Science.gov

Sample records for nuclear technology studies

  1. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  2. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  3. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  4. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  5. Terrorists and Nuclear Technology

    ERIC Educational Resources Information Center

    Krieger, David

    1975-01-01

    This essay explores the ways terrorist groups may gain possession of nuclear materials; the way in which they may use nuclear weapons and other nuclear technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists utilizing nuclear technology to their benefit and society's detriment. (BT)

  6. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  7. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  8. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion - Phase I

    SciTech Connect

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-06

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature {approx} 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  9. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion — Phase I

    NASA Astrophysics Data System (ADS)

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-01

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature ˜ 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  10. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect

    Howe, S. ); Borowski, S. . Lewis Research Center); Motloch, C. ); Helms, I. ); Diaz, N.; Anghaie, S. ); Latham, T. (United

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  11. Nuclear space propulsion critical technologies

    SciTech Connect

    Clark, J.S.; Borowski, S.K.; Doherty, M.P. )

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has actively pursued technology development for nuclear rocket propulsion systems for possible use on lunar outpost missions, for exploration missions to Mars, and for outer planet and other solar system exploration missions. A number of these technologies have been broadly identified by the ANS National Critical Technologies Panel, as well as the Department of Commerce as [open quotes]Critical Technologies.[close quotes] A Nuclear Propulsion Office was established at the Lewis Research Center in Cleveland, Ohio, to lead nuclear propulsion development for NASA and to establish appropriate interagency working relationships with the U.S. Department of Energy national laboratories for nuclear technology development and with the Department of Defense (DoD). The NASA intercenter and interagency teams and NASA contractors have initiated conceptual design activities and other trade studies that provide the focus for appropriate critical technology development for both nuclear thermal propulsion (NTP) systems and nuclear electric propulsion (NEP) systems. Critical technology issues have been identified and are discussed in this paper. For NTP systems, the heat generated in the nuclear reactor is used to simply heat a propellant such as hydrogen, and then the high-temperature propellant expands through a nozzle to produce thrust. Specific impulse for NTP systems should be on the order of 900 to 950 s-approximately double the best chemical propulsion systems.

  12. Space nuclear technology

    NASA Astrophysics Data System (ADS)

    Walker, J. V.

    1992-12-01

    Member of Industry-Lab-Government delegation invited to visit the Commonwealth of Independent States (CIS) to attend Nuclear Rocket Engines Conference in Semipalatinsk-21, Kazakhstan; visit a number of nuclear facilities; participate in technical discussions at several Russian organizations involved with space nuclear technology; discuss possibilities of Sandia participation in US/CIS programs. Significant programs exist in the CIS in these areas, but appear to have slowed due to funding difficulties and national priorities. The CIS possesses valuable technologies of significant relevance to current US interests and programs which they seem willing to make available to the US as relations between the US and the CIS improve.

  13. Space and nuclear research and technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  14. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  15. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  16. Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This is the syllabus of a course that explores the technology of nuclear weapons and nuclear energy for electric power generation, and considers some problems of nuclear weapons proliferation and technical alternatives. It provides a course description, a course outline, a list of required readings, and information on the films shown in the…

  17. Nuclear Technology Programs

    SciTech Connect

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  18. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  19. Nuclear propulsion technology advanced fuels technology

    NASA Technical Reports Server (NTRS)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  20. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  1. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  2. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  3. Nuclear Reactors and Technology; (USA)

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  4. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  5. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  6. Nuclear Medical Technology Training.

    ERIC Educational Resources Information Center

    Simmons, Guy H., Ed.

    This 1-day colloquium, attended by 23 participants representing societies, government agencies, colleges and universities, and other training programs, was conducted for the purpose of reporting on and discussing the curriculums developed at the University of Cincinnati for training nuclear medical technologists. Pilot programs at both the…

  7. Nuclear technology transfer to China

    SciTech Connect

    Crane, A.T.

    1987-01-01

    China has severe power shortages and considerable nuclear expertise available from its military programs. These factors led to great expectations of how fast its nuclear power program might expand. The U.S. recently implemented a controversial nuclear cooperation agreement with China, permitting U.S. companies to compete if this market reopens. The major concern over the agreement was that in the past China apparently showed an alarming disregard for the dangers of nuclear proliferation. It is unlikely that China would use nuclear power equipment to further its nuclear weapons program, but the effectiveness of the U.S. nonproliferation stance has been in part dependent on other countries viewing our position as uncompromising. The vagueness of certain provisions in the agreement with China may have weakened this stance. Another concern is that access to U.S. pressurized water reactor technology could improve their submarine reactors, which could be detrimental to U.S. security interests if relations with China deteriorate. However, it appears that the only significant advantage that would accrue would be a general upgrading of management practices and quality control, which would be available from any other nuclear supplier. If the opportunity for the sale of nuclear equipment to China emerges, the nuclear technology transfer that would be involved, if carefully managed, should contribute to the national interest.

  8. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    SciTech Connect

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  9. The Governance of Nuclear Technology

    SciTech Connect

    Vergino, E S; May, M

    2003-09-22

    Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs to

  10. Educating American youth on nuclear technology

    SciTech Connect

    Hechanova, T.E.

    1993-12-31

    A grave problem facing the American nuclear technology field is the non-education of American youth in nuclear sciences which produces an uneducated populace. This presentation addresses first hand efforts of the Massachusetts Institute of Technology`s ANS Student Branch at educating mainly high school students in nuclear science, and recruiting college students into the Nuclear Engineering Department.

  11. Nuclear technology requires free elections

    NASA Astrophysics Data System (ADS)

    Synek, Miroslav

    1999-10-01

    The historical development on our planet has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button." If this technology ever falls under the control of an irresponsible, miscalculating, or insane DICTATOR, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very SURVIVAL OF ALL HUMANITY on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by the people, through a sufficiently secure system of FREE ELECTIONS, in any country, wherever and whenever such a threatening possibility exists. Of course, a starting system of FREE ELECTIONS, even if quite rudimentary, should try to provide for its continuous functioning, with an underlying appropriate freedom of expression and with rules for its continuation, while aiming towards continuous improvements.

  12. Technology and applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.; Rosen, Robert; Bennett, Gary L.; Schnyer, A. D.

    1991-01-01

    Requirements for a number of potential NASA civil space missions are addressed, and the nuclear power technology base to meet these requirements is described. Particular attention is given to applications of space nuclear power to lunar, Mars, and science missions and the technology status of space nuclear power with emphasis on dynamic isotope and space nuclear reactor power systems.

  13. History of nuclear technology development in Japan

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  14. History of nuclear technology development in Japan

    SciTech Connect

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  15. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  16. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  17. Studies of fluctuation processes in nuclear collisions. [Dept. of Physics, Tennessee Technological Univ. , Cookeville, Tennessee

    SciTech Connect

    Ayik, S.

    1993-02-01

    Investigations of various aspects of heavy-ion collisions were carried out in the framework of the Boltzmann-Langevin Model (BLM). In a previous work, by projection the BLM onto a collective space, a memory-dependent collective transport model was reduced. This model was applied to thermal fission to investigate the influence of the memory effects on the fission dynamics. Some results of the calculations are presented. In addition a reduction of the relativistic BLM to a two-fluid model was carried out, and transport coefficients associated with fluid dynamical variables was carried out. Then this model was applied to investigate equilabration and fluctuation properties in a counter-streaming nuclear fluid.

  18. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  19. Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    NASA Astrophysics Data System (ADS)

    Ripani, Marco; Frambati, Stefano; Mansani, Luigi; Bruzzone, Maurizio; Reale, Marco; Monti, Stefano; Ciotti, Marco; Barbagallo, Massimo; Colonna, Nicola; Celentano, Andrea; Osipenko, Mikhail; Ricco, Giovanni; Saracco, Paolo; Viberti, Carlo Maria; Frasciello, Oscar; Boccaccio, Pasquale; Esposito, Juan; Lombardi, Augusto; Maggiore, Mario; Piazza, Leandro A. C.; Prete, Gianfranco; Alba, Rosa; Calabretta, Luciano; Cosentino, Gianluigi; Del Zoppo, Antonio; Di Pietro, Alessia; Figuera, Pierpaolo; Finocchiaro, Paolo; Maiolino, Cettina; Santonocito, Domenico; Schillaci, Maria; Chiesa, Davide; Clemenza, Massimiliano; Previtali, Ezio; Sisti, Monica; Kostyukov, Alexander; Cammi, Antonio; Bortot, Sara; Lorenzi, Stefano; Ricotti, Marco; Dulla, Sandra; Ravetto, Piero; Lomonaco, Guglielmo; Rebora, Alessandro; Alloni, Daniele; Borio di Tigliole, Andrea; Cagnazzo, Marcella; Cremonesi, Riccardo; Magrotti, Giovanni; Manera, Sergio; Panza, Fabio; Prata, Michele; Salvini, Andrea

    2014-12-01

    Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70 MeV, 0.75 mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility.

  20. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    SciTech Connect

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  1. Nuclear technology for the year 2000

    SciTech Connect

    Not Available

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  2. The market viability of nuclear hydrogen technologies.

    SciTech Connect

    Botterud, A.; Conzelmann, G.; Petri, M. C.; Yildiz, B.

    2007-04-06

    The Department of Energy Office of Nuclear Energy is supporting system studies to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options. One of the objectives of the current analysis phase is to determine how nuclear hydrogen technologies could evolve under a number of different futures. The outputs of our work will eventually be used in a larger hydrogen infrastructure and market analysis conducted for DOE-EE using a system-level market simulation tool now underway. This report expands on our previous work by moving beyond simple levelized cost calculations and looking at profitability, risk, and uncertainty from an investor's perspective. We analyze a number of technologies and quantify the value of certain technology and operating characteristics. Our model to assess the profitability of the above technologies is based on Real Options Theory and calculates the discounted profits from investing in each of the production facilities. We use Monte-Carlo simulations to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from a production plant. We also quantify the value of the option to switch between hydrogen and electricity production in order to maximize investor profits. Uncertainty in electricity and hydrogen prices can be represented with two different stochastic processes: Geometric Brownian Motion (GBM) and Mean Reversion (MR). Our analysis finds that the flexibility to switch between hydrogen and electricity leads to

  3. The nuclear materials control technology briefing book

    SciTech Connect

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  4. Nuclear technologies for moon and Mars exploration

    NASA Astrophysics Data System (ADS)

    Buden, David

    1991-10-01

    The advantages gained by using nuclear technologies for long-term space missions are discussed. It is argued that nuclear propulsion provides increased crew safety by shortening trip times and enabling the use of simpler engines, smaller vehicles, and broader launch windows. Nuclear technology can also provide the megawatts of power needed for planetary surface operations and it might provide the only way to power manned spacecrafts for Mars exploration scheduled for 2014-2016.

  5. MSFC nuclear thermal propulsion technology program

    NASA Technical Reports Server (NTRS)

    Swint, Shane

    1993-01-01

    Viewgraphs on non-nuclear materials assessment, nuclear thermal propulsion (NTP) turbomachinery technologies, and high temperature superconducting magnetic bearing technology are presented. The objective of the materials task is to identify and evaluate candidate materials for use in NTP turbomachinery and propellant feed system applications. The objective of the turbomachinery technology task is to develop and validate advanced turbomachinery technologies at the component and turbopump assembly levels. The objective of the high temperature superconductors (HTS) task is to develop and validate advanced technology for HTS passive magnetic/hydrostatic bearing.

  6. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  7. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given

  8. ABB Combustion Engineering nuclear technology

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  9. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  10. Effective citizen advocacy of beneficial nuclear technologies

    SciTech Connect

    McKibben, J. Malvyn; Wood, Susan

    2007-07-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  11. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    SciTech Connect

    Volpe, Tristan A.

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  12. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  13. Nuclear technologies for Moon and Mars exploration

    SciTech Connect

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  14. Latest Developments in Nuclear Emulsion Technology

    NASA Astrophysics Data System (ADS)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  15. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  16. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  17. New technologies for monitoring nuclear materials

    SciTech Connect

    Moran, B.W.

    1993-07-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items.

  18. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  19. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  20. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  1. Freeze Technology for Nuclear Applications - 13590

    SciTech Connect

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  2. Radiation imaging technology for nuclear materials safeguards

    SciTech Connect

    Prettyman, T.H.; Russo, P.A.; Cheung, C.C.; Christianson, A.D.; Feldman, W.C.; Gavron, A.

    1997-12-01

    Gamma-ray and neutron imaging technology is emerging as a useful tool for nuclear materials safeguards. Principal applications include improvement in accuracy for nondestructive assay of heterogeneous material (e.g., residues) and wide-area imaging of nuclear material in facilities (e.g., holdup). Portable gamma cameras with gamma-ray spectroscopy are available commercially and are being applied to holdup measurements. The technology has the potential to significantly reduce effort and exposure in holdup campaigns; and, with imaging, some of the limiting assumptions required for conventional holdup analysis can be relaxed, resulting in a more general analysis. Methods to analyze spectroscopic-imaging data to assay plutonium and uranium in processing equipment are being development. Results of holdup measurements using a commercial, portable gamma-cameras are presented. The authors are also developing fast neutron imaging techniques for NDA, search, and holdup. Fast neutron imaging provides a direct measurement of the source of neutrons and is relatively insensitive to surroundings when compared to thermal or epithermal neutron imaging. The technology is well-suited for in-process inventory measurements and verification of materials in interim storage, for which gamma-ray measurements may be inadequate due to self-shielding. Results of numerical simulations to predict the performance of fast-neutron telescopes for safeguards applications are presented.

  3. Development of nuclear rocket engine technology

    SciTech Connect

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs.

  4. The Limits of Empowerment in Anti-Nuclear Advocacy: A Case Study of Adult Education for Technological Literacy.

    ERIC Educational Resources Information Center

    Regnier, Robert; Penna, Phillip

    1996-01-01

    Using a theory of technological literacy, analysis of a project to oppose uranium mining in Saskatchewan revealed how the potential for empowerment is often overstated. Informing citizens to participate in critical discourse does not always lead to decisions reflecting their interests. (SK)

  5. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  6. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  7. Training at the Australian school of nuclear technology

    SciTech Connect

    Culley, D.; Fredsall, J.R.; Toner, B.

    1988-01-01

    The Australian School of Nuclear Technology was founded in 1964 as a joint enterprise of the Australian Atomic Energy Commission and the University of New South Wales to support nuclear developments primarily in Australia. However, ASNT has developed into an important century for nuclear science and technology training within the South East Asian Region with participants also attending from countries outside this Region.

  8. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  9. Space nuclear power, propulsion, and related technologies.

    SciTech Connect

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  10. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  11. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  12. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  13. Applying RFID technology in nuclear materials management.

    SciTech Connect

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  14. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  18. The broad view of nuclear technology for aerospace

    NASA Astrophysics Data System (ADS)

    Buden, David; Angelo, Joseph A., Jr.

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions.

  19. Nuclear Technology Series. Course 30: Mechanical Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 28: Welding Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 19: Radiation Shielding.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 27: Metrology.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 18: Radiological Emergencies.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course l: Radiation Physics.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. The Los Alamos nuclear safeguards and nonproliferation technology development program

    SciTech Connect

    Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

    1994-04-01

    For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

  9. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  10. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    NASA Astrophysics Data System (ADS)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  11. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  12. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  13. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  14. Emerging Technologies Integrating Technology into Study Abroad

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  15. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  16. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  17. Waging nuclear peace: The technology and politics of nuclear war

    SciTech Connect

    Ehrlich, R.

    1985-01-01

    Since the explosions of the first atomic bombs, a large literature has appeared on the effects and risks of nuclear war. The most widely quoted recent publications have concentrated on the impossibility of any meaningful survival after a superpower nuclear exchange. By contrast, Dr. Ehrlich tries to show both sides of the various arguments involved. As a result, he undoubtedly succeeds in his avowed intention of angering both hawks and doves. He offers a critical analysis of most considerations apposite to the current nuclear-weapon impasse, including the nature of current nuclear arms, the possibility of limited nuclear war, the short-term and long-term effects of nuclear weapons, the value of civil defense, the importance of public opinion, and the feasibility of arms control.

  18. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  19. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  20. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  1. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect

    David L. Black

    2000-06-04

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  2. Ventilation technologies scoping study

    SciTech Connect

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  3. Citizen Education on Nuclear Technology (CENT).

    ERIC Educational Resources Information Center

    Intermountain Science Experience Center, ID Falls, ID.

    Using an interdisciplinary approach, this curriculum focuses on an understanding of: (1) the fundamental principles of operation of a nuclear power plant; (2) the place of nuclear energy in the overall energy-supply-demand situation; (3) risk-benefit balance of the major energy sources; and (4) the role of political action in the development of…

  4. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  5. Aeronautics systems technology studies

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.

    1983-01-01

    Data collection and analysis in the areas of air transportation, aircraft manufacturing and sales, airline operations, market projections, internal trade, and energy consumption; legislation and regulations, technology needs; surveys; decision-making; cost analyses; and technology transfer are discussed.

  6. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  7. Nuclear Energy Response in the EMF27 Study

    SciTech Connect

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-03-25

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

  8. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  9. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  10. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  11. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  12. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development. Final report of a scientific research supported by the USDOE/SBIR program

    SciTech Connect

    E.T. Cheng, et al.

    1999-06-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation 3, can produce a neutron wall loading from 0.5 to 5 MW/m{sup 2} at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW-y/m{sup 2} is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept.

  13. Technologies for detection of nuclear materials

    SciTech Connect

    DeVolpi, A.

    1996-03-30

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  14. [Nuclear medicine in Spain: high technology 2013].

    PubMed

    Soriano Castrejón, A M; Prats Rivera, E; Alonso Farto, J C; Vallejo Casas, J A; Rodriguez Gasen, A; Setoain Perego, J; Arbizu Lostao, J

    2014-01-01

    This article details the high technology equipment in Spain obtained through a survey sent to the three main provider companies of equipment installed in Spain. The geographical distribution of high technology by Autonomous Communities and its antiquity have been analyzed. PMID:25242173

  15. Nuclear rocket plume studies

    NASA Astrophysics Data System (ADS)

    Hastings, Daniel

    1993-05-01

    A description and detailed computational analysis of a vortex cleaning system designed to remove radioactive material from the plumes of nuclear rockets is included. The proposed system is designed to remove both particulates and radioactive gaseous material from the plume. A two part computational model is used to examine the system's ability to remove particulates, and the results indicate that under some conditions, the system can remove over 99% of the particles in the flow. Two critical parameters which govern the effectiveness of the system are identified and the information necessary to estimate cleaning efficiencies for particles of known sizes and densities is provided. A simple steady analytical solution is also developed to examine the system's ability to remove gaseous radioactive material. This analysis, while inconclusive, suggests that the swirl rates necessary to achieve useful efficiencies are too high to be achieved in any practical manner. Therefore, this system is probably not suitable for use, with gaseous radioactive material. It was concluded that the system can cause negligible specific impulse losses, though there may be a substantial mass penalty associated with its use.

  16. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  17. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  18. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  19. A Lesson from the Nuclear Industry: Professionalism and Technology.

    ERIC Educational Resources Information Center

    Roth, Gene L.; Widen, W. C.

    1991-01-01

    Focuses on an innovative approach to instill professionalism in workers such as reactor operators and other nuclear power workers. It may be used by technology instructors to send a message to their students: regardless of the advanced state of technology, the human element provides the key to desirable outcomes. (Author/JOW)

  20. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. PMID:27400217

  1. Nuclear safety technology and public acceptance

    NASA Astrophysics Data System (ADS)

    Kienle, F.

    1985-11-01

    In the years 1976 to 1982 officialdom intensified the safety regulations in German nuclear power plants out of all proportion, without actually bringing about a recognizable plus in safety or indeed a greater acceptance by the public of the peaceful use of nuclear energy. Although the risk to employees of nuclear power plants and to the population living in their vicinity is substantially smaller than the dangers of modern civilization, the general public still regards with concern the consequences of radioactive exposure and the hazards to later generations from long-life radionuclides. The task for the coming years must be to maintain the safety standard now attained, while simultaneously reducing those exaggerated individual requirements in order to establish a balance in safety precautions. Additionally, a proposal put forward by Sir Walter Marshall, Chairman of the CEGB, should be pursued, i.e., to put the presumed risks of nuclear energy into their correct perspective in the public eye using comprehensible comparisons such as the risks from active or passive smoking. This cannot be accomplished by quoting abstract statistics.

  2. Telerobotic technology for nuclear and space applications

    SciTech Connect

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs.

  3. Template identification technology of nuclear warheads and components

    NASA Astrophysics Data System (ADS)

    Liu, Su-Ping; Gong, Jian; Hao, Fan-Hua; Hu, Guang-Chun

    2008-02-01

    Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs. This paper analyses the functions played by the TIT in the process of NW/NC dismantlement, and proposes that two phases would be followed when applying the TIT: firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW; secondly to authenticate NW/NC by means of the TIT. This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures. The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.

  4. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  5. Materials technology applied to nuclear accelerator targets

    SciTech Connect

    Barthell, B.L.

    1986-11-10

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology.

  6. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  7. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the…

  8. Nuclear material shipment study

    SciTech Connect

    Shepherd, E.W.

    1980-01-01

    The Radioactive Material Transport Assessment Study is expected to provide a flexible set of capabilities and useful information to the public, industry and government users by using a system design to assure obtaining high quality data from selected industry sources at acceptable cost. It is expected that the shipping record approach coupled with an efficient sampling strategy will accomplish this. The study is also designed to yield analytical capabilities and statistical output to serve public, industry and government users. The information provided by the study will make a valuable contribution to environmental and accident risk assessment, policy development and operational planning and management activities.

  9. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  10. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  11. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-08-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  12. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  13. Studying Nuclear Astrophysics at NIF

    SciTech Connect

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  14. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  15. Nuclear Thermal Propulsion Technology - Summary of FY 1991 Interagency Panel Planning

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Stanley, Marland

    1991-01-01

    An Interagency (NASA/DOE/DOD) technical panel has been working in 1991 to evaluate nuclear thermal propulsion (NTP) concepts on a consistent basis, and to continue technology development project planning for a joint project in nuclear propulsion for Space Exploration Initiative (SEI). This paper summarizes the efforts of the panel to date and summarizes the technology plans defined for NTP. Concepts were categorized based on probable technology readiness data, and innovative 'proof-of-concept' tests and analyses were defined. While further studies will be required to provide a consistent comparison of all of the NTP concepts, the current status of the studies is presented.

  16. Development Trends in Nuclear Technology and Related Safety Aspects

    SciTech Connect

    Kuczera, B.; Juhn, P.E.; Fukuda, K.

    2002-07-01

    The IAEA Safety Standards Series include, in a hierarchical manner, the categories of Safety Fundamentals, Safety Requirements and Safety Guides, which define the elements necessary to ensure the safety of nuclear installations. In the same way as nuclear technology and scientific knowledge advance continuously, also safety requirements may change with these advances. Therefore, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) one important aspect among others refers to user requirements on the safety of innovative nuclear installations, which may come into operation within the next fifty years. In this respect, the major objectives of the INPRO sub-task 'User Requirements and Nuclear Energy Development Criteria in the Area of Safety' have been: a. to overview existing national and international requirements in the safety area, b. to define high level user requirements in the area of safety of innovative nuclear technologies, c. to compile and to analyze existing innovative reactor and fuel cycle technology enhancement concepts and approaches intended to achieve a high degree of safety, and d. to identify the general areas of safety R and D needs for the establishment of these technologies. During the discussions it became evident that the application of the defence in depth strategy will continue to be the overriding approach for achieving the general safety objective in nuclear power plants and fuel cycle facilities, where the emphasis will be shifted from mitigation of accident consequences more towards prevention of accidents. In this context, four high level user requirements have been formulated for the safety of innovative nuclear reactors and fuel cycles. On this basis safety strategies for innovative reactor designs are highlighted in each of the five levels of defence in depth and specific requirements are discussed for the individual components of the fuel cycle. (authors)

  17. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated incorporation into a reactor system. The thermoelectric electromagnetic pump is recommended for inclusion in the present system based on favorable quantitative and qualitative measures relative to the other options under consideration.

  18. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  19. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  20. Welding technologies as applied to nuclear manufacturing

    NASA Astrophysics Data System (ADS)

    Roper, J. R.

    1992-10-01

    This is the trip report of John R. Roper, who traveled to England 25 Sep. through 8 Oct. 1992. Dr. Roper attended the US/UK JOWOG 22-D Joining Technical Exchange meeting and gave a presentation on Welding Finite Element Analysis and the Precision Joining Center at the Atomic Weapons Establishment in Aldermaston, United Kingdom. Dr. Roper also toured the Welding Institute in Abington, UK and discussed technology exchange of weld thermal and mechanical material responses.

  1. Proceedings of the nuclear criticality technology safety project

    SciTech Connect

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  2. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  3. A methodology for evaluating ``new`` technologies in nuclear power plants

    SciTech Connect

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  4. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  5. Enrollment Capacity and Technology Study

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2008

    2008-01-01

    The 2007-09 Appropriations Act provided funding to the Higher Education Coordinating Board (HECB) to study the state's capital facility and technology capacity. Specifically, "...state appropriation is provided solely to implement a capital facility and technology capacity study which will compare the 10-year enrollment projections with the…

  6. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  7. Future payload technology requirements study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology advances needed for an overall mission model standpoint as well as those for individual shuttle payloads are defined. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives. In the interest of obtaining commonality of requirements, the study was structured according to technology categories rather than in terms of individual payloads.

  8. Advances in NASA's Nuclear Thermal Propulsion Technology project

    NASA Technical Reports Server (NTRS)

    Peecook, Keith M.; Stone, James R.

    1993-01-01

    The status of the Nuclear Thermal Propulsion (NTP) project for space exploration and the future plans for NTP technology are discussed. Current activities in the framework of the NTP project deal with nonnuclear material tests; instrumentation, controls, and health management; turbopumps; nozzles and nozzle extension; and an exhaust plume.

  9. Nuclear Concepts & Technological Issues Institute: Teacher Activity Booklet.

    ERIC Educational Resources Information Center

    Davison, Candace C., Ed.; Lunetta, Lois W., Ed.

    For many summers the Radiation Science and Engineering Center at Pennsylvania State University has been the site of a Nuclear Concepts and Technological Issues Institute for secondary school science teachers. As a culminating activity of the institute teachers develop lesson plans, laboratory experiments, demonstrations, or other activities and…

  10. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    SciTech Connect

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  11. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  12. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  13. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  14. The roles and functions of a lunar base Nuclear Technology Center

    SciTech Connect

    Buden, D. ); Angelo, J.A. Jr. )

    1991-01-01

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth. 12 refs., 4 figs., 1 tab.

  15. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  16. High Energy Nuclear Database: A Testbed for Nuclear Data Information Technology

    SciTech Connect

    Brown, D A; Vogt, R; Beck, B; Pruet, J

    2007-04-18

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a testbed for the further development of an object-oriented nuclear data format and database system. By using ''off-the-shelf'' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a ''Grand Unified Nuclear Format'' encapsulating data types used in the ENSDF, ENDF/B, EXFOR, NSR and other formats, including processed data formats.

  17. Important technology considerations for space nuclear power systems

    SciTech Connect

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  18. Important technology considerations for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Kuspa, John P.; Wahlquist, Earl J.; Bitz, Dennis A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources - isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic - to meet mission requirements well into the next century.

  19. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced

  20. Feasibility study of a nuclear exciton laser

    NASA Astrophysics Data System (ADS)

    ten Brinke, Nicolai; Schützhold, Ralf; Habs, Dietrich

    2013-05-01

    Nuclear excitons known from Mössbauer spectroscopy describe coherent excitations of a large number of nuclei—analogous to Dicke states (or Dicke super-radiance) in quantum optics. In this paper, we study the possibility of constructing a laser based on these coherent excitations. In contrast to the free-electron laser (in its usual design), such a device would be based on stimulated emission and thus might offer certain advantages, e.g., regarding energy-momentum accuracy. Unfortunately, inserting realistic parameters, the window of operability is probably not open (yet) to present-day technology; but our design should be feasible in the UV regime, for example.

  1. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  2. {alpha}-particle optical potentials for nuclear astrophysics (NA) and nuclear technology (NT)

    SciTech Connect

    Avrigeanu, V.; Avrigeanu, M.

    2012-11-20

    The high precision of recent measurements for low-energy {alpha}-particle elastic-scattering as well as induced-reaction data makes possible the understanding of actual limits and possible improvement of the global optical model potentials parameters. Involvement of recent optical potentials for reliable description of both the elastic scattering and emission of {alpha}-particles, of equal interest for nuclear astrophysics (NA) and nuclear technology (NT) for fusion devices, is discussed in the present work.

  3. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  4. Dewar technology study

    NASA Technical Reports Server (NTRS)

    Davis, W.

    1975-01-01

    The development of a Dewar system for handling liquid helium under weightless conditions is described. Porous plug designs for the prevention of superfluid creep out of the dewar through the vent line were evaluated. For the purpose of designing a neck to provide a transition from the cold cavity to the outside, the loads carried by the neck and equipment supports were studied. Temperature, pressure, and mass flow instrumentation for monitoring Dewar performance were also evaluated. In addition, multilayer blankets consisting of aluminized Mylar separated by Dacron net sheets were designed to insulate the pressure vessel. The dewar system is suggested for use with the star tracking telescope aboard the relativity satellite.

  5. Nuclear Power, Small Nuclear Technology, and the Role of Technical Innovation: An Assessment

    SciTech Connect

    Schock, R N; Brown, N W; Smith, C F

    2001-05-18

    An overview of energy-system projections into the new century leads to the conclusion that nuclear power will play a significant role. How significant a role will be determined by the marketplace. Within the range of nuclear-power technologies available, small nuclear-power plants of innovative design appear to fit the needs of a number of developing nations and states. These plants have the potential advantage of modularity, are proliferation-resistant, incorporate passive safety features, minimize waste, and could be cost-competitive with fossil-fuel plants.

  6. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  7. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  8. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  9. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  10. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect

    Not Available

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  11. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect

    1992-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  12. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  14. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  15. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  16. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  17. Application of AI technology to nuclear plant operations

    SciTech Connect

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives.

  18. Refractory alloy technology for space nuclear power applications

    SciTech Connect

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  19. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component. PMID:20566512

  20. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  1. Nuclear power and the risks of new technologies

    SciTech Connect

    Wilson, R.

    1993-04-01

    There is often excessive euphoria about new technologies. This can lead to disillusionment and then excessive fear. Excessive fear can arise on its own. There are many indications that those who understand nuclear power are more willing to accept it. The author will present from his own experience several occasions in which lack of understanding has led to opposition and how the lack of understanding can be modified. But once a person is already opposed it is hard to change his actions.

  2. Technology development issues in space nuclear power for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Atkins, K. L.; Mastal, E. F.; Mcconnell, D. G.

    1990-01-01

    Planning for future planetary exploration missions indicates that there are continuing, long range requirements for nuclear power, and in particular radioisotope-based power sources. In meeting these requirements, there is a need for higher efficiency, lower mass systems. Four technology areas currently under development that address these goals are described: modular RTG, modular RTG with advanced thermoelectric materials, dynamic isotope power system (DIPS), and the Alkali Metal Thermoelectric Converter (AMTEC).

  3. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  4. Analytic studies in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Pizzochero, Pierre

    Five studies are presented in nuclear astrophysics, which deal with different stages of stellar evolution and which use analytic techniques as opposed to numerical ones. Two problems are described in neutrino astrophysics: the solar-neutrino puzzle is analyzed in the framework of the MSW mechanism for the enhancement of neutrino oscillations in matter; and the cooling of neutron stars is studied by calculating the neutrino emissivity from strangeness condensation. Radiative transfer is then examined as applied to SN1987A: its early spectrum and bolometric corrections are calculated by developing an analytic model which can describe both the extended nature of the envelope and the non-LTE state of the radiation field in the scattering-dominated early atmosphere; and a model-independent relation is derived between mass and kinetic energy for the hydrogen envelope of SN1987A, using only direct observations of its luminosity and photospheric velocity. Finally, an analytic approach is presented to relate the softness of the EOS of dense nuclear matter in the core of a supernova, the hydrostatic structure of such core and the initial strength of the shock wave.

  5. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  6. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  7. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  8. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    SciTech Connect

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  9. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  10. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  11. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  12. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  13. The limits of technology in nuclear crisis management

    SciTech Connect

    White, P.C.

    1986-01-01

    For some purposes, one may consider the roles of technology in nuclear crisis management to fall into four categories. Certain technologies, such as signals intelligence, may assist in monitoring for the emergence of crisis precursors. Other kinds of surveillance, such as that by certain satellites, are intended to detect phenomena, such as missile launches, which clearly signal the transition from pre-crisis to mid-crisis. During this phase, communications and surveillance technologies may be called upon to aid in managing the crisis. Finally, communications technologies will play a vital role in crisis resolution, preferably during the pre-crisis phase, but in mid-crisis if necessary. It has long been recognized that a large fraction of these technical means are vulnerable, both to selective, direct attack, and to the unintended, collateral effects of conflict itself. Systematic efforts are underway to make these systems more robust and survivable in crisis environments, but one must clearly recognize the limits of technology. In particular, one must weigh very seriously the implications and possible consequences of intentional, direct attack, including decapitation, on just those means which may permit timely crisis resolution. In the end, these technologies may prove so vulnerable, that nations may be forced to rely on pre-crisis planning, including force structuring, clearly defined options planning, and clear statements of intent, in order to permit any sort of mid-crisis resolution and conflict termination.

  14. Patenting the bomb: nuclear weapons, intellectual property, and technological control.

    PubMed

    Wellerstein, Alex

    2008-03-01

    During the course of the Manhattan Project, the U.S. government secretly attempted to acquire a monopoly on the patent rights for inventions used in the production of nuclear weapons and nuclear energy. The use of patents as a system of control, while common for more mundane technologies, would seem at first glance to conflict with the regimes of secrecy that have traditionally been associated with nuclear weapons. In explaining the origins and operations of the Manhattan Project patent system, though, this essay argues that the utilization of patents was an ad hoc attempt at legal control of the atomic bomb by Manhattan Project administrators, focused on the monopolistic aspects of the patent system and preexisting patent secrecy legislation. From the present perspective, using patents as a method of control for such weapons seems inadequate, if not unnecessary; but at the time, when the bomb was a new and essentially unregulated technology, patents played an important role in the thinking of project administrators concerned with meaningful postwar control of the bomb. PMID:18505023

  15. Values, Technology, and Social Studies.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1992-01-01

    The concentration of power and the potential for abuse inherent in modern technology mandates the development of a personal and socially responsible ethic. The development and examination of this ethic should be reflected and integrated throughout social studies instruction. Historical examples of traditional virtues (sobriety, thrift, industry)…

  16. INNOVATIVE CLEAN TECHNOLOGIES CASE STUDIES

    EPA Science Inventory

    The Innovative Clean Technologies case studies contained herein are the products of the "Pollution Prevention by and for Small Business" Program (P2SB). he P2SB was an outreach program directed to small businesses that had developed innovative concepts for pollution prevention in...

  17. Defining the "proven technology" technical criterion in the reactor technology assessment for Malaysia's nuclear power program

    NASA Astrophysics Data System (ADS)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-04-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".

  18. A GRADUATE CERTIFICATE PROGRAM IN NUCLEAR SAFEGUARDS TECHNOLOGY.

    SciTech Connect

    FISHBONE, L.; SISKIND, B.; PEPPER, S.

    2005-07-10

    While there are a number of university graduate-education programs that address non-proliferation and safeguards policy issues; there are none in the United States that train students in the specific technical aspects of nuclear safeguards. Formal education of this kind is necessary to sustain the flow of technically trained individuals to diverse programs in safeguards, nonproliferation, and national security. In response to this need, the University of Missouri-Columbia, with assistance from Brookhaven National Laboratory, is initiating a Graduate Certificate Program in Nuclear Safeguards Technology: Students seeking advanced degrees in a variety of technical areas will complete a required sequence of courses in order to receive the certification. Required course work covers topics such as Nuclear Material Control and Accountability (MC&A), Physical Protection (PP); nuclear measurements, and a variety of other relevant subjects. Laboratory-based instruction will be included which will utilize the University of Missouri Research Reactor(MURR). MURR is the largest university-based research reactor and has extensive laboratory resources including a Canberra Aquila MPC&A Operational Monitoring demonstration system.

  19. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  20. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  1. Photofission-Based, Nuclear Material Detection: Technology Demonstration

    SciTech Connect

    Jones, James Litton; Yoon, Woo Yong; Haskell, Kevin James; Norman, Daren Reeve; Moss, C. E.; Goulding, C. A.; Hollas, C. L.; Myers, W. L.; Franco, Ed

    2002-12-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), the Los Alamos National Laboratory (LANL), and the Advanced Research and Applications Corporation (ARACOR) [Sunnyvale, California] performed a photonuclear technology demonstration for shielded nuclear material detection during August 21–22, 2002, at the LANL TA-18 facility. The demonstration used the Pulsed Photonuclear Assessment Technique (PPAT) that focused on the application of a photofission-based, nuclear material detection method as a viable complement to the ARACOR Eagle inspection platform. The Eagle is a mobile and fully operational truck and cargo inspection system that uses a 6-MeV electron accelerator to perform real-time radiography. This imaging is performed using an approved “radiation-safe” or “cabinet safe” operation relative to the operators, inspectors, and any stowaways within the inspected vehicles. While the PPAT has been primarily developed for active interrogation, its neutron detection system also maintains a complete and effective passive detection capability.

  2. Nuclear technology aspects of ITER vessel-mounted diagnostics

    NASA Astrophysics Data System (ADS)

    Vayakis, George; Bertalot, Luciano; Encheva, Anna; Walker, Chris; Brichard, Benoît; Cheon, M. S.; Chitarin, G.; Hodgson, Eric; Ingesson, Christian; Ishikawa, M.; Kondoh, T.; Meister, Hans; Moreau, Philippe; Peruzzo, Simone; Pak, S.; Pérez-Pichel, Germán; Reichle, Roger; Testa, Duccio; Toussaint, Matthieu; Vermeeren, Ludo; Vershkov, Vladimir

    2011-10-01

    ITER has diagnostics with machine protection, basic and advanced control, and physics roles. Several are distributed on the inner and outer periphery of the vacuum vessel. They have reduced maintainability compared to diagnostics in ports. They also endure some of the highest nuclear and EM loads of any diagnostic for the longest time. They include: Inductive sensors for time-integrated and raw inductive measurements; Steady-state magnetic sensors to correct drifts of the inductive sensors; Bolometer cameras to provide electromagnetic radiation tomography; Microfission chambers and neutron activation stations to provide fusion power and fluence; MM-wave reflectometry to measure the plasma density profile and the plasma-wall distance and; Wiring to service magnetics, bolometry, and in-vessel instrumentation. This paper summarises the key technological issues these diagnostics arising from the nuclear environment, recent progress and outstanding R&D for each system.

  3. Overview of materials technologies for space nuclear power and propulsion

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  4. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  5. Proceedings of the Nuclear Criticality Technology Safety Workshop

    SciTech Connect

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  6. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  7. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

  8. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  9. Nuclear structure studies with intermediate energy probes

    SciTech Connect

    Lee, T.S.H.

    1993-10-01

    Nuclear structure studies with pions are reviewed. Results from a recent study of 1 p-shell nuclei using (e,e{prime}), ({pi}, {pi}{prime}), and ({gamma},{pi}) reactions are reported. Future nuclear structure studies with GeV electrons at CEBAF are also briefly discussed.

  10. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  11. Human response to nuclear and advanced technology weapons effects. Final report, January-December 1995

    SciTech Connect

    Coleman, J.L.

    1996-05-01

    The purpose of this study is to help the system survivability analyst estimate hardness requirements for systems exposed to nuclear weapons and advanced technology weapons (ATWs). The system survivability analyst is often asked to make quick, order-of-magnitude estimates on the hardness requirements for existing or proposed systems based upon human responses to the effects of nuclear weapons and ATWs. The intent of this report is to identity the general range of human survivability to nuclear weapons and ATWs and to provide simple example calcuiations and scenarios that can give the reader rough estimates of the effects of these weapons. While high-powered microwave (HPM) and laser weapons are considered in this report, the main emphasis is on nuclear weapons and their ionizing radiation effects.

  12. Nuclear and neutron matter studies

    SciTech Connect

    Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.

    1995-08-01

    We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.

  13. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  14. Obstacles to Studying Emerging Technologies.

    PubMed

    Waetjen, L Elaine; Parvataneni, Ram; Varon, Shira; Saberi, Naghmeh Salamat; Jacoby, Vanessa L

    2015-08-01

    Laparoscopic radiofrequency ablation of uterine leiomyomas with a new Federal Drug Administration (FDA)-approved device, a device that delivers radiofrequency energy, is a novel procedure that aims to meet patient and physician demand for effective, minimally invasive leiomyoma treatment. However, as a new procedure, the durability of symptom relief, the safety in widespread use, and ultimately the comparative effectiveness of radiofrequency ablation of leiomyomas need further study. In June 2013, the University of California Fibroid Network, a collaboration of the five University of California Departments of Obstetrics and Gynecology, launched the Uterine Leiomyoma Treatment with Radiofrequency Ablation Study, an investigator-initiated early postmarket approval clinical trial of radiofrequency ablation of leiomyomas. In this commentary, we provide a review of the FDA approval process for medical devices using the device that delivers radiofrequency energy as a case study and describe significant limitations of this process that may adversely affect clinical care. We show how the deficiencies in the FDA process have challenged our ability to conduct independent early postmarket research evaluating the safety and long-term effectiveness of this novel technology. Our experience validates the Institute of Medicine's recommendation that advancements in surgical technology introducing new treatments without long-term effectiveness data, comparative study, or both should emerge onto the market under research conditions. Until the FDA requires more rigorous study of novel devices, we suggest ways of working together as a community of gynecologic surgeons to evaluate promising new technologies in early postmarket studies, putting research before widespread adoption of surgical innovation. PMID:26241430

  15. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  16. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  17. Study of Membrane Reflector Technology

    NASA Technical Reports Server (NTRS)

    Knapp, K.; Hedgepeth, J.

    1979-01-01

    Very large reflective surfaces are required by future spacecraft for such purposes as solar energy collection, antenna surfaces, thermal control, attitude and orbit control with solar pressure, and solar sailing. The performance benefits in large membrane reflector systems, which may be derived from an advancement of this film and related structures technology, are identified and qualified. The results of the study are reported and summarized. Detailed technical discussions of various aspects of the study are included in several separate technical notes which are referenced.

  18. Cryogenic Fluid Management Technology and Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2016-01-01

    Cryogenic fluid management (CFM) is critical to the success of future nuclear thermal propulsion powered vehicles. While this is an issue for any propulsion system utilizing cryogenic propellants, this is made more challenging by the radiation flux produced by the reactor in a nuclear thermal rocket (NTR). Managing the cryogenic fuel to prevent propellant loss to boil off and leakage is needed to limit the required quantity of propellant to a reasonable level. Analysis shows deposition of energy into liquid hydrogen fuel tanks in the vicinity of the nuclear thermal engine. This is on top of ambient environment sources of heat. Investments in cryogenic/thermal management systems (some of which are ongoing at various organizations) are needed in parallel to nuclear thermal engine development in order to one day see the successful operation of an entire stage. High durability, low thermal conductivity insulation is one developmental need. Light weight cryocoolers capable of removing heat from large fluid volumes at temperatures as low as approx. 20 K are needed to remove heat leak from the propellant of an NTR. Valve leakage is an additional CFM issue of great importance. Leakage rates of state of the art, launch vehicle size valves (which is approximately the size valves needed for a Mars transfer vehicle) are quite high and would result in large quantities of lost propellant over a long duration mission. Additionally, the liquid acquisition system inside the propellant tank must deliver properly conditioned propellant to the feed line for successful engine operation and avoid intake of warm or gaseous propellant. Analysis of the thermal environment and the CFM technology development are discussed in the accompanying presentation.

  19. Nuclear Weapons Complex reconfiguration study

    SciTech Connect

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  20. Lunar nuclear power feasibility study

    NASA Technical Reports Server (NTRS)

    Erdman, C. A.; Tran, T.

    1984-01-01

    Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base.

  1. Lunar nuclear power feasibility study

    NASA Astrophysics Data System (ADS)

    Erdman, C. A.; Tran, T.

    1984-11-01

    Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base.

  2. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  3. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  4. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  5. Upper stage technology evaluation studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies to evaluate advanced technology relative to chemical upper stages and orbit-to-orbit stages are reported. The work described includes: development of LH2/LOX stage data, development of data to indicate stage sensitivity to engine tolerance, modified thermal routines to accommodate storable propellants, added stage geometries to computer program for monopropellant configurations, determination of the relative gain obtainable through improvement of stage mass fraction, future propulsion concepts, effect of ultrahigh chamber-pressure increases, and relative gains obtainable through improved mass fraction.

  6. Technology status of tantalum alloys for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Hoffman, E. E.

    1985-01-01

    Tantalum alloys have a variety of properties which make them attractive candidates for application in nuclear power systems required to operate in space at elevated temperatures (1200 to 1600 K) for extended time periods. Most of the technology development on this class of alloys which is pertinent to space system application occurred during the 1960 to 1972 time period under NASA sponsorship. The most extensive data bases resulting from this earlier work were obtained on the alloys T-111 (Ta-8W-2Hf) and ASTAR 811C (Ta-8W-1Re-0.7Hf-0.025C). Emphasis in this paper is directed at the following technical factors: producibility, creep strength, weldability and compatibility. These factors are considered to be the most important elements in the selection of alloys for this application. Review of the available information indicates that alloys of this type are appropriate for application in many systems, particularly those utilizing alkali metals as the working fluid.

  7. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  8. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment. SUMMARY: The U.S. Nuclear Regulatory Commission...

  9. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  10. Study of bump bonding technology

    SciTech Connect

    Selcuk Cihangir et al.

    2003-10-17

    Pixel detectors proposed for the new generation of hadron collider experiments will use bump-bonding technology based on either indium or Pb/Sn solder to connect the front-end readout chips to the silicon pixel sensors. We have previously reported large-scale tests of the yield using both indium and Pb/Sn solder bump [1]. The conclusion is that both seem to be viable for pixel detectors. We have also carried out studies of various effects (e.g. storage over long period, effect of heating and cooling, and radiation) on both types of bump bonds using daisy-chained parts on a small scale [2], [3]. Overall, these tests showed little changes in the integrity of the bump connections. Nevertheless, questions still remain on the long-term reliability of the bumps due to thermal cycle effects, attachment to a substrate with a different coefficient of thermal expansion (CTE), and radiation.

  11. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    This report describes progress in the experimental nuclear physics program of the University of Tennessee, Knoxville. It presents findings related to properties of high-spin states, low-energy levels of nuclei far from stability, and high-energy heavy-ion physics, as well as a brief description of the Joint Institute of Heavy Ion Research (a collaboration between the University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory) and its activities (particularly those of the last few years), and a list of publications. 89 refs., 18 figs., 5 tabs.

  12. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  13. [Occupational risk and technological innovations. Comparison of conventional and nuclear energy systems (fuel, coal and nuclear) (author's transl)].

    PubMed

    Fagnani, F; Hubert, P; Maccia, C

    1981-01-01

    The objective is to compare the occupational risks associated to the production of electricity through three alternative technologies: fuel, coal and nuclear (Pressurised Water Reactor). A methodology is proposed in order to integrate the operation and construction activities. The data related to a French scenario have been collected and are presented. The results obtained in the case of nuclear technology correspond to the present French program for 1990 and have in this respect a prospective value. PMID:7280341

  14. Nuclear Technology Series. Course 10: Power Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 35: Systems and Components.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 31: Quality-Assurance Practices.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 33: Control Systems I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 16: Mechanical Component Characteristics and Specifications.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 34: Control Systems II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 2: Radiation Protection I.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 17: Radiation Protection II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 4: Heat Transfer and Fluid Flow.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 3: Principles of Process Instrumentation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Non-Nuclear Testing of Fission Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Robert G.; Pearson, J. Boise; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky E.; Emrich, William J.; Garber, Anne E.; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; Polzin, Kurt A.; Schoenfeld, Michael P.; Webster, Kenneth L.

    2011-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing also provides an excellent way for screening potential advanced fuels and materials prior to nuclear testing, and for investigating innovative geometries and operating regimes. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA s Marshall Space Flight Center (MSFC).

  16. Study of nuclear shapes in extreme conditions

    NASA Astrophysics Data System (ADS)

    Muralithar, S.; Gamma spectroscopy Group in IUAC

    2013-04-01

    Studies of nuclear structure have fascinated physicists and was pursued for decades actively. Nuclear structure evolves as a function of proton and neutron ratio, energy and spin pumped into system. To facilitate nuclear structure study at high spin, a host of facilities were developed at Inter University Accelerator Centre, New Delhi and was used by users across this country for last twenty years. The tools developed, from Gamma detector array (GDA) with ancillary devices, to Indian National Gamma array (INGA) are presented with few physics cases.

  17. Construction Technologies. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    With this Career and Technology Studies (CTS) curriculum guide, secondary students in Alberta can do the following; develop skills that can be applied in their daily lives; refine career-planning skills; develop technology-related skills in construction; enhance employability skills, especially in construction industries; and apply and reinforce…

  18. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights...

  19. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7... relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED.... 184, is considered to be information available to the public in published form and a...

  20. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights...

  1. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights...

  2. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  3. An Overview of Comprehensive Inspection Technologies Under Investigation at Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Chipman, V.; Emer, D. F.; Townsend, M.; Drellack, S.

    2013-12-01

    Comprehensive Inspection Technologies (CIT) under investigation include methods that might be of use in detecting a clandestine underground nuclear test. These include techniques for detecting noble gases, visual observation methods, hyperspectral imaging, controlled- and passive-source seismic surveys, and other geophysical methods. Noble gas detection studies include a series of experiments called the Noble Gas Migration (NGM) experiments, that explore the fundamental parameters that determine the capability to detect radioxenon isotopes and 37Ar produced in underground nuclear tests. These isotopes are of interest to both the International Monitoring System (IMS) global monitoring and On-Site Inspection (OSI) regimes. Through a unique combination of field experiments, sampling of radioactive noble gas from a legacy underground nuclear test, large-scale hydrogeologic computer simulations, and a regimen involving carefully designed field-sampling techniques, the experiments are providing information about the production, release, and sampling challenges that determine the ability to detect these two important noble gases. Other CIT experiments explore and validate geophysical (controlled-source and passive-source seismic, gravity, electrical, magnetic, etc.) and optical techniques (both visual and instrument-based) that greatly enhance the understanding of the efficiency of these techniques for OSI, including how to better integrate the various technologies with each other and individually at different physical scales. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25936--1840.

  4. NASA Earth Science Mission Control Center Enterprise Emerging Technology Study Study (MCC Technology Study)

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Horan, Stephen; Royer, Don; Sullivan, Don; Moe, Karen

    2015-01-01

    This paper reports on the results of the study to identify technologies that could have a significant impact on Earth Science mission operations when looking out at the 5-15 year horizon (through 2025). The potential benefits of the new technologies will be discussed, as well as recommendations for early research and development, prototyping, or analysis for these technologies.

  5. Computational Study of Low Energy Nuclear Scattering

    NASA Astrophysics Data System (ADS)

    Salazar, Justin; Hira, Ajit; Brownrigg, Clifton; Pacheco, Jose

    2013-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms ( Z<=9 ) from Palladium and other metals. First, a FORTRAN computer program was developed to compute stopping cross sections and scattering angles in Pd and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 10 to 140kev. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  6. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect

    Raman, S.

    1982-01-01

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  7. Nuclear forensic investigations: two case studies.

    PubMed

    Wallenius, M; Mayer, K; Ray, I

    2006-01-01

    This paper describes the methodology and analytical methods used in nuclear forensic investigations. Two case studies are taken as examples to illustrate this. These examples represent typical cases that have been analysed at the Institute for Transuranium Elements (ITU) since last 10 years, i.e. the beginning of the illicit trafficking of nuclear materials. Results of the various analytical techniques are shown, which, together with other type of information, reveal the origin of the material. PMID:16410154

  8. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  9. Powered by technology or powering technology?---Belief-based decision-making in nuclear power and synthetic fuel

    NASA Astrophysics Data System (ADS)

    Yang, Chi-Jen

    The overarching question in this study is how and why technical-fixes in energy policy failed. In the post-WWII era, civilian nuclear power and synthetic fuel had both been top priorities on the U.S. national policy agenda during certain periods of time. Nuclear power was promoted and pursued persistently with great urgency for over two decades. In contrast, synthetic fuel policy suffered from boom-and-bust cycles. The juxtaposition of policy histories of nuclear power and synthetic fuel highlights many peculiarities in policymaking. The U.S. government forcefully and consistently endorsed the development of civilian nuclear power for two decades. It adopted policies to establish the competitiveness of civilian nuclear power far beyond what would have occurred under free-market conditions. Even though synthetic fuel was characterized by a similar level of economic potential and technical feasibility, the policy approach toward synthetic fuel was almost the opposite of nuclear power. Political support usually stopped when the development of synthetic fuel technology encountered economic difficulties. The contrast between the unfaltering faith in nuclear power and the indeterminate attitude toward synthetic fuel raises many important questions. I argue that these diverging paths of development can be explained by exploring the dominant government ideology of the time or "ideology of the state" as the sociology literature describes it. The price-determining approach was a result of government preoccupied with fighting the Cold War. The U.S. intentionally idealized and deified nuclear power to serve its Cold War psychological strategy. These psychological maneuverings attached important symbolic meaning to nuclear power. The society-wide enthusiasm and resulting bandwagon market are better understood by taking the role of symbolism in the political arena into account. On the other hand, a "welfare state" ideology that stood behind synthetic fuel was confused

  10. Citizen Education on Nuclear Technology (CENT). Teacher's Guide.

    ERIC Educational Resources Information Center

    Intermountain Science Experience Center, ID Falls, ID.

    Using an interdisciplinary approach, this curriculum focuses on understanding: (1) the fundamental principles of operating a nuclear power plant; (2) the place of nuclear energy in the overall energy supply/demand situation; (3) risk-benefit balance of the major energy sources; and (4) the role of political action in developing nuclear energy…

  11. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  12. Radiation damage microstructures in nuclear ceramics with applications in fusion energy technology and nuclear waste disposal

    SciTech Connect

    Hobbs, L.W.

    1989-09-01

    This final technical report documents the accomplishments of the program of research entitled Radiation Damage Microstructures in Nuclear Ceramics'' funded between July 1984 and July 1988 under DOE Grant FG02-84ER45090. The initial program, begun at MIT in 1983, had as its objective investigation of the radiation responses of ceramics, heavily-irradiated with electrons, neutrons and ions, with potential applications to fusion energy technology and high-level nuclear waste storage. Materials investigated included SiO{sub 2}, MgAl{sub 2}O{sub 4}, Al{sub 23}O{sub 27}N{sub 5}, SiC, BeO, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, CaTiO{sub 3}, KTaO{sub 3} and Ca(Zr,Pu)Ti{sub 2}O{sub 7}. The issues involved have been the subject of a series of DOE-sponsored workshops in which the principal investigator has prominently participated, as well as of two informal collaborative meetings among DOE-supported groups at MIT, Los Alamos, University of New Mexico, Boeing, Oak Ridge National Laboratory and Battelle-Pacific Northwest Laboratory.

  13. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  14. Study of alternative probe technologies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.

  15. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  16. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  17. Lunar Outpost Technologies Breakeven Study

    NASA Technical Reports Server (NTRS)

    Perka, Alan

    2008-01-01

    This viewgraph presentation compares several Lunar Outpost (LO) life support technology combinations, evaluates the combinations for two clothing options, (i.e., Disposable clothing, and using Laundry to clean the soiled clothing) and evaluates the use of the Advanced Life Support Sizing and Analysis Tool (ALSSAT) to estimate Equivalent System Mass (ESM)

  18. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  19. Study of Double-strangeness Nuclear Systems with Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuma; Endo, Yoko; Hoshino, Kaoru; Ito, Hiroki; Kinbara, Shinji; Kobayashi, Hidetaka; Mishina, Akihiro; Soe, Myint Kyaw; Theint, Aye Moh Moh; Xu, Rong; Tint, Khin Than; Yoshida, Jun'ya; Zhang, Dong Hai

    Double strangeness nuclei such as double-Λ and Ξ hypernuclei have been studied with nuclear emulsion due to its fine position resolution. Recently, we have started an experiment to study Λ-Λ interaction more accurately than that information given by the NAGARA event with ∼102 double-Λ hypernuclei which may provide us understanding free from nuclear medium effect. It is necessary to develop treatment method for huge amount, 2.1 tons of the emulsion gel, even if very pure K- beams are available at J-PARC. We have developed the base film to support the emulsion, emulsion surface coating method with a special layer of 0.5 μm thick, method for making large-size plate (35.0 x 34.5 cm2) and scanning method, called "overall scanning". The first evidence of a deeply bound state of Ξ--14N system, named KISO, was successfully detected in the test operation of the overall scanning.

  20. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Larkin, T. R.

    1986-01-01

    The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.

  1. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  2. Who Should Control Nuclear Technology? A Curriculum Unit for Contemporary U.S. and World History, Grades 9-12.

    ERIC Educational Resources Information Center

    Zimney, Michelle; Boston, Jane

    Since the end of World War II and the onset of the "new age," nuclear technology has remained high on the world's agenda as questions regarding sovereignty and the balance of power, control of the development and spread of nuclear weapons, non-military uses for nuclear technology, and nuclear safety are debated among and within nations. The "club"…

  3. Extraterrestrial Studies Using Nuclear Interactions

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    2003-01-01

    Cosmogenic nuclides were used to study the recent histories of the aubrite Norton County and the pallasite Brenham using calculated production rates. Calculations were done of the rates for making cosmogenic noble-gas isotopes in the Jovian satellite Europa by the interactions of galactic cosmic rays and especially trapped Jovian protons. Cross sections for the production of cosmogenic nuclides were reported and plans made to measure additional cross sections. A new code, MCNPX, was used to numerically simulate the interactions of cosmic rays with matter and the subsequent production of cosmogenic nuclides. A review was written about studies of extraterrestrial matter using cosmogenic radionuclides. Several other projects were done. Results are reviewed here with references to my recent publications for details.

  4. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  5. Nuclear power program and technology development in Korea

    SciTech Connect

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  6. Study Gives Good Odds on Nuclear Reactor Safety

    ERIC Educational Resources Information Center

    Russell, Cristine

    1974-01-01

    Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)

  7. Nuclear Proliferation: A Unit for Study.

    ERIC Educational Resources Information Center

    Fernekes, William R.

    1990-01-01

    Using Argentina as a sample case study, presents a classroom unit designed to explain the implications for world peace of nuclear weapons development. Employs a policy analysis model to make an indepth examination of the values underlying all government policy decisions. Includes unit topics and procedures for the exercise. (NL)

  8. Spent Nuclear Fuel Transport Reliability Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2016-01-01

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  9. TECHNOLOGICAL INNOVATION IN NEUROSURGERY: A QUANTITATIVE STUDY

    PubMed Central

    Marcus, Hani J; Hughes-Hallett, Archie; Kwasnicki, Richard M; Darzi, Ara; Yang, Guang-Zhong; Nandi, Dipankar

    2015-01-01

    Object Technological innovation within healthcare may be defined as the introduction of a new technology that initiates a change in clinical practice. Neurosurgery is a particularly technologically intensive surgical discipline, and new technologies have preceded many of the major advances in operative neurosurgical technique. The aim of the present study was to quantitatively evaluate technological innovation in neurosurgery using patents and peer-reviewed publications as metrics of technology development and clinical translation respectively. Methods A patent database was searched between 1960 and 2010 using the search terms “neurosurgeon” OR “neurosurgical” OR “neurosurgery”. The top 50 performing patent codes were then grouped into technology clusters. Patent and publication growth curves were then generated for these technology clusters. A top performing technology cluster was then selected as an exemplar for more detailed analysis of individual patents. Results In all, 11,672 patents and 208,203 publications relating to neurosurgery were identified. The top performing technology clusters over the 50 years were: image guidance devices, clinical neurophysiology devices, neuromodulation devices, operating microscopes and endoscopes. Image guidance and neuromodulation devices demonstrated a highly correlated rapid rise in patents and publications, suggesting they are areas of technology expansion. In-depth analysis of neuromodulation patents revealed that the majority of high performing patents were related to Deep Brain Stimulation (DBS). Conclusions Patent and publication data may be used to quantitatively evaluate technological innovation in neurosurgery. PMID:25699414

  10. Counterproliferation of nuclear raw materials. Study project

    SciTech Connect

    Sanders, R.L.

    1996-02-26

    In light of the ongoing INF and START I agreements and the pending ratification of the START II agreement, the quantities of nuclear-weapon-usable `fissile` materials from the former USSR will expand drastically. Some newly rich rogue oil states and terrorist groups with anti-U.S. sentiments may attempt to procure fissile materials in order to manufacture nuclear weapons. This project will explore the scope of the fissile material proliferation problem, describe a number of recent cases where fissile material was illegally diverted, and discuss the U.S. policies, methods and means available to halt or reduce the spread of weapons-usable nuclear material. Finally, it provides recommendations for improvements in the U.S. program and for areas meriting further study.

  11. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As visions of space applications expand and as probes extend further and further out into the universe, the need for power also expands, and missions evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources are defined. These include earth orbital platforms, deep space platforms, planetary exploration and extraterrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the moon and Mars has more clearly defined these missions and their power requirements. This paper presents results of recent studies of radioisotope and nuclear-reactor energy sources combined with various energy-conversion devices for earth orbital applications, SEI lunar/Mars rover and surface power, and planetary exploration.

  12. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  13. Compact Gamma-ray Source Technology Development Study

    SciTech Connect

    Anderson, S G; Gibson, D J; Rusnak, B

    2009-09-25

    This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

  14. Aerospace technology and commercial nuclear power; Proceedings of the Workshop Conference, Williamsburg, VA, November 18-20, 1981

    NASA Astrophysics Data System (ADS)

    Grey, J.

    An attempt has been made to compare the technologies, institutions and procedures of the aerospace and commercial nuclear power industries, in order to characterize similarities and contrasts as well as to identify the most fruitful means by which to transfer information, technology, and procedures between the two industries. The seven working groups involved in this study took as their topics powerplant design formulation and effectiveness, plant safety and operations, powerplant control technology and integration, economic and financial analyses, public relations, and the management of nuclear waste and spent fuel. Consequential differences are noted between the two industries in matters of certification and licencing procedures, assignment of responsibility for both safety and financial performance, and public viewpoint. Areas for beneficial interaction include systems management and control and safety system technology. No individual items are abstracted in this volume

  15. Aerospace technology and commercial nuclear power; Proceedings of the Workshop Conference, Williamsburg, VA, November 18-20, 1981

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor)

    1982-01-01

    An attempt has been made to compare the technologies, institutions and procedures of the aerospace and commercial nuclear power industries, in order to characterize similarities and contrasts as well as to identify the most fruitful means by which to transfer information, technology, and procedures between the two industries. The seven working groups involved in this study took as their topics powerplant design formulation and effectiveness, plant safety and operations, powerplant control technology and integration, economic and financial analyses, public relations, and the management of nuclear waste and spent fuel. Consequential differences are noted between the two industries in matters of certification and licencing procedures, assignment of responsibility for both safety and financial performance, and public viewpoint. Areas for beneficial interaction include systems management and control and safety system technology. No individual items are abstracted in this volume

  16. An Analysis of the Universal Decimal Classification as a Term System for Nuclear Science and Technology

    ERIC Educational Resources Information Center

    Stueart, Robert D.

    1971-01-01

    The possibilities of merging the terminology of the Universal Decimal Classification System with that of a term system - Engineers Joint Council's Thesaurus - for nuclear science and technology are explored. (12 references) (Author/NH)

  17. ACCIDENTS AND UNSCHEDULED EVENTS ASSOCIATED WITH NON-NUCLEAR ENERGY RESOURCES AND TECHNOLOGY

    EPA Science Inventory

    Accidents and unscheduled events associated with non-nuclear energy resources and technology are identified for each step in the energy cycle. Both natural and anthropogenic causes of accidents or unscheduled events are considered. Data concerning these accidents are summarized. ...

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  19. Blazing the trailway - Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1991-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for outer space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  20. Blazing the trailway: Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  1. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  2. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  3. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect

    Kadner, S.P.; Reisman, A.; Turpen, E.

    1996-10-01

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  4. 75 FR 36648 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Office of Nuclear Energy, DOE. ACTION: Notice of open meeting correction. On June 21, 2010, the Department of Energy published a notice...

  5. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  6. Nuclear Technology Series. Radiation Protection Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary radiation protection technician program is designed for use with courses 17-22 of thirty-five included in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians, and operators; and to assist planners,…

  7. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems. PMID:18049233

  8. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    SciTech Connect

    Not Available

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry.

  9. Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology

    SciTech Connect

    O'Hara,J.M.; Higgins,J.; Brown, William S.

    2009-04-01

    This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

  10. Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers

    NASA Astrophysics Data System (ADS)

    Bérend, N.; Epenoy, R.; Cliquet, E.; Laurent-Varin, J.; Avril, S.

    2013-03-01

    Recent advances in electric propulsion technologies such as magnetoplasma rockets gave a new momentum to the study of nuclear electric propulsion concepts for Mars missions. Some recent works have been focused on very short Earth-to-Mars transfers of about 40 days with high-power, variable specific impulse propulsion systems [1]. While the interest of nuclear electric propulsion appears clearly with regard to the payload mass ratio (due to a high level of specific impulse), its interest with regard to the transfer time is more complex to define, as it depends on many design parameters. In this paper, a general analysis of the capability of nuclear electric propulsion systems considering both criteria (the payload mass ratio and the transfer time) is performed, and the technological requirements for fast Earth-Mars transfers are studied. This analysis has been performed in two steps. First, complete trajectory optimizations have been performed by CNES-DCT in order to obtain the propulsion requirements of the mission for different technological hypotheses regarding the engine technology (specific impulse levels and the throttling capability) and different mission requirements. The methodology used for designing fuel-optimal heliocentric trajectories, based on the Pontryagin's Maximum Principle will be presented. Trajectories have been computed for various power levels combined with either variable or fixed Isp. The second step consisted in evaluating a simpler method that could easily link the main mission requirements (the transfer time and the payload fraction) to the main technological requirements (the specific mass of the power generation system and the structure mass ratio of the whole vehicle, excluding the power generation system). Indeed, for power-limited systems, propulsion requirements can be characterized through the "trajectory characteristic" parameter, defined as the integral over time of the squared thrust acceleration. Technological requirements for

  11. WELCOME SPEECH: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    Johnson, R. C.

    2006-06-01

    Ladies and gentlemen, On behalf of the European Physical Society it is my pleasure to welcome you to the Conference: NEW TRENDS IN NUCLEAR PHYSICS APPLICATIONS AND TECHNOLOGY This is the 19th International Nuclear Physics Divisional Conference of the Nuclear Physics Board of the EPS. It is a relatively new experience for the Board to support a Conference in an area so closely linked to applications and technology. I am therefore very pleased to see such a good response to the initiative of Professor Scannicchio and his local Organizing Committee under Professor Zenoni's Chairmanship. I would like to take this opportunity to say a few words about the EPS Nuclear Physics Board. The Board consists of 18 people (10 elected plus up to 10 co-opted) from across Europe, with me as Chair. Elections by members of the Division are held if there is competition for a vacancy, which is announced in Europhysics News. The Board exchanges observers with NuPECC. The Board has 3 major activities: 1. Divisional Scientific Meetings of which this is one. There are usually two per year, but this year there are three. Nuclear Physics in Astrophysics 2 (NPA2), Debrecen, Hungary, 16 20 May 2005. This conference, New Trends in Nuclear Physics Applications and Technology, Pavia, 5 9 September 2005. "Sandanski 3" Co-ordination Meeting in Nuclear Science organized by the Joint Institute for Nuclear Research, Dubna, and the Institute for Nuclear Research and Energy, Sofia, which will be held in Albena, Bulgaria, 25 September to 2 October 2005. This grew out of two earlier meetings in 1995 and 2001 in Sandanski, Bulgaria. The aim of these meetings was to foster and support scientific collaborations in nuclear physics between eastern and western European countries. 2. The Board awards two prizes, usually in alternate years: The Lise Meitner Prize for outstanding contributions in the field of Nuclear Science. The 2004 recipients were Bent Herskind and Peter Twin for their pioneering work on rapidly

  12. Assessing environmental compatibility of new technologies for use in nuclear power plants

    SciTech Connect

    Korsah, K.; Turner, G.W.; Mullens, J.A.

    1994-12-31

    A microprocessor-based reactor trip channel has been assembled for environmental testing under an Instrumentation and Control (I and C) Qualification Program sponsored by the US Nuclear Regulatory Commission. The goal of this program is to establish the technical basis for the qualification of advanced I and C systems. The trip channel implemented for this study employs technologies and digital subsystems representative of those proposed for use in some advanced light-water reactors (ALWRS) such as the Simplified Boiling Water Reactor (SBWR) and AP600. It is expected that these tests will reveal any potential system vulnerabilities for technologies representative of those proposed for use in ALWRS. The experimental channel will be purposely stressed considerably beyond what it is likely to experience in a normal nuclear power plant environment, so that the tests can uncover the worst-case failure modes (i.e., failures that are likely to prevent an entire trip system from performing its safety function when required to do so). Based on information obtained from this study, it may be possible to recommend tests that are likely to indicate the presence of such failure mechanisms. Such recommendations would be helpful in augmenting current qualification guidelines.

  13. Technological advances for studying human behavior

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  14. Nuclear anxiety: a test-construction study

    SciTech Connect

    Braunstein, A.L.

    1986-01-01

    The Nuclear Anxiety Scale was administered to 263 undergraduate and graduate studies (on eight occasions in December, 1985 and January, 1986). (1) The obtained alpha coefficient was .91. This was significant at the .01 level, and demonstrated that the scale was internally homogeneous and consistent. (2) Item discrimination indices (point biserial correlation coefficients) computered for the thirty (30) items yielded a range of .25 to .64. All coefficients were significant at the .01 level, and all 30 items were retained as demonstrating significant discriminability. (3) The correlation between two administrations of the scale (with a 48-hour interval) was .83. This was significant at the .01 level, and demonstrated test-retest reliability and stability over time. (4) The point-biserial correlation coefficient between scores on the Nuclear Anxiety Scale, and the students' self-report of nuclear anxiety as being either a high or low ranked stressor, was .59. This was significant at the .01 level, and demonstrated concurrent validity. (5) The correlation coefficient between scores on the Nuclear Anxiety Scale and the Spielberger State-Trait Anxiety Inventory, A-Trait, (1970), was .41. This was significant at the .01 level, and demonstrated convergent validity. (6) The correlation coefficient between positively stated and negatively stated items (with scoring reversed) was .76. This was significant at the .01 level, and demonstrated freedom from response set bias.

  15. INL - NNL an International Technology Collaboration Case Study - Advanced Fogging Technologies for Decommissioning - 13463

    SciTech Connect

    Banford, Anthony; Edwards, Jeremy; Demmer, Rick; Rankin, Richard; Hastings, Jeremy

    2013-07-01

    International collaboration and partnerships have become a reality as markets continue to globalize. This is the case in nuclear sector where over recent years partnerships commonly form to bid for capital projects internationally in the increasingly contractorized world and international consortia regularly bid and lead Management and Operations (M and O) / Parent Body Organization (PBO) site management contracts. International collaboration can also benefit research and technology development. The Idaho National Laboratory (INL) and the UK National Nuclear Laboratory (NNL) are internationally recognized organizations delivering leading science and technology development programmes both nationally and internationally. The Laboratories are actively collaborating in several areas with benefits to both the laboratories and their customers. Recent collaborations have focused on fuel cycle separations, systems engineering supporting waste management and decommissioning, the use of misting for decontamination and in-situ waste characterisation. This paper focuses on a case study illustrating how integration of two technologies developed on different sides of the Atlantic are being integrated through international collaboration to address real decommissioning challenges using fogging technology. (authors)

  16. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  17. Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations

    NASA Astrophysics Data System (ADS)

    Korchagin, Yu. P.; Aref'ev, E. K.; Korchagin, E. Yu.

    2010-07-01

    Results from tests of technology for decontaminating spent radioactive ion-exchange resins at the Balakovo and Kalinin nuclear power stations are presented. Versions of technological schemes with cleaning and repeated use of decontaminating solution are considered. The possibility of considerably reducing the volume of radioactive wastes is demonstrated.

  18. Nuclear Medical Technology. Curriculum for a Two Year Program. Final Report.

    ERIC Educational Resources Information Center

    Buatti, A.; Rich, D.

    Objectives of the project briefly described here were (1) to develop curriculum for a two-year nuclear medical technology program based on a working relationship between three institutions (community college, university health center, and hospital) and (2) to develop procedures for the operation of a medical imaging and radiation technology core…

  19. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  20. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  1. Electromagnetic studies of nucleon and nuclear structure

    SciTech Connect

    Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.

    1993-06-01

    Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.

  2. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  3. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program

    NASA Astrophysics Data System (ADS)

    1993-05-01

    This semiannual technical progress report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the prime contractor, Space Power Incorporated (SPI), its subcontractors, and supporting national laboratories during the first half of the government fiscal year (GFY) 1993. SPI's subcontractors and supporting national laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements, and nuclear tests; Argonne National Laboratories for nuclear safety, physics, and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The point design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  4. Electrochemical Treatment of Alkaline Nuclear Wastes. Innovative Technology Summary Report

    SciTech Connect

    2001-01-01

    Nitrate and nitrite are two of the major hazardous non-radioactive species present in Hanford and Savannah River (SR) high-level waste (HLW). Electrochemical treatment processes have been developed to remove these species by converting aqueous sodium nitrate/nitrite into sodium hydroxide and chemically reducing the nitrogen species to gaseous ammonia, nitrous oxide and nitrogen. Organic complexants and other organic compounds found in waste can be simultaneously oxidized to gaseous carbon dioxide and water, thereby reducing flammability and leaching risks as well as process interferences in subsequent radionuclide separation processes. Competing technologies include thermal, hydrothermal and chemical destruction. Unlike thermal and hydrothermal processes that typically operate at very high temperatures and pressures, electrochemical processes typically operate at low temperatures (<100 C) and atmospheric pressure. Electrochemical processes effect chemical transformations by the addition or removal of electrons and, thus, do not add additional chemicals, as is the case with chemical destruction processes. Hanford and SR have different plans for disposal of the low-activity waste (LAW) that results when radioactive Cs{sup 137} has been removed from the HLW. At SR, the decontaminated salt solution will be disposed in a cement waste form referred to as Saltstone, whereas at Hanford the waste will be vitrified as a borosilicate glass. Destruction of the nitrate and nitrite before disposing the decontaminated salt solution in Saltstone would eliminate possible groundwater contamination that could occur from the leaching of nitrate and nitrite from the cement waste form. Destruction of nitrate and nitrite before vitrification at Hanford would significantly reduce the size of the off-gas system by eliminating the formation of NO{sub x} gases in the melter. Throughout the 1990's, the electrochemical conversion process has been extensively studied at SR, the University of

  5. An historical perspective of the NERVA nuclear rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  6. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  7. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    SciTech Connect

    Robbins, W.H.; Finger, H.B.

    1991-07-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  8. Underground nuclear astrophysics studies with CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-02-01

    The drive of low-energy nuclear astrophysics laboratories is to study the reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, over the energy range of astrophysical interest. As laboratory measurements approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need to lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13C(α,n)16O and 22Ne(α,n)25Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, South Dakota

  9. Space nuclear reactor shielding optimization studies

    NASA Astrophysics Data System (ADS)

    Jimenez, Richard D.; El-Genk, Mohamed S.

    The Institute for Space Nuclear Reactor Studies is investigating optimal techniques for shielding spacecraft (payload) electronics from the combined radiation effects of the SP-100 system nuclear reactor core and the natural space environment. The academic challenge of this research includes the investigation of the combined influences of radiation from the space environment and the radiations from the reactor power source. The technical application includes a series of shielding mass penalty tradeoffs for the SP-100 Program concept between the reactor core shield and the additional shielding of the spacecraft enclosure. These mass penalty tradeoffs are being conducted for several space flight orbits of future interest to the space military and civilian communities. It was shown that several potential mission orbits may pose environmental radiation dosages which are more severe than the SP-100 specification of core escape neutron and gamma ray particle fluences incident on the spacecraft.

  10. New Technologies for Studying Biofilms

    PubMed Central

    FRANKLIN, MICHAEL J.; CHANG, CONNIE; AKIYAMA, TATSUYA; BOTHNER, BRIAN

    2016-01-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  11. New Technologies for Studying Biofilms.

    PubMed

    Franklin, Michael J; Chang, Connie; Akiyama, Tatsuya; Bothner, Brian

    2015-08-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  12. Space station systems technology study (add-on task). Volume 2: Trade study and technology selection

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The current Space Station Systems Technology Study add on task was an outgrowth of the Advanced Platform Systems Technology Study (APSTS) that was completed in April 1983 and the subsequent Space Station System Technology Study completed in April 1984. The first APSTS proceeded from the identification of 106 technology topics to the selection of five for detailed trade studies. During the advanced platform study, the technical issues and options were evaluated through detailed trade processes, individual consideration was given to costs and benefits for the technologies identified for advancement, and advancement plans were developed. An approach similar to that was used in the subsequent study, with emphasis on system definition in four specific technology areas to facilitate a more in depth analysis of technology issues.

  13. Nuclear arms race technologies in the 1990s The case of India and Pakistan

    SciTech Connect

    Donnelly, W.H.

    1988-12-15

    India and Pakistan continue to inch towards a capability to produce nuclear weapons, with India having the stronger industrial base of the two to supply the necessary nuclear materials. This trend challenges U.S. policy to discourage the further spread, or proliferation, of nuclear weapons. After providing background on the production of nuclear weapons materials, this paper briefly describes the nuclear industrial bases of India and Pakistan; reason for and against their acquisition of nuclear weapons, and related U.S. response; and suggests some options for action and for study.

  14. Nuclear arms race technologies in the 1990s The case of India and Pakistan

    NASA Astrophysics Data System (ADS)

    Donnelly, Warren H.

    1988-12-01

    India and Pakistan continue to inch towards a capability to produce nuclear weapons, with India having the stronger industrial base of the two to supply the necessary nuclear materials. This trend challenges U.S. policy to discourage the further spread, or proliferation, of nuclear weapons. After providing background on the production of nuclear weapons materials, this paper briefly describes the nuclear industrial bases of India and Pakistan; reason for and against their acquisition of nuclear weapons, and related U.S. response; and suggests some options for action and for study.

  15. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  16. Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)

    NASA Technical Reports Server (NTRS)

    Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.

    1980-01-01

    The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.

  17. Modern control technology for improved nuclear reactor performance

    SciTech Connect

    Oakes, L.C.

    1986-12-01

    One of the main complaints leveled at reactor control systems by utility spokesmen is complexity. One only has to look inside a power reactor control room to appreciate this viewpoint. The high reliability and versatility of modern microprocessors makes possible distributed control systems with only performance data and abnormal conditions being relayed to the control room. In a sense, this emulates the human-body control system where routine repetitive actions are handled in an involuntary manner. The significance of expert systems to the nuclear reactor control and safety systems is their ability to capture human and other expertise and make it available, upon demand, and under almost all circumstances. Thus, human problem-solving skills acquired by the learning process over a long period of time can be captured and employed with the reliability inherent in computers. This is especially important in nuclear plants when human operators are burdened by stress and emotional factors that have a dramatic effect on performance level.

  18. Pulsed Photonuclear Assessment (PPA) Technology Enhancement Study

    SciTech Connect

    Not Available

    2006-04-01

    The Idaho National Laboratory (INL) along with the Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC) has designed and tested a nominal 10-MeV prototype Pulsed Photonuclear Assessment (PPA) inspection system to detect shielded nuclear material. This report highlights two specific areas that will provide further PPA technology enhancements, namely, an optimal gamma-ray detection system and the off axis radiation detection sensitivity. Detection of low-atomic number (Z) shielded nuclear material had been initially addressed by the inclusion of dedicated Geiger-Müller (GM) detectors co-located above each of the Photonuclear Neutron Detectors (PNDs). Several different radiation detectors were investigated to assess if this type of gamma-ray detector was optimal. The LND 719 GM detector was shown to have the best photon sensitivity and demonstrated an optimal ability to detect low-Z shielded nuclear material. Beyond the technical performance of this detector, its low cost and availability makes it a logical choice for a field-deployable system. In terms of off-axis detection sensitivity, simulation and benchmarking experiments have indicated that the PPA inspection system can successfully detect nuclear material (within 120 seconds) in various shielding configurations even when it is located at a distance of as much as 30 cm off the interrogating beam axis (the exact sensitivity to off-axis interrogations will be largely dependent on the actual shielding material). As a general rule, high-Z shielding will allow detection at larger off-axis distances than low-Z materials.

  19. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  20. Sensors and nuclear power. Report by the Technology Transfer Sensors Task Team

    SciTech Connect

    Not Available

    1985-06-01

    The existing sensor systems for the basic process parameters in nuclear power plant operation have limitations with respect to accuracy, ease of maintenance and signal processing. These limitations comprise the economy of nuclear power generation. To reduce the costs and improve performance of nuclear power plant fabrication, operation, maintenance and repair we need to advance the sensor technology being applied in the nuclear industry. The economic viability and public acceptance of nuclear power will depend on how well we direct and apply technological advances to the industry. This report was prepared by a team with members representing a wide range of the nuclear industry embracing the university programs, national laboratories, architect engineers and reactor manufacturers. An intensive effort was made to survey current sensor technology, evaluate future trends and determine development needs. This included literature surveys, visits with utilities, universities, laboratories and organizations outside the nuclear industry. Several conferences were attended to take advantage of the access to experts in selected topics and to obtain opinions. Numerous telephone contacts and exchanges by mail supplemented the above efforts. Finally, the broad technical depth of the team members provided the basis for the stimulating working sessions during which this report was organized and drafted.

  1. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  2. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  3. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  4. Followup Studies at Tennessee Technological University.

    ERIC Educational Resources Information Center

    Ayers, Jerry B.

    An explanation is presented of the efforts performed by the Tennessee Technological University in conducting follow-up studies of its teacher education program graduates. A history of follow-up studies dating from 1964 is given, and a list is provided of special studies undertaken to assist in program development and redesign and to meet the…

  5. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  6. Horizon Missions Technology Study. [for space exploration

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1992-01-01

    The purpose of the HMT Study was to develop and demonstrate a systematic methodology for identifying and evaluating innovative technology concepts offering revolutionary, breadkthrough-type capabilities for advanced space missions and for assessing their potential mission impact. The methodology is based on identifying the new functional, operational and technology capabilities needed by hypothetical 'Horizon' space missions that have performance requirements that cannot be met, even by extrapolating known space technologies. Nineteen Horizon Missions were selected to represent a collective vision of advanced space missions of the mid-21st century. The missions typically would occur beyond the lifetime of current or planned space assets. The HM methodology and supporting data base may be used for advanced technology planning, advanced mission planning and multidisciplinary studies and analyses.

  7. Integrated technology wing study (oral presentation)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design of a plan for a commercial transport manufacturer to integrate advanced technology into a new wing for a derivative and/or new aircraft that could enter service in the late 1980s to early 1990s time period is proposed. The development of a new wing for a derivative or a new long range commercial aircraft and the incorporation of cost effective technologies are studied. The decision provides guidelines for the best allocation of research funds.

  8. [Solid liver mass. Studies with nuclear medicine].

    PubMed

    Domínguez Gadea, L; Fernández Salazar, L; García Grávalos, R; Rodríguez Eyré, J L

    2000-04-01

    We present the case of a 23 year old female with two incidentally detected hepatic mass that have not clinically o radiologically specific findings. Nuclear medicine tracers, including colloids and hepatobiliary agents showing the characteristic findings of focal nodular hyperplasia: Hypervascularization, normal uptake of colloids, accumulation of hepatobiliary tracer and hot spots due to the retention of this tracer during the clearance fhase. The patient was underwent hepatectomy. The examination of surgical specimen revealed focal nodular hyperplasia. The scintigraphic studies could be an useful tool in the noninvasive diagnosis of liver masses. PMID:10893773

  9. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    NASA Astrophysics Data System (ADS)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal

  10. New technology and organizational innovation: Niagara Mohawk Power Corporation and nuclear power

    SciTech Connect

    Stacey, J.E. Jr.

    1981-01-01

    Questions with regard to organization behavior and decision theory are explored in relation to the decision-making process of a major private electric utility, Niagara Mohawk Power Corp., that chose to innovate with nuclear power. The character of the firm is such, relative to size, service area, organizational structure, and socio-political environment, that its experience is important for the further development of theories of organizational innovation. The research attempts to understand the political, economic, and social constraints that limited the set of solutions available to the utility in its search for a suitable electricity-generating mode from the early 1950's to the early 1960's. Two contrasting models of organizational decision-making behavior are used to interpret case-study findings. The initial model is from the electric-utility literature and consists essentially of an economic or benefit/cost model of organizational decision making. The second model is developed from the organizational theory literature and is more complex in the sense that factors other than economics such as organizational inertia, the corporate structure of the utility, fuel-supply history and fuel diversification, electricity-demand-growth expectations, the financial environment, and the psychological appeal of the new technology had important influences on Niagara Mohawk's decision to build Nine Mile Point One. Findings of the case study tend to support the second model in that economics was a necessary but not sufficient reason for Niagara Mohawk to have innovated with nuclear power plants.

  11. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  12. Spent Nuclear Fuel Vibration Integrity Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Yan, Yong; Bevard, Bruce Balkcom

    2016-01-01

    The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.

  13. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    NASA Astrophysics Data System (ADS)

    Bakalyarov, A. M.; Karetnikov, M. D.; Kozlov, K. N.; Lebedev, V. I.; Meleshko, E. A.; Obinyakov, B. A.; Ostashev, I. E.; Tupikin, N. A.; Yakovlev, G. V.

    2007-08-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed.

  14. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  15. Extremes of the nuclear landscape: experimental studies.

    SciTech Connect

    Henning, W.

    2011-03-01

    Increasingly more intense beams of radioactive isotopes allow moving into unknown areas of the nuclear chart and exploring the limits in nuclear binding and proton-to-neutron ratio. New aspects of nuclear structure and important results for nuclear astrophysics are obtained. The paper provides some overview of experimental developments, facilities and research results; and is intended to set the stage for the many exciting examples of research presented in these proceedings.

  16. Nuclear fuel cycle assessment of India: A technical study for U.S.-India cooperation

    NASA Astrophysics Data System (ADS)

    Krishna, Taraknath Woddi Venkat

    The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India's nuclear fuel cycle inclusive of nuclear materials and facilities. This agreement proposes to change the long-standing U.S. policy of preventing the spread of nuclear weapons by denying nuclear technology transfer to non-NPT signatory states. The nuclear tests in 1998 have convinced the world community that India would never relinquish its nuclear arsenal. This has driven the desire to engage India through civilian nuclear cooperation. The cornerstone of any civilian nuclear technological support necessitates the separation of military and civilian facilities. A complete nuclear fuel cycle assessment of India emphasizes the entwinment of the military and civilian facilities and would aid in moving forward with the separation plan. To estimate the existing uranium reserves in India, a complete historical assessment of ore production, conversion, and processing capabilities was performed using open source information and compared to independent reports. Nuclear energy and plutonium production (reactor- and weapons-grade) was simulated using declared capacity factors and modern simulation tools. The three-stage nuclear power program entities and all the components of civilian and military significance were assembled into a flowsheet to allow for a macroscopic vision of the Indian fuel cycle. A detailed view of the nuclear fuel cycle opens avenues for technological collaboration. The fuel cycle that grows from this study exploits domestic thorium reserves with advanced international technology and optimized for the existing system. To utilize any appreciable fraction of the world's supply of thorium, nuclear breeding is necessary. The two known possibilities for production of more fissionable material in the reactor than is consumed as fuel are fast breeders or thermal breeders. This dissertation analyzes a thermal

  17. 2009 Mississippi Curriculum Framework: Postsecondary Nuclear Medicine Technology. (Program CIP: 51.0905 - Nuclear Medical Technology/Technologist)

    ERIC Educational Resources Information Center

    Boney, Linda; Lee, Joanne; Pyles, Alice; Whitfield, Stacy

    2009-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  18. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  19. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  20. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  1. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  2. Nuclear techniques in studies of condensed matter

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1987-01-01

    Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.

  3. Decay heat studies for nuclear energy

    NASA Astrophysics Data System (ADS)

    Algora, A.; Jordan, D.; Taín, J. L.; Rubio, B.; Agramunt, J.; Caballero, L.; Nácher, E.; Perez-Cerdan, A. B.; Molina, F.; Estevez, E.; Valencia, E.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyás, J.; Vitéz, A.; Csatlós, M.; Csige, L.; Eronen, T.; Rissanen, J.; Saastamoinen, A.; Moore, I. D.; Penttilä, H.; Kolhinen, V. S.; Burkard, K.; Hüller, W.; Batist, L.; Gelletly, W.; Nichols, A. L.; Yoshida, T.; Sonzogni, A. A.; Peräjärvi, K.

    2014-01-01

    The energy associated with the decay of fission products plays an important role in the estimation of the amount of heat released by nuclear fuel in reactors. In this article we present results of the study of the beta decay of some refractory isotopes that were considered important contributors to the decay heat in reactors. The measurements were performed at the IGISOL facility of the University of Jyväskylä, Finland. In these studies we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.

  4. On the future of civilian plutonium: An assessment of technological impediments to nuclear terrorism and proliferation

    NASA Astrophysics Data System (ADS)

    Avedon, Roger Edmond

    This dissertation addresses the value of developing diversion- and theft-resistant nuclear power technology, given uncertain future demand for nuclear power, and uncertain risks of nuclear terrorism and of proliferation from the reprocessing of civilian plutonium. The methodology comprises four elements: Economics. An economic growth model coupled with market penetration effects for plutonium and for the hypothetical new technology provides a range of estimates for future nuclear demand. A flow model accounts for the longevity of capital assets (nuclear plants) over time. Terrorism. The commercial nuclear fuel cycle may provide a source of fissile material for terrorists seeking to construct a crude nuclear device. An option value model is used to estimate the effects of the hypothetical new technology on reducing the probability of theft. A game theoretic model is used to explore the deterrence value of physical security and then to draw conclusions about how learning on the part of terrorists or security forces might affect the theft estimate. The principal uncertainties in the theft model can be updated using Bayesian techniques as new data emerge. Proliferation. Access to fissile material is the principal technical impediment to a state's acquisition of nuclear weapons. A game theoretic model is used to determine the circumstances under which a state may proliferate via diversion. The model shows that the hypothetical new technology will have little value for counter-proliferation if diversion is not a preferred proliferation method. A technology policy analysis of the choice of proliferation method establishes that diversion is unlikely to be used because it has no constituency among the important parties to the decision, namely the political leadership, the scientific establishment, and the military. Value. The decision whether to develop a diversion- and theft-resistant fuel cycle depends on the perceived value of avoiding nuclear terrorism and proliferation

  5. System Study: Technology Assessment and Prioritizing Update

    NASA Technical Reports Server (NTRS)

    2008-01-01

    For the Intelligent Engine System (Propulsion 21) study, each technology was evaluated to determine the impact to fuel burn, acoustics, and NOx emissions. The optimum combination of technologies and their overall benefits to the system were also evaluated, resulting in noise improvement potential of 1.89 EPNdB cumulative margin,-1.34 percent fuel burn, and 50 percent NOx reduction from the 2015 UEET-QAT baseline. All the technology evaluations, except T18-20D, were based on newengines, where the engine was resized to obtain the maximum system benefit while maintaining the same cycle parameters as the 2015 UEET-QAT baseline. The impact of turbine clearance control on deteriorated engines, T18-20D, was also evaluated. Recommendations for future system study work include, but were not limited to, validation of a university-developed engine deterioration model and customer value analysis as figures of merit beside fuel burn, emissions, and acoustics.

  6. The Zwilag interim storage plasma plant technology to handle operational waste from nuclear plants

    SciTech Connect

    Heep, Walter

    2007-07-01

    The first processing of low level radioactive wastes from Swiss nuclear power plants marks the successful completion of commissioning in March 2004 of a treatment facility for low and intermediate level radioactive wastes, which is operated with the help of plasma technology. The theoretical principles of this metallurgy-derived process technology are based on plasma technology, which has already been used for a considerable period outside of nuclear technology for the production of highly pure metal alloys and for the plasma synthesis of acetylene. The commercial operation of the Plasma Plant owned by Zwischenlager Wuerenlingen AG (ZWILAG) has also enabled this technology to be used successfully for the first time in the nuclear field, especially in compliance with radiation protection aspects. In addition to a brief presentation of the technology used in the plant, the melting process under operating conditions will be explained in more detail. The separation factors attained and volume reductions achieved open interesting perspectives for the further optimisation of the entire process in the future. (author)

  7. A Comparison Study of Various Nuclear Fuel Cycle Alternatives

    SciTech Connect

    Kwon, Eun-ha; Ko, Won-il

    2007-07-01

    As a nation develops its nuclear strategies, it must consider various aspects of nuclear energy such as sustainability, environmental-friendliness, proliferation-resistance, economics, technologies, and so on. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects; the nation must identify its top priority and accordingly evaluate all the possible nuclear fuel cycle options. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 3. Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of resource utilization and waste generation. The analysis shows that the GEN-IV Recycle appears to be most competitive from these aspects. (authors)

  8. The NASA Hydrogen Energy Systems Technology study - A summary

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.

    1976-01-01

    This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.

  9. Aerospace Mechanisms and Tribology Technology: Case Studies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter focuses attention on tribology technology practice related to vacuum tribology and space tribology. Two case studies describe aspects of real problems in sufficient detail for the engineer and the scientist to understand the tribological situations and the failures. The nature of the problems is analyzed and the range of potential solutions is evaluated. Courses of action are recommended.

  10. Study of Faculty and Information Technology, 2014

    ERIC Educational Resources Information Center

    Dahlstrom, Eden; Brooks, D. Christopher

    2014-01-01

    In this inaugural year of the faculty technology study, EDUCAUSE Center for Analysis and Research (ECAR) partnered with 151 college/university sites yielding responses from 17,451 faculty respondents across 13 countries. The findings are exploratory in nature, as they cover new ground to help us tell a more comprehensive story about technology…

  11. Aerospace Mechanisms and Tribology Technology: Case Study

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.

    1999-01-01

    This paper focuses attention on tribology technology practice related to vacuum tribology. A case study describes an aspect of a real problem in sufficient detail for the engineer and scientist to understand the tribological situation and the failure. The nature of the problem is analyzed and the tribological properties are examined.

  12. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  13. Use of Second Life for interactive instruction and distance learning in nuclear physics and technology

    NASA Astrophysics Data System (ADS)

    Amme, Robert C.

    2009-05-01

    The developing nuclear power renaissance, coupled with related environmental consequences, is forcing a re-examination of the manner in which nuclear science and technology is (or is not) being taught in the United States. The 20-year hiatus of the nuclear power industry has been a decided factor in the relatively stagnant growth of nuclear physics and nuclear technology instruction, from middle school to graduate education. Furthermore, the general public remains fairly ignorant of the various features of nuclear power, at best having been briefly exposed to the subject only in a middle-school course in Physical Science. Essential to this renaissance is the capacity to deal with the regulatory environment and safety standards that must be addressed prior to new plant certification. Regrettably, too few individuals who are trained in environmental science are adequately prepared in the basic concepts of nuclear physics to deal with such issues as radioactive waste storage and transportation, biological effects of ionizing radiation, geological repositories, nuclear fuel reprocessing, etc. which are of great concern to the Nuclear Regulatory Commission. We are developing a master's degree, to be taught online, in the area of environmental impact assessment as it relates to these and other issues. To accommodate the need for laboratory exercises, we have adopted the virtual world developed by Linden Laboratory entitled Second Life; it is here that the student, as an avatar, will gain knowledge of the nature of ionizing radiation, radioactive half-lives, gamma and beta ray spectroscopy, neutron activation, and radiation shielding, using virtual apparatus and virtual radiation sources. Additionally, a virtual Generation III+ power reactor has been constructed on an adjoining Second Life island (entitled Science School II) which provides the visitor with a realistic impression of its inner workings. This presentation will provide the details of this construct and how it

  14. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  15. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, Xabier

    2009-07-02

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  16. Feasibility study for Zaporozhye Nuclear Power Plant spent fuel dry storage facility in Ukraine. Export trade information

    SciTech Connect

    1995-12-01

    This document reports the results of a Feasibility Study sponsored by a TDA grant to Zaporozhye Nuclear Power Plant (ZNPP) in Ukraine to study the construction of storage facilities for spent nuclear fuel. It provides pertinent information to U.S. companies interested in marketing spent fuel storage technology and related business to countries of the former Soviet Union or Eastern Europe.

  17. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7) established by the United States Department of Energy, an application filed in accordance with the regulations... authorized activity for the purposes of the Department of Energy regulations....

  18. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  19. SCINTILLA: A European project for the development of scintillation detectors and new technologies for nuclear security

    NASA Astrophysics Data System (ADS)

    Alemberti, A.; Battaglieri, M.; Botta, E.; Devita, R.; Fanchini, E.; Firpo, G.

    2014-06-01

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  20. 75 FR 61139 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ...This notice announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT) Subcommittee. The RFCT Subcommittee is a subcommittee of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The establishment of subcommittees is authorized in the Commission's charter. The Commission was organized pursuant to the Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat.......

  1. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1989-06-20

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility.

  2. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... decommissioning. II. Further Information DG-4016, was published in the Federal Register on August 12, 2011 (76 FR... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory...

  3. Status and prospect of NDT technology for nuclear energy industry in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyun

    2016-02-01

    Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.

  4. The interstellar heliopause probe technology reference study

    NASA Astrophysics Data System (ADS)

    Lyngvi, A.; Falkner, P.; Peacock, A.

    The interstellar heliopause probe (IHP) is one of ESA's technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme. Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality. To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s 2, which corresponds to a 245 × 245 m 2 solar sail and a sail thickness of 1-2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe. In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.

  5. Robotics and nuclear power. Report by the Technology Transfer Robotics Task Team

    SciTech Connect

    Not Available

    1985-06-01

    A task team was formed at the request of the Department of Energy to evaluate and assess technology development needed for advanced robotics in the nuclear industry. The mission of these technologies is to provide the nuclear industry with the support for the application of advanced robotics to reduce nuclear power generating costs and enhance the safety of the personnel in the industry. The investigation included robotic and teleoperated systems. A robotic system is defined as a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks. A teleoperated system includes an operator who remotely controls the system by direct viewing or through a vision system.

  6. Nuclear magnetometry studies of spin dynamics in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Watanabe, S.; Hirayama, Y.

    2014-12-01

    We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.

  7. Status of Rankine-cycle technology for space nuclear power applications

    SciTech Connect

    Holcomb, R.S.

    1991-01-01

    A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

  8. Innovation in Nuclear Technology for the Least Product Price and Cost

    SciTech Connect

    Duffey, Romney

    2003-09-01

    In energy markets, costs dominate for all new technology introductions (pressure valves, gas turbines, reactors) both now and far into the future. Technology improves, and costs are reduced as markets are penetrated with the trend following a learning/experience curve (MCE) based on classic economic forces. The curve followed is governed by development costs and market targets, and nuclear systems follow such a curve in order to compete with other technologies and projected future cost for alternate energy initiatives. Funding impacts directly on market penetration and on the ''learning rate.'' The CANDU/AECL development path (experience curve) is a chosen balance between evolution and revolution for a competitive advantage.

  9. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  10. On-Going Nuclear Physics and Technology Research Programmes in Europe

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2007-10-01

    Innovative nuclear technology applications have emerged in recent years and triggered an unprecedented interest of different communities of scientists worldwide, concerned by the multidisciplinary scientific, technical and engineering aspects of such applications. ADS (Accelerator Driven Systems, for the transmutation of highly radiotoxic nuclear waste), EA (Energy Amplifiers, for the production of energy), Spallation Neutron Sources (for multiple applications such as in Bio-Sciences, Medicine, Material Science), Radioactive Ion Beams (of relevance for fundamental Nuclear Physics and Astrophysics, for applications in Medicine, amongst many others) are examples of applications that address a set of common multidisciplinary, leading edge and cross-cutting issues and research topics. Other applications being considered for High-Energy Physics purposes consist on facilities aiming at producing intense neutrino beams. The sustainability of nuclear energy as an economically competitive, environmentally friend and proliferation resistant technology to meet mankind's growing energy demand has imposed in recent years the consideration of new (Generation IV) or non-conventional types of nuclear reactors, operating with non-standard coolants, higher-energy neutron spectra, higher temperatures, amongst other issues. The safety and operational aspects of these nuclear energy systems share with the nuclear technology applications previously referred (ADS, EA, SNS, etc.) a set of common scientific and technical issues. In this paper, the scientific, technical and engineering topics and issues of relevance for the implementation and deployment of some of the systems previously described are briefly presented. A set of selected major on-going R&D programmes and experiments involving international collaborations of scientists and consortia of institutions are succinctly described.

  11. On-Going Nuclear Physics and Technology Research Programmes in Europe

    SciTech Connect

    Vaz, Pedro

    2007-10-26

    Innovative nuclear technology applications have emerged in recent years and triggered an unprecedented interest of different communities of scientists worldwide, concerned by the multidisciplinary scientific, technical and engineering aspects of such applications. ADS (Accelerator Driven Systems, for the transmutation of highly radiotoxic nuclear waste), EA (Energy Amplifiers, for the production of energy), Spallation Neutron Sources (for multiple applications such as in Bio-Sciences, Medicine, Material Science), Radioactive Ion Beams (of relevance for fundamental Nuclear Physics and Astrophysics, for applications in Medicine, amongst many others) are examples of applications that address a set of common multidisciplinary, leading edge and cross-cutting issues and research topics. Other applications being considered for High-Energy Physics purposes consist on facilities aiming at producing intense neutrino beams.The sustainability of nuclear energy as an economically competitive, environmentally friend and proliferation resistant technology to meet mankind's growing energy demand has imposed in recent years the consideration of new (Generation IV) or non-conventional types of nuclear reactors, operating with non-standard coolants, higher-energy neutron spectra, higher temperatures, amongst other issues. The safety and operational aspects of these nuclear energy systems share with the nuclear technology applications previously referred (ADS, EA, SNS, etc.) a set of common scientific and technical issues.In this paper, the scientific, technical and engineering topics and issues of relevance for the implementation and deployment of some of the systems previously described are briefly presented. A set of selected major on-going R and D programmes and experiments involving international collaborations of scientists and consortia of institutions are succinctly described.

  12. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  13. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  14. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  15. Nuclear Technology Requires Control by the People, anywhere on Our Planet.

    NASA Astrophysics Data System (ADS)

    Synek, Miroslav

    2000-03-01

    ------- Human society on our planet, in its historical development, utilizing the knowledge of physics, has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized "push-button". Whenever this technology falls under the control of an irresponsible , miscalculating, or, insane, DICTATOR, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very survival of all humanity on our planet could be threatened. --- Therefore, it is a historical urgency that this technology is under the control by a government of the people, by the people and for the people, based on a sufficiently secure system of FREE ELECTIONS, in any country on our planet, wherever and whenever such a threatening possibility exists.

  16. Review, Analyses and Recommendations Related to Modern International Use of Nuclear Space Technologies with Focus on United States and Russia

    NASA Astrophysics Data System (ADS)

    Smith, T.

    The current Administration under President Barack Obama has given NASA a new directive in manned spaceflight. Instead of building a fleet of Ares rockets with various load specifications to deliver astronauts to the International Space Station (ISS) and return them to the Moon, the 2011 NASA Strategic Plan [1] states that NASA will develop ``integrated architecture and capabilities for safe crewed and cargo missions beyond Low Earth Orbit.'' The technologies developed within this architecture will take astronauts beyond the Moon, to destinations such as Mars or asteroids and will most likely require the use of Nuclear Space Technologies (NSTs).While there are other proposals for novel power generation and propulsion, such as fusion technology, these technologies are immature and it may be decades before they have demonstrated feasibility; in contrast NSTs are readily available, proven to work in space, and flight qualified. However, NSTs such as nuclear thermal propulsion (NTP) may or may not reach completion - especially with the lack of a mission in which they may be developed. Prospects and progress in current NST projects, ranging from power sources to propulsion units, are explored within this study, mainly in the United States, with an overview of projects occurring in other countries. At the end of the study, recommendations are made in order to address budget and political realities, aerospace export control and nuclear non-proliferation programs, and international issues and potentials as related to NSTs. While this report is not fully comprehensive, the selection of chosen projects illustrates a range of issues for NSTs. Secondly, the reader would be keen to make a distinction between technologies that have flown in the past, projects that have been tested and developed yet not flown, and concepts that have not yet reached the bench for testing.

  17. Titan probe technology assessment and technology development plan study

    NASA Technical Reports Server (NTRS)

    Castro, A. J.

    1980-01-01

    The need for technology advances to accomplish the Titan probe mission was determined by defining mission conditions and requirements and evaluating the technology impact on the baseline probe configuration. Mission characteristics found to be technology drivers include (1) ten years dormant life in space vacuum; (2) unknown surface conditions, various sample materials, and a surface temperature; and (3) mission constraints of the Saturn Orbiter Dual Probe mission regarding weight allocation. The following areas were identified for further development: surface sample acquisition system; battery powered system; nonmetallic materials; magnetic bubble memory devices, and the landing system. Preentry science, reliability, and weight reduction and redundancy must also be considered.

  18. Technology integration box beam failure study

    NASA Technical Reports Server (NTRS)

    Shuart, Mark J.; Ambur, D. R.; Davis, D. D., Jr.; Davis, Randall C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.

    1992-01-01

    Composite structures have the potential to be cost effective, structurally efficient primary aircraft structures. As part of the Advanced Composite Technology (ACT) program to exploit this potential for heavily loaded aircraft structures, the design and fabrication of the technology integration box beam (TIBB) was completed. The TIBB is an advanced composite prototype structure for the center wing section of the Lockheed C-130 aircraft. The TIBB was tested for downbending, upbending, torsion, and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. Current analytical and experimental results are described for a study of the mechanisms that led to the failure of the TIBB. Experimental results include load, strain, and deflection data. An analytical study was conducted of the TIBB structural response. Analytical results include strain and deflection results from a global analysis of the TIBB.

  19. Proteomic Technologies for the Study of Osteosarcoma

    PubMed Central

    Byrum, Stephanie D.; Washam, Charity L.; Montgomery, Corey O.; Tackett, Alan J.; Suva, Larry J.

    2012-01-01

    Osteosarcoma is the most common primary bone cancer of children and is established during stages of rapid bone growth. The disease is a consequence of immature osteoblast differentiation, which gives way to a rapidly synthesized incompletely mineralized and disorganized bone matrix. The mechanism of osteosarcoma tumorogenesis is poorly understood, and few proteomic studies have been used to interrogate the disease thus far. Accordingly, these studies have identified proteins that have been known to be associated with other malignancies, rather than being osteosarcoma specific. In this paper, we focus on the growing list of available state-of-the-art proteomic technologies and their specific application to the discovery of novel osteosarcoma diagnostic and therapeutic targets. The current signaling markers/pathways associated with primary and metastatic osteosarcoma that have been identified by early-stage proteomic technologies thus far are also described. PMID:22550414

  20. Multi-Mission Strategic Technology Prioritization Study

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Rodriquez, G.; Elfes, A.; Derleth, J.; Smith, J. H.; Manvi, R.; Kennedy, B.; Shelton, K.

    2004-01-01

    This viewgraph presentation provides an overview of a pilot study intended to demonstrate in an auditable fashion how advanced space technology development can best impact future NASA missions. The study was a joint project by staff members of NASA's Jet Propulsion Laboratory (JPL), and Goddard Space Flight Center (GSFC). The other goals of the study were to show an approach to deal effectively with inter-program analysis trades, and to explore the limits of these approaches and tools in terms of what can be realistically achieved.

  1. Scaling study for SP-100 reactor technology

    NASA Astrophysics Data System (ADS)

    Marshall, A. C.; McKissock, B.

    Several ways were explored of extending SP-100 reactor technology to higher power levels. One approach was to use the reference SP-100 pin design and increase the fuel pin length and the number of fuel pins as needed to provide higher capability. The impact on scaling of a modified and advanced SP-100 reactor technology was also explored. Finally, the effect of using alternative power conversion subsystems, with SP-100 reactor technology was investigated. One of the principal concerns for any space based system is mass; consequently, this study focused on estimating reactor, shield, and total system mass. The RSMASS code (Marshall 1986) was used to estimate reactor and shield mass. Simple algorithms developed at NASA-Lewis were used to estimate the balance of system mass. Power ranges from 100 kWe to 10 MWe were explored assuming both one year and seven years of operation. Thermoelectric, Stirling, Rankine, and Brayton power conversion systems were investigated. The impact on safety, reliability, and other system attributes, caused by extending the technology to higher power levels, was also investigated.

  2. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  3. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  4. Applications of nuclear technologies for in-vivo elemental analysis

    SciTech Connect

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Wielopolski, L.

    1982-01-01

    Measurement facilities developed, to date, include a unique whole-body-counter, (WBC); a total-body neutron-activation facility (TBNAA); and a partial-body activation facility (PBNAA). A variation of the prompt-gamma neutron-activation technique for measuring total-body nitrogen was developed to study body composition of cancer patients and the effect of nutritional regimens on the composition. These new techniques provide data in numerous clinical studies not previously amenable to investigation. The development and perfection of these techniques provide unique applications of radiation and radioisotopes to the early diagnosis of certain diseases and the evaluation of therapeutic programs. The PBNAA technique has been developed and calibrated for in-vivo measurement of metals. Development has gone forward on prompt-gamma neutron activation for the measurement of cadmium, x-ray fluorescence (XRF) for measurement of iron. Other techniques are being investigated for in-vivo measurement of metals such as silicon and beryllium.

  5. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    NASA Astrophysics Data System (ADS)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  6. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    SciTech Connect

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  7. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    SciTech Connect

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  8. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  9. NASA-OAST/JPL high efficiency thermionic conversion studies. [nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Efforts were made to develop a thermionic energy conversion TEC technology appropriate for nuclear electric propulsion missions. This space TEC effort was complementary to the terrestrial TEC studies sponsored by the Department of Energy which had the goal of topping fossil fuel power plants. Thermionic energy conversion was a primary conversion option for space reactors because of its: (1) high operating temperature; (2) lack of moving parts; (3) modularity; (4) established technology; and (5) development potential.

  10. Modeling of Power and Propulsion Parameters For Nuclear Electric Propulsion Misson Studies

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1993-01-01

    Advanced propulsion mission studies sponsored by NASA over the past 10-15 years have indicated that Nuclear Electric Propulsion (NEP) may be a viable candidate for a detailed exploration of the solar system. The first generation of NEP to be used for Planetary missions will most likely be based on modest technology improvements to already existing designs or hardware for a technology readiness in the 2000-2010 time frame.

  11. Integrated Operations Architecture Technology Assessment Study

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As part of NASA's Integrated Operations Architecture (IOA) Baseline, NASA will consolidate all communications operations. including ground-based, near-earth, and deep-space communications, into a single integrated network. This network will make maximum use of commercial equipment, services and standards. It will be an Internet Protocol (IP) based network. This study supports technology development planning for the IOA. The technical problems that may arise when LEO mission spacecraft interoperate with commercial satellite services were investigated. Commercial technology and services that could support the IOA were surveyed, and gaps in the capability of existing technology and techniques were identified. Recommendations were made on which gaps should be closed by means of NASA research and development funding. Several findings emerged from the interoperability assessment: in the NASA mission set, there is a preponderance of small. inexpensive, low data rate science missions; proposed commercial satellite communications services could potentially provide TDRSS-like data relay functions; and. IP and related protocols, such as TCP, require augmentation to operate in the mobile networking environment required by the space-to-ground portion of the IOA. Five case studies were performed in the technology assessment. Each case represented a realistic implementation of the near-earth portion of the IOA. The cases included the use of frequencies at L-band, Ka-band and the optical spectrum. The cases also represented both space relay architectures and direct-to-ground architectures. Some of the main recommendations resulting from the case studies are: select an architecture for the LEO/MEO communications network; pursue the development of a Ka-band space-qualified transmitter (and possibly a receiver), and a low-cost Ka-band ground terminal for a direct-to-ground network, pursue the development of an Inmarsat (L-band) space-qualified transceiver to implement a global, low

  12. Emerging nuclear magnetic resonance technologies. Health and safety.

    PubMed

    Budinger, T F

    1992-03-31

    NMR imaging (MRI) and spectroscopy have been applied to an increasing number of patients and volunteers for 10 years. The field strength has increased by a factor of 10 since 1979 and the switched gradients have increased by over a factor of 10 since 1980. RF absorbed power has increased by almost a factor of 10 in many studies due to both the increase in frequency and the increase in duty cycle associated with new RF pulse protocols. Even with these increases, all available evidence argues that the clinical procedures offer no hazards to human subjects. Known hazards associated with flying ferromagnetic objects, internal prostheses, and wires or metal objects in contact with the skin of patients can be avoided. Although hazards are not expected for the present procedures, emerging methods using fast scan strategies and higher frequency RF of the higher fields will require a closer vigilance and will demand continuing experimental and theoretical work such as detailed in this symposium. PMID:1580484

  13. Nuclear fragmentation studies for microelectronic application

    NASA Technical Reports Server (NTRS)

    Ngo, Duc M.; Wilson, John W.; Buck, Warren W.; Fogarty, Thomas N.

    1989-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. Predicted results are compared to experiments with the surface barrier detectors of McNulty et al. The intranuclear cascade nuclear reaction model does not predict the McNulty experimental data for the highest energy events. A semiempirical nuclear cross section gives an adequate explanation of McNulty's experiments. Application of the formalism to specific electronic devices is discussed.

  14. Project WANT - Women's Access to Nuclear Technology, a successful industry/education partnership

    SciTech Connect

    Widen, W.C.; Roth, G.L.

    1987-01-01

    In 1984, the U.S. Congress issued the Carl D. Perkins Act, which charges vocational educators to increase their focus on two broad themes: (a) the elimination of sexual bias and sexual stereotyping in vocational education and (b) the provision of marketable skills to the economically deprived of the nation's work force. In response to this charter, an industry/education partnership was established among the Illinois State Board of Education, Norther Illinois University, and the Westinbghouse Nuclear Training Center. In essence, these partners established Project WANT - Women's Access to Nuclear Technology - with two premier goals: (a) to increase women's awareness regarding nuclear career opportunities and (b) to train and place women in technical professions within the nuclear industry. Feedback from the U.S. Department of Energy (DOE), the Atomic Industrial Forum, and the Bureau of Labor Statistics identifies that <2% of all technical positions within the nuclear power industry are held by women. Hence, one may conclude that there is a definite need to promote sexual equity in the nuclear industry and that Illinois represents a unique environment of opportunity to accomplish this.

  15. Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Meyer, P. K.; Harbour, L.

    1986-01-01

    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.

  16. Technology integration box beam failure study

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Ambur, Damodar R.; Davis, D. D., Jr.; Davis, R. C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.

    1993-01-01

    Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms.

  17. Advanced supersonic technology propulsion system study

    NASA Technical Reports Server (NTRS)

    Szeliga, R.; Allan, R. D.

    1974-01-01

    This study had the objectives of determining the most promising conventional and variable cycle engine types; the effect of design cruise Mach number (2.2, 2.7 and 3.2) on a commercial supersonic transport; effect of advanced engine technology on the choice of engine cycle; and effect of utilizing hydrogen as the engine fuel. The technology required for the engines was defined, and the levels of development to ensure availability of this technology in advanced aircraft propulsion systems were assessed. No clearcut best conventional or variable cycle engine was identified. The dry bypass turbojet and the duct burning turbofans were initially selected as the best conventional engines, but later results, utilizing augmentation at takeoff, added the mixed-flow augmented turbofan as a promising contender. The modulating air flow, three-rotor variable cycle engine identified the performance features desired from VCE concepts (elimination of inlet drag and reduction in afterbody drag), but was a very heavy and complex engine.

  18. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

  19. Space nuclear power: technology, policy, and risk considerations in human missions to Mars.

    PubMed

    Friedensen, V P

    1998-01-01

    There is a large discrepancy between potential needs for nuclear propulsion and power systems for the human exploration of Mars and the current status of R&D funding, public opinion, and governmental support for these technologies. Mission planners and spacecraft designers, energized by the recent claims of possible discovery of life on Mars and responding to increased public interest in the human exploration of Mars, frequently propose nuclear reactors and radioisotope thermoelectric generators (RTGs) for interplanetary spacecraft propulsion and for power supply on the surface of Mars. These plans and designs typically assume that reactors will be available "on-the-shelf," and do not take the extensive R&D costs required to develop such reactors into consideration. However, it is likely that current U.S. policies, if unchanged, will prohibit the launch of nuclear reactors and large RTGs in response to a perceived risk by the public. PMID:11541623

  20. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    SciTech Connect

    Nasrabadi, M. N. Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  1. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Sepiani, M.

    2015-03-01

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  2. The Biological Consequences of Nuclear War: Initiating National Case Studies.

    ERIC Educational Resources Information Center

    Harwell, Mark A.; Freeman, Ann C.

    1988-01-01

    Describes the second volume of the environmental consequences of nuclear war (ENUWAR) study of the Scientific Committee on Problems of the Environment (SCOPE) which involves the potential consequences for the Earth's biological systems. Discusses case studies in areas where the indirect effects of nuclear war would be the greatest danger. (CW)

  3. Transportation capabilities study of DOE-owned spent nuclear fuel

    SciTech Connect

    Clark, G.L.; Johnson, R.A.; Smith, R.W.; Abbott, D.G.; Tyacke, M.J.

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  4. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    SciTech Connect

    Not Available

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

  5. Survey of fiber optic technology for nuclear-waste cleanup applications

    NASA Astrophysics Data System (ADS)

    Addleman, Shane R.; Crawford, Beverly A.; Mech, Stephen J.; Troyer, Gary L.; Greenwell, Roger A.

    1993-04-01

    The need for suitable remote sensors in highly radioactive defense waste storage tanks is discussed. The harsh radiological and chemical tank environment precludes the use of standard sensors because of the need for intrinsically safe systems. Potential sensor systems based on fiber-optics technologies suitable for the nuclear waste environment are identified. The need for certification standards for this type of environment is also discussed.

  6. Survey of fiber-optic technology for nuclear waste cleanup applications

    SciTech Connect

    Addleman, R.S.; Crawford, B.A.; Mech, S.J.; Troyer, G.L. ); Greenwell, R.A. )

    1992-09-01

    The need for suitable remote sensors in highly radioactive defense waste storage tanks is discussed. The harsh radiological and chemical tank environment precludes the use of standard sensors because of the need for intrinsically safe systems. Potential sensor systems based on fiber-optics technologies suitable for the nuclear waste environment are identified. The need for certification standards for this type of environment is also discussed.

  7. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems: Technology Choices and Implementation Scenarios

    SciTech Connect

    Venneri, Francesco; Williamson, Mark A.; Li Ning; Houts, Michael G.; Morley, Richard A.; Beller, Denis E.; Sailor, William; Lawrence, George

    2000-10-15

    Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a repository. The basic concept of ATW focuses on reducing the time horizon for the radiological risk from hundreds of thousands of years to a few hundred years and on reducing the thermal loading. As such, ATW will greatly reduce the amount of transuranic elements that will be disposed of in a high-level waste repository. The goal of the ATW nuclear subsystem is to produce three orders of magnitude reduction in the long-term radiotoxicity of the waste sent to a repository, including losses through processing. If the goal is met, the radiotoxicity of ATW-treated waste after 300 yr would be less than that of untreated waste after 100 000 yr.These objectives can be achieved through the use of high neutron fluxes produced in accelerator-driven subcritical systems. While critical fission reactors can produce high neutron fluxes to destroy actinides and select fission products, the effectiveness of the destruction is limited by the criticality requirement. Furthermore, a substantial amount of excess reactivity would have to be supplied initially and compensated for by control poisons. To overcome these intrinsic limitations, we searched for solutions in subcritical systems freed from the criticality requirement by taking advantage of the recent breakthroughs in accelerator technology and the release of liquid lead/bismuth nuclear coolant technology from Russia. The effort led to the selection of an accelerator-driven subcritical system that results in the destruction of the actinides and fission products of concern as well as permitting easy operational control through the external control of the neutron

  8. Developing countries: Non-nuclear energy technology. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning generation of non-nuclear energy technology developed and used by developing countries. Technical, social, economic, and commercial aspects are presented. Applications in the solar, geothermal, synfuels, ocean thermal, and wind power energy industries are discussed. Forecasts and future prospects for these energy industries in developing countries are included. (Contains a minimum of 154 citations and includes a subject term index and title list.)

  9. Global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)

    1991-01-01

    Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.

  10. Computer technology forecast study for general aviation

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D.

    1976-01-01

    A multi-year, multi-faceted program is underway to investigate and develop potential improvements in airframes, engines, and avionics for general aviation aircraft. The objective of this study was to assemble information that will allow the government to assess the trends in computer and computer/operator interface technology that may have application to general aviation in the 1980's and beyond. The current state of the art of computer hardware is assessed, technical developments in computer hardware are predicted, and nonaviation large volume users of computer hardware are identified.

  11. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    SciTech Connect

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  12. Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1

    SciTech Connect

    Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

    1995-10-20

    The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ``stabilized`` form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision.

  13. Advanced Platform Systems Technology study. Volume 2: Trade study and technology selection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Three primary tasks were identified which include task 1-trade studies, task 2-trade study comparison and technology selection, and task 3-technology definition. Task 1 general objectives were to identify candidate technology trade areas, determine which areas have the highest potential payoff, define specific trades within the high payoff areas, and perform the trade studies. In order to satisfy these objectives, a structured, organized approach was employed. Candidate technology areas and specific trades were screened using consistent selection criteria and considering possible interrelationships. A data base comprising both manned and unmanned space platform documentation was used as a source of system and subsystem requirements. When requirements were not stated in the data base documentation, assumptions were made and recorded where necessary to characterize a particular spacecraft system. The requirements and assumptions were used together with the selection criteria to establish technology advancement goals and select trade studies. While both manned and unmanned platform data were used, the study was focused on the concept of an early manned space station.

  14. SP-100 dynamic power and lithium-propellant MPD nuclear electric propulsion technology requirements

    SciTech Connect

    Frisbee, R.H.; Hoffman, N.J.; Murray, K.H.

    1994-12-31

    The objective of this study was to evaluate the requirements for the propulsion and power conversion systems of a nuclear electric propulsion (NEP) vehicle using an SP-100 reactor with a dynamic power conversion system, Li-propellant magnetoplasmadynamic (MPD) thrusters, Li-propellant storage and feed systems, and power conditioning electronics required to convert the power output from the power system to the form needed by the thrusters. Potassium-Rankine power conversion systems have the potential for the greatest mission benefit in terms of minimum mass and volume, but they require the most development. High-current, low-voltage turboalternators are needed for the MPD thruster system envisioned here. Power processing is not expected to be a major technology driver, but development of high-current, low-voltage space- and radiation-qualified components is needed. Finally, increases in MPD thruster life would reduce mass, system complexity, and packaging constraints; similarly, higher thruster efficiencies are desirable to reduce trip time.

  15. SP-100 Dynamic Power and Lithium-Propellant MPD Nuclear Electric Propulsion Technology Requirements

    NASA Astrophysics Data System (ADS)

    Frisbee, Robert H.; Hoffman, Nathan J.; Murray, Kathy H.

    1994-07-01

    The objective of this study was to evaluate the requirements (including system integration, design, test requirements, and schedule) for the propulsion and power conversion systems of a nuclear electric propulsion (NEP) vehicle using an SP-100 reactor with a dynamic power conversion system, Li-propellant magnetoplasmadynamic (MPD) thrusters, Li-propellant storage and feed systems, and the power conditioning electronics required to convert the power output from the power system to the form (voltage, current) needed by the thrusters. Potassium-Rankine power conversion systems have the potential for the greatest mission benefit in terms of minimum mass and volume (as compared to Brayton or Stirling power conversion systems), but they require the most development. High-current, low-voltage turboalternators are needed for the MPD thruster system envisioned here, although one alternative would be to use more near-term high-voltage alternators at the potential cost of higher rectifier losses or added transformer mass. Power processing is not expected to be a major technology driver, but development of high-current, low-voltage space- and radiation-qualified components is needed. Finally, increases in MPD thruster life would reduce mass, system complexity, and packaging constraints; similarly, higher thruster efficiencies are desirable to reduce trip time.

  16. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A; Patterson, Eileen F

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized. PMID:27573502

  19. Ideology in science and technology: the case of civilian nuclear power

    SciTech Connect

    Harrod, A.N.

    1987-01-01

    This dissertation traces the complicated interrelationships between ideology and interest within the civilian nuclear power controversy. The first chapter introduces the topic. The second chapter provides a social-political-economic overview of the context in which the conflicting ideologies arose. Factors looked at are the ascendancy of the physical sciences, the development of nuclear energy, the disenchantment with science and technology and the consequent rise of an anti-nuclear ideology. Chapter III uses the theories of Alvin Gouldner to understand the structure of ideology. The chapter defines ideology's similarities to and differences from scientific discourse. Chapter IV examines the ideological discourse of a selected sample of scientists who have spoken for and against civilian nuclear power. In parallel to chapter IV, chapter V examines a scientific controversy among the sample of experts. It shows how scientific disagreement can be produced and how ideology is most closely linked to science. Chapter VI examines the social interests of the scientists and experts to discover ways that interests have shaped the ideological and scientific positions for and against civilian nuclear energy. Based on the foregoing, chapter VII concludes that the introduction of science and experts into a controversy cannot be expected to end disagreement over policy because of the link between science and ideology.

  20. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Study of Nuclear Moments on Exotic Nuclei

    SciTech Connect

    Ishihara, Masayasu

    2010-04-30

    Nuclear moments have been measured for a few tens of light unstable nuclei located very far from the line of stability using beta-NMR methods and spin-polarized RI beams. The obtained values of those moments provided indispensable information to reveal/disentangle unique properties of exotic nuclei.

  3. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  4. Infusing Technology: A Study of the Influence of Professional Development on How Teachers Use Technology

    ERIC Educational Resources Information Center

    Cottle, Amy E.

    2010-01-01

    This study examined whether a quality professional development course, "Infusing Technology", influenced the use of technology by elementary and middle school teachers in West Virginia. "Infusing Technology" was designed to help school-based team learning communities use technology in their instruction while engaging students in critical thinking,…

  5. Electro-Technologies. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    With this Career and Technologies Studies (CTS) curriculum guide, secondary students in Alberta can do the following: develop skills that can be applied in their daily lives; refine career-planning skills; develop technology-related skills in electro-technologies; enhance employability skills, especially in electro-technologies industries; and…

  6. Nuclear electric propulsion operational reliability and crew safety study: NEP systems/modeling report

    NASA Technical Reports Server (NTRS)

    Karns, James

    1993-01-01

    The objective of this study was to establish the initial quantitative reliability bounds for nuclear electric propulsion systems in a manned Mars mission required to ensure crew safety and mission success. Finding the reliability bounds involves balancing top-down (mission driven) requirements and bottom-up (technology driven) capabilities. In seeking this balance we hope to accomplish the following: (1) provide design insights into the achievability of the baseline design in terms of reliability requirements, given the existing technology base; (2) suggest alternative design approaches which might enhance reliability and crew safety; and (3) indicate what technology areas require significant research and development to achieve the reliability objectives.

  7. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  8. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Astrophysics Data System (ADS)

    Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  9. Nuclear materials control technology in the post-cold war world: Radiation-based methods and information management systems

    SciTech Connect

    Tape, J.W.; Eccleston, G.W.; Ensslin, N.; Markin, J.T.

    1993-06-01

    The end of the cold war is providing both opportunities and requirements for improving the control of nuclear materials around the world. The dismantlement of nuclear weapons and the growth of nuclear power, including the use of plutonium in light water reactors and breeder reactor programs, coupled with enhanced proliferation concerns, drive the need for improved nuclear materials control. We describe nuclear materials control and the role of technology in making controls more effective and efficient. The current use and anticipated development in selected radiation-based methods and related information management systems am described briefly.

  10. In Space Nuclear Power as an Enabling Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Houts, Michael

    2000-01-01

    Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably

  11. Desert Research and Technology Studies 2008 Report

    NASA Technical Reports Server (NTRS)

    Romig, Barbara; Kosmo, Joseph; Gernhardt, Michael; Abercromby, Andrew

    2009-01-01

    During the last two weeks of October 2008, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2008 Desert Research and Technology Studies (D-RATS) near Flagstaff, AZ. The Desert RATS field test activity is the year-long culmination of various individual science and advanced engineering discipline areas technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The 2008 Desert RATS was the eleventh RATS field test and was the most focused and successful test to date with participants from six NASA field centers, three research organizations, one university, and one other government agency. The main test objective was to collect Unpressurized Rover (UPR) and Lunar Electric Rover (LER) engineering performance and human factors metrics while under extended periods of representative mission-based scenario test operations involving long drive distances, night-time driving, Extravehicular Activity (EVA) operations, and overnight campover periods. The test was extremely successful with all teams meeting the primary test objective. This paper summarizes Desert RATS 2008 test hardware, detailed test objectives, test operations, and test results.

  12. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  13. SPACE-R thermionic space nuclear power system: Design and technology demonstration. Monthly report for 1 August 1994--1 September 1994

    SciTech Connect

    Not Available

    1994-10-01

    The objective of this program is to design, develop, demonstrate, and advance the technology for thermionic space nuclear power system (TI-SNPS) to meet key functional requirements with reliable 5{approximately}40 kWe output and 18-month near-term/10-year long-term goals. A 40 kWe TI-SNPS point design will be prepared, and key technologies and critical components supporting that design will be validated. This program will produce an assessed design of a 40 kWe-EOL space nuclear power system. Phase 1 will provide for the performance of parametric trade studies and demonstration of key technologies, resulting in a preferred conceptual design for the TI-SNPS. The focus of the tasks is technology validation drive by the system design.

  14. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  15. ``White Land``...new Russian closed-cycle nuclear technology for global deployment

    SciTech Connect

    Bowman, C.D.

    1996-07-01

    A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

  16. Technology Foresight and nuclear test verification: a structured and participatory approach

    NASA Astrophysics Data System (ADS)

    Noack, Patrick; Gaya-Piqué, Luis; Haralabus, Georgios; Auer, Matthias; Jain, Amit; Grenard, Patrick

    2013-04-01

    As part of its mandate, the CTBTO's nuclear explosion monitoring programme aims to maintain its sustainability, effectiveness and its long-term relevance to the verification regime. As such, the PTS is conducting a Technology Foresight programme of activities to identify technologies, processes, concepts and ideas that may serve said purpose and become applicable within the next 20 years. Through the Technology Foresight activities (online conferences, interviews, surveys, workshops and other) we have involved the wider science community in the fields of seismology, infrasound, hydroacoustics, radionuclide technology, remote sensing and geophysical techniques. We have assembled a catalogue of over 200 items, which incorporate technologies, processes, concepts and ideas which will have direct future relevance to the IMS (International Monitoring System), IDC (International Data Centre) and OSI (On-Site Inspection) activities within the PTS. In order to render this catalogue as applicable and useful as possible for strategy and planning, we have devised a "taxonomy" based on seven categories, against which each technology is assessed through a peer-review mechanism. These categories are: 1. Focus area of the technology in question: identify whether the technology relates to (one or more of the following) improving our understanding of source and source physics; propagation modelling; data acquisition; data transport; data processing; broad modelling concepts; quality assurance and data storage. 2. Current Development Stage of the technology in question. Based on a scale from one to six, this measure is specific to PTS needs and broadly reflects Technology Readiness Levels (TRLs). 3. Impact of the technology on each of the following capabilities: detection, location, characterization, sustainment and confidence building. 4. Development cost: the anticipated monetary cost of validating a prototype (i.e. Development Stage 3) of the technology in question. 5. Time to

  17. Tags and seals for controling nuclear materials, Arms control and nonproliferation technologies. Second quarter 1993

    SciTech Connect

    Staehle, G; Talaber, C; Stull, S; Moulthrop, P

    1993-12-31

    This issue of Arms Control and Nonproliferation Technologies summarizes demonstrations and addresses related topics. The first article, ``Basic Nuclear Material Control and Accountability Concepts as Might be Applied to the Uranium from the US-Russian HEU Purchase,`` describes safeguards sybsystems necessary for effective nuclear material safeguards. It also presents a general discussion on HEU-to-low-enrichment uranium (LEU) commingling processes and suggests applicable key measurement points. The second article, ``A Framework for Evaluating Tamper-Indicating-Device Technologies (TIDs),`` describes their uses, proper selection, and evaluation. The final three articles discuss the tags and seals applications and general characteristics of several nuclear material containers: the Type 30B uranium hexafluoride container, the AT-400R container, and the DOT Specification 6M container for SNM. Finally, the Appendix displays short descriptions and illustrations of seven tags and seals, including: the E-cup and wire seal, the python seal, the secure loop inspectable tag/seal (SLITS), bolt-and-loop type electronic identification devices, and the shrink-wrap seal.

  18. Recent advances in maize nuclear proteomic studies reveal histone modifications.

    PubMed

    Casati, Paula

    2012-01-01

    The nucleus of eukaryotic organisms is highly dynamic and complex, containing different types of macromolecules including DNA, RNA, and a wide range of proteins. Novel proteomic applications have led to a better overall determination of nucleus protein content. Although nuclear plant proteomics is only at the initial phase, several studies have been reported and are summarized in this review using different plants species, such as Arabidopsis thaliana, rice, cowpea, onion, garden cress, and barrel clover. These include the description of the total nuclear or phospho-proteome (i.e., Arabidopsis, cowpea, onion), or the analysis of the differential nuclear proteome under different growth environments (i.e., Arabidopsis, rice, cowpea, onion, garden cress, and barrel clover). However, only few reports exist on the analysis of the maize nuclear proteome or its changes under various conditions. This review will present recent data on the study of the nuclear maize proteome, including the analysis of changes in posttranslational modifications in histone proteins. PMID:23248634

  19. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Nuclear Material Recovery at Los Alamos National Laboratory Using TechXtract{reg_sign} Decontamination Technology

    SciTech Connect

    Fay, S.; Dennison, D.; Fife, K.; Punjak, W.

    1999-09-12

    One mission of the Los Alamos National Laboratory (LANL) is to affect pollution prevention and waste minimization surrounding operations at their Plutonium Facility. Efforts are underway and technologies are being deployed to capture the actinide at the source thereby reducing the amount of nuclear material leaving the facility as transuranic waste. Traditional processing alternatives for decontamination, such as strong acid leaching and surface brushing have not achieved the desired recovery efficiencies for plastic or non-actinide metal matrices. Much of the nuclear material present is fixed in the matrix, and is not susceptible to recovery with surface cleaning techniques. In addition, the relatively large secondary waste volumes associated with the acid leaching have persuaded LANL to evaluate alternative recovery methods. The purpose of this paper is to describe the development and testing of a prototype chemical decontamination and co-precipitation process installed at the Los Al amos Plutonium Facility that is based on the patented TechXtract{reg_sign} system developed by Active Environmental Technologies Inc. (AET). The technology was enhanced under a PRDA contract awarded by DOE in 1997.

  2. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    SciTech Connect

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh; Howell, Stephen W.

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  3. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology

  4. Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models

    NASA Astrophysics Data System (ADS)

    Razavi, Rohallah; Rahmatinejad, Azam; Kakavand, Tayeb; Taheri, Fariba; Aghajani, Maghsood; Khooy, Asghar

    2016-02-01

    In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

  5. System Study: Technology Assessment and Prioritizing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The objective of this NASA funded project is to assess and prioritize advanced technologies required to achieve the goals for an "Intelligent Propulsion System" through collaboration among GEAE, NASA, and Georgia Tech. Key GEAE deliverables are parametric response surface equations (RSE's) relating technology features to system benefits (sfc, weight, fuel burn, design range, acoustics, emission, etc...) and listings of Technology Impact Matrix (TIM) with benefits, debits, and approximate readiness status. TIM has been completed for GEAE and NASA proposed technologies. The combined GEAE and NASA TIM input requirement is shown in Table.1. In the course of building the RSE's and TIM, significant parametric technology modeling and RSE accuracy improvements were accomplished. GEAE has also done preliminary ranking of the technologies using Georgia Tech/GEAE USA developed technology evaluation tools. System level impact was performed by combining beneficial technologies with minimum conflict among various system figures of merits to assess their overall benefits to the system. The shortfalls and issues with modeling the proposed technologies are identified, and recommendations for future work are also proposed.

  6. Linkage of Operational Needs for Spent Nuclear Fuel Disposition to Technology Development Maps

    SciTech Connect

    Dahl, C. A.

    2002-02-26

    The Department of Energy is preparing spent nuclear fuel (SNF) for interim storage at the major SNF sites. At the same time, work is proceeding to analyze the requirements for disposal of the SNF in a geologic repository, currently proposed to be located at Yucca Mountain in Nevada. To assist with the placement of SNF in either interim storage or the repository, certain technologies must be developed and implemented to assure that the storage can be safely and efficiently achieved. Technology development funding is diffused through a variety of resources within the DOE complex. A tool is required to show the integration of technology development activities with each of the funding sources, show the entities performing the development work, and demonstrate how the technology development assists with the interim storage and final disposition of SNF. A series of requirements for this tool were defined and a tool developed to assist with showing the required information. The tool has taken the form of Technology Development Maps that link development information, funding sources, entities performing development activities, and the material disposition path for each SNF type. These maps will be maintained as living documents to assist with integrating development activities for the SNF program.

  7. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    NASA Astrophysics Data System (ADS)

    Maharik, Michael

    This thesis addresses the public perception of the risk of a technology not widely known to laypeople. Its aims were (1) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (2) to extend the 'mental model' methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings was examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Although they included large portions of the expert model, people's beliefs also had gaps and misconceptions. Respondents often used scientific terms without a clear understanding of what they meant. Respondents' mental models sometimes contained scattered and inconsistent entries. The impact of pre-existing mental models was clearly seen. Different groups of people had different patterns of knowledge and beliefs. Nevertheless, respondents expressed reasonable and coherent opinions on choices among engineering options. The CMU brochure, derived from the study of readers' existing mental models, provided a better risk communication tool than NASA's material, reflecting primarily experts' perspective. The better performance of subjects reading either brochure generally reflected adding knowledge on issues that they had not previously known, rather than correcting wrong beliefs. The communication study confirmed a hypothesis that improving knowledge on risk processes related to the use of a technology causes a more

  8. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  9. Technology integration box beam failure study

    NASA Technical Reports Server (NTRS)

    Shuart, Mark J.; Ambur, Damodar R.; Davis, D. D., Jr.; Davis, R. C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.

    1992-01-01

    The objective of this paper is to describe current results from an on-going study of the mechanisms that led to the failure of the TIBB. Experimental and analytical results are presented. Experimental results include load, strain, and deflection data for the TIBB (Technology Integration Box Beam). An analytical investigation was conducted to compliment the experimental investigation and to gain additional insight into the TIBB structural response. Analytical results include strain and deflection results from a global analysis of the TIBB. A local analysis of the failure region is being completed. These analytical results are validated through comparisons with the experimental results from the TIBB tests. The experimental and analytical results from the TIBB tests are used to determine a sequence of events that may have resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Typical analytical results are presented for a stiffener runout specimen that is being defined to simulate the TIBB failure mechanisms. The results of this study are anticipated to provide better understanding of potential failure mechanisms in composite aircraft structures, to lead to future design improvements, and to identify needed analytical tools for design and analysis.

  10. Small transport aircraft technology propeller study

    NASA Technical Reports Server (NTRS)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.

    1983-01-01

    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  11. Cooperation, Technology, and Performance: A Case Study.

    ERIC Educational Resources Information Center

    Cavanagh, Thomas; Dickenson, Sabrina; Brandt, Suzanne

    1999-01-01

    Describes the CTP (Cooperation, Technology, and Performance) model and explains how it is used by the Department of Veterans Affairs-Veteran's Benefit Administration (VBA) for training. Discusses task analysis; computer-based training; cooperative-based learning environments; technology-based learning; performance-assessment methods; courseware…

  12. Technological Advances and the Study of Reading.

    ERIC Educational Resources Information Center

    Henk, William A.

    Recent technological advances in neuroanatomy and neurophysiology have unearthed structural and functional patterns in the brain that can be associated with severe reading disabilities. As a response, this paper examines several computer-driven technologies whose capabilities shed light on brain-related issues germane to reading, with the intent…

  13. Public dialogue on physics and related technology after the Fukushima Daiichi nuclear accident

    NASA Astrophysics Data System (ADS)

    Sasao, Mamiko

    2015-12-01

    After the Fukushima Daiichi Nuclear Accident, the importance of bottom-up and two-way dialogue between scientists and the public has been recognized. In such dialogue, information provided must accurately match the public's interest and ability regarding science and technology. We have started to investigate what people want to know about physics. Some were interested in energy security (a particular concern in Japan), but others were concerned about radioactivity in food and natural radiation background. The conversations revealed that physicists often give insufficient explanations of the biological effects of radiation and highlighted key points for physicists to make when talking with the public.

  14. Public dialogue on physics and related technology after the Fukushima Daiichi nuclear accident

    SciTech Connect

    Sasao, Mamiko

    2015-12-31

    After the Fukushima Daiichi Nuclear Accident, the importance of bottom-up and two-way dialogue between scientists and the public has been recognized. In such dialogue, information provided must accurately match the public’s interest and ability regarding science and technology. We have started to investigate what people want to know about physics. Some were interested in energy security (a particular concern in Japan), but others were concerned about radioactivity in food and natural radiation background. The conversations revealed that physicists often give insufficient explanations of the biological effects of radiation and highlighted key points for physicists to make when talking with the public.

  15. An Advanced Reverse Osmosis Technology For Application in Nuclear Desalination Facilities

    SciTech Connect

    Humphries, J.R.; Davies, K.; Ackert, J.A.

    2002-07-01

    The lack of adequate supplies of clean, safe water is a growing global problem that has reached crisis proportions in many parts of the world. It is estimated that 1.5 billion people do not have access to adequate supplies of safe water, and that as a result nearly 10,000 people die every day and thousands more suffer from a range of debilitating illnesses due to water related diseases. Included in this total is an estimated 2.2 million child deaths annually. As the world's need for additional sources of fresh water continues to grow, seawater and brackish water desalination are providing an increasingly important contribution to the solution of this problem. Because desalination is an energy intensive process, nuclear desalination provides an economically attractive and environmentally sound alternative to the burning of fossil fuels for desalination. Nevertheless, the enormity of the problem dictates that additional steps must be taken to improve the efficiency of energy utilization and reduce the cost of water production in order to reduce the financial and environmental burden to communities in need. An advanced reverse osmosis (RO) desalination technology has been developed that emphasizes a nontraditional approach to system design and operation, and makes use of a sophisticated design optimization process that can lead to highly optimized design configurations and operating regimes. The technology can be coupled with a nuclear generating station (NGS) to provide an integrated facility for the co-generation of both water and electricity. Waste heat from the NGS allows the use of 'preheated' feedwater into the RO system, improving the efficiency of the RO process and reducing the cost of water production. Because waste heat, rather than process heat, is used the desalination system can be readily coupled to any existing or advanced reactor technology with little or no impact on reactor design and operation and without introducing additional reactor safety

  16. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  17. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    SciTech Connect

    Wong, S.M.; Boccio, J.L.; Karimian, S.; Azarm, M.A.; Carbonaro, J.; DeMoss, G.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.

  18. Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle

    SciTech Connect

    Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T.; Glatz, J.P.

    2013-07-01

    Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

  19. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  20. Nuclear track study of Jilin chondrite

    NASA Astrophysics Data System (ADS)

    Pellas, P.; Bourot-Denise, M.

    1985-02-01

    Attention is given to nuclear track records in olivines from 21 specimens of Jilin which sample the whole spectrum of Ne-21 concentrations and come from both the main mass and the strewn fragments. Although 19 of the specimens exhibit extremely low track densities, two which have high Ne-21 contents and the largest Ar-40 and He-4 losses are found, and noted to have track densities of about 750 and 1500/sq cm. These tracks are attributed to very heavy cosmic ray nuclei. These results may be explained in terms of production during the first stage exposure, or during the second irradiation stage of 0.4 Myr. The ubiquitous presence of a track density background in most samples is best explained by the spontaneous fission of U-238 since 4.0 Gyr.

  1. Enhancing Technology Use in Student Teaching: A Case Study

    ERIC Educational Resources Information Center

    Pope, Margaret; Hare, Dwight; Howard, Esther

    2005-01-01

    This study investigated the gap that exists between the technological knowledge and skills preservice teachers possess and their confidence in using them to successfully integrate technology in their classrooms. Specifically, this study addressed whether a model of instructional delivery using the integration of technology practices into the…

  2. Desert Research and Technology Studies 2005 Report

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.; Kosmo, Joseph J.; Janoiko, Barbara A.; Bernard, Craig; Splawn, Keith; Eppler, Dean B.

    2006-01-01

    During the first two weeks of September 2005, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2005 Research and Technology Studies (RATS). The Desert RATS field test activity is the culmination of the various individual science and advanced engineering discipline areas year-long technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The purpose of the RATS is to drive out preliminary exploration concept of operations EVA system requirements by providing hands-on experience with simulated planetary surface exploration extravehicular activity (EVA) hardware and procedures. The RATS activities also are of significant importance in helping to develop the necessary levels of technical skills and experience for the next generation of engineers, scientists, technicians, and astronauts who will be responsible for realizing the goals of the Constellation Program. The 2005 Desert RATS was the eighth RATS field test and was the most systems-oriented, integrated field test to date with participants from NASA field centers, the United States Geologic Survey (USGS), industry partners, and research institutes. Each week of the test, the 2005 RATS addressed specific sets of objectives. The first week focused on the performance of surface science astro-biological sampling operations, including planetary protection considerations and procedures. The second week supported evaluation of the Science, Crew, Operations, and Utility Testbed (SCOUT) proto-type rover and its sub-systems. Throughout the duration of the field test, the Communications, Avionics, and Infomatics pack (CAI-pack) was tested. This year the CAI-pack served to provide information on surface navigation, science sample collection procedures, and EVA timeline awareness. Additionally, 2005 was the first

  3. Computational Study of Low Energy Nuclear Scattering from Metal Nuclei

    NASA Astrophysics Data System (ADS)

    Jaramillo, Danelle; Hira, Ajit; Pacheco, Jose; Salazar, Justin

    2014-03-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms (Z <= 9) from Palladium, Nickel and other metals. First, a FORTRAN computer program was developed to compute stopping cross sections and scattering angles in Pd and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 10 to 140 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  4. Scientometric mapping of vacuum research in nuclear science & technology: a global perspective

    NASA Astrophysics Data System (ADS)

    Kademani, B. S.; Sagar, A.; Kumar, A.; Kumar, V.

    2008-05-01

    This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70%) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in 'Physics of Elementary Particles and Fields' with 2644 (21.98%) publications. The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review -D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers.

  5. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Taín, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.-A.; Bui, V.M.; and others

    2014-06-15

    An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of {sup 87,88}Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  6. ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

    SciTech Connect

    Jack D. Law; Terry A. Todd; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson

    2005-02-01

    Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance.

  7. New Non-Intrusive Inspection Technologies for Nuclear Security and Nonproliferation

    NASA Astrophysics Data System (ADS)

    Ledoux, Robert J.

    2015-10-01

    Comprehensive monitoring of the supply chain for nuclear materials has historically been hampered by non-intrusive inspection systems that have such large false alarm rates that they are impractical in the flow of commerce. Passport Systems, Inc. (Passport) has developed an active interrogation system which detects fissionable material, high Z material, and other contraband in land, sea and air cargo. Passport's design utilizes several detection modalities including high resolution imaging, passive radiation detection, effective-Z (EZ-3D™) anomaly detection, Prompt Neutrons from Photofission (PNPF), and Nuclear Resonance Fluorescence (NRF) isotopic identification. These technologies combine to: detect fissionable, high-Z, radioactive and contraband materials, differentiate fissionable materials from high-Z shielding materials, and isotopically identify actinides, Special Nuclear Materials (SNM), and other contraband (e.g. explosives, drugs, nerve agents). Passport's system generates a 3-D image of the scanned object which contains information such as effective-Z and density, as well as a 2-D image and isotopic and fissionable information for regions of interest.

  8. Storage of spent fuel from the nation`s nuclear reactors: Status, technology, and policy options

    SciTech Connect

    Not Available

    1989-10-01

    Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the ``spent fuel`` elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

  9. Storage of spent fuel from the nation's nuclear reactors: Status, technology, and policy options

    SciTech Connect

    Not Available

    1989-10-01

    Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the spent fuel'' elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

  10. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    SciTech Connect

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  11. Low-energy nuclear reaction studies with RI beams in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Teranishi, T.; Kato, S.

    2003-07-01

    After a brief discussion on the recent development in nuclear astrophysics, two reaction studies of typical astrophysical reactions at low energies where nuclear reactions play the main contributions to the nucleosynthesis in the universe, are discussed. One is the proton capture reaction, 11C(p, γ)12N, studied by the direct method using a 11C beam produced with a new low-energy RIB separator CRIB at CNS, Japan. The second one is the 13C(α, n)16O rearrangement reaction, which is believed to be the main neutron source for the s-process at low temperatures, investigated by an indirect method using the direct α-transfer reaction 13C(6Li, d)17O. Detailed investigations are suggested on the nuclear reactions relevant.

  12. Information Technology Assessment Study: Full Report

    NASA Technical Reports Server (NTRS)

    Peterson, John (Editor)

    2002-01-01

    A team was formed to assess NASA Office of Space Science (OSS) information technology research and development activities. These activities were reviewed for their relevance to OSS missions, for their potential for using products better supplied by industry or other government agencies, and for recommending an information technology (IT) infusion strategy for appropriate products for OSS missions. Assessment scope and methodology are presented. IT needs and interests for future OSS missions and current NASA IT research and development (R&D) are discussed. Non-NASA participants provide overviews of some of their IT R&D programs. Implementation and infusion issues and the findings and recommendations of the assessment team are presented.

  13. Use of Technology in the Household: An Exploratory Study

    ERIC Educational Resources Information Center

    Jackson, Barcus C.

    2010-01-01

    Since the 1980s, personal computer ownership has become ubiquitous, and people are increasingly using household technologies for a wide variety of purposes. Extensive research has resulted in useful models to explain workplace technology acceptance and household technology adoption. Studies have also found that the determinants underlying…

  14. Cost effectiveness studies of environmental technologies: Volume 1

    SciTech Connect

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology.

  15. Photonuclear Reaction Studies at HIγS: Developing the Science of Remote Detection of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. R.

    2015-10-01

    Development of gamma-ray beam interrogation technologies for remote detection of special nuclear materials and isotope analysis requires comprehensive databases of nuclear structure information and gamma-ray induced nuclear reaction observables. Relevant nuclear structure details include the energy, spin and parity of excited states that have significant probability for electromagnetic transition from the ground state, i.e, the angular momentum transferred in the reaction is Δl ≤ 2. This talk will report recent Nuclear Resonance Fluorescence (NRF) measurements to identify and characterize new low-spin states in actinide nuclei at energies from 1 to 4 MeV, which is the energy range most important for remote analysis methods. These measurements are carried out using the nearly mono-energetic linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) at the Triangle Universities Nuclear Laboratory. Also, studies of the (γ, n) reaction on a variety of nuclei with linearly polarized beams at HIγS indicate that this reaction might be used to discern between fissile and non-fissile materials. This work will be described. In addition, an overview will be given of a concept for a next generation laser Compton-backing scattering gamma-ray source to be implemented as an upgrade to increase the beam intensity at HIγS by more than an order of magnitude.

  16. TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft

    SciTech Connect

    1980-12-31

    The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

  17. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  18. A brief history of design studies on innovative nuclear reactors

    SciTech Connect

    Sekimoto, Hiroshi

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  19. Nuclear power and nuclear weapons

    SciTech Connect

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

  20. Advances in technologies and study design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Completion of the initial draft sequence of the human genome was the proving ground for and has ushered in significant advancements in technology of increasing sophistication and ever increasing amounts of data. Often, this combination has a multiplicative effect of stimulating research groups to co...