Science.gov

Sample records for nuclear sciences department

  1. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  2. Strengthening Science Departments

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  3. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  4. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    SciTech Connect

    Haase, M.; Hine, C.; Robertson, C.

    1996-12-31

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.

  5. Earth Sciences Department Annual Report, 1984

    SciTech Connect

    Henry, A.L.; Donohue, M.L.

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  6. Western Nuclear Science Alliance

    SciTech Connect

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  7. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  8. 76 FR 31945 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Science Foundation on scientific priorities within the field of basic nuclear science research....

  9. 76 FR 62050 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of... that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two- year period... (National Science Foundation), on scientific priorities within the field of basic nuclear science...

  10. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... on scientific priorities within the field of basic nuclear science research. Tentative Agenda:...

  11. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... nuclear science research. Tentative Agenda: Agenda will include discussions of the following: Friday,...

  12. 78 FR 62609 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of... that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two-year period. The... within the field of basic nuclear science research. Additionally, the renewal of the DOE/NSF...

  13. 77 FR 9219 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  14. 76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  15. 78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory. Committee (NSAC... and the National Science Foundation on scientific priorities within the field of basic nuclear...

  16. 75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  17. 75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... nuclear science research. Tentative Agenda: Agenda will include discussions of the following:...

  18. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... within the field of basic nuclear science research. Tentative Agenda: Agenda will include discussions...

  19. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  20. 76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  1. 77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  2. 78 FR 716 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    .../NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC). DATES... advice and guidance on a continuing basis to the Department of Energy and the National Science...

  3. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  4. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  5. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  6. The NUCLEONICA Nuclear Science Portal

    SciTech Connect

    Magill, Joseph; Dreher, Raymond

    2009-08-19

    NUCLEONICA (www.nucleonica.net) is a new nuclear science web portal which provides a customisable, integrated environment and collaboration platform using the latest internet 'Web 2.0' technology. NUCLEONICA is aimed at professionals, academics and students working in nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. A unique feature of the portal is the wide range of user friendly web-based nuclear science applications. The portal is also ideal for education and training purposes and as a knowledge management platform to preserve nuclear knowledge built up over many decades.

  7. Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics

    SciTech Connect

    Board on Physics and Astronomy

    2001-01-01

    The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

  8. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  9. NUCLEAR SCIENCE REFERENCES CODING MANUAL

    SciTech Connect

    WINCHELL,D.F.

    2007-04-01

    given in the Appendices. The NSR database has been in existence for decades, and responsibility for its upkeep has passed through many hands. Those familiar with the contents of NSR will note that not all of the formats and conventions discussed in this manual have always been adhered to. In recent years, however, these conventions have been followed fairly consistently, and it is expected that the preparation of new entries will follow these guidelines. The most up-to-date information about NSR contents and policies can be found at the NSR web site: http://www.nndc.bnl.gov/nsr. This manual is an update to BNL-NCS-51800 (Rev. 08/96) by S. Ramavataram and C.L. Dunford. Discussions with Mark Kellett of the IAEA are gratefully acknowledged, as are comments and suggestions from the NNDC staff and members of the U.S. Nuclear Data Program. This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S.Department of Energy.

  10. Nuclear Weapons and Science Education.

    ERIC Educational Resources Information Center

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  11. NUCLEAR SCIENCE, AN INTRODUCTORY COURSE.

    ERIC Educational Resources Information Center

    SULCOSKI, JOHN W.

    THIS CURRICULUM GUIDE DESCRIBES A TWELFTH-GRADE INTERDISCIPLINARY, INTRODUCTORY NUCLEAR SCIENCE COURSE. IT IS BELIEVED TO FILL THE NEED FOR AN ADVANCED COURSE THAT IS TIMELY, CHALLENGING, AND APPROPRIATE AS A SEQUENTIAL ADDITION TO THE BIOLOGY-CHEMISTRY-PHYSICS SEQUENCE. PRELIMINARY INFORMATION COVERS SUCH MATTERS AS (1) RADIOISOTOPE WORK AREAS,…

  12. Learning Nuclear Science with Marbles

    NASA Astrophysics Data System (ADS)

    Constan, Zach

    2010-02-01

    Nuclei are small: if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are dense: the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about nuclear science. But how does one move beyond analogies like those above and offer a better understanding of the extraordinary world of the nucleus? This is the challenge faced by the outreach program at Michigan State University's National Superconducting Cyclotron Laboratory (NSCL), a National Science Foundation-supported facility specializing in the creation and study of rare isotopes. It was necessary to devise a model of the nucleus that students could interact with and even use to approximate the nuclear reactions that create exotic nuclei. The solution was to use magnetic marbles.

  13. Veterinary Science Departments: Their Role in Academia

    ERIC Educational Resources Information Center

    Curtin, Terrence M.

    1977-01-01

    The roles played by veterinary science departments are creditable and important, says this head of a department of veterinary science. Those roles will reflect an absolute increase in participation with veterinary schools on a regional and national basis, and a relative increase in direct involvement in veterinary education. (LBH)

  14. Animal science departments of the future.

    PubMed

    Britt, J H; Aberle, E D; Esbenshade, K L; Males, J R

    2008-11-01

    Departments of animal science were established in agricultural colleges of public universities just over 100 yr ago, shortly before the founding of today's American Society of Animal Science. These departments and colleges have been remarkably resilient, changing little structurally. Yet, the future portends significant changes in these departments and colleges in response to shifts in how public higher education is financed and how society views the roles of animals in providing food and companionship. Funding for public higher education will continue to decline as a percentage of government appropriations. Public universities will garner more funding from gifts, endowments, grants, contracts, and tuition but will be held more accountable than today by public officials. Departments of animal science will retain strong constituencies and will be major units of most agricultural colleges; however, their students and faculty will be more diverse. Departments of animal science will focus on more species of animals and on a greater role of animals in society. Disciplines of faculty members in departments of animal science will become broader, and research projects will be more complex and have longer horizons, ultimately focused more on sustainability. Departments will share more resources across state and national boundaries, and there will be less duplication of effort regionally. Departments of animal science will continue to be important academic units of universities into the 22nd century. PMID:18599667

  15. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity. PMID:22775445

  16. Managing Health and Safety in Science Departments.

    ERIC Educational Resources Information Center

    Borrows, Peter

    2002-01-01

    Discusses strategies for managing health and safety within science departments. Emphasizes the importance of risk assessment for both pupil activities and those carried out by technicians. Stresses the role of training and the need for security. (MM)

  17. NUCLEAR SCIENCE CURRICULUM PROJECT. INSTRUCTIONAL RESOURCES SUPPLEMENT.

    ERIC Educational Resources Information Center

    Culver City Unified School District, CA.

    DESIGNED AS AN ADJUNCT TO MATERIALS DEVELOPED BY THE NUCLEAR SCIENCE CURRICULUM PROJECT, THIS DOCUMENT PROVIDES RESOURCE MATERIAL WITH WHICH THE NUCLEAR SCIENCE CURRICULUM MAY BE ENRICHED, AND ADDRESSES ITSELF TO (1) INSTRUCTIONAL AIDS PRESENTLY AVAILABLE, (2) USE OF INSTRUCTIONAL AIDS TO SUPPLEMENT THE CURRENT SCIENCE CURRICULA, (3) FACILITIES…

  18. Pioneer women in nuclear science

    NASA Astrophysics Data System (ADS)

    Rayner-Canham, M. F.; Rayner-Canham, G. W.

    1990-11-01

    It is a commonly accepted myth that Marie Curie and Lise Meitner were the only women working in the field of nuclear science during the early part of this century. In fact, there were at least 14 others who published work in this field between 1900 and 1915. This paper provides biographical notes on these women and explores the role of the supervisors. Part of the reason for the significant number of women researchers could have been the supportive attitude of Ernest Rutherford toward female physics graduates. In addition, we argue that several of these women provide better role models for potential women physicists than Marie Curie.

  19. Education Department's Senese Outlines Science, Math Programs.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1983-01-01

    Presented is an interview with Donald J. Senese (Department of Education Assistant Secretary) in which the department's functions, responsibilities, and philosophies in precollege science/mathematics education are outlined and discussed. Specific questions answered relate to curriculum development, creationism, copyright ownership of software,…

  20. Mixed reaction to science department proposal

    NASA Astrophysics Data System (ADS)

    The recommendation last month by a presidential commission that a federal Department of Science and Technology be created to encompass “major civilian research and development (R&D) agencies” has elicited a mixed reaction from members of the geophysical sciences community.The Commission on Industrial Competitiveness, created by President Ronald Reagan in June 1983 to study ways to strengthen the ability of the United States to compete in a global marketplace, recommended establishment of a Cabinet-level science department “to promote national interest in and policies for research and technological innovation.” The commission, chaired by John A. Young, president of the Hewlett-Packard Company, was composed primarily of presidents and chief executive officers of major technology corporations but also included members of academia and government. Creation of a federal science and technology 'department is one of many suggestions contained in the commission's final report, Global Competition: The New Reality.

  1. Nuclear Science Division: 1993 Annual report

    SciTech Connect

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  2. Nuclear Science Teaching Aids and Activities.

    ERIC Educational Resources Information Center

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  3. The United Kingdom Nuclear Science Forum

    NASA Astrophysics Data System (ADS)

    MacMahon, Desmond; Forrest, Robin; Judge, Steven

    2005-05-01

    The United Kingdom Nuclear Science Forum effectively acts as the United Kingdom's Nuclear Data Committee. As such it is the interface between the UK nuclear data community and international nuclear data centres. This paper outlines the Forum's terms of reference and describes some of its recent activities.

  4. Critical Path to Nuclear Science and Technology Knowledge Transfer and Skill Development in K-12 Schools: Why America Needs Action and Support from Federal and State Education Departments Now

    SciTech Connect

    Vincenti, J.R.; Anderson, G.E.

    2006-07-01

    With the signing of President Bush's energy bill in August of 2005, the successful application of the new energy legislation may have more to do with educational standards required in our schools than applications of research and technology in the long-term. Looking inside the new legislation, the future of that legislation's success may not just hinge on investment in technology, but ensuring that our citizens, especially our youth, are prepared and better informed to be able to understand, react, and apply the economically and national security driven intent of the law. How can our citizens make sense of change if they lack the skills to be able to understand, not only the technology, but also the science that drives the change? President Bush's passage of the 1,724-page bill emphasizes conservation, clean energy research, and new and improved technology. The legislation also provides for economic incentives toward building more nuclear power plants. This paper will use four questions as a focal point to emphasize the need for both state and federal education departments to review their current standards and respond to deficiencies regarding learning about radioactivity, radiation, and nuclear science and technology. The questions are: 1. Will America accept new nuclear power development? 2. Will waste issues be resolved concerning high- and low-level radioactive waste management and disposal? 3. Will nuclear 'anything' be politically correct when it comes to your backyard? 4. Is our youth adequately educated and informed about radioactivity, radiation, and nuclear science and technology? This paper will use Pennsylvania as a case study to better understand the implications and importance of the educational standards in our school systems. This paper will also show how the deficiency found in Pennsylvania's academic standards, and in other states, has a significant impact on the ability to fulfill the legislation's intent of realizing energy independence and

  5. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  6. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  7. Nuclear Science Centre, New Delhi

    SciTech Connect

    Mehta, G.; Potukuchi, P.; Roy, A.

    1995-08-01

    Argonne is collaborating with the Nuclear Science Centre (NSC), New Delhi, to develop a new type of superconducting accelerating structure for low-velocity heavy ions. A copper model has been evaluated and tests on the niobium prototype are currently in progress. Some technical details of this project are described in the Superconducting Linac Development section of this report. All funding for the prototype has come from the NSC, and they have also stationed two staff members at ATLAS for the past two years to gain experience and work on this project. Additional NSC personnel visited ATLAS for extended periods during 1994 for electronics and cryogenics experience and training. Two NSC staff members are scheduled to spend several months at ANL during 1995 to continue tests and developments of the prototype resonators and to initiate fabrication of the production models for their linac project.

  8. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  9. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, L E

    2007-09-17

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  10. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, Larry

    2007-10-26

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  11. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  12. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  13. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  14. Nuclear Science, A High School Course.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of General and Academic Education.

    This comprehensive guide to the teaching of nuclear science at the secondary level includes recommendations on teaching methods, course and laboratory objectives, textbooks, audiovisual aids, laboratory equipment and experiments, and safety precautions. (MH)

  15. Secondary school science department chairs leading change

    NASA Astrophysics Data System (ADS)

    Gaubatz, Julie A.

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders navigate the change process within their departments, this study examined the change stories of six secondary school science department chairs who had led change attempts. In total, these department chairs shared six stories of successful change attempts and four unsuccessful change attempts. The topics of leadership and change were accessed through department chair interviews, document analysis, and a leadership inventory. Department chair leadership was analyzed with Blake and McCanse's (1991) Leadership Grid, and further explored using Yukl, Gordon, and Taber's (2002) detailed characterization of this grid. The change processes described in these department chair stories were analyzed using the frameworks provided by Ely's (1990) conditions of change, and Havelock and Zlotolow (1995) CREATER change stages model. In general, the findings of this study support Havelock and Zlotolow's CREATER model, as well as Ely's conditions of change, with dissatisfaction with the status quo emerging as the essential condition for successful change. This study connects these change process frameworks to specific leadership strategies and behaviors, and uses these connections to illuminate differences between successful and unsuccessful instances of change. These findings, along with other unanticipated findings emerging from department chair stories of change, such as the adverse influence of contentious resistors and the importance of team construction, add both to the literature on change and leadership and to the crucial point where these concepts intersect.

  16. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  17. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  18. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  19. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  20. RAON experimental facilities for nuclear science

    SciTech Connect

    Kwon, Y. K.; Kim, Y. K.; Komatsubara, T.; Moon, J. Y.; Park, J. S.; Shin, T. S.; Kim, Y. J.

    2014-05-02

    The Rare Isotope Science Project (RISP) was established in December 2011 and has put quite an effort to carry out the design and construction of the accelerator complex facility named “RAON”. RAON is a rare isotope (RI) beam facility that aims to provide various RI beams of proton-and neutron-rich nuclei as well as variety of stable ion beams of wide ranges of energies up to a few hundreds MeV/nucleon for the researches in basic science and application. Proposed research programs for nuclear physics and nuclear astrophysics at RAON include studies of the properties of exotic nuclei, the equation of state of nuclear matter, the origin of the universe, process of nucleosynthesis, super heavy elements, etc. Various high performance magnetic spectrometers for nuclear science have been designed, which are KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), LAMPS (Large Acceptance Multi-Purpose Spectrometer), and ZDS (Zero Degree Spectrometer). The status of those spectrometers for nuclear science will be presented with a brief report on the RAON.

  1. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  2. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  3. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  4. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.

    2014-06-01

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  5. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    SciTech Connect

    Cizewski, J.A.

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  6. PEOPLE IN PHYSICS: Women in nuclear science

    NASA Astrophysics Data System (ADS)

    Stuart, B. H.

    1996-03-01

    The field of nuclear science has seen an unusually large number of discoveries by women this century. This article focuses on the acclaimed work of Marie Curie, her daughter Irène Joliot-Curie, Lise Meitner and Maria Goeppert-Mayer.

  7. The Mysterious Box: Nuclear Science and Art.

    ERIC Educational Resources Information Center

    Keisch, Bernard

    In this booklet intended for junior high school science students a short story format is used to provide examples of the use of nuclear chemistry and physics in the analysis of paints and pigments for authentication of paintings. The techniques discussed include the measurement of the relative amounts of lead-210 and radium-226 in white-lead…

  8. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  9. Midwest Nuclear Science and Engineering Consortium

    SciTech Connect

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  10. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  11. Undergraduate and Graduate Opportunities in Nuclear Science at Simon Fraser University

    NASA Astrophysics Data System (ADS)

    Andreoiu, Corina; Brodovitch, J.-C.; D'Auria, J. M.; Starosta, K.

    2012-10-01

    The Departments of Chemistry and Physics at Simon Fraser University offer a Nuclear Science Minor at undergraduate level. The program, which is unique in Canada, attracts students from all departments of the Faculty of Science, and, occasionally, from other departments such as engineering and business. Students graduating with this minor have the opportunity to get employment in academia and a variety of industries ranging from nuclear power to nuclear medicine, safety, accelerators, etc. At the graduate level, the Nuclear Science group in the Department of Chemistry attracts students to its in-house program and also in collaboration with TRIUMF, Canada's Laboratory for Nuclear and Particle Physics. The graduate program offer a rich plethora of topics in experimental nuclear science ranging from understanding the matter at subatomic level and its role in astrochemistry to applications of nuclear science in radiation measurements and monitoring, nuclear instrumentation, etc. The academic components of the program, its goals and future developments are presented in this paper along with enrolment statistics for the last ten years.

  12. Science Instructional Leadership: The Role of the Department Chair

    ERIC Educational Resources Information Center

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  13. Bourdieu, Department Chairs and the Reform of Science Education

    ERIC Educational Resources Information Center

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-01-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's "thinking tools" of "field", "habitus" and "capital", we case study the work of two teachers who both actively pursue the teaching and learning of science as…

  14. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    NASA Astrophysics Data System (ADS)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  15. Webometric Analysis of Departments of Librarianship and Information Science.

    ERIC Educational Resources Information Center

    Thomas, Owen; Willett, Peter

    2000-01-01

    Describes a webometric analysis of linkages to library and information science (LIS) department Web sites in United Kingdom universities. Concludes that situation data are not well suited to evaluation of LIS departments and that departments can boost Web site visibility by hosting a wide range of materials. (Author/LRW)

  16. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  17. LANSCE nuclear science facilities and activities

    SciTech Connect

    Nelson, Ronald O

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  18. Individual and Collective Leadership in School Science Departments

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-09-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two contrasting school contexts were explored dialectically in this study. The structure ∣ agency and individual∣collective dialectics guided our interpretation of data from lesson observations, interviews and questionnaire responses, especially as they related to teachers' preparation of units of work (i.e., planned curriculum). As well as recognising thin coherence in teachers' responses we identify contradictions in teachers' perceived and enacted leadership roles, and perceptions of influences on curriculum planning and teaming within the two science departments. Throughout the article we disrupt traditional individualistic leadership discourses and suggest possibilities for more widespread application of an individual | collective leadership dialectic in school science departments.

  19. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  20. Basic science research to support the nuclear material focus area

    SciTech Connect

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  1. Summaries of FY 1980 research in the nuclear sciences

    SciTech Connect

    Not Available

    1980-06-01

    A compilation and index of the projects funded in fiscal year 1980 by the DOE Division of Nuclear Sciences/Office of Basic Energy Sciences is provided. These summaries constitute the basic document by which the DOE nuclear sciences program can be made known in some technical detail to interested persons. (RWR)

  2. Secondary School Science Department Chairs Leading Change

    ERIC Educational Resources Information Center

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  3. Nuclear science outreach program for high school girls

    SciTech Connect

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  4. Bourdieu, Department Chairs and the Reform of Science Education

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-11-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's 'thinking tools' of 'field', 'habitus' and 'capital', we case study the work of two teachers who both actively pursue the teaching and learning of science as inquiry. One teacher, Dan, has been a department chair since 2000, and has actively encouraged his department to embrace science as inquiry. The other teacher, Leslie, worked for one year in Dan's department before being transferred to another school where science teaching continues to be more traditional. Our work suggests that there are three crucial considerations for chairs seeking to lead the reform of science teaching within their department. The first of these is the development of a reform-minded habitus, as this appears to be foundational to the capital that can be expended in the leadership of reform. The second is an understanding of how to wield power and position in the promotion of reform. The third is the capacity to operate simultaneously and strategically within, and across, two fields; the departmental field and the larger science education field. This involves downplaying administrative logics, and foregrounding more inquiry-focused logics as a vehicle to challenge traditional science-teaching dispositions-the latter being typically dominated by concerns about curriculum 'coverage'.

  5. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EM’s Engineering and Technology Roadmap.

  6. Curriculum Reform and a Science Department: A Bourdieuian Analysis

    ERIC Educational Resources Information Center

    Melville, Wayne

    2010-01-01

    This article will describe the dispositions of science teachers in the context of a curriculum reform. Using Bourdieu's notions of "habitus" and "the field," the analysis of the data highlights the necessity for curriculum reformers to view the field of the science department as a contested space. From this understanding flow several subsidiary…

  7. Examining Prospective Science Teachers' Satisfaction with Their Department

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Usak, Muhammet

    2007-01-01

    The purpose of this study was to explore how satisfied prospective science teachers are with their department (academic staff and administration) at different Faculties of Education in Turkey. For this purpose, Prospective Science Teachers Satisfaction Questionnaire (PSTSQ) was developed by considering related literature. PSTSQ consists of two…

  8. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  9. District Leadership for Science Education: Using K-12 Departments to Support Elementary Science Education under NCLB

    ERIC Educational Resources Information Center

    Miller, Christopher L.

    2010-01-01

    By contrasting two case studies of school districts, this paper illustrates the effectiveness of K-12 science departments in supporting elementary science education, especially in response to NCLB's push towards the articulation of curriculum across all grades and as a response to the erosion of instructional time on science in elementary schools…

  10. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  11. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  12. Strategies for Growth in a Young Earth Sciences Department

    NASA Astrophysics Data System (ADS)

    Clement, B. M.; Hickey-Vargas, R.; Draper, G.

    2005-12-01

    The Department of Earth Sciences at Florida International University (FIU) has been fortunate to be part of a rapidly growing university. FIU began offering classes in 1972 with an initial enrollment of 5600 students, and today enrollment exceeds 35,000 students. During this time the Department of Earth Sciences has grown to a faculty of 14 and offers the BA, BS, MS and PhD degrees. Our department, however, has faced the same challenges meeting many Earth Science departments in that our number of undergraduate majors has not grown at the same pace as the university enrollment (or at the same pace as enrollment in our graduate program). Two strategies have proven effective and have helped the department build its program in spite of this challenge. The first strategy was to create tenure-track positions with a 50% assignment in the Earth Sciences Department and 50% in a research center on campus. We currently have two faculty who have half-time appointments in the Southeast Environmental Research Center, and we have a new faculty member joining in the Spring who will have a joint appointment with the International Hurricane Research Center. This strategy has made it possible to gain expertise in, and to offer courses in, critical areas (such as hydrogeology and meteorology) that we otherwise would not be able to offer. The second strategy is to develop strong courses for non-majors that satisfy FIU's University Common Curriculum requirements. A particularly successful example is a new course titled "The History of Life". This course was designed to take advantage of our existing expertise in paleobiology, and offer a class that satisfies the University Common Curriculum requirement that every student take a laboratory course in the life sciences. This class now fills to capacity each semester with more than 200 students. This course not only boosts our department's productivity, but it lets us reach 200 new students each semester with many potential new Earth

  13. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    SciTech Connect

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  14. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  15. The impact of a nuclear crisis on a radiology department.

    PubMed

    Weidner, W A; Miller, K L; Latshaw, R F; Rohrer, G V

    1980-06-01

    The experiences of the radiology department at the Milton S. Hershey Medical Center of the Pennsylvania State University College of Medicine during the Three Mile Island Nuclear Power Plant accident are presented. Emergency plans are reviewed. PMID:7384461

  16. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  17. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  18. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOE’s Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM’s responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM’s mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The

  19. Nuclear Science Division annual report for 1991

    SciTech Connect

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  20. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  1. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  2. Career Preparation and the Political Science Major: Evidence from Departments

    ERIC Educational Resources Information Center

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  3. Affirmative Action in Science Departments: A Challenge for Higher Education.

    ERIC Educational Resources Information Center

    Marcus, Laurence R.

    As part of a study of the implementation of affirmative action in academic affairs at the University of Massachusetts at Amherst, interviews were conducted with the heads of ten of the eleven departments and programs of the Faculty of Natural Sciences and Mathematics (FNSM). The data received were combined with written data available in…

  4. U.S. State Department urged to beef up science component

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. State Department often comes under pressure to respond to a variety of international emergencies one after another, from the U.S. embassy bombings in Kenya and Tanzania to Hurricane Mitch in Central America to the crisis in Kosovo.Many of the department's priorities include significant science, technology, and health (STH) components: nuclear nonproliferation, global climate change, protecting scientific databases, and international food and water supply safety, including arsenic in drinking water wells in Bangladesh, among other varied issues.

  5. A Department of Atmospheric and Planetary Sciences at Hampton University

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  6. Expanding Science Knowledge: Enabled by Nuclear Power

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  7. Nuclear Science Division 1994 annual report

    SciTech Connect

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  8. NUCLEAR SCIENCE REFERENCES AS A TOOL FOR DATA EVALUATION.

    SciTech Connect

    WINCHELL,D.F.

    2004-09-26

    For several decades, the Nuclear Science References database has been maintained as a tool for data evaluators and for the wider pure and applied research community. This contribution will describe the database and recent developments in web-based access.

  9. Nuclear and Related Analytical Techniques for Environmental and Life Sciences

    NASA Astrophysics Data System (ADS)

    Frontasyeva, Marina

    2010-01-01

    The role of nuclear analytical techniques (NATs) in Environmental and Life Sciences is discussed. Examples of radioanalytical investigations at the IBR-2 pulsed fast reactor in Dubna illustrate the environmental, biomedical, geochemical and industrial applications of instrumental neutron activation analysis.

  10. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  11. Using the World Wide WEB to promote science education in nuclear energy and RWM

    SciTech Connect

    Robinson, M.

    1996-12-31

    A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that the federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.

  12. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  13. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  14. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  15. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  16. What Opinions Do High School Students Hold About Nuclear Science?

    ERIC Educational Resources Information Center

    Crater, Harold L.

    1977-01-01

    In 1975, selected high ability secondary students attended a program in Nuclear and Environmental Science. Likert-like pre- and posttests concerning aspects of nuclear technology were given to the students. Results indicated no favorable or unfavorable changes in student attitudes towards the ideas sampled. Sample questions included. (MA)

  17. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    ERIC Educational Resources Information Center

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  18. Middle School Students, Science Textbooks, Television and Nuclear War Issues.

    ERIC Educational Resources Information Center

    Hamm, Mary

    The extent to which the issue of nuclear war technology is treated in middle-school science texts, and how students learn about nuclear war and war technology were studied. Five raters compared the most widely used textbooks for grades 6 and 7 to determine the amount of content on: (1) population growth; (2) world hunger; (3) war technology; (4)…

  19. Theoretical aspects of science with radioactive nuclear beams.

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Nazarewicz, W.

    1998-09-01

    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for 'normal' nuclei from the neighbourhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

  20. Radiation doses to staff in a department of nuclear medicine.

    PubMed

    Harbottle, E A; Parker, R P; Davis, R

    1976-07-01

    A survey of data concerning radiation protection of staff working in the Nuclear Medicine Department and associated sections of the Physics Department at the Royal Marsden Hospital (Surrey Branch) is given for the period 1972 to 1975 inclusive. Results of routine film monitoring and whole-body counting are presented. Additional film monitors were used to check working areas, finger doses and any discrepancies between doses to the upper and lower trunk of personnel. In general, exposure to staff in the Nuclear Medicine Department is below 220 mrad per person per year, and below 1,000 mrad per person per year in the Radioisotope Dispensary. The dose received by radiographers is primarily due to spending time close to patients. Since about 5,000 intravenous injections of radionuclides are given each year in our department, the resulting finger doses to the staff involved may give rise to concern unless the task is shared. PMID:824004

  1. Tenure Standards in Political Science Departments: Results from a Survey of Department Chairs

    ERIC Educational Resources Information Center

    Rothgeb, John M., Jr.; Burger, Betsy

    2009-01-01

    This article presents the results from a survey of political science department chairs regarding the tenure procedures and standards at their colleges or universities. The findings reveal that only a small fraction of the colleges and universities in the United States refuse to offer tenure or are attempting to limit tenure. We also find general…

  2. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    SciTech Connect

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  3. Opportunities in Research in Nuclear Science at MSI

    NASA Astrophysics Data System (ADS)

    van Bibber, Karl

    2013-04-01

    Nuclear science and engineering, once thought to be a field in decline, is experiencing a remarkable renaissance, with all the major nuclear science and engineering programs in the US having doubled in the past ten years, a growth which continues unabated. Students view the vast potential of nuclear power and radiation as transformative for energy, industry and medicine, but also see the associated challenges of nonproliferation and environmental stewardship as important societal goals worthy of their future careers. In order to replenish the pipeline of critical nuclear skills into the DOE national labs for the national security mission, the NNSA Office of Nuclear Nonproliferation in 2011 launched a major education and pipeline initiative called the Nuclear Science and Security Consortium (NSSC), comprised of seven research universities and four national labs. Against the backdrop of the projected dearth of scientists and engineers in the 21st century who could hold security clearances, the NNSA augmented this program with a MSI component to engage traditionally underrepresented minority institutions and students, and thus reach out to previously untapped pools of talent. This talk will review the NSSC MSI program after one year, including the Summer Fellowship Program and the Research Grant Program, along with the experience of two NSSC universities with long-standing research relationships with MSI partners in nuclear science and engineering. The perspective from the DOE labs will be discussed as well, who are the intended beneficiaries of the transition from students to career scientists.

  4. Impact of contributions of Glenn T. Seaborg on nuclear science

    SciTech Connect

    Hoffman, Darleane C.

    2000-12-26

    Glenn Theodore Seaborg (1912-199) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the U.S. Atomic Energy Commission from 1961-71, scientific advisor to ten U.S. presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights the profound impact of his contributions on nuclear science, both in the U.S. and in the international community.

  5. Radiation safety audit of a high volume Nuclear Medicine Department

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-01-01

    Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361

  6. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    PubMed

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery. PMID:15652964

  7. Teaching nuclear science: A cosmological approach

    SciTech Connect

    Viola, V.E. )

    1994-10-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.

  8. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  9. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  10. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  11. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component. PMID:20566512

  12. Nuclear power risks: challenge to the credibility of science.

    PubMed

    Welch, B L

    1980-01-01

    For a quarter of a century the Federal Government and the nuclear industry have deliberately deceived the American public about the risks of nuclear power. Facts have been systematically withheld, distorted, and obscured, and calculations have been deliberately biased in order to present nuclear power in an unrealistically favorable light. Most persistent and flagrant have been: (a) attempts to "normalize" public perception of nuclear accident casualties with those of more familiar accidents by emphasizing only acute fatalities and ignoring or downplaying the major effects of nuclear accidents, namely, health impairment and death years delayed; and (b) the cloaking of the objectively undocumentable faith of the atomic energy establishment that a nuclear accident is extremely unlikely in a smokescreen of invalid, pseudoquantitative statistical probabilities in order to convince the public that the chance of an accident is negligible. Prime examples of these abuses are found in the Rasmussen report on nuclear reactor safety and in its representation to the public. The deceptive practices used in promoting nuclear power have seriously shaken public faith in government, technology, and science. The scientific community has a special responsibility to minimize such future political abuses of science. For those who were responsible for the deliberate breeches of public trust which resulted in this loss of faith, mere professional disdain will not suffice. They should be punished to the fullest extent of the law. PMID:7353936

  13. Fusion Nuclear Science Facility (FNSF) motivation and required capabilities

    NASA Astrophysics Data System (ADS)

    Peng, Y. K. M.; Park, J. M.; Canik, J. M.; Diem, S. J.; Sontag, A. C.; Lumsdaine, A.; Murakami, M.; Katoh, Y.; Burgess, T. W.; Korsah, K.; Patton, B. D.; Wagner, J. C.; Yoder, G. L.; Cole, M. J.; Fogarty, P. J.; Sawan, M.

    2011-10-01

    A compact (R0 ~ 1.2-1.3m), low aspect ratio, low-Q (<3) Fusion Nuclear Science Facility (FNSF) was recently assessed to provide a fully integrated, D-T-fueled, continuously driven plasma, volumetric nuclear environment of copious neutrons. This environment would be used to carry out, for the first time, discovery-driven research in fusion nuclear science and materials, in parallel with and complementary to ITER. This research would aim to test, discover, and understand new nuclear-nonnuclear synergistic interactions involving plasma material interactions, neutron material interactions, tritium fuel breeding and transport, and power extraction, and innovate and develop solutions for DEMO components. Progress will be reported on the fusion nuclear-nonnuclear coupling effects identified that motivate research on such an FNSF, and on the required capabilities in fusion plasma, device operation, and fusion nuclear science and engineering to fulfill its mission. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

  14. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  15. Oklo reactors and implications for nuclear science

    NASA Astrophysics Data System (ADS)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  16. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  17. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect

    Kubic, Jr., William L.

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  18. Navigating nuclear science: Enhancing analysis through visualization

    SciTech Connect

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  19. Nuclear Science Division, 1995--1996 annual report

    SciTech Connect

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  20. Observations on gender equality in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, p<0.01), and the time taken to achieve first promotion at Durham. Data for our promoted

  1. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  2. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    SciTech Connect

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

  3. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  4. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    ERIC Educational Resources Information Center

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-01-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own…

  5. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Exemptions § 70.11...

  6. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Exemptions § 70.11...

  7. The Maryland nuclear science baccalaureate degree program: The utility perspective

    SciTech Connect

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization.

  8. Studies in Low Energy Nuclear Science, Progress Report

    SciTech Connect

    Carl R. Brune; Steven M. Grimes; Thomas N. Massey

    2004-03-01

    OAK-B135 Research in the area of low-energy nuclear science is described. We report on studies of the Z dependence of nuclear level densities, the development of a new Hauser-Feshbach computer code, and plans to measure level densities in nuclei off the line of stability. We also discuss the development of our R-matrix fitting capabilities, including new codes and the application to the C-14 system. Plans for future measurements of the Be-9(alpha,n) and B-11(alpha,n) reactions are discussed.

  9. Basic research supported by the Office of Basic Energy Sciences, U.S. Department of Energy

    SciTech Connect

    Kelley, R.D.

    1995-08-01

    This presentation will outline the basic research activities of the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department`s mission. Of particular focus in the presentation are the research programs, amounting to about $10 million, supported by the Materials Sciences Division and the Chemical Sciences Division which are fairly directly related to electrochemical technologies.

  10. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    NASA Astrophysics Data System (ADS)

    Gillich, Don; Shannon, Mike; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Danon, Yaron; Moretti, Brian; Musk, Jeffrey

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of ˜100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  11. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  12. Recent Developments in Cold Fusion / Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2006-03-01

    Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.

  13. The ABC`s of nuclear science workshop

    SciTech Connect

    McMahn, P.; Carlock, M.S.; Mattis, H.; Norman, E.; Seaborg, G.

    1997-12-31

    Over the last several years the Contemporary Physics Education Project (CPEP) has developed two wall charts which illustrate contemporary aspects of particle and plasma physics for high school and undergraduate students. We are now working with CPEP on the development of a similar chart for nuclear science. This chart will illustrate the basics of nuclear science coupled with the exciting research which is being done in this field. This workshop will explore the wall chart, along with materials and experiments that have been developed to accompany it. The set of experiments have been developed by high school teachers, chemists, and physicists working together, and include experiments such as, {open_quotes}the ABCs of Nuclear Science,{close_quotes} and experiments exploring the various kinds of radioactive decay, radioactivity in common household products, half-live measurements, radiography, etc. Teachers who join the project as chart field testers will receive a poster size chart and accompanying materials free of charge. The materials also include a video about cosmic rays has also been produced for the classroom.

  14. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  15. Reinventing Emergency Department Flow via Healthcare Delivery Science.

    PubMed

    DeFlitch, Christopher; Geeting, Glenn; Paz, Harold L

    2015-01-01

    Healthcare system flow resulting in emergency departments (EDs) crowding is a quality and access problem. This case study examines an overcrowded academic health center ED with increasing patient volumes and limited physical space for expansion. ED capacity and efficiency improved via engineering principles application, addressing patient and staffing flows, and reinventing the delivery model. Using operational data and staff input, patient and staff flow models were created, identifying bottlenecks (points of inefficiency). A new flow model of emergency care delivery, physician-directed queuing, was developed. Expanding upon physicians in triage, providers passively evaluate all patients upon arrival, actively manage patients requiring fewer resources, and direct patients requiring complex resources to further evaluation in ED areas. Sustained over time, ED efficiency improved as measured by near elimination of "left without being seen" patients and waiting times with improvement in door to doctor, patient satisfaction, and total length of stay. All improvements were in the setting on increased patient volume and no increase in physician staffing. Our experience suggests that practical application of healthcare delivery science can be used to improve ED efficiency. PMID:25929475

  16. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  17. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  18. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  19. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  20. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  1. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. |

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  2. Glenn T. Seaborg and heavy ion nuclear science

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. Studies of low energy deep inelastic reactions are discussed, and special emphasis is placed on charge equilibration. Additionally, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions are reported. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  3. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... of the Secretary Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification... Science Board Task Force on Nuclear Treaty Monitoring and Verification will meet in closed session on July... on August 24-25, 2010. ADDRESSES: Both meetings will be held at Science Applications...

  4. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  5. 2000 U.S. Department of Energy Strategic Plan: Strength through Science Powering the 21st Century

    SciTech Connect

    None,

    2000-09-01

    The Department of Energy conducts programs relating to energy resources, national nuclear security, environmental quality, and science. In each of these areas, the US is facing significant challenges. Our economic well-being depends on the continuing availability of reliable and affordable supplies of clean energy. Our Nation's security is threatened by the proliferation of weapons of mass destruction. Our environment is under threat from the demands a more populated planet and the legacies of 20th-century activities. Science and the technology derived from it offer the promise to improve the Nation's health and well-being and broadly expand human knowledge. In conducting its programs, the Department of Energy (DOE) employs unique scientific and technical assets, including 30,000 scientists, engineers, and other technical staff, in a complex of outstanding national laboratories that have a capital value of over $45 billion. Through its multidisciplinary research and development activities and its formidable assemblage of scientific and engineering talent, DOE focuses its efforts on four programmatic business lines: (1) Energy Resources--promoting the development and deployment of systems and practices that provide energy that is clean, efficient, reasonably priced, and reliable. (2) National Nuclear Security--enhancing national security through military application of nuclear technology and by reducing global danger from the potential spread of weapons of mass destruction. (3) Environmental Quality--cleaning up the legacy of nuclear weapons and nuclear research activities, safely managing nuclear materials, and disposing of radioactive wastes. (4) Science--advancing science and scientific tools to provide the foundation for DOE's applied missions and to provide remarkable insights into our physical and biological world. In support of the above four business lines, DOE provides management services to ensure that the technical programs can run efficiently. Our

  6. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGESBeta

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  7. From Crisis to Transition: The State of Russian Science Based on Focus Groups with Nuclear Physicists

    SciTech Connect

    Gerber, T P; Ball, D Y

    2001-12-09

    The collapse of the Soviet system led to a sharp contraction of state funding for science. Formerly privileged scientists suddenly confronted miserly salaries (often paid late), plummeting social prestige, deteriorating research facilities and equipment, and few prospects for improvement. Many departed the field of science for more lucrative opportunities, both within Russia and abroad. The number of inventions, patent applications, and publications by Russian scientists declined. Reports of desperate nuclear physicists seeking work as tram operators and conducting hunger strikes dramatized the rapid collapse of one of the contemporary world's most successful scientific establishments. Even more alarming was the 1996 suicide of Vladimir Nechai, director of the second largest nuclear research center in Russia (Chelyabinsk-70, now known as Snezhinsk). Nechai, a respected theoretical physicist who spent almost 40 years working on Soviet and Russian nuclear programs, killed himself because he could no longer endure his inability to rectify a situation in which his employees had not been paid for more than 5 months and were ''close to starvation.'' The travails of Russia's scientists sparked interest in the West primarily because of the security threat posed by their situation. The seemingly relentless crisis in science raised fears that disgruntled scientists might sell their nuclear weapons expertise to countries or organizations that harbor hostile intentions toward the United States. Such concerns are particularly pressing in the wake of the September 2001 terrorist attacks in the US. At the same time, we should not overlook other critical implications that the state of Russian science has for Russia's long-term economic and political development. It is in the West's interest to see Russia develop a thriving market economy and stable democracy. A successful scientific community can help on both counts. Science and technology can attract foreign investment and fuel

  8. Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

  9. Neureiter Increases State Department Science Acumen Through Salesmanship and Outside Experts

    NASA Astrophysics Data System (ADS)

    Dawson, Jim

    2003-07-01

    In an era when many international issues involve science, technology, or the environment, the infusion of scientists into the State Department is leading to better-informed foreign policy decisions. But those decisions are ultimately political, not scientific.

  10. Nuclear science research at the WNR and LANSCE neutron sources

    SciTech Connect

    Lisowski, P.W.

    1994-06-01

    The Weapons Neutron Research (WNR) Facility and the Los Alamos Neutron Scattering Center (LANSCE) use 800 MeV proton beam from the Los Alamos Meson Physics Facility (LAMPF) to generate intense bursts of neutrons. Experiments using time-of-flight (TOF) energy determination can cover an energy range from thermal to about 2 MeV at LANSCE and 0.1 to 800 MeV at WNR. At present, three flight paths at LANSCE and six flight paths at WNR are used in basic and applied nuclear science research. In this paper we present a status report on WNR and LANSCE, discuss plans for the future, and describe three experiments recently completed or underway that use the unique features of these sources.

  11. School Subject Departments as Sites for Science Teachers Learning Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    McNicholl, Jane; Childs, Ann; Burn, Katharine

    2013-01-01

    This paper reports a study that explored science teacher learning of pedagogical content knowledge and the factors that facilitated this in their workplace, schools. The research design employed interview and observation in two secondary school science departments in England. A seven part construct of PCK was used to analyse all data and the…

  12. The Effect of a State Department of Education Mentoring Program for Teachers on Science Student Achievement

    ERIC Educational Resources Information Center

    Lyon, Gilda Darlene

    2009-01-01

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where…

  13. The integration of science and politics to clean up 50 years in the nuclear sandbox

    SciTech Connect

    Lyons, C.E.; Holeman, T.

    1999-07-01

    The Cold War was fought between world superpowers for approximately 40 years from the end of the second World War until the end of the 1980s. During that time, the US government devoted billions of dollars to the development and production of nuclear weapons. Now the Cold War is over and the US is left with numerous nuclear weapons factories, stockpiles of nuclear materials, and mountains of waste to decontaminate and decommission. In the heat of the Cold War, little or no thought was given to how the facilities building bombs would be dismantled. Far too little attention was paid to the potential human health and environmental impact of the weapons production. Now, dozens of communities across the country face the problems this negligence created. In many cases, the location, extent, and characteristics of the waste and contamination are unknown, due to negligence or due to intentional hiding of waste and associated problems. Water supplies are contaminated and threatened; air quality is degraded and threatened; workers and residents risk contamination and health impacts; entire communities risk disaster from potential nuclear catastrophe. The US government, in the form of the US Department of Energy (DOE), now accepts responsibility for creating and cleaning up the mess. But it is the local communities, the home towns of the bomb factories and laboratories, that carry a significant share of the burden of inventing the science and politics required to clean up 50 years in the nuclear sandbox. The purpose of this paper is to evaluate the role of the local community in addressing the cleanup of the US nuclear weapons complex. Local governments do not own nor are responsible for the environmental aftermath, but remain the perpetual neighbor to the facility, the hometown of workers, and long-term caretaker of the off-site impacts of the on-site contamination and health risks.

  14. An Academic Career in a Basic Medical Science Department of Physiology.

    ERIC Educational Resources Information Center

    Saba, Thomas M.

    1981-01-01

    The availability of opportunities and the development of an academic career in a physiology department within a medical school or basic science department by graduates and postgraduates who intend to participate in physiology on a full-time basis are discussed, emphasizing typical background and job responsibilities. (Author/DC)

  15. The Dilemma of Medical Curriculum Innovation for the University Basic Science Departments

    ERIC Educational Resources Information Center

    Weil, William B., Jr.

    1970-01-01

    In his address to the Council of Academic Societies at the 80th Annual Meeting of the Association of American Medical Colleges in Cincinnati, Ohio, November 1969, author re-examines the advantages and disadvantages of a basic science department that is exclusively a medical school department. (IR)

  16. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  17. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  18. Possibilities for Nuclear Photo-Science with Intense Lasers

    SciTech Connect

    Barty, C J; Hartemann, F V; McNabb, D P; Messerly, M; Siders, C; Anderson, S; Barnes, P; Betts, S; Gibson, D; Hagmann, C; Hernandez, J; Johnson, M; Jovanovic, I; Norman, R; Pruet, J; Rosenswieg, J; Shverdin, M; Tremaine, A

    2006-06-26

    The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging of materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear

  19. Status of science education in state departments of education: An initial report

    NASA Astrophysics Data System (ADS)

    Dowling, Kenneth W.; Yager, Robert E.

    The past five years have been characterized as times of assessment in science education. One aspect of the profession where little information has been reported is the service and leadership provided by the various Departments of Education that exist as a part of the 50 state governments. Information was collected from the 50 states concerning the professional preparation of state science consultants, the nature of the positions, number of workers employed in such units, changes in support staff, facilities, and budget for each five year interval between 1960-1980. Science consultants are 46 years of age, have completed more than 10 years of classroom teaching, have been supervisors at the last level, have been in state positions for one-eight years, and have a Master's degree (half have the Ph.D.). Science consultants in the state department of education work in local schools, write proposals, assist with other administrative duties, work as members of evaluation teams. They spend two-thirds of their time in science education per se. The duties have become more general with less time spent exclusively on science education duties. The positions have become more involved with regulations, evaluations; the consultants enjoying less flexibility in their jobs. There has been a decline in terms of numbers of consultants, budget for science education; and general support for science education projects in state departments of education during the 20-year period surveyed.

  20. Characteristics Identified for Success by Restorative Dental Science Department Chairpersons.

    PubMed

    Wee, Alvin G; Weiss, Robert O; Wichman, Christopher S; Sukotjo, Cortino; Brundo, Gerald C

    2016-03-01

    The primary aim of this study was to determine the characteristics that current chairpersons in restorative dentistry, general dentistry, prosthodontics, and operative dentistry departments in U.S. dental schools feel are most relevant in contributing to their success. The secondary aim was to determine these individuals' rankings of the importance of a listed set of characteristics for them to be successful in their position. All 82 current chairs of the specified departments were invited to respond to an electronic survey. The survey first asked respondents to list the five most essential characteristics to serve as chair of a department and to rank those characteristics based on importance. Participants were next given a list of ten characteristics in the categories of management and leadership and, without being aware of the category of each individual item, asked to rank them in terms of importance for their success. A total of 39 chairpersons completed the survey (47.6% response rate; 83.3% male and 16.2% female). In section one, the respondents reported that leadership, vision, work ethic, integrity, communication, and organization were the most essential characteristics for their success. In section two, the respondents ranked the leadership characteristics as statistically more important than the management characteristics (p<0.0001) for being successful in their positions. PMID:26933102

  1. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  2. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect

    Jesse Schrieber

    2008-07-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

  3. A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.

    SciTech Connect

    Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

    2011-08-01

    In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

  4. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  5. The perception of science department chairs regarding the performance of community college science majors transferring to 4-year institutions

    NASA Astrophysics Data System (ADS)

    Ford, Brenda Jordan

    The purpose for conducting the study was to determine the perceptions held by science department chairs toward 2-year college transfer students regarding their ability to succeed in upper level science courses as compared to that of native students. A two-section, researcher-developed questionnaire was utilized to collect data. The first section was related to demographic information about the department chair's institution, such as institution size, number of transfer students at the institution, and the post-graduate plans of students. The second section presented 15 skills that if found in students should lead to academic success. A total of 61 (N = 61) surveys were returned, representing an overall return rate of 54.4%. The mean, the standard deviation, and paired t-tests were used to analyze the data. Results showed that science department chairs perceived significant differences in native and transfer students. The significant differences found between native and transfer students became greater as the size of the institution increased. The significant differences found between native and transfer students became less the greater the number of transfer students attending an institution. Significant differences were found between students planning to attend professional school and students going to jobs after graduation. No significant differences were found between students going to graduate school and those who were undecided about post-graduation plans. Two-year college transfer students were perceived by department chairs as having the ability to be academically successful at 4-year institutions.

  6. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    SciTech Connect

    2009-02-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our

  7. Topics in nuclear and radiochemistry for college curricula and high school science programs

    SciTech Connect

    Not Available

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  8. An Advanced Tokamak Fusion Nuclear Science Facility (FNSF-AT)

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.

    2010-11-01

    A Fusion Development Facility (FDF) is a candidate for FNSF-AT. It is a compact steady-state machine of moderate gain that uses AT physics to provide the neutron fluence required for fusion nuclear science development. FDF is conceived as a double-null plasma with high elongation and triangularity, predicted to allow good confinement of high plasma pressure. Steady-state is achieved with high bootstrap current and radio frequency current drive. Neutral beam injection and 3D non-resonant magnetic field can provide edge plasma rotation for stabilization of MHD and access to Quiescent H-mode. The estimated power exhaust is somewhat lower than that of ITER because of higher core radiation and stronger tilting of the divertor plates. FDF is capable of further developing all elements of AT physics, qualifying them for an advanced performance DEMO. The latest concept has accounted for realistic neutron shielding and divertor implementation. Self-consistent evolution of the transport profiles and equilibrium will quantify the stability and confinement required to meet the FNS mission.

  9. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  10. Operations Staff Astronomer - Deputy Head of the Paranal Science Operations Department

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Assignment: The Science Operations Department at ESO's Paranal Observatory (PSO) is responsible for all aspects of the direct support of observing operations of the VLT, the VLTI, and in the future, of the VST and VISTA, so as to optimize the scientific output of this world leading astronomical facility. The department currently comprises 26 operations staff astronomers, 14 telescope instrument operators, and 5 data handling administrators, as well as, for the functional part of their assignment, 15 postdoctoral fellows of ESO's Office for Science. Further recruitment is planned once all auxiliary telescopes of the VLTI, VST and VISTA become operational.

  11. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  12. 77 FR 22362 - Exemption Requests for Special Nuclear Material License SNM-362, Department of Commerce...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... licensing requirements for the use of licensed radioactive materials in irradiators.'' 58 FR 7715; February... COMMISSION Exemption Requests for Special Nuclear Material License SNM-362, Department of Commerce...) License SNM-362 for the U.S. Department of Commerce, National Institutes of Standards and Technology...

  13. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    SciTech Connect

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  14. Perspective on Department of Energy Geospatial Science: Past, Present, and Future

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    For many decades, the Department of Energy (DOE) has been a leader in basic scientific and engineering research that utilizes geospatial science to advance the state of knowledge in disciplines impacting national security, energy sustainability, and environmental stewardship. DOE recently established a comprehensive Geospatial Science Program that will provide an enterprise geographic information system infrastructure connecting all elements of DOE to critical geospatial data and associated geographic information services (GIServices). The Geospatial Science Program will provide a common platform for enhanced scientific and technical collaboration across DOE's national laboratories and facilities.

  15. A brief history of geospatial science in the Department of Energy

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    The U.S. Department of Energy (DOE) has a rich history of significant contributions to geospatial science spanning the past four decades. In the early years, work focused on basic research, such as development of algorithms for processing geographic data and early use of LANDSAT imagery. The emphasis shifted in the mid-1970s to development of geographic information system (GIS) applications to support programs such as the National Uranium Resource Evaluation (NURE), and later to issue-oriented GIS applications supporting programs such as environmental restoration and management (mid-1980s through present). Throughout this period, the DOE national laboratories represented a strong chorus of voices advocating the importance of geospatial science and technology in the decades to come. The establishment of a Geospatial Science Program by the DOE Office of the Chief Information Officer in 2005 reflects the continued potential of geospatial science to enhance DOE's science, projects, and operations, as is well demonstrated by historical analysis.

  16. A,B,C`s of nuclear science

    SciTech Connect

    Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R.

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  17. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  18. An Analysis of the Universal Decimal Classification as a Term System for Nuclear Science and Technology

    ERIC Educational Resources Information Center

    Stueart, Robert D.

    1971-01-01

    The possibilities of merging the terminology of the Universal Decimal Classification System with that of a term system - Engineers Joint Council's Thesaurus - for nuclear science and technology are explored. (12 references) (Author/NH)

  19. Department of Library and Information Science Student Handbook, 1998-1999.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Graduate School of Education

    This Handbook is divided into five main sections. Section one provides general information, including the Library and Information Science (LIS) calendar for 1998-99; LIS administration; programs sponsored by the LIS Department; facilities and resources; campus facilities and resources; student support/services; other student facilities;…

  20. Growing Collegial Cultures in Subject Departments in Secondary Schools: Working with Science Staff.

    ERIC Educational Resources Information Center

    Busher, Hugh; Blease, Derek

    2000-01-01

    Considers how particular approaches to leading and managing laboratory technicians in some (British) secondary-school science departments enhanced collegiality. In some schools, lab paraprofessionals are involved in decision-making. Trust, delegation based on ability, cooperative values, inclusive leadership styles, and a sense of belonging were…

  1. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  2. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  3. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  4. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  5. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  6. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  7. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  8. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  9. Nuclear Power in the Classroom: A Union of Science and Social Studies Education.

    ERIC Educational Resources Information Center

    Shillenn, James K.; Vincenti, John R.

    This paper examines issues that K-12 science and social studies teachers need to keep in mind when teaching about nuclear power. The information needs to be presented in as objective a manner as possible. Science needs to become more social oriented. Team teaching should be encouraged. Elementary and secondary inservice teacher education is…

  10. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  11. Applied Nuclear Science Research and Development progress report, June 1, 1984-May 31, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1985-09-01

    This progress report describes the activities of the Los Alamos Applied Nuclear Science Group for June 1, 1984 through May 31, 1985. The topical content includes the theory and evaluation of nuclear cross sections; neutron cross section processing and testing; neutron activation, fission products and actinides; and core neutronics code development and application. 70 refs., 31 figs., 15 tabs. (WRF)

  12. Nuclear power risks: challenge to the credibility of science

    SciTech Connect

    Welch, B.L.

    1980-01-01

    For a quarter of a century the Federal Government and the nuclear industry have deliberately deceived the American public about the risks of nuclear power. Facts have been systematically withheld, distorted, and obscured, and calculations have been deliberately biased in order to present nuclear power in an unrealistically favorable light. Most persistent and flagrant have been: (a) attempts to normalize public perception of nuclear accident casualties with those of more familiar accidents; and (b) the cloaking of the objectively undocumentable faith of the atomic energy establishment that a nuclear accident is extremely unlikely in a smokescreen of invalid, pseudoquantitative statistical probabilities in order to convince the public that the chance of an accident is negligible. Prime examples of these abuses are found in the Rasmussen report on nuclear reactor safety and in its representation to the public.

  13. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    SciTech Connect

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D.

    2006-07-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  14. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  15. The effect of a state Department of Education mentoring program for teachers on science student achievement

    NASA Astrophysics Data System (ADS)

    Lyon, Gilda Darlene

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where the program had not intervened. The Georgia High School Graduation Test, physical science end-of-course, and biology end-of-course test data, from a three year period, were collected from the Georgia Department of Education website and analyzed using an independent-t test and the Mann-Whitney test. While test score improvements cannot be entirely attributed to the Science Specialist mentoring program, the study revealed state-wide increases in physical science end-of-course tests and the Georgia High School Graduation Test scores over the three-year period in those schools participating in the teacher-mentoring program. Significant increases in students with disabilities populations and economically disadvantaged populations were also noted.

  16. DOE (Department of Energy)-Nuclear Energy Standards Program annual assessment, FY 1990

    SciTech Connect

    Williams, D.L. Jr.

    1990-11-01

    To meet the objectives of the programs funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a nuclear standards program and related activities and fosters the development and application of standards. This standards program is carried out in accordance with the principles in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980. The purposes of this effort, as set forth in three subtasks, are to (1) manage the NE Standards Program, (2) manage the development and maintenance of NE standards, and (3) operate an NE Standards Information Program. This report assesses the Performance Assurance Project Office (PAPO) activities in terms of the objectives of the Department of Energy-Nuclear Energy (DOE-NE) funded programs. To meet these objectives, PAPO administers a nuclear standards program and related activities and fosters the development and application of standards. This task is carried out in accordance with the principles set forth in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980, and DOE memorandum, Implementation of DOE Orders on Quality Assurance, Standards, and Unusual Occurrence Reporting for Nuclear Energy Programs, March 3, 1982, and with guidance from the DOE-NE Technology Support Programs. 1 tab. (JF)

  17. Radiation safety in the nuclear medicine department: impact of the UK Ionising Radiations Regulations.

    PubMed

    Harding, L K

    1987-09-01

    The practice of nuclear medicine requires integration of radiation safety with patient care and radiopharmaceutical standards. Nationally there was useful discussion in the UK before the Ionising Radiations Regulations and Approved Code of Practice were published, although such consultation had been lacking when the Medicines Act was implemented. Most of the new considerations relating to nuclear medicine stem from Schedule 6 of the Regulations. Generally, the presence of a single patient does not require a controlled area. However, when several patients are present, or radiopharmaceuticals are being prepared prior to injection, a controlled area is required. Classification of workers is not likely to be required in a typical nuclear medicine department in the UK, although most parts of the nuclear medicine department will need to be controlled areas. These include the radiopharmacy, radionuclide dispensary, injection room, and imaging rooms if patients are injected in them. The importance of finger dose measurements is emphasised. Patient wards, however, need not be controlled areas. A particular concern in nuclear medicine was that patients should not need to be admitted to hospital merely to comply with legislation. This is possibly the case and clarification will probably be available when the Notes for Guidance are published. Most procedures in nuclear medicine departments will remain unchanged. Further information is required, however, on patient waiting rooms, handling flood sources, pregnancy, and breast feeding. Within the hospital, detailed and multidisciplinary discussion will need to take place within the forum of the radiation safety committee. PMID:3664186

  18. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  19. Department of Energy nuclear material physical protection program in the Republic of Kazakstan

    SciTech Connect

    Eras, A.; Berry, R.B.; Case, R.S.

    1997-09-01

    As part of the joint U.S. and Republic of Kazakstan nuclear Material Protection, Control, and Accounting (MPC{ampersand}A) program, the U.S. Department of Energy (DOE) is providing assistance at four nuclear facilities in Kazakstan. These facilities are the Ulba Metallurgical Plant, the National Nuclear Center (NNC) Institute of Atomic Energy at Kurchatov (IAE-K), the Mangyshlak Atomic Energy Complex (BN-350) Reactor, and the NNC Institute of Atomic Energy at Almaty (IAE-A). This paper describes the DOE MPC{ampersand}A physical protection program at each of the facilities.

  20. Computational templates for introductory nuclear science using mathcad

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Sobotka, L. G.

    2013-01-01

    Computational templates used to teach an introductory course in nuclear chemistry and physics at Washington University in St. Louis are presented in brief. The templates cover both basic and applied topics.

  1. Status report of the US Department of Energy`s International Nuclear Safety Program

    SciTech Connect

    1994-12-01

    The US Department of Energy (DOE) implements the US Government`s International Nuclear Safety Program to improve the level of safety at Soviet-designed nuclear power plants in Central and Eastern Europe, Russia, and Unkraine. The program is conducted consistent with guidance and policies established by the US Department of State (DOS) and the Agency for International Development and in close collaboration with the Nuclear Regulatory Commission. Some of the program elements were initiated in 1990 under a bilateral agreement with the former Soviet Union; however, most activities began after the Lisbon Nuclear Safety Initiative was announced by the DOS in 1992. Within DOE, the program is managed by the International Division of the Office of Nuclear Energy. The overall objective of the International Nuclear Safety Program is to make comprehensive improvements in the physical conditions of the power plants, plant operations, infrastructures, and safety cultures of countries operating Soviet-designed reactors. This status report summarizes the Internatioal Nuclear Safety Program`s activities that have been completed as of September 1994 and discusses those activities currently in progress.

  2. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  3. The Jefferson Science Fellows (JSF) program at the US Department of State

    NASA Astrophysics Data System (ADS)

    Peterson, Roy

    2014-09-01

    In 2004 the US Department of State and the National Academies established the Jefferson Science Fellows program, to bring tenured faculty in sciences, engineering, and medicine to the Department of State or USAID for a year in residence, with continuing connections. Over twenty physical scientists have been Fellows, working in a wide variety of offices on a broad range of topics. The main advantage to Fellows is the opportunity to make an impact on important national and international issues, applying skills and judgments gained through their research, teaching, and service. The JSF experience can also create broader horizons for physicists, especially beyond the laboratory. The selection process and examples, including my own, will be described. Information can be found at //sites.nationalacademies.org/PGA/Jefferson/.

  4. Ideology in science and technology: the case of civilian nuclear power

    SciTech Connect

    Harrod, A.N.

    1987-01-01

    This dissertation traces the complicated interrelationships between ideology and interest within the civilian nuclear power controversy. The first chapter introduces the topic. The second chapter provides a social-political-economic overview of the context in which the conflicting ideologies arose. Factors looked at are the ascendancy of the physical sciences, the development of nuclear energy, the disenchantment with science and technology and the consequent rise of an anti-nuclear ideology. Chapter III uses the theories of Alvin Gouldner to understand the structure of ideology. The chapter defines ideology's similarities to and differences from scientific discourse. Chapter IV examines the ideological discourse of a selected sample of scientists who have spoken for and against civilian nuclear power. In parallel to chapter IV, chapter V examines a scientific controversy among the sample of experts. It shows how scientific disagreement can be produced and how ideology is most closely linked to science. Chapter VI examines the social interests of the scientists and experts to discover ways that interests have shaped the ideological and scientific positions for and against civilian nuclear energy. Based on the foregoing, chapter VII concludes that the introduction of science and experts into a controversy cannot be expected to end disagreement over policy because of the link between science and ideology.

  5. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  6. Educating American youth on nuclear technology

    SciTech Connect

    Hechanova, T.E.

    1993-12-31

    A grave problem facing the American nuclear technology field is the non-education of American youth in nuclear sciences which produces an uneducated populace. This presentation addresses first hand efforts of the Massachusetts Institute of Technology`s ANS Student Branch at educating mainly high school students in nuclear science, and recruiting college students into the Nuclear Engineering Department.

  7. Scientific Method in Teaching Physics in Languages and Social Sciences Department of High—Schools

    NASA Astrophysics Data System (ADS)

    Nagl, Mirko G.; Obadović, Dušanka Ž.; Stojanović, Maja M.

    2010-01-01

    The expansion of scientific materials in the last few decades, demands that the contemporary educational system should select and develop methods of effective learning in the process of acquiring skills and knowledge usable and feasible for a longer period of time. Grammar schools as general educational institutions possess all that is necessary for the development of new teaching methods and fitting into contemporary social tendencies. In the languages and social sciences department in of grammar schools physics is the only natural sciences subject present during all four years. The classical approach to teaching is tiring as such and creates aversion towards learning physic when it deals with pupils oriented towards social sciences. The introduction of scientific methods raises the motivation to a substantial level and when applied both the teacher and pupils forget when the class starts or ends. The assignment has shown the analysis of initial knowledge of physics of the pupils attending the first grade of languages and social sciences department of of grammar schools as a preparation for the introduction of the scientific method, the analysis of the initial test with the topic of gravitation, as well as the analysis of the final test after applying the scientific method through the topic of gravitation. The introduction of the scientific method has duly justified the expectations and resulted in increasing the level of achievement among the pupils in the experimental class.

  8. U.S. Department of Energy facilities needed to advance nuclear power.

    PubMed

    Ahearne, John F

    2011-01-01

    This talk is based upon a November 2008 report by the U.S. Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC). The report has two parts, a policy section and a technology section. Here extensive material from the Technical Subcommittee section of the NEAC report is used. PMID:21399417

  9. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  10. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.

    This study analyzed a state department of education's ability to have actual influence over the improvement of science achievement and proficiency by having direct relationships with science teachers in Georgia's lowest performing schools. The study employed a mixed ANOVA analysis of the mean scale scores and proficiency rates of the science portion of the Georgia High School Graduation Test (GHSGT) for the years 2004 through 2007 to determine if the intervention by the Science Mentor Program (SMP) had significant effect on the science achievement and proficiency within the cohort of schools, as compared to a set of schools receiving no intervention, on various subgroups within the schools, and on various levels of intervention within the SMP. All data used in this study are available to the public through the Georgia Department of Education (GaDOE). SMP schools were selected based on their level of intervention for three consecutive years. Non-SMP schools were selected based on demographic similarities in economically disadvantaged, white, African-American, and students with disabilities to ensure a match of pairings for analyses. The results of this study showed significant improvement of scale scores and proficiency rates between 2004 and 2007. The study showed significant increases in all schools regardless of treatment. The study also showed significant differences in performance within the subgroups. Males, white, non-Economically Disadvantaged, and regular education students were all found to have significantly better performance in both achievement and proficiency rate. Economically Disadvantaged students were found to have a significant difference with regard to treatment groups. There was a significant difference between the mean scale score and proficiency rates of Economically Disadvantaged students in schools receiving high-intervention and schools receiving no-intervention. Further analysis showed that the only significant difference was in 2004, the

  11. Dennis Kovar and Low-Energy Nuclear Science in the United States at the turn of the century

    NASA Astrophysics Data System (ADS)

    Janssens, Robert

    2011-10-01

    This presentation will retrace aspects of Dennis Kovar's research career as a staff member within the Physics Division at Argonne National Laboratory. Dennis led pioneering work on understanding how the total cross section in heavy-ion induced reactions is distributed into elastic and inelastic scattering, transfer, incomplete and complete fusion with a focus on the interaction between these different channels. It will also discuss the decisive role Dennis played in stewarding low energy nuclear science, once he joined the Office of Nuclear Physics at the Department of Energy. In particular, this presentation will review Dennis' role in helping making the case for physics with rare isotopes. Through his many valuable suggestions and probing questions he was instrumental in challenging and stimulating to community into an adventure that ultimately culminated in the proposal for the development of FRIB, the facility for Rare Isotope Beams. Work supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  12. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  13. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, Xabier

    2009-07-02

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  14. The Role of Geoscience Departments in Developing the Earth Science Teacher Workforce: A Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Karsten, J.

    2003-12-01

    Undergraduate geoscience departments play a critical role in the preparation of future teachers. This workshop sponsored by AGU and NAGT with funding from NSF brought together geoscience faculty known for their work in teacher preparation, Earth Science teachers and representatives from schools of education. Discussion focused on critical contributions of geoscience departments in recruiting, mentoring and advising future teachers; designing research and teaching experiences for future teachers; developing links between education and geoscience departments; supporting alumni in the teaching profession; and the role of introductory courses in teacher preparation. Each participant contributed a short essay describing the strengths of their program for teachers. The essay collection provides a snapshot of the breadth and innovative nature of current practice in geoscience departments around the country (serc.carleton.edu/NAGTWorkshops/teacherprep03). A summary of the program, powerpoint presentations, and discussion highlights are also available on the website. Of special interest are 1) approaches to introductory courses including revision of teaching methods in the general introductory course to demonstrate a range of pedagogy; separate introductory course sections or laboratory sections for pre-service teachers; and an integrated science approach for pre-service elementary teachers; 2) results of brainstorming sessions on mechanisms for recruiting and supporting Earth Science teachers suggesting a range of activities taking place before, during, and after participation in the geoscience program; 3) a summary of why teaching and research experiences are important for pre-service teachers and recommendations for program elements that lead to successful experiences and 4) plenary presentations on lessons learned from the NSF programs (Prival) and effective program design (Ridkey).

  15. Science Is Important, but Politics Drives the Siting of Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Shaw, George H.

    2014-02-01

    In 1982, I worked on the Nuclear Waste Policy Act as an AGU Congressional Science Fellow tasked with assisting a member of the House Energy and Commerce Committee. When I recently read the suggestion that clay-rich strata (shales) could be a viable medium for high-level nuclear waste (HLW) disposal [Neuzil, 2013], I could not help but remember the insights I gained more than 30 years ago from my time on the Hill.

  16. Recommendations for a Department of Energy nuclear energy R and D agenda

    SciTech Connect

    1997-12-01

    On January 14, 1997, the President requested that his Committee of Advisors on Science and Technology (PCAST) make ``recommendations ... by October 1, 1997 on how to ensure that the United States has a program that addresses its energy and environmental needs for the next century.`` In its report, Federal Energy Research and Development for the Challenges of the Twenty-First Century, the PCAST Panel stated that ``the United States faces major energy-related challenges as it enters the twenty-first century`` and links these challenges to national economic and environmental well-being as well as to national security. The Panel concluded that ``Fission belongs in the R and D portfolio.`` In conjunction with this activity, the DOE Office of Nuclear Energy, Science and Technology, together with seven of the national laboratories, undertook a study to recommend nuclear energy R and D responses to the challenges and recommendations identified by the PCAST Panel. This seven-laboratory study included an analysis of past and present nuclear energy policies, current R and D activities, key issues, and alternative scenarios for domestic and global nuclear energy R and D programs and policies. The results are summarized. Nuclear power makes important contributions to the nation`s well-being that can be neither ignored nor easily replaced without significant environmental and economic costs, particularly in an energy future dominated by global energy growth but marked by significant uncertainties and potential instabilities. Future reliance on these contributions requires continuing past progress on the issues confronting nuclear power today: safety, waste management, proliferation, and economics. A strong nuclear energy agenda will enable the U.S. government to meet its three primary energy responsibilities: (1) respond to current needs; (2) prepare the country for anticipated future developments; and (3) safeguard the country from unexpected future events.

  17. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Exemptions § 40.11 Persons using source material under certain Department of Energy and...

  18. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Exemptions § 40.11 Persons using source material under certain Department of Energy and...

  19. The Perceptions of Globalization at a Public Research University Computer Science Graduate Department

    NASA Astrophysics Data System (ADS)

    Nielsen, Selin Yildiz

    Based on a qualitative methodological approach, this study focuses on the understanding of a phenomenon called globalization in a research university computer science department. The study looks into the participants' perspectives about the department, its dynamics, culture and academic environment as related to globalization. The economic, political, academic and social/cultural aspects of the department are taken into consideration in investigating the influences of globalization. Three questions guide this inquiry: 1) How is the notion of globalization interpreted in this department? 2) How does the perception of globalization influence the department in terms of finances, academics, policies and social life And 3) How are these perceptions influence the selection of students? Globalization and neo-institutional view of legitimacy is used as theoretical lenses to conceptualize responses to these questions. The data include interviews, field notes, official and non-official documents. Interpretations of these data are compared to findings from prior research on the impact of globalization in order to clarify and validate findings. Findings show that there is disagreement in how the notion of globalization is interpreted between the doctoral students and the faculty in the department. This disagreement revealed the attitudes and interpretations of globalization in the light of the policies and procedures related to the department. How the faculty experience globalization is not consistent with the literature in this project. The literature states that globalization is a big part of higher education and it is a phenomenon that causes the changes in the goals and missions of higher education institutions (Knight, 2003, De Witt, 2005). The data revealed that globalization is not the cause for change but more of a consequence of actions that take place in achieving the goals and missions of the department.

  20. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    SciTech Connect

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  1. Future directions for separation science in nuclear and radiochemistry

    SciTech Connect

    Pruett, D.J.

    1986-01-01

    Solvent extraction and ion exchange have been the most widely used separation techniques in nuclear and radiochemistry since their development in the 1940s. Many successful separations processes based on these techniques have been used for decades in research laboratories, analytical laboratories, and industrial plants. Thus, it is easy to conclude that most of the fundamental and applied research that is needed in these areas has been done, and that further work in these ''mature'' fields is unlikely to be fruitful. A more careful review, however, reveals that significant problems remain to be solved, and that there is a demand for the development of new reagents, methods, and systems to solve the increasingly complex separations problems in the nuclear field. Specifically, new separation techniques based on developments in membrane technology and biotechnology that have occurred over the last 20 years should find extensive applications in radiochemical separations. Considerable research is needed in such areas as interfacial chemistry, the design and control of highly selective separation agents, critically evaluated data bases and mathematical models, and the fundamental chemistry of dilute solutions if these problems are to be solved and new techniques developed in a systematic way. Nonaqueous separation methods, such as pyrochemical and fluoride volatility processes, have traditionally played a more limited role in nuclear and radiochemistry, but recent developments in the chemistry and engineering of these processes promises to open up new areas of research and application in the future.

  2. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  3. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  4. Nuclear theory and science of the facility for rare isotope beams

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.; Carlson, J.; Dean, D. J.; Fuller, G. M.; Furnstahl, R. J.; Hjorth-Jensen, M.; Janssens, R. V. F.; Li, Bao-An; Nazarewicz, W.; Nunes, F. M.; Ormand, W. E.; Reddy, S.; Sherrill, B. M.

    2014-03-01

    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This review overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas.

  5. Science, society, and America's nuclear waste. [Contains glossary

    SciTech Connect

    Not Available

    1992-01-01

    High-energy, ionizing radiation is called ionizing because it can knock electrons out of atoms and molecules, creating electrically charged particles called ions. Material that ionizing radiation passes through absorbs energy from the radiation mainly through this process of ionization. Ionizing radiation can be used for many beneficial purposes, but it also can cause serious, negative health effects. That is why it is one of the most thoroughly studied subjects in modern science. Most of our attention in this publication is focused on ionizing radiation -- what it is, where it comes from, and some of its properties.

  6. The Debrecen Scanning Nuclear Microprobe and its Applications in Biology and Environmental Science

    SciTech Connect

    Kertesz, Zsofia

    2007-11-26

    Nuclear microscopy is one of the most powerful tools which are able to determine quantitative trace element distributions in complex samples on a microscopic scale. The advantage of nuclear microprobes are that different ion beam analytical techniques, like PIXE, RBS, STIM and NRA can be applied at the same time allowing the determination of the sample structure, major, minor and trace element distribution simultaneously.In this paper a nuclear microprobe setup developed for the microanalysis of thin complex samples of organic matrix at the Debrecen Scanning Nuclear Microprobe Facility is presented. The application of nuclear microscopy in life sciences is shown through an example, the study of penetration of TiO{sub 2} nanoparticles of bodycare cosmetics in skin layers.

  7. An Analysis of World-Wide Contributions to "Nuclear Science Abstracts," Volume 22 (1968).

    ERIC Educational Resources Information Center

    Vaden, William M.

    Beginning with volume 20, "Nuclear Science Abstracts" (NSA) citations, exclusive of abstracts, have been recorded on magnetic tape. The articles have been categorized by 34 elements of the citations such as title, author, source, journal, report number, etc. At the time of this report more than 130,000 citations had been stored for purposes of…

  8. Nuclear science and engineering and health physics fellowships: 1984 description. Research areas for the practicum

    SciTech Connect

    Not Available

    1984-01-01

    This booklet describes available research areas at participating centers where a practicum may be held under the Nuclear Science and Engineering and Health Physics Fellowship program. After a year of graduate study each fellow is expected to arrange for a practicum period at one of the participating centers.

  9. Searching the "Nuclear Science Abstracts" Data Base by Use of the Berkeley Mass Storage System

    ERIC Educational Resources Information Center

    Herr, J. Joanne; Smith, Gloria L.

    1972-01-01

    Advantages of the Berkeley Mass Storage System (MSS) for information retrieval other than its size are: high serial-read rate, archival data storage; and random-access capability. By use of this device, the search cost in an SDI system based on the Nuclear Science Abstracts" data base was reduced by 20 percent. (6 references) (Author/NH)

  10. Real world experiences with nuclear science in the classroom: What an individual can do

    SciTech Connect

    Fox, M.R.

    1991-06-01

    Contributing factors to science illiteracy are discussed. Also, the educational institutions as a factor, and specific activities which have been achieved to help mitigate a small part of the problem are described. The activities undertaken with the grades K--12 in education communities related to energy education and to nuclear energy education are included.

  11. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  12. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  13. Nuclear Deterrence in the 21st Century: The Role of Science and Engineering

    SciTech Connect

    Martz, Joseph C; Ventura, Jonathan S

    2008-01-01

    Twenty-first century security challenges are multi-polar and asymmetric. A few nations have substantial nuclear arsenals and active nuclear weapons programs that still threaten vital US national security directly or by supporting proliferation. Maintaining a credible US nuclear deterrent and containing further proliferation will continue to be critical to US national security. Overlaid against this security backdrop, the rising worldwide population and its effects on global climate, food, and energy resources are greatly complicating the degree and number of security challenges before policy makers.This new paradigm requires new ways to assure allies that the United States remains a trusted security partner and to deter potential adversaries from aggressive actions that threaten global stability. Every U.S. President since Truman has affirmed the role of nuclear weapons as a supreme deterrent and protector of last resort of U.S. national security interests. Recently, President Bush called for a nuclear deterrent consistent with the 'lowest number of nuclear weapons' that still protects U.S. interests. How can this be achieved? And how can we continue on a path of nuclear reductions while retaining the security benefits of nuclear deterrence? Science and engineering have a key role to play in a potential new paradigm for nuclear deterrence, a concept known as 'capability-based deterrence.'

  14. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  15. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  16. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  17. Gender Ratios in High School Science Departments: The Effect of Percent Female Faculty on Multiple Dimensions of Students' Science Identities

    ERIC Educational Resources Information Center

    Gilmartin, Shannon; Denson, Nida; Li, Erika; Bryant, Alyssa; Aschbacher, Pamela

    2007-01-01

    To examine how school characteristics are tied to science and engineering views and aspirations of students who are underrepresented in science and engineering fields, this mixed-methods study explores relationships between aspects of students' science identities, and the representation of women among high school science teachers. Quantitative…

  18. A Look at the Definition, Pedagogy, and Evaluation of Scientific Literacy within the Natural Science Departments at a Southwestern University

    ERIC Educational Resources Information Center

    Flynn, Deborah Kay

    2011-01-01

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The…

  19. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    ERIC Educational Resources Information Center

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  20. Annual Report and Abstracts of Research of the Department of Computer and Information Science, July 1976-June 1977.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Computer and Information Science Research Center.

    The annual report of the Department of Computer and Information Science includes abstracts of research carried out during the 1976-77 academic year with support from grants by governmental agencies and industry, as well as The Ohio State University. The report covers the department's organizational structure, objectives, highlights of department…

  1. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    SciTech Connect

    Mahoney, J.

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  2. A study of the role expectations of the science supervisor and the fostering of collaboration within the high school science department

    NASA Astrophysics Data System (ADS)

    Hughes, Janet

    2001-07-01

    The purpose of this study was to determine the extent of agreement among science supervisors and public high school science teachers regarding Actual and Desired role responsibilities for science supervisors in six categories, Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment and a seventh category measuring the supervisor's degree of Fostering Collaboration within the department. The Science Supervisor Questionnaire was developed specifically for this study and consisted of items that comprised the most current research on the roles of the science supervisor. The instrument was based on the responsibilities of department heads as delineated through a consolidation of the current research. Although the supervisors and the science teachers agreed among themselves to some extent on the seven subscales, the six role expectations of supervisors (Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment) and the Fostering of Collaboration, the amount and degree of consensus varied. There was more consensus in the desired roles of science supervisors suggesting that the groups understand and agree upon the expectations of the position. Those top priorities of science supervisor role expectations for both groups were Methodology, Curriculum, Procedural Duties and Staff Development. There was a difference in perceptions between the two groups of the actual role of the supervisor, indicating that what is actually happening in the science supervisor role conflicts with what is expected. Fostering Collaboration ranked lowest for both groups in both perceived actual and desired science supervisor performance. Fostering Collaboration was not seen as a priority by the supervisors and teachers in the teaching and learning environment. Teachers report that supervisors did not play a key role in fostering collaboration in this study.

  3. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  4. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  5. Overview of United States Department of Energy activities to support life extension of nuclear power plants

    SciTech Connect

    Harrison, D.L.; Rosinski, S.T.

    1993-11-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US The operating license of the first of these plants will expire in the year 2000; one-third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: establishment of regulations, technical standards, and procedures for the preparation and review of a license renewal application; development, verification, and validation of technical criteria and bases for monitoring, refurbishing, and/or replacing plant equipment; and demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues in the principal areas of reactor pressure vessel (RPV) integrity, fatigue, and environmental qualification (EQ).

  6. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  7. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  8. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  9. Final Report to the Department of the Energy for Project Entitled Rare Isotope Science Assessment Committee

    SciTech Connect

    Donald Shapero; Timothy I. Meyer

    2007-08-14

    The Rare Isotope Science Assessment Committee (RISAC) was convened by the National Research Council in response to an informal request from the DOE’s Office of Nuclear Physics and the White House Office of Management and Budget. The charge to the committee is to examine and assess the broader scientific and international contexts of a U.S.-based rare-isotope facility. The committee met for the first time on December 16-17, 2005, in Washington, DC, and held three subsequent meetings. The committee’s final report was publicly released in unedited, prepublication form on Friday, December 8, 2006. The report was published in full-color by the National Academies Press in April 2007. Copies of the report were distributed to key decision makers and stakeholders around the world.

  10. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  11. Nuclear Medical Science Officers: Army Health Physicists Serving and Defending Their Country Around the Globe

    NASA Astrophysics Data System (ADS)

    Melanson, Mark; Bosley, William; Santiago, Jodi; Hamilton, Daniel

    2010-02-01

    Tracing their distinguished history back to the Manhattan Project that developed the world's first atomic bomb, the Nuclear Medical Science Officers are the Army's experts on radiation and its health effects. Serving around the globe, these commissioned Army officers serve as military health physicists that ensure the protection of Soldiers and those they defend against all sources of radiation, military and civilian. This poster will highlight the various roles and responsibilities that Nuclear Medical Science Officers fill in defense of the Nation. Areas where these officers serve include medical health physics, deployment health physics, homeland defense, emergency response, radiation dosimetry, radiation research and training, along with support to the Army's corporate radiation safety program and international collaborations. The poster will also share some of the unique military sources of radiation such as depleted uranium, which is used as an anti-armor munition and in armor plating because of its unique metallurgic properties. )

  12. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  13. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    SciTech Connect

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  14. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    SciTech Connect

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  15. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    SciTech Connect

    Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P.; Jones, K. L.; Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J.; Pain, S. D.; Adekola, A.; Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T.

    2009-03-10

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  16. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  17. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    SciTech Connect

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  18. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY COMMISSION RULES OF GENERAL APPLICABILITY TO DOMESTIC LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.12 Persons using byproduct material...

  19. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY COMMISSION RULES OF GENERAL APPLICABILITY TO DOMESTIC LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.12 Persons using byproduct material...

  20. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  1. Subject, Relationships and Identity: The Role of a Science Department in the Professional Learning of a Non-University Science Educated Teacher

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John

    2007-01-01

    This article employs the concept of community to interpret teacher professional learning in the context of the school science department. Using the transcripts of staff meetings, lesson observations and the conversations of school administrators, the departmental community is examined in terms of three metaphors: subject, relationships and…

  2. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  3. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  4. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema

    Mason, Thomas

    2013-02-25

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  5. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  6. Scientometric mapping of vacuum research in nuclear science & technology: a global perspective

    NASA Astrophysics Data System (ADS)

    Kademani, B. S.; Sagar, A.; Kumar, A.; Kumar, V.

    2008-05-01

    This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70%) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in 'Physics of Elementary Particles and Fields' with 2644 (21.98%) publications. The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review -D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers.

  7. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  8. Nuclear microscopy in the life sciences at the National University of Singapore. A review.

    PubMed

    Ren, M Q; Thong, P S; Makjanic, J; Ponraj, D; Watt, F

    1999-01-01

    The nuclear microscope is now gaining popularity in the field of life sciences. In particular, the combination of proton-induced X-ray emission to measure the elemental concentrations of inorganic elements, Rutherford backscattering spectrometry to characterize the organic matrix, and scanning transmission ion microscopy to provide information on the density and structure of the sample represents a powerful set of techniques that can be applied simultaneously to the specimen under investigation. These techniques are extremely useful for measuring any imbalances in trace elements in localized regions of biological tissue and, as such, can provide unique information on many diseases. In this article, we describe the nuclear microscope and its related ion-beam techniques, and we review the biomedical work carried out using the nuclear microscope in the National University of Singapore. PMID:10676480

  9. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel

  10. Individual dose monitoring of the nuclear medicine departments staff controlled by Central Laboratory for Radiological Protection.

    PubMed

    Szewczak, Kamil; Jednoróg, Sławomir; Krajewski, Paweł

    2013-01-01

    Presented paper describes the results of the individual doses measurements for ionizing radiation, carried out by the Laboratory of Individual and Environmental Doses Monitoring (PDIS) of the Central Laboratory for Radiological Protection in Warsaw (CLOR) for the medical staff employees in several nuclear medicine (NM) departments across Poland. In total there are48 NM departments in operation in Poland [1] (consultation in Nuclear Atomic Agency). Presented results were collected over the period from January 2011 to December 2011 at eight NM departments located in Krakow, Warszawa (two departments), Rzeszow (two departments), Opole, Przemysl and Gorzow Wielkopolski. For radiation monitoring three kinds of thermo luminescence dosimeters (TLD) were used. The first TLD h collected information about whole body (C) effective dose, the second dosimeter was mounted in the ring (P) meanwhile the third on the wrist (N) of the tested person. Reading of TLDs was performed in quarterly periods. As a good approximation of effective and equivalent dose assessment of operational quantities both the individual dose equivalent Hp(10) and the Hp(0.07) were used. The analysis of the data was performed using two methods The first method was based on quarterly estimations of Hp(10)q and Hp(0.07)q while the second measured cumulative annual doses Hp(10)a and Hp(0.07)a. The highest recorded value of the radiation dose for quarterly assessments reached 24.4 mSv and was recorded by the wrist type dosimeter worn by a worker involved in source preparation procedure. The mean values of Hp(10)q(C type dosimeter) and Hp(0.07)q (P and N type dosimeter) for all monitored departments were respectively 0.46 mSv and 3.29 mSv. There was a strong correlation between the performed job and the value of the received dose. The highest doses always were absorbed by those staff members who were involved in sources preparation. The highest annual cumulative dose for a particular worker in the considered time

  11. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  12. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program

  13. Public Outreach of the South Texas Health Physic Society and Texas A&M University Nuclear Engineering Department

    SciTech Connect

    Berry, R. O.

    2003-02-24

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A&M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to site a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue.

  14. Dose received by occupationally exposed workers at a nuclear medicine department

    SciTech Connect

    Avila, O.; Sanchez-Uribe, N. A.; Rodriguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-23

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of 'Instituto Nacional de Cancerologia' (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are {sup 131}I, {sup 18}F, {sup 68}Ga, {sup 99m}Tc, {sup 111}In and {sup 11}C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of 'Instituto Nacional de Investigaciones Nucleares' (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the {sup R}eglamento General de Seguridad Radiologica{sup ,} Mexico (50 mSv), as well as within the lower limit recommended by the 'International Commission on Radiation Protection' (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  15. Dose received by occupationally exposed workers at a nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Sánchez-Uribe, N. A.; Rodríguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-01

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of "Instituto Nacional de Cancerología" (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131I, 18F, 68Ga, 99mTc, 111In and 11C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of "Instituto Nacional de Investigaciones Nucleares" (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the "Reglamento General de Seguridad Radiológica", México (50 mSv), as well as within the lower limit recommended by the "International Commission on Radiation Protection" (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  16. Experiments in progress: The geography of science in the Atomic Energy Commission's peaceful uses of nuclear explosives program, 1956-1973

    NASA Astrophysics Data System (ADS)

    Kirsch, Scott Lawrence

    From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.

  17. ASAS Centennial Paper: The future of teaching and research in companion animal biology in departments of animal sciences.

    PubMed

    McNamara, J P

    2009-01-01

    Departments of animal sciences must be relevant to a society in which a small number of people can raise almost all the food animal products needed. The declining number of people involved in animal agriculture has decreased enrollment of students interested in food animals in many departments of animal science. However, several departments welcomed students from a diverse background and began research on animals other than food animals. In many states, the undergraduate enrollment is made up primarily of students interested only in companion animals. A benefit of this is that we have recruited new students into animal agriculture and they have gone on to excellent careers. We have a new challenge now: how to maintain and expand the efforts in teaching, research, and outreach of companion animal science. Departments wishing to expand in teaching have examples of successful courses and curricula from other departments. Some departments have expanded their teaching efforts across their own university to teach about pets to a wider audience than their own majors; other departments can follow. In research, a small number of faculty have been able to establish extramurally funded projects on pets, including horses. But it will be difficult for more than a handful of departments to have a serious research effort in dogs, cats, birds, fish, or exotic animals. Departments will have to make a concerted effort to invest in such endeavors; joint ventures with other universities and colleges of veterinary medicine (or medicine) will probably be required. Funding sources for "traditional" efforts in nutrition, reproduction, and physiology are small and inconsistent; however, with the progress of the equine, canine, and feline genome projects, there should be opportunities from federal funding sources aimed at using animal models for human health. In addition, efforts in animal behavior and welfare can be expanded, perhaps with some funding from private foundations or animal

  18. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    NASA Astrophysics Data System (ADS)

    2011-09-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) "Introductory word"; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Contribution of the SAGE results to the understanding of solar physics and neutrino physics"; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Baikal neutrino experiment"; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) "Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory"; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) "Neutrino T2K experiment: the first results"; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) "Fields of study of condensed media at the neutron facility at the INR, RAS"; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Production of isotopes at the INR, RAS: reality and prospects".The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper "High-power diode-pumped alkali lasers" by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. • Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 • The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54, Number 9

  19. The Perspectives of Lecturers on the Action Research Journey in the Mathematics and Science Department of Singapore Polytechnic

    ERIC Educational Resources Information Center

    Khiat, Henry; Chia, Hui Teng; Tan-Yeoh, Ah Choo; Kok-Mak, Chew Pheng

    2011-01-01

    The goal of this research was to understand the various aspects of the action research initiative in the Department of Mathematics and Science, Singapore Polytechnic. A total of 55 lecturers took part in this study and data were collected through semi-structured questionnaires, informal conversations with the lecturers, observations of their…

  20. 1970 Guide Book to Departments in the Mathematical Sciences in the United States and Canada, Fourth Edition.

    ERIC Educational Resources Information Center

    Hailpern, Raoul

    This guidebook is intended to provide information about the location, size, staff, library facilities, course offerings, and special features of departments in mathematical sciences in four year colleges and universities in the United States and Canada. The information is presented in two parts: (1) information about colleges offering…

  1. A Glance at Performance Management in Departments for Preparation of Secondary Mathematics, Engineering, Technology and Science Teachers in France

    ERIC Educational Resources Information Center

    Tchibozo, Guy

    2005-01-01

    In France, secondary teachers are public sector employees. Becoming a STEM (Science, Technology, Engineering, and Math) teacher in secondary education is subject to passing public competitive entry examinations. Preparation for these examinations is provided in College Departments, which are essentially assessed on the basis of their success…

  2. Department of Defense Nuclear/Biological/Chemical (NBC) defense: Annual report to Congress. Annual report

    SciTech Connect

    1997-03-01

    The National Defense Authorization Act for Fiscal Year 1994, Public Law No. 103-160, Section 1703 (50 USC 1522), mandates the consolidation of all Department of Defense chemical and biological (CB) defense programs. As part of this consolidation, the Secretary of Defense is directed to submit an assessment and a description of plans to improve readiness to survive, fight and win in a nuclear, biological and chemical (NBC) contaminated environment. This report contains modernization plan summaries that highlight the Department`s approach to improve current NBC defense equipment and resolve current shortcomings in the program. 50 USC 1522 has been a critical tool for ensuring the elimination of redundant programs, focusing funds on program priorities, and enhancing readiness. While many problems remain in consolidating the NBC defense program, significant and measurable progress has been made in fulfilling the letter and the intent of Congress. There has been a consolidation of the research, development and acquisition organizations for NBC defense, including the consolidation of all research, development, test and evaluation, and procurement funds for NBC defense. There has been significant progress in the development of Joint training, doctrine development, and requirements generation. Modernization and technology plans have been developed that will begin to show real savings and true consolidation of efforts among the Services. The fruits of these plans will be realized over the next few years as the public law has time to take effect and will result in the increased readiness of U.S. forces. The objective of the Department of Defense (DoD) NBC defense program is to enable our forces to survive, fight, and win in NBC warfare environments. Numerous rapidly changing factors continually influence the program and its management.

  3. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    SciTech Connect

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  4. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  5. The Australian Institute of Nuclear Science & Engineering - a model for University-National Laboratory collaboration

    SciTech Connect

    Gammon, R.B.

    1994-12-31

    This paper describes the aims and activities of the Australian Institute of Nuclear Science and Engineering (AINSE), from its foundation in 1958 through to 1993. The philosophy, structure and funding of the Institute are briefly reviewed, followed by an account of the development of national research facilities at the Lucas Heights Research Laboratories, with particular emphasis on nuclear techniques of analysis using neutron scattering instruments and particle accelerators. AINSE`s program of Grants, Fellowships and Studentships are explained with many examples given of projects having significance in the context of Australia`s national goals. Conference and training programs are also included. The achievements during these years demonstrate that AINSE has been an efficient and cost- effective model for collaboration between universities and a major national laboratory. In recent years, industry, government organisations and the tertiary education system have undergone major re-structuring and rationalization. A new operational structure for AINSE has evolved in response to these changes and is described.

  6. One-year clinical experience with a fully digitized nuclear medicine department: organizational and economical aspects

    NASA Astrophysics Data System (ADS)

    Anema, P. C.; de Graaf, C. N.; Wilmink, J. B.; Hall, David R.; Hoekstra, A. G.; van Rijk, P. P.; Van Isselt, J. W.; Viergever, Max A.

    1991-07-01

    At the department of nuclear medicine of the University Hospital Utrecht a single-modality PACS has been operational since mid-1990. After one year of operation the functionality, the organizational and economical consequences, and the acceptability of the PACS were evaluated. The functional aspects reviewed were: viewing facilities, patient data management, connectivity, reporting facilities, archiving, privacy, and security. It was concluded that the improved quality of diagnostic viewing and the potential integration with diagnosis, reporting, and archiving are highly appreciated. The many problems that have occurred during the transition period, however, greatly influence the appreciation and acceptability of the PACS. Overall, it is felt that in the long term there will be a positive effect on the quality and efficiency of the work.

  7. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-01-01

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  8. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  9. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  10. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    SciTech Connect

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclear science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.

  11. Mechanical Engineering Department Technical Review

    SciTech Connect

    Carr, R.B.; Denney, R.M.

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  12. Capturing citation activity in three health sciences departments: a comparison study of Scopus and Web of Science.

    PubMed

    Sarkozy, Alexandra; Slyman, Alison; Wu, Wendy

    2015-01-01

    Scopus and Web of Science are the two major citation databases that collect and disseminate bibliometric statistics about research articles, journals, institutions, and individual authors. Liaison librarians are now regularly called upon to utilize these databases to assist faculty in finding citation activity on their published works for tenure and promotion, grant applications, and more. But questions about the accuracy, scope, and coverage of these tools deserve closer scrutiny. Discrepancies in citation capture led to a systematic study on how Scopus and Web of Science compared in a real-life situation encountered by liaisons: comparing three different disciplines at a medical school and nursing program. How many articles would each database retrieve for each faculty member using the author-searching tools provided? How many cited references for each faculty member would each tool generate? Results demonstrated troubling differences in publication and citation activity capture between Scopus and Web of Science. Implications for librarians are discussed. PMID:25927511

  13. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    SciTech Connect

    Avila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; Gamboa de Buen, I.; Buenfil, A. E.; Brandan, M. E.

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  14. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  15. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  16. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  17. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  18. Initial Key Results from the NSAC Subcommittee Survey on Nuclear Science PhDs 5-10 Years Later

    NASA Astrophysics Data System (ADS)

    Cerny, Joseph

    2004-05-01

    As a component of a study for the Nuclear Science Advisory Committee which has been asked, in part, to document the effectiveness of the current education in nuclear science, a web-based survey is being conducted by a Subcommittee on all US nuclear science PhDs who graduated 5 to 10 years ago. The survey questionnaire has six sections: (A) the overall career path from the time one received the PhD until the present and the demographic background; (B) the search for the first job after receiving the PhD; (C) the retrospective evaluation of one's doctoral education and experience; (D) the assessment of the usefulness of the doctoral degree; (E) the intersection of family and career; and (F) recommendations and opinions. Inital results of this survey will be presented, focussing on the doctoral and postdoctoral experience. Responses to two open-ended questions are of particular interest: What advice would you offer to graduate students who are just beginning studies in nuclear science; and what recommendations would you offer doctoral programs in nuclear science today?

  19. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    SciTech Connect

    Mahoney, J.

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  20. Challenges in Uncertainty and the Science of Nuclear Waste Disposal (Invited)

    NASA Astrophysics Data System (ADS)

    Alley, W. M.; Alley, R.

    2013-12-01

    Disposal of high-level nuclear waste is a first-of-a-kind endeavor, further saddled by the ambitious goal to achieve containment over periods well beyond human experience. In the United States, as well as other countries, the time period for performance assessment to provide a safety case for deep geologic repositories has gone from 10,000 years in the 1990s to one million years today. Even when the standard was established for 10,000 years, the National Academy of Sciences Board on Radioactive Waste Management warned of the 'scientific trap' set by encouraging the public to expect certainty about repository safety well beyond what science can provide. Paradoxically, the emphasis on predicting repository behavior thousands of centuries into the future stands in stark contrast to a lack of risk assessment of indefinite aboveground storage for the next several generations. We review the uncertainties and technical basis for a geologic repository at Yucca Mountain compared to extended onsite and interim storage. In order to make progress with geologic disposal of nuclear waste, it is important to evaluate any option in the context of the relative merits and limitations of alternative geologic settings, interim storage, and the status quo of extended onsite storage.

  1. Maximizing the science return of interplanetary missions using nuclear electric power

    SciTech Connect

    Zubrin, R.M.

    1995-01-20

    The multi-kilowatt power sources on the spaecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground pentrating sounding of Pluto, the major planet`s moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expanditures needed to bring a space qualified nuclear electric power source into being. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  2. Success With Offering a Diversity of Majors in the Earth Science Department at the University of Northern Colorado

    NASA Astrophysics Data System (ADS)

    Nesse, W. D.; Taber, M. R.; Hoyt, W. H.

    2003-12-01

    Today, the number of geology majors at the University of Northern Colorado (UNC) has declined to just 10 percent of the mid-1980s peak. At issue is the sustainability of a viable geology program, with a minimum of three tenure-track faculty and few graduating geology students. One solution to the sustainability issue is diversity of Earth Science Majors within a given department. At UNC we have five emphasis areas: Environmental Earth Science, General Earth Science, Geology, Meteorology, and Secondary and Middle Level Teaching. We have had the good fortune to add many Meteorology and Environmental Earth Science majors, while the Geology, Middle Level Teaching, and General Earth Science majors have declined in number. As students' academic goals fluctuate in the geosciences (often directly tied to the marketability), the diversity of major offerings allows for the department to maintain a balance in the number of majors. Today, we are close to the number of Earth Science majors we've averaged over the last 20 years (~135 majors). Strong advising is essential for our evolving systems to work for the students and the Department. Another stabilizing factor for the Department is the masters program, which provides graduate student teaching assistants at a low cost to the university-most of our teaching assistants teach General Geology labs, and that course continues to be an effective recruiting mechanism for all of the emphasis areas to some degree. State budget constraints have forced creativity in course offerings. For example, we still require a Geology Field Camp for graduation, but send our students to other university field camps - a cost saving for us. In addition, many of our courses serve multiple emphasis areas, mirroring the nature of earth system science. Moreover, we have managed to combine some upper division courses (mineralogy and earth materials, for example), offered others on an alternate-year basis, reduce the number of upper division electives, and

  3. The Gemini Science User Support Department: A community-centered approach to user support

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  4. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  5. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  6. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    PubMed

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind. PMID:26736182

  7. 1988 Nuclear Science Symposium, Orlando, FL, Nov. 9-11, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Pordes, Ruth

    1989-02-01

    Papers on nuclear science are presented, covering topics such as performance of a lead radiator, a gas tube calorimeter, various types of detectors, multiwire proportional counters, the DELPHI time projection chamber, scintillator research, bolometeric detectors, liquid xenon detectors for gamma-ray astronomy, calorimetry, trigger processors, front end electronics, advanced custom circuits, data aquisition systems, and radiation damage on ICs, detectors, and CCDs. Topics related to space physics and astronomy include high amplitude events in microchannel plates, large format microchannel plate detectors, HGI2 X-ray detectors, Ga solar neutrino detectors, semiconductor thermistors at low temperatures, blocked impurity band hybrid IR focal plane arrays, a three-dimensional position sensitive scintillation detector, proportional counters, X-ray imaging telescopes, a daytime star sensor for a stabilized balloon platform, multiphase CCD operation, EUV microchannel plate detectors, EUV remote sensing, digital optical spark chambers, detector arrays, microcomputer control of IR detector arrays, array speckle interferometry, and design of a space IR telescope facility. Other subjects include medical detectors, medical imaging, health physics, nuclear well logging, and nuclear power systems.

  8. Present and Future Applications of Digital Electronics in Nuclear Science - a Commercial Prospective

    NASA Astrophysics Data System (ADS)

    Tan, Hui

    2011-10-01

    Digital readout electronics instrumenting radiation detectors have experienced significant advancements in the last decade or so. This on one hand can be attributed to the steady improvements in commercial digital processing components such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable-gate-arrays (FPGAs), and digital-signal-processors (DSPs), and on the other hand can also be attributed to the increasing needs for improved time, position, and energy resolution in nuclear physics experiments, which have spurred the rapid development of commercial off-the-shelf high speed, high resolution digitizers or spectrometers. Absent from conventional analog electronics, the capability to record fast decaying pulses from radiation detectors in digital readout electronics has profoundly benefited nuclear physics researchers since they now can perform detailed pulse processing for applications such as gamma-ray tracking and decay-event selection and reconstruction. In this talk, present state-of-the-art digital readout electronics and its applications in a variety of nuclear science fields will be discussed, and future directions in hardware development for digital electronics will also be outlined, all from the prospective of a commercial manufacturer of digital electronics.

  9. Nuclear Science Symposium, 27th, and Symposium on Nuclear Power Systems, 12th, Orlando, Fla., November 5-7, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Martini, M.

    1981-01-01

    Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.

  10. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    SciTech Connect

    Mahoney, J.

    1988-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

  11. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    ERIC Educational Resources Information Center

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  12. Physical Sciences 2007 Science & Technology Highlights

    SciTech Connect

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  13. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  14. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    SciTech Connect

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  15. Handbook for the implementation of IAEA inspection activities at Department of Energy nuclear facilities

    SciTech Connect

    Zack, N.R.; Thomas, K.E.; Coady, K.J.; Desmond, W.J.

    1997-11-01

    The Nonproliferation Support Program (NSP) in the United States Department of Energy (DOE) Office of Safeguards and Security (OSS) has responsibility for supporting and aiding implementation of international and multilateral programs, agreements, and treaties at domestic facilities. In late 1995, the {open_quotes}Readiness Planning Guide for Nonproliferation Visits{close_quotes} (DOE 470.1-1) was issued to assist DOE sites prepare for the host foreign delegations visiting DOE facilities. Since then, field and head-quarters programs have expressed a need for a document that addresses domestic safeguards and security activities, specifically planning for and hosting International Atomic Energy Agency (IAEA) technical visits and inspections. As a result, OSS/NSP conducted a workshop to prepare a handbook that would contain guidance on domestic safeguards and security preparation and follow-on activities to ensure that this handbook could be utilized by all facilities to improve operational efficiencies and reduce implementation problems. The handbook has been structured to provide detailed background and guidance concerning the obligation, negotiation, inspection, and reporting processes for IAEH safeguards activities in DOE nuclear facilities as well as the lessons-learned by currently inspected facilities and how-we-do-it implementation examples. This paper will present an overview of the preparation and content of this new Handbook.

  16. The product definition initiative in the Department of Energy Nuclear Weapons Complex

    SciTech Connect

    Wapman, P.D.

    1988-08-17

    The US Department of Energy Nuclear Weapons Complex (NWC) formed the Product Definition initiative (PDI) to identify, using information modeling techniques, the NWC product data to be implemented in a computer environment. Information modeling techniques are used to assemble the product data required by a specific problem domain into a logical form. The resulting model may be used to generate a complete, accurate, and unambiguous database for the electronic exchange and utilization of product data. This reduces the need for human interpretation of product definition data and can serve as the foundation for the automation of many manufacturing applications. The PDI project is developing application or resource information models for five domains of interest to the NWC: Drafting, Numerical Control, Inspection, Tooling, and Form Features. Additionally, the project is working closely with vendors, other NWC computer integrated manufacturing initiatives, and the National Bureau of Standards Product Data Exchange Specification (PDES) project to ensure the NWC's product data needs will be met by future exchange protocols and CADD/CAM systems. 1 ref., 1 fig.

  17. Investigation of public exposure resulted from the radioiodine delay tank facility of nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Ali, Abdul Muhaimin Mat; Abdullah, Reduan; Idris, Abdullah Waidi

    2016-01-01

    The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the 131I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patient and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of 131I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.

  18. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    SciTech Connect

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

  19. Development of Students' Metacognitive Strategies In Science Learning Regarding Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Siriuthen, Warawun; Yuenyong, Chokchai

    2010-07-01

    This research aimed to develop 48 Grade 10 students' learning process and metacognitive strategies in the `Nuclear Energy' topic through the Science, Technology and Society (STS) approach. The STS teaching approach consists of five stages: identification of social issues, identification of potential solutions, need for knowledge, decision-making, and socialization. he data were analyzed through rubric score of learning process and metacognitive strategies, which consists of five strategies: Recalling, Planning, Monitoring and Maintaining, Evaluating, and Relating. The findings revealed that most students used learning process in a high level. They performed a very low level in almost all of the metacognitive strategies. The factors potentially impeded their development of awareness about learning process and metacognitive strategies were characteristics of content and students, learning processes, and student habit.

  20. Network Science for Deterrence: Sheathing the Sword of the Terrorism/Nuclear Horseman

    NASA Astrophysics Data System (ADS)

    Carley, Kathleen

    2010-03-01

    After 9/11, network analysis became popular as a way to connect and disconnect the dots. It was heralded as the new science with intrinsic value for understanding and breaking up terrorist groups, insurgencies and hostile foreign governments. The limit of the initially forwarded approach was that it focused on only the social network -- who talked to whom. However ,the networks of war, terror or nuclear or cyber, are complex networks composed of people, organizations, resources, and capabilities connected in a geo-temporal web that constrains and enables activities that are ``hidden'' in the web of everyday life. Identifying these networks requires extraction and fusion of information from cyber-mediated realms resulting in a network map of the hostile groups and their relations to the populations in which they are embedded. These data are at best a sample, albeit a very large sample, replete with missing and incomplete data. Geo-temporal considerations in addition to information loss and error called into question the value of traditional network approaches. In this talk, a new approaches and associated technologies that integrate scientific advances in machine learning, network statistics, and the social and organizational science with traditional graph theoretic approaches to social networks are presented. Then, examples, of how these technologies can be used as part of a deterrence strategy are described. Examples related to terrorism and groups such as al-Qaida and Hamas, cyber and nuclear deterrence are described. By taking this meta-network approach, embracing the complexity and simultaneously examining not just one network, but the connections among networks, it is possible to identify emergent leaders, locate changes in activities, and forecast the potential impact of various interventions. Key challenges, such as data-streaming and deception, that need to be addressed scientifically are referenced.

  1. Professional development in person: identity and the construction of teaching within a high school science department

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria

    2013-11-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  2. Professional development in person: identity and the construction of teaching within a high school science department

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria

    2016-06-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  3. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    SciTech Connect

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  4. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for

  5. Students' Knowledge of Nuclear Science and Its Connection with Civic Scientific Literacy in Two European Contexts: The Case of Newspaper Articles

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboglu, Canan

    2013-01-01

    Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society,…

  6. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    ERIC Educational Resources Information Center

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research "discipline" imposes…

  7. Long-term environmental monitoring at two US Department of Energy Nuclear Sites

    SciTech Connect

    Gray, R.H.

    1996-12-31

    The U.S. Department of Energy`s Hanford Site was established in southeastern Washington during the 1940s to produce plutonium during World War II. The Pantex Plant in the Texas Panhandle was originally used by the U.S. Army for loading conventional ammunition shells and bombs. The Plant was rehabilitated and enhanced in the 1950s to assemble nuclear weapons. Environmental monitoring has been ongoing at both locations for several decades. Monitoring objectives are to detect and assess potential impacts of facility operations on air, surface and ground waters, foodstuffs, fish, wildlife, soils, and vegetation. Currently, measured concentrations of airborne radionuclides around the perimeters of both sites are below applicable guidelines. The low levels of {sup 137}Cs and {sup 90}Sr in some onsite Hanford wildlife samples and concentrations of radionuclides in soils and vegetation from onsite and offsite at both locations are typical of those attributable to naturally occurring radioactivity and to worldwide fallout. Ironically, by virtue of its size (1,450 km{sup 2} [560 mi{sup 2})], restricted public access, and conservative use of undeveloped land, the Hanford Site has provided a sanctuary for plant and animal populations that have been eliminated from, or greatly reduced on, surrounding agricultural and range lands. Ongoing studies will determine if this is also true at Pantex Plant. The Hanford Reach of the Columbia River and its islands and the Pantex Plant with its playas both serve as refuges for raptorial birds and migratory waterfowl. In addition, the Hanford Reach serves as a migration route for several species of salmon, and chinook salmon and steelhead trout spawn there. Bald eagles congregate along the Hanford Reach in the fall and winter to feed on the spawned-out carcasses of salmon and on wintering waterfowl.

  8. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin; Canik, John; Diem, Stephanie J; Milora, Stanley L; Park, J. M.; Sontag, Aaron C; Fogarty, P. J.; Lumsdaine, Arnold; Murakami, Masanori; Burgess, Thomas W; Cole, Michael J; Katoh, Yutai; Korsah, Kofi; Patton, Bradley D; Wagner, John C; Yoder, III, Graydon L

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  9. Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin

    2010-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program

  10. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    SciTech Connect

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  11. Staff Report to the Senior Department Official on Recognition Compliance Issues. Recommendation Page: National Accrediting Commission Of Cosmetology Arts and Sciences

    ERIC Educational Resources Information Center

    US Department of Education, 2010

    2010-01-01

    The National Accrediting Commission of Cosmetology Arts and Sciences (NACCAS) is a national accreditor whose scope of recognition is for the accreditation throughout the United States of postsecondary schools and departments of cosmetology arts and sciences and massage therapy. The agency accredits approximately 1,300 institutions offering…

  12. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    ERIC Educational Resources Information Center

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  13. Perceived Quality and Methodology in Graduate Department Ratings: Sociology, Political Science, and Economics.

    ERIC Educational Resources Information Center

    Paxton, Pamela; Bollen, Kenneth A.

    2003-01-01

    Analyzes graduate school ratings in three related disciplines - sociology, political science, and economics - from two rating sources: the National Research Council and "U.S. News and World Report." Hypothesizes three major components to ratings: perceived departmental quality, systematic error owing to the method of data collection, and random…

  14. The Challenge for Math/Science Departments: Balancing Teaching and Grant Writing.

    ERIC Educational Resources Information Center

    Srivastava, Ravindra M., Ph. D

    1998-01-01

    States that lack of resources in math and science education is forcing faculty to seek external grants. Asserts that such fundraising efforts consume time and energy, and often detract from the teaching, community-service, and other nurturing missions of the college. Suggests that administrators acknowledge the changing role of teachers and offer…

  15. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  16. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  17. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  18. Mandated Curriculum Change and a Science Department: A Superficial Language Convergence?

    ERIC Educational Resources Information Center

    Melville, Wayne

    2008-01-01

    This article investigates the introduction of a systemic curriculum change, the Essential Learnings curriculum framework, in the Australian state of Tasmania. Using Gee's [(2003). Language in the science classroom: Academic social languages as the heart of school-based literacy. In: R. Yerrick, & W.-M. Roth (Eds.), "Establishing scientific…

  19. A look at the definition, pedagogy, and evaluation of scientific literacy within the natural science departments at a southwestern university

    NASA Astrophysics Data System (ADS)

    Flynn, Deborah Kay

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The results of the research study suggest that participants express their idea of scientific literacy through storytelling, real world connections, technology, and collaboration. Results suggest that diversity in the perception of scientific literacy within these themes did occur, either actually or conceptually. The research used the definition and components set forth by the National Research Council as a benchmark when looking at the participants' own definition, incorporation and evaluation of scientific literacy.

  20. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    SciTech Connect

    Guidice, S.J.; Inlow, R.O.

    1995-12-31

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996.

  1. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    SciTech Connect

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    2010-03-15

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  2. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  3. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    SciTech Connect

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  4. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  5. European MSc Programs in Nuclear Sciences - To meet the Need of Stakeholders

    SciTech Connect

    Salbu, Brit; Skipperud, Lindis; Priest, Nick; Garelick, Hemda; Tamponnet, Christian; Mitchell, Peter

    2009-08-19

    A stakeholder needs assessment, carried out under the EU-EURAC and EU-ENEN II projects, clearly showed that, at the European level, there are a significant and constant need for post-graduates with skills in radiochemistry, radioecology, radiation dosimetry and environmental modelling and a smaller, but still important, demand for radiobiologists and bio-modellers. Most of these needs are from government organizations. If only the nuclear industry is considered, then the largest demand is for radiochemists and radiation protection dosimetrists. Given this spectrum of need and existing capacity in the areas of radiobiology it was concluded that the needs identified would be most efficiently met by three new degree programs: European MSc Radiation Protection European MSc Analytical Radiochemistry European MSc Radioecology. All three master programs would be developed using the framework provided by the Bologna Convention and the lecturing could be shared among specialist Scientists within a network of collaborating universities. Therefore, educational plans have been developed for the above MSc degrees. These plans envisage each degree comprising three modules that are common to all the degrees (3x10 ECTS credits), three specialist modules (3x10 ECTS credits) and a research project (1x60 ECTS credits). The courses should be aimed, not only to fill the identified European postgraduate education gap in radiological sciences, but also to provide a modular structure that is easily accessed by stakeholders for CPD training. It is anticipated that the European Masters will meet the academic training requirements of qualified 'experts', as defined by the European Commission and the IAEA. At the Norwegian University of Life Sciences (UMB) a pilot MSc in Radioecology has successfully been initiated in collaboration with UK and France.

  6. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    ERIC Educational Resources Information Center

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  7. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  8. The U.S. Department of Energy, National Nuclear Security Agency's Use of Geographic Information Systems for Nuclear Emergency Response Support

    SciTech Connect

    A. L. Guber

    2001-06-01

    The U.S, Department of Energy (DOE), National Nuclear Security Agency's (NNSA) Remote Sensing Laboratory (RSL) provides Geographic Information System (GIS) support during nuclear emergency response activities. As directed by the NNSA, the RSL GIS staff maintains databases and equipment for rapid field deployment during an emergency response. When on location, GIS operators provide information products to on-site emergency managers as well as to emergency managers at the DOE Headquarters (HQ) Emergency Operations Center (EOC) in Washington, D.C. Data products are derived from multiple information sources in the field including radiological prediction models, field measurements taken on the ground and from the air, and pertinent information researched on the Internet. The GIS functions as a central data hub where it supplies the information to response elements in the field, as well as to headquarters officials at HQ during emergency response activities.

  9. Filtered fast neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, S. Y.; Kim, C. H.; Reece, W. D.; Braby, L. A.

    2004-09-01

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). For a realistic modeling of the NSCR, the irradiation cell, and the FNIS, this study used the Monte Carlo N-Particle (MCNP) code and a set of high-temperature ENDF/B-VI continuous neutron cross-section data. Sensitivity analysis was performed to find the characteristics of the FNIS as a function of the thickness of the lead-bismuth alloy. A paired ion chamber system was constructed with a tissue-equivalent plastic (A-150) and propane gas for total dose monitoring and with graphite and argon for gamma dose monitoring. This study, in addition, tested the Monte Carlo modeling of the FNIS system, as well as the performance of the system by comparing the calculated results with experimental measurements using activation foils and paired ion chambers.

  10. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  11. The nuclear analytical method in historical science: The case of precious metals from the New World

    SciTech Connect

    Barrandon, J.N.

    1994-01-01

    As in all the other areas of science, the nuclear method of analysis was brought about at the end of the 1940s new tools of research in the studies of man and his environment. If the applications of these methods are well-known in the field of archeology and of numismatics, it is an area where their use are more surprising, it is this that of economic history. The authors would like to illustrate this type of application using two examples: the diffusion in Europe of Potosian silver during the 16th and 17th centuries and also of Brazilian gold in 18th century. Until the 19th century most money was in the form of coinage and monetary history was mainly determined by the inflow of precious metals and the discoveries of new sources, especially in the Americas. Californian gold in the mid 19th century, Brazilian gold in the 18th and silver from Potosi or Mexico in the 16th and 18th centuries all strongly influenced the movement of price levels and European economic development. In these two cases the use of the activation methods developed around a cyclotron proved determinate.

  12. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    SciTech Connect

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  13. What is the pharmaceutical industry doing, and what does the pharmaceutical industry want from animal science departments?

    PubMed

    Lauderdale, J W

    1999-02-01

    Perceived contemporary issues are 1) food safety and food healthfulness, 2) environment, 3) sustainability, 4) biotechnology, 5) animal well-being, 6) animals as food, and 7) research funding. Food safety is the paramount contemporary issue, and environment and sustainability issues can be considered as a single issue. Biotechnology, animal well-being, and animals as food are addressed in this paper as separate issues, but they can be considered as components of food safety and healthfulness. The pharmaceutical industry addresses these issues by providing safe and effective products to the livestock industry. These products are used to treat and prevent disease and to increase livestock production efficiency. These products contribute to a safe food supply, enhance protection of the environment, and increase the sustainability of animal agriculture through increased efficiency of livestock production. The pharmaceutical industry wants the following from animal science departments: 1) students skilled in deductive and inductive thinking and communicating to peers and the public; 2) regional research on food safety, such as irradiation, steaming of carcasses, E. coli contamination, antibiotic resistance, production facilities, and carcass contamination; 3) improved research to identify the food values of animal products and effective communication of that research to the public; 4) research on topics having the greatest potential to increase efficiency of animal production consistent with a positive impact on the environment and sustainability of animal production; 5) leadership in developing and using technologies such as biotechnology, not only as descriptors of biological processes, but as technologies to test hypotheses leading to new understandings of biology; 6) research on animal well-being and production facilities that foster animal well-being; 7) research and education on ethical and moral aspects of animals as food through encouragement of one or more

  14. Go Nuclear? What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    The dialogue in this module (about a nuclear power plant in Morong, Bataan) is designed to help students answer these questions: (1) When did the construction of the plant begin? What delayed the construction? (2) How does a nuclear power plant produce electricity? What are the nuclear reactions involved? (3) How does a nuclear power plant control…

  15. Geological and geophysical activities at Spallanzani Science Department (Liceo Scientifico Statale "Lazzaro Spallanzani" - Tivoli, Italy)

    NASA Astrophysics Data System (ADS)

    Favale, T.; De Angelis, F.; De Filippis, L.

    2012-04-01

    The high school Liceo Scientifico "Lazzaro Spallanzani" at Tivoli (Rome) has been fully involved in the study of geological and geophysical features of the town of Tivoli and the surrounding area in the last twelve years. Objective of this activity is to promote the knowledge of the local territory from the geological point of view. Main activities: • School year 2001-2002: Setting up inside the school building of a Geological Museum focusing on "Geological Evolution of Latium, Central Italy" (in collaboration with colleagues M. Mancini, and A. Pierangeli). • March, 15, 2001: Conference of Environmental Geology. Lecturer: Prof. Raniero Massoli Novelli, L'Aquila University and Società Italiana di Geologia Ambientale. • School years 2001-2002 and 2002-2003: Earth Sciences course for students "Brittle deformation and tectonic stress in Tivoli area". • November, 2003: Conference of Geology, GIS and Remote Sensing. Lecturers: Prof. Maurizio Parotto and Dr Alessandro Cecili (Roma Tre University, Rome), and Dr Stefano Pignotti (Istituto Nazionale per la Ricerca sulla Montagna, Rome). • November, 2003, 2004 and 2005: GIS DAY, organized in collaboration with ESRI Italia. • School year 2006-2007: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli, Latium, Central Italy" (focus on travertine formation). • School year 2010-2011: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli. Geology, Hydrogeology and Microbiology of the basin, Latium, Central Italy" (focus on thermal springs and spa). In the period 2009-2010 a seismic station with three channels, currently working, was designed and built in our school by the science teachers Felice De Angelis and Tomaso Favale. Our seismic station (code name LTTV) is part of Italian Experimental Seismic Network (IESN) with identification code IZ (international database IRIS-ISC). The three drums are online in real time on websites http

  16. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and Analysis" (Patricia…

  17. The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements

    SciTech Connect

    Simon, M. C.; Eberhardt, B.; Jang, F.; Luichtl, M.; Robertson, D.; Chaudhuri, A.; Delheij, P.; Grossheim, A.; Kwiatkowski, A. A.; Mane, E.; Pearson, M. R.; Schultz, B. E.; Bale, J. C.; Chowdhury, U.; Ettenauer, S.; Gallant, A. T.; Dilling, J.; Lennarz, A.; Ma, T.; Andreoiu, C.; and others

    2012-02-15

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

  18. Nuclear Science Division, Annual report, October 1, 1988--December 31, 1990

    SciTech Connect

    Poskanzer, A.M.; Deleplanque, M.A.; Firestone, R.B.; Lofdahl, J.B.

    1991-04-01

    This report contains short papers of research conducted in the following areas: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear data evaluation; and, 88-inch cyclotron operations.

  19. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    SciTech Connect

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.

  20. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  1. Parameter Selection for Department of Energy Spent Nuclear Fuel to be Used in the Yucca Mountain License Application

    SciTech Connect

    D. L. Fillmore

    2003-10-01

    This report contains the chemical, physical, and radiological parameters that were chosen to represent the U.S. Department of Energy spent nuclear fuel in the Yucca Mountain license application. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data are reported for representative fuels and bounding fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported were not generated under any quality assurance program.

  2. Parameter selection for Department of Energy spent nuclear fuel to be used in the Yucca Mountain Viability Assessment

    SciTech Connect

    Fillmore, D.L.

    1998-06-01

    This report contains the chemical, physical, and radiological parameters that were chosen to represent the Department of Energy spent nuclear fuel in the Yucca Mountain Viability Assessment. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data is reported for representative fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported was not generated under any Q.A. Program.

  3. Research Briefings 1986. For the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This is part of a series on selected areas of science and technology prepared by the Committee on Science, Engineering, and Public Policy, at the request of the Science Advisor to the President of the United States. This volume includes four individual reports. The first is the report of the "Research Briefing Panel on Science of Interfaces and…

  4. Application of Systems Engineering to U.S. Department of Energy Privatization Project Selection at the Hanford Nuclear Reservation

    SciTech Connect

    J. A. Layman

    1999-06-01

    The privatization efforts at the U.S. Department of Energy's Hanford Nuclear Reservation have been very successful primarily due to a disciplined process for project selection and execution. Early in the development of Privatization at Hanford, the Department of Energy determined that a disciplined alternatives generation and analysis (AGA) process would furnish the candidate projects with the best probability for success. Many factors had to be considered in the selection of projects. Westinghouse Hanford Company was assigned to develop this process and facilitate the selection of the first round of candidate privatization projects. Team members for the AGA process were assembled from all concerned organizations and skill groups. Among the selection criteria were legal, financial and technical considerations which had to be weighed.

  5. Nuclear Power: Pros and Cons. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module brings together in a panel discussion opposing views and supporting data on the first Philippine nuclear power plant in Morong, Bataan. It extends the discussion of issues and ideas about nuclear power in the dialogue "Go Nuclear" (which should be read before starting this panel discussion). The module deals with the environmental,…

  6. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    SciTech Connect

    Cahill, C.L.; Feldman, G.; Briscoe, W.J.

    2014-06-15

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  7. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    NASA Astrophysics Data System (ADS)

    Cahill, C. L.; Feldman, G.; Briscoe, W. J.

    2014-06-01

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  8. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    SciTech Connect

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  9. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  10. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    SciTech Connect

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows for ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.

  11. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    SciTech Connect

    Not Available

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  12. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    NASA Astrophysics Data System (ADS)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  13. The Archives of the Department of Terrestrial Magnetism: Documenting 100 Years of Carnegie Science

    NASA Astrophysics Data System (ADS)

    Hardy, S. J.

    2005-12-01

    The archives of the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington document more than a century of geophysical and astronomical investigations. Primary source materials available for historical research include field and laboratory notebooks, equipment designs, plans for observatories and research vessels, scientists' correspondence, and thousands of expedition and instrument photographs. Yet despite its history, DTM long lacked a systematic approach to managing its documentary heritage. A preliminary records survey conducted in 2001 identified more than 1,000 linear feet of historically-valuable records languishing in dusty, poorly-accessible storerooms. Intellectual control at that time was minimal. With support from the National Historical Publications and Records Commission, the "Carnegie Legacy Project" was initiated in 2003 to preserve, organize, and facilitate access to DTM's archival records, as well as those of the Carnegie Institution's administrative headquarters and Geophysical Laboratory. Professional archivists were hired to process the 100-year backlog of records. Policies and procedures were established to ensure that all work conformed to national archival standards. Records were appraised, organized, and rehoused in acid-free containers, and finding aids were created for the project web site. Standardized descriptions of each collection were contributed to the WorldCat bibliographic database and the AIP International Catalog of Sources for History of Physics. Historic photographs and documents were digitized for online exhibitions to raise awareness of the archives among researchers and the general public. The success of the Legacy Project depended on collaboration between archivists, librarians, historians, data specialists, and scientists. This presentation will discuss key aspects (funding, staffing, preservation, access, outreach) of the Legacy Project and is aimed at personnel in observatories, research

  14. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we

  15. Environmental restoration at the KCP: Quality science with a view toward the future. [Remedial action at a plant manufacturing non-nuclear components for nuclear weapons

    SciTech Connect

    Brown, D. . Kansas City Div.); Korte, N. )

    1992-07-01

    The Kansas City Plan-E (KCP), built in 1942, is currently operated by Allied-Signal for the Department of Energy (DOE). The KCP manufactures non-nuclear components for nuclear weapons. Throughout the production history of the KCP, waste material has been generated and hazardous spills have occurred. In 1983, the DOE and Allied-Signal began a concerted effort to clean-up all hazardous waste sites at the KCP. This paper briefly discusses the history of the environmental restoration effort at the KCP before and after a RCRA order on Consent Agreement was signed with the Environmental Protection Agency, the successes of the program, problems encountered, and a vision for the future of environmental restoration at the KCP.

  16. Who Is Afraid of Volume 1181 of the New York Academy of Sciences? Under Threat, the Nuclear Establishment Plays Dirty.

    PubMed

    Katz, Alison Rosamund

    2015-01-01

    Following decades of an internationally coordinated cover-up, critical information about the health consequences of the Chernobyl accident, worldwide but particularly in Western and Eastern Europe, was made available through Volume 1181 of the Annals of the New York Academy of Sciences. The book also contains unique, valuable data from the 3 most affected counties, and it suggests that consequences of the Chernobyl accident are far more serious than has been acknowledged. Many health problems are worsening, including those resulting from irreversible genetic damage. Given the threat that such information represents to the nuclear establishment, it was predictable that Volume 1181, of far higher scientific quality than the United Nations' flagship report The Chernobyl Forum, would meet with violent criticism. Since its publication in 2009, it has been misrepresented and discredited by the nuclear establishment and international health establishment - to the extent of making the absurd and false claim that the New York Academy of Sciences has in some way disowned its own publication. The New York Academy of Sciences defends publication of Volume 1181 on the grounds of its commitment to open discussion of scientific material and publication of material of scientific value. PMID:26077859

  17. Applied nuclear science research and development progress report, June 1, 1985-November 30, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1986-04-01

    This six month progress report reviews activities in nuclear reaction research. Specific content includes theory and evaluation of nuclear cross sections for neutron, proton, and deuteron reactions for a number of isotopes; the processing and testing of nuclear cross section data; studies of neutron activation, fission products and actinides; and short notes on applications. Data are included in graphic and tabular form and include experimental, evaluated, and theoretical calculations and spectra. 136 refs., 81 figs., 17 tabs. (DWL)

  18. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    SciTech Connect

    Kirk, Bernadette Lugue

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

  19. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  20. Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, Si Young

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast neutrons with the alloy. It is possible, therefore, by changing the alloy thickness, to produce distinctly different dose weighted neutron spectra inside the exposure cave of the FNIS. The calculated neutron spectra showed close agreement with the results of activation foil measurements, unfolded by SAND-II close to the cell window. However, there was a considerable less agreement for locations far away from the cell window. Even though the magnitude of values such as neutron flux and tissue kerma rates in air differed, the weighted average neutron energies showed close agreement between the MCNP and SAND-II since the normalized neutron spectra were in a good agreement each other. A paired ion chamber system was constructed, one with a tissue equivalent plastic (A-150) and propane gas for total dose monitoring, and another with graphite and argon for photon dose monitoring. Using the pair of detectors, the neutron to gamma ratio can be inferred. With the 20 cm-thick FNIS, the absorbed dose rates of neutrons measured with the paired ion chamber method and calculated with the SAND-II results were 13.7 +/- 0.02 Gy/min and 15.5 Gy/min, respectively. The absorbed dose rate of photons and the gamma contribution to total dose were 6.7 x 10

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect

    Not Available

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  2. Scientific Futures. Selected Areas of Opportunity for the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to the President's Office of Science and Technology Policy request to identify promising areas for U.S. research investment in science and technology, this report contains briefings by outstanding researchers in several fields of science. This volume is the fifth in a series of briefings which are used to anticipate important new…

  3. CU’s Department of Geological Sciences - Science Education Initiative Project (GEOL-SEI): A five-year plan for introducing and supporting an evidence-based and scientific approach to teaching

    NASA Astrophysics Data System (ADS)

    Arthurs, L.; Budd, D. A.

    2009-12-01

    The Science Education Initiative (SEI) at the University of Colorado at Boulder was conceived in 2006 with the goal of improving science education at the undergraduate level by changing the basic approach to teaching in science departments. Five departments were selected on a competitive basis for participation in the SEI. The SEI is operating as a five year plan with funding of ~$1 million/year for the five departments. The goal of the SEI is to implement sustainable department-level change for an evidence-based and scientific approach to teaching. Among the five departments receiving funding for discipline-specific SEI projects is the Department of Geological Sciences (GEOL-SEI). The GEOL-SEI has worked to transform geology courses beginning with lower division large enrollment courses and moving towards upper division courses. They are transformed on the basis of existing research into how people learn, and they are characterized by the use of learning goals and effective instructional approaches. Furthermore, a natural component of the transformation towards evidence-based and scientific approaches to teaching is geocognition and geoscience education research. This research focuses on how students think about geologic concepts (e.g. misconceptions) and the effectiveness of different instructional approaches (e.g. the implementation of instructional technologies, peer learning activities, homework, and labs). The research is conducted by post-doctoral fellows (with PhDs in geology and pedagogical training) in collaboration with the instructional faculty members. The directorate of CU’s Science Education Initiative provides the fellows with training useful for conducting the research. Currently, into the 4th year of its 5-year plan, the GEOL-SEI is working towards publishing its findings and exploring options for sustaining various changes made to courses and new departmental programs that support student learning (e.g. GEOL Tutoring & Study Room).

  4. NELMA project. I. Objectives of the methodical aspects. [Nuclear Energy Laboratory of Medical and Agricultural Sciences

    SciTech Connect

    Madueme, G.C.

    1980-09-01

    The significance of the NELMA Project is presented. The main aim is to inject new and useful frontiers into the medical care facilities in Nigeria and to provide broader scopes for applying excited nuclear probes to research in bio-agricultural economics as well as in nuclear and solid state physics.

  5. What's There to Debate about Nuclear Energy? Promoting Multidimensional Science Literacy by Implementing STS Strategies

    ERIC Educational Resources Information Center

    Bartley, Elise; Brown, Patrick L.; Concannon, James P.; Stumpe, Laura

    2013-01-01

    In this lesson, the teacher begins by reviewing some key energy topics with the students. Next, students are asked to focus closely on nuclear energy as a viable resource by closely reading, highlighting, and annotating an article regarding the future of nuclear energy. The culminating activity and evaluation of students understanding of energy…

  6. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    SciTech Connect

    Lehew, J.G.; Bradford, J.D.; Cabbil, C.C.

    2006-07-01

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  7. Self Assessment in Higher Education: An Empirical Evidence from the Department of Business Administration of Shahjalal University of Science and Technology, Bangladesh

    ERIC Educational Resources Information Center

    Islam, Nazrul; Chowdhury, Mohmmad Ashraful Ferdous

    2015-01-01

    The paper aimed to explore the self assessment practices in higher education in Bangladesh with special reference to Department of Business Administration of Shahjalal University of Science and Technology. For self assessment purpose the researchers have collected opinion from students, alumni, employer and faculty members on eight areas. In…

  8. "The Academic Style Construction Committee Is by No Means an Ornament": Interview with Vice Director Yuan Zhenguo of the Ministry of Education, Social Sciences Department

    ERIC Educational Resources Information Center

    Aihe, Huang; Xu, Han

    2007-01-01

    The academic style (conduct) of academic circles has become a hot topic in the media. This article presents an interview conducted by "China Newsweek" with Vice Director Yuan Zhenguo of the Ministry of Education, Social Sciences Department. In this interview, Zhenguo talks about the Ministry of Education's plan to set up such institutions as an…

  9. Evaluation of Nondestructive Assay/Nondestructive Examination Capabilities for Department of Energy Spent Nuclear Fuel

    SciTech Connect

    Luptak, A.J.; Bulmahn, K.D.

    1998-09-01

    This report summarizes an evaluation of the potential use of nondestructive assay (NDA) and nondestructive examination (NDE) technologies on DOE spent nuclear fuel (SNF). It presents the NDA/NDE information necessary for the National Spent Nuclear Fuel Program (NSNFP) and the SNF storage sites to use when defining that role, if any, of NDA/NDE in characterization and certification processes. Note that the potential role for NDA/NDE includes confirmatory testing on a sampling basis and is not restricted to use as a primary, item-specific, data collection method. The evaluation does not attempt to serve as a basis for selecting systems for development or deployment. Information was collected on 27 systems being developed at eight DOE locations. The systems considered are developed to some degree, but are not ready for deployment on the full range of DOE SNF and still require additional development. The system development may only involve demonstrating performance on additional SNF, packaging the system for deployment, and developing calibration standards, or it may be as extensive as performing additional basic research. Development time is considered to range from one to four years. We conclude that NDA/NDE systems are capable of playing a key role in the characterization and certification of DOE SNF, either as the primary data source or as a confirmatory test. NDA/NDE systems will be able to measure seven of the nine key SNF properties and to derive data for the two key properties not measured directly. The anticipated performance goals of these key properties are considered achievable except for enrichment measurements on fuels near 20% enrichment. NDA/NDE systems can likely be developed to measure the standard canisters now being considered for co-disposal of DOE SNF. This ability would allow the preparation of DOE SNF for storage now and the characterization and certification to be finalize later.

  10. Nuclear shipping and storage containers with depleted uranium (DU) shielding Department of Transportation (DOT) certification tests. Final report

    SciTech Connect

    Meyer, W.R.

    1996-01-01

    The U.S. Army Defense Ammunition Center and School (USADACS), Validation Engineering Division (SIOAC-DEV), was tasked by Industrial Operations Command (IOC), AMSIO-SMA-N, to conduct Department of Transportation (DOT) tests on nuclear hazardous waste containers containing concrete and 30mm DU rounds for shielding. Two series of tests were conducted due to fluctuations in radiation levels experienced during the first series of tests. During the second series of tests no fluctuations in radiation were noted with only minor problems experienced with pressure leakage around the base of two of three containers. Except for the leakage noted above, no other problems were experienced with all containers meeting the other requirements for DOT shipping and storage containers. This report contains results of the tests conducted.

  11. Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003

    SciTech Connect

    Pfaltzgraff, Robert L

    2006-10-22

    This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration’s “Atoms for Peace” concept, the current and future role of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.

  12. Texas A and M University student/professional nuclear science and engineering conference

    SciTech Connect

    Not Available

    1984-03-12

    Abstracts of papers presented at the meeting are included. Topics discussed include: reactor engineering; space nuclear power systems; health physics and dosimetry; fusion engineering and physics; and reactor physics and theory.

  13. 75 FR 43943 - Defense Science Board; Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... AGENCY: Department of Defense (DoD). ACTION: Notice of advisory committee meetings. SUMMARY: The Defense... Secretary of Defense for Acquisition, Technology & Logistics on scientific and technical matters as they... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE...

  14. Photonuclear Reaction Studies at HIγS: Developing the Science of Remote Detection of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. R.

    2015-10-01

    Development of gamma-ray beam interrogation technologies for remote detection of special nuclear materials and isotope analysis requires comprehensive databases of nuclear structure information and gamma-ray induced nuclear reaction observables. Relevant nuclear structure details include the energy, spin and parity of excited states that have significant probability for electromagnetic transition from the ground state, i.e, the angular momentum transferred in the reaction is Δl ≤ 2. This talk will report recent Nuclear Resonance Fluorescence (NRF) measurements to identify and characterize new low-spin states in actinide nuclei at energies from 1 to 4 MeV, which is the energy range most important for remote analysis methods. These measurements are carried out using the nearly mono-energetic linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) at the Triangle Universities Nuclear Laboratory. Also, studies of the (γ, n) reaction on a variety of nuclei with linearly polarized beams at HIγS indicate that this reaction might be used to discern between fissile and non-fissile materials. This work will be described. In addition, an overview will be given of a concept for a next generation laser Compton-backing scattering gamma-ray source to be implemented as an upgrade to increase the beam intensity at HIγS by more than an order of magnitude.

  15. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  16. Dose reduction through automation of nuclear weapons dismantlement and storage procedures at the Department of Energy`s Pantex Facility

    SciTech Connect

    Thompson, D.A.; Poston, J.W.

    1996-06-01

    With the end of the Cold War and the subsequent break up of the Soviet Union, the number of weapons in the nuclear stockpile now greatly exceeds any foreseeable future need. To compensate for this excess an estimated 20,000 nuclear warheads have been earmarked for dismantlement and storage at the Department of Energy`s Pantex Plant near Amarillo, Texas. It is anticipated that the majority of these warheads will arrive at the Pantex facility by the year 2000. At that time, it is estimated that current dismantlement and inventory procedures will not be adequate to control worker radiation exposure within administrative and federal dose limits. To control these exposures alternate approaches to dismantlement and inventory must be developed. One attractive approach is to automate as many activities as possible, thus reducing worker exposure. To facilitate automation of dismantlement and storage procedures, current procedures were investigated in terms of collective dose to workers, time to completion, ease of completion, and cost of automation for each task. A cost-benefit comparison was then performed in order to determine which procedures would be most cost-effective to automate.

  17. Protecting contract workers: case study of the US Department of Energy's nuclear and chemical waste management.

    PubMed

    Gochfeld, Michael; Mohr, Sandra

    2007-09-01

    Increased reliance on subcontractors in all economic sectors is a serious occupational health and safety challenge. Short-term cost savings are offset by long-term liability. Hiring subcontractors brings specialized knowledge but also young, inexperienced, inadequately trained workers onto industrial and hazardous waste sites, which leads to increased rates of accidents and injuries. Reliable data on subcontractor occupational health and safety programs and performance are sparse. The US Department of Energy has an excellent safety culture on paper, but procurement practices and contract language deliver a mixed message--including some safety disincentives. Its biphasic safety outcome data are consistent with underreporting by some subcontractors and underachievement by others. These observations are relevant to the private and public sectors. Occupational health and safety should be viewed as an asset, not merely a cost. PMID:17666686

  18. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect

    Johnson, A.E.; Harbour, J.L.

    1993-06-01

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  19. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  20. Echocardiography, nuclear scintigraphy, and stress testing in the emergency department evaluation of acute coronary syndrome.

    PubMed

    Mather, P J; Shah, R

    2001-05-01

    There are between 3 and 5 million visits to EDs each year for complaints of chest pain. Of these, about one half of the patients have a noncardiac cause for their chest pain. Of the remainder, about 30% to 50% have significant coronary disease. It is quite clear that patients who are at high risk for a coronary event should be admitted to the hospital. For the low-to-moderate risk patients, the decision to admit or discharge the patient from the ED is not quite so easy. The emergency physician has to decide which tests can be helpful in the decision-making process, this can be undertaken in conjunction with a consultative cardiologist. It can be argued that if a patient does not have a normal test result whichever that evaluatory test is), then the patient should be admitted for further work-up and evaluation. The easiest test to perform in the ED setting is an echocardiogram. The images can be sent by telecommunication to a qualified echocardiogram reader for interpretation. This also has a reasonable NPV, although not necessarily as good as some of the other modalities available, unless interpreted in light of cardiac enzyme test results. If the index of suspicion is still high, then a stress echocardiogram can be considered. This has an excellent NPV and can be easily performed in [table: see text] most patients. This should not be undertaken in the face of an evolving MI, and patients should be observed for at least 8 hours after their initial presentation to the ED prior to undergoing a provocative test. Nuclear scintigraphy, another modality available for cardiac risk stratification, can be a logistical nightmare. The nuclear isotopes are strictly regulated by the Nuclear Regulatory Commission. The emergency physician may inject the isotopes, provided that he or she has undergone the necessary radiation training. Also, the patient must be removed from the ED to a radioisotope-approved area for the duration of the scan. One of the most difficult questions left

  1. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Not Available

    1984-07-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division.

  2. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    PubMed

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225

  3. Global Science.

    ERIC Educational Resources Information Center

    Brophy, Michael

    1991-01-01

    Approaches taken by a school science department to implement a global science curriculum using a range of available resources are outlined. Problems with current curriculum approaches, alternatives to an ethnocentric curriculum, advantages of global science, and possible strategies for implementing a global science policy are discussed. (27…

  4. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  5. Hampshire College Center for Science Education. Final Report on Activities Supported by the Department of Energy Grant No. DE-FG02-06ER64256

    SciTech Connect

    Stillings, Neil; Wenk, Laura

    2009-12-30

    Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achieves this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is

  6. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    PubMed

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons. PMID:21936194

  7. The Creative Application of Science, Technology and Work Force Innovations to the Decontamination and Decommissioning of the Plutonium Finishing Plant at the Hanford Nuclear Reservation

    SciTech Connect

    Charboneau, S.; Klos, B.; Heineman, R.; Skeels, B.; Hopkins, A.

    2006-07-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D and D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D and D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D and D mission with a can-do attitude. They went into D and D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and the condition and contents of process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox clean-out. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP

  8. THE CREATIVE APPLICATION OF SCIENCE TECHNOLOGY & WORK FORCE INNOVATIONS TO THE D&D OF PLUTONIUM FINISHING PLANT (PFP) AT THE HANFORD NUCLEAR RESERVATION

    SciTech Connect

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are

  9. New frontiers in science and technology: nuclear techniques in nutrition123

    PubMed Central

    Davidsson, Lena; Tanumihardjo, Sherry

    2011-01-01

    The use of nuclear techniques in nutrition adds value by the increased specificity and sensitivity of measures compared with conventional techniques in a wide range of applications. This article provides a brief overview of well-established stable-isotope techniques to evaluate micronutrient bioavailability and assess human-milk intake in breastfed infants to monitor the transfer of micronutrients from the mother to the infant. Recent developments are highlighted in the use of nuclear techniques to evaluate biological interactions between food, nutrition, and health to move the agenda forward. PMID:21653797

  10. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  11. Educational Programs and Facilities in Nuclear Science and Engineering. Fifth Edition.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    This publication contains detailed descriptions of nuclear programs and facilities of 182 four-year educational institutions. Instead of chapters, the contents are presented in five tables. Table I presents the degrees, graduate appointments, special facilities and programs of the institutions. The institutions are arranged in alphabetical order…

  12. The Relationship of Science Knowledge, Attitude and Decision Making on Socio-scientific Issues: The Case Study of Students' Debates on a Nuclear Power Plant in Korea

    NASA Astrophysics Data System (ADS)

    Jho, Hunkoog; Yoon, Hye-Gyoung; Kim, Mijung

    2014-05-01

    The purpose of this study was to investigate the relationship of students' understanding of science knowledge, attitude and decision making on socio-scientific issues (SSI), especially on the issues of nuclear energy in Korea. SSI-focused instructions were developed to encourage students to understand and reflect on knowledge, attitude and decision making on nuclear energy in the current society. Eighty-nine students attended the instruction and participated in pre and post questionnaires to understand their understandings of nuclear energy. In this study, science knowledge was categorized into content and contextual knowledge, attitude consisted of images, safety, risk, potential, benefits and future roles, and decision making section included preference and alternative about lifetime extension of nuclear power plant. The results of questionnaires were analyzed by correlation, cross-tabulation and regression. As a result, while students' understandings of science knowledge were significantly improved throughout the instruction, they maintained similar attitude and decision making on the issue. Regarding the relationship of the three domains, attitude showed some degree of connection to decision making whereas science knowledge did not show a significant relationship to decision making. This finding challenges SSI teaching in content-based science curriculum and classroom. Reflection and implications on the way of teaching SSI in the classroom were discussed further in this paper.

  13. NP Science Network Requirements

    SciTech Connect

    Dart, Eli; Rotman, Lauren; Tierney, Brian

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary

    SciTech Connect

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect

    Not Available

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  17. Long-term stewardship of the environmental legacy at restored sites within the Department of Energy nuclear weapons complex.

    PubMed

    Wells, James R; Spitz, Henry B

    2003-11-01

    It is readily apparent, as the Department of Energy Office of Environmental Management proceeds in remediating its vast network of contaminated nuclear weapons facilities, that final cleanup at many facilities will not be performed to a level allowing unrestricted use of the facility. Instead, these facilities must rely on engineering, administrative, and institutional controls to ensure the level of cleanup performed at the site remains adequately protective of public health and the environment. In order for these controls to remain effective, however, a plan for long-term stewardship of these sites must be developed that is approved by the U.S. Congress. Although this sounds simple enough for the present, serious questions remain regarding how best to implement a program of stewardship to ensure its effectiveness over time, particularly for sites with residual contamination of radionuclides with half-lives on the order of thousands of years. Individual facilities have attempted to answer these questions at the site-specific level. However, the complexities of the issues require federal support and oversight to ensure the programs implemented at each of the facilities are consistent and effective. The Department of Energy recently submitted a report to Congress outlining the extent of long-term stewardship needs at each of its facilities. As a result, the time is ripe for forward thinking Congressional action to address the relevant issues and ensure the remedy of long-term stewardship successfully carries out its intended purpose and remains protective of public health and the environment. The regulatory elements necessary for the stewardship program to succeed can only be implemented through the plenary powers of the U.S. Congress. PMID:14571990

  18. Report of the defense science board task force on defense nuclear agency. Final report

    SciTech Connect

    Not Available

    1993-04-01

    The Task Force recommends that: (1) DNA continue to be the DoD focal point for nuclear expertise; (2) The DNA charter be modified to provide focus for non-nuclear activities of critical importance to the DoD. It gives DNA authority to conduct technology base development for advanced conventional munitions, and become a focal point for technologies related to non- and counter-proliteration of weapon systems of mass destruction and their infrastructure (WMD); and (3) Anticipating cessation of UGETs, DNA should aggressively pursue technology development for AGT, AGT/UGT correlation and advanced computations, with emphasis on new theater scenarios, but with the ability to reconstitute for UGT resumption or AGT for large strategic threats within a year or two.

  19. Nuclear science research with dynamic high energy density plasmas at NIF

    NASA Astrophysics Data System (ADS)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  20. 20 Years of Success: Science, Technology, and the Nuclear Weapons Stockpile

    SciTech Connect

    None, None

    2015-10-22

    On Oct. 22, 2015, NNSA celebrated the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA Principal Deputy Administrator Madelyn Creedon.

  1. Nuclear Science Division annual report for the period October 1, 1987--September 30, 1988

    SciTech Connect

    Mahoney, J.

    1989-10-01

    Highlights of the low energy research program included the identification of new super-deformed bands in gadolinium and palladium isotopes using the HERA array. Other work at the 88-Inch Cyclotron involved studies of the fragmentation of light nuclei; the spectroscopy of nuclear far from stability and interesting new experiments on the properties of the heaviest elements. Two other programs deserve special mention, the new program in Nuclear Astrophysics and the spectroscopic studies being carried out at OASIS. This isotope separator is now in full operation at the SuperHILAC after many yeas of development. At the Bevalac, important new results were obtained on the properties of hot dense nuclear matter produced in central collisions of heavy ions. First measurements were made using the di-lepton spectrometer which provide the most direct access to the conditions at the earliest stage of the reaction. New results on pion interferometry have been obtained using the Janus spectrometer and surprises continue to be found in careful analysis of data from the Plastic Ball detector, most recently the identification of a new component of hydrodynamic flow. Also at the Bevalac the intermediate energy program continued to grow, studying the evolution of the reaction mechanism from incomplete fusion to the fireball regime, as did the spectroscopic studies using secondary radioactive beams. The third major component of the experimental program is the study of ultra-relativistic nuclear collisions using the CERN SPS. This year saw the completing of analysis of the first round of experiments with important results being obtained on general particle production, the space-time evolution of the system and strangeness production.

  2. [Cyclotron based nuclear science]. Progress in research, April 1, 1992--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the {mu} {yields} e{gamma} decay rate and determination of the Michel parameter in normal {mu} decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z{sub projectile} -- Z{sub target} combinations. Studies of the ({alpha},2{alpha}) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references.

  3. The science case for 37Ar as a monitor for underground nuclear explosions

    SciTech Connect

    Haas, Derek A.; Orrell, John L.; Bowyer, Ted W.; McIntyre, Justin I.; Miley, Harry S.; Aalseth, Craig E.; Hayes, James C.

    2010-06-04

    A new calculation of the production of 37Ar from nuclear explosion neutron interactions on 40Ca in a suite of common sub-surface materials (rock, etc) is presented. Even in mineral structures that are relatively low in Ca, the resulting 37Ar signature is large enough for detection in cases of venting or gaseous diffusion driven by barometric pumping. Field and laboratory detection strategies and projected sensitivities are presented.

  4. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  5. Purification of nuclear DNA from single hair shafts for DNA analysis in forensic sciences.

    PubMed

    Nozawa, H; Yamamoto, T; Uchihi, R; Yoshimoto, T; Tamaki, K; Hayashi, S; Ozawa, T; Katsumata, Y

    1999-04-01

    The typing of nuclear DNA from hair shafts has often been unsuccessful to date. We tried to type one of the nuclear DNA loci, HLA-DQA1, from hair shafts, using an efficient cetyl-trimethyl ammonium bromide (CTAB) precipitation for DNA purification and a sensitive semi-nested PCR. After thorough washing with ethanol and water, hair shafts were digested by proteinase K in the presence of dithiothreitol, followed by a purification step including CTAB-DNA precipitation. The specific region of HLA-DQA1 gene was amplified by the semi-nested PCR, and the amplified products were cloned and sequenced. The HLA-DQA1 genotype was determined by comparing the sequence to the known sequence of each allele. All genotypes of HLA-DQA1 were successfully typed with hair shafts from six known heterozygotes, although one of them showed the predominant appearance of one allele. For correct typing, a template DNA equivalent to a hair shaft of 5 or 10 cm in length was necessary. Without the CTAB-DNA precipitation step, DNA extract from such hair shafts inevitably contains enough melanin to inhibit PCR. The present results suggest that hair shafts can be used for the typing of nuclear DNA loci. PMID:12935496

  6. Top 10 Ways to Improve Science Achievement: Actions for School Principals, Assistant Principals, Department Chairs and School Improvement Consultants.

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2007

    2007-01-01

    High Schools That Work (HSTW) Assessment data show the need to improve science education in both the middle grades and high school. Science education increases students' critical thinking and problem-solving skills. This publication is designed to help principals, other school leaders and teachers identify rigorous instruction and successfully…

  7. U.S. Nuclear Regulatory Commission Role and Activities Related to U.S. Department of Energy Incidental Waste Determinations

    SciTech Connect

    Bradford, A.H.; Esh, D.W.; Ridge, A.C.

    2006-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. Under the NDAA, NRC performs consultative technical reviews of DOE's waste determinations and monitors DOE's disposal actions for such waste, but the NRC does not have regulatory authority over DOE's waste disposal activities. The NDAA provides the criteria that must be met to determine that waste is not HLW. The criteria require that the waste does not need to be disposed of in a geologic repository, that highly radioactive radionuclides be removed to the maximum extent practical, and that the performance objectives of 10 CFR 61, Subpart C, be met. The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. This paper describes NRC's approach to implementing its responsibilities under the NDAA, as well as similar activities being performed for sites not covered by the NDAA. (authors)

  8. Specificity and sensitivity of SPECT myocardial perfusion studies at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus

    NASA Astrophysics Data System (ADS)

    Koumna, S.; Yiannakkaras, Ch; Avraamides, P.; Demetriadou, O.

    2011-09-01

    The aim is to determine the sensitivity and specificity of Myocardial Perfusion Imaging (MPI) performed at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus. Through a retrospective analysis, patient results obtained by MPI were compared to results obtained by Invasive Angiography. We analyzed data from 96 patients that underwent both MPI and Angiography during the years 2009-2010, with a maximum time interval of ± 9 months between the two types of medical exams. For 51 patients, the indication was the detection of CAD. For 45 patients, the indication was to assess viability and/or ischemia after MI, PCI or CABG. Out of 84 patients with CAD confirmed by angiography, 80 patients resulted in abnormal MPI (sensitivity of 95% and positive predictive value of 98%). Out of 12 patients with normal coronaries, 10 patients resulted in normal MPI (specificity of 83% and negative predictive value of 71%).In conclusion, for the patients with abnormal MPI and confirmed CAD, MPI was a useful aid for further therapy management.

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect

    Not Available

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  11. Earth Sciences annual report, 1987

    SciTech Connect

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  12. Evaluation of an S.D.I. System Based on "Nuclear Science Abstracts" and the Performance of Matching by Words in Titles Compared With Indexing Terms.

    ERIC Educational Resources Information Center

    Olive, G.; And Others

    A selective dissemination of information service based on computer scanning of Nuclear Science Abstracts tapes has operated at the Atomic Energy Research Establishment, Harwell, England since October, 1968. The performance of the mechanized SDI service has been compared with that of the pre-existing current awareness service which is based on…

  13. Investigation of the low enrichment conversion of the Texas A and M Nuclear Science Center Reactor

    SciTech Connect

    Reuscher, J.A.

    1988-01-01

    The use of highly enriched uranium as a fuel research reactors is of concern due to the possibility of diversion for nuclear weapons applications. The Texas A M TRIGA reactor currently uses 70% enriched uranium in a FLIP (Fuel Life Improvement Program) fuel element manufactured by General Atomics. Thus fuel also contains 1.5 weight percent of erbium as a burnable poison to prolong useful core life. US university reactors that use highly enriched uranium will be required to covert to 20% or less enrichment to satisfy Nuclear Regulatory Commission requirements for the next core loading if the fuel is available. This investigation examined the feasibility of a material alternate to uranium-zirconium hydride for LEU conversion of a TRIGA reactor. This material is a beryllium oxide uranium dioxide based fuel. The theoretical aspects of core physics analyses were examined to assess the potential advantages of the alternative fuel. A basic model was developed for the existing core configuration since it is desired to use the present fuel element grid for the replacement core. The computing approach was calibrated to the present core and then applied to a core of BeO-UO{sub 2} fuel elements. Further calculations were performed for the General Atomics TRIGA low-enriched uranium zirconium hydride fuel.

  14. Building Partnerships Between Research Institutions, University Academic Departments, Local School Districts, and Private Enterprise to Advance K-12 Science Education in Texas

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Ganey-Curry, P.; Fennell, T.

    2003-12-01

    The University of Texas at Austin Institute for Geophysics (UTIG) is engaged in six K-12 education and outreach programs, including two NSF-sponsored projects--GK-12: Linking Graduate Fellows with K-12 Students and Teachers and Cataclysms and Catastrophes--Texas Teachers in the Field, Adopt-a-School, Geoscience in the Classroom, and UT's Science and Engineering Apprenticeship Program. The GK-12 Program is central to UTIG's effort and links the six education projects together. While the specific objectives of each project differ, the broad goals of UTIG's education and outreach are to provide high-quality professional development for teachers, develop curriculum resources aligned with state and national education standards, and promote interaction between teachers, scientists, graduate students, and science educators. To achieve these goals, UTIG has forged funded partnerships with scientific colleagues at UT's Bureau of Economic Geology, Marine Science Institute and Department of Geological Sciences; science educators at UT's Charles A. Dana Center and in the Department of Curriculum and Instruction in the College of Education; teachers in six Texas independent school districts; and 4empowerment.com, a private education company that established the "Cyberways and Waterways" Web site to integrate technology and education through an environmentally-based curriculum. These partnerships have allowed UTIG to achieve far more than would have been possible through individual projects alone. Examples include the development of more than 30 inquiry-based activities, hosting workshops and a summer institute, and participation in local science fairs. UTIG has expanded the impact of its education and outreach and achieved broader dissemination of learning activities through 4empowerment's web-based programs, which reach ethnically diverse students in schools across Texas. These partnerships have also helped UTIG and 4empowerment to secure additional funding for other education

  15. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.; ELI-NP Team

    2015-10-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High Energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam, a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical and scientific status of the project as well as the applications of the gamma source will be discussed.

  16. A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles

    SciTech Connect

    M.T. Peters; R.C. Ewing

    2006-06-22

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U{sup 6+}-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10{sup 5} years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms ''tailored'' to specific geologic settings.

  17. A science-based approach to understanding waste form durability in open and closed nuclear fuel cycles

    NASA Astrophysics Data System (ADS)

    Peters, M. T.; Ewing, R. C.

    2007-05-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U6+-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behaviour of the source term over long time periods (greater than 105 years). Such a fundamental and integrated experimental and modelling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms 'tailored' to specific geologic settings.

  18. Nuclear magnetic resonance spectroscopy in the Earth sciences: structure and dynamics.

    PubMed

    Stebbins, J F; Farnan, I

    1989-07-21

    Detailed knowledge of the structure and dynamics of the materials that make up the earth is necessary for fundamental understanding of most geological processes. Nuclear magnetic resonance spectroscopy is beginning to play an important role in investigations of inorganic solid materials, as well as of liquids and organic compounds; it has already contributed substantially to our knowledge of minerals and rocks, compositionally simplified analogs of magmas, and the surfaces of silicate crystals. The technique is particularly useful for determining local structure and ordering state in crystals, glasses, and liquids, and is sensitive to atomic motion at the time scales of diffusion and viscosity in silicates. New techniques offer promise for increased resolution for quadrupolar nuclei and for extension of experiments to high temperature and pressure. PMID:17834676

  19. Nuclear Science Division: Annual report for the period October 1, 1985-September 30, 1986

    SciTech Connect

    Mahoney, J.

    1987-07-01

    Research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, at CERN, oxygen-16 beams were accelerated to 3.2 TeV using the LBL-GSI heavy ion injector into the CERN SPS. First results obtained during the beam test period are presented in this report. Bevalac research has probed new regions of the nuclear matter equation of state. Studies of collisions between the most massive nuclei have revealed rich new phenomena such as collective flow, where the pressures generated force the emerging particles away from the beam direction. Experiments on dileptons e/sup +/e/sup -/ pairs) utilizing the newly completed Dilepton Spectrometer (DLS) are being carried out to glean new insights into the hot, high-density stage of the collision. Major new results on the nuclear structure of exotic, very neutron-rich light nuclei are being obtained by exploiting the projectile fragmentation process to produce secondary radioactive beams. The Laboratory has proposed the Bevalac Upgrade Project to replace the Bevalac's weak-focusing synchrotron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams. The significant enhancement of the heavy ion capability at the 88-Inch Cyclotron as a result of the recent development of the ECR source has led to a renaissance of the cyclotron as indicated by the increased demand for beam time. A variety of other scientific activities were also carried out during this period. The Isotopes Project published the first edition of a new radioactivity reference book for applied users-The Table of Radioactive Isotopes and division members organized several major scientific meetings.

  20. Science and Mathematics Faculty Responses to a Policy-Based Initiative: Change Processes, Self-Efficacy Beliefs, and Department Culture

    ERIC Educational Resources Information Center

    Ellett, Chad D.; Demir, Kadir; Monsaas, Judith

    2015-01-01

    The purpose of this study was to examine change processes, self-efficacy beliefs, and department culture and the roles these elements play in faculty engagement in working in K-12 schools. The development of three new web-based measures of faculty perceptions of change processes, self-efficacy beliefs, and department culture are described. The…

  1. OVERVIEW OF THE U.S. DEPARTMENT OF ENERGY AND NUCLEAR REGULATORY COMMISSION PERFORMANCE ASSESSMENT APPROACHES: CEMENTITIOUS BARRIERS PARTNERSHIP

    SciTech Connect

    Langton, C.; Burns, H.

    2009-05-29

    Engineered barriers including cementitious barriers are used at sites disposing or contaminated with low-level radioactive waste to enhance performance of the natural environment with respect to controlling the potential spread of contaminants. Drivers for using cementitious barriers include: high radionuclide inventory, radionuclide characteristics (e.g., long half-live, high mobility due to chemical form/speciation, waste matrix properties, shallow water table, and humid climate that provides water for leaching the waste). This document comprises the first in a series of reports being prepared for the Cementitious Barriers Partnership. The document is divided into two parts which provide a summary of: (1) existing experience in the assessment of performance of cementitious materials used for radioactive waste management and disposal and (2) sensitivity and uncertainty analysis approaches that have been applied for assessments. Each chapter is organized into five parts: Introduction, Regulatory Considerations, Specific Examples, Summary of Modeling Approaches and Conclusions and Needs. The objective of the report is to provide perspective on the state of the practice for conducting assessments for facilities involving cementitious barriers and to identify opportunities for improvements to the existing approaches. Examples are provided in two contexts: (1) performance assessments conducted for waste disposal facilities and (2) performance assessment-like analyses (e.g., risk assessments) conducted under other regulatory regimes. The introductory sections of each section provide a perspective on the purpose of performance assessments and different roles of cementitious materials for radioactive waste management. Significant experience with assessments of cementitious materials associated with radioactive waste disposal concepts exists in the US Department of Energy Complex and the commercial nuclear sector. Recently, the desire to close legacy facilities has created

  2. United States Department of Energy National Nuclear Security Administration Sandia Field Office NESHAP Annual Report CY2014 for Sandia National Laboratories New Mexico

    SciTech Connect

    evelo, stacie; Miller, Mark L.

    2015-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2014, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES. A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  3. Future challenges for nuclear power plant development research, and for radiological protection sciences.

    PubMed

    Lazo, Edward

    2007-11-01

    The promise of the future shines brightly for nuclear energy technology and production, yet also holds many challenges. Focus on new reactor designs is currently aiming at what is termed the fourth generation of reactors, which will come into operation after 2030. The 10 countries participating in the Generation-IV International Forum to develop the new generation of reactors have designated six reactor designs that will be studied. This paper will briefly discuss some of these challenges in new reactor designs in general. In addition to the challenges posed by new reactor designs, radiation protection is also faced with a series of challenges for the future. These are borne from experience with the implementation of the current system of radiological protection, from the evolution of radiation biological research, and from changes in society in the area of radiological risk assessment and management. This paper will address all of these emerging challenges, and point towards approaches to resolve them in the future. PMID:18049234

  4. The Atomic Bomb Fragment: An Experience in Explaining Nuclear Science to the Popular Media

    NASA Astrophysics Data System (ADS)

    Jokisch, Derek

    2005-11-01

    On March 11, 1958 a B-47 strategic bomber on a training mission accidentally dropped a Mark 6 nuclear bomb over rural South Carolina. The bomb, which did not contain the fissionable core, detonated on a lot in Mars Bluff, SC, less than a mile from the current campus of Francis Marion University (FMU). Though the accounts of this event have been written several times, the most extensive account was recently published in the May 2005 issue of Esquire magazine. The author of the Esquire article contacted health physics faculty at FMU in February of 2005 after finding a local resident that claimed to have a fragment of the bomb. In attempting to authenticate the fragment, the author was surprised to measure radioactivity with a Geiger counter. He asked if FMU had the equipment necessary to determine the source of the activity. We spent one afternoon with the author while acquiring a gamma-ray spectrum from the fragment. In addition to presenting the brief scientific analysis, this talk will describe the communication with the author of the article and the subsequent interpretation presented in the publication.

  5. Beams-becoming enthusiastic about math and science - A Department of Energy research laboratory/school district partnership program

    SciTech Connect

    Strozak, K.; Gagnon, S.

    1994-12-31

    BEAMS immerses fifth and sixth grade classes in CEBAF`s environment for a week of school. By exposing students and teachers to science`s excitement, challenges, and opportunities, BEAMS motivates students, enhances teachers, and involves parents, with the goal of improving scientific literacy and work force readiness. CEBAF and its school partners are extending BEAMS into a multi-year program, integrating educational partnerships active in the region. The planned focus emphasizes grades four through ten. A long-term evaluation model, incorporating measures of students attitudes, achievement, and academic course choices is being implemented. Three years of data on student attitudinal changes, referenced against controls, have been analyzed.

  6. Overview of the NASA/RECON educational, research, and development activities of the Computer Science Departments of the University of Southwestern Louisiana and Southern University

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    This document presents a brief overview of the scope of activities undertaken by the Computer Science Departments of the University of Southern Louisiana (USL) and Southern University (SU) pursuant to a contract with NASA. Presented are only basic identification data concerning the contract activities since subsequent entries within the Working Paper Series will be oriented specifically toward a detailed development and presentation of plans, methodologies, and results of each contract activity. Also included is a table of contents of the entire USL/DBMS NASA/RECON Working Paper Series.

  7. The role of the Department of Homeland Security, Science and Technology Directorate in the development of vaccines and diagnostics for Transboundary Animal Diseases.

    PubMed

    Colby, M; Coats, M; Brake, D; Fine, J

    2013-01-01

    The development of countermeasures to support an effective response to Transboundary Animal Diseases (TAD) poses a challenge on a global scale and necessitates the coordinated involvement of scientists from government, industry and academia, as well as regulatory entities. The Agricultural Defense Branch under the Chemical and Biological Defense Division (CBD) of the Department of Homeland Security (DHS), Science and Technology Directorate (S&T) supports this important mission within the United States. This article provides an overview of the Agricultural Defense Branch's vaccine and diagnostic TAD project. PMID:23689879

  8. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  9. Power at the Interfaces: The Contested Orderings of Academic Presents and Futures in a Social Science Department

    ERIC Educational Resources Information Center

    Stöckelová, Tereza

    2014-01-01

    The changes in and transformations of academic institutions and practices we are currently witnessing are complex. I argue that there are no clear-cut historical transitions between different regimes of science, such as from the "public knowledge regime" to "academic capitalism". Drawing upon John Law's analysis of…

  10. Relative Evaluation System as an Obstacle to Cooperative Learning: The Views of Lecturers in a Science Education Department

    ERIC Educational Resources Information Center

    Tatar, Erdal; Oktay, Munir

    2008-01-01

    This study attempts to define the contradiction between cooperative learning, which has an important place in science education, and the relative evaluation system. The fixation of the situation which was done with the data obtained from the literature also has been supported with a semi-structured interview study conducted with eighteen science…

  11. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect

    Chadwick, M. B.; Herman, Micheal W; Oblozinsky, Pavel; Dunn, Michael E; Danon, Y.; Kahler, A.; Smith, Donald L.; Pritychenko, B; Arbanas, Goran; Arcilla, r; Brewer, R; Brown, D A; Capote, R.; Carlson, A. D.; Cho, Y S; Derrien, Herve; Guber, Klaus H; Hale, G. M.; Hoblit, S; Holloway, Shannon T.; Johnson, T D; Kawano, T.; Kiedrowski, B C; Kim, H; Kunieda, S; Larson, Nancy M; Leal, Luiz C; Lestone, J P; Little, R C; Mccutchan, E A; Macfarlane, R E; MacInnes, M; Matton, C M; Mcknight, R D; Mughabghab, S F; Nobre, G P; Palmiotti, G; Palumbo, A; Pigni, Marco T; Pronyaev, V. G.; Sayer, Royce O; Sonzogni, A A; Summers, N C; Talou, P; Thompson, I J; Trkov, A.; Vogt, R L; Van der Marck, S S; Wallner, A; White, M C; Wiarda, Dorothea; Young, P C

    2011-01-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  12. Wafer and bulk high-purity silicon trace element analysis at the Texas A and M University Nuclear Science Center

    SciTech Connect

    Van Dalsem, Daniel James

    1998-11-24

    A trace element analysis program for wafer and bulk high-purity silicon (Si) samples has been operating at the Texas A and M University Nuclear Science Center (TAMU NSC) since 1996. Samples are irradiated in the NSC's 1-MW TRIGA research reactor at a thermal neutron fluence rate of 10{sup 13} n/cm{sup 2}/s for 14 hours. After an appropriate decay length, bulk samples are chemically etched to remove surface contamination while wafer surfaces are first rinsed with acid to determine surface contamination and then etched to obtain epitaxial layer contamination information. All samples, along with the appropriate etching solutions are analyzed using gamma-ray spectroscopy to quantitatively determine the various radioisotopes created during irradiation. Elements typically determined are antimony (Sb), arsenic (As), bromine (Br), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), gallium (Ga), gold (Au), iron (Fe), molybdenum (Mo), potassium (K), silver (Ag), sodium (Na) tungsten (W) and zinc (Zn). The potential exists to also determine cesium (Cs), iridium (Ir), lanthanum (La), mercury (Hg), rubidium (Rb), scandium (Sc), and zirconium (Zr). Detection limits range from 10{sup 14} down to 10{sup 7} atoms/cm{sup 2} in surface analysis and 10{sup 13} down to 10{sup 8} atoms/cm{sup 3} in bulk Si.

  13. Wafer and bulk high-purity silicon trace element analysis at the Texas A&M University Nuclear Science Center

    NASA Astrophysics Data System (ADS)

    Van Dalsem, Daniel James

    1998-11-01

    A trace element analysis program for wafer and bulk high-purity silicon (Si) samples has been operating at the Texas A&M University Nuclear Science Center (TAMU NSC) since 1996. Samples are irradiated in the NSC's 1-MW TRIGA research reactor at a thermal neutron fluence rate of 1013n/cm2/s for 14 hours. After an appropriate decay length, bulk samples are chemically etched to remove surface contamination while wafer surfaces are first rinsed with acid to determine surface contamination and then etched to obtain epitaxial layer contamination information. All samples, along with the appropriate etching solutions are analyzed using gamma-ray spectroscopy to quantitatively determine the various radioisotopes created during irradiation. Elements typically determined are antimony (Sb), arsenic (As), bromine (Br), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), gallium (Ga), gold (Au), iron (Fe), molybdenum (Mo), potassium (K), silver (Ag), sodium (Na) tungsten (W) and zinc (Zn). The potential exists to also determine cesium (Cs), iridium (Ir), lanthanum (La), mercury (Hg), rubidium (Rb), scandium (Sc), and zirconium (Zr). Detection limits range from 1014 down to 107atoms/cm2 in surface analysis and 1013 down to 108atoms/cm3 in bulk Si.

  14. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts include the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.

  15. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    SciTech Connect

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  16. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd Allen

    2014-04-01

    Scientific Successes • The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. • Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. • PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. • Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. • A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. • Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain

  17. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  18. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    SciTech Connect

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-06-01

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons

  19. Institutional Effectiveness Assessment Process, 1992-93. Executive Summary. Hospitality and Service Occupations Division, Food Sciences Department, Food Production Program, Food Production Management Program, Pastry and Specialty Baking Program.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    In the 1992-93 academic year, the Hospitality and Food Sciences Department at South Seattle Community College conducted surveys of current and former students and local foodservice employers to determine the level of satisfaction with Department programs. Specifically, the surveys focused on four key outcomes: determining the extent to which…

  20. Medical science in the light of the Holocaust: Departing from a post-war paper by Ludwik Fleck.

    PubMed

    Hedfors, Eva

    2008-04-01

    In scholarly debates, Ludwik Fleck's post-war paper 'Problemy naukoznawstwa [Problems of the Science of Science]', published in 1946, has been taken unanimously to illustrate the epistemology expounded in his monograph Genesis and Development of a Scientific Fact. The paper has also been seen to support parts of the received view of Fleck, notably that he manufactured an anti-typhus vaccine while imprisoned in Buchenwald. However, a different narrative emerges when comparing Fleck's paper with other accounts, also published in 1946 and written by other prisoners alluded to by Fleck in his paper. The situation is further complicated by four papers, published in prestigious scientific journals between 1942 and 1945, by the German medical leader of the typhus studies accounted for by Fleck. In addition, a thus-far neglected paper by Fleck, published in 1946 and summarizing his observations on typhus, discloses his role in the Buchenwald studies. Despite the obvious difficulties with tracing the history behind these works, notably the one on Nazi science, the contention is that what was attempted in Buchenwald in the name of science amounted to pseudoscience. This conclusion is amply supported not only by the accounts given by Fleck's fellow prisoners, but also by his own post-war paper on typhus. Based on the above findings, it is suggested that the mythology about Fleck, established in the 1980s, has been accomplished by a selective reading of his papers and also that the role played by Fleck was more complex than has so far been contemplated. PMID:18831133

  1. Department of Energy – Office of Science Pacific Northwest Site Office Environmental Monitoring Plan for the DOE-SC PNNL Site

    SciTech Connect

    Snyder, Sandra F.; Meier, Kirsten M.; Barnett, J. M.; Bisping, Lynn E.; Poston, Ted M.; Rhoads, Kathleen

    2011-12-21

    The Pacific Northwest Site Office (PNSO) manages the contract for operations at the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site in Richland, Washington. Radiological operations at the DOE-SC PNNL Site expanded in 2010 with the completion of facilities at the Physical Sciences Facility. As a result of the expanded radiological work at the site, the Washington State Department of Health (WDOH) has required that offsite environmental surveillance be conducted as part of the PNNL Site Radioactive Air Emissions License. The environmental monitoring and surveillance requirements of various orders, regulations, and guidance documents consider emission levels and subsequent risk of negative human and environmental impacts. This Environmental Monitoring Plan (EMP) describes air surveillance activities at the DOE-SC PNNL Site. The determination of offsite environmental surveillance needs evolved out of a Data Quality Objectives process (Barnett et al. 2010) and Implementation Plan (Snyder et al. 2010). The entire EMP is a compilation of several documents, which include the Main Document (this text), Attachment 1: Sampling and Analysis Plan, Attachment 2: Data Management Plan, and Attachment 3: Dose Assessment Guidance.

  2. Instructional practices among science departments with high, moderate, and low gains on the Connecticut Academic Performance Test

    NASA Astrophysics Data System (ADS)

    Kachergis, Theodora R.

    The purpose of this study was to ascertain whether the instructional practices of performance-based, inquiry-based, and authentic-based learning strategies, and rubric use are related to improvement on the science portion of the Connecticut Academic Performance Test [CAPT], as indicated by CAPT gains from 1995--2001. Data were collected for this study by a survey/interview of 63 Connecticut high schools and their 118 certified biology teachers, who had participated in the science CAPT administration within that same school district during 1995--2001. Results from the analysis of the data indicate a significant relationship between strategy and rubric use and CAPT science score outputs. Those schools having the highest levels of strategy and rubric use also demonstrated high CAPT gains and increasing CAPT scores, over time. It was also determined that a strong relationship exists between the percentage of the ERG's goal for CAPT index and those ERGs, using strategies and/or rubrics proficiently. The major findings of the study reveal that teachers demonstrate a confusion of strategy/rubric meaning, as indicated by the low proficiency levels of their submitted strategy and rubric samples, despite high indicators of use for the three learning strategies and rubrics. In addition, rubrics are rated highly by the sample, but are not employed at the high levels of reported favorability. Further analysis determines that objective forms of assessment are used more frequently than strategy and rubric use, and may be implicated for the decreased use of rubrics. Although survey data indicate that 90% of the sample reported "Satisfactory" to "Excellent" levels of annual score updates within their respective districts, teachers requested a need for increased pre- and in-service professional development in the use of all three strategies and rubrics: particularly non-tenured teachers expressed a need for basic CAPT information and samples of strategy and rubric use, while

  3. Science & Technology Review June 2007

    SciTech Connect

    Chinn, D J

    2007-04-30

    Lawrence Livermore National Laboratory is operated by the University of California for the Department of Energy's National Nuclear Security Administration. At Livermore, we focus science and technology on ensuring our nation's security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published 10 times a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  4. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    SciTech Connect

    Not Available

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  5. The Dark Side of Nuclear Arms Education.

    ERIC Educational Resources Information Center

    Jungerman, Nancy K.; Jungerman, John A.

    1985-01-01

    Outlines a course (offered jointly by physics and applied science departments) which focuses on basic physics and nuclear war effects. Due to the emotional impact of issues discussed in the course, faculty implemented a plan which included the use of counseling professionals. (DH)

  6. Nuclear Science Symposium, 20th, and Nuclear Power Systems Symposium, 5th, San Francisco, Calif., November 14-16, 1973, Proceedings

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Subjects considered are in the areas of position sensitive detectors, semiconductor detector materials, semiconductor detector technology, biomedical instrumentation, reactor instrumentation, nuclear instrumentation, and data acquisition and processing. Topics related to photon detection are discussed together with methods for environmental radiation measurement, aspects of environmental gamma-ray analysis, and nuclear techniques for elemental analysis. Attention is also given to operation and design experience with systems at nuclear power plants. Individual items are announced in this issue.

  7. Institute of Electrical and Electronics Engineers, Nuclear Science Symposium, 18th, and Nuclear Power Systems Symposium, 3rd, San Francisco, Calif., November 3-5, 1971, Proceedings.

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.

  8. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular Particle and Nuclear Physics, Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  9. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-11-01

    The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  10. Trashing the planet. [How Science can help us deal with environmental problems such as acid rain, depletion of the ozone, and nuclear waste (among other things)

    SciTech Connect

    Ray, D.L.; Guzzo, L.

    1990-01-01

    The authors use a common sense approach to their goals of clarifying environmental issues, separating fact from factoid, unmaking the dooms-crying opponents of all progress, and re-establishing a sense of reason and balance with respect to the environment, modern technology and science. The introductory section is a discussion of man, technology, and the environment. The authors point out the three major problem areas in the interface between science, the media, and the public: anxiety, factoids, and misinterpretation. They also discuss the reality of the economic and technological changes from the good old days. The second section of the book focuses on four major environmental issues: the greenhouse effect; acid rain; pesticides; and chemical toxins (asbestos, PCB, dioxin). In the third section the authors present a broad approach to the nuclear issues facing us: understanding of radiation; nuclear medicine; nuclear power; and nuclear waste. Finally the book concludes with a section of environmentalism and the future. The authors discuss political environmental activism, governmental actions, and global prospective. They also list four common sense approaches for ordinary citizens: pressure on the legislative branch of government; refusal to listen to the just in case argument; keeping a sense of perspective; and realizing that humans have the responsibility to be good stewards while at the same time they cannot live without altering the earth. At the end of the book there is a sizable section of endnotes and referenced citations.

  11. Contracting in the national interest: Establishing the legal framework for the interaction of science, government, and industry at a nuclear weapons laboratory

    SciTech Connect

    Furman, N.S.

    1988-04-01

    Sandia National Laboratories, the nation's nuclear ordnance laboratory, is operated on a no-profit, no-fee basis by ATandT Technologies, Inc., as a prime contractor for the Department of Energy. This unique arrangement began in 1949 when President Harry Truman personally requested that ATandT assume management of the nuclear weapons laboratory as a service in the national interest. The story of how this unusual relationship came about makes for an interesting chapter in the annals of US legal and institutional history. This report describes the historical background, political negotiations, and prime contract provisos that established the legal framework for the Labs.

  12. Report on Project Action Sheet PP05 task 3 between the U.S. Department of Energy and the Republic of Korea Ministry of Education, Science, and Technology (MEST).

    SciTech Connect

    Snell, Mark Kamerer

    2013-01-01

    This report documents the results of Task 3 of Project Action Sheet PP05 between the United States Department of Energy (DOE) and the Republic of Korea (ROK) Ministry of Education, Science, and Technology (MEST) for Support with Review of an ROK Risk Evaluation Process. This task was to have Sandia National Laboratories collaborate with the Korea Institute of Nuclear Nonproliferation and Control (KINAC) on several activities concerning how to determine the Probability of Neutralization, PN, and the Probability of System Effectiveness, PE, to include: providing descriptions on how combat simulations are used to determine PN and PE; comparisons of the strengths and weaknesses of two neutralization models (the Neutralization.xls spreadsheet model versus the Brief Adversary Threat-Loss Estimator (BATLE) software); and demonstrating how computer simulations can be used to determine PN. Note that the computer simulation used for the demonstration was the Scenario Toolkit And Generation Environment (STAGE) simulation, which is a stand-alone synthetic tactical simulation sold by Presagis Canada Incorporated. The demonstration is provided in a separate Audio Video Interleave (.AVI) file.

  13. Radiation Exposure Levels in Diagnostic Patients Injected with 99mTc, 67Ga and 131I at the Mexican National Institute of Cancerology Nuclear Medicine Department

    SciTech Connect

    Trujillo-Zamudio, F. E.; Gomez-Argumosa, E.; Estrada-Lobato, E.; Medina, L. A.

    2006-09-08

    According to the Mexican Radiation Safety regulations for patients treated in a nuclear medicine service, the exposure rate limit at 1 m from the patients is 5 mR/h before leaving the hospital. Three groups of patients have been monitored after: a) whole body bone studies with 740 MBq of 99mTc-MDP (207 patients); b) infection studies after i.v. administration of 185 MBq of 67Ga (207 patients); and c) thyroid studies with 185 MBq of 131I (142 patients). The results indicated that the average exposure rate levels in each group were: a) 0.57 {+-} 0.17 mR/h, b) 0.47 {+-} 0.20 mR/h, and c) 0.86 {+-} 0.14 mR/h. This study has shown that the Nuclear Medicine Department at INCAN complies with the NOM-013-NUCL-1995 Mexican regulation.

  14. Radiation Exposure Levels in Diagnostic Patients Injected with 99mTc, 67Ga and 131I at the Mexican National Institute of Cancerology Nuclear Medicine Department

    NASA Astrophysics Data System (ADS)

    Trujillo-Zamudio, F. E.; Gómez-Argumosa, E.; Estrada-Lobato, E.; Medina, L. A.

    2006-09-01

    According to the Mexican Radiation Safety regulations for patients treated in a nuclear medicine service, the exposure rate limit at 1 m from the patients is 5 mR/h before leaving the hospital. Three groups of patients have been monitored after: a) whole body bone studies with 740 MBq of 99mTc-MDP (207 patients); b) infection studies after i.v. administration of 185 MBq of 67Ga (207 patients); and c) thyroid studies with 185 MBq of 131I (142 patients). The results indicated that the average exposure rate levels in each group were: a) 0.57 ± 0.17 mR/h, b) 0.47 ± 0.20 mR/h, and c) 0.86 ± 0.14 mR/h. This study has shown that the Nuclear Medicine Department at INCAN complies with the NOM-013-NUCL-1995 Mexican regulation.

  15. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    SciTech Connect

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  16. Commemoration of the centenary of the birth of Academician S N Vernov(Joint scientific session of the Physical Sciences Division of the Russian Academy of Sciences and the Department of Physics of M V Lomonosov Moscow State University, 16 June 2010)

    NASA Astrophysics Data System (ADS)

    2011-02-01

    On 16 June 2010, a joint scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), Joint Physical Society of the Russian Federation, Scientific Council of the Department of Physics of Moscow State University (MSU), Scientific Council of the MSU SINP, RAS Council on Space Research, Coordination Scientific and Technical Council of the Federal Space Agency, RAS Scientific Council on the Integrated Problem of Cosmic Rays and RAS Scientific Council on Physics of Solar-Terrestrial Relations took place at the R V Khokhlov central physics auditorium of the MSU Department of Physics. The session was devoted to the 100th anniversary of the birth of Academician Sergei Nikolaevich Vernov.The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports:Ryazhskaya O G (RAS Institute for Nuclear Research, Moscow) "Opening address"; (1) Matveev V A (RAS Physical Sciences Division, Moscow) "A few words about S N Vernov" (2) Sadovnichy V A (M V Lomonosov Moscow State University, Moscow) "S N Vernov as a scientist at Moscow State University"; (3) Trukhin V I (M V Lomonosov Moscow State University, Moscow) "S N Vernov as a professor in the MSU Department of Physics"; (4) Panasyuk M I (D V Skobeltsyn Institute of Nuclear Physics of M V Lomonosov Moscow State University, Moscow) "Cosmic ray astrophysics before and after 1957"; (5) Dergachev V A (RAS A F Ioffe Physical-Technical Institute, St. Petersburg) "S N Vernov and space physics: Apatity-Leningrad, 1968-1983"; (6) Stozhkov Yu I ( P N Lebedev Physical Institute, RAS, Moscow) "S N Vernov and ground-breaking studies of cosmic rays in the stratosphere"; (7) Berezhko E G, Krymsky G F (Yu G Shafer Institute of Cosmophysical Research and Aeronomy of the SB RAS Yakutsk Scientific Center, Yakutsk) "S N Vernov and cosmic ray research in Yakutia".Texts of the articles based on the reports presented are printed below. • Opening address, O

  17. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  18. Nuclear test experimental science

    SciTech Connect

    Struble, G.L.; Middleton, C.; Bucciarelli, G.; Carter, J.; Cherniak, J.; Donohue, M.L.; Kirvel, R.D.; MacGregor, P.; Reid, S.

    1989-01-01

    This report discusses research being conducted at Lawrence Livermore Laboratory under the following topics: prompt diagnostics; experimental modeling, design, and analysis; detector development; streak-camera data systems; weapons supporting research.

  19. 1985 Nuclear Science Symposium, 32nd, and 1985 Symposium on Nuclear Power Systems, 17th, San Francisco, CA, October 23-25, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.

  20. 1985 Nuclear Science Symposium, 32nd, and 1985 Symposium on Nuclear Power Systems, 17th, San Francisco, CA, October 23-25, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    1986-02-01

    The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.