

  3. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  4. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes that regulate osteoclast development and function under physiological and disease conditions remain incompletely understood. Shp2, a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, was implicated in regulating M-CSF and RANKL-evoked signaling, its role in osteoclastogenesis an...

  5. Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics

    PubMed Central

    Huang, Pengxiang; Chandra, Vikas; Rastinejad, Fraydoon

    2013-01-01

    As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity. PMID:20148675

  6. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1.

    PubMed

    Lo, Hui-Wen; Ali-Seyed, Mohamed; Wu, Yadi; Bartholomeusz, Geoffrey; Hsu, Sheng-Chieh; Hung, Mien-Chie

    2006-08-15

    Many receptor tyrosine kinases (RTKs) can be detected in the cell nucleus, such as EGFR, HER-2, HER-3, HER-4, and fibroblast growth factor receptor. EGFR, HER-2 and HER-4 contain transactivational activity and function as transcription co-factors to activate gene promoters. High EGFR in tumor nuclei correlates with increased tumor proliferation and poor survival in cancer patients. However, the mechanism by which cell-surface EGFR translocates into the cell nucleus remains largely unknown. Here, we found that EGFR co-localizes and interacts with importins alpha1/beta1, carriers that are critical for macromolecules nuclear import. EGFR variant mutated at the nuclear localization signal (NLS) is defective in associating with importins and in entering the nuclei indicating that EGFR's NLS is critical for EGFR/importins interaction and EGFR nuclear import. Moreover, disruption of receptor internalization process using chemicals and forced expression of dominant-negative Dynamin II mutant suppressed nuclear entry of EGFR. Additional evidences suggest an involvement of endosomal sorting machinery in EGFR nuclear translocalization. Finally, we found that nuclear export of EGFR may involve CRM1 exportin as we detected EGFR/CRM1 interaction and markedly increased nuclear EGFR following exposure to leptomycin B, a CRM1 inhibitor. Collectively, these data suggest the importance of receptor endocytosis, endosomal sorting machinery, interaction with importins alpha1/beta1, and exportin CRM1 in EGFR nuclear-cytoplasmic trafficking. Together, our work sheds light into the nature and regulation of the nuclear EGFR pathway and provides a plausible mechanism by which cells shuttle cell-surface EGFR and potentially other RTKs through the nuclear pore complex and into the nuclear compartment. PMID:16552725

  7. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    PubMed Central

    Olsson, Per-Erik; Berg, A Håkan; von Hofsten, Jonas; Grahn, Birgitta; Hellqvist, Anna; Larsson, Anders; Karlsson, Johnny; Modig, Carina; Borg, Bertil; Thomas, Peter

    2005-01-01

    Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal. PMID:16107211

  8. Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock

    PubMed Central

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-01-01

    Summary Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  9. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock.

    PubMed

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-06-01

    Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  10. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells.

    PubMed

    Cattaneo, Fabio; Parisi, Melania; Fioretti, Tiziana; Sarnataro, Daniela; Esposito, Gabriella; Ammendola, Rosario

    2016-08-01

    Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS. PMID:27177968

  11. Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus

    PubMed Central

    Wang, Jianxun; Zeng, Li-Fan; Bronson, Roderick; Finnell, Michele; Terhorst, Cox; Kyttaris, Vasileios C.; Zhang, Zhong-Yin; Kontaridis, Maria I.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a devastating multisystemic autoimmune disorder. However, the molecular mechanisms underlying its pathogenesis remain elusive. Some patients with Noonan syndrome, a congenital disorder predominantly caused by gain-of-function mutations in the protein tyrosine phosphatase SH2 domain–containing PTP (SHP2), have been shown to develop SLE, suggesting a functional correlation between phosphatase activity and systemic autoimmunity. To test this directly, we measured SHP2 activity in spleen lysates isolated from lupus-prone MRL/lpr mice and found it was markedly increased compared with that in control mice. Similar increases in SHP2 activity were seen in peripheral blood mononuclear cells isolated from lupus patients relative to healthy patients. To determine whether SHP2 alters autoimmunity and related immunopathology, we treated MRL/lpr mice with an SHP2 inhibitor and found increased life span, suppressed crescentic glomerulonephritis, reduced spleen size, and diminished skin lesions. SHP2 inhibition also reduced numbers of double-negative T cells, normalized ERK/MAPK signaling, and decreased production of IFN-γ and IL-17A/F, 2 cytokines involved in SLE-associated organ damage. Moreover, in cultured human lupus T cells, SHP2 inhibition reduced proliferation and decreased production of IFN-γ and IL-17A/F, further implicating SHP2 in lupus-associated immunopathology. Taken together, these data identify SHP2 as a critical regulator of SLE pathogenesis and suggest targeting of its activity as a potent treatment for lupus patients. PMID:27183387

  12. Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes

    PubMed Central

    Yun, Ji Hee; Park, Soo Jung; Jo, Ara; Jou, Ilo; Park, Jung Soo

    2011-01-01

    Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin-1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin-1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress. PMID:21918362

  13. SHP2E76K mutant promotes lung tumorigenesis in transgenic mice

    PubMed Central

    Schneeberger, Valentina E.; Luetteke, Noreen; Ren, Yuan; Berns, Hartmut; Chen, Liwei; Foroutan, Parastou; Martinez, Gary V.; Haura, Eric B.; Chen, Jiandong; Coppola, Domenico; Wu, Jie

    2014-01-01

    Lung cancer is a major disease carrying heterogeneous molecular lesions and many of them remain to be analyzed functionally in vivo. Gain-of-function (GOF) SHP2 (PTPN11) mutations have been found in various types of human cancer, including lung cancer. However, the role of activating SHP2 mutants in lung cancer has not been established. We generated transgenic mice containing a doxycycline (Dox)-inducible activating SHP2 mutant (tetO-SHP2E76K) and analyzed the role of SHP2E76K in lung tumorigenesis in the Clara cell secretory protein (CCSP)-reverse tetracycline transactivator (rtTA)/tetO-SHP2E76K bitransgenic mice. SHP2E76K activated Erk1/Erk2 (Erk1/2) and Src, and upregulated c-Myc and Mdm2 in the lungs of bitransgenic mice. Atypical adenomatous hyperplasia and small adenomas were observed in CCSP-rtTA/tetO-SHP2E76K bitransgenic mice induced with Dox for 2–6 months and progressed to larger adenoma and adenocarcinoma by 9 months. Dox withdrawal from bitransgenic mice bearing magnetic resonance imaging-detectable lung tumors resulted in tumor regression. These results show that the activating SHP2 mutant promotes lung tumorigenesis and that the SHP2 mutant is required for tumor maintenance in this mouse model of non-small cell lung cancer. SHP2E76K was associated with Gab1 in the lung of transgenic mice. Elevated pGab1 was observed in the lung of Dox-induced CCSP-rtTA/tetO-SHP2E76K mice and in cell lines expressing SHP2E76K, indicating that the activating SHP2 mutant autoregulates tyrosine phosphorylation of its own docking protein. Gab1 tyrosine phosphorylation is sensitive to inhibition by the Src inhibitor dasatinib in GOF SHP2-mutant-expressing cells, suggesting that Src family kinases are involved in SHP2 mutant-induced Gab1 tyrosine phosphorylation. PMID:24480804

  14. SHP2E76K mutant promotes lung tumorigenesis in transgenic mice.

    PubMed

    Schneeberger, Valentina E; Luetteke, Noreen; Ren, Yuan; Berns, Hartmut; Chen, Liwei; Foroutan, Parastou; Martinez, Gary V; Haura, Eric B; Chen, Jiandong; Coppola, Domenico; Wu, Jie

    2014-08-01

    Lung cancer is a major disease carrying heterogeneous molecular lesions and many of them remain to be analyzed functionally in vivo. Gain-of-function (GOF) SHP2 (PTPN11) mutations have been found in various types of human cancer, including lung cancer. However, the role of activating SHP2 mutants in lung cancer has not been established. We generated transgenic mice containing a doxycycline (Dox)-inducible activating SHP2 mutant (tetO-SHP2(E76K)) and analyzed the role of SHP2(E76K) in lung tumorigenesis in the Clara cell secretory protein (CCSP)-reverse tetracycline transactivator (rtTA)/tetO-SHP2(E76K) bitransgenic mice. SHP2(E76K) activated Erk1/Erk2 (Erk1/2) and Src, and upregulated c-Myc and Mdm2 in the lungs of bitransgenic mice. Atypical adenomatous hyperplasia and small adenomas were observed in CCSP-rtTA/tetO-SHP2(E76K) bitransgenic mice induced with Dox for 2-6 months and progressed to larger adenoma and adenocarcinoma by 9 months. Dox withdrawal from bitransgenic mice bearing magnetic resonance imaging-detectable lung tumors resulted in tumor regression. These results show that the activating SHP2 mutant promotes lung tumorigenesis and that the SHP2 mutant is required for tumor maintenance in this mouse model of non-small cell lung cancer. SHP2(E76K) was associated with Gab1 in the lung of transgenic mice. Elevated pGab1 was observed in the lung of Dox-induced CCSP-rtTA/tetO-SHP2(E76K) mice and in cell lines expressing SHP2(E76K), indicating that the activating SHP2 mutant autoregulates tyrosine phosphorylation of its own docking protein. Gab1 tyrosine phosphorylation is sensitive to inhibition by the Src inhibitor dasatinib in GOF SHP2-mutant-expressing cells, suggesting that Src family kinases are involved in SHP2 mutant-induced Gab1 tyrosine phosphorylation. PMID:24480804

  15. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    PubMed

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone. PMID:26373709

  16. SHP2-Deficiency in Chondrocytes Deforms Orofacial Cartilage and Ciliogenesis in Mice.

    PubMed

    Kamiya, Nobuhiro; Shen, Jingling; Noda, Kazuo; Kitami, Megumi; Feng, Gen-Sheng; Chen, Di; Komatsu, Yoshihiro

    2015-11-01

    Congenital orofacial abnormalities are clinically seen in human syndromes with SHP2 germline mutations such as LEOPARD and Noonan syndrome. Recent studies demonstrate that SHP2-deficiency leads to skeletal abnormalities including scoliosis and cartilaginous benign tumor metachondromatosis, suggesting that growth plate cartilage is a key tissue regulated by SHP2. The role and cellular mechanism of SHP2 in the orofacial cartilage, however, remains unknown. Here, we investigated the postnatal craniofacial development by inducible disruption of Shp2 in chondrocytes. Shp2 conditional knockout (cKO) mice displayed severe deformity of the mandibular condyle accompanied by disorganized, expanded cartilage in the trabecular bone region, enhanced type X collagen, and reduced Erk production. Interestingly, the length of primary cilia, an antenna like organelle sensing environmental signaling, was significantly shortened, and the number of primary cilia was reduced in the cKO mice. The expression levels of intraflagellar transports (IFTs), essential molecules in the assembly and function of primary cilia, were significantly decreased. Taken together, lack of Shp2 in orofacial cartilage led to severe defects of ciliogenesis through IFT reduction, resulting in mandibular condyle malformation and cartilaginous expansion. Our study provides new insights into the molecular pathogenesis of SHP2-deficiency in cartilage and helps to understand orofacial and skeletal manifestations seen in patients with SHP2 mutations. PMID:25919282

  17. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs

    PubMed Central

    Scott, Latanya M.; Chen, Liwei; Daniel, Kenyon G.; Brooks, Wesley H.; Guida, Wayne C.; Lawrence, Harshani R.; Sebti, Said M.; Lawrence, Nicholas J.; Wu, Jie

    2010-01-01

    Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17- phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triperpenoids, enoxolone and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors. PMID:21193311

  18. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers.

    PubMed

    Roshan-Moniri, Mani; Hsing, Michael; Butler, Miriam S; Cherkasov, Artem; Rennie, Paul S

    2014-12-01

    Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers. PMID:25455729

  19. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease.

    PubMed

    Fuchs, Claudia D; Traussnigg, Stefan A; Trauner, Michael

    2016-02-01

    Nuclear receptors (NRs) are ligand-activated transcriptional regulators of several key metabolic processes including hepatic lipid and glucose metabolism, bile acid homeostasis, and energy expenditure as well as inflammation, fibrosis, and cellular proliferation in the liver. Dysregulation of these processes contributes to the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). This places NRs at the forefront of novel therapeutic approaches for NAFLD. Some NRs are already pharmacologically targeted in metabolic disorders such as hyperlipidemia (peroxisomal proliferator-activated receptor α [PPARα], fibrates) and diabetes (PPARγ, glitazones) with potential applications for NAFLD. Other NRs with potential therapeutic implications are the vitamin D receptor (VDR) and xenobiotic sensors such as constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Further new perspectives include combined ligands for NR isoforms such as PPARα/δ ligands. Other novel key players represent the nuclear bile acid receptor farnesoid X receptor (FXR; targeted by synthetic FXR ligands such as obeticholic acid) and RAR-related orphan receptor gamma two (RORγt). In this review the authors provide an overview of the preclinical and clinical evidence of current and future treatment strategies targeting NRs in metabolism, inflammation, and fibrogenesis of NAFLD. PMID:26870934

  20. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures.

    PubMed

    Smith, L Cody; Ralston-Hooper, Kimberly J; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-06-01

    Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor's role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens. PMID:27026707

  1. Regulation of hERG and hEAG channels by Src and by SHP-1 tyrosine phosphatase via an ITIM region in the cyclic nucleotide binding domain.

    PubMed

    Schlichter, Lyanne C; Jiang, Jiahua; Wang, John; Newell, Evan W; Tsui, Florence W L; Lam, Doris

    2014-01-01

    Members of the EAG K(+) channel superfamily (EAG/Kv10.x, ERG/Kv11.x, ELK/Kv12.x subfamilies) are expressed in many cells and tissues. In particular, two prototypes, EAG1/Kv10.1/KCNH1 and ERG1/Kv11.1/KCNH2 contribute to both normal and pathological functions. Proliferation of numerous cancer cells depends on hEAG1, and in some cases, hERG. hERG is best known for contributing to the cardiac action potential, and for numerous channel mutations that underlie 'long-QT syndrome'. Many cells, particularly cancer cells, express Src-family tyrosine kinases and SHP tyrosine phosphatases; and an imbalance in tyrosine phosphorylation can lead to malignancies, autoimmune diseases, and inflammatory disorders. Ion channel contributions to cell functions are governed, to a large degree, by post-translational modulation, especially phosphorylation. However, almost nothing is known about roles of specific tyrosine kinases and phosphatases in regulating K(+) channels in the EAG superfamily. First, we show that tyrosine kinase inhibitor, PP1, and the selective Src inhibitory peptide, Src40-58, reduce the hERG current amplitude, without altering its voltage dependence or kinetics. PP1 similarly reduces the hEAG1 current. Surprisingly, an 'immuno-receptor tyrosine inhibitory motif' (ITIM) is present within the cyclic nucleotide binding domain of all EAG-superfamily members, and is conserved in the human, rat and mouse sequences. When tyrosine phosphorylated, this ITIM directly bound to and activated SHP-1 tyrosine phosphatase (PTP-1C/PTPN6/HCP); the first report that a portion of an ion channel is a binding site and activator of a tyrosine phosphatase. Both hERG and hEAG1 currents were decreased by applying active recombinant SHP-1, and increased by the inhibitory substrate-trapping SHP-1 mutant. Thus, hERG and hEAG1 currents are regulated by activated SHP-1, in a manner opposite to their regulation by Src. Given the widespread distribution of these channels, Src and SHP-1, this work

  2. Regulation of hERG and hEAG Channels by Src and by SHP-1 Tyrosine Phosphatase via an ITIM Region in the Cyclic Nucleotide Binding Domain

    PubMed Central

    Schlichter, Lyanne C.; Jiang, Jiahua; Wang, John; Newell, Evan W.; Tsui, Florence W. L.; Lam, Doris

    2014-01-01

    Members of the EAG K+ channel superfamily (EAG/Kv10.x, ERG/Kv11.x, ELK/Kv12.x subfamilies) are expressed in many cells and tissues. In particular, two prototypes, EAG1/Kv10.1/KCNH1 and ERG1/Kv11.1/KCNH2 contribute to both normal and pathological functions. Proliferation of numerous cancer cells depends on hEAG1, and in some cases, hERG. hERG is best known for contributing to the cardiac action potential, and for numerous channel mutations that underlie ‘long-QT syndrome’. Many cells, particularly cancer cells, express Src-family tyrosine kinases and SHP tyrosine phosphatases; and an imbalance in tyrosine phosphorylation can lead to malignancies, autoimmune diseases, and inflammatory disorders. Ion channel contributions to cell functions are governed, to a large degree, by post-translational modulation, especially phosphorylation. However, almost nothing is known about roles of specific tyrosine kinases and phosphatases in regulating K+ channels in the EAG superfamily. First, we show that tyrosine kinase inhibitor, PP1, and the selective Src inhibitory peptide, Src40-58, reduce the hERG current amplitude, without altering its voltage dependence or kinetics. PP1 similarly reduces the hEAG1 current. Surprisingly, an ‘immuno-receptor tyrosine inhibitory motif’ (ITIM) is present within the cyclic nucleotide binding domain of all EAG-superfamily members, and is conserved in the human, rat and mouse sequences. When tyrosine phosphorylated, this ITIM directly bound to and activated SHP-1 tyrosine phosphatase (PTP-1C/PTPN6/HCP); the first report that a portion of an ion channel is a binding site and activator of a tyrosine phosphatase. Both hERG and hEAG1 currents were decreased by applying active recombinant SHP-1, and increased by the inhibitory substrate-trapping SHP-1 mutant. Thus, hERG and hEAG1 currents are regulated by activated SHP-1, in a manner opposite to their regulation by Src. Given the widespread distribution of these channels, Src and SHP-1, this

  3. Sulfotransferase genes: Regulation by nuclear receptors in response to xeno/endo-biotics

    PubMed Central

    Kodama, Susumu; Negishi, Masahiko

    2014-01-01

    Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures. PMID:24025090

  4. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.

    PubMed

    Huang, Wendong; Ma, Ke; Zhang, Jun; Qatanani, Mohammed; Cuvillier, James; Liu, Jun; Dong, Bingning; Huang, Xiongfei; Moore, David D

    2006-04-14

    Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor-dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth. PMID:16614213

  5. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  6. Shp2 suppresses the adipogenic differentiation of preadipocyte 3T3-L1 cells at an early stage

    PubMed Central

    Tao, J; Zheng, L; Meng, M; Li, Y; Lu, Z

    2016-01-01

    Tyrosine phosphatase protein Shp2 is a potential therapeutic target for obesity. However, the mechanism of Shp2 during adipogenesis is not fully understood. The present study investigated the role of Shp2 in the terminal differentiation of preadipocytes. The results showed that Shp2 suppressed adipocyte differentiation in 3T3-L1 cells; overexpression of Shp2 reduced lipid droplet production in 3T3-L1 cells, whereas Shp2 knockdown increased lipid droplet production in 3T3-L1 cells. Furthermore, inhibition of Shp2 activity also enhanced adipocyte differentiation. Interestingly, Shp2 expression was specifically decreased early during differentiation in response to stimulation with the dexamethasone–methylisobutylxanthine–insulin (DMI) hormone cocktail. During the first 2 days of differentiation, Shp2 overexpression impaired the DMI-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in 3T3-L1 cells and blocked the peak expression of CCAAT/enhancer-binding proteins β and δ during preadipocyte differentiation. In conclusion, Shp2 downregulated the early stages of hormone-induced differentiation of 3T3-L1 cells and inhibited the expression of the first wave of transcription factors by suppressing the DMI-induced STAT3 signaling pathway. These discoveries point to a novel role of Shp2 during adipogenesis and support the hypothesis that Shp2 could be a therapeutic target for the control of obesity. PMID:27551539

  7. A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism.

    PubMed

    Ekins, Sean; Kirillov, Eugene; Rakhmatulin, Eugene A; Nikolskaya, Tatiana

    2005-03-01

    The increasing generation of biological data represents a challenge to understanding the complexity of systems, resulting in scientists increasingly focused on a relatively narrow area of study, thereby limiting insight that can be gained from a broader perspective. In the field of drug metabolism and toxicology we are witnessing the characterization of many proteins. Most of the key enzymes and transporters are recognized as transcriptionally regulated by the nuclear hormone receptors such as pregnane X receptor, constitutive androstane receptor, vitamin D receptor, glucocorticoid receptor, and others. There is apparent cross talk in regulation, since multiple receptors may modulate expression of a single enzyme or transporter, representing one of many areas of active research interest. We have used published data on nuclear hormone receptors, enzymes, ligands, and other biological information to manually annotate an Oracle database, forming the basis of a platform for querying (MetaDrug). Using algorithms, we have demonstrated how nuclear hormone receptors alone can form a network of direct interactions, and when expanded, this network increases in complexity to describe the interactions with target genes as well as small molecules known to bind a receptor, enzyme, or transporter. We have also described how the database can be used for visualizing high-throughput microarray data derived from a published study of MCF-7 cells treated with 4-hydroxytamoxifen, to highlight potential downstream effects of molecule treatment. The database represents a novel knowledge mining and analytical tool that, to be relevant, requires continual updating to evolve alongside other key storage systems and sources of biological knowledge. PMID:15608136

  8. Xenobiotic-sensing nuclear receptors CAR and PXR as drug targets in cholestatic liver disease.

    PubMed

    Kakizaki, Satoru; Takizawa, Daichi; Tojima, Hiroki; Yamazaki, Yuichi; Mori, Masatomo

    2009-11-01

    Cholestasis results in the intrahepatic retention of cytotoxic bile acid and it can thus lead to liver injury and/or liver fibrosis. Cholestatic liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms including a complex network of drug metabolizing enzymes and transporters. During the last decade, much progress has been made in dissecting the mechanisms which regulate the hepatic xeno- and endobiotic metabolism by nuclear receptors. The xenobiotic receptors CAR and PXR are two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from the endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. Ligands for both receptors, including phenobarbital, have already been used to treat cholestatic liver diseases before the mechanisms of these receptors were revealed. Furthermore, Yin Zhi Huang, a traditional Chinese herbal medicine, which has been used to prevent and treat neonatal jaundice, was identified to be a CAR ligand which also accelerates bilirubin clearance. Therefore, CAR and PXR have a protective effect on cholestasis by activating both detoxification enzymes and transporters. As a result, novel compounds targeting CAR and PXR with specific effects and fewer side effects will therefore be useful for the treatment of cholestatic liver diseases. This article will review the current knowledge on xenobiotic-sensing nuclear receptors CAR and PXR, while also discussing their potential role in the treatment of cholestatic liver diseases. PMID:19925451

  9. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    PubMed

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure. PMID:23676496

  10. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism

    PubMed Central

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C.; Lai, Ling; Leone, Teresa C.; Vega, Rick B.; Xie, Hui; Conley, Kevin E.; Auwerx, Johan; Smith, Steven R.; Olson, Eric N.; Kralli, Anastasia; Kelly, Daniel P.

    2013-01-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure. PMID:23676496

  11. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease

    PubMed Central

    Wooton-Kee, Clavia Ruth; Jain, Ajay K.; Wagner, Martin; Grusak, Michael A.; Finegold, Milton J.; Lutsenko, Svetlana; Moore, David D.

    2015-01-01

    Wilson’s disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of complications, including steatosis, cholestasis, cirrhosis, and liver failure. Similar to patients with WD, Atp7b–/– mice have markedly elevated levels of hepatic copper and liver pathology. Previous studies have demonstrated that replacement of zinc in the DNA-binding domain of the estrogen receptor (ER) with copper disrupts specific binding to DNA response elements. Here, we found decreased binding of the nuclear receptors FXR, RXR, HNF4α, and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target genes in Atp7b–/– mice, as well as in adult and pediatric WD patients. Excessive hepatic copper has been described in progressive familial cholestasis (PFIC), and we found that similar to individuals with WD, patients with PFIC2 or PFIC3 who have clinically elevated hepatic copper levels exhibit impaired nuclear receptor activity. Together, these data demonstrate that copper-mediated nuclear receptor dysfunction disrupts liver function in WD and potentially in other disorders associated with increased hepatic copper levels. PMID:26241054

  12. Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation.

    PubMed

    Labelle, Y; Zucman, J; Stenman, G; Kindblom, L G; Knight, J; Turc-Carel, C; Dockhorn-Dworniczak, B; Mandahl, N; Desmaze, C; Peter, M

    1995-12-01

    A recurrent t(9;22) (q22;q12) chromosome translocation has been described in extraskeletal myxoid chondrosarcoma (EMC). Fluorescent in situ hybridization experiments performed on one EMC tumour indicated that the chromosome 22 breakpoint occurred in the EWS gene. Northern blot analysis revealed an aberrant EWS transcript which is cloned by a modified RT-PCR procedure. This transcript consists of an in-frame fusion of the 5' end of EWS to a previously unidentified gene, which was named TEC. This fusion transcript was detected in six of eight EMC studied, and three different junction types between the two genes were found. In all junction types, the putative translation product contained the amino-terminal transactivation domain of EWS linked to the entire TEC protein. Homology analysis showed that the predicted TEC protein contains a DNA-binding domain characteristic of nuclear receptors. The highest identity scores were observed with the NURR1 family of orphan nuclear receptors. These receptors are involved in the control of cell proliferation and differentiation by modulating the response to growth factors and retinoic acid. This work provides, after the PML/RAR alpha gene fusion, the second example of the oncogenic conversion of a nuclear receptor and the first example involving the orphan subfamily. Analysis of the disturbance induced by the EWS/TEc protein in the nuclear receptor network and their target genes may lead to new approaches for EMC treatment. PMID:8634690

  13. The pERK of being a target: Kinase regulation of the orphan nuclear receptor ERRγ

    PubMed Central

    Riggins, Rebecca B.

    2015-01-01

    Estrogen-related receptors (ERRs) are orphan members of the nuclear receptor superfamily that are important regulators of mitochondrial metabolism with emerging roles in cancer. In the absence of an endogenous ligand, ERRs are reliant upon other regulatory mechanisms that include protein/protein interactions and post-translational modification, though the cellular and clinical significance of this latter mechanism is unclear. We recently published a study in which we establish estrogen-related receptor gamma (ERRγ) as a target for extracellular signal-regulated kinase (ERK), and show that regulation of ERRγ by ERK has important consequences for the function of this receptor in cellular models of estrogen receptor-positive (ER+) breast cancer. In this Research Highlight, we discuss the implications of these findings from a molecular and clinical perspective. PMID:26005698

  14. Development of a peptide-based inducer of nuclear receptors degradation.

    PubMed

    Demizu, Yosuke; Ohoka, Nobumichi; Nagakubo, Takaya; Yamashita, Hiroko; Misawa, Takashi; Okuhira, Keiichiro; Naito, Mikihiko; Kurihara, Masaaki

    2016-06-01

    A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation. PMID:27086122

  15. Insights into monocyte-driven osteoclastogenesis and its link with hematopoiesis: regulatory roles of PECAM-1 (CD31) and SHP-1.

    PubMed

    Wu, Yue; Madri, Joseph

    2010-01-01

    Osteoclasts are derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclastogenesis is orchestrated by the migration of monocytic osteoclast progenitor cells in close proximity to bone surfaces destined for resorption. Although the overall roles of monocyte migratory behavior in osteoclastogenesis remain enigmatic, impaired monocyte migration can lead to either decreased or increased osteoclastogenesis, which appears contingent upon the roles of migration in either fusion events required for osteoclast formation or terminal differentiation of osteoclasts. The cell adhesion molecule PECAM-1 (platelet endothelial cell adhesion molecule 1), in concert with the tyrosine phosphatase SHP-1 (Src homology 2-containing protein tyrosine phosphatase 1) and tyrosine kinase Syk-1 (spleen tyrosine kinase 1), functions as a negative regulator of osteoclastogenesis. Both PECAM-1 (CD31) and SHP-1 knockout mice exhibit not only increased osteoclastogenesis but also abnormal hematopoiesis, which is suggestive of the intricate interplay between hematopoiesis and osteoclastogenesis. Interestingly, the most pronounced effect of PECAM-1 deficiency on hematopoiesis is reflected by excessive megakaryocytopoiesis. Emerging data have suggested the role of megakaryocytes in bone remodeling. Megakaryocytopoiesis-osteoclastogenesis interactions are discussed herein, reconciling the discrepancies shown by different studies in this area. PECAM-1 and non-receptor tyrosine phosphatase polymorphisms have been revealed in a spectrum of diseases. The complex regulatory roles of PECAM-1 and SHP-1 in vivo suggest the potential utilization of polymorphisms of these genes for diagnostic purposes. PMID:21083524

  16. Shp2 regulates chlorogenic acid-induced proliferation and adipogenic differentiation of bone marrow-derived mesenchymal stem cells in adipogenesis.

    PubMed

    Zhou, Rong-Ping; Deng, Ming-Tao; Chen, Lan-Ying; Fang, Ning; Du, Chuan; Chen, Lin-Pan; Zou, Ye-Qing; Dai, Jiang-Hua; Zhu, Mei-Lan; Wang, Wei; Lin, Si-Jian; Liu, Rong-Hua; Luo, Jun

    2015-06-01

    Chlorogenic acid (CGA) exhibits various biological properties, including the inhibition of oxidation, obesity, apoptosis and tumorigenesis. CGA is also able to promote cell survival and proliferation. The aim of the present study was to determine the effects and underlying molecular mechanisms of CGA on the adipogenesis of bone marrow‑derived mesenchymal stem cells (BMSCs). Treatment with CGA had a marginal effect on cell proliferation, by promoting the expression levels of phosphorylated Akt and cyclin D1. Furthermore, treatment with CGA also upregulated the phosphorylation of extracellular signal‑regulated kinase (Erk) and inhibited the adipocyte differentiation of BMSCs by inhibiting the expression of peroxisome proliferator‑activated receptor (PPAR)γ and CCAAT/enhancer binding protein (C/EBP)α. However, knockdown of the expression of Shp2 attenuated CGA‑induced proliferation and inhibited the phosphorylation of Akt and expression of cyclin D1. Furthermore, CGA treatment upregulated Erk phosphorylation and decreased the expression levels of PPARγ and CEBPα, which was inhibited by treatment with the Shp2 PTPase activity inhibitor, NSC‑87877. The results of the present study suggested that CGA‑induced Akt and Erk pathways regulate proliferation and differentiation and that Shp2 is important in the proliferation and differentiation of BMSCs. PMID:25634525

  17. Importin alpha: a multipurpose nuclear-transport receptor.

    PubMed

    Goldfarb, David S; Corbett, Anita H; Mason, D Adam; Harreman, Michelle T; Adam, Stephen A

    2004-09-01

    The importin alpha/beta heterodimer targets hundreds of proteins to the nuclear-pore complex (NPC) and facilitates their translocation across the nuclear envelope. Importin alpha binds to classical nuclear localization signal (cNLS)-containing proteins and links them to importin beta, the karyopherin that ferries the ternary complex through the NPC. A second karyopherin, the exportin CAS, recycles importin alpha back to the cytoplasm. In this article, we discuss control mechanisms that importin alpha exerts over the assembly and disassembly of the ternary complex and we describe how new groups of importin alpha genes arose during the evolution of metazoan animals to function in development and differentiation. We also describe activities of importin alpha that seem to be distinct from its housekeeping functions in nuclear transport. PMID:15350979

  18. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  19. The Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea: Implications for Developing New Model Organisms

    PubMed Central

    Kaur, Satwant; Jobling, Susan; Jones, Catherine S.; Noble, Leslie R.; Routledge, Edwin J.; Lockyer, Anne E.

    2015-01-01

    Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different. PMID:25849443

  20. Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor

    PubMed Central

    Savory, Joanne G. A.; Hsu, Brian; Laquian, Ian R.; Giffin, Ward; Reich, Terry; Haché, Robert J. G.; Lefebvre, Yvonne A.

    1999-01-01

    Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export. PMID:9891038

  1. Alternative sumoylation sites in the Drosophila nuclear receptor Usp.

    PubMed

    Bielska, Katarzyna; Seliga, Justyna; Wieczorek, Elżbieta; Kędracka-Krok, Sylwia; Niedenthal, Rainer; Ożyhar, Andrzej

    2012-11-01

    The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions. PMID:22676916

  2. A THEMIS:SHP1 complex promotes T-cell survival

    PubMed Central

    Paster, Wolfgang; Bruger, Annika M; Katsch, Kristin; Grégoire, Claude; Roncagalli, Romain; Fu, Guo; Gascoigne, Nicholas RJ; Nika, Konstantina; Cohnen, Andre; Feller, Stephan M; Simister, Philip C; Molder, Kelly C; Cordoba, Shaun-Paul; Dushek, Omer; Malissen, Bernard; Acuto, Oreste

    2015-01-01

    THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation. PMID:25535246

  3. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2015-01-01

    Nuclear receptors play an essential role in cellular environmental sensing, differentiation, development, homeostasis, and metabolism and are thus highly conserved across multiple species. The anti-inflammatory role of nuclear receptors in immune cells has recently gained recognition. Nuclear receptors play critical roles in both myeloid and lymphoid cells, particularly in helper CD4+ T-cell type 17 (Th17) and regulatory T cells (Treg). Th17 and Treg have a major impact on cellular fate through their interactions with cytokine signaling pathways. Recent studies have emphasized the interactions between nuclear receptors and the known cytokine signals and how these interactions affect the expression and function of master transcription factors in Th17 and Treg subsets. This review will focus on the most recent discoveries concerning the roles of nuclear receptors in regulating the Th17/Treg cell-fate determination. PMID:25958843

  4. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function

    PubMed Central

    Tadevosyan, Artavazd; Vaniotis, George; Allen, Bruce G; Hébert, Terence E; Nattel, Stanley

    2012-01-01

    G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders. PMID:22183719

  5. Mechanisms and significance of nuclear receptor auto- and cross-regulation

    PubMed Central

    Bagamasbad, Pia; Denver, Robert J.

    2010-01-01

    The number of functional hormone receptors expressed by a cell in large part determines its responsiveness to the hormonal signal. The regulation of hormone receptor gene expression is therefore a central component of hormone action. Vertebrate steroid and thyroid hormones act by binding to nuclear receptors (NR) that function as ligand-activated transcription factors. Nuclear receptor genes are regulated by diverse and interacting intracellular signaling pathways. Nuclear receptor ligands can regulate the expression of the gene for the NR that mediates the hormone's action (autoregulation), thus influencing how a cell responds to the hormone. Autoregulation can be either positive or negative, the hormone increasing or decreasing, respectively, the expression of its own NR. Positive autoregulation (autoinduction) is often observed during postembryoninc development, and during the ovarian cycle, where it enhances cellular sensitivity to the hormonal signal to drive the developmental process. By contrast, negative autoregulation (autorepression) may become important in the juvenile and adult for homeostatic negative feedback responses. In addition to autoregulation, a NR can influence the expression other types of NRs (cross-regulation), thus modifying how a cell responds to a different hormone. Cross-regulation by NRs is an important means to temporally coordinate cell responses to a subsequent (different) hormonal signal, or to allow for crosstalk between hormone signaling pathways. PMID:20338175

  6. Application of an in silico liver model to determine nuclear receptor mediated pathways in liver cancer

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs in rodents can result in increased incidence of liver tumors. These are generally thought to develop through a non-genotoxic mechanism with...

  7. Discovery-driven research and bioinformatics in nuclear receptor and coregulator signaling.

    PubMed

    McKenna, Neil J

    2011-08-01

    Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high-content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high-content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease. PMID:21029773

  8. Implication of protein tyrosine phosphatase SHP-1 in cancer-related signaling pathways.

    PubMed

    Sharma, Yadhu; Ahmad, Altaf; Bashir, Samina; Elahi, Asif; Khan, Farah

    2016-05-01

    The altered expression of SHP-1 (SH2 domain-containing protein tyrosine phosphatase) as a consequence of promoter hypermethylation or mutations has evidently been linked to cancer development. The notion of being a cancer drug target is conceivable as SHP-1 negatively regulates cell cycle and inflammatory pathways which are an inevitable part of oncogenic transformation. In the present review, we try to critically analyze the role of SHP-1 in cancer progression via regulating the above mentioned pathways with the major emphasis on cell cycle components and JAK/STAT pathway, commencing with the SHP-1 biology in immune cell signaling. Lastly, we have provided the future directions for researchers to encourage SHP-1 as a prognostic marker and curative target for this debilitating disease called as cancer. PMID:26987952

  9. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases.

    PubMed

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  10. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    PubMed Central

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  11. The orphan nuclear receptor DAX-1 functions as a potent corepressor of the constitutive androstane receptor (NR1I3).

    PubMed

    Laurenzana, Elizabeth M; Chen, Tao; Kannuswamy, Malavika; Sell, Brian E; Strom, Stephen C; Li, Yong; Omiecinski, Curtis J

    2012-11-01

    Regulation of gene transcription is controlled in part by nuclear receptors that function coordinately with coregulator proteins. The human constitutive androstane receptor (CAR; NR1I3) is expressed primarily in liver and regulates the expression of genes involved in xenobiotic metabolism as well as hormone, energy, and lipid homeostasis. In this report, DAX-1, a nuclear receptor family member with corepressor properties, was identified as a potent CAR regulator. Results of transaction and mutational studies demonstrated that both DAX-1's downstream LXXLL and its PCFQVLP motifs were critical contributors to DAX-1's corepression activities, although two other LXXM/LL motifs located nearer the N terminus had no impact on the CAR functional interaction. Deletion of DAX-1's C-terminal transcription silencing domain restored CAR1 transactivation activity in reporter assays to approximately 90% of control, demonstrating its critical function in mediating the CAR repression activities. Furthermore, results obtained from mammalian two-hybrid experiments assessing various domain configurations of the respective receptors showed that full-length DAX-1 inhibited the CAR-SRC1 interaction by approximately 50%, whereas the same interaction was restored to 90% of control when the DAX-1 transcription silencing domain was deleted. Direct interaction between CAR and DAX-1 was demonstrated with both alpha-screen and coimmunoprecipitation experiments, and this interaction was enhanced in the presence of the CAR activator 6-(4-chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). Results obtained in primary human hepatocytes further demonstrated DAX-1 inhibition of CAR-mediated CITCO induction of the CYP2B6 target gene. The results of this investigation identify DAX-1 as a novel and potent CAR corepressor and suggest that DAX-1 functions as a coordinate hepatic regulator of CAR's biological function. PMID:22896671

  12. Lack of SIRPα phosphorylation and concomitantly reduced SHP-2-PI3K-Akt2 signaling decrease osteoblast differentiation.

    PubMed

    Holm, Cecilia Koskinen; Engman, Sara; Sulniute, Rima; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla

    2016-09-01

    Normal differentiation of bone forming osteoblasts is a prerequisite for maintenance of skeletal health and is dependent on intricate cellular signaling pathways, including the essential transcription factor Runx2. The cell surface glycoprotein CD47 and its receptor signal regulatory protein alpha (SIRPα) have both been suggested to regulate bone cell differentiation. Here we investigated osteoblastic differentiation of bone marrow stromal cells from SIRPα mutant mice lacking the cytoplasmic signaling domain of SIRPα. An impaired osteoblastogenesis in SIRPα-mutant cell cultures was demonstrated by lower alkaline phosphatase activity and less mineral formation compared to wild-type cultures. This reduced osteoblastic differentiation potential in SIRPα-mutant stromal cells was associated with a significantly reduced expression of Runx2, osterix, osteocalcin, and alkaline phosphatase mRNA, as well as a reduced phosphorylation of SHP-2 and Akt2, as compared with that in wild-type stromal cells. Addition of a PI3K-inhibitor to wild-type stromal cells could mimic the impaired osteoblastogenesis seen in SIRPα-mutant cells. In conclusion, our data suggest that SIRPα signaling through SHP-2-PI3K-Akt2 strongly influences osteoblast differentiation from bone marrow stromal cells. PMID:27422603

  13. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  14. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors*

    PubMed Central

    Vaniotis, George; Glazkova, Irina; Merlen, Clémence; Smith, Carter; Villeneuve, Louis R.; Chatenet, David; Therien, Michel; Fournier, Alain; Tadevosyan, Artavazd; Trieu, Phan; Nattel, Stanley; Hébert, Terence E.; Allen, Bruce G.

    2013-01-01

    At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor L-NAME prevented isoproterenol from increasing either NO production or de novo transcription. L-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors. PMID:23684854

  15. Liver X receptors interfere with the deleterious effect of diethylstilbestrol on testicular physiology

    SciTech Connect

    Oumeddour, Abdelkader; Viennois, Emilie; Caira, Françoise; Decourbey, Clélia; Maqdasy, Salwan; and others

    2014-04-11

    Highlights: • Part of the neonatal effect of DES on testis needs the presence of Lxrα/β. • Some DES-induced pathways are blocked in Lxr-deficient mice. • Lxr-deficient mice analysis defines DES-target genes protected by Lxr. - Abstract: Liver X receptors LXRα (NR1H3) and LXRβ (NR1H2) are transcription factors belonging to the nuclear receptor superfamily, activated by specific oxysterols, oxidized derivatives of cholesterol. These receptors are involved in the regulation of testis physiology. Lxr-deficient mice pointed to the physiological roles of these nuclear receptors in steroid synthesis, lipid homeostasis and germ cell apoptosis and proliferation. Diethylstilbestrol (DES) is a synthetic estrogen considered as an endocrine disruptor that affects the functions of the testis. Various lines of evidences have made a clear link between estrogens, their nuclear receptors ERα (NR3A1) and ERβ (NR3A2), and Lxrα/β. As LXR activity could also be regulated by the nuclear receptor small heterodimer partner (SHP, NR0A2) and DES could act through SHP, we wondered whether LXR could be targeted by estrogen-like endocrine disruptors such as DES. For that purpose, wild-type and Lxr-deficient mice were daily treated with 0.75 μg DES from days 1 to 5 after birth. The effects of DES were investigated at 10 or 45 days of age. We demonstrated that DES induced a decrease of the body mass at 10 days only in the Lxr-deficient mice suggesting a protective effect of Lxr. We defined three categories of DES-target genes in testis: those whose accumulation is independent of Lxr; those whose accumulation is enhanced by the lack of both Lxrα/β; those whose accumulation is repressed by the absence of Lxrα/β. Lipid accumulation is also modified by neonatal DES injection. Lxr-deficient mice present different lipid profiles, demonstrating that DES could have its effects in part due to Lxrα/β. Altogether, our study shows that both nuclear receptors Lxrα and Lxrβ are not only

  16. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  17. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2.

    PubMed

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  18. Clustering Nuclear Receptors in Liver Regeneration Identifies Candidate Modulators of Hepatocyte Proliferation and Hepatocarcinoma

    PubMed Central

    Graziano, Giusi; D'Orazio, Andria; Cariello, Marica; Massafra, Vittoria; Salvatore, Lorena; Martelli, Nicola; Murzilli, Stefania; Sasso, Giuseppe Lo; Mariani-Costantini, Renato; Moschetta, Antonio

    2014-01-01

    Background & Aims Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. Methods & Results We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. Conclusions Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation. PMID:25116592

  19. Characterization of nuclear corticosteroid receptors in rat adipocytes. Regional variations and modulatory effects of hormones.

    PubMed

    Pedersen, S B; Børglum, J D; Møller-Pedersen, T; Richelsen, B

    1992-04-01

    The corticosteroid receptor was investigated in isolated rat adipocytes with a new technique which characterizes the corticosteroid receptors that can be activated and tightly bound to the nucleus. The binding reaction with [3H]triamcinolone was performed with intact isolated adipocytes and the radioactivity associated with nucleus was subsequently determined after cell lysis. Scatchard analysis revealed a homogeneous class of nuclear corticosteroid receptors in rat epididymal adipocytes with an apparent Kd of 4.93 +/- 1.5 nM and a Bmax of 21.8 +/- 6.6 fmol/10(6) cells corresponding to about 13,000 receptors per nucleus. The corticosteroid binding exhibited regional variations in isolated adipocytes. The highest receptor number was found in epididymal adipocytes (Bmax 25.8 +/- 3.9 fmol/10(6) cells) whereas there were significantly lower nuclear binding sites in perirenal adipocytes (16.5 +/- 5.5 fmol/10(6) cells) (P less than 0.05) and subcutaneous adipocytes (4.8 +/- 1.5 fmol/10(6) cells) (P less than 0.01). The apparent affinity in the three fat depots were similar with Kd values about 4 nM. The nuclear corticosteroid receptor in adipocytes was steroid specific, as neither unlabelled estradiol nor testosterone were able to displace the [3H]triamcinolone binding at concentrations up to 100 microM. However, unlabelled progesterone and promegestrone (R5020) were able to compete with triamcinolone-binding (by 50-80%). In order to investigate whether the nuclear corticosteroid binding in adipocytes were under influence of other hormones we examined the effects of lipolytic and antilipolytic compounds on the binding. Preincubation with isoproterenol and dibutryl-cAMP for 1 h was able to decrease the corticosteroid binding by 30-50%. However, the antilipolytic hormone insulin had no effect in preincubations performed for up to 2 h. In conclusion, high affinity nuclear corticosteroid receptors were found in rat adipocytes. These receptors exhibited regional variations

  20. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer.

    PubMed

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2015-09-01

    STAT3 activation is associated with poor prognosis in human colorectal cancer (CRC). Our previous data demonstrated that regorafenib (Stivarga) is a pharmacological agonist of SH2 domain-containing phosphatase 1 (SHP-1) that enhances SHP-1 activity and induces apoptosis by targeting STAT3 signals in CRC. This study aimed to find a therapeutic drug that is more effective than regorafenib for CRC treatment. Here, we showed that SC-43 was more effective than regorafenib at inducing apoptosis in vitro and suppressing tumorigenesis in vivo. SC-43 significantly increased SHP-1 activity, downregulated p-STAT3(Tyr705) level, and induced apoptosis in CRC cells. An SHP-1 inhibitor or knockdown of SHP-1 by siRNA both significantly rescued the SC-43-induced apoptosis and decreased p-STAT3(Tyr705) level. Conversely, SHP-1 overexpression increased the effects of SC-43 on apoptosis and p-STAT3(Tyr705) level. These data suggest that SC-43-induced apoptosis mediated through the loss of p-STAT3(Tyr705) was dependent on SHP-1 function. Importantly, SC-43-enhanced SHP-1 activity was because of the docking potential of SC-43, which relieved the autoinhibited N-SH2 domain of SHP-1 and inhibited p-STAT3(Tyr705) signals. Importantly, we observed that a significant negative correlation existed between SHP-1 and p-STAT3(Tyr705)expression in CRC patients (P = .038). Patients with strong SHP-1 and weak p-STAT3(Tyr705) expression had significantly higher overall survival compared with patients with weak SHP-1 and strong p-STAT3(Tyr705) expression (P = .029). In conclusion, SHP-1 is suitable to be a useful prognostic marker and a pharmacological target for CRC treatment. Targeting SHP-1-STAT3 signaling by SC-43 may serve as a promising pharmacotherapy for CRC. PMID:26476076

  1. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer12

    PubMed Central

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2015-01-01

    STAT3 activation is associated with poor prognosis in human colorectal cancer (CRC). Our previous data demonstrated that regorafenib (Stivarga) is a pharmacological agonist of SH2 domain-containing phosphatase 1 (SHP-1) that enhances SHP-1 activity and induces apoptosis by targeting STAT3 signals in CRC. This study aimed to find a therapeutic drug that is more effective than regorafenib for CRC treatment. Here, we showed that SC-43 was more effective than regorafenib at inducing apoptosis in vitro and suppressing tumorigenesis in vivo. SC-43 significantly increased SHP-1 activity, downregulated p-STAT3Tyr705 level, and induced apoptosis in CRC cells. An SHP-1 inhibitor or knockdown of SHP-1 by siRNA both significantly rescued the SC-43–induced apoptosis and decreased p-STAT3Tyr705 level. Conversely, SHP-1 overexpression increased the effects of SC-43 on apoptosis and p-STAT3Tyr705 level. These data suggest that SC-43–induced apoptosis mediated through the loss of p-STAT3Tyr705 was dependent on SHP-1 function. Importantly, SC-43–enhanced SHP-1 activity was because of the docking potential of SC-43, which relieved the autoinhibited N-SH2 domain of SHP-1 and inhibited p-STAT3Tyr705 signals. Importantly, we observed that a significant negative correlation existed between SHP-1 and p-STAT3Tyr705expression in CRC patients (P = .038). Patients with strong SHP-1 and weak p-STAT3Tyr705 expression had significantly higher overall survival compared with patients with weak SHP-1 and strong p-STAT3Tyr705 expression (P = .029). In conclusion, SHP-1 is suitable to be a useful prognostic marker and a pharmacological target for CRC treatment. Targeting SHP-1-STAT3 signaling by SC-43 may serve as a promising pharmacotherapy for CRC. PMID:26476076

  2. Anthranilic acid derivatives as nuclear receptor modulators--development of novel PPAR selective and dual PPAR/FXR ligands.

    PubMed

    Merk, Daniel; Lamers, Christina; Weber, Julia; Flesch, Daniel; Gabler, Matthias; Proschak, Ewgenij; Schubert-Zsilavecz, Manfred

    2015-02-01

    Nuclear receptors, especially the peroxisome proliferator activated receptors (PPARs) and the farnesoid X receptor (FXR) fulfill crucial roles in metabolic balance. Their activation offers valuable therapeutic potential which has high clinical relevance with the fibrates and glitazones as PPAR agonistic drugs. With growing knowledge about the various functions of nuclear receptors in many disorders, new selective or dual ligands of these pharmaceutical targets are however still required. Here we report the class of anthranilic acid derivatives as novel selective PPAR or dual FXR/PPAR ligands. We identified distinct molecular determinants that govern selectivity for each PPAR subtype or FXR as well as the amplitude of activation of the respective receptors. We thereby discovered several lead compounds for further optimization and developed a highly potent dual PPARα/FXR partial agonist that might have a beneficial synergistic effect on lipid homeostasis by simultaneous activation of two nuclear receptors involved in lipid metabolism. PMID:25583100

  3. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus.

    PubMed Central

    Kang, K I; Devin, J; Cadepond, F; Jibard, N; Guiochon-Mantel, A; Baulieu, E E; Catelli, M G

    1994-01-01

    In target tissue extracts, heat shock protein hsp90 has been found associated to all unliganded steroid receptors. Modulation of important functions of these receptors, including prevention of DNA binding and optimization of transcriptional activity, has been attributed to hsp90. However no unequivocal in vivo demonstration of interaction between receptors and hsp90 has been presented. We targeted chicken hsp90, a mainly cytoplasmic protein, with the nucleoplasmin nuclear localization signal (90NLS). After transfection into COS-7 cells, 90NLS was found in the nucleus with specific immunofluorescence and confocal microscopy techniques. A human glucocorticosteroid receptor mutant devoid of NLS sequence was also expressed in COS-7 cells and found exclusively cytoplasmic. Coexpression of 90NLS and of the cytoplasmic human glucocorticosteroid receptor mutant led to complete nuclear localization of the receptor, indicating its piggyback transport by 90NLS and thus physical and functional interaction between the two proteins in the absence of hormone. The same nuclear localization was obtained after cotransfection of 90NLS and a cytoplasmic rabbit progesterone receptor mutant. Finally, coexpression of wild-type rabbit progesterone receptor (nuclear) and wildtype hsp90 (cytoplasmic) into COS-7 cells provoked partial relocalization of hsp90 into the nucleus. These experiments lay the groundwork on which to study hsp90 as a chaperone, regulating activities of steroid receptors and possibly participating in their nuclear-cytoplasmic shuttling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8278390

  4. PRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex

    PubMed Central

    Pyper, Sean R.; Viswakarma, Navin; Jia, Yuzhi; Zhu, Yi-Jun; Fondell, Joseph D.; Reddy, Janardan K.

    2010-01-01

    The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPARα-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPARα and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPARα, PPARγ, and ERα. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPARα and functions as a transcription coactivator under in vitro conditions and may play an important role in mediating the effects in vivo as a member of the PRIC complex with Med1 and Med24. PMID:20885938

  5. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    PubMed Central

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  6. Dihydroxypentamethoxyflavone Down-Regulates Constitutive and Inducible Signal Transducers and Activators of Transcription-3 through the Induction of Tyrosine Phosphatase SHP-1

    PubMed Central

    Phromnoi, Kanokkarn; Prasad, Sahdeo; Gupta, Subash C.; Kannappan, Ramaswamy; Reuter, Simone; Limtrakul, Pornngarm

    2011-01-01

    Because constitutive activation of signal transducers and activators of transcription-3 (STAT3) has been linked with cellular transformation, survival, proliferation, chemoresistance, and angiogenesis of various tumor cells, agents that can suppress STAT3 activation have potential as cancer therapeutics. In the present report, we identified a flavone from the leaves of a Thai plant, Gardenia obtusifolia, 5,3′-dihydroxy-3,6,7,8,4′-pentamethoxyflavone (PMF), that has the ability to inhibit STAT3 activation. PMF inhibited both constitutive and interleukin-6-inducible STAT3 activation in multiple myeloma (MM) cells, as indicated by suppression of STAT3 phosphorylation, nuclear translocation, DNA binding, and STAT3-regulated gene expression. The inhibition of STAT3 by PMF was reversible. We found that the activation of various kinases including Janus-like kinase (JAK)-1, JAK-2, c-Src, extracellular signal-regulated kinases 1 and 2, AKT, and epidermal growth factor receptor, implicated in STAT3 activation, were inhibited by the flavone. It is noteworthy that pervanadate suppressed the ability of PMF to inhibit the phosphorylation of STAT3, suggesting that protein tyrosine phosphatase was involved. PMF induced the expression of SHP-1 and was linked to the dephosphorylation of STAT3, because its deletion by small interfering RNA abolished the PMF-induced constitutive and inducible STAT3 inhibition. STAT3 inhibition led to the suppression of proteins involved in proliferation (cyclin D1 and c-myc), survival (survivin, Mcl-1, Bcl-xL, Bcl-2, and cIAP-2), and angiogenesis (vascular endothelial growth factor). Finally, PMF inhibited proliferation and induced apoptosis of MM cells. PMF also significantly potentiated the apoptotic effects of Velcade and thalidomide in MM cells. Overall, these results suggest that PMF is a novel blocker of STAT3 activation and thus may have potential in suppression of tumor cell proliferation and reversal of chemoresistance in MM cells. PMID

  7. Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation.

    PubMed Central

    Husmann, M; Dragneva, Y; Romahn, E; Jehnichen, P

    2000-01-01

    Binding sites for transcription factor Sp1 have been implicated in the transcriptional regulation of several genes by hormones or vitamins, and here we show that a GC-rich element contributes to the retinoic acid response of the interleukin 1beta promoter. To explain such observations, it has been proposed that nuclear receptors can interact with Sp1 bound to GC-rich DNA. However, evidence supporting this model has remained indirect. So far, nuclear receptors have not been detected in a complex with Sp1 and GC-rich DNA, and the expected ternary complexes in non-denaturing gels were not seen. In search for these missing links we found that nuclear receptors [retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D(3) receptor, peroxisome-proliferator-activated receptor and retinoic X receptor] induce an electrophoretic mobility increase of Sp1-GC-rich DNA complexes. Concomitantly, binding of Sp1 to the GC-box is enhanced. It is proposed that nuclear receptors may partially replace Sp1 in homo-oligomers at the GC-box. RARs and Sp1 can also combine into a complex with a retinoic acid-response element. The presence of RAR and Sp1 in complexes with either cognate site was revealed in supershift experiments. The C-terminus of Sp1 interacts with nuclear receptors. Both the ligand- and DNA-binding domains of the receptor are important for complex formation with Sp1 and GC-rich DNA. In spite of similar capacity to form ternary complexes, RAR but not TR up-regulated an Sp1-driven reporter in a ligand-dependent way. Thus additional factors limit the transcriptional response mediated by nuclear receptors and Sp1. PMID:11104684

  8. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    SciTech Connect

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-04-11

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  9. Minireview: Regulation of Gap Junction Dynamics by Nuclear Hormone Receptors and Their Ligands

    PubMed Central

    Kapadia, Bhumika J.

    2012-01-01

    Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics. PMID:22935924

  10. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin; Lan Zijian

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  11. Ryanodine receptors are involved in nuclear calcium oscillation in primary pancreatic {beta}-cells

    SciTech Connect

    Zheng, Ji; Chen, Zheng; Yin, Wenxuan; Miao, Lin; Zhou, Zhansong; Ji, Guangju

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Black-Right-Pointing-Pointer We showed that the pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. Black-Right-Pointing-Pointer Our results demonstrate that ryanodine-sensitive Ca{sup 2+} stores exist and have function in the pancreatic {beta}-cell nucleus. -- Abstract: Ryanodine receptors (RyRs) are mainly located on the endoplasmic reticulum (ER) and play an important role in regulating glucose-induced cytosolic Ca{sup 2+} oscillation in pancreatic {beta}-cells. However, subcellular locations and functions of RyRs on other cell organelles such as nuclear envelope are not well understood. In order to investigate the role of RyRs in nuclear Ca{sup 2+} oscillation we designed and conducted experiments in intact primary pancreatic {beta}-cells. Immunocytochemistry was used to examine the expression of RYRs on the nuclear envelope. Confocal microscopy was used to evaluate the function of RYRs on the nuclear envelope. We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Laser scanning confocal microscopy studies indicated that application of glucose to the cells co-incubated with Ca{sup 2+} indicator Fluo-4 AM and cell-permeable nuclear indicator Hoechst 33342 resulted in nuclear Ca{sup 2+} oscillation. The pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. The reduction of Ca{sup 2+} oscillation amplitude by ryanodine was much greater in the nucleus though both the cytosol and the nucleus Ca{sup 2+} amplitude decreased by ryanodine. Our results suggest that functional ryanodine receptors not only exist in endoplasmic reticulum but are also expressed in nuclear envelope of pancreatic {beta}-cells.

  12. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key

  13. SHP-2 Mediates Cryptosporidium parvum Infectivity in Human Intestinal Epithelial Cells

    PubMed Central

    Varughese, Eunice A.; Kasper, Susan; Anneken, Emily M.; Yadav, Jagjit S.

    2015-01-01

    The parasite, Cryptosporidium parvum, induces human gastroenteritis through infection of host epithelial cells in the small intestine. During the initial stage of infection, C. parvum is reported to engage host mechanisms at the host cell-parasite interface to form a parasitophorous vacuole. We determined that upon infection, the larger molecular weight proteins in human small intestinal epithelial host cells (FHs 74 Int) appeared to globally undergo tyrosine dephosphorylation. In parallel, expression of the cytoplasmic protein tyrosine phosphatase Src homology-2 domain-containing phosphatase 2 (SHP-2) increased in a time-dependent manner. SHP-2 co-localized with the C. parvum sporozoite and this interaction increased the rate of C. parvum infectivity through SH2-mediated SHP-2 activity. Furthermore, we show that one potential target that SHP-2 acts upon is the focal adhesion protein, paxillin, which undergoes moderate dephosphorylation following infection, with inhibition of SHP-2 rescuing paxillin phosphorylation. Importantly, treatment with an inhibitor to SHP-2 and with an inhibitor to paxillin and Src family kinases, effectively decreased the multiplicity of C. parvum infection in a dose-dependent manner. Thus, our study reveals an important role for SHP-2 in the pathogenesis of C. parvum. Furthermore, while host proteins can be recruited to participate in the development of the electron dense band at the host cell-parasite interface, our study implies for the first time that SHP-2 appears to be recruited by the C. parvum sporozoite to regulate infectivity. Taken together, these findings suggest that SHP-2 and its down-stream target paxillin could serve as targets for intervention. PMID:26556238

  14. Alterations in the phosphoproteomic profile of cells expressing a non-functional form of the SHP2 phosphatase.

    PubMed

    Corallino, Salvatore; Iwai, Leo K; Payne, Leo S; Huang, Paul H; Sacco, Francesca; Cesareni, Gianni; Castagnoli, Luisa

    2016-09-25

    The phosphatase SHP-2 plays an essential role in growth factor signaling and mutations in its locus is the cause of congenital and acquired pathologies. Mutations of SHP-2 are known to affect the activation of the RAS pathway. Gain-of-function mutations cause the Noonan syndrome, the most common non-chromosomal congenital disorder. In order to obtain a holistic picture of the intricate regulatory mechanisms underlying SHP-2 physiology and pathology, we set out to characterize perturbations of the cell phosphorylation profile caused by an altered localization of SHP-2. To describe the proteins whose activity may be directly or indirectly modulated by SHP-2 activity, we identified tyrosine peptides that are differentially phosphorylated in wild type SHP-2 cells and isogenic cells expressing a non-functional SHP-2 variant that cannot dephosphorylate the physiological substrates due to a defect in cellular localization upon growth factor stimulation. By an iTRAQ based strategy coupled to mass spectrometry, we have identified 63 phosphorylated tyrosine residues in 53 different proteins whose phosphorylation is affected by SHP-2 activity. Some of these confirm already established regulatory mechanisms while many others suggest new possible signaling routes that may contribute to the modulation of the ERK and p38 pathways by SHP-2. Interestingly many new proteins that we found to be regulated by SHP-2 activity are implicated in the formation and regulation of focal adhesions. PMID:26316256

  15. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    PubMed

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  16. Med1 Subunit of the Mediator Complex in Nuclear Receptor-Regulated Energy Metabolism, Liver Regeneration, and Hepatocarcinogenesis

    PubMed Central

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K.

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  17. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    SciTech Connect

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J. . E-mail: jorma.palvimo@uku.fi

    2006-10-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner.

  18. Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2.

    PubMed

    Plafker, S M; Macara, I G

    2000-10-16

    Importins are members of a family of transport receptors (karyopherins) that mediate the nucleocytoplasmic transport of protein and RNA cargoes. We identified importin-11 as a potential new human member of this family, on the basis of limited similarity to the Saccharomyces cerevisiae protein, Lph2p, and cloned the complete open reading frame. Importin-11 interacts with the Ran GTPase, and constitutively shuttles between the nuclear and cytoplasmic compartments. A yeast dihybrid screen identified UbcM2, an E2-type ubiquitin-conjugating enzyme, as a binding partner and potential transport cargo for importin-11. Importin-11 and UbcM2 interact directly, and the complex is disassembled by Ran:GTP but not by Ran:GDP. UbcM2 is constitutively nuclear and shuttles between the nuclear and cytoplasmic compartments. Nuclear import of UbcM2 requires Ran and importin-11, and is inhibited by wheatgerm agglutinin, energy depletion or dominant interfering mutants of Ran and importin-beta. These data establish importin-11 as a new member of the karyopherin family of transport receptors, and identify UbcM2 as a nuclear member of the E2 ubiquitin-conjugating enzyme family. PMID:11032817

  19. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology.

    PubMed

    Kiss, Mate; Czimmerer, Zsolt; Nagy, Laszlo

    2013-08-01

    Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors. PMID:23905916

  20. Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration

    PubMed Central

    Malek, Goldis; Lad, Eleonora M.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly in the Western world. Over the last 30 years, our understanding of the pathogenesis of the disease has grown exponentially thanks to the results of countless epidemiology, genetic, histo-logical, and biochemical studies. This information, in turn, has led to the identification of multiple biologic pathways potentially involved in development and progression of AMD, including but not limited to inflammation, lipid and extracellular matrix dysregulation, and angiogenesis. Nuclear receptors are a superfamily of transcription factors that have been shown to regulate many of the pathogenic pathways linked with AMD and as such they are emerging as promising targets for therapeutic intervention. In this review, we will present the fundamental phenotypic features of AMD and discuss our current understanding of the pathobiological disease mechanisms. We will introduce the nuclear receptor superfamily and discuss the current literature on their effects on AMD-related pathophysiology. PMID:25156067

  1. Minireview: Steroid/Nuclear Receptor-Regulated Dynamics of Occluding and Anchoring Junctions

    PubMed Central

    Kapadia, Bhumika J.

    2014-01-01

    A diverse set of physiological signals control intercellular interactions by regulating the structure and function of occluding junctions (tight junctions) and anchoring junctions (adherens junctions and desmosomes). These plasma membrane junctions are comprised of multiprotein complexes of transmembrane and cytoplasmic peripheral plasma membrane proteins. Evidence from many hormone-responsive tissues has shown that expression, modification, molecular interactions, stability, and localization of junctional complex-associated proteins can be targeted by nuclear hormone receptors and their ligands through transcriptional and nontranscriptional mechanisms. The focus of this minireview is to discuss molecular, cellular, and physiological studies that directly link nuclear receptor- and ligand-triggered signaling pathways to the regulation of occluding and anchoring junction dynamics. PMID:25203673

  2. The molecular physiology of nuclear retinoic acid receptors. From health to disease.

    PubMed

    Duong, Vanessa; Rochette-Egly, Cécile

    2011-08-01

    The nuclear retinoic acid (RA) receptors (RARα, β and γ) are transcriptional transregulators, which control the expression of specific gene subsets subsequently to ligand binding and to strictly controlled phosphorylation processes. Consequently RARs maintain homeostasis through the control of cell proliferation and differentiation. Today, it is admitted that, analogous to the paradigm established by the hematopoietic system, most adult tissues depict a differentiation hierarchy starting from rare stem cells. Here we highlight that the integrity of RARs is absolutely required for homeostasis in adults. Indeed, strictly controlled levels of RARs are necessary for the correct balance between self-renewal and differentiation of tissue stem cells. In addition, loss, accumulation, mutations or aberrant modifications of a specific RAR lead to uncontrolled proliferation and/or to differentiation block and thereby to cancer. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease. PMID:20970498

  3. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine.

    PubMed

    Li, Ling; Bonneton, François; Chen, Xiao Yong; Laudet, Vincent

    2015-02-01

    Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network. PMID:25449417

  4. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    SciTech Connect

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  5. Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity.

    PubMed

    Gay, Frédérique; Baráth, Peter; Desbois-Le Péron, Christine; Métivier, Raphaël; Le Guével, Rémy; Birse, Darcy; Salbert, Gilles

    2002-06-01

    Chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) is an orphan member of the nuclear hormone receptor superfamily that comprises key regulators of many biological functions, such as embryonic development, metabolism, homeostasis, and reproduction. Although COUP-TFI can both actively silence gene transcription and antagonize the functions of various other nuclear receptors, the COUP-TFI orphan receptor also acts as a transcriptional activator in certain contexts. Moreover, COUP-TFI has recently been shown to serve as an accessory factor for some ligand-bound nuclear receptors, suggesting that it may modulate, both negatively and positively, a wide range of hormonal responses. In the absence of any identified cognate ligand, the mechanisms involved in the regulation of COUP-TFI activity remain unclear. The elucidation of several putative phosphorylation sites for MAPKs, PKC, and casein kinase II within the sequence of this orphan receptor led us to investigate phosphorylation events regulating the various COUP-TFI functions. After showing that COUP-TFI is phosphorylated in vivo, we provide evidence that in vivo inhibition of either MAPK or PKC signaling pathway leads to a specific and pronounced decrease in COUP-TFI-dependent transcriptional activation of the vitronectin gene promoter. Focusing on the molecular mechanisms underlying the MAPK- and PKC-mediated regulation of COUP-TFI activity, we show that COUP-TFI can be directly targeted by PKC and MAPK. These phosphorylation events differentially modulate COUP-TFI functions: PKC-mediated phosphorylation enhances COUP-TFI affinity for DNA and MAPK-mediated phosphorylation positively regulates the transactivation function of COUP-TFI, possibly through enhancing specific coactivator recruitment. These data provide evidence that COUP-TFI is likely to integrate distinct signaling pathways and raise the possibility that multiple extracellular signals influence biological processes controlled by COUP

  6. Cyclic, nonequilibrium models of glucocorticoid antagonism: role of activation, nuclear binding and receptor recycling.

    PubMed

    Munck, A; Holbrook, N J

    1988-10-01

    Quantitative models that have been proposed to date to explain mechanisms of glucocorticoid antagonism have generally been of the equilibrium type, involving hypothetical allosteric equilibria between active and inactive states of the receptor or the steroid-receptor complex. We describe here the agonist-antagonist relationships predicted by a nonequilibrium cyclic model that we have recently devised to account for the kinetic behavior of glucocorticoid-receptor complexes in intact rat thymus cells. This model simulates quantitatively most kinetic and steady state results that have been obtained so far. It postulates the existence of only well-established receptor species, and its kinetic parameters can in principle be determined by receptor measurements with intact cells. To calculate the steady state agonist-antagonist properties it is assumed that biological activity is proportional to the total amount of nuclear-bound complex, whether formed by agonist or antagonist. The agonist activity of a steroid is determined by the steady state ratio of nuclear-bound to total complexes it forms. This ratio varies from 0 for a pure antagonist to 1 for a pure agonist. It turns out to be independent of agonist and antagonist concentrations, and a function only of the rate constants for the reactions of the complexes formed by a steroid. Analysis of the dependence of the ratio on each rate constant shows quantitatively how each reaction in the cyclic model--activation of the nonactivated complex, nuclear binding of the activated complexes, and dissociation and recycling of activated and nuclear-bound complexes--affects antagonist properties. Steady state interactions of agonists with antagonists are found to be determined by equations that are identical to those for competition in simple equilibrium systems. Predicted dose-response relations agree qualitatively with experimentally observed relations. They are similar to those predicted by two-state allosteric models, although

  7. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1.

    PubMed

    Blind, Raymond D; Sablin, Elena P; Kuchenbecker, Kristopher M; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Fletterick, Robert J; Ingraham, Holly A

    2014-10-21

    The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP3 stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As. PMID:25288771

  8. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian

    PubMed Central

    Tharp, Marla E.; Collins, James J.; Newmark, Phillip A.

    2014-01-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans. PMID:25278423

  9. Discovery-driven research and bioinformatics in nuclear receptor and coregulator signaling

    PubMed Central

    McKenna, Neil J

    2010-01-01

    Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. PMID:21029773

  10. Control of Energy Balance by Hypothalamic Gene Circuitry Involving Two Nuclear Receptors, Neuron-Derived Orphan Receptor 1 and Glucocorticoid Receptor

    PubMed Central

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Soo-Kyung

    2013-01-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  11. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  12. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERRgamma).

    PubMed

    Park, Yun-Yong; Kim, Seok-Ho; Kim, Yong Joo; Kim, Sun Yee; Lee, Tae-Hoon; Lee, In-Kyu; Park, Seung Bum; Choi, Hueng-Sik

    2007-10-12

    Estrogen receptor-related receptor gamma (ERRgamma) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERRgamma are not well understood. In the current study, we identify that Plk2 is a novel target of ERRgamma. Northern blot analysis showed that overexpression of ERRgamma induced Plk2 expression in cancer cell lines. ERRgamma activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERRgamma-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERRgamma binds directly to the Plk2 promoter. Overexpression of ERRgamma in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERRgamma, and suggest that this interaction is crucial for cancer cell proliferation. PMID:17706602

  13. The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells.

    PubMed

    Stergiopoulos, Athanasios; Politis, Panagiotis K

    2013-06-01

    In the central nervous system (CNS) of vertebrates a large variety of cell types are specified from a pool of highly plastic neural stem/progenitor cells (NSCs) via a combined action of extrinsic morphogenetic cues and intrinsic transcriptional regulatory networks. Nuclear receptors and their ligands are key regulators of fate decisions in NSCs during development and adulthood, through their ability to control transcription of downstream genes. In the last few years considerable progress has been made towards the understanding of the actions of nuclear receptors in NSCs as well as elucidating the mechanistic basis for these actions. Here we summarize recent progress in the role of nuclear receptors in the biology of NSCs. These studies highlight the importance of this family of transcriptional regulators in CNS development and function in health and disease. Furthermore, they raise the intriguing possibility of using nuclear receptors as therapeutic targets for nervous system related diseases and traumas. PMID:23044345

  14. Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial cells.

    PubMed

    Lee, Young H; Mungunsukh, Ognoon; Tutino, Rebecca L; Marquez, Ana P; Day, Regina M

    2010-05-15

    Angiotensin II (Ang II) is a key proapoptotic factor in fibrotic tissue diseases. However, the mechanism of Ang-II-induced cell death in endothelial cells has not been previously elucidated. Using the neutral comet assay and specific receptor antagonists and agonists, we found that Ang-II-mediated apoptosis in primary pulmonary endothelial cells required the AT2 receptor. Ang II caused cytochrome c release from the mitochondria concurrent with caspase-3 activation and DNA fragmentation, and apoptosis was suppressed by an inhibitor of Bax-protein channel formation, implicating mitochondrial-mediated apoptosis. There was no evidence that the extrinsic apoptotic pathway was involved, because caspase-9, but not caspase-8, was activated by Ang-II treatment. Apoptosis required phosphoprotein phosphatase activation, and inhibition of the SHP-2 phosphatase (encoded by Ptpn11) blocked cell death. Reduced levels of anti-apoptotic Bcl-2-family members can initiate intrinsic apoptosis, and we found that Ang-II treatment lowered cytosolic Bcl-x(L) protein levels. Because the protein nucleolin has been demonstrated to bind Bcl-x(L) mRNA and prevent its degradation, we investigated the role of nucleolin in Ang-II-induced loss of Bcl-x(L). RNA-immunoprecipitation experiments revealed that Ang II reduced the binding of nucleolin to Bcl-x(L) mRNA in an AU-rich region implicated in instability of Bcl-x(L) mRNA. Inhibition of SHP-2 prevented Ang-II-induced degradation of Bcl-x(L) mRNA. Taken together, our findings suggest that nucleolin is a primary target of Ang-II signaling, and that Ang-II-activated SHP-2 inhibits nucleolin binding to Bcl-x(L) mRNA, thus affecting the equilibrium between pro- and anti-apoptotic members of the Bcl-2 family. PMID:20406888

  15. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    PubMed

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  16. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  17. Activation of the orphan nuclear receptor steroidogenic factor 1 by oxysterols

    PubMed Central

    Lala, Deepak S.; Syka, Peter M.; Lazarchik, Steven B.; Mangelsdorf, David J.; Parker, Keith L.; Heyman, Richard A.

    1997-01-01

    Steroidogenic factor 1 (SF-1), an orphan member of the intracellular receptor superfamily, plays an essential role in the development and function of multiple endocrine organs. It is expressed in all steroidogenic tissues where it regulates the P450 steroidogenic genes to generate physiologically active steroids. Although many of the functions of SF-1 in vivo have been defined, an unresolved question is whether a ligand modulates its transcriptional activity. Here, we show that 25-, 26-, or 27-hydroxycholesterol, known suppressors of cholesterol biosynthesis, enhance SF-1-dependent transcriptional activity. This activation is dependent upon the SF-1 activation function domain, and, is specific for SF-1 as several other receptors do not respond to these molecules. The oxysterols activate at concentrations comparable to those previously shown to inhibit cholesterol biosynthesis, and, can be derived from cholesterol by P450c27, an enzyme expressed within steroidogenic tissues. Recent studies have shown that the nuclear receptor LXR also is activated by oxysterols. We demonstrate that different oxysterols differ in their rank order potency for these two receptors, with 25-hydroxycholesterol preferentially activating SF-1 and 22(R)-hydroxycholesterol preferentially activating LXR. These results suggest that specific oxysterols may mediate transcriptional activation via different intracellular receptors. Finally, ligand-dependent transactivation of SF-1 by oxysterols may play an important role in enhancing steroidogenesis in vivo. PMID:9144161

  18. Detection of nucleic acid-nuclear hormone receptor complexes with mass spectrometry.

    PubMed

    Bich, Claudia; Bovet, Cédric; Rochel, Natacha; Peluso-Iltis, Carole; Panagiotidis, Andreas; Nazabal, Alexis; Moras, Dino; Zenobi, Renato

    2010-04-01

    Nuclear receptors, such as the retinoic acid receptor (RAR) or the 9-cis retinoic acid receptor (RXR), interact not only with their ligands but also with other types of receptors and with DNA. Here, two complementary mass spectrometry (MS) methods were used to study the interactions between retinoic receptors (RXR/RAR) and DNA: non-denaturing nano-electrospray (nanoESI MS), and high-mass matrix-assisted laser desorption ionization (MALDI MS) combined with chemical cross-linking. The RAR x RXR heterodimer was studied in the presence of a specific DNA sequence (DR5), and a specific RAR x RXR x DNA complex was detected with both MS techniques. RAR by itself showed no significant homodimerization. A complex between RAR and the double stranded DR5 was detected with nanoESI. After cross-linking, high-mass MALDI mass spectra showed that the RAR binds the single stranded DR5, and the RAR dimer binds both single and double stranded DR5. Moreover, the MALDI mass spectrum shows a larger RAR dimer signal in the presence of DNA. These results suggest that a gene-regulatory site on DNA can induce quaternary structural changes in a transcription factor such as RAR. PMID:20097575

  19. Identification of a Synthetic Agonist for the Orphan Nuclear Receptors RORα and RORγ, SR1078

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Nuhant, Philippe; Cameron, Michael D.; Istrate, Monica A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors since ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo. PMID:20735016

  20. Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators

    SciTech Connect

    Wu, M.-H.; Huang, C.-J.; Liu, S.-T.; Liu, P.-Y.; Ho, C.-L. . E-mail: shihming@ndmctsgh.edu.tw

    2007-05-11

    In addition to the human papillomavirus (HPV)-induced immortalization of epithelial cells, which usually requires integration of the viral DNA into the host cell genome, steroid hormone-activated nuclear receptors (NRs) are thought to bind to specific DNA sequences within transcriptional regulatory regions on the long control region to either increase or suppress transcription of dependent genes. In this study, our data suggest that the NR coactivator function of HPV E2 proteins might be mediated through physical and functional interactions with not only NRs but also the NR coactivators GRIP1 (glucocorticoid receptor-interacting protein 1) and Zac1 (zinc-finger protein which regulates apoptosis and cell cycle arrest 1), reciprocally regulating their transactivation activities. GRIP1 and Zac1 both were able to act synergistically with HPV E2 proteins on the E2-, androgen receptor-, and estrogen receptor-dependent transcriptional activation systems. GRIP1 and Zac1 might selectively function with HPV E2 proteins on thyroid receptor- and p53-dependent transcriptional activation, respectively. Hence, the transcriptional function of E2 might be mediated through NRs and NR coactivators to regulate E2-, NR-, and p53-dependent transcriptional activations.

  1. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  2. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    PubMed

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  3. Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors

    PubMed Central

    2015-01-01

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  4. Binding studies using Pichia pastoris expressed human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins.

    PubMed

    Zheng, Yujuan; Xie, Jinghang; Huang, Xin; Dong, Jin; Park, Miki S; Chan, William K

    2016-06-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor which activates gene transcription by binding to its corresponding enhancer as the heterodimer, which is consisted of AHR and the aryl hydrocarbon receptor nuclear translocator (ARNT). Human AHR can be rather difficult to study, when compared among the AHR of other species, since it is relatively unstable and less sensitive to some ligands in vitro. Overexpression of human AHR has been limited to the baculovirus expression, which is costly and tedious due to the need of repetitive baculovirus production. Here we explored whether we could generate abundant amounts of human AHR and ARNT in a better overexpression system for functional study. We observed that human AHR and ARNT can be expressed in Pichia pastoris with yields that are comparable to the baculovirus system only if their cDNAs are optimized for Pichia expression. Fusion with a c-myc tag at their C-termini seems to increase the expression yield. These Pichia expressed proteins can effectively heterodimerize and form the ternary AHR/ARNT/enhancer complex in the presence of β-naphthoflavone or kynurenine. Limited proteolysis using thermolysin can be used to study the heterodimerization of these human AHR and ARNT proteins. PMID:26923060

  5. The cephalochordate amphioxus: a key to reveal the secrets of nuclear receptor evolution.

    PubMed

    Lecroisey, Claire; Laudet, Vincent; Schubert, Michael

    2012-03-01

    The members of the nuclear receptor (NR) superfamily are transcription factors characterized by a particular mode of function, which is related to the conserved nature of their molecular structure. NR proteins usually contain a DNA-binding domain (DBD) and a ligand-binding domain (LBD) allowing them to directly bind to DNA and regulate target gene expression in a ligand-dependent manner. In this review, we are summarizing our current understanding of the NR diversity in the cephalochordate amphioxus, which represents the best available proxy for the last common chordate ancestor both in terms of morphology and genome organization. The amphioxus genome encodes 33 NRs, which is more than expected based on its phylogenetic position, with at least one representative of all major NR groups, excepting NR1E and NR1I/J. This elevated number of receptor genes shows that the amphioxus NR complement has experienced some secondary modifications that are most evident in the NR1H group, which is characterized by three members in humans and ten representatives in amphioxus. By highlighting specific examples of the NR repertoire, including the receptors for retinoic acid, thyroid hormone, estrogen and steroids as well as the bile acid and oxysterol receptors of the NR1H group, we are illustrating the functional diversity of these receptors in amphioxus. We conclude that the amphioxus NRs are valuable models for assessing the evolutionary interplay between receptors and their ligands and that more integrative and comparative approaches are required for assessment of the evolutionary plasticity of receptor-ligand interactions revealed by the studies of amphioxus NRs. PMID:22441553

  6. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization

    PubMed Central

    K Bhosle, Vikrant; Rivera, José Carlos; Zhou, Tianwei (Ellen); Omri, Samy; Sanchez, Melanie; Hamel, David; Zhu, Tang; Rouget, Raphael; Rabea, Areej Al; Hou, Xin; Lahaie, Isabelle; Ribeiro-da-Silva, Alfredo; Chemtob, Sylvain

    2016-01-01

    Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs. PMID:27462464

  7. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation.

    PubMed

    Faria, Jerusa A Q A; de Andrade, Carolina; Goes, Alfredo M; Rodrigues, Michele A; Gomes, Dawidson A

    2016-09-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. PMID:27462018

  8. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    NASA Astrophysics Data System (ADS)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  9. Membrane and nuclear estrogen receptor α collaborate to suppress adipogenesis but not triglyceride content.

    PubMed

    Pedram, Ali; Razandi, Mahnaz; Blumberg, Bruce; Levin, Ellis Robert

    2016-01-01

    Estrogen and estrogen receptor (ER)-α suppress visceral fat development through actions in several organs via unclear mechanisms that we sought to identify. Using mice that express only nuclear ER-α [nuclear-only ER-α (NOER) mice] or plasma membrane ER-α [membrane-only ER-α (MOER) mice], we found that 10-wk-old mice that lacked either receptor pool showed extensive abdominal visceral fat deposition and weight gain compared with wild-type (WT) mice. Differentiation of cultured bone marrow stem cells (BMSCs) into the adipocyte lineage was suppressed by 17-β-estradiol (E2) in WT female mice but not in NOER or MOER mice. This finding correlated with E2 inhibition of prominent differentiation genes in WT BMSCs. In contrast, triglyceride content in differentiated BMSCs or 3T3-L1 cells was suppressed as a result of membrane ER-α signaling through several kinases to inhibit carbohydrate response element-binding protein-α and -β. We concluded that extranuclear and nuclear ER-α collaborate to suppress adipocyte development, but inhibition of lipid synthesis in mature cells does not involve nuclear ER-α. PMID:26373802

  10. Model Inspired by Nuclear Pore Complex Suggests Possible Roles for Nuclear Transport Receptors in Determining Its Structure

    PubMed Central

    Osmanović, Dino; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Nuclear transport receptors (NTRs) mediate nucleocytoplasmic transport via their affinity for unstructured proteins (polymers) in the nuclear pore complex (NPC). Here, we have modeled the effect of NTRs on polymeric structure in the nanopore confinement of the NPC central conduit. The model explicitly takes into account inter- and intramolecular interactions, as well as the finite size of the NTRs (∼20% of the NPC channel diameter). It reproduces various proposed scenarios for the channel structure, ranging from a central polymer condensate (selective phase) to brushlike polymer arrangements localized at the channel wall (virtual gate, reduction of dimensionality), with the transport receptors lining the polymer surface. In addition, it predicts a new structure in which NTRs become an integral part of the transport barrier by forming a cross-linked network with the unstructured proteins stretching across the pore. The model provides specific and distinctive predictions for the equilibrium spatial distributions of NTRs for these different scenarios that can be experimentally verified by, e.g., superresolution fluorescence microscopy. Moreover, it suggests mechanisms by which globular macromolecules (colloidal particles) can cause polymer-coated nanopores to switch between open and closed configurations, a possible explanation of the biological function of the NPC, and suggests potential technological applications for filtration and single-molecule sensing. PMID:24359750

  11. The nuclear translocation of endostatin is mediated by its receptor nucleolin in endothelial cells.

    PubMed

    Song, Nan; Ding, Yanping; Zhuo, Wei; He, Ting; Fu, Zhiguang; Chen, Yang; Song, Xiaomin; Fu, Yan; Luo, Yongzhang

    2012-12-01

    Endostatin, the C-terminal fragment of collagen XVIII, is a potent anti-angiogenic factor that significantly modulates the gene expression pattern in endothelial cells. Upon cell surface binding, endostatin can not only function extracellularly, but also translocate to the nucleus within minutes. However, the mechanism by which this occurs is partially understood. Here we systematically investigated the nuclear translocation mechanism of endostatin. By chemical inhibition and RNA interference, we firstly observed that clathrin-mediated endocytosis, but not caveolae-dependent endocytosis or macropinocytosis, is essential for the nuclear translocation of endostatin. We then indentified that nucleolin and integrin α5β1, two widely accepted endostatin receptors, mediate this clathrin-dependent uptake process, which also involves urokinase plasminogen activator receptor (uPAR). Either mutagenesis study, fluorescence resonance energy transfer assay, or fluorescence cell imaging demonstrates that nucleolin and integrin α5β1 interact with uPAR simultaneously upon endostatin stimulation. Blockade of uPAR decreases not only the interaction between nucleolin and integrin α5β1, but also the uptake process, suggesting that the nucleolin/uPAR/integrin α5β1 complex facilitates the internalization of endostatin. After endocytosis, nucleolin further regulates the nuclear transport of endostatin. RNA interference and mutational analysis revealed that the nuclear translocation of endostatin involves the association of nucleolin with importin α1β1 via the nuclear localization sequence. Taken together, this study reveals the pathway by which endostatin translocates to the nucleus and the importance of nucleolin in this process, providing a new perspective for the functional investigation of the nuclear-translocated endostatin in endothelial cells. PMID:22711211

  12. The tyrosine phosphatase, SHP-1, is involved in bronchial mucin production during oxidative stress.

    PubMed

    Jang, Min Kyoung; Kim, Sae-Hoon; Lee, Ki-Young; Kim, Tae-Bum; Moon, Keun Ae; Park, Chan Sun; Bae, Yun Jeong; Zhu, Zhou; Moon, Hee-Bom; Cho, You Sook

    2010-02-26

    Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H(2)O(2)), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H(2)O(2), compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress. PMID:20117097

  13. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines.

    PubMed

    Lauriol, Jessica; Cabrera, Janel R; Roy, Ashbeel; Keith, Kimberly; Hough, Sara M; Damilano, Federico; Wang, Bonnie; Segarra, Gabriel C; Flessa, Meaghan E; Miller, Lauren E; Das, Saumya; Bronson, Roderick; Lee, Kyu-Ho; Kontaridis, Maria I

    2016-08-01

    Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy. PMID:27348588

  14. Cytoplasmic and nuclear estradiol receptors in the hypothalamus and cerebral cortex of female rats during the neonatal period

    SciTech Connect

    Shishkina, I.V.; Babichev, V.N.; Ozol', L.Y.

    1986-07-01

    The content of estradifol receptors (E/sub 2/) in the cytoplasmic and nuclear fractions of the hypothalamus and cerebral cortex of female rats was investigated in the course of neonatal development. In the cytosol of the hypothalamus and cortex, the E/sub 2/-binding proteins, which possess high capacity, include both the true estradiol receptors and proteins identical with ..cap alpha..-fetoprotein. True receptors E/sub 2/ were detected in the nuclear fraction; in the hypothalamus their concentration was virtually unchanged, while in the cortex it decreased from the first to fifth days of postnatal development.

  15. Nuclear Receptor DHR4 Controls the Timing of Steroid Hormone Pulses During Drosophila Development

    PubMed Central

    Ou, Qiuxiang; Magico, Adam; King-Jones, Kirst

    2011-01-01

    In insects, precisely timed periodic pulses of the molting hormone ecdysone control major developmental transitions such as molts and metamorphosis. The synthesis and release of ecdysone, a steroid hormone, is itself controlled by PTTH (prothoracicotopic hormone). PTTH transcript levels oscillate with an 8 h rhythm, but its significance regarding the timing of ecdysone pulses is unclear. PTTH acts on its target tissue, the prothoracic gland (PG), by activating the Ras/Raf/ERK pathway through its receptor Torso, however direct targets of this pathway have yet to be identified. Here, we demonstrate that Drosophila Hormone Receptor 4 (DHR4), a nuclear receptor, is a key target of the PTTH pathway and establishes temporal boundaries by terminating ecdysone pulses. Specifically, we show that DHR4 oscillates between the nucleus and cytoplasm of PG cells, and that the protein is absent from PG nuclei at developmental times when low titer ecdysone pulses occur. This oscillatory behavior is blocked when PTTH or torso function is abolished, resulting in nuclear accumulation of DHR4, while hyperactivating the PTTH pathway results in cytoplasmic retention of the protein. Increasing DHR4 levels in the PG can delay or arrest development. In contrast, reducing DHR4 function in the PG triggers accelerated development, which is caused by precocious ecdysone signaling due to a failure to repress ecdysone pulses. Finally, we show that DHR4 negatively regulates the expression of a hitherto uncharacterized cytochrome P450 gene, Cyp6t3. Disruption of Cyp6t3 function causes low ecdysteroid titers and results in heterochronic phenotypes and molting defects, indicating a novel role in the ecdysone biosynthesis pathway. We propose a model whereby nuclear DHR4 controls the duration of ecdysone pulses by negatively regulating ecdysone biosynthesis through repression of Cyp6t3, and that this repressive function is temporarily overturned via the PTTH pathway by removing DHR4 from the nuclear

  16. Synthesis and biological evaluation of open-chain analogs of cyclic peptides as inhibitors of cellular Shp2 activity.

    PubMed

    Zhen, Xiao-Li; Yin, Wen-Hui; Tian, Xia; Ma, Zhen-Jie; Fan, Shi-Ming; Han, Jian-Rong; Liu, Shouxin

    2015-05-15

    A series of open-chain analogs of cyclic peptides was designed and synthesized using sansalvamide A as a model compound. All compounds exhibited low antitumor activity. Furthermore, the evaluation of their inhibitory potency toward IMPDH, SHP2, ACHE, proteasome, MAGL, and cathepsin B showed that all of the compounds were potent against protein tyrosine phosphatase Shp2. Specifically, compounds 1a, 1d, 2b, and 2f were found to inhibit SHP2 with IC50 values in the low micromolar range and good selectivity. Based on the molecular docking results, the binding modes of the chain cyclic peptides in the active center of SHP2 were discussed. PMID:25865131

  17. A tyrosine phosphatase SHP2 gain-of-function mutation enhances malignancy of breast carcinoma

    PubMed Central

    Fang, Haoshu; Liu, Yakun; Chen, Danlei; Zhang, Qian; Liu, Xia; Wei, Daoyan; Qu, Chengkui; Wang, Siying

    2016-01-01

    Background: Evidence suggests that Src homologous protein phosphotyrosyl phosphatase 2 (SHP2) mutations promote cancer development in several solid tumours. In this study, we focused on the in vivo and in vitro effects of an SHP2 mutation on the breast cancer phenotype to determine whether this mutation is correlated with a malignant phenotype. Methods: Mutant PTPN11 cDNA (D61G) was transduced into MDA-MB231 and MCF-7 cells. The effects of the D61G mutation on tumourigenesis and malignant behaviours, such as cell adhesion, proliferation, migration and invasion, were examined. Potential underlying molecular mechanisms, i.e., activation of the Gab1-Ras-Erk axis, were also examined. Results: In vitro experiments revealed that tumour adhesion, proliferation, migration and invasion were significantly increased in the SHP2 D61G mutant groups. Consistently, in vivo experiments also showed that the tumour sizes and weights were increased significantly in the SHP2 D61G-MB231 group (p < 0.001) in association with tumour metastasis. Mechanistically, the PTPN11 mutation resulted in activation of the Ras-ErK pathway. The binding between Gab1 and mutant SHP2 was significantly increased. Conclusion: Mutant SHP2 significantly promotes tumour migration and invasion at least partially through activation of the Gab1-Ras-Erk axis. This finding could have direct implications for breast cancer therapy. PMID:26673822

  18. Protein tyrosine phosphatase SHP-1: resurgence as new drug target for human autoimmune disorders.

    PubMed

    Sharma, Yadhu; Bashir, Samina; Bhardwaj, Puja; Ahmad, Altaf; Khan, Farah

    2016-08-01

    Recognition of self-antigen and its destruction by the immune system is the hallmark of autoimmune diseases. During the developmental stages, immune cells are introduced to the self-antigen, for which tolerance develops. The inflammatory insults that break the immune tolerance provoke immune system against self-antigen, progressively leading to autoimmune diseases. SH2 domain containing protein tyrosine phosphatase (PTP), SHP-1, was identified as hematopoietic cell-specific PTP that regulates immune function from developing immune tolerance to mediating cell signaling post-immunoreceptor activation. The extensive research on SHP-1-deficient mice elucidated the diversified role of SHP-1 in immune regulation, and inflammatory process and related disorders such as cancer, autoimmunity, and neurodegenerative diseases. The present review focalizes upon the implication of SHP-1 in the pathogenesis of autoimmune disorders, such as allergic asthma, neutrophilic dermatosis, atopic dermatitis, rheumatoid arthritis, and multiple sclerosis, so as to lay the background in pursuance of developing therapeutic strategies targeting SHP-1. Also, new SHP-1 molecular targets have been suggested like SIRP-α, PIPKIγ, and RIP-1 that may prove to be the focal point for the development of therapeutic strategies. PMID:27216862

  19. Shp2 and Pten have antagonistic roles in myeloproliferation but cooperate to promote erythropoiesis in mammals

    PubMed Central

    Zhu, Helen He; Luo, Xiaolin; Zhang, Kaiqing; Cui, Jian; Zhao, Huifang; Ji, Zhongzhong; Zhou, Zhicheng; Yao, Jufang; Zeng, Lifan; Ji, Kaihong; Gao, Wei-Qiang; Zhang, Zhong-Yin; Feng, Gen-Sheng

    2015-01-01

    Previous data suggested a negative role of phosphatase and tensin homolog (Pten) and a positive function of SH2-containing tyrosine phosphatase (Shp2)/Ptpn11 in myelopoiesis and leukemogenesis. Herein we demonstrate that ablating Shp2 indeed suppressed the myeloproliferative effect of Pten loss, indicating directly opposing functions between pathways regulated by these two enzymes. Surprisingly, the Shp2 and Pten double-knockout mice suffered lethal anemia, a phenotype that reveals previously unappreciated cooperative roles of Pten and Shp2 in erythropoiesis. The lethal anemia was caused collectively by skewed progenitor differentiation and shortened erythrocyte lifespan. Consistently, treatment of Pten-deficient mice with a specific Shp2 inhibitor suppressed myeloproliferative neoplasm while causing anemia. These results identify concerted actions of Pten and Shp2 in promoting erythropoiesis, while acting antagonistically in myeloproliferative neoplasm development. This study illustrates cell type-specific signal cross-talk in blood cell lineages, and will guide better design of pharmaceuticals for leukemia and other types of cancer in the era of precision medicine. PMID:26460004

  20. Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-09-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  1. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    PubMed

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD. PMID:23232694

  2. Inverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  3. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    PubMed

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways. PMID:27560800

  4. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors.

    PubMed

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics. PMID:26029163

  5. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors

    PubMed Central

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics. PMID:26029163

  6. Frienemies of infection: A chronic case of host nuclear receptors acting as cohorts or combatants of infection.

    PubMed

    Mahajan, Sahil; Saini, Ankita; Kalra, Rashi; Gupta, Pawan

    2016-08-01

    Macrophages and dendritic cells provide critical effector functions to efficiently resist and promptly eliminate infection. Pattern recognition receptors signaling operative in these cell types is imperative for their innate properties. However, it is now emerging that besides these conventional signaling pathways, nuclear receptors coupled gene regulation and transrepression pathways assemble immune regulatory networks. A couple of these networks associated with members of nuclear receptor superfamily decide heterogeneity in macrophages and dendritic cells population and thereby play decisive role in determining protective immunity against bacteria, viruses, fungi, protozoa and helminths. Pathogens also direct shift in the expression of nuclear receptors and their target genes and this is proclaimed to be a sui generis mechanism whereby microbes disconnect the genomic component from the peripheral immune response. Many endogenous and synthetic nuclear receptor ligands have been tested in various in vitro and in vivo infection models to study their effect on pathogen burden. Here, we discuss current advances in our understanding of the composite interactions between nuclear receptor and pathogens and their implications on the causatum infectious diseases. PMID:25358058

  7. A nuclear pathway for alpha 1-adrenergic receptor signaling in cardiac cells.

    PubMed Central

    Ardati, A; Nemer, M

    1993-01-01

    alpha 1-Adrenergic agonists and antagonists constitute an important class of therapeutic agents commonly used for the treatment of various cardiovascular diseases like hypertension, congestive heart failure and supraventricular tachycardia. At the heart level, activation of alpha 1-adrenergic receptors is associated with marked morphological and genetic changes. These include enhancement of contractility, myocardial growth (hypertrophy) and release of the heart major secretory product, atrial natriuretic factor (ANF). However, the signal transduction pathways which link extracellular activation of the receptors to cellular and genetic changes are not well understood. Using primary cardiocyte cultures from neonate rat hearts, an alpha 1-adrenergic regulatory sequence has been identified in the 5' flanking region of the ANF gene. This sequence, which is necessary and sufficient for transcriptional activation in response to the alpha 1-specific agonist phenylephrine, interacts with novel zinc-dependent proteins which are induced by alpha 1-adrenergic stimulation. Consistent with a conserved regulatory mechanism, the alpha 1 response element is highly conserved between rodent, bovine and human ANF genes, and is also present in the promoter region of other alpha 1-responsive cardiac genes. The identification of a nuclear pathway for alpha 1-receptor signaling will be useful for elucidating the intracellular effectors of alpha 1-adrenergic receptors. Images PMID:8262057

  8. The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors.

    PubMed

    Alexander, Stephen Ph; Cidlowski, John A; Kelly, Eamonn; Marrion, Neil; Peters, John A; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:26650443

  9. Structure of the intact PPAR-Υ-RXR-α nuclear receptor complex on DNA

    SciTech Connect

    Chandra, Vikas; Huang, Pengxiang; Hamuro, Yoshitomo; Raghuram, Srilatha; Wang, Yongjun; Burris, Thomas P; Rastinejad, Fraydoon

    2009-01-09

    Nuclear receptors are multi-domain transcription factors that bind to DNA elements from which they regulate gene expression. The peroxisome proliferator-activated receptors (PPARs) form heterodimers with the retinoid X receptor (RXR), and PPAR-{gamma} has been intensively studied as a drug target because of its link to insulin sensitization. Previous structural studies have focused on isolated DNA or ligand-binding segments, with no demonstration of how multiple domains cooperate to modulate receptor properties. Here we present structures of intact PPAR-{gamma} and RXR-{alpha} as a heterodimer bound to DNA, ligands and coactivator peptides. PPAR-{gamma} and RXR-{alpha} form a non-symmetric complex, allowing the ligand-binding domain (LBD) of PPAR-{gamma} to contact multiple domains in both proteins. Three interfaces link PPAR-{gamma} and RXR-{alpha}, including some that are DNA dependent. The PPAR-{gamma} LBD cooperates with both DNA-binding domains (DBDs) to enhance response-element binding. The A/B segments are highly dynamic, lacking folded substructures despite their gene-activation properties.

  10. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance. PMID:23962444

  11. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine

    PubMed Central

    Mueller, Matthias; Cima, Igor; Noti, Mario; Fuhrer, Andrea; Jakob, Sabine; Dubuquoy, Laurent; Schoonjans, Kristina; Brunner, Thomas

    2006-01-01

    The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis. PMID:16923850

  12. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    PubMed

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates. PMID:21715559

  13. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility.

    PubMed

    Süllner, Julia; Lattrich, Claus; Häring, Julia; Görse, Regina; Ortmann, Olaf; Treeck, Oliver

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  14. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility

    PubMed Central

    SÜLLNER, JULIA; LATTRICH, CLAUS; HÄRING, JULIA; GÖRSE, REGINA; ORTMANN, OLAF; TREECK, OLIVER

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  15. The role of the orphan nuclear receptor COUP-TFII in tumorigenesis

    PubMed Central

    Xu, Mafei; Qin, Jun; Tsai, Sophia Y; Tsai, Ming-jer

    2015-01-01

    The chicken ovalbumin upstream promoter transcription factors (COUP-TFs), members of the nuclear receptor superfamily, consist of two highly homologous subtypes, COUP-TFI (EAR-3, NR2F1) and COUP-TFII (ARP-1, NR2F2). They are referred to as orphan receptors because the COUP-TF ligands have yet to be identified. Since the discovery of COUP-TFs in 1986, extensive studies have demonstrated their crucial functions in a variety of developmental processes, such as organogenesis, angiogenesis, and metabolic homeostasis. Recently, emerging evidence has highlighted that COUP-TFs, specifically COUP-TFII, play important roles in tumorigenesis. In this review, we will discuss the critical functions of COUP-TFII in the development of the tumor microenvironment, the progression of various cancers, and its underlying mechanisms. PMID:25283503

  16. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  17. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine.

    PubMed

    Mueller, Matthias; Cima, Igor; Noti, Mario; Fuhrer, Andrea; Jakob, Sabine; Dubuquoy, Laurent; Schoonjans, Kristina; Brunner, Thomas

    2006-09-01

    The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis. PMID:16923850

  18. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA

    PubMed Central

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-01-01

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-RanGTP nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression. DOI: http://dx.doi.org/10.7554/eLife.04121.001 PMID:25486595

  19. Deciphering the regulatory logic of an ancient, ultraconserved nuclear receptor enhancer module.

    PubMed

    Bagamasbad, Pia D; Bonett, Ronald M; Sachs, Laurent; Buisine, Nicolas; Raj, Samhitha; Knoedler, Joseph R; Kyono, Yasuhiro; Ruan, Yijun; Ruan, Xiaoan; Denver, Robert J

    2015-06-01

    Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5-6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection. PMID:25866873

  20. Deciphering the Regulatory Logic of an Ancient, Ultraconserved Nuclear Receptor Enhancer Module

    PubMed Central

    Bagamasbad, Pia D.; Bonett, Ronald M.; Sachs, Laurent; Buisine, Nicolas; Raj, Samhitha; Knoedler, Joseph R.; Kyono, Yasuhiro; Ruan, Yijun; Ruan, Xiaoan

    2015-01-01

    Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5–6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection. PMID:25866873

  1. Regulation of skeletal muscle mitochondrial function by nuclear receptors: implications for health and disease.

    PubMed

    Perez-Schindler, Joaquin; Philp, Andrew

    2015-10-01

    Skeletal muscle metabolism is highly dependent on mitochondrial function, with impaired mitochondrial biogenesis associated with the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mitochondria display substantial plasticity in skeletal muscle, and are highly sensitive to levels of physical activity. It is thought that physical activity promotes mitochondrial biogenesis in skeletal muscle through increased expression of genes encoded in both the nuclear and the mitochondrial genome; however, how this process is co-ordinated at the cellular level is poorly understood. Nuclear receptors (NRs) are key signalling proteins capable of integrating environmental factors and mitochondrial function, thereby providing a potential link between exercise and mitochondrial biogenesis. The aim of this review is to highlight the function of NRs in skeletal muscle mitochondrial biogenesis and discuss the therapeutic potential of NRs for the management and treatment of chronic metabolic disease. PMID:26186742

  2. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies.

    PubMed

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-01-01

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. PMID:27058170

  3. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism

    PubMed Central

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G.

    2010-01-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet–induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1–nuclear receptor interactions. PMID:20479251

  4. Tumour nuclear oestrogen receptor beta 1 correlates inversely with parathyroid tumour weight

    PubMed Central

    Haglund, Felix; Rosin, Gustaf; Nilsson, Inga-Lena; Juhlin, C Christofer; Pernow, Ylva; Norenstedt, Sophie; Dinets, Andrii; Larsson, Catharina; Hartman, Johan; Höög, Anders

    2015-01-01

    Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness. PMID:25648860

  5. Nucleocytoplasmic Recycling of the Nuclear Localization Signal Receptor α Subunit In Vivo Is Dependent on a Nuclear Export Signal, Energy, and RCC1

    PubMed Central

    Boche, Irene; Fanning, Ellen

    1997-01-01

    Nuclear protein import requires a nuclear localization signal (NLS) receptor and at least three other cytoplasmic factors. The α subunit of the NLS receptor, Rag cohort 1 (Rch1), enters the nucleus, probably in a complex with the β subunit of the receptor, as well as other import factors and the import substrate. To learn more about which factors and/or events end the import reaction and how the import factors return to the cytoplasm, we have studied nucleocytoplasmic shuttling of Rch1 in vivo. Recombinant Rch1 microinjected into Vero or tsBN2 cells was found primarily in the cytoplasm. Rch1 injected into the nucleus was rapidly exported in a temperature-dependent manner. In contrast, a mutant of Rch1 lacking the first 243 residues accumulated in the nuclei of Vero cells after cytoplasmic injection. After nuclear injection, the truncated Rch1 was retained in the nucleus, but either Rch1 residues 207–217 or a heterologous nuclear export signal, but not a mutant form of residues 207–217, restored nuclear export. Loss of the nuclear transport factor RCC1 (regulator of chromosome condensation) at the nonpermissive temperature in the thermosensitive mutant cell line tsBN2 caused nuclear accumulation of wild-type Rch1 injected into the cytoplasm. However, free Rch1 injected into nuclei of tsBN2 cells at the nonpermissive temperature was exported. These results suggested that RCC1 acts at an earlier step in Rch1 recycling, possibly the disassembly of an import complex that contains Rch1 and the import substrate. Consistent with this possibility, incubation of purified RanGTP and RCC1 with NLS receptor and import substrate prevented assembly of receptor/substrate complexes or stimulated their disassembly. PMID:9334337

  6. Direct modification and regulation of a nuclear receptor-PIP2 complex by the nuclear inositol-lipid kinase IPMK

    PubMed Central

    Blind, Raymond D.; Suzawa, Miyuki; Ingraham, Holly A.

    2012-01-01

    Phosphatidylinositol (4,5)-bisphosphate (PIP2) is best known as a plasma membrane-bound regulatory lipid. While PIP2 and phosphoinositide-modifying enzymes coexist in the nucleus, their roles in the nucleus remain unclear. Here we show that the nuclear inositol polyphosphate multikinase (IPMK), which functions both as an inositol- and a PI3-kinase, interacts with the nuclear receptor SF-1 (NR5A1) and phosphorylates its bound ligand, PIP2. IPMK failed to recognize SF-1/PIP2 after blocking or displacing PIP2 from SF-1’s large hydrophobic pocket. In contrast to IPMK, p110 catalytic subunits of type 1 PI3-kinases were inactive on SF-1/PIP2. These and other in vitro analyses demonstrated specificity of IPMK for the SF-1/PIP2 protein/lipid complex. Once generated, SF-1/PIP3 is readily dephosphorylated by the lipid phosphatase PTEN. Importantly, decreasing IPMK or increasing PTEN expression greatly reduced SF-1 transcriptional activity. This ability of lipid kinases and phosphatases to alter the activity and directly remodel a non-membrane protein/lipid complex such SF-1/PIP2, establishes a new pathway for promoting lipid-mediated signaling in the nucleus. PMID:22715467

  7. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation

    PubMed Central

    Timmerman, Ilse; Hoogenboezem, Mark; Bennett, Anton M.; Geerts, Dirk; Hordijk, Peter L.; van Buul, Jaap D.

    2012-01-01

    Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane. PMID:22956765

  8. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    SciTech Connect

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  9. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance

    PubMed Central

    Hermann-Kleiter, Natascha; Klepsch, Victoria; Wallner, Stephanie; Siegmund, Kerstin; Klepsch, Sebastian; Tuzlak, Selma; Villunger, Andreas; Kaminski, Sandra; Pfeifhofer-Obermair, Christa; Gruber, Thomas; Wolf, Dominik; Baier, Gottfried

    2015-01-01

    Summary Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6−/− mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4+ and CD8+ T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4+ and CD8+ T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity. PMID:26387951

  10. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores.

    PubMed

    Lagarde, Nathalie; Delahaye, Solenne; Zagury, Jean-François; Montes, Matthieu

    2016-01-01

    Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated. PMID:27602059

  11. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L.; Wang, Y.-H.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  12. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death. PMID:24316735

  13. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm. PMID:18641393

  14. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  15. Minireview: Nuclear Receptor Coregulators of the p160 Family: Insights into Inflammation and Metabolism

    PubMed Central

    Rollins, David A.; Coppo, Maddalena

    2015-01-01

    Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues (“metainflammation”) is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in “normal” vs “pathological” inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved. PMID:25647480

  16. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance.

    PubMed

    Hermann-Kleiter, Natascha; Klepsch, Victoria; Wallner, Stephanie; Siegmund, Kerstin; Klepsch, Sebastian; Tuzlak, Selma; Villunger, Andreas; Kaminski, Sandra; Pfeifhofer-Obermair, Christa; Gruber, Thomas; Wolf, Dominik; Baier, Gottfried

    2015-09-29

    Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6(-/-) mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4(+) and CD8(+) T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4(+) and CD8(+) T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity. PMID:26387951

  17. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  18. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    SciTech Connect

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François; Boublik, Yvan; Pérez, Efrèn; Germain, Pierre; Lera, Angel R. de; Bourguet, William

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  19. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice

    PubMed Central

    Volle, David H.; Decourteix, Mélanie; Garo, Erwan; McNeilly, Judy; Fenichel, Patrick; Auwerx, Johan; McNeilly, Alan S.; Schoonjans, Kristina; Benahmed, Mohamed

    2009-01-01

    Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis. PMID:19884658

  20. Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation

    PubMed Central

    Sun, Ye; Liu, Chi-Hsiu; SanGiovanni, John Paul; Evans, Lucy P.; Tian, Katherine T.; Zhang, Bing; Stahl, Andreas; Pu, William T.; Kamenecka, Theodore M.; Solt, Laura A.; Chen, Jing

    2015-01-01

    Pathologic ocular angiogenesis is a leading cause of blindness, influenced by both dysregulated lipid metabolism and inflammation. Retinoic-acid-receptor–related orphan receptor alpha (RORα) is a lipid-sensing nuclear receptor with diverse biologic function including regulation of lipid metabolism and inflammation; however, its role in pathologic retinal angiogenesis remains poorly understood. Using a mouse model of oxygen-induced proliferative retinopathy, we showed that RORα expression was significantly increased and genetic deficiency of RORα substantially suppressed pathologic retinal neovascularization. Loss of RORα led to decreased levels of proinflammatory cytokines and increased levels of antiinflammatory cytokines in retinopathy. RORα directly suppressed the gene transcription of suppressors of cytokine signaling 3 (SOCS3), a critical negative regulator of inflammation. Inhibition of SOCS3 abolished the antiinflammatory and vasoprotective effects of RORα deficiency in vitro and in vivo. Moreover, treatment with a RORα inverse agonist SR1001 effectively protected against pathologic neovascularization in both oxygen-induced retinopathy and another angiogenic model of very-low–density lipoprotein receptor (Vldlr)-deficient (Vldlr−/−) mice with spontaneous subretinal neovascularization, whereas a RORα agonist worsened oxygen-induced retinopathy. Our data demonstrate that RORα is a novel regulator of pathologic retinal neovascularization, and RORα inhibition may represent a new way to treat ocular neovascularization. PMID:26243880

  1. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation

    PubMed Central

    Carthy, Jon M.; Stöter, Martin; Bellomo, Claudia; Vanlandewijck, Michael; Heldin, Angelos; Morén, Anita; Kardassis, Dimitris; Gahman, Timothy C.; Shiau, Andrew K.; Bickle, Marc; Zerial, Marino; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer. PMID:27430378

  2. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  3. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation.

    PubMed

    Carthy, Jon M; Stöter, Martin; Bellomo, Claudia; Vanlandewijck, Michael; Heldin, Angelos; Morén, Anita; Kardassis, Dimitris; Gahman, Timothy C; Shiau, Andrew K; Bickle, Marc; Zerial, Marino; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer. PMID:27430378

  4. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    SciTech Connect

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas; Jernberg-Wiklund, Helena; Sehat, Bita; Larsson, Olle

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over

  5. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells.

    PubMed

    Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-06-15

    Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that

  6. Classical Nuclear Hormone Receptor Activity as a Mediator of Complex Concentration Response Relationships for Endocrine Active Compounds

    PubMed Central

    Cookman, Clifford J.; Belcher, Scott M.

    2014-01-01

    Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014. PMID:25299165

  7. Generation of ES cells for conditional expression of nuclear receptors and coregulators in vivo.

    PubMed

    Wu, San-Pin; Lee, Dong-Kee; Demayo, Francesco J; Tsai, Sophia Y; Tsai, Ming-Jer

    2010-06-01

    Nuclear receptors and coregulators orchestrate diverse aspects of biological functions and inappropriate expression of these factors often associates with human diseases. The present study describes a conditional overexpression system consisting of a minigene located at the Rosa26 locus in the genome of mouse embryonic stem (ES) cells. Before activation, the minigene is silent due to a floxed STOP cassette inserted between the promoter and the transgene. Upon cre-mediated excision of the STOP cassette, the minigene constitutively expresses the tagged transgene driven by the ubiquitous CAGGS promoter. Thus, this system can be used to express target gene in any tissue in a spatial and/or temporal manner if respective cre mouse lines are available. Serving as proof of principle, the CAG-S-hCOUP-TFI allele was generated in ES cells and subsequently in mice. This allele was capable of conditionally overexpressing human chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) in all tissues tested upon activation by cre drivers. This allele was further subjected to address functionality of expressed COUP-TFI and the functional similarity between COUP-TFI and COUP-TFII. Expression of COUP-TFI in COUP-TFII-ablated uterus suppressed aberrant estrogen receptor-alpha activities and rescued implantation and decidualization defects of COUP-TFII mutants, suggesting that COUP-TFI and COUP-TFII are able to functionally compensate for each other in the uterus. A toolbox currently under construction will contain ES cell lines for overexpressing all 48 nuclear receptors and selected 10 coregulators. Upon completion, it will be a very valuable resource for the scientific community. Several ES cells are currently available for distribution. PMID:20382891

  8. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury.

    PubMed

    He, Ben; Zhao, Yichao; Xu, Longwei; Gao, Lingchen; Su, Yuanyuan; Lin, Nan; Pu, Jun

    2016-04-01

    Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury. PMID:26797926

  9. The nuclear receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction.

    PubMed

    Maglich, Jodi M; Watson, Joe; McMillen, Patrick J; Goodwin, Bryan; Willson, Timothy M; Moore, John T

    2004-05-01

    The orphan nuclear receptor CAR (NR1I3) has been characterized as a central component in the coordinate response to xenobiotic and endobiotic stress. In this study, we demonstrate that CAR plays a pivotal function in energy homeostasis and establish an unanticipated metabolic role for this nuclear receptor. Wild-type mice treated with the synthetic CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) exhibited decreased serum concentration of the thyroid hormone (TH) thyroxine (T(4)). However, treatment of Car(-/-) mice with TCPOBOP failed to elicit these changes. To examine whether CAR played a role in the regulation of TH levels under physiological conditions, wild-type and Car(-/-) mice were fasted for 24 h, a process known to alter TH metabolism in mammals. As expected, the serum triiodothyronine and T(4) concentrations decreased in wild-type mice. However, triiodothyronine and T(4) levels in fasted Car(-/-) mice remained significantly higher than those in fasted wild-type animals. Concomitant with the changes in serum TH levels, both CAR agonist treatment and fasting induced the expression of CAR target genes (notably, Cyp2b10, Ugt1a1, Sultn, Sult1a1, and Sult2a1) in a receptor-dependent manner. Importantly, the Ugt1a1, Sultn, Sult1a1, and Sult2a1 genes encode enzymes that are capable of metabolizing TH. An attenuated reduction in TH levels during fasting, as observed in Car(-/-) mice, would be predicted to increase weight loss during caloric restriction. Indeed, when Car(-/-) animals were placed on a 40% caloric restriction diet for 12 weeks, Car(-/-) animals lost over twice as much weight as their wild-type littermates. Thus, CAR participates in the molecular mechanisms contributing to homeostatic resistance to weight loss. These data imply that CAR represents a novel therapeutic target to uncouple metabolic rate from food intake and has implications in obesity and its associated disorders. PMID:15004031

  10. Fine spatial assembly for construction of the phenol-binding pocket to capture bisphenol A in the human nuclear receptor estrogen-related receptor γ.

    PubMed

    Liu, Xiaohui; Matsushima, Ayami; Nakamura, Masayuki; Costa, Tommaso; Nose, Takeru; Shimohigashi, Yasuyuki

    2012-04-01

    Various lines of evidence have shown that bisphenol A (BPA) acts as an endocrine disruptor that affects various hormones even at merely physiological levels. We demonstrated recently that BPA binds strongly to human nuclear receptor estrogen-related receptor γ (ERRγ), one of 48 nuclear receptors. Based on X-ray crystal analysis of the ERRγ ligand-binding domain (LBD)/BPA complex, we demonstrated that ERRγ receptor residues, Glu275 and Arg316, function as the intrinsic-binding site of the phenol-hydroxyl group of BPA. If these phenol-hydroxyl↔Glu275 and Arg316 hydrogen bonds anchor the A-benzene ring of BPA, the benzene-phenyl group of BPA would be in a pocket constructed by specific amino acid side chain structures. In the present study, by evaluating the Ala-replaced mutant receptors, we identified such a ligand-binding pocket. Leu268, Leu271, Leu309 and Tyr326, in addition to the previously reported participants Glu275 and Arg316, were found to make a receptacle pocket for the A-ring, whereas Ile279, Ile310 and Val313 were found to assist or structurally support these residues. The results revealed that each amino acid residue is an essential structural element for the strong binding of BPA to ERRγ. PMID:22298789

  11. Molecular adaptation and resilience of the insect’s nuclear receptor USP

    PubMed Central

    2012-01-01

    Background The maintenance of biological systems requires plasticity and robustness. The function of the ecdysone receptor, a heterodimer composed of the nuclear receptors ECR (NR1H1) and USP (NR2B4), was maintained in insects despite a dramatic divergence that occurred during the emergence of Mecopterida. This receptor is therefore a good model to study the evolution of plasticity. We tested the hypothesis that selection has shaped the Ligand-Binding Domain (LBD) of USP during evolution of Mecopterida. Results We isolated usp and cox1 in several species of Drosophilidae, Tenebrionidae and Blattaria and estimated non-synonymous/synonymous rate ratios using maximum-likelihood methods and codon-based substitution models. Although the usp sequences were mainly under negative selection, we detected relaxation at residues located on the surface of the LBD within Mecopterida families. Using branch-site models, we also detected changes in selective constraints along three successive branches of the Mecopterida evolution. Residues located at the bottom of the ligand-binding pocket (LBP) underwent strong positive selection during the emergence of Mecopterida. This change is correlated with the acquisition of a large LBP filled by phospholipids that probably allowed the stabilisation of the new Mecopterida structure. Later, when the two subgroups of Mecopterida (Amphiesmenoptera: Lepidoptera, Trichoptera; Antliophora: Diptera, Mecoptera, Siphonaptera) diverged, the same positions became under purifying selection. Similarly, several positions of the heterodimerisation interface experienced positive selection during the emergence of Mecopterida, rapidly followed by a phase of constrained evolution. An enlargement of the heterodimerisation surface is specific for Mecopterida and was associated with a reinforcement of the obligatory partnership between ECR and USP, at the expense of homodimerisation. Conclusions In order to explain the episodic mode of evolution of USP, we

  12. A structural perspective on nuclear receptors as targets of environmental compounds

    PubMed Central

    Delfosse, Vanessa; Maire, Albane le; Balaguer, Patrick; Bourguet, William

    2015-01-01

    Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related transcription factors that control a plethora of biological processes. NRs orchestrate complex events such as development, organ homeostasis, metabolism, immune function, and reproduction. Approximately one-half of the 48 human NRs have been shown to act as ligand-regulated transcription factors and respond directly to a large variety of endogenous hormones and metabolites that are generally hydrophobic and small in size (eg, retinoic acid or estradiol). The second half of the NR family comprises the so-called orphan receptors, for which regulatory ligands are still unknown or may not exist despite the presence of a C-terminal ligand-binding domain, which is the hallmark of all NRs. Several chemicals released into the environment (eg, bisphenols, phthalates, parabens, etc) share some physicochemical properties with natural ligands, allowing them to bind to NRs and activate or inhibit their action. Collectively referred to as endocrine disruptors or endocrine-disrupting chemicals (EDCs), these environmental pollutants are highly suspected to cause a wide range of developmental, reproductive, neurological, or metabolic defects in humans and wildlife. Crystallographic studies are revealing unanticipated mechanisms by which chemically diverse EDCs interact with the ligand-binding domain of NRs. These studies thereby provide a rational basis for designing novel chemicals with lower impacts on human and animal health. In this review, we provide a structural and mechanistic view of endocrine disrupting action using estrogen receptors α and β, (ERα/β), peroxisome proliferator activated receptor γ (PPARγ), and their respective environmental ligands as representative examples. PMID:25500867

  13. Radioligand binding assay for accurate determination of nuclear retinoid X receptors: A case of triorganotin endocrine disrupting ligands.

    PubMed

    Toporova, Lucia; Macejova, Dana; Brtko, Julius

    2016-07-01

    Nuclear 9-cis retinoic acid receptors (retinoid X receptors, RXR) are promiscuous dimerization partners for a number of nuclear receptors. In the present study, we established a novel in vitro method for quantitative determination of the nuclear retinoid X receptors in rat liver. One type of high affinity and limited capacity RXR specific binding sites with the Ka value ranging from 1.011 to 1.727×10(9)l/mol and the Bmax value ranging from 0.346 to 0.567pmol/mg, was demonstrated. Maximal 9-cis retinoic acid (9cRA) specific binding to nuclear retinoid X receptors was achieved at 20°C, and the optimal incubation time for the 9cRA-RXR complex formation was 120min. From a number of endocrine disruptors, tributyltins and triphenyltins are known as RXR ligands. Our data confirmed the property of tributyltin chloride or triphenyltin chloride to bind to a high affinity and limited capacity RXR binding sites. Described optimal conditions for ligand binding to RXR molecules enabled us to calculate maximal binding capacity (Bmax) and affinity (Ka) values. This study provides an original RXR radioligand binding assay that can be employed for investigation of novel RXR ligands that comprise both drugs and endocrine disruptors. PMID:27153798

  14. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    PubMed

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  15. Cross-talk between the NR3B and NR4A families of orphan nuclear receptors.

    PubMed

    Lammi, Johanna; Rajalin, Ann-Marie; Huppunen, Johanna; Aarnisalo, Piia

    2007-07-27

    Estrogen-related receptors (NR3B family) and Nurr1, NGFI-B, and Nor1 (NR4A family) are orphan nuclear receptors lacking identified natural ligands. The mechanisms regulating their transcriptional activities have remained elusive. We have previously observed that the members of NR3B and NR4A families are coexpressed in certain cell types such as osteoblasts and that the ability of Nurr1 to transactivate the osteopontin promoter is repressed by ERRs. We have now studied the cross-talk between NR3B and NR4A receptors. We show that NR3B and NR4A receptors mutually repress each others' transcriptional activity. The repression involves intact DNA-binding domains and dimerization interfaces but does not result from competition for DNA binding or from heterodimerization. The activation functions of NR3B and NR4A receptors are dispensable for the cross-talk. In conclusion, we report that cross-talk between NR3B and NR4A receptors is a mechanism modulating the transcriptional activities of these orphan nuclear receptors. PMID:17543277

  16. Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

    PubMed Central

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L.; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A.

    2015-01-01

    Summary The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. PMID:26456112

  17. The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes

    PubMed Central

    Wang, Zhu; Stoltzfus, Jonathan; You, Young-jai; Ranjit, Najju; Tang, Hao; Xie, Yang; Lok, James B.; Mangelsdorf, David J.; Kliewer, Steven A.

    2015-01-01

    Appropriate nutrient response is essential for growth and reproduction. Under favorable nutrient conditions, the C. elegans nuclear receptor DAF-12 is activated by dafachronic acids, hormones that commit larvae to reproductive growth. Here, we report that in addition to its well-studied role in controlling developmental gene expression, the DAF-12 endocrine system governs expression of a gene network that stimulates the aerobic catabolism of fatty acids. Thus, activation of the DAF-12 transcriptome coordinately mobilizes energy stores to permit reproductive growth. DAF-12 regulation of this metabolic gene network is conserved in the human parasite, Strongyloides stercoralis, and inhibition of specific steps in this network blocks reproductive growth in both of the nematodes. Our study provides a molecular understanding for metabolic adaptation of nematodes to their environment, and suggests a new therapeutic strategy for treating parasitic diseases. PMID:25774872

  18. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity.

    PubMed

    Nguyen, Duy P; Miyaoka, Yuichiro; Gilbert, Luke A; Mayerl, Steven J; Lee, Brian H; Weissman, Jonathan S; Conklin, Bruce R; Wells, James A

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  19. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model

    PubMed Central

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E.; Shi, Yanhong

    2014-01-01

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU+ cells and BrdU+NeuN+ neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory. PMID:24927526

  20. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1

    DOE PAGESBeta

    Blind, Raymond D.; Sablin, Elena P.; Kuchenbecker, Kristopher M.; Chiu, Hsiu-Ju; Deacon, Ashley M.; Das, Debanu; Fletterick, Robert J.; Ingraham, Holly A.

    2014-10-06

    We previously reported that lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP2 and PIP3 bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIPn headgroups. We find that stabilization by the PIP3 ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP3 increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. Finally, we propose that thismore » new surface acts as a PIP3-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.« less

  1. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity

    PubMed Central

    Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A.

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  2. In Silico Adoption of an Orphan Nuclear Receptor NR4A1

    PubMed Central

    Lanig, Harald; Reisen, Felix; Whitley, David; Schneider, Gisbert; Banting, Lee; Clark, Timothy

    2015-01-01

    A 4.1μs molecular dynamics simulation of the NR4A1 (hNur77) apo-protein has been undertaken and a previously undetected druggable pocket has become apparent that is located remotely from the ‘traditional’ nuclear receptor ligand-binding site. A NR4A1/bis-indole ligand complex at this novel site has been found to be stable over 1 μs of simulation and to result in an interesting conformational transmission to a remote loop that has the capacity to communicate with a NBRE within a RXR-α/NR4A1 heterodimer. Several features of the simulations undertaken indicate how NR4A1 can be affected by alternate-site modulators. PMID:26270486

  3. Nuclear Receptors as Therapeutic Targets in Liver Disease: Are We There Yet?

    PubMed Central

    Wang, Li

    2016-01-01

    Nuclear receptors (NR) are ligand-modulated transcription factors that play diverse roles in cell differentiation, development, proliferation, and metabolism and are associated with numerous liver pathologies such as cancer, steatosis, inflammation, fibrosis, cholestasis, and xenobiotic/drug-induced liver injury. The network of target proteins associated with NRs is extremely complex, comprising coregulators, small noncoding microRNAs, and long noncoding RNAs. The importance of NRs as targets of liver disease is exemplified by the number of NR ligands that are currently used in the clinics or in clinical trials with promising results. Understanding the regulation by NR during pathophysiological conditions, and identifying ligands for orphan NR, points to a potential therapeutic approach for patients with liver diseases. An overview of complex NR metabolic networks and their pharmacological implications in liver disease is presented here. PMID:26738480

  4. A comparison of ALPHAScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors.

    PubMed

    Glickman, J Fraser; Wu, Xiang; Mercuri, Robert; Illy, Chantal; Bowen, Benjamin R; He, Yang; Sills, Matthew

    2002-02-01

    New developments in detection technologies are providing a variety of biomolecular screening strategies from which to choose. Consequently, we performed a detailed analysis of both separation-based and non-separation-based formats for screening nuclear receptor ligands. In this study, time-resolved fluorescence resonance energy transfer (TR-FRET), ALPHAScreen, and time-resolved fluorescence (TRF) assays were optimized and compared with respect to sensitivity, reproducibility, and miniaturization capability. The results showed that the ALPHAScreen system had the best sensitivity and dynamic range. The TRF assay was more time consuming because of the number of wash steps necessary. The TR-FRET assay had less interwell variation, most likely because of ratiometric measurement. Both the ALPHAScreen and the TR-FRET assays were miniaturized to 8-microl volumes. Of the photomultiplier tube-based readers, the ALPHAScreen reader (ALPHAQuest) presented the advantage of faster reading times through simultaneous reading with four photomultiplier tubes. PMID:11897050

  5. Cryptochinones from Cryptocarya chinensis act as farnesoid X receptor agonists.

    PubMed

    Lin, Hsiang-Ru; Chou, Tsung-Hsien; Huang, Din-Wen; Chen, Ih-Sheng

    2014-09-01

    Cryptochinones A-D are tetrahydroflavanones isolated from the leaves of Cryptocarya chinensis, an evergreen tree whose extracts are believed to have a variety of health benefits. The origin of their possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and for hyperglycemia. We studied whether cryptochinones A-D, which are structurally similar to known FXR ligands, may act at this target. Indeed, in mammalian one-hybrid and transient transfection reporter assays, cryptochinones A-D transactivated FXR to modulate promoter action including GAL4, SHP, CYP7A1, and PLTP promoters in dose-dependent manner, while they exhibited similar agonistic activity as chenodeoxycholic acid (CDCA), an endogenous FXR agonist. Through molecular modeling docking studies we evaluated their ability to bind to the FXR ligand binding pocket. Our results indicate that cryptochinones A-D can behave as FXR agonists. PMID:25127166

  6. Targeted Disruption of Shp2 in Chondrocytes Leads to Metachondromatosis With Multiple Cartilaginous Protrusions

    PubMed Central

    Kim, Harry KW; Feng, Gen-Sheng; Chen, Di; King, Philip D; Kamiya, Nobuhiro

    2014-01-01

    Metachondromatosis is a benign bone disease predominantly observed in the hands and feet of children or young adults demonstrating two different manifestations: a cartilage-capped bony outgrowth on the surface of the bone called exostosis and ectopic cartilaginous nodules inside the bone called enchondroma. Recently, it has been reported that loss-of-function mutations of the SHP2 gene, which encodes the SHP2 protein tyrosine phosphatase, are associated with metachondromatosis. The purpose of this study was to investigate the role of SHP2 in postnatal cartilage development, which is largely unknown. We disrupted Shp2 during the postnatal stage of mouse development in a chondrocyte-specific manner using a tamoxifen-inducible system. We found tumor-like nodules on the hands and feet within a month after the initial induction. The SHP2-deficient mice demonstrated an exostosis-like and enchondroma-like phenotype in multiple bones of the hands, feet, and ribs as assessed by X-ray and micro-computed tomography (CT). Histological assessment revealed the disorganization of the growth plate cartilage, a cartilaginous protrusion from the epiphyseal bone, and ectopic cartilage nodules within the bones, which is consistent with the pathological features of metachondromatosis in humans (ie, both exostosis and enchondroma). At molecular levels, we observed an abundant expression of Indian hedgehog protein (IHH) and fibroblast growth factor 2 (FGF2) and impaired expression of mitogen-activated protein kinases (MAPK) in the affected cartilage nodules in the SHP2-deficient mice. In summary, we have generated a mouse model of metachondromatosis that includes manifestations of exostosis and enchondroma. This study provides a novel model for the investigation of the pathophysiology of the disease and advances the understanding of metachondromatosis. This model will be useful to identify molecular mechanisms for the disease cause and progression as well as to develop new therapeutic

  7. Reactive oxygen species induce reversible PECAM-1 tyrosine phosphorylation and SHP-2 binding.

    PubMed

    Maas, Matthias; Wang, Ronggang; Paddock, Cathy; Kotamraju, Srigiridhar; Kalyanaraman, Balaraman; Newman, Peter J; Newman, Debra K

    2003-12-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) functions to control the activation and survival of the cells on which it is expressed. Many of the regulatory functions of PECAM-1 are dependent on its tyrosine phosphorylation and subsequent recruitment of the Src homology (SH2) domain containing protein tyrosine phosphatase SHP-2. The recent demonstration that PECAM-1 tyrosine phosphorylation occurs in cells exposed to the reactive oxygen species hydrogen peroxide (H2O2) suggested that this form of oxidative stress may also support PECAM-1/SHP-2 complex formation. In the present study, we show that PECAM-1 tyrosine phosphorylation in response to exposure of cells to H2O2 is reversible, involves a shift in the balance between kinase and phosphatase activities, and supports binding of SHP-2 and recruitment of this phosphatase to cell-cell borders. We speculate, however, that the unique ability of H2O2 to reversibly oxidize the reactive site cysteine residues of protein tyrosine phosphatases may result in transient inactivation of the SHP-2 that is bound to PECAM-1 under these conditions. Finally, we provide evidence that PECAM-1 tyrosine phosphorylation and SHP-2 binding in endothelial cells requires exposure to an "oxidative burst" of H2O2, but that exposure of these cells to sufficiently high concentrations of H2O2 for a sufficiently long period of time abrogates binding of SHP-2 to tyrosine-phosphorylated PECAM-1. These findings support a role for PECAM-1 as a sensor of oxidative stress, perhaps most importantly during the process of inflammation. PMID:12893640

  8. ONRLDB—manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery

    PubMed Central

    Nanduri, Ravikanth; Bhutani, Isha; Somavarapu, Arun Kumar; Mahajan, Sahil; Parkesh, Raman; Gupta, Pawan

    2015-01-01

    Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11 000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/ PMID:26637529

  9. Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain

    PubMed Central

    Jakób, Michał; Kołodziejczyk, Robert; Orłowski, Marek; Krzywda, Szymon; Kowalska, Agnieszka; Dutko-Gwóźdź, Joanna; Gwóźdź, Tomasz; Kochman, Marian; Jaskólski, Mariusz; Ożyhar, Andrzej

    2007-01-01

    The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95 Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs. PMID:17426125

  10. Cloning and characterization of two nuclear receptors from the filarial nematode Brugia pahangi.

    PubMed Central

    Moore, J; Devaney, E

    1999-01-01

    Nuclear receptors (NRs) encompass a superfamily of cytoplasmic/nuclear localized receptors that on ligand binding (or by phosphorylation) directly regulate the transcription of target genes. NRs are involved in many developmental processes, including moulting in insects and dauer larva formation in Caenorhabditis elegans. Here we report the isolation of two genes related to NRs from the filarial nematode Brugia pahangi. Bp-nhr-1 is a member of the NGF1-B subfamily of NRs and is expressed at very low levels in post-infective larval stage 3 (L3) after their transmission to the mammalian host. The second gene, Bp-nhr-2, is related to XR78E/F of Drosophila, a gene involved in the ecdysone response, over the region of its DNA-binding domain. cDNA and genomic clones have been isolated that correspond to Bp-nhr-2. The most striking feature of the encoded protein is that, although there is a DNA-binding domain similar to that of other NRs, the ligand-binding domain is absent. To investigate the pattern of transcription of Bp-nhr-2 in the filarial life cycle, semi-quantitative reverse-transcriptase-mediated PCR was performed; this analysis demonstrated that the gene is expressed in early stages after infection and in the adult and microfilariae, and is up-regulated just before the moult between L3 and L4 but is not expressed during the moult between L4 and adult. Antibodies raised against a peptide corresponding to the transactivation domain of Bp-nhr-2 demonstrate that the protein is expressed in microfilariae and adult samples and that another cross-reactive protein is expressed in these life-cycle stages. PMID:10548557

  11. Subfertility with Defective Folliculogenesis in Female Mice Lacking Testicular Orphan Nuclear Receptor 4

    PubMed Central

    Chen, Lu-Min; Wang, Ruey-Sheng; Lee, Yi-Fen; Liu, Ning-Chun; Chang, Yu-Jia; Wu, Cheng-Chia; Xie, Shaozhen; Hung, Yao-Ching; Chang, Chawnshang

    2008-01-01

    Testicular orphan nuclear receptor 4 (TR4) plays essential roles for normal spermatogenesis in male mice. However, its roles in female fertility and ovarian function remain largely unknown. Here we found female mice lacking TR4 (TR4−/−) displayed subfertility and irregular estrous cycles. TR4−/− female mice ovaries were smaller with fewer or no preovulatory follicles and corpora lutea. After superovulation, TR4−/− female mice produced fewer oocytes, preovulatory follicles, and corpora lutea. In addition, more intensive granulosa apoptosis was found in TR4−/− ovaries. Functional analyses suggest that subfertility in TR4−/− female mice can be due to an ovarian defect with impaired folliculogenesis rather than a deficiency in pituitary gonadotropins. Molecular mechanism dissection of defective folliculogenesis found TR4 might induce LH receptor (LHR) gene expression via direct binding to its 5′ promoter. The consequence of reduced LHR expression in TR4−/− female mice might then result in reduced gonadal sex hormones via reduced expression of enzymes involved in steroidogenesis. Together, our results showed TR4 might play essential roles in normal folliculogenesis by influencing LHR signals. Modulation of TR4 expression and/or activation via its upstream signals or unidentified ligand(s) might allow us to develop small molecule(s) to control folliculogenesis. PMID:18174360

  12. Quantitative assessment of complex formation of nuclear-receptor accessory proteins.

    PubMed

    Graumann, K; Jungbauer, A

    2000-02-01

    Like other nuclear receptors, steroid hormone receptors form large protein hetero-complexes in their inactive, ligand-friendly state. Several heat-shock proteins, immunophilins and others have been identified as members of these highly dynamic complexes. The interaction kinetics and dynamics of hsp90, hsp70, p60 (Hop), FKBP52, FKBP51, p48 (Hip) and p23 have been assessed by a biosensor approach measuring the complex formation in real time. A core chaperone complex has been reconstituted from p60, hsp90 and hsp70. p60 forms a molecular bridge between hsp90 and hsp70 with an affinity in the range of 10(5) M(-1). Dynamics of hsp90-p60 complex formation is modulated by ATP through changes in the co-operativity of interaction. At low protein concentrations ATP stabilizes the complex. Binding of p23 to hsp90 did not change the affinity of the hsp90-p60 complex and the stabilizing effect of ATP. Saturation of the p48-hsp70 interaction could not be achieved, suggesting multiple binding sites. A picture of the protein complex, including stoichiometric coefficients, co-operativity of interaction and equilibrium-binding constants, has been formed. PMID:10642522

  13. Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRγ.

    PubMed

    Lee, Ja Hee; Kim, Eun-Jin; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia-mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  14. Hypoxia Induces PDK4 Gene Expression through Induction of the Orphan Nuclear Receptor ERRγ

    PubMed Central

    Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A.; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia–mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  15. Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression

    PubMed Central

    Tavares, Raquel; Sachs, Laurent; Chaumot, Arnaud; Bardet, Pierre-Luc; Escrivà, Héctor; Duffraisse, Maryline; Marchand, Oriane; Safi, Rachid; Thisse, Christine; Laudet, Vincent

    2007-01-01

    Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes) using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily. PMID:17997606

  16. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain

    PubMed Central

    Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL–TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  17. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein.

    PubMed

    Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus

    2015-06-01

    The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. PMID:25363753

  18. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain.

    PubMed

    Song, Jie; Mu, Yabing; Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL-TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  19. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.

  20. Function of the nuclear receptor FTZ-F1 during the pupal stage in Drosophila melanogaster.

    PubMed

    Sultan, Abdel-Rahman S; Oish, Yasuhiro; Ueda, Hitoshi

    2014-04-01

    The nuclear receptor βFTZ-F1 is expressed in most cells in a temporally specific manner, and its expression is induced immediately after decline in ecdysteroid levels. This factor plays important roles during embryogenesis, larval ecdysis, and early metamorphic stages. However, little is known about the expression pattern, regulation and function of this receptor during the pupal stage. We analyzed the expression pattern and regulation of ftz-f1 during the pupal period, as well as the phenotypes of RNAi knockdown or mutant animals, to elucidate its function during this stage. Western blotting revealed that βFTZ-F1 is expressed at a high level during the late pupal stage, and this expression is dependent on decreasing ecdysteroid levels. By immunohistological analysis of the late pupal stage, FTZ-F1 was detected in the nuclei of most cells, but cytoplasmic localization was observed only in the oogonia and follicle cells of the ovary. Both the ftz-f1 genetic mutant and temporally specific ftz-f1 knockdown using RNAi during the pupal stage showed defects in eclosion and in the eye, the antennal segment, the wing and the leg, including bristle color and sclerosis. These results suggest that βFTZ-F1 is expressed in most cells at the late pupal stage, under the control of ecdysteroids and plays important roles during pupal development. PMID:24611773

  1. Membrane and Integrative Nuclear Fibroblastic Growth Factor Receptor (FGFR) Regulation of FGF-23*

    PubMed Central

    Han, Xiaobin; Xiao, Zhousheng; Quarles, L. Darryl

    2015-01-01

    Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions. PMID:25752607

  2. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells

    PubMed Central

    2012-01-01

    Background Ergosterol peroxide (EP) derived from edible mushroom has been shown to exert anti-tumor activity in several cancer cells. In the present study, anti-angiogenic activity of EP was investigated with the underlying molecular mechanisms in human multiple myeloma U266 cells. Results Despite weak cytotoxicity against U266 cells, EP suppressed phosphorylation, DNA binding activity and nuclear translocalization of signal transducer and activator of transcription 3 (STAT3) in U266 cells at nontoxic concentrations. Also, EP inhibited phosphorylation of the upstream kinases Janus kinase 2 (JAK2) and Src in a time-dependent manner. Furthermore, EP increased the expression of protein tyrosine phosphatase SHP-1 at protein and mRNA levels, and conversely silencing of the SHP-1 gene clearly blocked EP-mediated STAT3 inactivation. In addition, EP significantly decreased vascular endothelial growth factor (VEGF), one of STAT3 target genes at cellular and protein levels as well as disrupted in vitro tube formation assay. Moreover, EP significantly suppressed the growth of U266 cells inoculated in female BALB/c athymic nude mice and immunohistochemistry revealed that EP effectively reduced the expression of STAT3 and CD34 in tumor sections compared to untreated control. Conclusion These findings suggest that EP can exert antitumor activity in multiple myeloma U266 cells partly with antiangiogenic activity targeting JAK2/STAT3 signaling pathway as a potent cancer preventive agent for treatment of multiple myeloma cells. PMID:22260501

  3. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, h...

  4. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity

    PubMed Central

    Cikala, Mihai; Alexandrova, Olga; David, Charles N; Pröschel, Matthias; Stiening, Beate; Cramer, Patrick; Böttger, Angelika

    2004-01-01

    Background Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of phosphatidylserine on the outer leaflet. Surface exposure of phosphatidylserine is recognised by a specific receptor (phosphatidylserine receptor, PSR) and is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. Results We have cloned the PSR receptor from Hydra in order to investigate its function in this early metazoan. Bioinformatic analysis of the Hydra PSR protein structure revealed the presence of three nuclear localisation signals, an AT-hook like DNA binding motif and a putative 2-oxoglutarate (2OG)-and Fe(II)-dependent oxygenase activity. All of these features are conserved from human PSR to Hydra PSR. Expression of GFP tagged Hydra PSR in hydra cells revealed clear nuclear localisation. Deletion of one of the three NLS sequences strongly diminished nuclear localisation of the protein. Membrane localisation was never detected. Conclusions Our results suggest that Hydra PSR is a nuclear 2-oxoglutarate (2OG)-and Fe(II)-dependent oxygenase. This is in contrast with the proposed function of Hydra PSR as a cell surface receptor involved in the recognition of apoptotic cells displaying phosphatidylserine on their surface. The conservation of the protein from Hydra to human infers that our results also apply to PSR from higher animals. PMID:15193161

  5. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation.

    PubMed

    Lafont, Anne-Gaëlle; Rousseau, Karine; Tomkiewicz, Jonna; Dufour, Sylvie

    2016-09-01

    Estrogens interact with classical intracellular nuclear receptors (ESR), and with G-coupled membrane receptors (GPER). In the eel, we identified three nuclear (ESR1, ESR2a, ESR2b) and two membrane (GPERa, GPERb) estrogen receptors. Duplicated ESR2 and GPER were also retrieved in most extant teleosts. Phylogeny and synteny analyses suggest that they result from teleost whole genome duplication (3R). In contrast to conserved 3R-duplicated ESR2 and GPER, one of 3R-duplicated ESR1 has been lost shortly after teleost emergence. Quantitative PCRs revealed that the five receptors are all widely expressed in the eel, but with differential patterns of tissue expression and regulation. ESR1 only is consistently up-regulated in vivo in female eel BPG-liver axis during induced sexual maturation, and also up-regulated in vitro by estradiol in eel hepatocyte primary cultures. This first comparative study of the five teleost estradiol receptors provides bases for future investigations on differential roles that may have contributed to the conservation of multiple estrogen receptors. PMID:26654744

  6. Immunoreactivity of progesterone receptor isoform B, nuclear factor kappaB, and IkappaBalpha in adenomyosis.

    PubMed

    Nie, Jichan; Lu, Yuan; Liu, Xishi; Guo, Sun-Wei

    2009-09-01

    Compared with normal endometrium, progesterone receptor isoform B (PR-B) and IkappaBalpha immunoreactivity were statistically significantly reduced in ectopic as well as eutopic endometrium from women with adenomyosis while nuclear p65, p50, and p52 immunoreactivity were statistically significantly increased in ectopic and eutopic endometrium. Nuclear p65 immunoreactivity was positively associated with heavier menses, and decreased PR-B and increased nuclear p65 immunoreactivity in ectopic endometrium were statistically significantly associated with the severity of dysmenorrhea in women with adenomyosis. PMID:19296948

  7. The Molecular Mechanism of Bisphenol A (BPA) as an Endocrine Disruptor by Interacting with Nuclear Receptors: Insights from Molecular Dynamics (MD) Simulations

    PubMed Central

    Li, Lanlan; Wang, Qianqian; Zhang, Yan; Niu, Yuzhen; Yao, Xiaojun; Liu, Huanxiang

    2015-01-01

    Bisphenol A (BPA) can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA. PMID:25799048

  8. Salicylic Acid Based Small Molecule Inhibitor for the Oncogenic Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2)

    SciTech Connect

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-08-13

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy. We report a salicylic acid based combinatorial library approach aimed at binding both active site and unique nearby subpockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anticancer and antileukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors.

  9. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.

    PubMed

    Kandel, Benjamin A; Thomas, Maria; Winter, Stefan; Damm, Georg; Seehofer, Daniel; Burk, Oliver; Schwab, Matthias; Zanger, Ulrich M

    2016-09-01

    The ligand-activated nuclear receptor pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3) are two master transcriptional regulators of many important drug metabolizing enzymes and transporter genes (DMET) in response to xenobiotics including many drugs. The peroxisome proliferator-activated receptor alpha (PPARα, NR1C1), the target of lipid lowering fibrate drugs, primarily regulates fatty acid catabolism and energy-homeostasis. Recent research has shown that there are substantial overlaps in the regulated genes of these receptors. For example, both CAR and PXR also modulate the transcription of key enzymes involved in lipid and glucose metabolism and PPARα also functions as a direct transcriptional regulator of important DMET genes including cytochrome P450s CYP3A4 and CYP2C8. Despite their important and widespread influence on liver metabolism, comparative data are scarce, particularly at a global level and in humans. The major objective of this study was to directly compare the genome-wide transcriptional changes elucidated by the activation of these three nuclear receptors in primary human hepatocytes. Cultures from six individual donors were treated with the prototypical ligands for CAR (CITCO), PXR (rifampicin) and PPARα (WY14,643) or DMSO as vehicle control. Genomewide mRNA profiles determined with Affymetrix microarrays were analyzed for differentially expressed genes and metabolic functions. The results confirmed known prototype target genes and revealed strongly overlapping sets of coregulated but also distinctly regulated and novel responsive genes and pathways. The results further specify the role of PPARα as a regulator of drug metabolism and the role of the xenosensors PXR and CAR in lipid metabolism and energy homeostasis. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26994748

  10. The NR4A2 Nuclear Receptor Is Recruited to Novel Nuclear Foci in Response to UV Irradiation and Participates in Nucleotide Excision Repair

    PubMed Central

    Harrison, Matthew; Lim, Wen; Muscat, George E. O.; Sturm, Richard A.; Smith, Aaron G.

    2013-01-01

    Ultraviolet radiation (UVR) is one of the most common mutagens encountered by humans and induces the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproduct (6-4PP) lesions in the genomic DNA. To prevent the accumulation of deleterious mutations these lesions must be efficiently repaired, primarily by nucleotide excision repair. We have previously demonstrated that the NR4A family of nuclear receptors are crucial mediators of the DNA repair function of the MC1R signalling pathway in melanocytes. Here we explore the role of the NR4A2 protein in the DNA repair process further. Using EYFP tagged-NR4A2 we have demonstrated a UVR induced recruitment to distinct nuclear foci where they co-localise with known DNA repair proteins. We reveal that the N-terminal domain of the receptor is required for this translocation and identify a role for p38 and PARP signalling in this process. Moreover disruption of the functional integrity of the Ligand Binding Domain of the receptor by deleting the terminal helix 12 effectively blocks co-localisation of the receptor with DNA repair factors. Restored co-localisation of the mutant receptor with DNA repair proteins in the presence of a Histone Deacetylase Inhibitor suggests that impaired chromatin accessibility underpins the mis-localisation observed. Finally NR4A2 over-expression facilitated a more efficient clearance of UVR induced CPD and 6-4PP lesions. Taken together these data uncover a novel role for the NR4A nuclear receptors as direct facilitators of nucleotide excision repair. PMID:24223135

  11. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors.

    PubMed

    McEwan, Iain J; Lavery, Derek; Fischer, Katharina; Watt, Kate

    2007-01-01

    Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response. PMID:17464357

  12. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors

    PubMed Central

    McEwan, Iain J.; Lavery, Derek; Fischer, Katharina; Watt, Kate

    2007-01-01

    Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response. PMID:17464357

  13. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    SciTech Connect

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-11-10

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7{sub 39-98} localized mostly to the nucleus. The GST-11E7 and GST-11cE7{sub 39-98} were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.

  14. Pregnane X Receptor Represses HNF4α Gene to Induce Insulin-Like Growth Factor–Binding Protein IGFBP1 that Alters Morphology of and Migrates HepG2 Cells

    PubMed Central

    Kodama, Susumu; Yamazaki, Yuichi

    2015-01-01

    Upon treatment with the pregnane X receptor (PXR) activator rifampicin (RIF), human hepatocellular carcinoma HepG2-derived ShP51 cells that stably express PXR showed epithelial-mesenchymal transition (EMT)–like morphological changes and migration. Our recent DNA microarrays have identified hepatocyte nuclear factor (HNF) 4α and insulin-like growth factor-binding protein (IGFBP) 1 mRNAs to be downregulated and upregulated, respectively, in RIF-treated ShP51 cells, and these regulations were confirmed by the subsequent real-time polymerase chain reaction and Western blot analyses. Using this cell system, we demonstrated here that the PXR-HNF4α-IGFBP1 pathway is an essential signal for PXR-induced morphological changes and migration. First, we characterized the molecular mechanism underlying the PXR-mediated repression of the HNF4α gene. Chromatin conformation capture and chromatin immunoprecipitation (ChIP) assays revealed that PXR activation by RIF disrupted enhancer-promoter communication and prompted deacetylation of histone H3 in the HNF4α P1 promoter. Cell-based reporter and ChIP assays showed that PXR targeted the distal enhancer of the HNF4α P1 promoter and stimulated dissociation of HNF3β from the distal enhancer. Subsequently, small interfering RNA knockdown of HNF4α connected PXR-mediated gene regulation with the PXR-induced cellular responses, showing that the knockdown resulted in the upregulation of IGFBP1 and EMT-like morphological changes without RIF treatment. Moreover, recombinant IGFBP1 augmented migration, whereas an anti-IGFBP1 antibody attenuated both PXR-induced morphological changes and migration in ShP51 cells. PXR indirectly activated the IGFBP1 gene by repressing the HNF4α gene, thus enabling upregulation of IGFBP1 to change the morphology of ShP51 cells and cause migration. These results provide new insights into PXR-mediated cellular responses toward xenobiotics including therapeutics. PMID:26232425

  15. Pregnane X Receptor Represses HNF4α Gene to Induce Insulin-Like Growth Factor-Binding Protein IGFBP1 that Alters Morphology of and Migrates HepG2 Cells.

    PubMed

    Kodama, Susumu; Yamazaki, Yuichi; Negishi, Masahiko

    2015-10-01

    Upon treatment with the pregnane X receptor (PXR) activator rifampicin (RIF), human hepatocellular carcinoma HepG2-derived ShP51 cells that stably express PXR showed epithelial-mesenchymal transition (EMT)-like morphological changes and migration. Our recent DNA microarrays have identified hepatocyte nuclear factor (HNF) 4α and insulin-like growth factor-binding protein (IGFBP) 1 mRNAs to be downregulated and upregulated, respectively, in RIF-treated ShP51 cells, and these regulations were confirmed by the subsequent real-time polymerase chain reaction and Western blot analyses. Using this cell system, we demonstrated here that the PXR-HNF4α-IGFBP1 pathway is an essential signal for PXR-induced morphological changes and migration. First, we characterized the molecular mechanism underlying the PXR-mediated repression of the HNF4α gene. Chromatin conformation capture and chromatin immunoprecipitation (ChIP) assays revealed that PXR activation by RIF disrupted enhancer-promoter communication and prompted deacetylation of histone H3 in the HNF4α P1 promoter. Cell-based reporter and ChIP assays showed that PXR targeted the distal enhancer of the HNF4α P1 promoter and stimulated dissociation of HNF3β from the distal enhancer. Subsequently, small interfering RNA knockdown of HNF4α connected PXR-mediated gene regulation with the PXR-induced cellular responses, showing that the knockdown resulted in the upregulation of IGFBP1 and EMT-like morphological changes without RIF treatment. Moreover, recombinant IGFBP1 augmented migration, whereas an anti-IGFBP1 antibody attenuated both PXR-induced morphological changes and migration in ShP51 cells. PXR indirectly activated the IGFBP1 gene by repressing the HNF4α gene, thus enabling upregulation of IGFBP1 to change the morphology of ShP51 cells and cause migration. These results provide new insights into PXR-mediated cellular responses toward xenobiotics including therapeutics. PMID:26232425

  16. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    PubMed Central

    Zhou, Hong-Yan; Zhong, Wei; Zhang, Hong; Bi, Miao-Miao; Wang, Shuang; Zhang, Wen-Song

    2015-01-01

    Fungal keratitis (FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA) have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α), retinoic acid receptor γ (RAR γ), and retinoid X receptor α (RXR α) are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK. PMID:26309886

  17. SHP-2 Phosphatase Prevents Colonic Inflammation by Controlling Secretory Cell Differentiation and Maintaining Host-Microbiota Homeostasis.

    PubMed

    Coulombe, Geneviève; Langlois, Ariane; De Palma, Giada; Langlois, Marie-Josée; McCarville, Justin L; Gagné-Sanfaçon, Jessica; Perreault, Nathalie; Feng, Gen-Sheng; Bercik, Premysl; Boudreau, François; Verdu, Elena F; Rivard, Nathalie

    2016-11-01

    Polymorphisms in the PTPN11 gene encoding for the tyrosine phosphatase SHP-2 were described in patients with ulcerative colitis. We have recently demonstrated that mice with an intestinal epithelial cell-specific deletion of SHP-2 (SHP-2(IEC-KO) ) develop severe colitis 1 month after birth. However, the mechanisms by which SHP-2 deletion induces colonic inflammation remain to be elucidated. We generated SHP-2(IEC-KO) mice lacking Myd88 exclusively in the intestinal epithelium. The colonic phenotype was histologically analyzed and cell differentiation was determined by electron microscopy and lysozyme or Alcian blue staining. Microbiota composition was analyzed by 16S sequencing. Results show that innate defense genes including those specific to Paneth cells were strongly up-regulated in SHP-2-deficient colons. Expansion of intermediate cells (common progenitors of the Goblet and Paneth cell lineages) was found in the colon of SHP-2(IEC-KO) mice whereas Goblet cell number was clearly diminished. These alterations in Goblet/intermediate cell ratio were noticed 2 weeks after birth, before the onset of inflammation and were associated with significant alterations in microbiota composition. Indeed, an increase in Enterobacteriaceae and a decrease in Firmicutes were observed in the colon of these mice, indicating that dysbiosis also occurred prior to inflammation. Importantly, loss of epithelial Myd88 expression inhibited colitis development in SHP-2(IEC-KO) mice, rescued Goblet/intermediate cell ratio, and prevented NFκB hyperactivation and inflammation. These data indicate that SHP-2 is functionally important for the maintenance of appropriate barrier function and host-microbiota homeostasis in the large intestine. J. Cell. Physiol. 231: 2529-2540, 2016. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc. PMID:27100271

  18. Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition

    PubMed Central

    Alicea-Velázquez, Nilda L.; Jakoncic, Jean; Boggon, Titus J.

    2013-01-01

    SHP-1 (PTPN6) is a member of the SHP sub-family of protein tyrosine phosphatases and plays a critical role in the regulation of the JAK/STAT signaling pathway. Previous studies suggested that SHP-1 contains a PTP1B-like second phosphotyrosine pocket that allows for binding of tandem phosphotyrosine residues, such as those found in the activation loop of JAK kinases. To discover the structural nature of the interaction between SHP-1 and the JAK family member, JAK1, we determined the 1.8 Å co-crystal structure of the SHP-1 catalytic domain and a JAK1-derived substrate peptide. This structure reveals electron density for only one bound phosphotyrosine residue. To investigate the role of the predicted second site pocket we determined the structures of SHP-1 in complex with phosphate and sulfate to 1.37 Å and 1.7 Å, respectively, and performed anomalous scattering experiments for a selenate-soaked crystal. These crystallographic data suggest that SHP-1 does not contain a PTP1B-like second site pocket. This conclusion is further supported by analysis of the relative dephosphorylation and binding affinities of mono-and tandem-phosphorylated peptide substrates. The crystal structures instead indicate that SHP-1 contains an extended C-terminal helix α2′ incompatible with the predicted second phosphotyrosine binding site. This study suggests that SHP-1 defines a new category of PTP1B-like protein tyrosine phosphatases with a hindered second phosphotyrosine pocket. PMID:23296072

  19. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    SciTech Connect

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.

  20. Structural Basis of Natural Promoter Recognition by a Unique Nuclear Receptor, HNF4α