Science.gov

Sample records for nuclear star formation

  1. STAR FORMATION IN NUCLEAR RINGS OF BARRED GALAXIES

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  2. FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION

    SciTech Connect

    Aharon, Danor; Perets, Hagai B.

    2015-02-01

    Nuclear stellar cluster (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: (1) buildup of NSCs from consecutive infall of stellar clusters and (2) continuous in situ star formation. Though the cluster infall scenario has been extensively studied, the in situ formation scenario has been hardly explored. Here we use Fokker-Planck (FP) calculations to study the effects of star formation on the buildup of NSCs and its implications for their long-term evolution and their resulting structure. We use the FP equation to describe the evolution of stellar populations and add appropriate source terms to account for the effects of newly formed stars. We show that continuous star formation even 1-2 pc away from the MBH can lead to the buildup of an NSC with properties similar to those of the Milky Way NSC. We find that the structure of the old stellar population in the NSC with in situ star formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger populations do not yet achieve a steady state. In particular, formed/evolved NSCs with in situ star formation contain differential age-segregated stellar populations that are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure toward the NSC outskirts, while showing a core-like distribution inward, with younger populations having larger core sizes. In principal, such a structure can give rise to an apparent core-like radial distribution of younger stars, as observed in the Galactic center.

  3. THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER

    SciTech Connect

    Pfuhl, O.; Fritz, T. K.; Eisenhauer, F.; Genzel, R.; Gillessen, S.; Ott, T.; Dodds-Eden, K.; Zilka, M.; Sternberg, A.; Maness, H.

    2011-11-10

    We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1 pc from Sgr A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest spectroscopic observation of the Galactic center (GC) so far, probing the number of B9/A0 main-sequence stars (2.2-2.8 M{sub sun}) in two deep fields. From spectrophotometry we construct a Hertzsprung-Russell diagram of the red giant population and fit the observed diagram with model populations to derive the star formation history of the nuclear cluster. We find (1) that the average nuclear star formation rate dropped from an initial maximum {approx}10 Gyr ago to a deep minimum 1-2 Gyr ago and increased again during the last few hundred Myrs, (2) that roughly 80% of the stellar mass formed more than 5 Gyr ago, and (3) that mass estimates within R {approx} 1 pc from Sgr A* favor a dominant star formation mode with a 'normal' Chabrier/Kroupa initial mass function for the majority of the past star formation in the GC. The bulk stellar mass seems to have formed under conditions significantly different from the young stellar disks, perhaps because at the time of the formation of the nuclear cluster the massive black hole and its sphere of influence were much smaller than today.

  4. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  5. Morphology, star formation, and kinematics of nuclear rings

    NASA Astrophysics Data System (ADS)

    Mazzuca, Lisa M.

    This thesis presents a detailed optical study with the goal of better understanding the elusive physical nature of nuclear rings. We first image the central kilo-parsec region of a large sample of spiral galaxies known for intense star formation via the Hal6563 line and the optical broad bands B and I . The distribution of massive young stars in the nuclear and circumnuclear environments verifies that nuclear rings occur primarily in spiral types Sa- Sbc. Late-type galaxies have a patchy and more diffuse circumnuclear appearance in Ha. We identify three previously unknown nuclear rings, and confirm that nuclear rings are preferentially found in barred galaxies. From the parent sample, we identify 22 nuclear rings and analyze the H II regions that comprise them. Comparing the Ha equivalent widths of these regions with population synthesis models, we derive the ages throughout each nuclear ring, and find that the stellar content within the rings is consistently very young, with ages ranging from 1 Myr to 10 Myrs. Approximately half of the rings contain azimuthal age gradients that encompass at least 25% of the ring, although there is no apparent relationship between the presence or absence of age gradients and the morphology of the rings or their host galaxies. Two-thirds of the galaxies containing a nuclear ring and a bar show a link between the youngest H II region(s) and the location along the ring where the bar dust lanes merge. We show that regions of enhanced star formation, as seen in nuclear rings, correspond to regions with (1) the strongest Ha emission, (2) high luminosities of order 10 40 erg s -1 - 10 42 erg s -1 , (3) low residual velocities of order 10 km s -1 , and (4) low velocity dispersions ranging from 20 km s -1 - 50 km s -1 . Thus, within the rings, the relatively cool and calm gas allows star formation to trigger. The lack of strong non-circular motions in the rings, coupled with a direct relationship between the position angles and

  6. The Nuclear Gas Dynamics and Star Formation of Markarian 231

    NASA Astrophysics Data System (ADS)

    Davies, R. I.; Tacconi, L. J.; Genzel, R.

    2004-10-01

    We report adaptive optics H- and K-band spectroscopy of the inner few arcseconds of the luminous merger/ultraluminous infrared galaxy (ULIRG)/QSO Mrk 231, at spatial resolutions as small as 0.085". For the first time we have been able to resolve the active star-forming region close to the active galactic nucleus (AGN) using stellar absorption features, finding that its luminosity profile is well represented by an exponential function with a disk scale length 0.18"-0.24" (150-200 pc), and implying that the stars exist in a disk rather than a spheroid. The stars in this region are also young (10-100 Myr), and it therefore seems likely that they have formed in situ in the gas disk, which itself resulted from the merger. The value of the stellar velocity dispersion (~100 km s-1 rather than the usual few times 10 km s-1 in large-scale disks) is a result of the large mass surface density of the disk. The stars in this region have a combined mass of at least 1.6×109 Msolar, and account for 25%-40% of the bolometric luminosity of the entire galaxy. At our spatial resolution the stellar light in the core is diluted by more than a factor of 10 even in the H band by continuum emission from hot dust around the AGN. We have detected the 2.12 μm 1-0 S(1) H2 and 1.64 μm [Fe II] lines out to radii exceeding 0.5". The kinematics for the two lines are very similar to each other as well as to the stellar kinematics, and broadly consistent with the nearly face-on rotating disk reported in the literature and based on interferometric CO 1-0 and CO 2-1 measurements of the cold gas. However, they suggest a more complex situation in which the inner 0.2"-0.3" (200 pc) is warped out of its original disk plane. Such a scenario is supported by the projected shape of the nuclear stellar disk, the major axis of which is significantly offset from the nominal direction, and by the pronounced shift on very small scales in the direction of the radio jet axis, which has been reported in the

  7. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factor of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.

  8. Star-formation in nuclear clusters and the origin of the Galactic center apparent core distribution

    NASA Astrophysics Data System (ADS)

    Aharon, Danor; Perets, Hagai B.

    2016-02-01

    Nuclear stellar clusters (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: build-up of NSCs and Continuous in-situ star-formation. Here we study the effects of star formation on the build-up of NSCs and its implications for their long term evolution and their resulting structure. We show that continuous star-formation can lead to the build-up of an NSC with properties similar to those of the Milky-way NSC. We also find that the general structure of the old stellar population in the NSC with in-situ star-formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger stellar population does not yet achieve a steady state. In particular, formed/evolved NSCs with in-situ star-formation contain differential age-segregated stellar populations which are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure towards the NSC outskirts, while showing a core-like distribution inwards; with younger populations having larger core sizes.

  9. Star formation - An overview

    NASA Technical Reports Server (NTRS)

    Evans, N. J., II

    1985-01-01

    Methods for studying star formation are reviewed. Stellar clusters and associations, as well as field stars, provide a fossil record of the star formation process. Regions of current star formation provide a series of snapshots of different epochs of star formation. A simplified picture of individual star formation as it was envisioned in the late 1970s is contrasted with the results of recent observations, in particular the outflow phenomenon.

  10. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  11. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Charlot, S.; Gutkin, J.

    2016-03-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as C IV λλ1548, 1551, O III] λλ1661, 1666, N III] λ1750, [Si III] λ1883+Si III] λ1892 and [C III] λ1907+C III] λ1909, with the He II λ1640 recombination line are individually good discriminants of the nature of the ionizing source. Diagrams involving at least three of these lines allow an even more stringent distinction between active and inactive galaxies, as well as valuable constraints on interstellar gas parameters and the shape of the ionizing radiation. Several line ratios involving Ne-based emission lines, such as [Ne IV] λ2424, [Ne III] λ3343 and [Ne V] λ3426, are also good diagnostics of nuclear activity. Our results provide a comprehensive framework to identify the sources of photoionization and physical conditions of the ionized gas from the ultraviolet and optical nebular emission from galaxies. This will be particularly useful to interpret observations of high-redshift galaxies with future facilities, such as the James Webb Space Telescope and extremely large ground-based telescopes.

  12. Observational evidence for the evolution of nuclear metallicity and star formation rate with the merger stage

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, Xiao-Yang; Wei, Peng; Guo, Xin

    2016-07-01

    We investigate the evolution of nuclear gas-phase oxygen abundance and star formation rate (SFR) of local far-infrared selected star-forming galaxies along the merger sequence, as traced by their optical morphologies. The sample was drawn from a cross-correlation analysis of the IRAS Point Source Catalog Redshift Survey and 1 Jy ultraluminous infrared galaxy sample with the Sloan Digital Sky Survey Data Release 7 database. The investigation is done by comparing our sample to a control sample matched in the normalized redshift distribution in two diagnostics, which are the nuclear gas-phase metallicity vs. stellar mass and the nuclear SFR vs. stellar mass diagrams. Galaxies with different morphological types show different mass-metallicity relations (MZRs). Compared to the MZR defined by the control sample, isolated spirals have comparable metallicities with the control sample at a given stellar mass. Spirals in pairs and interacting galaxies with projected separations of r p > 20 kpc show a mild metallicity dilution of 0.02–0.03 dex. Interacting galaxies with r p < 20 kpc, pre-mergers and advanced mergers are underabundant by ∼ 0.06, ∼ 0.05 and ∼ 0.04 dex, respectively. This shows an evolutionary trend that the metallicity is increasingly depressed as the merging proceeds and it is diluted most dramatically when two galaxies are closely interacting. Afterwards, the interstellar medium (ISM) is enriched when the galaxies coalesce. This is the first time that such ISM enrichment at the final coalescence stage has been observed, which demonstrates the importance of supernova explosions in affecting the nuclear metallicity. Moreover, the central SFR enhancement relative to the control sample evolves simultaneously with the nuclear gas-phase oxygen abundance. Our results support the predictions from numerical simulations.

  13. Nuclear Star Formation Activity and Black Hole Accretion in Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Esquej, P.; Alonso-Herrero, A.; González-Martín, O.; Hönig, S. F.; Hernán-Caballero, A.; Roche, P.; Ramos Almeida, C.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Rodríguez Espinosa, J. M.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, \\dot{M}_BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (~0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ~65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ⊙ yr-1 kpc-2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ~65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and \\dot{M}_BH and showed that numerical simulations reproduce our observed relation fairly well.

  14. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    SciTech Connect

    Esquej, P.; Alonso-Herrero, A.; Hernán-Caballero, A.; González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Roche, P.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  15. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  16. Dissipationless Formation and Evolution of the Milky Way Nuclear Star Cluster

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Capuzzo-Dolcetta, Roberto; Mastrobuono-Battisti, Alessandra; Merritt, David

    2012-05-01

    In one widely discussed model for the formation of nuclear star clusters (NSCs), massive globular clusters spiral into the center of a galaxy and merge to form the nucleus. It is now known that at least some NSCs coexist with supermassive black holes (SMBHs); this is the case, for instance, in the Milky Way. In this paper, we investigate how the presence of an SMBH at the center of the Milky Way impacts the merger hypothesis for the formation of its NSC. Starting from a model consisting of a low-density nuclear stellar disk and the SMBH, we use direct N-body simulations to follow the successive inspiral and merger of globular clusters. The clusters are started on circular orbits of radius 20 pc, and their initial masses and radii are set up in such a way as to be consistent with the galactic tidal field at that radius. These clusters, decayed orbitally in the central region due to their large mass, were followed in their inspiral events; as a result, the total accumulated mass by ≈10 clusters is about 1.5 × 107 M ⊙. Each cluster is disrupted by the SMBH at a distance of roughly 1 pc. The density profile that results after the final inspiral event is characterized by a core of roughly this radius and an envelope with density that falls off ρ ~ r -2. These properties are similar to those of the Milky Way NSC, with the exception of the core size, which in the Milky Way is somewhat smaller. But by continuing the evolution of the model after the final inspiral event, we find that the core shrinks substantially via gravitational encounters in a time (when scaled to the Milky Way) of 10 Gyr as the stellar distribution evolves toward a Bahcall-Wolf cusp. We also show that the luminosity function of the Milky Way NSC is consistent with the hypothesis that 1/2 of the mass comes from old (~10 Gyr) stars, brought in by globular clusters, with the other half due to continuous star formation. We conclude that a model in which a large fraction of the mass of the Milky Way

  17. DISSIPATIONLESS FORMATION AND EVOLUTION OF THE MILKY WAY NUCLEAR STAR CLUSTER

    SciTech Connect

    Antonini, Fabio; Capuzzo-Dolcetta, Roberto; Mastrobuono-Battisti, Alessandra; Merritt, David

    2012-05-10

    In one widely discussed model for the formation of nuclear star clusters (NSCs), massive globular clusters spiral into the center of a galaxy and merge to form the nucleus. It is now known that at least some NSCs coexist with supermassive black holes (SMBHs); this is the case, for instance, in the Milky Way. In this paper, we investigate how the presence of an SMBH at the center of the Milky Way impacts the merger hypothesis for the formation of its NSC. Starting from a model consisting of a low-density nuclear stellar disk and the SMBH, we use direct N-body simulations to follow the successive inspiral and merger of globular clusters. The clusters are started on circular orbits of radius 20 pc, and their initial masses and radii are set up in such a way as to be consistent with the galactic tidal field at that radius. These clusters, decayed orbitally in the central region due to their large mass, were followed in their inspiral events; as a result, the total accumulated mass by Almost-Equal-To 10 clusters is about 1.5 Multiplication-Sign 10{sup 7} M{sub Sun }. Each cluster is disrupted by the SMBH at a distance of roughly 1 pc. The density profile that results after the final inspiral event is characterized by a core of roughly this radius and an envelope with density that falls off {rho} {approx} r{sup -2}. These properties are similar to those of the Milky Way NSC, with the exception of the core size, which in the Milky Way is somewhat smaller. But by continuing the evolution of the model after the final inspiral event, we find that the core shrinks substantially via gravitational encounters in a time (when scaled to the Milky Way) of 10 Gyr as the stellar distribution evolves toward a Bahcall-Wolf cusp. We also show that the luminosity function of the Milky Way NSC is consistent with the hypothesis that 1/2 of the mass comes from old ({approx}10 Gyr) stars, brought in by globular clusters, with the other half due to continuous star formation. We conclude that

  18. GLOBAL STAR FORMATION REVISITED

    SciTech Connect

    Silk, Joseph; Norman, Colin E-mail: norman@stsci.edu

    2009-07-20

    A general treatment of disk star formation is developed from a dissipative multiphase model, with the dominant dissipation due to cloud collisions. The Schmidt-Kennicutt (SK) law emerges naturally for star-forming disks and starbursts. We predict that there should be an inverse correlation between Tully-Fisher law and SK law residuals. The model is extended to include a multiphase treatment of supernova feedback that leads to a turbulent pressure-regulated generalization of the star formation law and is applicable to gas-rich starbursts. Enhanced pressure, as expected in merger-induced star formation, enhances star formation efficiency. An upper limit is derived for the disk star formation rate in starbursts that depends on the ratio of global ISM to cloud pressures. We extend these considerations to the case where the interstellar gas pressure in the inner galaxy is dominated by outflows from a central active galactic nucleus (AGN). During massive spheroid formation, AGN-driven winds trigger star formation, resulting in enhanced supernova feedback and outflows. The outflows are comparable to the AGN-boosted star formation rate and saturate in the super-Eddington limit. Downsizing of both SMBH and spheroids is a consequence of AGN-driven positive feedback. Bondi accretion feeds the central black hole with a specific accretion rate that is proportional to the black hole mass. AGN-enhanced star formation is mediated by turbulent pressure and relates spheroid star formation rate to black hole accretion rate. The relation between black hole mass and spheroid velocity dispersion has a coefficient (Salpeter time to gas consumption time ratio) that provides an arrow of time. Highly efficient, AGN-boosted star formation can occur at high redshift.

  19. Molecules in star formation.

    NASA Astrophysics Data System (ADS)

    Shu, F. H.

    The author reviews current ideas and models in the problem of star formation from molecular cloud cores that are relatively isolated from the influences of other forming stars. He discusses the time scales, flow dynamics, and density and temperature structures applicable to each of the four stages of the entire process: (1) formation of a magnetized cloud core by ambipolar diffusion and evolution to a pivotal state of gravomagneto catastrophe; (2) self-similar collapse of the pivotal configuration and the formation of protostars, disks, and pseudo-disks; (3) onset of a magnetocentrifugally driven, lightly ionized wind from the interaction of an accretion disk and the magnetosphere of the central star, and the driving of bipolar molecular outflows; (4) evolution of pre-main-sequence stars surrounded by dusty accretion disks. For each of these stages and processes, he considers the characteristics of the molecular diagnostics needed to investigate the crucial aspects of the observational problem.

  20. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  1. Isolating Triggered Star Formation

    SciTech Connect

    Barton, Elizabeth J.; Arnold, Jacob A.; Zentner, Andrew R.; Bullock, James S.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2007-09-12

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star formation that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of

  2. Star formation and nuclear activity in the blue early-type galaxy NGC 5373

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Miller, Brendan P.; Gallo, Elena; Alfvin, Erik; Martinkus, Charlotte; Molter, Edward

    2015-01-01

    We present new optical and X-ray observations of NGC 5373, an isolated star-forming elliptical that has a stellar mass of 7e10 solar and lies at a distance of 175 Mpc. Our B and R band Magellan IMACS imaging substantially improves on SDSS resolution and sensitivity, enabling accurate modeling of the galaxy surface brightness profile. As expected from its mass, NGC 5373 is a core galaxy with a best-fit Sersic profile of n~3.8; no prominent tidal tails or shells are found, although there are slight residual asymmetries. The H-alpha emission in the SDSS spectrum is narrow, and the line ratios confirm a star-forming classification in the BPT diagram, near the transition/composite line. The star formation rate is about 6 solar masses per year, making NGC 5373 an extreme outlier relative to typical local early-type galaxies of similar mass. Our 50 ks Chandra ACIS-S exposure provides a clear detection of a central X-ray source, with a hardness ratio consistent with a power-law photon index of 2.0+/-0.5. The unabsorbed luminosity is Lx = 2e40 erg/s over 0.3-8 keV. Comparison with a MARX simulated point spread function suggests the central source may be extended, for example due to contributions from one or more unresolved high-mass X-ray binaries, as might be present given the high star formation rate. For a black hole of 1.6e8 solar masses as predicted from scaling relations, Lx/Ledd is then around 1e-6 (or potentially lower).

  3. THE STAR FORMATION AND NUCLEAR ACCRETION HISTORIES OF NORMAL GALAXIES IN THE AGES SURVEY

    SciTech Connect

    Watson, Casey R.; Kochanek, Christopher S.; Forman, William R.; Hickox, Ryan C.; Jones, Christine J.; Kenter, Almus T.; Murray, Steve S.; Vikhlinin, Alexey; Fazio, Giovani G.; Green, Paul J.; Brown, Michael J. I.; Brand, Kate; Dey, Arjun; Jannuzi, Buell T.; Rieke, Marcia; Eisenstein, Daniel J.; McNamara, Brian R.; Shields, Joseph C.

    2009-05-10

    We combine IR, optical, and X-ray data from the overlapping, 9.3 deg{sup 2} NOAO Deep Wide-Field Survey, AGN and Galaxy Evolution Survey (AGES), and XBooetes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 {approx}< z {approx}< 0.5. Because only the closest or brightest of the galaxies are individually detected in X-rays, we use a stacking analysis to determine the mean properties of the sample. Our results suggest that X-ray emission from spectroscopically late-type galaxies is dominated by star formation, while that from early-type galaxies is dominated by a combination of hot gas and active galactic nucleus (AGN) emission. We find that the mean star formation and supermassive black hole accretion rate densities evolve like {approx}(1 + z){sup 3{+-}}{sup 1}, in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stacking analyses of faint source populations, with improved statistics.

  4. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  5. Multiple star formation

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.

    2010-11-01

    In this thesis, I present a study of the formation and evolution of stars, particularly multiple stellar systems. Binary stars provide a key constraint on star formation because any successful model should reproduce the mass-dependent frequency, distribution of separations, and distribution of mass ratios. I have pursued a number of surveys for different ranges of parameter space, all yielding one overarching conclusion: binary formation is fundamentally tied to mass. Solar-mass stars have a high primordial binary frequency (50%--75%) and a wide range of separations (extending to >10,000 AU), but as the system mass decreases, the frequency and separation distribution also decrease. For brown dwarfs, binaries are rare (~10%--15%) and have separations of <5 AU. Inside of this outer separation cutoff, the separation distribution appears to be log-flat for solar-mass stars, and perhaps for lower-mass systems. Solar-mass binary systems appear to have a flat mass ratio distribution, but for primary masses <0.3 Msun, the distribution becomes increasingly biased toward similar-mass companions. My results also constrain the binary formation timescale and the postformation evolutionary processes that sculpt binary populations. The dynamical interaction timescale in sparse associations like Taurus and Upper Sco is far longer than their ages, which suggests that those populations are dynamically pristine. However, binary systems in denser clusters undergo significant dynamical processing that strips outer binary companions; the difference in wide binary properties between my sample and the field is explained by the composite origin of the field population. I also have placed the individual components of young binary systems on the HR diagram in order to infer their coevality. In Taurus, binary systems are significantly more coeval (Δτ~0.5 Myr) than the association as a whole (Δτ~3--5 Myr). Finally, my survey of young very-low-mass stars and brown dwarfs found no planetary

  6. The effect of local and large-scale environments on nuclear activity and star formation

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Shen, S.; Sabater, J.; Duarte Puertas, S.; Verley, S.; Yang, X.

    2016-07-01

    Context. Active galactic nuclei (AGN) are one of the main drivers for the transition from star-forming disk to passive spheroidal galaxies, however, the role of large-scale environment versus one-on-one interactions in triggering different types of AGN is still uncertain. We present a statistical study of the prevalence of the nuclear activity in isolated galaxies and physically bound isolated pairs. Aims: For the purpose of this study we considered optically and radio selected nuclear activity types. We aim to assess the effect of one-on-one interaction on the fraction of AGN and the role of their large-scale environment. Methods: To study the effect of one-on-one interaction on the fraction of AGN in isolated galaxy pairs, we compare these AGN with a sample of isolated galaxies homogeneously selected under the same isolation criterion. We examine the effect of the large-scale environment by comparing isolated systems with control samples of single galaxies and galaxy pairs. We use the tidal strength parameter to quantify the effects of local and large-scale environments. Results: In general we found no difference in the prevalence of optical AGN for the considered samples. For massive galaxies, the fraction of optical AGN in isolated galaxies is slightly higher than that in the control samples. Also, the fraction of passives in high mass isolated galaxies is smaller than in any other sample. Generally, there is no dependence on optical nuclear activity with local environment. On the other hand, we found evidence that radio AGN are strongly affected by the local environment. Conclusions: The optical AGN phenomenon is related to cold gas accretion, while radio AGN are related to hot gas accretion. In this context, there is more cold gas, fuelling the central optical AGN, in isolated systems. Our results are in agreement with a scenario where cold gas accretion by secular evolution is the main driver of optical AGN, while hot gas accretion and one

  7. Gaining Insight into Star Formation: Resolved Star Formation Laws

    NASA Astrophysics Data System (ADS)

    Liebst, Kelley; Scowen, Paul A.

    2014-06-01

    Until recently astronomers have used star formation laws to measure the star formation rate and star formation efficiency of galaxies only on global scales because of the poor resolution of available data. What I am now capable of producing is a spatially resolved star formation law that can provide direct insight into the physical processes that govern star formation and assess the short-term nature of bursts of star formation and the longer-term nature of larger-scale events that can dictate the global distribution of stars and the ultimate fate of a galaxy as a whole. I am using exquisite narrowband optical data from a variety of sources, including the Hubble Space Telescope, and Kitt Peak National Observatory, etc., in conjunction with infrared data from the Spitzer Infrared Nearby Galaxy Survey and the Spitzer Local Volume Legacy survey, neutral gas data from The HI Nearby Galaxy Survey, and molecular gas data from the Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies, to provide star formation rates and star formation efficiencies on previously inaccessible small spatial scales across a suite of galaxies that represent a range of star formation environments and scales. My sample includes 18 spiral galaxies ranging from 2.1 to 15.1 Mpc in distance and offers a large range of morphological types (i.e. a large range of star formation environments). I am using these data to test different models of star formation modes under a variety of physical conditions and relate the variations I observe to the known local physical conditions and the associated star formation histories for each locale within each galaxy.This is the heart of the matter - that the nature and evolution of the local physical environment intimately influences how stars can form, how quickly and how massive those stars are allowed to form, and as a result how they shape the local conditions for subsequent star formation. It is this tracking of the stellar ecology that is vital for

  8. Star formation in the multiverse

    SciTech Connect

    Bousso, Raphael; Leichenauer, Stefan

    2009-03-15

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  9. Physics of primordial star formation

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  10. Star Formation for Predictive Primordial Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Milosavljević, Miloš; Safranek-Shrader, Chalence

    The elegance of inflationary cosmology and cosmological perturbation theory ends with the formation of the first stars and galaxies, the initial sources of light that launched the phenomenologically rich process of cosmic reionization. Here we review the current understanding of early star formation, emphasizing unsolved problems and technical challenges. We begin with the first generation of stars to form after the Big Bang and trace how they influenced subsequent star formation. The onset of chemical enrichment coincided with a sharp increase in the overall physical complexity of star forming systems. Ab-initio computational treatments are just now entering the domain of the predictive and are establishing contact with local observations of the relics of this ancient epoch.

  11. MIGRATION OF STAR CLUSTERS AND NUCLEAR RINGS

    SciTech Connect

    Van de Ven, Glenn; Chang, Philip E-mail: pchang@astro.berkeley.edu

    2009-05-20

    Star clusters that form in nuclear rings appear to be at slightly larger radii than the gas. We argue that the star clusters move out from the gas in which they are formed because of satellite-disk tidal interactions. In calculating the dynamics of this star cluster and gas ring system, we include the effects of dynamical friction of the background stars in the host galaxy on the star cluster, and inflowing gas along the bar onto the nuclear ring at the two contact points. We show that the final separation is of the order of the Hill radius of the nuclear ring, which is typically 20%-30% of its radius. Massive star clusters can reach half of this separation very quickly and produce a factor of a few enhancement in the gas surface density. If this leads to star formation in addition to the (ongoing) formation of star clusters near the contact points, a possible (initial) azimuthal age gradient may become diluted or even disappear. Finally, if the star clusters are massive and/or numerous enough, we expect the nuclear ring to migrate inward, away from the (possibly) associated (inner) Lindblad resonance. We discuss how these predictions may be tested observationally.

  12. Induced star formation in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Kennicutt, R. C.; Roettiger, K. A.; Keel, W. C.; Vanderhulst, J. M.; Hummel, E.

    1987-01-01

    Measurements of H alpha emission line fluxes and FIR fluxes in approx. 100 interacting spirals were used to investigate the effects of close tidal interactions on the disk and nuclear star formation rates in galaxies. Two samples of interacting spirals were studied, a complete sample of close pairs, and a set of strongly perturbed systems from the Arp atlas. Both the integrated H alpha luminosities and FIR luminosities are enhanced in the interacting galaxies, indicating that the encounters indeed trigger massive star formation in many cases. The response of individual galaxies is highly variable, however. A majority of the interacting spirals exhibit normal star formation rates, while a small fraction are undergoing bursts with luminosities which are rarely, if ever, observed in noninteracting systems. Virtually all of the latter are in the Arp sample, indicating that the Arp atlas is heavily biased to the most active star forming systems.

  13. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  14. Star formation in Galactic flows

    NASA Astrophysics Data System (ADS)

    Smilgys, Romas; Bonnell, Ian A.

    2016-06-01

    We investigate the triggering of star formation in clouds that form in Galactic scale flows as the interstellar medium passes through spiral shocks. We use the Lagrangian nature of smoothed particle hydrodynamics simulations to trace how the star-forming gas is gathered into self-gravitating cores that collapse to form stars. Large-scale flows that arise due to Galactic dynamics create shocks of the order of 30 km s-1 that compress the gas and form dense clouds (n > several × 102 cm-3) in which self-gravity becomes relevant. These large-scale flows are necessary for creating the dense physical conditions for gravitational collapse and star formation. Local gravitational collapse requires densities in excess of n > 103 cm-3 which occur on size scales of ≈1 pc for low-mass star-forming regions (M < 100 M⊙), and up to sizes approaching 10 pc for higher mass regions (M > 103 M⊙). Star formation in the 250 pc region lasts throughout the 5 Myr time-scale of the simulation with a star formation rate of ≈10-1 M⊙ yr-1 kpc-2. In the absence of feedback, the efficiency of the star formation per free-fall time varies from our assumed 100 per cent at our sink accretion radius to values of <10-3 at low densities.

  15. Modes of clustered star formation

    NASA Astrophysics Data System (ADS)

    Pfalzner, S.; Kaczmarek, T.; Olczak, C.

    2012-09-01

    Context. The recent realization that most stars form in clusters, immediately raises the question of whether star and planet formation are influenced by the cluster environment. The stellar density in the most prevalent clusters is the key factor here. Whether dominant modes of clustered star formation exist is a fundamental question. Using near-neighbour searches in young clusters, Bressert and collaborators claim this not to be the case. They conclude that - at least in the solar neighbourhood - star formation is continuous from isolated to densely clustered environments and that the environment plays a minor role in star and planet formation. Aims: We investigate under which conditions near-neighbour searches in young clusters can distinguish between different modes of clustered star formation. Methods: Model star clusters with different memberships and density distributions are set up and near-neighbour searches are performed. We investigate the influence of the combination of different cluster modes, observational biases, and types of diagnostic on the results. Results: We find that the specific cluster density profile, the relative sample sizes, the limitations of the observation, and the choice of diagnostic method decide, whether modelled modes of clustered star formation are detected by near-neighbour searches. For density distributions that are centrally concentrated but span a wide density range (for example, King profiles), separate cluster modes are only detectable under ideal conditions (sample selection, completeness) if the mean density of the individual clusters differs by at least a factor of ~65. Introducing a central cut-off can lead to an underestimate of the mean density by more than a factor of ten especially in high density regions. The environmental effect on star and planet formation is similarly underestimated for half of the population in dense systems. Conclusions: Local surface-density distributions are a very useful tool for single

  16. Nuclear and gravitational energies in stars

    SciTech Connect

    Meynet, Georges; Ekström, Sylvia; Courvoisier, Thierry

    2014-05-09

    The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ⊙}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ⊙}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

  17. High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Schilke, P.

    2016-05-01

    A review on current theories and observations of high-mass star formation is given. Particularly the influence of magnetic fields and feedback mechanisms, and of varying initial conditions on theories are discussed. The, in my biased view, most important observations to put strong constraints on models of high-mass star formation are presented, in particular bearing on the existence and properties of high-mass starless cores, the role of filaments in the mass transport to high-mass cores, and the properties of disks around high-mass stars.

  18. TESTING DIAGNOSTICS OF NUCLEAR ACTIVITY AND STAR FORMATION IN GALAXIES AT z > 1

    SciTech Connect

    Trump, Jonathan R.; Barro, Guillermo; Koo, David C.; Faber, S. M.; Kocevski, Dale D.; Yan, Renbin; Juneau, Stephanie; McLean, Ian S.; Perez-Gonzalez, Pablo G.; Villar, Victor

    2013-01-20

    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z {approx} 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/H{beta} ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/H{beta} versus [N II]/H{alpha} and [S II]/H{alpha}) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that 'composite' galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly {approx}2/3 of the z {approx} 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.

  19. Star formation in unperturbed LIRGs

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, I.; Olguín, L.; Ambrocio-Cruz, P.; Verley, S.; Rosado, M.; Verdes-Montenegro, L.; Repetto, P.; Vázquez, C.; Aguilera, V.

    2011-10-01

    Luminous infrared galaxies (LIRGs) are galaxies with L_{FIR} > 10^11 L_{sun} (Sanders & Mirabel 1996). For a star-forming galaxy to emit at a LIRG level, it must have a very high star formation rate (SFR). In the local Universe, the star formation (SF) is primarily triggered by interactions. However, at intermediate redshift, a large fraction of LIRGs are disk galaxies with little sign of recent merger activity (Zheng et al. 2004). The question arises whether the intermediate redshift LIRGs are ``triggered'' or experiencing ``normal'', if elevated, SF. Understanding these SF processes is important since this type of systems may have contributed to 20% or more of the cosmic star-formation rate in the early Universe (Blain & Phillips 2002).

  20. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass

  1. Star formation in Taurus

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Jarrett, Tom

    1994-01-01

    Data with the Two Micron All Sky Survey (2MASS) prototype camera were obtained in a 2.3 sq. deg region in Taurus containing Heiles Cloud 2, a region known from Infrared Astronomy Satellite (IRAS) observations to contain a number of very young solar type stars. Data at 1.25 (J), 1.65 (H), and 2.2 (K(sub s)) micrometers are presented. These data are representative of the type and quality of data expected from the planned near-IR surveys, 2MASS and Deep Near-Infrared Survey (DENIS). Near-IR surveys will be useful for determining the large scale variation of extinction with clouds, for determining the luminosity function in nearby clouds down to ranges of 0.1-1.0 solar luminosity, and for finding highly extincted T Tauri stars missed by IRAS because the bulk of their luminosity is emitted shortward of 12 micrometers.

  2. Supershells and propagating star formation

    NASA Technical Reports Server (NTRS)

    Maclow, M. M.; Mccray, R.; Kafatos, M.

    1986-01-01

    Correlated supernovae from an OB association can carve large cavities (greater than 100 pc) in the interstellar medium (ISM), and can punch holes completely through the disk of a spiral galaxy. Supernova remnant energy within such a cavity is thermalized before the shock reaches the supershell. Thus stellar wind theory may be used to model these superbubbles. We describe how the evolution of the superbubble depends on the density distribution of the galactic disk gas and the rate of supernovae in the OB association. At a radius of 100 to 300 pc, the supershell becomes gravitationally unstable, forming giant molecular clouds which are the sites for new star formation. This gravitational instability of the supershells provides a physical mechanism for propagating star formation and may account for the observation of bursts of star formation in galaxies.

  3. Angular momentum and star formation

    NASA Astrophysics Data System (ADS)

    Strittmatter, P. A.

    The present investigation is mainly concerned with the importance of high angular resolution observations in studies of star formation and, in particular, with elucidating the role which angular momentum plays in the process. A brief report is included on recent high angular resolution observations made with the Steward Observatory speckle camera system. A consideration of the angular momentum in interstellar clouds indicates that rotation precludes quasi-spherical contraction. A number of solutions to this angular momentum problem are examined, taking into account questions concerning the help provided by high angular resolution observations for an elucidation of the various possible scenarios of star formation. Technical aspects involved in obtaining suitable data are investigated. It is concluded that high angular resolution observations hold considerable promise for solving at least some of the problems associated with the role of angular momentum in star formation.

  4. Formation of the first stars.

    PubMed

    Bromm, Volker

    2013-11-01

    Understanding the formation of the first stars is one of the frontier topics in modern astrophysics and cosmology. Their emergence signalled the end of the cosmic dark ages, a few hundred million years after the Big Bang, leading to a fundamental transformation of the early Universe through the production of ionizing photons and the initial enrichment with heavy chemical elements. We here review the state of our knowledge, separating the well understood elements of our emerging picture from those where more work is required. Primordial star formation is unique in that its initial conditions can be directly inferred from the Λ cold dark matter (ΛCDM) model of cosmological structure formation. Combined with gas cooling that is mediated via molecular hydrogen, one can robustly identify the regions of primordial star formation, the so-called minihalos, having total masses of ~10(6) M⊙ and collapsing at redshifts z ≈ 20-30. Within this framework, a number of studies have defined a preliminary standard model, with the main result that the first stars were predominantly massive. This model has recently been modified to include a ubiquitous mode of fragmentation in the protostellar disks, such that the typical outcome of primordial star formation may be the formation of a binary or small multiple stellar system. We will also discuss extensions to this standard picture due to the presence of dynamically significant magnetic fields, of heating from self-annihalating WIMP dark matter, or cosmic rays. We conclude by discussing possible strategies to empirically test our theoretical models. Foremost among them are predictions for the upcoming James Webb space telescope (JWST), to be launched ~2018, and for 'stellar archaeology', which probes the abundance pattern in the oldest, most-metal poor stars in our cosmic neighborhood, thereby constraining the nucleosynthesis inside the first supernovae. PMID:24168986

  5. Star formation and gas supply

    NASA Astrophysics Data System (ADS)

    Catinella, B.

    2016-06-01

    A detailed knowledge of how gas cycles in and around galaxies, and how it depends on galaxy properties such as stellar mass and star formation rate, is crucial to understand galaxy formation and evolution. We take advantage of the most sensitive surveys of cold gas in massive galaxies, GASS and COLD GASS, as well as of the state-of-the-art HI blind survey ALFALFA to investigate how molecular and atomic hydrogen reservoirs vary along and across the main sequence of star-forming galaxies.

  6. Star formation and its triggers

    NASA Astrophysics Data System (ADS)

    Combes, F.

    2016-06-01

    The relation between star formation and gas density appears linear for galaxies on the main sequence, and when the molecular gas is considered. However, the star formation efficiency (SFE) defined as the ratio of SFR to gas surface densities, can be much higher when SF is triggered by a dynamical process such as galaxy interaction or mergers, or even secular evolution and cold gas accretion. I review recent work showing how the SFE can vary as a function of morphological type, environment, or redshift. Physical processes able to explain positive and negative feedback from supernovae or AGN are discussed.

  7. Star formation in distant galaxies.

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, B.

    Scenarios of galactic evolution, essentially based on our knowledge of nearby galaxies have been proposed. Star formation laws, initial mass function, metallicity are the main parameters. The author shortly reviews the present status of these parameters in distant galaxies and gives some deductive conclusions from a comparison with the most distant (z ≥ 3) galaxies.

  8. Early phases of star formation

    NASA Astrophysics Data System (ADS)

    Bok, B. J.

    1981-04-01

    Five broad areas of potential star formation in our galaxy and the Magellanic Clouds are presented. The role of gravitational collapse in concentrating matter into eventual stars is examined briefly. The five areas of research are: (1) giant molecular clouds with dimensions of 50 to 100 parsecs and masses equivalent to 100,000 or more suns; (2) the proximity of an H II emission nebula with an embedded or attached cluster of association of O and B stars to a large molecular cloud; (3) the larger so-called globules, notably the roundish and often isolated dark nebulae called Barnard objects, of which 200 or so have been identified within 500 parsecs of the sun; (4) close passage or collisions between interstellar clouds; and (5) supernova explosions. The Large Magellanic Clouds are also examined as an example of an area of potential star formation without the protection of a cosmic dust cloud. Finally, the likelihood that many new stars might possess planets and perhaps even life is discussed.

  9. Galaxy Interactions with FIRE: Mapping Star Formation

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge

    2016-01-01

    We utilize a suite of 75 simulations of galaxies in idealised major mergers (stellar mass ratio ~2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Two versions are used, one based on a Kennicult-like subgrid model (Gadget, Springel & Hernquist 2003); the other based on the new Feedback In Realistic Environments model (FIRE, Hopkins et al. 2014). Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at large galacto-centric radii. This effect appears to be stronger in the older Gadget model. Suppression is the disk is also found in the FIRE runs, but at larger scales. This is because tidal torques are weaker in the newer FIRE model, leading to a more extended nuclear starburt. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.

  10. Jet-Induced Star Formation

    SciTech Connect

    van Breugel, W; Fragile, C; Anninos, P; Murray, S

    2003-12-16

    Jets from radio galaxies can have dramatic effects on the medium through which they propagate. We review observational evidence for jet-induced star formation in low ('FR-I') and high ('FR-II') luminosity radio galaxies, at low and high redshifts respectively. We then discuss numerical simulations which are aimed to explain a jet-induced starburst ('Minkowski's Object') in the nearby FR-I type radio galaxy NGC 541. We conclude that jets can induce star formation in moderately dense (10 cm{sup -3}), warm (10{sup 4} K) gas; that this may be more common in the dense environments of forming, active galaxies; and that this may provide a mechanism for 'positive' feedback from AGN in the galaxy formation process.

  11. Star formation in 30 Doradus

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Paresce, F.; Sirianni, M.; Spezzi, L.; Andersen, M.; Panagia, N.; Mutchler, M.; SOC, WFC3

    2010-01-01

    We report on the preliminary results of our investigation of the properties of star formation in the 30 Doradus region, in the Large Magellanic Cloud. This study makes use of the panchromatic observations recently obtained with the Wide Field Camera 3 (WFC3) on board the HST in a number of broad- and narrow-band filters at visible and near infrared wavelengths (U, B, V, Halpha, I, J, H). The data clearly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using both young main sequence stars and old red giants, showing that the two populations have different extinction properties, and use this information to derive a statistical reddening correction for each star in the field. We then search for pre-main sequence stars looking for objects with a strong (> 5 sigma) Halpha excess emission and find more than 1000 of them over the entire field. Comparison of their location in the H-R diagram with theoretical pre-main sequence evolutionary tracks reveals that about half of these objects have an age of 3 Myr, compatible with that of the massive stars in the field, whereas the rest have an age of 15 Myr, indicating that more than one episode of star formation has taken place in the recent past in this area. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this programme.

  12. Star formation in bulgeless late type spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Das, M.; Ramya, S.; Sengupta, C.; Mishra, K.

    We present radio and follow-up optical observations of a sample of bulgeless late type spiral galaxies. We searched for signs of nuclear activity and disk star formation in the sample galaxies. Interaction induced star formation can often trigger bulge formation. We found significant radio emission associated with star formation in two sample galaxies, NGC3445 and NGC4027, both of which are tidally interacting with nearby companions. For the others, the star formation was either absent or limited to only localized regions in the disk. Both galaxies also have oval bars that are possibly pseudobulges that may later evolve into bulges. We did follow up optical Hα imaging and nuclear spectroscopy of NGC3445 and NGC4027 using the Himalayan Chandra Telescope (HCT). The Hα emission is mainly associated with strong spiral arms that have been triggered by the tidal interact1ions. The nuclear spectra of both galaxies indicate ongoing nuclear star formation but do not show signs of AGN activity. We thus conclude that star formation in bulgeless galaxies is generally low but is enhanced when the galaxies interact with nearby companions; this activity may ultimately lead to the formation of bulges in these galaxies.

  13. Star formation and extinct radioactivities

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1984-01-01

    An assessment is made of the evidence for the existence of now-extinct radioactivities in primitive solar system material, giving attention to implications for the early stages of sun and solar system formation. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed, with emphasis on these disturbances able to generate fresh radioactivities. A one-solar mass red giant star on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system.

  14. Feedback During Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei; Tan, Jonathan C.; Zhang, Yichen

    2016-01-01

    We present models of photoionization of massive protostellar cores, and show the impact of this ionization feedback on the efficiency of star formation and its observational features. Based on the Core Accretion scenario, we construct the collapse model of rotating massive-protostellar cloud cores together with a protostellar evolutional calculation, including feedback effects from a MHD disk wind, photoionization and radiation pressure. First, the MHD wind creates a bipolar outflow whose opening angle increases over the timescale of mass accretion. The ionizing luminosity dramatically increases after the protostar reaches ~ 5 Msun due to Kelvin-Helmholz contraction, and the MHD wind is photoionized when the protostellar mass reaches ~ 10 - 20 Msun. As the ionizing and bolometric luminosities increase, the outflow opening angle becomes wider due to radiation pressure feedback. By this combination of feedback processes, the envelope is eroded and the mass infall rate is significantly reduced to that arriving only from the disk-shielded equatorial region. At a protostellar mass of ~ 50 - 100 Msun, depending on the initial core properties, the mass accretion is halted by disk photoevaporation. In this way, feedback significantly reduces the star formation efficiency when forming massive stars from massive cloud cores, which could produce a cutoff at the high-mass end of the initial mass function. Along this evolutionary calculation, we also compute the detailed structure of the photoionized regions using a ray-tracing radiative transfer code and evaluate their emission signatures. Their free-free continuum and recombination line emissions are consistent with the variety of observed radio sources associated with massive protostars, i.e., jets and ultra/hyper-compact HII regions. The comparison between our models and such observations enables us to better define the evolutionary sequence of massive star formation.

  15. Quenching star formation: insights from the local main sequence

    NASA Astrophysics Data System (ADS)

    Leslie, S. K.; Kewley, L. J.; Sanders, D. B.; Lee, N.

    2016-01-01

    The so-called star-forming main sequence of galaxies is the apparent tight relationship between the star formation rate and stellar mass of a galaxy. Many studies exclude galaxies which are not strictly `star forming' from the main sequence, because they do not lie on the same tight relation. Using local galaxies in the Sloan Digital Sky Survey, we have classified galaxies according to their emission line ratios, and studied their location on the star formation rate-stellar mass plane. We find that galaxies form a sequence from the `blue cloud' galaxies which are actively forming stars, through a combination of composite, Seyfert, and low-ionization nuclear emission-line region galaxies, ending as `red-and-dead' galaxies. The sequence supports an evolutionary pathway for galaxies in which star formation quenching by active galactic nuclei plays a key role.

  16. Star Formation in Henize 206

    NASA Technical Reports Server (NTRS)

    2004-01-01

    explosion millions of years ago. The shock waves from that explosion impacted a cloud of nearby hydrogen gas, compressed it, and started a new generation of star formation. The death of one star led to the birth of many new stars. This is particularly evident in the MIPS inset, where the 24-micron emission peaks correspond to newly formed stars. The ultraviolet and visible-light photons from the new stars are absorbed by surrounding dust and re-radiated at longer infrared wavelengths, where it is detected by Spitzer.

    This emission nebula was cataloged by Karl Henize (HEN-eyes) while spending 1948-1951 in South Africa doing research for his Ph.D. dissertation at the University of Michigan. Henize later became a NASA astronaut and, at age 59, became the oldest rookie to fly on the Space Shuttle during an eight-day flight of the Challenger in 1985. He died just short of his 67th birthday in 1993 while attempting to climb the north face of Mount Everest, the world's highest peak.

  17. Relativistic jets and star formation

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey Vincent; Mukherjee, Dipanjan; Wagner, Alex; Slatyer Sutherland, Ralph

    2015-08-01

    We are conducting simulations of jets interacting with molecular and atomic gas on scales of a few kpc in forming galaxies. Competing processes, such as the dispersion of gas in the galaxy and star formation in the high-pressure environment determine whether positive or negative feedback predominates. We shall present our new simulations including an assessment of these different effects. Our simulations also predict the velocity and velocity dispersion of atomic and molecular gas in galaxies, which are undergoing interaction with relativistic jets. These results are of interest to radio and optical spectral imaging observations of galaxies undergoing feedback.

  18. Star formation: Sibling rivalry begins at birth

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin M.

    2015-02-01

    High-resolution astronomical observations of a nearby molecular gas cloud have revealed a quadruplet of stars in the act of formation. The system is arguably the youngest multiple star system detected so far. See Letter p.213

  19. Nuclear Physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  20. STAR FORMATION IN 30 DORADUS

    SciTech Connect

    De Marchi, Guido; Spezzi, Loredana; Sirianni, Marco; Andersen, Morten; Paresce, Francesco; Panagia, Nino; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard; Beccari, Giacomo; Balick, Bruce; Dopita, Michael A.; Frogel, Jay A.; Calzetti, Daniela; Marcella Carollo, C.; Disney, Michael J.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.

    2011-09-20

    Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30 Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4{sigma}) H{alpha} excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than {approx}4 Myr, compatible with the age of the massive stars in the central ionizing cluster R 136, whereas the rest have ages up to {approx}30 Myr, with a median age of {approx}12 Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R 136.

  1. Star Formation in 30 Doradus

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Paresce, Francesco; Panagia, Nino; Beccari, Giacomo; Spezzi, Loredana; Sirianni, Marco; Andersen, Morten; Mutchler, Max; Balick, Bruce; Dopita, Michael A.; Frogel, Jay A.; Whitmore, Bradley C.; Bond, Howard; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.; Windhorst, Rogier A.; Young, Erick T.

    2011-09-01

    Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30 Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4σ) Hα excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than ~4 Myr, compatible with the age of the massive stars in the central ionizing cluster R 136, whereas the rest have ages up to ~30 Myr, with a median age of ~12 Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R 136. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  2. Orion and theories of star formation

    NASA Astrophysics Data System (ADS)

    Larson, R. B.

    1982-10-01

    Small-scale phenomena involved in the formation of stars and molecular clouds are discussed in connection with formation processes occurring in the Orion nebula. The Orion region is noted to display a large scale filamentary structure and complex velocity field, suggesting a turbulent formation process. The effects of gravity, shock compression, and tidal processes are considered, including the sequence of accelerated star formation within a molecular cloud once stars have formed the cloud. It is suggested that massive stars are forming in the centrally located IR source 0.1 pc from the Trapezium and will blow away the surrounding gas relatively soon. Mass spectra from T Tauri and Orion stars are compared, indicating the Orion young star cluster is more evolved, with the associated gas cloud having become denser as massive star formation accelerates accretion.

  3. SUPPRESSION OF STAR FORMATION IN NGC 1266

    SciTech Connect

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros; Appleton, Philip N.; Ogle, Patrick M.; Lacy, Mark; Lonsdale, Carol J.; Nyland, Kristina; Meier, David S.; Cales, Sabrina L.; Chang, Philip; Davis, Timothy A.; De Zeeuw, P. T.; Martín, Sergio

    2015-01-01

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at M-dot {sub out}≈110 M{sub ⊙} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ☉} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (≲ 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (Σ{sub SFR}) to the gas surface density (Σ{sub H{sub 2}}) indicates that SF is suppressed by a factor of ≈50 compared to normal star-forming galaxies if all gas is forming stars, and ≈150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-σ relation.

  4. Processes and problems in secondary star formation

    SciTech Connect

    Klein, R.I.; Whitaker, R.W.; Sandford M.T. II

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10/sup 4/ years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields.

  5. Star formation sustained by gas accretion

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge; Elmegreen, Bruce G.; Muñoz-Tuñón, Casiana; Elmegreen, Debra Meloy

    2014-07-01

    Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.

  6. Triggered star formation in the environment of young massive stars

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Naab, T.; Heitsch, F.; Burkert, A.

    Recent observations with the Spitzer Space Telescope show clear evidence that star formation takes place in the surrounding of young massive O-type stars, which are shaping their environment due to their powerful radiation and stellar winds. In this work we investigate the effect of ionising radiation of massive stars on the ambient interstellar medium (ISM): In particular we want to examine whether the UV-radiation of O-type stars can lead to the observed pillar-like structures and can trigger star formation. We developed a new implementation, based on a parallel Smooth Particle Hydrodynamics code (VINE), that allows an efficient treatment of the effect of ionising radiation from massive stars on their turbulent gaseous environment. Here we present first results at very high resolution. We show that ionising radiation can trigger the collapse of an otherwise stable molecular cloud. The arising structures resemble observed structures (e.g. the pillars of creation in the Eagle Nebula (M16) or the Horsehead Nebula B33). Including the effect of gravitation we find small regions that can be identified as formation places of individual stars. We conclude that ionising radiation from massive stars alone can trigger substantial star formation in molecular clouds.

  7. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  8. Star formation around isolated T Tauri stars?

    NASA Astrophysics Data System (ADS)

    Hoff, W.; Pfau, W.; Henning, T.

    1996-02-01

    The authors want to present their search for young stellar objects around the two isolated T Tau stars TW Hya (Rucinski and Krautter 1983) and CoD -29°8887 (de la Reza et al. 1989). From the known spectroscopic features of these objects, TW Hya is to be classified as a classical T Tau star (CTTS), but it is not associated with a dark cloud region like all other known CTTSs. The same situation turns out for the weak-line T Tau star (WTTS) CoD -29°8887. One possible explanation for their isolated position is that they have formed from small dark clouds or globules, which were later destroyed. The authors carried out two ROSAT PSPC observations pointing at TW Hya and CoD -29°8887 and used a source detection procedure considering all the standard ROSAT energy bands to test this hypothesis. Spectroscopic follow-up observations were made for 24 possible T Tauri candidates, but there are no further low-mass young stellar objects in the vicinity of the two targets. The study shows that the objects are definitely not formed in a cluster at the positions of the objects.

  9. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  10. A simple theory of bimodal star formation

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, J.

    1987-01-01

    A model of bimodal star formation is presented, wherein massive stars form in giant molecular clouds (GNC), at a rate regulated by supernovae energy feedback through the interstellar medium, the heat input also ensuring that the initial mass function (IMF) remains skewed towards massive stars. The low mass stars form at a constant rate. The formation of the GMC is governed by the dynamics of the host galaxy through the rotation curve and potential perturbations such as a spiral density wave. The characteristic masses, relative normalizations, and rates of formation of the massive and low mass modes of star formation may be tightly constrained by the requirements of the chemical evolution in the Solar Neighborhood. Good fits were obtained for the age metallicity relation and the metallicity structure of thin disk and spheroid stars only for a narrow range of these parameters.

  11. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, ~10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, ~25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  12. Star-forming galaxy models: Blending star formation into TREESPH

    NASA Technical Reports Server (NTRS)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  13. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    SciTech Connect

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  14. Sub-arcsec mid-IR observations of NGC 1614: Nuclear star formation or an intrinsically X-ray weak AGN?

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, M.; Colina, L.; Alonso-Herrero, A.; Usero, A.; Díaz-Santos, T.; García-Burillo, S.; Alberdi, A.; Gonzalez-Martin, O.; Herrero-Illana, R.; Imanishi, M.; Levenson, N. A.; Pérez-Torres, M. A.; Ramos Almeida, C.

    2015-12-01

    We present new mid-infrared (mid-IR) N-band spectroscopy and Q-band photometry of the local luminous IR galaxy NGC 1614, one of the most extreme nearby starbursts. We analyse the mid-IR properties of the nucleus (central 150 pc) and four regions of the bright circumnuclear (diameter˜600 pc) star-forming (SF) ring of this object. The nucleus differs from the circumnuclear SF ring by having a strong 8-12 μm continuum (low 11.3 μm PAH equivalent width). These characteristics, together with the nuclear X-ray and sub-mm properties, can be explained by an X-ray weak active galactic nucleus (AGN), or by peculiar SF with a short molecular gas depletion time and producing an enhanced radiation field density. In either case, the nuclear luminosity (LIR < 6 × 1043 erg s-1) is only <5 per cent of the total bolometric luminosity of NGC 1614. So this possible AGN does not dominate the energy output in this object. We also compare three star formation rate (SFR) tracers (Pa α, 11.3 μm PAH, and 24 μm emissions) at 150 pc scales in the circumnuclear ring. In general, we find that the SFR is underestimated (overestimated) by a factor of 2-4 (2-3) using the 11.3 μm PAH (24 μm) emission with respect to the extinction corrected Pa α SFR. The former can be explained because we do not include diffuse polycyclic aromatic hydrocarbon (PAH) emission in our measurements, while the latter might indicate that the dust temperature is particularly warmer in the central regions of NGC 1614.

  15. Properties and Formation of Star Clusters

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.

    2016-03-01

    Many key problems in astrophysics involve research on the properties of star clusters, for example: stellar evolution and nucleosynthesis, the history of star formation in galaxies, formation dynamics of galaxies and their subsystems, the calibration of the fundamental distance scale in the universe, and the luminosity functions of stars and star clusters. This review is intended to familiarize the reader with modern observational and theoretical data on the formation and evolution of star clusters in our galaxy and others. Unsolved problems in this area are formulated and research on ways to solve them is discussed. In particular, some of the most important current observational and theoretical problems include: (1) a more complete explanation of the physical processes in molecular clouds leading to the formation and evolution of massive star clusters; (2) observation of these objects in different stages of evolution, including protoclusters, at wavelengths where interstellar absorption is minimal; and, (3) comparison of the properties of massive star clusters in different galaxies and of galaxies during the most active star formation phase at different red shifts. The main goal in solving these problems is to explain the variations in the abundance of chemical elements and in the multiple populations of stars in clusters discovered at the end of the twentieth century.

  16. Star-formation in the Coalsack Loop

    NASA Astrophysics Data System (ADS)

    Golev, V.; Kaltcheva, N.

    The giant Galactic H II region known as the Coalsack Loop, which is associated with the H I supershell GSH 305+01-24, provides a unique opportunity to study the OB-star influence on the surrounding interstellar material. The bright OB-stars within this region contribute a sufficient wind injection energy consistent with the observed size and expansion velocity of the supershell. The derived age distribution of the OB-stars is suggestive for a continuous star-formation where the youngest stars are located at the supershell's periphery.

  17. The Star Formation Relation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Schruba, Andreas

    2013-03-01

    I review observational studies of the large-scale star formation process in nearby galaxies. A wealth of new multi-wavelength data provide an unprecedented view on the interplay of the interstellar medium and (young) stellar populations on a few hundred parsec scale in 100+ galaxies of all types. These observations enable us to relate detailed studies of star formation in the Milky Way to the zoo of galaxies in the distant universe. Within the disks of spiral galaxies, recent star formation strongly scales with the local amount of molecular gas (as traced by CO) with a molecular gas depletion time of ˜2 Gyr. This is consistent with the picture that stars form in giant molecular clouds that have about universal properties. Galaxy centers and star-bursting galaxies deviate from this normal trend as they show enhanced star formation per unit gas mass suggesting systematic changes in the molecular gas properties and especially the dense gas fraction. In the outer disks of spirals and in dwarf galaxies, the decreasing availability of atomic gas inevitably limits the amount of star formation, though with large local variations. The critical step for the gas-stars cycle seems therefore to be the formation of a molecular gas phase, a process that shows complex dependencies on various environmental properties and is being investigated by intensive simulational work.

  18. Star formation in the Magellanic clouds

    NASA Technical Reports Server (NTRS)

    Frogel, Jay A.

    1987-01-01

    Because of their proximity, the Magellanic Clouds provide the opportunity to conduct a detailed study of the history and current state of star formation in dwarf irregular galaxies. There is considerable evidence that star formation in the Clouds was and is proceeding in a manner different from that found in a typical well-ordered spiral galaxy. Star formation in both Clouds appears to have undergone a number of relatively intense bursts. There exist a number of similarities and differences in the current state of star formation in the Magellanic Clouds and the Milky Way. Examination of Infrared Astronomy Satellite (IRAS) sources with ground based telescopes allows identification of highly evolved massive stars with circumstellar shells as well as several types of compact emission line objects.

  19. Star formation rate in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Cignoni, Michele

    2006-08-01

    This thesis develops a method for obtaining the star formation histories of a mixed, resolved population through the use of color-magnitude diagrams (CMDs). The method is applied to the derivation of the local star formation rate, modeling observations of the Hipparcos satellite wigth synthetic CMDs computed for different star formation histories with an updated stellar evolution library. Parallax and photometric uncertainties are included explicitly and corrected using the Bayesian Richardson-Lucy algorithm. We find that the solar neighborhood star formation rate has a characteristic timescale for variation of about 6 Gyr, with a maximum activity close to 3 Gyr ago. This suggests a global, rather than local, star forming event. The summary and conclusions are included here, the full thesis is available at the URL listed above.

  20. The void galaxy survey: Star formation properties

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-05-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and H I masses to measure the specific SFRs (SFR/M*) and star formation efficiencies ({SFR/{M }_H I}). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, `the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and H I mass are similar to those of the galaxies in these field regions. Their SFR α is slightly elevated than the galaxies in the field for a given total H I mass. In the global star formation picture presented by Kennicutt-Schmidt, VGS galaxies fall into the regime of low average star formation and correspondingly low H I surface density. Their mean {SFR α /{M}_{H I} and SFR α/M* are of the order of 10- 9.9 yr- 1. We conclude that while the large-scale underdense environment must play some role in galaxy formation and growth through accretion, we find that even with respect to other galaxies in the more mildly underdense regions, the increase in star formation rate is only marginal.

  1. Nonuniversal Star Formation Efficiency in Turbulent ISM

    NASA Astrophysics Data System (ADS)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2016-08-01

    We present a study of a star formation prescription in which star formation efficiency (SFE) depends on local gas density and turbulent velocity dispersion, as suggested by direct simulations of SF in turbulent giant molecular clouds (GMCs). We test the model using a simulation of an isolated Milky-Way-sized galaxy with a self-consistent treatment of turbulence on unresolved scales. We show that this prescription predicts a wide variation of local SFE per free-fall time, {ε }{ff} ∼ 0.1%–10%, and gas depletion time, {t}{dep} ∼ 0.1–10 Gyr. In addition, it predicts an effective density threshold for star formation due to suppression of {ε }{ff} in warm diffuse gas stabilized by thermal pressure. We show that the model predicts star formation rates (SFRs) in agreement with observations from the scales of individual star-forming regions to the kiloparsec scales. This agreement is nontrivial, as the model was not tuned in any way and the predicted SFRs on all scales are determined by the distribution of the GMC-scale densities and turbulent velocities σ in the cold gas within the galaxy, which is shaped by galactic dynamics. The broad agreement of the star formation prescription calibrated in the GMC-scale simulations with observations both gives credence to such simulations and promises to put star formation modeling in galaxy formation simulations on a much firmer theoretical footing.

  2. Nonuniversal Star Formation Efficiency in Turbulent ISM

    NASA Astrophysics Data System (ADS)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2016-08-01

    We present a study of a star formation prescription in which star formation efficiency (SFE) depends on local gas density and turbulent velocity dispersion, as suggested by direct simulations of SF in turbulent giant molecular clouds (GMCs). We test the model using a simulation of an isolated Milky-Way-sized galaxy with a self-consistent treatment of turbulence on unresolved scales. We show that this prescription predicts a wide variation of local SFE per free-fall time, {ɛ }{ff} ˜ 0.1%–10%, and gas depletion time, {t}{dep} ˜ 0.1–10 Gyr. In addition, it predicts an effective density threshold for star formation due to suppression of {ɛ }{ff} in warm diffuse gas stabilized by thermal pressure. We show that the model predicts star formation rates (SFRs) in agreement with observations from the scales of individual star-forming regions to the kiloparsec scales. This agreement is nontrivial, as the model was not tuned in any way and the predicted SFRs on all scales are determined by the distribution of the GMC-scale densities and turbulent velocities σ in the cold gas within the galaxy, which is shaped by galactic dynamics. The broad agreement of the star formation prescription calibrated in the GMC-scale simulations with observations both gives credence to such simulations and promises to put star formation modeling in galaxy formation simulations on a much firmer theoretical footing.

  3. The Center for Star Formation Studies

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Bell, K. R.; Laughlin, G.

    2002-01-01

    The Center for Star Formation Studies, a consortium of scientists from the Space Science Division at Ames and the Astronomy Departments of the University of California at Berkeley and Santa Cruz, conducts a coordinated program of theoretical research on star and planet formation. Under the directorship of D. Hollenbach (Ames), the Center supports postdoctoral fellows, senior visitors, and students; meets regularly at Ames to exchange ideas and to present informal seminars on current research; hosts visits of outside scientists; and conducts a week-long workshop on selected aspects of star and planet formation each summer.

  4. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing

  5. Educational Applications of Star Formation Research

    NASA Astrophysics Data System (ADS)

    Waller, William; Clemens, Cathy; Green, Paul

    2005-07-01

    Research into the formation of stars involves many exciting physical processes -- from vast magnetized clouds collapsing under their own weight, to thermonuclear reactions igniting inside dense stellar cores, to powerful jets being shot from proto-planetary disks. Star formation research also touches on many aspects of the educational enterprise that is ongoing in schools, museums, and other community venues. In this presentation, we will (1) show how the science of star formation relates to the various learning goals and standards that currently underlie formal K-14 science and technology education, (2) describe the various opportunities that exist for space scientists to get involved in educational outreach, and (3) provide some examples of available resources that support educational outreach involving star formation.

  6. Star formation relations in nearby molecular clouds

    SciTech Connect

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  7. How Galactic Environment Regulates Star Formation

    NASA Astrophysics Data System (ADS)

    Meidt, Sharon E.

    2016-02-01

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.

  8. The nuclear physics of neutron stars

    SciTech Connect

    Piekarewicz, J.

    2014-05-09

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  9. A Galaxy Blazes With Star Formation

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Scientists using NASA's Hubble Space Telescope (HST) are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. One such galaxy, Galaxy NGC 3310, a hotbed of star formation showcased in this HST photograph, is forming clusters of stars at a prodigious rate. The image shows several hundred star clusters, visible as the bright blue diffuse objects tracing the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more that one hundred million years. This suggests the starburst 'turned on' more than 100 million years ago.

  10. Dissecting star formation in N159

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy

    2013-10-01

    We propose to investigate star formation as a function of time, space, and mass in the Large Magellanic Cloud star formation region N159. We will combine HST photometry in V, I, J, H, and Halpha equivalent filters with our already scheduled Atacama Large {sub} Millimeter Array {ALMA; PI Fukui} and our existing Australia Telescope Compact Array {ATCA; PI Seale and PI Chen} observations. These datasets will allow us for the first time to completely characterize protostars, HII regions, and molecular gas in this reduced-metallicity region. The region is a remarkable laboratory, containing at once a spontaneously cluster-forming giant molecular cloud {GMC}, an arguably triggered star-forming GMC, and a more quiescent GMC.We will use color-magnitude diagram {CMD} and spectral energy distribution {SED} modeling to separate redenning, circumstellar dust emission, and pre-main-sequence spectral type for each star, mapping not only current star formation activity but its history {over the last 50Myr using pre-main-sequence stars, and over a Hubble time using classical CMD fitting}. We will use Halpha excess to further characterize the HII regions and all currently accreting protostars with ages up to 50 Myr. We will resolve many limitations of previous Spitzer-based star formation studies, and search for variations in the stellar initial mass function. We will test whether there is a gas density threshold for star formation, and investigate the extent to which environment and feedback also play a role in how galaxies evolve by turning gas into stars.

  11. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup −3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  12. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa; Elmegreen, Bruce G.; Rubin, Vera C.; Józsa, Gyula I. G.; Struve, Christian

    2013-10-01

    We examined star formation in two very luminous (M{sub V} = –22 to –23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep Hα images. We combine these Hα images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. Hα traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of Hα further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  13. Nearby regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Bally, John; Cunningham, Nathaniel; Moeckel, Nickolas; Smith, Nathan

    Observations of the nearest regions of massive star formation such as Orion are reviewed. Early-type stars in the local OB associations, as well as their superbubbles and supershells provide a fossil record of massive star birth in the Solar vicinity over about the last 40 Myr. This record shows that most massive stars are born from dense, high-pressure, hot cores which spawn transient clusters that dissipate into the field soon after formation. A large fraction (15 to 30%) of massive stars are high-velocity runaways moving at more than 20 km s^{-1}. High-mass stars have a larger companion fraction than their lower-mass siblings. The Orion star forming complex contains the nearest site of on-going massive star formation. Studies of the Orion Nebula and the dense molecular cloud core located immediately behind the HII region provide our sharpest view of massive star birth. This region has formed a hierarchy of clusters within clusters. The Trapezium, OMC-1S, and OMC-1 regions represent three closely spaced sub-clusters within the more extended Orion Nebula Cluster. The oldest of these sub-clusters, which consists of the Trapezium stars, has completely emerged from its natal core. The OMC-1S and OMC-1 regions, are still highly embedded and forming clusters of additional moderate and high mass stars. Over a dozen YSOs embedded in OMC-1S are driving jets and outflows, many of which are injecting energy and momentum into the Orion Nebula. Recent proper motion measurements indicate that the Becklin-Neugebauer object is a high-velocity star moving away from the OMC1 core with a velocity of 30 km s^{-1}, making it the youngest high-velocity star known. Source I may be moving in the opposite direction with a velocity of about 12 km s^{-1}. The projected separation between source I and BN was less than few hundred AU about 500 years ago. The spectacular bipolar molecular outflow and system of shock-excited H_2 fingers emerging from OMC-1 has a dynamical age of about 1100

  14. High mass star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Good, J. C.

    1987-01-01

    The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.

  15. Local-density-driven clustered star formation

    NASA Astrophysics Data System (ADS)

    Parmentier, G.; Pfalzner, S.

    2013-01-01

    Context. A positive power-law trend between the local surface densities of molecular gas, Σgas, and young stellar objects, Σ ⋆ , in molecular clouds of the solar neighbourhood has recently been identified. How it relates to the properties of embedded clusters, in particular to the recently established radius-density relation, has so far not been investigated. Aims: We model the development of the stellar component of molecular clumps as a function of time and initial local volume density. Our study provides a coherent framework able to explain both the molecular-cloud and embedded-cluster relations quoted above. Methods: We associate the observed volume density gradient of molecular clumps to a density-dependent free-fall time. The molecular clump star formation history is obtained by applying a constant star formation efficiency per free-fall time, ɛff. Results: For the volume density profiles typical of observed molecular clumps (i.e. power-law slope ≃ -1.7), our model gives a star-gas surface-density relation of the form Σ⋆ ∝ Σgas2, which agrees very well with the observations. Taking the case of a molecular clump of mass M0 ≃ 104 M⊙ and radius R ≃ 6 pc experiencing star formation during 2 Myr, we derive what star formation efficiency per free-fall time matches the normalizations of the observed and predicted (Σ ⋆ , Σgas) relations best. We find ɛff ≃ 0.1. We show that the observed growth of embedded clusters, embodied by their radius-density relation, corresponds to a surface density threshold being applied to developing star-forming regions. The consequences of our model in terms of cluster survivability after residual star-forming gas expulsion are that, owing to the locally high star formation efficiency in the inner part of star-forming regions, global star formation efficiency as low as 10% can lead to the formation of bound gas-free star clusters.

  16. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  17. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    SciTech Connect

    Lee, Eve J.; Chang, Philip; Murray, Norman

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  18. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  19. Star Formation through the Chemical Lens

    NASA Astrophysics Data System (ADS)

    Tassis, K.

    2013-09-01

    Star formation is the process that connects the physical and the observable universe, that lights up the stars and creates planets. Yet to this day our understanding of it remains highly uncertain: the mechanism that is responsible for the fragmentation of star-forming clouds and that regulates the contraction of interstellar gas to form pre-stellar objects and protostars remains the subject of intense debate. At the heart of the problem lies the difficulty in observing star-forming sites and obtaining directly the initial conditions of star formation: molecular hydrogen, the raw material of star formation and the dominant constituent of interstellar clouds that act as stellar nurseries, does not have any transitions that are excitable and thus observable at the chillingly low temperatures of molecular clouds. For this reason, observations of star-forming sites rely heavily on the use of molecular tracers? chemical compounds present in molecular clouds. However, the abundance of these tracers is not constant: it is a result of a complex network of chemical reactions, and it depends on the age, density, and dynamical history of the star-forming site. In this talk, I will discuss how the coupling between chemistry and dynamics can help us probe the initial conditions of star formation and the origin of protostars. To this end, we have studied a variety of dynamical models describing the evolution of prestellar molecular cloud cores that cover the entire spectrum of proposed mechanisms, including pure hydrodynamical collapse and magnetically mediated collapse at various levels of importance of the magnetic field in the cloud dynamics. These models have been coupled to a network of chemical reactions that follow the relative abundances for ~100 molecular species, by solving the nonequilibrium chemical reactions for the first time simultaneously with the dynamical equations. I will present highlights from the results of this work, including newly proposed observables

  20. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star`s equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  1. Nuclear ``pasta'' formation

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2013-12-01

    The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.

  2. Star Formation from Galaxies to Globules

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2002-09-01

    The origin of the empirical laws of galactic scale star formation is considered in view of the self-similar nature of interstellar gas and the observation that most local clusters are triggered by specific high-pressure events. The empirical laws suggest that galactic scale gravity is involved in the first stages of star formation, but they do not identify the actual triggering mechanisms for clusters in the final stages. Many triggering processes satisfy the empirical laws, including turbulence compression and expanding shell collapse. The self-similar nature of the gas and associated young stars suggests that turbulence is more directly involved, but the energy source for this turbulence is not clear, and the small-scale morphology of gas around most embedded clusters does not look like a random turbulent flow. Most clusters appear to be triggered by other nearby stars. Such a prominent local influence makes it difficult to understand the universality of the Kennicutt and Schmidt laws on galactic scales. A unified view of multiscale star formation avoids most of these problems. The Toomre and Kennicutt surface density thresholds, along with the large-scale gas and star formation morphology, imply that ambient self-gravity produces spiral arms and giant cloud complexes and at the same time drives much of the turbulence that leads to self-similar structures. Localized energy input from existing clusters and field supernovae drives turbulence and cloud formation too, while triggering clusters directly in preexisting clouds. The hierarchical structure in the gas made by turbulence ensures that the triggering time scales with size, thereby giving the Schmidt law over a wide range of scales and the size-duration correlation for young star fields. Reanalysis of the Schmidt law from a local point of view suggests that the efficiency of star formation is determined by the fraction of the gas above a critical density of around 105 m(H2) cm-3. Such high densities probably

  3. Star Formation in the First Galaxies

    NASA Astrophysics Data System (ADS)

    Bromm, V.

    2016-05-01

    The formation of the first stars and galaxies mark the end of the cosmic dark ages, thus transforming the universe from its initial, pristine state into one of increasing complexity. We will review the current understanding, based on numerical simulations, of this crucial transition in early cosmic history. Specifically, the epoch of first light is predicted to be a two-stage process, where predominantly massive Population III stars form out of pure hydrogen-helium gas in small dark-matter minihalos, followed by Population II stars out of already metal-enriched material inside more massive host halos. Observations with upcoming next-generation telescopes promise to test our emerging theoretical picture of star formation in the first galaxies in ever inceasing detail.

  4. Cepheid Associates: Star Formation and Distance Calibration

    NASA Astrophysics Data System (ADS)

    Remage Evans, Nancy

    2013-10-01

    XMM-Newton observations are powerful discriminants between young stars and the old field population because of the well known relation between the age of low mass stars and their X-ray strength. We use this property to identify young resolved physical companions of Cepheids and also low mass members of clusters containing Cepheids. This will probe the maximum separation in Cepheid binaries, a diagnostic of star formation. The target list contains the 5 brightest Cepheids in the recent analysis of Cepheids in clusters (Anderson, et al. 2013). This project will identify low mass cluster members which provide a calibration of the distances of clusters.

  5. Formation Channels for Blue Straggler Stars

    NASA Astrophysics Data System (ADS)

    Davies, Melvyn B.

    In this chapter we consider two formation channels for blue straggler stars: (1) the merger of two single stars via a collision, and (2) those produced via mass transfer within a binary. We review how computer simulations show that stellar collisions are likely to lead to relatively little mass loss and are thus effective in producing a young population of more-massive stars. The number of blue straggler stars produced by collisions will tend to increase with cluster mass. We review how the current population of blue straggler stars produced from primordial binaries decreases with increasing cluster mass. This is because exchange encounters with third, single stars in the most massive clusters tend to reduce the fraction of binaries containing a primary close to the current turn-off mass. Rather, their primaries tend to be somewhat more massive and have evolved off the main sequence, filling their Roche lobes in the past, often converting their secondaries into blue straggler stars (but more than 1 Gyr or so ago and thus they are no longer visible today as blue straggler stars).

  6. NUCLEAR STAR-FORMING RING OF THE MILKY WAY: SIMULATIONS

    SciTech Connect

    Kim, Sungsoo S.; Jeon, Myoungwon; Saitoh, Takayuki R.; Figer, Donald F.; Merritt, David; Wada, Keiichi

    2011-07-01

    We present hydrodynamic simulations of gas clouds in the central kpc region of the Milky Way that is modeled with a three-dimensional bar potential. Our simulations consider realistic gas cooling and heating, star formation, and supernova feedback. A ring of dense gas clouds forms as a result of X{sub 1}-X{sub 2} orbit transfer, and our potential model results in a ring radius of {approx}200 pc, which coincides with the extraordinary reservoir of dense molecular clouds in the inner bulge, the Central Molecular Zone (CMZ). The gas clouds accumulated in the CMZ can reach high enough densities to form stars, and with an appropriate choice of simulation parameters, we successfully reproduce the observed gas mass and the star formation rate (SFR) in the CMZ, {approx}2 x 10{sup 7} M{sub sun} and {approx}0.1 M{sub sun} yr{sup -1}. Star formation in our simulations takes place mostly in the outermost X{sub 2} orbits, and the SFR per unit surface area outside the CMZ is much lower. These facts suggest that the inner Galactic bulge may harbor a mild version of the nuclear star-forming rings seen in some external disk galaxies. Furthermore, from the relatively small size of the Milky Way's nuclear bulge, which is thought to be a result of sustained star formation in the CMZ, we infer that the Galactic inner bulge probably had a shallower density profile or stronger bar elongation in the past.

  7. Fragmentation of interstellar clouds and star formation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1982-01-01

    The principal issues are addressed: the fragmentation of molecular clouds into units of stellar mass and the impact of star formation on molecular clouds. The observational evidence for fragmentation is summarized, and the gravitational instability described of a uniform spherical cloud collapsing from rest. The implications are considered of a finite pressure for the minimum fragment mass that is attainable in opacity-limited fragmentation. The role of magnetic fields is discussed in resolving the angular momentum problem and in making the collapse anisotropic, with notable consequences for fragmentation theory. Interactions between fragments are described, with emphasis on the effect of protostellar winds on the ambient cloud matter and on inhibiting further star formation. Such interactions are likely to have profound consequences for regulating the rate of star formation and on the energetics and dynamics of molecular clouds.

  8. A LAW FOR STAR FORMATION IN GALAXIES

    SciTech Connect

    Escala, Andres

    2011-07-01

    We study the galactic-scale triggering of star formation. We find that the largest mass scale not stabilized by rotation, a well-defined quantity in a rotating system and with clear dynamical meaning, strongly correlates with the star formation rate in a wide range of galaxies. We find that this relation can be understood in terms of self-regulation toward marginal Toomre stability and the amount of turbulence allowed to sustain the system in this self-regulated quasi-stationary state. We test such an interpretation by computing the predicted star formation rates for a galactic interstellar medium characterized by a lognormal probability distribution function and find good agreement with the observed relation.

  9. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star's equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  10. Formation of star tracking reticles

    NASA Technical Reports Server (NTRS)

    Smith, W. O.; Toft, A. R. (Inventor)

    1974-01-01

    The present application is directed towards a process for producing high resolution, substantially non-reflective reticles or choppers suitable for use for transmitting in both the visible and near ultra-violet regions, able to withstand reasonable handling and extreme environmental conditions, and capable of operating at speeds of from 2800 to about 9000 revolutions per minute without distortion. In particular, the present invention is directed towards the production or reticles having a quartz base vacuum coated with chromium, chromium-silver alloy, and silver with electrodeposited copper and black chromium thereon, respectively, in the form of a reticle pattern. The quartz permits the transmission of light while the pattern is opaque to light. The reticles of the present invention are intended for use in optical trackers, such as star trackers used in outer space.

  11. Star formation around supermassive black holes.

    PubMed

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole. PMID:18719276

  12. Far-IR selected star formation regions

    NASA Technical Reports Server (NTRS)

    Jaffe, D. T.; Hildebrand, R. H.; Keene, J.; Harper, D. A.; Loewenstein, R. F.; Moran, J. M.

    1984-01-01

    Detailed far-IR observations and complemenary submillimeter, 5 GHz continuum and c(18)0 observations of a sample of far-IR selected luminous regions of star formation. The clouds and that the exciting stars lie deep within these condensations. The far-IR sources have diversely shaped 40 micron to 180 micron spectra even through their 60 micron to 100 micron color temperatures are similar. The radio and far-IR results together show that the exciting stars are in clusters containing either zero-age main sequence and pre-main sequence stars or consisting entirely of premain sequence objects. C(18)0 and submillimeter observations imply gas densities approximately .00005 - high enough to make t(sub dust) approximately t(sub gas).

  13. Far-infrared selected star formation regions

    NASA Technical Reports Server (NTRS)

    Harper, D. A.; Loewenstein, R. F.; Moran, J. M.; Jaffe, D. T.; Hildebrand, R. H.; Keene, J.

    1984-01-01

    Detailed far-IR observations and complementary submillimeter, 5 GHz continuum and C(O-18) observations of a sample of eight far-IR selected luminous regions of star formation are presented. The observations show that the sources of luminosity coincide with density peaks in the molecular clouds and that the exciting stars lie deep within these condensations. The far-IR sources have diversely shaped 40-180 micron spectra even though their 60-100 micron color temperatures are similar. The radio and far-IR results together show that the exciting stars are in clusters containing either zero-age main-sequence and pre-main-sequence stars or consisting entirely of pre-main-sequence objects. C(O-18) and submillimeter observations imply gas densities approximately 100,000-high enough to make T(dust) approximately T(gas).

  14. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  15. Grain processes in massive star formation

    NASA Technical Reports Server (NTRS)

    Wolfire, M. G.; Cassinelli, J. P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment.

  16. Star Formation at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  17. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  18. DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-10-20

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  19. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  20. ANALYTICAL STAR FORMATION RATE FROM GRAVOTURBULENT FRAGMENTATION

    SciTech Connect

    Hennebelle, Patrick; Chabrier, Gilles

    2011-12-20

    We present an analytical determination of the star formation rate (SFR) in molecular clouds, based on a time-dependent extension of our analytical theory of the stellar initial mass function. The theory yields SFRs in good agreement with observations, suggesting that turbulence is the dominant, initial process responsible for star formation. In contrast to previous SFR theories, the present one does not invoke an ad hoc density threshold for star formation; instead, the SFR continuously increases with gas density, naturally yielding two different characteristic regimes, thus two different slopes in the SFR versus gas density relationship, in agreement with observational determinations. Besides the complete SFR derivation, we also provide a simplified expression, which reproduces the complete calculations reasonably well and can easily be used for quick determinations of SFRs in cloud environments. A key property at the heart of both our complete and simplified theory is that the SFR involves a density-dependent dynamical time, characteristic of each collapsing (prestellar) overdense region in the cloud, instead of one single mean or critical freefall timescale. Unfortunately, the SFR also depends on some ill-determined parameters, such as the core-to-star mass conversion efficiency and the crossing timescale. Although we provide estimates for these parameters, their uncertainty hampers a precise quantitative determination of the SFR, within less than a factor of a few.

  1. Predictions from star formation in the multiverse

    SciTech Connect

    Bousso, Raphael; Leichenauer, Stefan

    2010-03-15

    We compute trivariate probability distributions in the landscape, scanning simultaneously over the cosmological constant, the primordial density contrast, and spatial curvature. We consider two different measures for regulating the divergences of eternal inflation, and three different models for observers. In one model, observers are assumed to arise in proportion to the entropy produced by stars; in the others, they arise at a fixed time (5 or 10x10{sup 9} years) after star formation. The star formation rate, which underlies all our observer models, depends sensitively on the three scanning parameters. We employ a recently developed model of star formation in the multiverse, a considerable refinement over previous treatments of the astrophysical and cosmological properties of different pocket universes. For each combination of observer model and measure, we display all single and bivariate probability distributions, both with the remaining parameter(s) held fixed and marginalized. Our results depend only weakly on the observer model but more strongly on the measure. Using the causal diamond measure, the observed parameter values (or bounds) lie within the central 2{sigma} of nearly all probability distributions we compute, and always within 3{sigma}. This success is encouraging and rather nontrivial, considering the large size and dimension of the parameter space. The causal patch measure gives similar results as long as curvature is negligible. If curvature dominates, the causal patch leads to a novel runaway: it prefers a negative value of the cosmological constant, with the smallest magnitude available in the landscape.

  2. Multi-epoch very long baseline interferometric observations of the nuclear starburst region of NGC 253: Improved modeling of the supernova and star formation rates

    SciTech Connect

    Rampadarath, H.; Morgan, J. S.; Tingay, S. J.; Lenc, E.

    2014-01-01

    The results of multi-epoch observations of the southern starburst galaxy, NGC 253, with the Australian Long Baseline Array at 2.3 GHz are presented. As with previous radio interferometric observations of this galaxy, no new sources were discovered. By combining the results of this survey with Very Large Array observations at higher frequencies from the literature, spectra were derived and a free-free absorption model was fitted of 20 known sources in NGC 253. The results were found to be consistent with previous studies. The supernova remnant, 5.48-43.3, was imaged with the highest sensitivity and resolution to date, revealing a two-lobed morphology. Comparisons with previous observations of similar resolution give an upper limit of 10{sup 4} km s{sup –1} for the expansion speed of this remnant. We derive a supernova rate of <0.2 yr{sup –1} for the inner 300 pc using a model that improves on previous methods by incorporating an improved radio supernova peak luminosity distribution and by making use of multi-wavelength radio data spanning 21 yr. A star formation rate of SFR(M ≥ 5 M {sub ☉}) < 4.9 M {sub ☉} yr{sup –1} was also estimated using the standard relation between supernova and star formation rates. Our improved estimates of supernova and star formation rates are consistent with studies at other wavelengths. The results of our study point to the possible existence of a small population of undetected supernova remnants, suggesting a low rate of radio supernova production in NGC 253.

  3. The cosmic history of star formation.

    PubMed

    Dunlop, James S

    2011-07-01

    Major advances in observational astronomy over the past 20 years have revolutionized our view of cosmic history, transforming our understanding of how the hot, smooth, early universe evolved into the complex and beautiful universe of stars and galaxies in which we now live. I describe how astronomers have used a range of complementary techniques to map out the rise and fall of star formation over 95% of cosmic time, back to the current observational frontier only ~500 million years after the Big Bang. PMID:21737733

  4. Shocks, star formation and the JWST

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.

    2015-12-01

    The interstellar medium (ISM) is constantly evolving due to unremitting injection of energy in various forms. Energetic radiation transfers energy to the ISM: from the UV photons, emitted by the massive stars, to X- and γ-ray ones. Cosmic rays are another source of energy. Finally, mechanical energy is injected through shocks or turbulence. Shocks are ubiquitous in the interstellar medium of galaxies. They are associated to star formation (through jets and bipolar outflows), life (via stellar winds), and death (in AGB stellar winds or supernovae explosion). The dynamical processes leading to the formation of molecular clouds also generate shocks where flows of interstellar matter collide. Because of their ubiquity, the study of interstellar shocks is also a useful probe to the other mechanisms of energy injection in the ISM. This study must be conducted in order to understand the evolution of the interstellar medium as a whole, and to address various questions: what is the peculiar chemistry associated to shocks, and what is their contribution to the cycle of matter in galaxies ? What is the energetic impact of shocks on their surroundings on various scales, and hence what is the feedback of stars on the galaxies ? What are the scenarios of star formation, whether this star formation leads to the propagation of shocks, or whether it is triggered by shock propagation ? What is the role of shocks in the acceleration of cosmic rays ? Can they shed light on their composition and diffusion processes ? In order to progress on these questions, it is paramount to interpret the most precise observations with the most precise models of shocks. From the observational point of view, the James Webb Space Telescope represents a powerful tool to better address the above questions, as it will allow to observe numerous shock tracers in the infrared range at an unprecedented spatial and spectral resolution.

  5. Triggered Star Formation From Shock to Disk

    NASA Astrophysics Data System (ADS)

    Blackman, Eric

    2014-10-01

    Triggered star formation {TSF} occurs when supersonic flows generated by distant supernova blast waves, stellar winds {wind blown bubbles} or ionization fronts {D-type fronts in HII regions} sweep over a stable cloud. TSF may play a role in massive regions of star formation where winds, HII regions and, eventually, blast-waves sweep through dense, heterogeneous molecular material. In addition TSF has played an important role in discussions of the formation of our own solar system because it offers a natural way of injecting short lived radioactive isotopes {SLRI's} like 26^Al into material which will then form planetary bodies.The purpose of this proposal is to use advanced numerical tools to explore the physics of TSF in greater detail than has been attempted before. Previous studies have not been able to follow triggering past the early stages before a star forms. Our 3-D Adaptive Mesh Refinement {AMR} MHD code contains well tested physics modules which will allow us to track the influence of self-gravity, radiation-transport, cooling by molecules/neutrals/atoms and, finally, the collapse of gas into stars {i.e.condensed gravitating point-like objects or "sink-particles"}. With this tool we will follow triggering well past the formation of the star to explore the creation of accretion disks and their properties. In addition the microphysics routines in the code allow us to make detailed contact with HST observations such as the pillars in the Carina nebula via synthetic observations of line profiles, proper motions, Position-Velocity diagrams and statistics.

  6. What the Spatial Distribution of Stars tells us about Star Formation and Massive Cluster Formation

    NASA Astrophysics Data System (ADS)

    Bressert, Eli; Bastian, N.; Testi, L.; Patience, J.; Longmore, S.

    2012-01-01

    We present a dissertation study on two recent results regarding the clustering properties of young stars. First, we discuss a global study of young stellar object (YSO) surface densities in star forming regions based on a comprehensive collection of Spitzer Space Telescope surveys, which encompasses nearly all star formation in the solar neighbourhood. It is shown that the distribution of YSO surface densities is a smooth distribution, being adequately described by a lognormal function from a few to 103 YSOs pc-2, with a peak at 22 YSOs pc-2 and a dispersion of 0.85. We find no evidence for multiple discrete modes of star-formation (e.g. clustered and distributed) and that not all stars form in clusters. A Herschel Space Observatory study confirms the YSO surface density results by observing and analyzing the prestellar core population in several star forming regions. Secondly, we propose that bound stellar clusters primarily form from dense clouds having escape speeds greater than the sound speed in photo-ionized gas. A list of giant molecular clumps with masses >103 M⊙ that have escape speeds greater than the sound speed in photo-ionized plasma is compiled from the Bolocam Galactic Plane Survey. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We present over ten candidates that will most likely form >103 M⊙ star clusters and two of them that are comparable to NGC 3603 (>104 M⊙). Thus, providing us with an outlook on the next generation of star clusters in the Milky Way and clues to the initial conditions of massive cluster formation.

  7. Turbulence and Star Formation in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hollyday, Gigja; Hunter, Deidre Ann; Little Things Team

    2015-01-01

    We are interested in understanding the nature and role of turbulence in the interstellar medium of dwarf irregular galaxies. Turbulence, resulting from a variety of processes, is a potential source for cloud formation, and thus star formation. We have undertaken an indirect analysis of turbulence via the third (skewness) and fourth (kurtosis) moments of the distribution of atomic hydrogen gas densities using the LITTLE THINGS data for a 40-count sample of nearby (<10.3 Mpc) dwarf galaxies. We followed the formulism used by Burkhart et al. (2010) in a study of the SMC. We found that there is evidence of turbulence in dwarf galaxies at a level comparable to that found in the SMC, but we have found no correlation between integrated star formation rates and integrated kurtosis values nor a clear correlation between kurtosis as a function of radius with gas surface density and star formation profiles. We are grateful for a summer internship provided by the Research Experiences for Undergraduates program at Northern Arizona University, run by Dr. Kathy Eastwood and Dr. David Trilling and funded by the National Science Foundation through grant AST-1004107.

  8. Killing Star Formation in Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a dwarf galaxy falls into the halo of a large galaxy like the Milky Way, how is star formation in the dwarf affected? A collaboration led by Andrew Wetzel (California Institute of Technology and Carnegie Observatories) recently set out to answer this question using observations of nearby galaxies and simulations of the infall process. Observed Quenching: Isolated dwarf galaxies tend to be gas-rich and very actively star-forming. In contrast, most dwarf galaxies within 300 kpc of us (the Milky Way's virial radius) contain little or no cold gas, and they're quiescent: there's not much star formation happening. And this isn't just true of the Milky Way; we observe the same difference in the satellite galaxies surrounding Andromeda galaxy. Once a dwarf galaxy has moved into the gravitational realm of a larger galaxy, the satellite's gas vanishes rapidly and its star formation is shut off — but how, and on what timescale? The known dwarf galaxies in the Local Group (out to 1.6 Mpc) are plotted by their distance from their host vs. their stellar mass. Blue stars indicate actively star-forming dwarfs and red circles indicate quiescent ones. Credit: Wetzel et al. 2015. Timescales for Quiescence: To answer these questions, the authors explored the process of galaxy infall using Exploring the Local Volume in Simulations (ELVIS), a suite of cosmological N-body simulations intended to explore the Local Group. They combined the infall times from the simulations with observational knowledge of the fraction of nearby galaxies that are currently quiescent, in order to determine what timescales are required for different processes to deplete the gas in the dwarf galaxies and quench star formation. Based on their results, two types of quenching culprits are at work: gas consumption (where a galaxy simply uses up its immediate gas supply and doesn't have access to more) and gas stripping (where external forces like ram pressure remove gas from the galaxy). These processes

  9. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    SciTech Connect

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G. E-mail: haynes@astro.cornell.edu E-mail: jarle@strw.leidenuniv.nl E-mail: susan.g.neff@nasa.gov

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  10. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses <10(sup 7.7) solar mass and Hi line widths <80 kilometers per second. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  11. Star Formation and the Solar System

    NASA Technical Reports Server (NTRS)

    Bally, John; Boss, Alan; Papanastassiou, Dimitri; Sandford, Scott; Sargent, Anneila

    1988-01-01

    We have seen that studies of nearby star-forming regions are beginning to reveal the first signs of protoplanetary disks. Studies of interstellar and interplanetary grains are starting to provide clues about the processing and incorporation of matter into the Solar System. Studies of meteorites have yielded isotopic anomalies which indicate that some of the grains and inclusions in these bodies are very primitive. Although we have not yet detected a true interstellar grain, some of these materials have not been extensively modified since their removal from the ISM. We are indeed close to seeing our interstellar heritage. The overlap between astronomical and Solar System studies is in its infancy. What future experiments, observations, and missions can be performed in the near future that will greatly enhance our understanding of star formation and the formation of the Solar System?

  12. Astrochemical diagnostics of star and planet formation

    NASA Astrophysics Data System (ADS)

    Caselli, Paola

    2016-06-01

    Stars like our Sun and planets like our Earth form out of diffuse interstellar material, which first accumulates to form molecular clouds and then it fragments into cold (~10 K) and dense (~105 H2 molecules per cc) cloud cores, the cradle of future stellar systems. The physical structure and chemical composition of these dense cores set the stage for the next steps: gravitational contraction and the formation of protostars and protoplanetary disks. Molecules are unique tracers of the dynamical evolution of interstellar clouds and astrochemistry is needed to guide and interpret our observations. In this talk I will review work done on the early stages of star and planet formation, underlying how astrochemical diagnostics have helped us to shed light on chemical and physical processes important to constraints theories and to find connections with our Solar System. ALMA results will be highlighted.

  13. Dust in regions of massive star formation

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Cassinelli, J. P.

    1989-01-01

    It is suggested that protostars increase mass by accreting the surrounding gas and dust. Grains are destroyed as they near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grains can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. General constraints were considered on the initial dust-to-gas ratio and mass accretion rates that permit inflow. These results were constrained further by constructing a numerical model, including radiative deceleration on grains and grain destruction processes. Also the constraints on dust properties were investigated which allow the formation of massive stars. The obtained results seem to suggest that massive star formation requires rather extreme preconditioning of the grain and gas environment.

  14. Reconstructing Star Formation Histories of Galaxies

    NASA Astrophysics Data System (ADS)

    Fritze-v. Alvensleben, U.; Lilly, T.

    2007-12-01

    We present a methodological study to find out how far back and to what precision star formation histories of galaxies can be reconstructed from CMDs, from integrated spectra and Lick indices, and from integrated multi-band photometry. Our evolutionary synthesis models GALEV allow to describe the evolution of galaxies in terms of all three approaches and we have assumed typical observational uncertainties for each of them and then investigated to what extent and accuracy different star formation histories can be discriminated. For a field in the LMC bar region with both a deep CMD from HST observations and a trailing slit spectrum across exactly the same field of view we could test our modelling results against real data.

  15. Star Formation in Camelopardalis: Cam OB1

    NASA Astrophysics Data System (ADS)

    Lyder, David Anthony

    Star formation in the Cam OB1 region is investigated. Star formation, in general, is considered in terms of three elements: (a) the structural relationship between the parent molecular clouds and newly formed stars, (b) the temporal evolution of the parent molecular clouds, and (c) the probability of the occurrence of star formation. Star formation in Cam OB1, over the range in l and b considered in this work, is concentrated in the vicinity of Cam R1 and appears to have led to the formation of three distinct stellar groups: (a) Group I, formed ~1 - 50 × 10 6 yr ago, and located spatially and kinematically between two CO complexes, (b) Group II, formed ~1 - 3 × 106 yr ago, and coincident with one of the previously mentioned complexes, and (c) Group III, the youngest group, formed ~1 - 20 × 104 yr ago, and located at the current point of intersection between the two complexes in (a). The mass function (MF) for Groups I and II is similar to the cloud mass function of the parent molecular clouds, i.e., a power-law with exponent α ~ 2. A similar analysis for the Group III stars and associated molecular clouds cannot be performed due to the relatively small numbers in both samples. The star forming efficiency (SFE) in all cases is ~1%. It is proposed that cloud-cloud collisions between the CO complexes in the region triggered the formation of Groups I and III, while Group II was produced by a shock induced by the radiation pressure and stellar winds from the stars in Group I. An analysis of the molecular cloud structure in Cam OB1 and the background Perseus arm also shows that the clouds in both regions are turbulent, and typical of clouds seen elsewhere in the Galaxy. However, the clouds in Cam OB1 show a large dispersion in the degree with which they are self-gravitating, with the larger, warmer clouds being gravitationally bound. The principal data set for this work comprises fully sampled 12CO (J=1-0) observations of the western half of Cam OB1, which were

  16. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  17. Quenching star formation in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Taranu, Dan S.; Hudson, Michael J.; Balogh, Michael L.; Smith, Russell J.; Power, Chris; Oman, Kyle A.; Krane, Brad

    2014-05-01

    In order to understand the processes that quench star formation in cluster galaxies, we construct a library of subhalo orbits drawn from Λ cold dark matter cosmological N-body simulations of four rich clusters. We combine these orbits with models of star formation followed by environmental quenching, comparing model predictions with observed bulge and disc colours and stellar absorption line-strength indices of luminous cluster galaxies. Models in which the bulge stellar populations depend only on the galaxy subhalo mass while the disc is quenched upon infall are acceptable fits to the data. An exponential disc quenching time-scale of 3-3.5 Gyr is preferred. Quenching in lower mass groups prior to infall (`pre-processing') provides better fits, with similar quenching time-scales. Models with short (≲1 Gyr) quenching time-scales yield excessively steep cluster-centric gradients in disc colours and Balmer line indices, even if quenching is delayed for several Gyr. The data slightly prefer models where quenching occurs only for galaxies falling within ˜0.5r200. These results imply that the environments of rich clusters must impact star formation rates of infalling galaxies on relatively long time-scales, indicative of gentler quenching mechanisms such as slow `strangulation' over more rapid ram-pressure stripping.

  18. A GALAXY BLAZES WITH STAR FORMATION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Most galaxies form new stars at a fairly slow rate, but members of a rare class known as 'starburst' galaxies blaze with extremely active star formation. Scientists using NASA's Hubble Space Telescope are perfecting a technique to determine the history of starburst activity in galaxies by using the colors of star clusters. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue, and older stars redder, the colors can be related to the ages, somewhat similar to counting the rings in a fallen tree trunk in order to determine the tree's age. The galaxy NGC 3310 is forming clusters of new stars at a prodigious rate. Astronomer Gerhardt Meurer of The Johns Hopkins University leads a team of collaborators who are studying several starburst galaxies, including NGC 3310, which is showcased in this month's Hubble Heritage image. There are several hundred star clusters in NGC 3310, visible in the Heritage image as the bright blue diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy. Once formed, the star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show that they have ages ranging from about one million up to more than one hundred million years. This suggests that the starburst 'turned on' over 100 million years ago. It may have been triggered when a companion galaxy collided with NGC 3310. These observations may change astronomers' view of starbursts. Starbursts were once thought to be brief episodes, resulting from catastrophic events like a galactic collision. However, the wide range of cluster ages in NGC 3310 suggests that the starbursting can continue for an extended interval, once

  19. Recent star formation in 30 Doradus

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Paresce, F.; Panagia, N.; Beccari, G.; Spezzi, L.; Sirianni, M.; Andersen, M.; SOC, WFC3

    2011-01-01

    Using observations obtained with the WFC3 camera on board the Hubble Space Telescope, we have studied the star formation properties of the central regions of 30 Dor, in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for each object in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (>5 sigma) Halpha excess emission and find about 1200 of them over the entire field. Comparison of their location in the Hertzprung--Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects have an age of < 3 Myr, compatible with that of the massive stars in the central ionising cluster R136, whereas the rest have ages up to 30 Myr, with a median of 10 Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very centre of the cluster. We attribute this latter effect to photoevaporation of the older circumstellar discs caused by the massive ionising members of R136. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program.

  20. Characterizing Spiral Arm and Interarm Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Blanc, G. A.; Schinnerer, E.; Groves, B.; Adamo, A.; Hughes, A.; Meidt, S.

    2016-08-01

    Interarm star formation contributes significantly to a galaxy’s star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct Hα maps including detailed corrections for dust extinction and stellar absorption to identify 391 H ii regions at 35 pc resolution over 12 kpc2. Using tracers sensitive to the underlying gravitational potential, we associate H ii regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical properties (luminosity, size, metallicity, ionization parameter) of H ii regions are independent of environment. We calculate the fraction of Hα luminosity due to the background of diffuse ionized gas (DIG) contaminating each H ii region, and find the DIG surface brightness to be higher within H ii regions than in the surroundings, and slightly higher within arm H ii regions. Use of the temperature-sensitive [S ii]/Hα line ratio instead of the Hα surface brightness to identify the boundaries of H ii regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 × 109 yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H ii regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.

  1. MASSIVE STAR FORMATION IN NGC 2074

    SciTech Connect

    Fleener, Christine E.; Chu, Y.-H.; Gruendl, Robert A.; Payne, James T.; Chen, C.-H. Rosie

    2010-01-15

    Spitzer observations of the Large Magellanic Cloud (LMC) have revealed a large population of young stellar objects (YSOs), but complementary high-resolution images in the optical or near-IR wavelengths are still needed to resolve the multiplicity and immediate environments of the YSOs. The Hubble Space Telescope imaged the star-forming region NGC 2074 in the LMC during its 100,000th orbit, providing an opportunity to more closely examine the YSOs and their environments in this region. We have studied the 10 YSO candidates identified from Spitzer observations, confirming their nature and determining their physical parameters by modeling their spectral energy distributions. The majority of the YSOs and central stars of ultracompact H II regions in NGC 2074 have masses consistent with spectral types of early B to late O. The co-existence of massive early-type O stars and the less massive YSOs indicates that their formation may have started at a similar time, a few 10{sup 5} yr ago. NGC 2074 provides an opportunity to study the evolution of massive stars at their infancy.

  2. HIERARCHICAL STAR FORMATION IN NEARBY LEGUS GALAXIES

    SciTech Connect

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Adamo, Angela; Gouliermis, Dimitrios A.; Aloisi, Alessandra; Bright, Stacey N.; Cignoni, Michele; Lee, Janice; Sabbi, Elena; Andrews, Jennifer; Calzetti, Daniela; Annibali, Francesca; Evans, Aaron S.; Johnson, Kelsey; Gallagher III, John S.; Grebel, Eva K.; Hunter, Deidre A.; Kim, Hwihyun; Smith, Linda J.; Thilker, David; and others

    2014-05-20

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ∼1 to ∼200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

  3. Hierarchical Star Formation in Nearby LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Adamo, Angela; Aloisi, Alessandra; Andrews, Jennifer; Annibali, Francesca; Bright, Stacey N.; Calzetti, Daniela; Cignoni, Michele; Evans, Aaron S.; Gallagher, John S., III; Gouliermis, Dimitrios A.; Grebel, Eva K.; Hunter, Deidre A.; Johnson, Kelsey; Kim, Hwihyun; Lee, Janice; Sabbi, Elena; Smith, Linda J.; Thilker, David; Tosi, Monica; Ubeda, Leonardo

    2014-05-01

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ~1 to ~200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

  4. Featured Image: A Bubble Triggering Star Formation

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    This remarkable false-color, mid-infrared image (click for the full view!) was produced by the Wide-field Infrared Survey Explorer (WISE). It captures a tantalizing view of Sh 2-207 and Sh 2-208, the latter of which is one of the lowest-metallicity star-forming regions in the Galaxy. In a recent study led by Chikako Yasui (University of Tokyo and the Koyama Astronomical Observatory), a team of scientists has examined this region to better understand how star formation in low-metallicity environments differs from that in the solar neighborhood. The authors analysis suggests that sequential star formation is taking place in these low-metallicity regions, triggered by an expanding bubble (the large dashed oval indicated in the image) with a ~30 pc radius. You can find out more about their study by checking out the paper below!CitationChikako Yasui et al 2016 AJ 151 115. doi:10.3847/0004-6256/151/5/115

  5. Investigation of Star Formation: Instrumentation and Methodology

    NASA Astrophysics Data System (ADS)

    Veach, Todd Justin

    A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and to trace the evolution from molecular cloud collapse to stellar ignition. Submillimeter observations are essential for piercing the heart of heavily obscured stellar nurseries to observe star formation in its infancy. Ultra-violet observations allow one to observe stars just after they emerge from their surrounding environment, allowing higher energy radiation to escape. To make detailed observations of early stage star formation in both spectral regimes requires state-of-the-art detector technology and instrumentation. In this dissertation, I discuss the calibration and feasibility of detectors developed by Lawrence Berkeley National Laboratory and specially processed at the Jet Propulsion Laboratory to increase their quantum efficiency at far-ultraviolet wavelengths. A cursory treatment of the delta-doping process is presented, followed by a thorough discussion of calibration procedures developed at JPL and in the Laboratory for Astronomical and Space Instrumentation at ASU. Subsequent discussion turns to a novel design for a Modular Imager Cell forming one possible basis for construction of future large focal plane arrays. I then discuss the design, fabrication, and calibration of a sounding rocket imaging system developed using the MIC and these specially processed detectors. Finally, I discuss one scientific application of sub-mm observations. I used data from the Heinrich Hertz Sub-millimeter Telescope and the Sub-Millimeter Array (SMA) to observe sub-millimeter transitions and continuum emission towards AFGL 2591. I tested the use of vibrationally excited HCN emission to probe the protostellar accretion disk structure. I measured vibrationally excited HCN line ratios in order to elucidate the appropriate excitation mechanism. I find

  6. Supernovae, compact stars and nuclear physics

    SciTech Connect

    Glendenning, N.K.

    1989-08-25

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs.

  7. Nuclear physics problems for accreting neutron stars

    SciTech Connect

    Wallace, R.K.; Woosley, S.E.

    1983-01-01

    The importance of p(e/sup -/nu)n and of (p,..gamma..) reactions on /sup 56/Ni during a thermonuclear runaway on a neutron star surface is pointed out. A fast 16-isotope approximate nuclear reaction network is developed that is suitable for use in hydrodynamic calculations of such events.

  8. On the Formation of Massive Stars

    NASA Astrophysics Data System (ADS)

    Yorke, Harold W.; Sonnhalter, Cordula

    2002-04-01

    We calculate numerically the collapse of slowly rotating, nonmagnetic, massive molecular clumps of masses 30, 60, and 120 Msolar, which conceivably could lead to the formation of massive stars. Because radiative acceleration on dust grains plays a critical role in the clump's dynamical evolution, we have improved the module for continuum radiation transfer in an existing two-dimensional (axial symmetry assumed) radiation hydrodynamic code. In particular, rather than using ``gray'' dust opacities and ``gray'' radiation transfer, we calculate the dust's wavelength-dependent absorption and emission simultaneously with the radiation density at each wavelength and the equilibrium temperatures of three grain components: amorphous carbon particles, silicates, and ``dirty ice''-coated silicates. Because our simulations cannot spatially resolve the innermost regions of the molecular clump, however, we cannot distinguish between the formation of a dense central cluster or a single massive object. Furthermore, we cannot exclude significant mass loss from the central object(s) that may interact with the inflow into the central grid cell. Thus, with our basic assumption that all material in the innermost grid cell accretes onto a single object, we are able to provide only an upper limit to the mass of stars that could possibly be formed. We introduce a semianalytical scheme for augmenting existing evolutionary tracks of pre-main-sequence protostars by including the effects of accretion. By considering an open outermost boundary, an arbitrary amount of material could, in principal, be accreted onto this central star. However, for the three cases considered (30, 60, and 120 Msolar originally within the computation grid), radiation acceleration limited the final masses to 31.6, 33.6, and 42.9 Msolar, respectively, for wavelength-dependent radiation transfer and to 19.1, 20.1, and 22.9 Msolar for the corresponding simulations with gray radiation transfer. Our calculations

  9. Interstellar MHD Turbulence and Star Formation

    NASA Astrophysics Data System (ADS)

    Vázquez-Semadeni, Enrique

    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses

  10. A SIMPLE LAW OF STAR FORMATION

    SciTech Connect

    Padoan, Paolo; Haugbolle, Troels; Nordlund, Ake E-mail: haugboel@nbi.dk

    2012-11-10

    We show that supersonic MHD turbulence yields a star formation rate (SFR) as low as observed in molecular clouds, for characteristic values of the free-fall time divided by the dynamical time, t{sub ff}/t{sub dyn}, the Alfvenic Mach number, M{sub a}, and the sonic Mach number, M{sub s}. Using a very large set of deep adaptive-mesh-refinement simulations, we quantify the dependence of the SFR per free-fall time, {epsilon}{sub ff}, on the above parameters. Our main results are (1) that {epsilon}{sub ff} decreases exponentially with increasing t{sub ff}/t{sub dyn}, but is insensitive to changes in M{sub s}, for constant values of t{sub ff}/t{sub dyn} and M{sub a}. (2) Decreasing values of M{sub a} (stronger magnetic fields) reduce {epsilon}{sub ff}, but only to a point, beyond which {epsilon}{sub ff} increases with a further decrease of M{sub a}. (3) For values of M{sub a} characteristic of star-forming regions, {epsilon}{sub ff} varies with M{sub a} by less than a factor of two. We propose a simple star formation law, based on the empirical fit to the minimum {epsilon}{sub ff}, and depending only on t{sub ff}/t{sub dyn}: {epsilon}{sub ff} Almost-Equal-To {epsilon}{sub wind}exp (- 1.6 t{sub ff}/t{sub dyn}). Because it only depends on the mean gas density and rms velocity, this law is straightforward to implement in simulations and analytical models of galaxy formation and evolution.

  11. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  12. Star formation along the Hubble sequence. Radial structure of the star formation of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Cid Fernandes, R.; Pérez, E.; García-Benito, R.; López Fernández, R.; Lacerda, E. A. D.; Cortijo-Ferrero, C.; de Amorim, A. L.; Vale Asari, N.; Sánchez, S. F.; Walcher, C. J.; Wisotzki, L.; Mast, D.; Alves, J.; Ascasibar, Y.; Bland-Hawthorn, J.; Galbany, L.; Kennicutt, R. C.; Márquez, I.; Masegosa, J.; Mollá, M.; Sánchez-Blázquez, P.; Vílchez, J. M.

    2016-05-01

    The spatially resolved stellar population content of today's galaxies holds important information for understanding the different processes that contribute to the star formation and mass assembly histories of galaxies. The aim of this paper is to characterize the radial structure of the star formation rate (SFR) in galaxies in the nearby Universe as represented by a uniquely rich and diverse data set drawn from the CALIFA survey. The sample under study contains 416 galaxies observed with integral field spectroscopy, covering a wide range of Hubble types and stellar masses ranging from M⋆ ~ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to derive 2D maps and radial profiles of the intensity of the star formation rate in the recent past (ΣSFR), as well as related properties, such as the local specific star formation rate (sSFR), defined as the ratio between ΣSFR and the stellar mass surface density (μ⋆). To emphasize the behavior of these properties for galaxies that are on and off the main sequence of star formation (MSSF), we stack the individual radial profiles in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd), and several stellar masses. Our main results are: (a) the intensity of the star formation rate shows declining profiles that exhibit very small differences between spirals with values at R = 1 half light radius (HLR) within a factor two of ΣSFR ~ 20 M⊙Gyr-1pc-2. The dispersion in the ΣSFR(R) profiles is significantly smaller in late type spirals (Sbc, Sc, Sd). This confirms that the MSSF is a sequence of galaxies with nearly constant ΣSFR. (b) sSFR values scale with Hubble type and increase radially outward with a steeper slope in the inner 1 HLR. This behavior suggests that galaxies are quenched inside-out and that this process is faster in the central, bulge-dominated part than in the disks. (c) As a whole and at all radii, E and S0 are off the MSSF with SFR much smaller than spirals of the

  13. Hierarchical Star Formation in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra M.; Elmegreen, Bruce

    2014-06-01

    Star formation generally follows a hierarchical distribution in galaxies from kpc scales in giant star complexes down to sub-pc scales in embedded clusters. This hierarchy corresponds to a power law distribution function for the number of star forming regions as a function of size or luminosity. Using the Legacy ExtraGalactic Ultraviolet Survey (LEGUS), we examine six galaxies, NGC 1566, NGC 1705, NGC 2500, NGC 5253, NGC 5477, and IC 4247, which span types from grand design and flocculent spirals to irregulars and starburst irregulars. Power law size and luminosity distributions were measured from Gaussian-blurred images in the NUV and UV using SExtractor. Slopes ranged from -1 to -1.8, with the steepest slopes corresponding to the starburst galaxies. The slopes did not vary from the NUV to the UV. The fraction of light contained within the largest scales ranged from 85 to 95 percent, independent of galaxy type. We acknowledge support from grant HST-GO-13364.

  14. Star formation in the early universe

    NASA Astrophysics Data System (ADS)

    Bromm, Volker

    We investigate the formation of the first stars in the universe. In the context of hierarchical models of structure formation, these Population III stars are expected to form in high or peaks of mass ˜106 M⊙ , collapsing at redshifts ≃20-30. We present an exploratory survey, based on numerical simulations using the SPH method. The main results are: (1) Just before the onset of gravitational instability, the primordial gas attains a characteristic temperature of a few 100 K, and a density of 103-104cm-3, with corresponding Jeans mass MJ of ˜10 3 M⊙ . These characteristic values have robust explanation in the microphysics of H2 cooling, related to the minimum temperature that can be reached with the H2 coolant, and to the critical density at which the transition takes place between levels being populated according to NLTE, and according to LTE. The gas fragments into clumps with initial masses close to MJ. This result is remarkably insensitive to the initial conditions, and suggests that the first stars might have been quite massive. (2) The later evolutionary stages, during which the clumps grow in mass due to accretion and merging with other clumps, are quite sensitive to the initial conditions. The key process in building up very massive clumps, with masses up to a few times 104 M⊙ , is merging. (3) We follow the collapse of a clump up to central densities of ˜1014cm-3. Three-body reactions are very efficient in converting the hydrogen into fully molecular form. A central core of ˜102 M⊙ is in a state of free-fall, leaving behind an extended envelope with an isothermal profile. No further subfragmentation is seen. (4) We calculate the generic spectral signature of a population of massive stars at high redshifts. The production rate of ionizing radiation per stellar mass by stars more massive than ˜100 M⊙ is larger by ˜1 order of magnitude for hydrogen and He I, and by ˜2 orders of magnitude for He II, than the emission from a Salpeter IMF.

  15. The Embedded Phase of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    van der Tak, Floris

    2000-11-01

    This thesis studies the physical and chemical structure of a set of massive young stars which are surrounded by a thick envelope of dust and gas, the earliest known phase of massive star formation. The primary scientific questions addressed are: (i) What is the evolutionary order of the phenomena associated with massive star formation? (ii) What is the physical and chemical structure of the envelopes of massive young stars? How do they compare to those of low-mass stars? Do specific molecules trace different stages? (iii) What are the masses of any circumstellar disks, and on what time scales are they dispersed? To answer these questions, a sample of infrared and submillimeter sources has been selected on high luminosity, close distance, isolated location and high mid-infrared flux. We present observations of these sources with single-dish submillimeter antennas, millimeter interferometers and near-infrared spectroscopy, and also discuss ISO spectra. For the interpretation, we have developed models with a detailed physical structure, combined with chemical differentiation, which is strongly coupled to the temperature. Some of the conclusions are: The envelopes of massive young stars are well described by centrally heated spherical models, with masses of ~ 100-1000 Modot within radii of ~0.1 pc. For a power-law density structure n(r) = n0 (r / r0)-α, we find α = 1.0-1.5 for the younger sources, significantly lower than α ≅ 2 found for the envelopes of low-mass stars at a comparable stage of evolution. This difference may indicate that the support against gravitational collapse in high-mass cores is by nonthermal (e.g., turbulent) pressure, and in low-mass cores by thermal pressure. For the more evolved sources, α = 1.5-2.0 fits the data best. Unlike in low-mass star formation, the near-infrared emission decreases as the envelope warms up, indicates that the hot dust close to the star is destroyed and/or pushed out by stellar radiation or mass loss. The

  16. Metallicity and star formation history of globular clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Ma, Er

    1993-01-01

    Using population synthesis method, the star formation history in globular clusters has been studied. No single star formation mode with a constant star formation rate (SER) and an invariable initial mass function (IMF) can fit the observations of globular clusters. There are at least two stages of star formation: a pollution stage and a starburst stage. In the pollution stage, either the IMF is very peculiar (only form massive stars), or its SFR is so small that the low-mass stars form only a little. A starburst then follows to form most stars in the globular cluster. Within the framework of Fall and Rees'model, the collisions between warm clouds in the two phase medium may provide a suitable external cause to stimulate the starburst.

  17. Metallicity and star formation history of globular clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Ma, Er

    1993-03-01

    Using population synthesis method, the star formation history in globular clusters has been studied. No single star formation mode with a constant star formation rate (SER) and an invariable initial mass function (IMF) can fit the observations of globular clusters. There are at least two stages of star formation: a pollution stage and a starburst stage. In the pollution stage, either the IMF is very peculiar (only form massive stars), or its SFR is so small that the low-mass stars form only a little. A starburst then follows to form most stars in the globular cluster. Within the framework of Fall and Rees' model, the collisions between warm clouds in the two phase medium may provide a suitable external cause to stimulate the starburst.

  18. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  19. THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES

    SciTech Connect

    Diamond-Stanic, Aleksandar M.; Rieke, George H.

    2012-02-20

    We present estimates of black hole accretion rates (BHARs) and nuclear, extended, and total star formation rates for a complete sample of Seyfert galaxies. Using data from the Spitzer Space Telescope, we measure the active galactic nucleus (AGN) luminosity using the [O IV] {lambda}25.89 {mu}m emission line and the star-forming luminosity using the 11.3 {mu}m aromatic feature and extended 24 {mu}m continuum emission. We find that black hole growth is strongly correlated with nuclear (r < 1 kpc) star formation, but only weakly correlated with extended (r > 1 kpc) star formation in the host galaxy. In particular, the nuclear star formation rate (SFR) traced by the 11.3 {mu}m aromatic feature follows a relationship with the BHAR of the form SFR{proportional_to} M-dot{sub BH}{sup 0.8}, with an observed scatter of 0.5 dex. This SFR-BHAR relationship persists when additional star formation in physically matched r = 1 kpc apertures is included, taking the form SFR{proportional_to} M-dot{sub BH}{sup 0.6}. However, the relationship becomes almost indiscernible when total SFRs are considered. This suggests a physical connection between the gas on sub-kiloparsec and sub-parsec scales in local Seyfert galaxies that is not related to external processes in the host galaxy. It also suggests that the observed scaling between star formation and black hole growth for samples of AGNs will depend on whether the star formation is dominated by a nuclear or an extended component. We estimate the integrated black hole and bulge growth that occurs in these galaxies and find that an AGN duty cycle of 5%-10% would maintain the ratio between black hole and bulge masses seen in the local universe.

  20. Star and cluster formation in NGC 1275

    NASA Technical Reports Server (NTRS)

    Richer, Harvey B.; Crabtree, Dennis R.; Fabian, A. C.; Lin, D. N. C.

    1993-01-01

    Luminous, blue, and unresolved objects have been found by imaging the nuclear region of the central galaxy in the Perseus Cluster, NGC 1275. Stellar formation in a cooling flow in which gas clouds confined by weak magnetic fields are allowed to remain at low densities is favored. Cloud-cloud collisions and coagulation in the high cloud density environment at the center of the galaxy then causes some clouds to become gravitationally unstable and to form globular clusters.

  1. Recovering the Star Formation Rate in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Degl'Innocenti, S.; Moroni, P. G. P.; Shore, S. N.

    2007-11-01

    This paper develops a method for obtaining the star formation histories of a mixed, resolved population through the use of color-magnitude diagrams (CMDs). The method is applied to the derivation of the local star formation rate, analyzing the observations of the Hipparcos satellite through a comparison with synthetic CMDs computed for different star formation histories with an updated stellar evolution library. Parallax and photometric uncertainties are included explicitly and corrected using the Bayesian Richardson-Lucy algorithm. We find that the solar neighborhood star formation rate has a characteristic timescale for variation of about 6 Gyr, with a maximum activity close to 3 Gyr ago.

  2. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    SciTech Connect

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  3. Holographic cold nuclear matter and neutron star

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Kubo, Kouki; Tachibana, Motoi; Toyoda, Fumihiko

    2014-04-01

    We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8//lineD8 branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing Fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.

  4. Star Wars in a nuclear world

    SciTech Connect

    Zuckerman, L.

    1987-01-01

    Lord Zuckerman is a world authority on the rivalries and politics of the nuclear age. Few scientists distinguished in their own right have had as much experience as he has of both the national and international corridors of power. During World War Two he was Strategic Planning Adviser to Air Marshal Tedder and General Eisenhower. From 1960 to 1971 he was Chief Scientific Adviser to the Ministry of Defence and to the British Government as a whole. He is an unrelenting critic of the Star Wars programme introduced by President Reagan in 1983. He writes, ''Had anyone other than the American President ever invited scientists to try to render 'nuclear weapons impotent and obsolete' the suggestion would probably have attracted no more attention than had they been asked to square the circle or solve the problem of perpetual motion. But it happened to be the President, and he spelled out his vision of a future over which the nuclear bomb no longer casts a shadow in such homely terms that it all sounded real. How could the message fail to appeal.'' Lord Zuckerman is critical not only of Star Wars but also of the futility of the nuclear arms race. ''The arms-race has absorbed enormous resources. The nuclear arsenals of East and West have continued to grow. But, paradoxically, national security seems to have lessened everywhere.

  5. A WISE VIEW OF STAR FORMATION IN LOCAL GALAXY CLUSTERS

    SciTech Connect

    Chung, Sun Mi; Gonzalez, Anthony H.; Eisenhardt, Peter R.; Stern, Daniel; Stanford, Spencer A.; Brodwin, Mark; Jarrett, Thomas

    2011-12-10

    We present results from a systematic study of star formation in local galaxy clusters using 22 {mu}m data from the Wide-field Infrared Survey Explorer (WISE). The 69 systems in our sample are drawn from the Cluster Infall Regions Survey, and all have robust mass determinations. The all-sky WISE data enable us to quantify the amount of star formation, as traced by 22 {mu}m, as a function of radius well beyond R{sub 200}, and investigate the dependence of total star formation rate upon cluster mass. We find that the fraction of star-forming galaxies increases with cluster radius but remains below the field value even at 3R{sub 200}. We also find that there is no strong correlation between the mass-normalized total specific star formation rate and cluster mass, indicating that the mass of the host cluster does not strongly influence the total star formation rate of cluster members.

  6. Star formation and substructure in galaxy clusters

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}<−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  7. Molecular cloud cores and bimodal star formation

    NASA Technical Reports Server (NTRS)

    Lizano, Susana; Shu, Frank H.

    1989-01-01

    The phenomenon of bimodal star formation is reviewed in the context of supercritical and subcritical states for molecular clouds that are supported against their self-gravitation by magnetic fields. The governing set of equations is derived subject to the quasi-static and axisymmetric approximations. The method of numerical solution and tests of the resultant computer code are outlined. The results of the evolutionary calculations are discussed, emphasizing time scales, masses, and typical sizes of modeled cores that can be compared with observations. For a fixed mass, it is found that the level or turbulent support determines whether a dense core forms or not. This is used to generalize the concept of a critical mass to account for the contributions of turbulence and thermal pressures to the support of a cloud.

  8. Tracking star formation in dwarf cluster galaxies

    NASA Astrophysics Data System (ADS)

    Rude, Cody Millard

    The evolution of galaxies in dense environments can be affected by close encounters with neighboring galaxies and interactions with the intracluster medium (ICM). Dwarf galaxies may be especially susceptible to these effects due to their low mass. The goal of my dissertation research is to look for signs of star formation in cluster dwarf galaxies by measuring and comparing the r- and u-band luminosity functions of 15 low redshift Abell galaxy clusters using archival data from the Canada-France-Hawaii Telescope (CFHT). Luminosity functions, dwarf-to-giant ratios, and blue fractions are measured in four cluster-centric annuli from stacked cluster data. To account for differences in cluster optical richness, each cluster is scaled according to r200, where r200 is the radius of a sphere, centered on the cluster, whose average density is 200 times the critical density of the universe. The outer region of the cluster sample shows an increase in the faint-end slope of the u-band luminosity function relative to the r-band, indicating star formation in dwarf galaxies. The blue fraction for dwarf galaxies steadily rises with increasing cluster-centric radii. The change in the blue fraction of giant galaxies also increases, but at a lower rate. Additionally, the inner regions of clusters ranging from 0.185 < z < 0.7 from the "Cluster Lensing and Supernova survey with Hubble (CLASH)" are used to generate blue- and red-band luminosity functions, dwarf-to-giant ratios, and blue fractions. Comparisons of the inner region of the CLASH and CFHT clusters show an increase in the blue fraction of dwarf galaxies with redshift that is not present in giant galaxies.

  9. The Object CLN 138 - a Double Star-Formation Region

    NASA Astrophysics Data System (ADS)

    Gyulbudaghian, A. L.

    2016-09-01

    A double star formation region associated with the biconical cometary nebula CLN 138 is studied. 12CO(1-0) observations of a molecular cloud associated with this object reveal the existence of several molecular clouds in this region, as well as the existence of red and blue molecular outflows. Several new Herbig-Haro objects are found, two of which have undergone a luminosity increase of at least 8m. The first star formation region is basically embedded in the molecular cloud; most of the stars in it are infrared stars and many have dust envelopes. The second star formation region has already left the molecular cloud; it has no IR stars and few of its stars have dust clouds.

  10. ON THE LACK OF EVOLUTION IN GALAXY STAR FORMATION EFFICIENCY

    SciTech Connect

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-01-10

    Using reconstructed galaxy star formation histories, we calculate the instantaneous efficiency of galaxy star formation (i.e., the star formation rate divided by the baryon accretion rate) from z = 8 to the present day. This efficiency exhibits a clear peak near a characteristic halo mass of 10{sup 11.7} M{sub Sun }, which coincides with longstanding theoretical predictions for the mass scale relevant to virial shock heating of accreted gas. Above the characteristic halo mass, the efficiency falls off as the mass to the minus four-thirds power; below the characteristic mass, the efficiency falls off at an average scaling of mass to the two-thirds power. By comparison, the shape and normalization of the efficiency change very little since z = 4. We show that a time-independent star formation efficiency simply explains the shape of the cosmic star formation rate since z = 4 in terms of dark matter accretion rates. The rise in the cosmic star formation from early times until z = 2 is especially sensitive to galaxy formation efficiency. The mass dependence of the efficiency strongly limits where most star formation occurs, with the result that two-thirds of all star formation has occurred inside halos within a factor of three of the characteristic mass, a range that includes the mass of the Milky Way.

  11. Low Mass Star Formation in the Norma Cloud

    NASA Astrophysics Data System (ADS)

    Reipurth, B.; Nielbock, M.

    2008-12-01

    A small filamentary cloud in Norma hosts a number of young low-mass stars in various stages of evolution, from visible Hα emission stars to embedded sources detected only in the sub-millimeter regime. The best known source is V346 Nor, an FU Orionis star that brightened in the early 1980s. The morphology of the cloud complex and an apparent age gradient along the cloud suggests that star formation in this region was triggered by an external event.

  12. On the formation of Be stars through binary interaction

    SciTech Connect

    Shao, Yong; Li, Xiang-Dong

    2014-11-20

    Be stars are rapidly rotating B-type stars. The origin of their rapid rotation is not certain, but binary interaction remains as a possibility. In this work, we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. We calculate binary evolution with both stars evolving simultaneously and consider different possible mass accretion histories for the accretor. From the calculated results, we obtain the critical mass ratios q {sub cr} that determine the stability of the mass transfer. We also numerically calculate the parameter λ in common envelope evolution and then incorporate both q {sub cr} and λ into the population synthesis calculations. We present the predicted numbers and characteristics of Be stars in binary systems with different types of companions, including helium stars, white dwarfs, neutron stars, and black holes. We find that in Be/neutron star binaries, the Be stars can have a lower mass limit ∼8 M {sub ☉} if they are formed by stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally, the fraction of Be stars that have involved binary interactions in all B-type stars can be as high as ∼13%-30%, implying that most Be stars may result from binary interaction.

  13. Effects of intermediate mass black holes on nuclear star clusters

    SciTech Connect

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.; Loeb, Abraham

    2014-11-20

    Nuclear star clusters (NSCs) are dense stellar clusters observed in galactic nuclei, typically hosting a central massive black hole. Here we study the possible formation and evolution of NSCs through the inspiral of multiple star clusters hosting intermediate mass black holes (IMBHs). Using an N-body code, we examine the dynamics of the IMBHs and their effects on the NSC. We find that IMBHs inspiral to the core of the newly formed NSC and segregate there. Although the IMBHs scatter each other and the stars, none of them is ejected from the NSC. The IMBHs are excited to high eccentricities and their radial density profile develops a steep power-law cusp. The stars also develop a power-law cusp (instead of the central core that forms in their absence), but with a shallower slope. The relaxation rate of the NSC is accelerated due to the presence of IMBHs, which act as massive perturbers. This in turn fills the loss cone and boosts the tidal disruption rate of stars both by the MBH and the IMBHs to a value excluded by rate estimates based on current observations. Rate estimates of tidal disruptions can therefore provide a cumulative constraint on the existence of IMBHs in NSCs.

  14. Long-term star formation at the Galactic center and its effect on the stellar population

    NASA Astrophysics Data System (ADS)

    Serabyn, E.

    Although the central kpc-scale bulge of our Galaxy consists predominantly of old stars, the central parsec, in contrast, is host to a sizable number of very young stars. At intermediate scales, the nature of the stellar population remains very uncertain because high extinction has thus far limited observations. This talk will attempt to bridge these two regimes. As several other young stellar clusters are present in the central few hundred parsecs, star-formation is in fact quite widespread in our Galaxy's nucleus. Based on the current distribution of dense nuclear interstellar gas, and the current rate of star-formation, the hypothesis of our Galactic nucleus as a site of sustained, low-level star formation then emerges. The result of a long-term star formation rate of a few tenths of a solar mass per year would be a flattened central cluster of intermediate-age stars, amounting to about a billion solar masses. A stellar cluster of the requisite mass and linear scale is indeed present in our Galactic nucleus, and arguments will be presented that our Galaxy's central ``1 over r-squared' ' cluster is in fact an intermediate age population resulting from long-term star formation, and not simply the innermost part of the more elderly bulge.

  15. A Cautionary Note about Composite Galactic Star Formation Relations

    NASA Astrophysics Data System (ADS)

    Parmentier, G.

    2016-07-01

    We explore the pitfalls that affect the comparison of the star formation relation for nearby molecular clouds with that for distant compact molecular clumps. We show that both relations behave differently in the ({{{Σ }}}{{gas}}, {{{Σ }}}{{SFR}}) space, where {{{Σ }}}{{gas}} and {{{Σ }}}{{SFR}} are, respectively, the gas and star formation rate surface densities, even when the physics of star formation is the same. This is because the star formation relation of nearby clouds relates the gas and star surface densities measured locally, that is, within a given interval of gas surface density, or at a given protostar location. We refer to such measurements as local measurements, and the corresponding star formation relation as the local relation. In contrast, the stellar content of a distant molecular clump remains unresolved. Only the mean star formation rate can be obtained, e.g., from the clump infrared luminosity. One clump therefore provides one single point to the ({{{Σ }}}{{gas}}, {{{Σ }}}{{SFR}}) space, that is, its mean gas surface density and star formation rate surface density. We refer to this star formation relation as a global relation since it builds on the global properties of molecular clumps. Its definition therefore requires an ensemble of cluster-forming clumps. We show that although the local and global relations have different slopes, this cannot per se be taken as evidence for a change in the physics of star formation with gas surface density. It therefore appears that great caution should be taken when physically interpreting a composite star formation relation, that is, a relation combining local and global relations.

  16. Roles of Nuclear Weak Processes in Stars

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Kajino, Toshitaka; Honma, Michio; Toki, Hiroshi; Nomoto, Ken'ichi

    2015-11-01

    The roles of nuclear weak processes in stars are discussed. Neutrino-nucleus reactions on 12C, 56Fe and 40Ar are studied with new shell-model Hamiltonians. New cross sections, which give good account of experimental data, are applied to nucleosynthesis of light elements in supernova explosions. Effects of ν-oscillations are investigated, and the abundance ratio of 7Li/11B is pointed out to be sensitive to the ν mass hierarchy. Then, e-capture and β-decay rates in sd-shell nuclei are evaluated at stellar environments, and applied to study cooling of O-Ne-Mg core stars by nuclear URCA processes. The fate of 8-10 M❿ stars is sensitive to the cooling of the core. Finally, β-decay half-lives of r-process waiting-point nuclei with N=126 are evaluated by shell-model calculations taking into account both the Gamow-Teller and first-forbidden transitions. The half-lives obtained are short compared with standard FRDM values.

  17. Inhibition of star formation in Sa galaxies

    SciTech Connect

    Pompea, S.M.; Rieke, G.H. )

    1989-07-01

    Only 4 percent of Sas in the Revised Shapley-Ames Catalog with B(T) less than 12 have an infrared luminosity greater than 10 to the 10th solar. This proportion is about one-sixth of the corresponding one for Sbs and Scs. Although the infrared luminosities of most Sa galaxies are dominated by disk emission, the same trend appears in the incidence of nuclear starbursts. IRAS measurements indicate that no more than three Sas out of the entire RSA sample of 166 galaxies have nuclear starbursts that cannot be associated with interactions or active nuclei. Plots of H I fluxes do not strongly correlate with infrared fluxes. Similarly, for at least the infrared selected Sas, the trend of IR flux with CO flux is similar to that of later type spiral galaxies. This would imply that molecular cloud formation is inhibited in Sas, leading to the lack of infrared activity. 38 refs.

  18. KEY ISSUES REVIEW: Insights from simulations of star formation

    NASA Astrophysics Data System (ADS)

    Larson, Richard B.

    2007-03-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)

  19. Magnetic Fields in Population III Star Formation

    SciTech Connect

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  20. Star formation and the nature of bipolar outflows

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.; Ruden, Steven P.; Lada, Charles J.; Lizano, Susana

    1991-01-01

    This paper presents a simple physical model for the bipolar molecular outflows that frequently accompany star formation. The model forges an intrinsic link between the bipolar flow phenomenon and the process of star formation, and it helps to explain many of the systematics known for existing sources.

  1. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    SciTech Connect

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S. E-mail: lutz@mpe.mpg.de E-mail: popesso@mpe.mpg.de E-mail: amelie@mpe.mpg.de E-mail: swuyts@mpe.mpg.de; and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  2. Formative Assessment Probes: Where Are the Stars?

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    Gazing at the night sky is a familiar experience for many elementary students. Depending on where children live, they can often look out a window and see the Moon and stars. Children may have seen the Moon and stars in television shows, movies, posters, or children's picture books. Regardless of whether they see the Moon and stars firsthand or…

  3. Molecular emission in regions of star formation

    NASA Astrophysics Data System (ADS)

    Gusdorf, Antoine

    2008-11-01

    Recent observations show that young stars being formed eject matter at several tens of kilometers per second, in the form of 'jets' that impact the matter whose collapse is at the origin of the formation of the star. The supersonic impact between this jet and the parent interstellar cloud of the star generates a shock front, in the form of a bow-shock, which propagates in the collapsing interstellar gas, and also an inverse shock that propagates along the jet itself. The structure of these shocks depends on their velocity as well as on the physical properties of the gas in which they propagate, and specially on the value of the local magnetic field. Numerical MagnetoHydroDynamical simulations of the propagation of such shocks are a way to constrain the physical and chemical properties of the gas in which molecular lines are emitted. Interstellar shocks are modelled, both in stationary and non stationary ways, and grids of models are built for various ranges of input, preshock parameters (shock velocity, preshock density, magnetic field, and shock age for non stationary models). The case of molecular hydrogen is investigated first. Because of its particular importance (due to its large density and crucial role as a gas coolant or as a collision partner for molecular species), its level populations are solved within the shock code, as well as its population transfer. The shock wave modifies the chemical composition of the gas, partially or totally dissociating the molecular hydrogen, which is the main coolant of the gas. In the regions where molecular hydrogen still remains, H2 is collisionally excited, generating rovibrational and purely rotational transitions emission. These emissions are actually observed, from the ground in Infrared region, by ISO (Infrared Space Observatory) and Spitzer satellites. Excitation diagrams are used to compare the models with existing observations in the L1157 outflow around a young, Class 0 proto-star, confirming that non

  4. Inner Milky Way Raging with Star Formation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 444,580 frames from NASA's Spitzer Space Telescope were stitched together to create this portrait of the raging star-formation occurring in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The red haze that permeates the picture comes from organic molecules called polycyclic aromatic hydrocarbons, which are illuminated by light from massive baby stars. On Earth, these molecules are found in automobile exhaust, or charred barbeque grills anywhere carbon molecules are burned incompletely.

    The patches of black are dense, obscuring dust clouds impenetrable by even Spitzer's super-sensitive infrared eyes. Bright arcs of white throughout the image are massive stellar incubators. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This picture was taken with Spitzer's infrared array camera, as part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. This is a four-color composite where blue is 3.6-micron light, green is 4.5 microns, orange is 5.8 microns and red is 8.0 microns.

  5. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  6. Star Formation and Gas Accretion in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Yim, Kijeong; van der Hulst, J. M.

    2016-08-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 μm (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and H I (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and H I in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  7. Bimodal star formation - Constraints from the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, J.

    1987-01-01

    The chemical evolution resulting from a simple model of bimodal star formulation is investigated, using constraints from the solar neighborhood to set the parameters of the initial mass function and star formation rate. The two modes are an exclusively massive star mode, which forms stars at an exponentially declining rate, and a mode which contains stars of all masses and has a constant star formation rate. Satisfactory agreement with the age-metallicity relation for the thin disk and with the metallicity structure of the thin-disk and spheroid stars is possible only for a small range of parameter values. The preferred model offers a resolution to several of the long-standing problems of galactic chemical evolution, including explanations of the age-metallicity relation, the gas consumption time scale, and the stellar cumulative metallicity distributions.

  8. THE STAR FORMATION LAW AT LOW SURFACE DENSITY

    SciTech Connect

    Wyder, Ted K.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Neill, James D.; Neff, Susan G.; Schiminovich, David; Seibert, Mark; Madore, Barry F.; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Szalay, Alex S.; Lee, Young-Wook; Yi, Sukyoung K.; Rich, R. Michael

    2009-05-10

    We investigate the nature of the star formation law at low gas surface densities using a sample of 19 low surface brightness (LSB) galaxies with existing H I maps in the literature, UV imaging from the Galaxy Evolution Explorer satellite, and optical images from the Sloan Digital Sky Survey. All of the LSB galaxies have (NUV - r) colors similar to those for higher surface brightness star-forming galaxies of similar luminosity indicating that their average star formation histories are not very different. Based upon four LSB galaxies with both UV and far-infrared (FIR) data, we find FIR/UV ratios significantly less than 1, implying low amounts of internal UV extinction in LSB galaxies. We use the UV images and H I maps to measure the star formation rate (SFR) and hydrogen gas surface density within the same region for all the galaxies. The LSB galaxy star formation rate surface densities lie below the extrapolation of the power law fit to the SFR surface density as a function of the total gas density for higher surface brightness galaxies. Although there is more scatter, the LSB galaxies also lie below a second version of the star formation law in which the SFR surface density is correlated with the gas density divided by the orbital time in the disk. The downturn seen in both star formation laws is consistent with theoretical models that predict lower star formation efficiencies in LSB galaxies due to the declining molecular fraction with decreasing density.

  9. The Recent Star Formation History of the M31 Disk

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.

    2003-09-01

    The star formation history of the northern and southern M31 disk is measured using samples of BV photometry for 4'×4' regions taken from the KPNO/CTIO Local Group Survey. The distances, mean reddening values, and age distributions of the stars in these regions were measured using the routines of Dolphin. Independent measurements of overlapping fields show that the results are stable for most samples. A slight distance gradient is seen across the major axis of the southern disk, and a mean distance of 24.47+/-0.03 is found by combining the results. Higher mean reddening values are seen to follow the spiral structure. The stellar age distributions are consistent with episodic star formation confined mainly to the gas-rich arm regions. If these episodes were caused by propagating density waves, the waves did not cause significant star formation episodes in the gas-poor interarm regions. A combination of all of the results provides the total star formation rate for 1.4 deg2 of the M31 disk for six epochs. These results suggest that star formation in the disk declined by ~50% from ~250 to ~50 Myr ago. The lowest star formation rate occurred ~25 Myr ago, followed by a ~20% increase to the present. The mean star formation rate for this large portion of M31 over the past 60 Myr is 0.63+/-0.07 Msolar yr-1, suggesting a total mean rate for the disk of ~1 Msolar yr-1.

  10. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  11. The Star Formation History of Trumpler 14 and Trumpler 16

    NASA Astrophysics Data System (ADS)

    DeGioia-Eastwood, K.; Throop, H.; Walker, G.; Cudworth, K. M.

    2001-03-01

    H-R diagrams are presented for the very young galactic clusters Trumpler 14 and Trumpler 16, which are the two most populous clusters in the region of vigorous star formation surrounding η Carinae. Point spread function photometry of UBV CCD images is presented down to V~19 for over 560 stars in Tr 16 and 290 stars in Tr 14. We have also obtained similar data for a local background field. After determining cluster membership through proper motions from a previous work, we find that the reddening of cluster members is significantly lower than that of the local background stars. Thus, we are able to use individual reddenings to identify likely members at far deeper levels than possible with proper motions. This work has revealed a significant population of pre-main-sequence (PMS) stars in both clusters. The location of the PMS stars in the H-R diagram indicates that the theoretical ``stellar birthline'' of Palla & Stahler follows the locus of stars far better than that of Beech & Mitalas. Comparison with both pre- and post-main-sequence isochrones also reveals that although intermediate-mass stars have been forming continuously over the last 10 Myr, the high-mass stars formed within the last 3 Myr. There is no evidence that the formation of the intermediate-mass stars was truncated by the formation of the high-mass stars.

  12. X-ray sources in regions of star formation. I - The naked T Tauri stars

    NASA Technical Reports Server (NTRS)

    Walter, F. M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but 'naked' T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope.

  13. Dust emission and the evidence for star formation

    NASA Astrophysics Data System (ADS)

    Gatley, Ian

    1987-04-01

    Dust obscures our view of the Galactic center, and complicates enormously the search for a ``central engine.'' One straightforward but indirect method is to study the thermal emission from dust in the nucleus. A very simplistic assumption, that the nucleus is choked with dust, leads to the prediction that a central engine, if present, will produce a single bright infrared source. Observations made more than a decade ago excluded this naive possibility. Instead, 10 μm images of the Galactic center are complicated, with multiple peaks in the emission. Existing radio observations of Sgr A had already suggested the presence of ultraviolet radiation in the nucleus, and so it was that some workers saw the 10μm image as evidence for a burst of star formation. The demonstration of the existence of late type supergiants within the field of the 10μm map encouraged that interpretation. The possibility that the dust density in the inner Galaxy is actually very low was not taken seriously until it was directly demonstrated by far infrared observations. These observations showed that a ring of neutral material encircles the nucleus at a radius of 2 parsecs, that within the central cavity of this ring the dust density is low, and that this inner region is transparent to optical and ultraviolet radiation; the structure observed at 10μm is located within the cavity in the ring. Maps of the infrared color temperature distribution are symmetric and peak centrally in the vicinity of the nuclear source IRS16. There are no temperature peaks at the 10μm brightness peaks. The energetics of the inner few parsecs of the Galaxy are dominated by a strong source of luminosity resident at the Galactic center. Wisps and streamers of material falling inward are exposed to the radiation field of the central object, which ionizes the gas and heats the dust. The clumpy density distribution is responsible for the complicated appearance of the 10μm map. There is no direct or compelling evidence

  14. Terrestrial Planet Formation around Low-Mass Stars: Effect of the Mass of Central Stars

    NASA Astrophysics Data System (ADS)

    Oshino, Shoichi; Matsumoto, Yuji; Kokubo, Eiichiro

    2015-12-01

    The Kepler space telescope has detected several thousand planets and candidates.Their central stars are mainly FGK-type stars.It is difficult to observe M-stars by using visible light since M-stars have their peak radiation in the infrared region.However, recently there are several survey projects for planets around M-stars such as the InfraRed Doppler (IRD) survey of the Subaru telescope.Therefore it is expected that the number of planets around M-stars will increase in the near future.The habitable zone of M-stars is closer to the stars than that of G-stars.For this reason, the possibility of finding habitable planets is expected to be higher.Here we study the formation of close-in terrestrial planets by giant impacts of protoplanets around low-mass stars by using N-body simulations.An important parameter that controls formation processes is the ratio between the physical radius of a planet and its Hill radius, which decreases with the stellar mass.We systematically change the mass of the central stars and investigate its effects on terrestrial planet formation.We find that the mass of the maximum planet decreases with the mass of central stars, while the number of planets in the system increases.We also find that the orbital separation of adjacent planets normalized by their Hill radius increases with the stellar mass.

  15. AGN and Star Formation in HerMES-IRS sources

    NASA Astrophysics Data System (ADS)

    Feltre, Anna; Hatziminaoglou, Evanthia; Hernán-Caballero, Antonio; Fritz, Jacopo; Franceschini, Alberto

    2014-07-01

    One of the remaining open issues in the context of the analysis of Active Galactic Nuclei (AGN) is the evidence that nuclear gravitational accretion is often accompanied by a concurrent starburst activity. We developed a spectral energy distribution (SED) fitting technique to derive simultaneously the physical properties of active galaxies and coexisting starbursts making the best use of Spitzer and Herschel IR observations. We apply the SED fitting procedure to a large sample of extragalactic sources representing the HerMES (Herschel/Multi-tiered Extragalactic Survey) population with IRS spectra with a plethora of multi-wavelength data in order to study the impact of a possible presence of an AGN on the host galaxy's properties. We analyze the star formation rate (SFR) in conncetion to the presence of an AGN and compared the properties of the hot (AGN) and cold (starburst) dust component. Our findings are consistent with no evidence for the presence of an AGN affecting the star formation processes of the host galaxies.

  16. Star Formation in the Central Regions of Galaxies

    NASA Astrophysics Data System (ADS)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  17. Derivation of the Star Formation Intensity Distribution from Empirical Laws

    NASA Astrophysics Data System (ADS)

    Thompson, R. I.

    2002-12-01

    The star formation intensity distribution function, first presented by Lanzetta and his colleagues, has received significant attention both as a constraint on models of galaxy formation and as a correction for star formation missed by surface brightness dimming at high redshift. This talk demonstrates that the distribution at a redshift of 1, where it is well measured, can be matched with well known empirical laws. In particular the Schmidt law with a roll off of star formation at a critical density, a Schechter distribution of galaxy masses, and the assumption that star formation occurs in exponential disks suffices to derive the distribution with reasonable values for the adjustable parameters. Using values of the parameters at high z that are consistent with the hierarchical models of galaxy formation shows the possible evolution of the distribution with redshift.

  18. Bursts of star formation in computer simulations of dwarf galaxies

    SciTech Connect

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  19. Star Formation in Lynds Dark Nebulae

    NASA Astrophysics Data System (ADS)

    Johnson, Chelen H.; Bemis, G. E.; Paulsen, K. M.; Yueh, N. J.; Rebull, L. M.; DeWolf, C.; DeWolf, T.; Brock, S.; Boerna, J.; Schaefers, J.; McDonald, D. W.; McDonald, J.; Troudt, B.; Wilkinson, B.; Guastella, P.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Spuck, T. S.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.; Connelley, M.

    2009-01-01

    Our team observed two Lynds clouds (LDN 425 and LDN 981) using the Spitzer Space Telescope IRAC (3.6, 4.5, 5.8, and 8 microns), and MIPS (24 microns). A preliminary literature search provided IRAS data indicating star formation may be taking place in LDN 425 and LDN 981. The goals of this project were to further explore the known young stellar objects (YSOs) in the two clouds and to search for additional embedded YSOs. In this poster we present our observational methods and the results of our observations including SEDs, color-color diagrams, and color composite images. This research was made possible through the Spitzer Space Telescope Research Program for Teachers and Students and was funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion education posters by McDonald et al. titled "Spitzer - Hot and Colorful Student Activities" and Guastella et al. entitled "Research Based Astronomy in The Secondary Classroom: Lessons Developed for Investigating YSOs Using APT, Excel, and MOPEX".

  20. TESTING HOMOGENEITY WITH GALAXY STAR FORMATION HISTORIES

    SciTech Connect

    Hoyle, Ben; Jimenez, Raul; Tojeiro, Rita; Maartens, Roy; Heavens, Alan; Clarkson, Chris

    2013-01-01

    Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past light cone, while observations take place on the light cone. The star formation history (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked luminous red galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal-area contiguous sky patches and 10 redshift slices (0.2 < z < 0.5), which correspond to 120 blocks of volume {approx}0.04 Gpc{sup 3}. Using the SFH in a time period that samples the history of the universe between look-back times 11.5 and 13.4 Gyr as a proxy for homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is no extra variance at all. At 95% credibility, there is no evidence of deviations larger than 5.8%.

  1. Star Formation in The HI Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Leroy, A.; Bigiel, F.; Walter, F.; Brinks, E.; de Blok, W. J. G.; Madore, B.

    2008-05-01

    We combine The HI Nearby Galaxy Survey (THINGS) with our new survey of CO at the IRAM~30m, the Spitzer Infrared Nearby Galaxies Survey, and the GALEX Nearby Galaxies Survey to assemble an atlas of "star formation in context" for 24 nearby galaxies. This includes kinematics and estimates of the surface densities of atomic gas, molecular gas, stellar mass, and star formation rate. We use these data to test theories and recipes of star formation on galactic scales. Here we present two basic results for spiral galaxies. First, molecular gas and star formation rate surface density (SFRSD) are well related by a linear relation across most of our sample while atomic gas and SFRSD are essentially uncorrelated. We interpret this as evidence that star formation is proceeding in a more or less universal population of giant molecular clouds (GMCs) across most of the area we survey. Second, while the star formation efficiency (SFE), i.e., the star formation per unit neutral gas, is nearly constant where the ISM is mostly molecular, it drops steadily with increasing galactocentric radius where the ISM is mostly atomic. This drop is well-defined and common to most galaxies. We interpret this as a decreasing efficiency of GMC formation with changing local conditions. At intermediate galactocentric radii, the observed SFE is roughly consistent with several expectations for GMC formation: either formation occuring over the free fall time in the disk or the equilibrium molecular fraction being set by the gas pressure. If GMC formation occurs over a dynamical timescale, a star formation threshold must come into play in the outer disk to match the observed SFE.

  2. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-09-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  3. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    SciTech Connect

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  4. STAR FORMATION IN THE BULLET CLUSTER. I. THE INFRARED LUMINOSITY FUNCTION AND STAR FORMATION RATE ,

    SciTech Connect

    Sun Mi Chung; Gonzalez, Anthony H.; Clowe, Douglas; Markevitch, Maxim; Zaritsky, Dennis

    2010-12-20

    The Bullet Cluster is a massive galaxy cluster at z = 0.297 undergoing a major supersonic (Mach 3) merger event. Using data from Spitzer MIPS and the Infrared Array Camera, optical imaging, and optical spectroscopy, we present the global star formation rate (SFR) of this unique cluster. Using a 90% spectroscopically complete sample of 37 star-forming MIPS confirmed cluster members out to R < 1.7 Mpc, and the Rieke et al. relation to convert from 24 {mu}m flux to SFR, we calculate an integrated obscured SFR of 267 M{sub sun} yr{sup -1} and a specific SFR of 28 M{sub sun} yr{sup -1} per 10{sup 14} M{sub sun}. The cluster mass normalized integrated SFR of the Bullet Cluster is among the highest in a sample of eight other clusters and cluster mergers from the literature. Five LIRGs and one ULIRG contribute 30% and 40% of the total SFR of the cluster, respectively. To investigate the origin of the elevated specific SFR, we compare the infrared luminosity function (IR LF) of the Bullet Cluster to those of Coma (evolved to z = 0.297) and CL1358+62. The Bullet Cluster IR LF exhibits an excess of sources compared to the IR LFs of the other massive clusters. A Schechter function fit of the Bullet Cluster IR LF yields L* = 44.68 {+-} 0.11 erg s{sup -1}, which is {approx}0.25 and 0.35 dex brighter than L* of evolved Coma and CL1358+62, respectively. The elevated IR LF of the Bullet Cluster relative to other clusters can be explained if we attribute the 'excess' star-forming IR galaxies to a population associated with the infalling group that has not yet been transformed into quiescent galaxies. In this case, the timescale required for quenching star formation in the cluster environment must be longer than the timescale since the group's accretion-a few hundred million years. We suggest that 'strangulation' is likely to be an important process in the evolution of star formation in clusters.

  5. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  6. Russell Lecture: Dark Star Formation and Cooling Instability

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.; Tout, C. A.

    2001-09-01

    Optically thin cooling gas at most temperatures above 30 K will make condensations by pressure, pushing material into cool, dense regions. This works without gravity. Cooling condensations will flatten and become planar/similarity solutions. Most star formation may start from cooling condensations, where gravity is only important in the later stages. The idea that some of the dark matter could be pristine white dwarfs that condensed slowly onto planetary-sized seeds without firing nuclear reactions is found lacking. However, recent observations indicate 50 times more halo white dwarfs than have previously been acknowledged, enough to make the halo fraction observed as MACHOs. A cosmological census shows that only 1% of the mass of the universe is of known constitution.

  7. Towards universal hybrid star formation rate estimators

    NASA Astrophysics Data System (ADS)

    Boquien, M.; Kennicutt, R.; Calzetti, D.; Dale, D.; Galametz, M.; Sauvage, M.; Croxall, K.; Draine, B.; Kirkpatrick, A.; Kumari, N.; Hunt, L.; De Looze, I.; Pellegrini, E.; Relaño, M.; Smith, J.-D.; Tabatabaei, F.

    2016-06-01

    Context. To compute the star formation rate (SFR) of galaxies from the rest-frame ultraviolet (UV), it is essential to take the obscuration by dust into account. To do so, one of the most popular methods consists in combining the UV with the emission from the dust itself in the infrared (IR). Yet, different studies have derived different estimators, showing that no such hybrid estimator is truly universal. Aims: In this paper we aim at understanding and quantifying what physical processes fundamentally drive the variations between different hybrid estimators. In so doing, we aim at deriving new universal UV+IR hybrid estimators to correct the UV for dust attenuation at local and global scales, taking the intrinsic physical properties of galaxies into account. Methods: We use the CIGALE code to model the spatially resolved far-UV to far-IR spectral energy distributions of eight nearby star-forming galaxies drawn from the KINGFISH sample. This allows us to determine their local physical properties, and in particular their UV attenuation, average SFR, average specific SFR (sSFR), and their stellar mass. We then examine how hybrid estimators depend on said properties. Results: We find that hybrid UV+IR estimators strongly depend on the stellar mass surface density (in particular at 70 μm and 100 μm) and on the sSFR (in particular at 24 μm and the total infrared). Consequently, the IR scaling coefficients for UV obscuration can vary by almost an order of magnitude: from 1.55 to 13.45 at 24 μm for instance. This result contrasts with other groups who found relatively constant coefficients with small deviations. We exploit these variations to construct a new class of adaptative hybrid estimators based on observed UV to near-IR colours and near-IR luminosity densities per unit area. We find that they can reliably be extended to entire galaxies. Conclusions: The new estimators provide better estimates of attenuation-corrected UV emission than classical hybrid estimators

  8. The Formation of Massive Stars and Star Clusters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Battersby, C. D.

    2013-10-01

    The life cycle of stars and gas in the Milky Way illuminates and shapes our view of the universe. This cycle is driven largely by massive stars through their immense ionizing radiation, powerful winds and outflows, and explosive supernovae, yet the processes leading to their formation remain elusive. I review the status of our understanding of massive star and cluster formation, beginning with a theoretical framework outlining the varying modes proposed for the accumulation of material onto forming stars: core accretion and competitive accretion. The observable consequences of each theory and their current statuses are discussed. I then delve into the growing body of observations toward massive star and cluster forming regions, focusing on recent observations of the structure and evolution of cluster- forming regions at early stages. I conclude with an outlook for the next stages in the field of massive star formation.

  9. STAR FORMATION IN THE OUTER DISK OF SPIRAL GALAXIES

    SciTech Connect

    Barnes, Kate L.; Van Zee, Liese; Cote, Stephanie; Schade, David E-mail: vanzee@astro.indiana.edu E-mail: David.Schade@nrc-cnrc.gc.ca

    2012-09-20

    We combine new deep and wide field of view H{alpha} imaging of a sample of eight nearby (d Almost-Equal-To 17 Mpc) spiral galaxies with new and archival H I and CO imaging to study the star formation and the star formation regulation in the outer disk. We find that, in agreement with previous studies, star formation in the outer disk has low covering fractions, and star formation is typically organized into spiral arms. The star formation in the outer disk is at extremely low levels, with typical star formation rate surface densities of {approx}10{sup -5} to 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}. We find that the ratio of the radial extent of detected H II regions to the radius of the H I disk is typically {approx}>85%. This implies that in order to further our understanding of the implications of extended star formation, we must further our understanding of the formation of extended H I disks. We measure the gravitational stability of the gas disk, and find that the outer gaseous disk is typically a factor of {approx}2 times more stable than the inner star-forming disk. We measure the surface density of outer disk H I arms, and find that the disk is closer to gravitational instability along these arms. Therefore, it seems that spiral arms are a necessary, but not sufficient, requirement for star formation in the outer disk. We use an estimation of the flaring of the outer gas disk to illustrate the effect of flaring on the Schmidt power-law index; we find that including flaring increases the agreement between the power-law indices of the inner and outer disks.

  10. College Students' Preinstructional Ideas about Stars and Star Formation

    ERIC Educational Resources Information Center

    Bailey, Janelle M.; Prather, Edward E.; Johnson, Bruce; Slater, Timothy F.

    2009-01-01

    This study (Note 1) investigated the beliefs about stars that students hold when they enter an undergraduate introductory astronomy course for nonscience majors. Students' preinstructional ideas were investigated through the use of several student-supplied-response (SSR) surveys, which asked students to describe their ideas about topics such as…

  11. Cygnus OB2: Star Formation Ugly Duckling Causes a Flap

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Wright, Nicholas; Guarcello, Mario

    2015-08-01

    Cygnus OB2 is one of the largest known OB associations in our Galaxy, with a total stellar mass of 30,000 Msun and boasting an estimated 65 O-type stars and hundreds of OB stars. At a distance of only 1.4kpc, it is also the closest truly massive star forming region and provides a valuable testbed for star and planet formation theory. We have performed a deep stellar census using observations from X-ray to infrared, which has enabled studies of sub-structuring, mass segregation and dynamics, while infrared data reveal a story of protoplanetary disk attrition in an extremely harsh radiation environment. I will discuss how Cygnus OB2 challenges the idea that stars must form in dense, compact clusters, and demonstrates that stars as massive as 100 Msun can form in relatively low-density environments. Convincing evidence of disk photoevaporation poses a potential problem for planet formation and growth in starburst environments.

  12. Star Formation in Partially Gas-Depleted Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rose, James A.; Robertson, Paul; Miner, Jesse; Levy, Lorenza

    2010-02-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  13. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    SciTech Connect

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul E-mail: paul@astr.as.utexas.edu E-mail: lorenza.levy@yahoo.com

    2010-02-15

    Broadband B and R and H{alpha} images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of H{alpha} flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the H{alpha} disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the H{alpha} disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both

  14. Galaxies on FIRE: Stellar Feedback Explains Inefficient Star Formation

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2014-06-01

    Many of the most fundamental unsolved questions in star and galaxy formation revolve around star formation and "feedback" from both massive stars and accretion onto super-massive black holes. I'll present new simulations which attempt to realistically model the diverse physics of the interstellar medium, star formation, and feedback from stellar radiation pressure, supernovae, stellar winds, and photo-ionization. These mechanisms lead to 'self-regulated' galaxy and star formation, in which global correlations such as the Schmidt-Kennicutt law and the global inefficiency of star formation -- the stellar mass function -- emerge naturally. Within galaxies, feedback regulates the structure of the interstellar medium, and many observed properties of the ISM, star formation, and galaxies can be understood as a fundamental consequence of super-sonic turbulence in a rapidly cooling, self-gravitating medium. But feedback also produces galactic super-winds that can dramatically alter the cosmological evolution of galaxies, their behavior in galaxy mergers, and structure of the inter-galactic medium: these winds depend non-linearly on multiple feedback mechanisms in a way that explains why they have been so difficult to model in previous "sub-grid" approaches.

  15. Star-formation in a Transitioning Radio Source

    NASA Astrophysics Data System (ADS)

    Mao, Minnie; Norris, Ray; Sharp, Rob

    2012-10-01

    With this proposal we will obtain high resolution (1 arcsec) radio maps of IRAS F00183-711 to resolve the star-forming component of this ULIRG. Recent VLBI observations have demonstrated the presence of an AGN at the heart of the source, but the relative contribution from star-formation is unknown and likely significant. IRAS F00183-711 has been caught in the fleeting act of transitioning from ``cold-mode'' accretion to ``hot-mode'' accretion. It represents the missing link between young (e.g. CSS/GPS sources) and evolved radio galaxies (e.g. FRI/FRII sources) whose AGN activity have suppressed their own star-formation. Direct measurement of the star-forming of this source will provide key insight into the star-formation history of the radio galaxies of today.

  16. Three classical Cepheid variable stars in the nuclear bulge of the Milky Way.

    PubMed

    Matsunaga, Noriyuki; Kawadu, Takahiro; Nishiyama, Shogo; Nagayama, Takahiro; Kobayashi, Naoto; Tamura, Motohide; Bono, Giuseppe; Feast, Michael W; Nagata, Tetsuya

    2011-09-01

    The nuclear bulge is a region with a radius of about 200 parsecs around the centre of the Milky Way. It contains stars with ages ranging from a few million years to over a billion years, yet its star-formation history and the triggering process for star formation remain to be resolved. Recently, episodic star formation, powered by changes in the gas content, has been suggested. Classical Cepheid variable stars have pulsation periods that decrease with increasing age, so it is possible to probe the star-formation history on the basis of the distribution of their periods. Here we report the presence of three classical Cepheids in the nuclear bulge with pulsation periods of approximately 20 days, within 40 parsecs (projected distance) of the central black hole. No Cepheids with longer or shorter periods were found. We infer that there was a period about 25 million years ago, and possibly lasting until recently, in which star formation increased relative to the period of 30-70 million years ago. PMID:21866100

  17. Star formation in the outer disks of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate Lynn

    I present results from a multi-wavelength study of star formation and the gaseous content in the outer disks of a sample of eight nearby spiral galaxies. In particular, the study focuses on galaxies with typical HI-to-optical sizes of ˜1--2, to provide a comparison to studies of galaxies with star formation occurring in extended gas disks. The study features new, ultra-deep ground-based H-alpha imaging and deep ultraviolet (UV) imaging from the GALEX space telescope to trace the recent star formation. I find that star formation typically extends through most (>85%) of the gas disk, with an outermost star forming regime characterized by low covering fractions and low star formation rate surface densities. The result that star formation extends through most of the gas disk regardless of the HI-to-optical size implies that it is important to further our understanding of the formation of extended gas disks to fully understand the implications of extended star forming disks. I find that the outer gaseous disks are gravitationally stable, which is in agreement with the lower level of star formation. I use ultraviolet and H-alpha colors to probe the recent star formation in the outer disks and find significant variations between colors of young stellar clusters. I run stellar population synthesis models to show how episodic star formation histories (SFHs) with periods of 100--250 Myr could cause similar color variations as are seen in outer disks. An episodic SFH would have implications for the gas depletion time and chemical evolution of spiral galaxies. In addition to an episodic SFH, the observed ultraviolet and H-alpha colors of young stellar clusters in the outer disks of galaxies in our sample are also in agreement with recently published models of a stochastically sampled initial mass function (IMF). Therefore, there remains some uncertainty for the possible cause of this observational result. Finally, we present a pilot study of deep, near infrared (NIR) imaging

  18. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  19. AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA

    SciTech Connect

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide E-mail: william.waller@tufts.edu E-mail: bpatten@nsf.gov

    2009-03-15

    At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

  20. 25 GHz methanol masers in regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Voronkov, Maxim A.

    2012-07-01

    The bright 25 GHz series of methanol masers is formed in highly energetic regions of massive star formation and provides a natural signpost of shocked gas surrounding newly forming stars. A systematic survey for the 25 GHz masers has only recently been carried out. We present the preliminary results from the interferometric follow up of 51 masers at 25 GHz in the southern sky.

  1. Studying the star formation process with adaptive optics

    NASA Astrophysics Data System (ADS)

    Menard, Francois; Dougados, Catherine; Duchene, Gaspard; Bouvier, Jerome; Duvert, Gilles; Lavalley, Claudia; Monin, Jean-Louis; Beuzit, Jean-Luc

    2000-07-01

    Young Stellar Objects (YSOs) are the builders of worlds. During its infancy, a star transforms ordinary interstellar dust particles into astronomical gold: planets to say the process is complex, and largely unknown to data. Yet, violent and spectacular events of mass ejection are witnessed, disks in keplerian rotation are detected, multiple stars dancing around each other are found. These are as many traces of the stellar and planet formation process. The high angular resolution provided by adaptive optics, and the related gain in sensitivity, have allowed major breakthrough discoveries to be made in each of these specific fields and our understanding of the various physical processes involved in the formation of a star has leaped forward tremendously over the last few years. In the following, meant as a report of the progress made recently in star formation due to adaptive optics, we will describe new results obtained at optical and near- infrared wavelengths, in imaging and spectroscopic modes. Our images of accretion disks and ionized stellar jets permit direct measurements of many physical parameters and shed light into the physics of the accretion and ejection processes. Although the accretion/ejection process so fundamental to star formation is usually studied around single objects, most of young stars form as part of multiple systems. We also present our findings on how the fraction of stars in binary systems evolves with age. The implications of these results on the conditions under which these stars must have formed are discussed.

  2. HOBYS insights on high-mass star formation

    NASA Astrophysics Data System (ADS)

    Motte, F.

    2016-05-01

    The Herschel/HOBYS key program allows to statistically study the formation of 10 - 20 M⊙ stars. It reveals high-density cloud filaments of several pc3, which are forming clusters of OB-type stars. It also strongly suggests and higher-angular resolution images tend to confirm that high-mass prestellar cores do not exist.

  3. The era of star formation in galaxy clusters

    SciTech Connect

    Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Mancone, C. L.; Gettings, D. P.; Zeimann, G. R.; Snyder, G. F.; Ashby, M. L. N.; Pope, A.; Alberts, S.; Eisenhardt, P. R.; Stern, D.; Moustakas, L. A.; Brown, M. J. I.; Chary, R.-R.; Dey, Arjun; Galametz, A.; Jannuzi, B. T.; Miller, E. D.; Moustakas, J.

    2013-12-20

    We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at 1 < z < 1.5 from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshift clusters, five of which are at z > 1.35. Using infrared luminosities measured with deep Spitzer/Multiband Imaging Photometer for Spitzer observations at 24 μm, along with robust optical + IRAC photometric redshifts and spectral-energy-distribution-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates, and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that z ∼ 1.4 represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift, the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at z > 1.4 environment-dependent quenching had not yet been established in ISCS clusters. By combining these observations with complementary studies showing a rapid increase in the active galactic nucleus (AGN) fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGNs. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.

  4. The simultaneous formation of massive stars and stellar clusters

    NASA Astrophysics Data System (ADS)

    Smith, Rowan J.; Longmore, Steven; Bonnell, Ian

    2009-12-01

    We show that massive stars and stellar clusters are formed simultaneously, the global evolution of the forming cluster is what allows the central stars to become massive. We predict that massive star-forming clumps, such as those observed in Motte et al., contract and grow in mass leading to the formation of massive stars. This occurs as mass is continually channelled from large radii on to the central protostars, which can become massive through accretion. Using smoothed particle hydrodynamic simulations of massive star-forming clumps in a giant molecular cloud, we show that clumps are initially diffuse and filamentary, and become more concentrated as they collapse. Simulated interferometry observations of our data provide an explanation as to why young massive star-forming regions show more substructure than older ones. The most massive stars in our model are found within the most bound cluster. Most of the mass accreted by the massive stars was originally distributed throughout the clump at low densities and was later funnelled to the star due to global infall. Even with radiative feedback no massive pre-stellar cores are formed. The original cores are of intermediate mass and gain their additional mass in the protostellar stage. We also find that cores which form low-mass stars exist within the volume from which the high-mass stars accrete, but are largely unaffected by this process.

  5. IC 3418: STAR FORMATION IN A TURBULENT WAKE

    SciTech Connect

    Hester, Janice A.; Neill, James D.; Wyder, Ted K.; Martin, D. Christopher; Seibert, Mark; Madore, Barry F.; Gil de Paz, Armando; Schiminovich, David; Rich, R. Michael

    2010-06-10

    Galaxy Evolution Explorer observations of IC 3418, a low surface brightness galaxy in the Virgo Cluster, revealed a striking 17 kpc UV tail of bright knots and diffuse emission. H{alpha} imaging confirms that star formation is ongoing in the tail. IC 3418 was likely recently ram pressure stripped on its first pass through Virgo. We suggest that star formation is occurring in molecular clouds that formed in IC 3418's turbulent stripped wake. Tides and ram pressure stripping (RPS) of molecular clouds are both disfavored as tail formation mechanisms. The tail is similar to the few other observed star-forming tails, all of which likely formed during RPS. The tails' morphologies reflect the forces present during their formation and can be used to test for dynamical coupling between molecular and diffuse gas, thereby probing the origin of the star-forming molecular gas.

  6. Local Magnetic Field Role in Star Formation

    NASA Astrophysics Data System (ADS)

    Koch, P. M.; Tang, Y. W.; Ho, P. T. P.; Zhang, Q.; Girart, J. M.; Chen, H. R. V.; Lai, S. P.; Li, H. B.; Li, Z. Y.; Liu, H. B.; Padovani, M.; Qiu, K.; Rao, R.; Yen, H. W.; Frau, P.; Chen, H. H.; Ching, T. C.

    2016-05-01

    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.

  7. The formation of Stars and Planets

    NASA Technical Reports Server (NTRS)

    Terebey, S.

    1995-01-01

    This oral presentation relates to the concept that new stars are constantly forming in our Galaxy. While much of the visible activity is hidden from view by the dust and gas from which they form, our infrared and millimeter wavelength telescopes let us see through the veil. An emerging paradigm that defines much of the process by which stars and planets form is explained. Hubble Space Telescope images.

  8. Star formation laws in the Andromeda galaxy: gas, stars, metals and the surface density of star formation

    NASA Astrophysics Data System (ADS)

    Rahmani, S.; Lianou, S.; Barmby, P.

    2016-03-01

    We use hierarchical Bayesian regression analysis to investigate star formation laws in the Andromeda galaxy (M31) in both local (30, 155 and 750 pc) and global cases. We study and compare the well-known Kennicutt-Schmidt law, the extended Schmidt law and the metallicity/star formation correlation. Using a combination of Hα and 24 μm emission, a combination of far-ultraviolet and 24 μm, and the total infrared emission, we estimate the total star formation rate (SFR) in M31 to be between 0.35 ± 0.04 and 0.4 ± 0.04 M⊙ yr-1. We produce a stellar mass surface density map using IRAC 3.6 μm emission and measured the total stellar mass to be 6.9 × 1010 M⊙. For the Kennicutt-Schmidt law in M31, we find the power-law index N to be between 0.49 and 1.18; for all the laws, the power-law index varies more with changing gas tracer than with SFR tracer. The power-law index also changes with distance from the centre of the galaxy. We also applied the commonly used ordinary least-squares fitting method and showed that using different fitting methods leads to different power-law indices. There is a correlation between the surface density of SFR and the stellar mass surface density, which confirms that the Kennicutt-Schmidt law needs to be extended to consider the other physical properties of galaxies. We found a weak correlation between metallicity, the SFR and the stellar mass surface density.

  9. A CANDELS WFC3 Grism Study of Emission-Line Galaxies at Z approximates 2: A mix of Nuclear Activity and Low-Metallicity Star Formation

    NASA Technical Reports Server (NTRS)

    Trump, Jonathan R.; Weiner, Benjamin J.; Scarlata, Claudia; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Laird, Elise S.; Mozena, Mark; Rangel, Cyprian; Yan, Renbin; Yesuf, Hassen; Atek, Hakim; Dickinson, Mark; Donley, Jennifer L.; Dunlop, James S.; Ferguson, Henry C.; Finkelstein, Steven L.; Grogin, Norman A.; Hathi, Nimish P.; Juneau, Stephanie; Kartaltepe, Jeyhan S.; Koekemoer, Anton M.; Nandra, Kirpal

    2011-01-01

    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  10. Infrared observations of OB star formation in NGC 6334

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Gatley, I.

    1983-01-01

    Infrared photometry and maps from 2 to 100 microns are presented for three of the principal far infrared sources in NGC 6334. Each region is powered by two or more very young stars. The distribution of dust and ionized gas is probably strongly affected by the presence of the embedded stars; one of the sources is a blister H II region, another has a bipolar structure, and the third exhibits asymmetric temperature structure. The presence of protostellar objects throughout the region suggests that star formation has occurred nearly simultaneously in the whole molecular cloud rather than having been triggered sequentially from within. Previously announced in STAR as N83-16263

  11. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    SciTech Connect

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  12. Star formation rates of spiral galaxies in the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Alpaslan, Mehmet; Marcum, Pamela M.; Galaxy And Mass Assembly (GAMA)

    2016-01-01

    We look for shifts in stellar mass and star formation rate along filaments in the cosmic web by examining the stellar masses and UV-derived star formation rates of 1,799 ungrouped and unpaired spiral galaxies from the Galaxy And Mass Assembly (GAMA) survey that reside in filaments. We devise multiple distance metrics to characterise the complex geometry of filaments, and find that galaxies closer to the orthogonal core of a filament have higher stellar masses than their counterparts near the periphery of filaments, on the edges of voids. We also find that these peripheral galaxies have higher specific star formations at a given mass. Our results suggest a model in which gas accretion from voids onto filaments is primarily in an orthogonal direction. While the star formation rates of spiral galaxies in filaments are susceptible to their locations, we find that the global star formation rates of galaxies in different large scale environments are similar to each other. The primary discriminant in star formation rates is therefore the stellar mass of each spiral galaxy, as opposed to its large scale environment.

  13. Star Formation and Dynamics in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela; Gualandris, Alessia

    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ˜ 0.04 pc, while the S-stars, i.e. the ˜ 30 stars closest to the SMBH ( lesssim 0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.

  14. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  15. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  16. Star Formation in the Seemingly Quiet GMC N159-S

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Hui; Wong, Tony; Ott, Juergen; Looney, Leslie; Chu, You-Hua; Gruendl, Robert; Indebetouw, Remy; Seale, Jonathan; Heitsch, Fabian; Madden, Suzanne

    2009-07-01

    Despite significant progress in understanding the physics involved with the formation of single stars, we still only have crude ides about why a giant molecular cloud (GMC) form clusters, distributed associations, or no stars at all. The key properties of GMCs displaying various intensities of star formation must be explored observationally in more detail. Two GMCs associated with the LMC HII region N159, N159-S and N159-W, have similar size and mass, but exhibit very different star formation activity as N159-S is paucity in stars and young stellar objects (YSOs) unlike its active neighbor N159-W. To examine whether N159-S may just start to form massive stars, or doesn't have that potential at all, we request 30 hours of 3mm HCO+ and HCN to map the CO core and 870um clumps. The observations will be used to study morphologies and spatial and mass distributions of dense gas clumps, to search for sites of massive YSOs at earliest evolutionary stage, and compare to the previous N159-W observations to assess whether N159-S can form YSOs as massive as O-type. This program will help us better understand the relation between GMCs and their star formation properties.

  17. Theoretical Developments in Understanding Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Yorke, H. W.; Bodenheimer, P.

    2008-05-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low-mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen-burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors. The evolution of accreting stars depends strongly on the accretion history. We find that for the high accretion rates considered, ˜10^{-3} M_⊙yr^{-1}, stars of ˜5-10 M_⊙ tend to bloat up to radii which may exceed 100 R_⊙. Because of the high rate of binarity among massive stars, we expect that these large radii during short phases of evolution will result in mass transfer, common envelope evolution, and a higher number of tight binaries with periods of a few days.

  18. Segue 1 -- A Compressed Star Formation History before Reionization

    NASA Astrophysics Data System (ADS)

    Webster, David; Frebel, Anna; Bland-Hawthorn, Joss

    2016-02-01

    Segue 1 is the current best candidate for a “first galaxy,” a system that experienced only a single, short burst of star formation and has since remained unchanged. Here we present possible star formation scenarios that can explain Segue 1’s unique metallicity distribution. While the majority of stars in all other ultra-faint dwarfs are within 0.5 dex of the mean [Fe/H] for the galaxy, five of the seven stars in Segue 1 have a spread of Δ[Fe/H] > 0.8 dex. We show that this distribution of metallicities cannot be explained by a gradual buildup of stars, but instead requires clustered star formation. Chemical tagging allows the separate unresolved delta functions in abundance space to be associated with discrete events in space and time. This provides an opportunity to put the enrichment events into a time sequence and unravel the history of the system. We investigate two possible scenarios for the star formation history of Segue 1 using Fyris Alpha simulations of gas in a 107 M⊙ dark matter halo. The lack of stars with intermediate metallicities -3 < [Fe/H] < -2 can be explained either by a pause in star formation caused by supernova feedback or by the spread of metallicities resulting from one or two supernovae in a low-mass dark matter halo. Either possibility can reproduce the metallicity distribution function (MDF) as well as the other observed elemental abundances. The unusual MDF and the low luminosity of Segue 1 can be explained by it being a first galaxy that originated with Mvir ˜ 107M⊙ at z ˜ 10.

  19. Star Formation Research - Now And With Alma

    NASA Astrophysics Data System (ADS)

    Shepherd, Debra S.

    2006-06-01

    Optical, infrared, X-ray, and radio (single dish and interferometric) observations of star forming regions have made great strides toward improving our understanding of the characteristics and evolution of molecular clouds and embedded forming stars and their circumstellar disks. Once the Atacama Large Millimeter Array (ALMA) is completed, it will provide a significant increase in sensitivity and resolution at millimeter and sub-millimeter wavelengths that will allow all astronomers to address critical issues that cannot be explored with established observatories. I will review our current observational limitations and provide examples about how ALMA will contribute to the study of star forming regions and compliment other new or expanded observatories at optical, infrared, and radio wavelengths.The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. Star Formation in the Zw1400 + 09 Poor Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    McElroy, Alyssa

    2015-04-01

    Galaxies in dense clusters are known to have less gas and star formation, likely due to environmental interactions within the clusters. Less is known about the properties of galaxies in lower density poor clusters and group environments. In this project, star formation properties of galaxies in the Zwicky 1400 + 09 (NRGb282, NGC 5416) poor cluster were found by reducing and analyzing narrowband H-alpha and broadband R images taken with the WIYN 0.9m MOSAIC camera at Kitt Peak National Observatory. Surface photometry and total star formation rates and extents are presented for a sample of galaxies within the cluster. This work is supported by NSF AST-0725267 and AST-1211005 and is a part of an Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team study of the star forming and gas properties of 16 nearby groups of galaxies. ALFALFA Consortium.

  1. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2002-01-01

    This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.

  2. A CANDELS WFC3 GRISM STUDY OF EMISSION-LINE GALAXIES AT z {approx} 2: A MIX OF NUCLEAR ACTIVITY AND LOW-METALLICITY STAR FORMATION

    SciTech Connect

    Trump, Jonathan R.; Kocevski, Dale D.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Mozena, Mark; Yesuf, Hassen; Scarlata, Claudia; Bell, Eric F.; Laird, Elise S.; Rangel, Cyprian; Yan Renbin; Atek, Hakim; Dickinson, Mark; Donley, Jennifer L.; Ferguson, Henry C.; Grogin, Norman A.; Dunlop, James S.; Finkelstein, Steven L.; and others

    2011-12-20

    We present Hubble Space Telescope Wide Field Camera 3 (WFC3) slitless grism spectroscopy of 28 emission-line galaxies at z {approx} 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The high sensitivity of these grism observations, with >1{sigma} detections of emission lines to f > 2.5 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2}, means that the galaxies in the sample are typically {approx}7 times less massive (median M{sub *} = 10{sup 9.5} M{sub Sun }) than previously studied z {approx} 2 emission-line galaxies. Despite their lower mass, the galaxies have [O III]/H{beta} ratios which are very similar to previously studied z {approx} 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O III] emission line is more spatially concentrated than the H{beta} emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L{sub [OIII]}/L{sub 0.5-10keV} ratio is intermediate between typical z {approx} 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  3. Molecular Clouds, Star Formation and Galactic Structure.

    ERIC Educational Resources Information Center

    Scoville, Nick; Young, Judith S.

    1984-01-01

    Radio observations show that the gigantic clouds of molecules where stars are born are distributed in various ways in spiral galaxies, perhaps accounting for the variation in their optical appearance. Research studies and findings in this area are reported and discussed. (JN)

  4. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    SciTech Connect

    Cole, Andrew A.; Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; McConnachie, Alan W.; Brooks, Alyson M.; Leaman, Ryan E-mail: drw@ucsc.edu E-mail: skillman@astro.umn.edu E-mail: abrooks@physics.rutgers.edu

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  5. Bimodal star formation - Constraints from galaxy colors at high redshift

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1.

  6. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  7. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  8. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    SciTech Connect

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria E-mail: rodrigo.contreras@oabo.inaf.it E-mail: monica.tosi@oabo.inaf.it E-mail: ripepi@na.astro.it E-mail: ilaria@na.astro.it

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  9. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    SciTech Connect

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-09-10

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H{alpha} excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H{alpha} excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  10. Progressive Star Formation in the Young Galactic Super Star Cluster NGC 3603

    NASA Astrophysics Data System (ADS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Paresce, Francesco; Young, Erick; Andersen, Morten; Panagia, Nino; Balick, Bruce; Bond, Howard; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.; Whitmore, Bradley C.; Windhorst, Rogier A.

    2010-09-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.