Science.gov

Sample records for nuclear technology studies

  1. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  2. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  3. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  4. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  5. Terrorists and Nuclear Technology

    ERIC Educational Resources Information Center

    Krieger, David

    1975-01-01

    This essay explores the ways terrorist groups may gain possession of nuclear materials; the way in which they may use nuclear weapons and other nuclear technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists utilizing nuclear technology to their benefit and society's detriment. (BT)

  6. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  7. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  8. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion - Phase I

    SciTech Connect

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-06

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature {approx} 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  9. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion — Phase I

    NASA Astrophysics Data System (ADS)

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-01

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature ˜ 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  10. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect

    Howe, S. ); Borowski, S. . Lewis Research Center); Motloch, C. ); Helms, I. ); Diaz, N.; Anghaie, S. ); Latham, T. (United

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  11. Nuclear space propulsion critical technologies

    SciTech Connect

    Clark, J.S.; Borowski, S.K.; Doherty, M.P. )

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has actively pursued technology development for nuclear rocket propulsion systems for possible use on lunar outpost missions, for exploration missions to Mars, and for outer planet and other solar system exploration missions. A number of these technologies have been broadly identified by the ANS National Critical Technologies Panel, as well as the Department of Commerce as [open quotes]Critical Technologies.[close quotes] A Nuclear Propulsion Office was established at the Lewis Research Center in Cleveland, Ohio, to lead nuclear propulsion development for NASA and to establish appropriate interagency working relationships with the U.S. Department of Energy national laboratories for nuclear technology development and with the Department of Defense (DoD). The NASA intercenter and interagency teams and NASA contractors have initiated conceptual design activities and other trade studies that provide the focus for appropriate critical technology development for both nuclear thermal propulsion (NTP) systems and nuclear electric propulsion (NEP) systems. Critical technology issues have been identified and are discussed in this paper. For NTP systems, the heat generated in the nuclear reactor is used to simply heat a propellant such as hydrogen, and then the high-temperature propellant expands through a nozzle to produce thrust. Specific impulse for NTP systems should be on the order of 900 to 950 s-approximately double the best chemical propulsion systems.

  12. Space nuclear technology

    NASA Astrophysics Data System (ADS)

    Walker, J. V.

    1992-12-01

    Member of Industry-Lab-Government delegation invited to visit the Commonwealth of Independent States (CIS) to attend Nuclear Rocket Engines Conference in Semipalatinsk-21, Kazakhstan; visit a number of nuclear facilities; participate in technical discussions at several Russian organizations involved with space nuclear technology; discuss possibilities of Sandia participation in US/CIS programs. Significant programs exist in the CIS in these areas, but appear to have slowed due to funding difficulties and national priorities. The CIS possesses valuable technologies of significant relevance to current US interests and programs which they seem willing to make available to the US as relations between the US and the CIS improve.

  13. Space and nuclear research and technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  14. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  15. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  16. Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This is the syllabus of a course that explores the technology of nuclear weapons and nuclear energy for electric power generation, and considers some problems of nuclear weapons proliferation and technical alternatives. It provides a course description, a course outline, a list of required readings, and information on the films shown in the…

  17. Nuclear Technology Programs

    SciTech Connect

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  18. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  19. Nuclear propulsion technology advanced fuels technology

    NASA Technical Reports Server (NTRS)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  20. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  1. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  2. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  3. Nuclear Reactors and Technology; (USA)

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  4. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  5. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  6. Nuclear Medical Technology Training.

    ERIC Educational Resources Information Center

    Simmons, Guy H., Ed.

    This 1-day colloquium, attended by 23 participants representing societies, government agencies, colleges and universities, and other training programs, was conducted for the purpose of reporting on and discussing the curriculums developed at the University of Cincinnati for training nuclear medical technologists. Pilot programs at both the…

  7. Nuclear technology transfer to China

    SciTech Connect

    Crane, A.T.

    1987-01-01

    China has severe power shortages and considerable nuclear expertise available from its military programs. These factors led to great expectations of how fast its nuclear power program might expand. The U.S. recently implemented a controversial nuclear cooperation agreement with China, permitting U.S. companies to compete if this market reopens. The major concern over the agreement was that in the past China apparently showed an alarming disregard for the dangers of nuclear proliferation. It is unlikely that China would use nuclear power equipment to further its nuclear weapons program, but the effectiveness of the U.S. nonproliferation stance has been in part dependent on other countries viewing our position as uncompromising. The vagueness of certain provisions in the agreement with China may have weakened this stance. Another concern is that access to U.S. pressurized water reactor technology could improve their submarine reactors, which could be detrimental to U.S. security interests if relations with China deteriorate. However, it appears that the only significant advantage that would accrue would be a general upgrading of management practices and quality control, which would be available from any other nuclear supplier. If the opportunity for the sale of nuclear equipment to China emerges, the nuclear technology transfer that would be involved, if carefully managed, should contribute to the national interest.

  8. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    SciTech Connect

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  9. The Governance of Nuclear Technology

    SciTech Connect

    Vergino, E S; May, M

    2003-09-22

    Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs to

  10. Educating American youth on nuclear technology

    SciTech Connect

    Hechanova, T.E.

    1993-12-31

    A grave problem facing the American nuclear technology field is the non-education of American youth in nuclear sciences which produces an uneducated populace. This presentation addresses first hand efforts of the Massachusetts Institute of Technology`s ANS Student Branch at educating mainly high school students in nuclear science, and recruiting college students into the Nuclear Engineering Department.

  11. Nuclear technology requires free elections

    NASA Astrophysics Data System (ADS)

    Synek, Miroslav

    1999-10-01

    The historical development on our planet has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button." If this technology ever falls under the control of an irresponsible, miscalculating, or insane DICTATOR, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very SURVIVAL OF ALL HUMANITY on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by the people, through a sufficiently secure system of FREE ELECTIONS, in any country, wherever and whenever such a threatening possibility exists. Of course, a starting system of FREE ELECTIONS, even if quite rudimentary, should try to provide for its continuous functioning, with an underlying appropriate freedom of expression and with rules for its continuation, while aiming towards continuous improvements.

  12. Technology and applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.; Rosen, Robert; Bennett, Gary L.; Schnyer, A. D.

    1991-01-01

    Requirements for a number of potential NASA civil space missions are addressed, and the nuclear power technology base to meet these requirements is described. Particular attention is given to applications of space nuclear power to lunar, Mars, and science missions and the technology status of space nuclear power with emphasis on dynamic isotope and space nuclear reactor power systems.

  13. History of nuclear technology development in Japan

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  14. History of nuclear technology development in Japan

    SciTech Connect

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  15. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  16. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  17. Studies of fluctuation processes in nuclear collisions. [Dept. of Physics, Tennessee Technological Univ. , Cookeville, Tennessee

    SciTech Connect

    Ayik, S.

    1993-02-01

    Investigations of various aspects of heavy-ion collisions were carried out in the framework of the Boltzmann-Langevin Model (BLM). In a previous work, by projection the BLM onto a collective space, a memory-dependent collective transport model was reduced. This model was applied to thermal fission to investigate the influence of the memory effects on the fission dynamics. Some results of the calculations are presented. In addition a reduction of the relativistic BLM to a two-fluid model was carried out, and transport coefficients associated with fluid dynamical variables was carried out. Then this model was applied to investigate equilabration and fluctuation properties in a counter-streaming nuclear fluid.

  18. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  19. Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    NASA Astrophysics Data System (ADS)

    Ripani, Marco; Frambati, Stefano; Mansani, Luigi; Bruzzone, Maurizio; Reale, Marco; Monti, Stefano; Ciotti, Marco; Barbagallo, Massimo; Colonna, Nicola; Celentano, Andrea; Osipenko, Mikhail; Ricco, Giovanni; Saracco, Paolo; Viberti, Carlo Maria; Frasciello, Oscar; Boccaccio, Pasquale; Esposito, Juan; Lombardi, Augusto; Maggiore, Mario; Piazza, Leandro A. C.; Prete, Gianfranco; Alba, Rosa; Calabretta, Luciano; Cosentino, Gianluigi; Del Zoppo, Antonio; Di Pietro, Alessia; Figuera, Pierpaolo; Finocchiaro, Paolo; Maiolino, Cettina; Santonocito, Domenico; Schillaci, Maria; Chiesa, Davide; Clemenza, Massimiliano; Previtali, Ezio; Sisti, Monica; Kostyukov, Alexander; Cammi, Antonio; Bortot, Sara; Lorenzi, Stefano; Ricotti, Marco; Dulla, Sandra; Ravetto, Piero; Lomonaco, Guglielmo; Rebora, Alessandro; Alloni, Daniele; Borio di Tigliole, Andrea; Cagnazzo, Marcella; Cremonesi, Riccardo; Magrotti, Giovanni; Manera, Sergio; Panza, Fabio; Prata, Michele; Salvini, Andrea

    2014-12-01

    Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70 MeV, 0.75 mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility.

  20. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    SciTech Connect

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  1. Nuclear technology for the year 2000

    SciTech Connect

    Not Available

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  2. The market viability of nuclear hydrogen technologies.

    SciTech Connect

    Botterud, A.; Conzelmann, G.; Petri, M. C.; Yildiz, B.

    2007-04-06

    The Department of Energy Office of Nuclear Energy is supporting system studies to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options. One of the objectives of the current analysis phase is to determine how nuclear hydrogen technologies could evolve under a number of different futures. The outputs of our work will eventually be used in a larger hydrogen infrastructure and market analysis conducted for DOE-EE using a system-level market simulation tool now underway. This report expands on our previous work by moving beyond simple levelized cost calculations and looking at profitability, risk, and uncertainty from an investor's perspective. We analyze a number of technologies and quantify the value of certain technology and operating characteristics. Our model to assess the profitability of the above technologies is based on Real Options Theory and calculates the discounted profits from investing in each of the production facilities. We use Monte-Carlo simulations to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from a production plant. We also quantify the value of the option to switch between hydrogen and electricity production in order to maximize investor profits. Uncertainty in electricity and hydrogen prices can be represented with two different stochastic processes: Geometric Brownian Motion (GBM) and Mean Reversion (MR). Our analysis finds that the flexibility to switch between hydrogen and electricity leads to

  3. The nuclear materials control technology briefing book

    SciTech Connect

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  4. Nuclear technologies for moon and Mars exploration

    NASA Astrophysics Data System (ADS)

    Buden, David

    1991-10-01

    The advantages gained by using nuclear technologies for long-term space missions are discussed. It is argued that nuclear propulsion provides increased crew safety by shortening trip times and enabling the use of simpler engines, smaller vehicles, and broader launch windows. Nuclear technology can also provide the megawatts of power needed for planetary surface operations and it might provide the only way to power manned spacecrafts for Mars exploration scheduled for 2014-2016.

  5. MSFC nuclear thermal propulsion technology program

    NASA Technical Reports Server (NTRS)

    Swint, Shane

    1993-01-01

    Viewgraphs on non-nuclear materials assessment, nuclear thermal propulsion (NTP) turbomachinery technologies, and high temperature superconducting magnetic bearing technology are presented. The objective of the materials task is to identify and evaluate candidate materials for use in NTP turbomachinery and propellant feed system applications. The objective of the turbomachinery technology task is to develop and validate advanced turbomachinery technologies at the component and turbopump assembly levels. The objective of the high temperature superconductors (HTS) task is to develop and validate advanced technology for HTS passive magnetic/hydrostatic bearing.

  6. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  7. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given

  8. ABB Combustion Engineering nuclear technology

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  9. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  10. Effective citizen advocacy of beneficial nuclear technologies

    SciTech Connect

    McKibben, J. Malvyn; Wood, Susan

    2007-07-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  11. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    SciTech Connect

    Volpe, Tristan A.

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  12. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  13. Nuclear technologies for Moon and Mars exploration

    SciTech Connect

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  14. Latest Developments in Nuclear Emulsion Technology

    NASA Astrophysics Data System (ADS)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  15. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  16. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  17. New technologies for monitoring nuclear materials

    SciTech Connect

    Moran, B.W.

    1993-07-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items.

  18. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  19. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  20. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  1. Freeze Technology for Nuclear Applications - 13590

    SciTech Connect

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  2. Radiation imaging technology for nuclear materials safeguards

    SciTech Connect

    Prettyman, T.H.; Russo, P.A.; Cheung, C.C.; Christianson, A.D.; Feldman, W.C.; Gavron, A.

    1997-12-01

    Gamma-ray and neutron imaging technology is emerging as a useful tool for nuclear materials safeguards. Principal applications include improvement in accuracy for nondestructive assay of heterogeneous material (e.g., residues) and wide-area imaging of nuclear material in facilities (e.g., holdup). Portable gamma cameras with gamma-ray spectroscopy are available commercially and are being applied to holdup measurements. The technology has the potential to significantly reduce effort and exposure in holdup campaigns; and, with imaging, some of the limiting assumptions required for conventional holdup analysis can be relaxed, resulting in a more general analysis. Methods to analyze spectroscopic-imaging data to assay plutonium and uranium in processing equipment are being development. Results of holdup measurements using a commercial, portable gamma-cameras are presented. The authors are also developing fast neutron imaging techniques for NDA, search, and holdup. Fast neutron imaging provides a direct measurement of the source of neutrons and is relatively insensitive to surroundings when compared to thermal or epithermal neutron imaging. The technology is well-suited for in-process inventory measurements and verification of materials in interim storage, for which gamma-ray measurements may be inadequate due to self-shielding. Results of numerical simulations to predict the performance of fast-neutron telescopes for safeguards applications are presented.

  3. The Limits of Empowerment in Anti-Nuclear Advocacy: A Case Study of Adult Education for Technological Literacy.

    ERIC Educational Resources Information Center

    Regnier, Robert; Penna, Phillip

    1996-01-01

    Using a theory of technological literacy, analysis of a project to oppose uranium mining in Saskatchewan revealed how the potential for empowerment is often overstated. Informing citizens to participate in critical discourse does not always lead to decisions reflecting their interests. (SK)

  4. Development of nuclear rocket engine technology

    SciTech Connect

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs.

  5. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  6. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  7. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  8. Training at the Australian school of nuclear technology

    SciTech Connect

    Culley, D.; Fredsall, J.R.; Toner, B.

    1988-01-01

    The Australian School of Nuclear Technology was founded in 1964 as a joint enterprise of the Australian Atomic Energy Commission and the University of New South Wales to support nuclear developments primarily in Australia. However, ASNT has developed into an important century for nuclear science and technology training within the South East Asian Region with participants also attending from countries outside this Region.

  9. Space nuclear power, propulsion, and related technologies.

    SciTech Connect

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  10. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  11. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  12. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  13. Applying RFID technology in nuclear materials management.

    SciTech Connect

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  14. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  18. The broad view of nuclear technology for aerospace

    NASA Astrophysics Data System (ADS)

    Buden, David; Angelo, Joseph A., Jr.

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions.

  19. Nuclear Technology Series. Course 30: Mechanical Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 28: Welding Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 19: Radiation Shielding.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 27: Metrology.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 18: Radiological Emergencies.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course l: Radiation Physics.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  9. The Los Alamos nuclear safeguards and nonproliferation technology development program

    SciTech Connect

    Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

    1994-04-01

    For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

  10. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    NASA Astrophysics Data System (ADS)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  11. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  12. Emerging Technologies Integrating Technology into Study Abroad

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  13. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  14. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  15. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  16. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  17. Waging nuclear peace: The technology and politics of nuclear war

    SciTech Connect

    Ehrlich, R.

    1985-01-01

    Since the explosions of the first atomic bombs, a large literature has appeared on the effects and risks of nuclear war. The most widely quoted recent publications have concentrated on the impossibility of any meaningful survival after a superpower nuclear exchange. By contrast, Dr. Ehrlich tries to show both sides of the various arguments involved. As a result, he undoubtedly succeeds in his avowed intention of angering both hawks and doves. He offers a critical analysis of most considerations apposite to the current nuclear-weapon impasse, including the nature of current nuclear arms, the possibility of limited nuclear war, the short-term and long-term effects of nuclear weapons, the value of civil defense, the importance of public opinion, and the feasibility of arms control.

  18. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  19. Ventilation technologies scoping study

    SciTech Connect

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  20. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  1. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  2. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect

    David L. Black

    2000-06-04

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  3. Citizen Education on Nuclear Technology (CENT).

    ERIC Educational Resources Information Center

    Intermountain Science Experience Center, ID Falls, ID.

    Using an interdisciplinary approach, this curriculum focuses on an understanding of: (1) the fundamental principles of operation of a nuclear power plant; (2) the place of nuclear energy in the overall energy-supply-demand situation; (3) risk-benefit balance of the major energy sources; and (4) the role of political action in the development of…

  4. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  5. Aeronautics systems technology studies

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.

    1983-01-01

    Data collection and analysis in the areas of air transportation, aircraft manufacturing and sales, airline operations, market projections, internal trade, and energy consumption; legislation and regulations, technology needs; surveys; decision-making; cost analyses; and technology transfer are discussed.

  6. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  7. Nuclear Energy Response in the EMF27 Study

    SciTech Connect

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-03-25

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

  8. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  9. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  10. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  11. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development. Final report of a scientific research supported by the USDOE/SBIR program

    SciTech Connect

    E.T. Cheng, et al.

    1999-06-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation 3, can produce a neutron wall loading from 0.5 to 5 MW/m{sup 2} at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW-y/m{sup 2} is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept.

  12. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  13. Nuclear rocket plume studies

    NASA Astrophysics Data System (ADS)

    Hastings, Daniel

    1993-05-01

    A description and detailed computational analysis of a vortex cleaning system designed to remove radioactive material from the plumes of nuclear rockets is included. The proposed system is designed to remove both particulates and radioactive gaseous material from the plume. A two part computational model is used to examine the system's ability to remove particulates, and the results indicate that under some conditions, the system can remove over 99% of the particles in the flow. Two critical parameters which govern the effectiveness of the system are identified and the information necessary to estimate cleaning efficiencies for particles of known sizes and densities is provided. A simple steady analytical solution is also developed to examine the system's ability to remove gaseous radioactive material. This analysis, while inconclusive, suggests that the swirl rates necessary to achieve useful efficiencies are too high to be achieved in any practical manner. Therefore, this system is probably not suitable for use, with gaseous radioactive material. It was concluded that the system can cause negligible specific impulse losses, though there may be a substantial mass penalty associated with its use.

  14. Technologies for detection of nuclear materials

    SciTech Connect

    DeVolpi, A.

    1996-03-30

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  15. [Nuclear medicine in Spain: high technology 2013].

    PubMed

    Soriano Castrejón, A M; Prats Rivera, E; Alonso Farto, J C; Vallejo Casas, J A; Rodriguez Gasen, A; Setoain Perego, J; Arbizu Lostao, J

    2014-01-01

    This article details the high technology equipment in Spain obtained through a survey sent to the three main provider companies of equipment installed in Spain. The geographical distribution of high technology by Autonomous Communities and its antiquity have been analyzed. PMID:25242173

  16. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  17. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  18. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  19. A Lesson from the Nuclear Industry: Professionalism and Technology.

    ERIC Educational Resources Information Center

    Roth, Gene L.; Widen, W. C.

    1991-01-01

    Focuses on an innovative approach to instill professionalism in workers such as reactor operators and other nuclear power workers. It may be used by technology instructors to send a message to their students: regardless of the advanced state of technology, the human element provides the key to desirable outcomes. (Author/JOW)

  20. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. PMID:27400217

  1. Template identification technology of nuclear warheads and components

    NASA Astrophysics Data System (ADS)

    Liu, Su-Ping; Gong, Jian; Hao, Fan-Hua; Hu, Guang-Chun

    2008-02-01

    Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs. This paper analyses the functions played by the TIT in the process of NW/NC dismantlement, and proposes that two phases would be followed when applying the TIT: firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW; secondly to authenticate NW/NC by means of the TIT. This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures. The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.

  2. Nuclear safety technology and public acceptance

    NASA Astrophysics Data System (ADS)

    Kienle, F.

    1985-11-01

    In the years 1976 to 1982 officialdom intensified the safety regulations in German nuclear power plants out of all proportion, without actually bringing about a recognizable plus in safety or indeed a greater acceptance by the public of the peaceful use of nuclear energy. Although the risk to employees of nuclear power plants and to the population living in their vicinity is substantially smaller than the dangers of modern civilization, the general public still regards with concern the consequences of radioactive exposure and the hazards to later generations from long-life radionuclides. The task for the coming years must be to maintain the safety standard now attained, while simultaneously reducing those exaggerated individual requirements in order to establish a balance in safety precautions. Additionally, a proposal put forward by Sir Walter Marshall, Chairman of the CEGB, should be pursued, i.e., to put the presumed risks of nuclear energy into their correct perspective in the public eye using comprehensible comparisons such as the risks from active or passive smoking. This cannot be accomplished by quoting abstract statistics.

  3. Telerobotic technology for nuclear and space applications

    SciTech Connect

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs.

  4. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  5. Materials technology applied to nuclear accelerator targets

    SciTech Connect

    Barthell, B.L.

    1986-11-10

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology.

  6. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  7. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the…

  8. Nuclear material shipment study

    SciTech Connect

    Shepherd, E.W.

    1980-01-01

    The Radioactive Material Transport Assessment Study is expected to provide a flexible set of capabilities and useful information to the public, industry and government users by using a system design to assure obtaining high quality data from selected industry sources at acceptable cost. It is expected that the shipping record approach coupled with an efficient sampling strategy will accomplish this. The study is also designed to yield analytical capabilities and statistical output to serve public, industry and government users. The information provided by the study will make a valuable contribution to environmental and accident risk assessment, policy development and operational planning and management activities.

  9. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  10. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  11. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  12. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-08-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  13. Studying Nuclear Astrophysics at NIF

    SciTech Connect

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  14. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  15. Nuclear Thermal Propulsion Technology - Summary of FY 1991 Interagency Panel Planning

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Stanley, Marland

    1991-01-01

    An Interagency (NASA/DOE/DOD) technical panel has been working in 1991 to evaluate nuclear thermal propulsion (NTP) concepts on a consistent basis, and to continue technology development project planning for a joint project in nuclear propulsion for Space Exploration Initiative (SEI). This paper summarizes the efforts of the panel to date and summarizes the technology plans defined for NTP. Concepts were categorized based on probable technology readiness data, and innovative 'proof-of-concept' tests and analyses were defined. While further studies will be required to provide a consistent comparison of all of the NTP concepts, the current status of the studies is presented.

  16. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  17. Development Trends in Nuclear Technology and Related Safety Aspects

    SciTech Connect

    Kuczera, B.; Juhn, P.E.; Fukuda, K.

    2002-07-01

    The IAEA Safety Standards Series include, in a hierarchical manner, the categories of Safety Fundamentals, Safety Requirements and Safety Guides, which define the elements necessary to ensure the safety of nuclear installations. In the same way as nuclear technology and scientific knowledge advance continuously, also safety requirements may change with these advances. Therefore, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) one important aspect among others refers to user requirements on the safety of innovative nuclear installations, which may come into operation within the next fifty years. In this respect, the major objectives of the INPRO sub-task 'User Requirements and Nuclear Energy Development Criteria in the Area of Safety' have been: a. to overview existing national and international requirements in the safety area, b. to define high level user requirements in the area of safety of innovative nuclear technologies, c. to compile and to analyze existing innovative reactor and fuel cycle technology enhancement concepts and approaches intended to achieve a high degree of safety, and d. to identify the general areas of safety R and D needs for the establishment of these technologies. During the discussions it became evident that the application of the defence in depth strategy will continue to be the overriding approach for achieving the general safety objective in nuclear power plants and fuel cycle facilities, where the emphasis will be shifted from mitigation of accident consequences more towards prevention of accidents. In this context, four high level user requirements have been formulated for the safety of innovative nuclear reactors and fuel cycles. On this basis safety strategies for innovative reactor designs are highlighted in each of the five levels of defence in depth and specific requirements are discussed for the individual components of the fuel cycle. (authors)

  18. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated incorporation into a reactor system. The thermoelectric electromagnetic pump is recommended for inclusion in the present system based on favorable quantitative and qualitative measures relative to the other options under consideration.

  19. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  20. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  1. Welding technologies as applied to nuclear manufacturing

    NASA Astrophysics Data System (ADS)

    Roper, J. R.

    1992-10-01

    This is the trip report of John R. Roper, who traveled to England 25 Sep. through 8 Oct. 1992. Dr. Roper attended the US/UK JOWOG 22-D Joining Technical Exchange meeting and gave a presentation on Welding Finite Element Analysis and the Precision Joining Center at the Atomic Weapons Establishment in Aldermaston, United Kingdom. Dr. Roper also toured the Welding Institute in Abington, UK and discussed technology exchange of weld thermal and mechanical material responses.

  2. Proceedings of the nuclear criticality technology safety project

    SciTech Connect

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  3. A methodology for evaluating ``new`` technologies in nuclear power plants

    SciTech Connect

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  4. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  5. Enrollment Capacity and Technology Study

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2008

    2008-01-01

    The 2007-09 Appropriations Act provided funding to the Higher Education Coordinating Board (HECB) to study the state's capital facility and technology capacity. Specifically, "...state appropriation is provided solely to implement a capital facility and technology capacity study which will compare the 10-year enrollment projections with the…

  6. Future payload technology requirements study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology advances needed for an overall mission model standpoint as well as those for individual shuttle payloads are defined. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives. In the interest of obtaining commonality of requirements, the study was structured according to technology categories rather than in terms of individual payloads.

  7. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  8. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    SciTech Connect

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  9. Advances in NASA's Nuclear Thermal Propulsion Technology project

    NASA Technical Reports Server (NTRS)

    Peecook, Keith M.; Stone, James R.

    1993-01-01

    The status of the Nuclear Thermal Propulsion (NTP) project for space exploration and the future plans for NTP technology are discussed. Current activities in the framework of the NTP project deal with nonnuclear material tests; instrumentation, controls, and health management; turbopumps; nozzles and nozzle extension; and an exhaust plume.

  10. Nuclear Concepts & Technological Issues Institute: Teacher Activity Booklet.

    ERIC Educational Resources Information Center

    Davison, Candace C., Ed.; Lunetta, Lois W., Ed.

    For many summers the Radiation Science and Engineering Center at Pennsylvania State University has been the site of a Nuclear Concepts and Technological Issues Institute for secondary school science teachers. As a culminating activity of the institute teachers develop lesson plans, laboratory experiments, demonstrations, or other activities and…

  11. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  12. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  13. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  14. The roles and functions of a lunar base Nuclear Technology Center

    SciTech Connect

    Buden, D. ); Angelo, J.A. Jr. )

    1991-01-01

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth. 12 refs., 4 figs., 1 tab.

  15. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  16. High Energy Nuclear Database: A Testbed for Nuclear Data Information Technology

    SciTech Connect

    Brown, D A; Vogt, R; Beck, B; Pruet, J

    2007-04-18

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a testbed for the further development of an object-oriented nuclear data format and database system. By using ''off-the-shelf'' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a ''Grand Unified Nuclear Format'' encapsulating data types used in the ENSDF, ENDF/B, EXFOR, NSR and other formats, including processed data formats.

  17. Important technology considerations for space nuclear power systems

    SciTech Connect

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  18. Important technology considerations for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Kuspa, John P.; Wahlquist, Earl J.; Bitz, Dennis A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources - isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic - to meet mission requirements well into the next century.

  19. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced

  20. Feasibility study of a nuclear exciton laser

    NASA Astrophysics Data System (ADS)

    ten Brinke, Nicolai; Schützhold, Ralf; Habs, Dietrich

    2013-05-01

    Nuclear excitons known from Mössbauer spectroscopy describe coherent excitations of a large number of nuclei—analogous to Dicke states (or Dicke super-radiance) in quantum optics. In this paper, we study the possibility of constructing a laser based on these coherent excitations. In contrast to the free-electron laser (in its usual design), such a device would be based on stimulated emission and thus might offer certain advantages, e.g., regarding energy-momentum accuracy. Unfortunately, inserting realistic parameters, the window of operability is probably not open (yet) to present-day technology; but our design should be feasible in the UV regime, for example.

  1. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  2. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  3. {alpha}-particle optical potentials for nuclear astrophysics (NA) and nuclear technology (NT)

    SciTech Connect

    Avrigeanu, V.; Avrigeanu, M.

    2012-11-20

    The high precision of recent measurements for low-energy {alpha}-particle elastic-scattering as well as induced-reaction data makes possible the understanding of actual limits and possible improvement of the global optical model potentials parameters. Involvement of recent optical potentials for reliable description of both the elastic scattering and emission of {alpha}-particles, of equal interest for nuclear astrophysics (NA) and nuclear technology (NT) for fusion devices, is discussed in the present work.

  4. Dewar technology study

    NASA Technical Reports Server (NTRS)

    Davis, W.

    1975-01-01

    The development of a Dewar system for handling liquid helium under weightless conditions is described. Porous plug designs for the prevention of superfluid creep out of the dewar through the vent line were evaluated. For the purpose of designing a neck to provide a transition from the cold cavity to the outside, the loads carried by the neck and equipment supports were studied. Temperature, pressure, and mass flow instrumentation for monitoring Dewar performance were also evaluated. In addition, multilayer blankets consisting of aluminized Mylar separated by Dacron net sheets were designed to insulate the pressure vessel. The dewar system is suggested for use with the star tracking telescope aboard the relativity satellite.

  5. Nuclear Power, Small Nuclear Technology, and the Role of Technical Innovation: An Assessment

    SciTech Connect

    Schock, R N; Brown, N W; Smith, C F

    2001-05-18

    An overview of energy-system projections into the new century leads to the conclusion that nuclear power will play a significant role. How significant a role will be determined by the marketplace. Within the range of nuclear-power technologies available, small nuclear-power plants of innovative design appear to fit the needs of a number of developing nations and states. These plants have the potential advantage of modularity, are proliferation-resistant, incorporate passive safety features, minimize waste, and could be cost-competitive with fossil-fuel plants.

  6. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  7. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  8. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect

    Not Available

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  9. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect

    1992-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  10. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  11. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  12. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  14. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  15. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  16. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  17. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  18. Application of AI technology to nuclear plant operations

    SciTech Connect

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives.

  19. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component. PMID:20566512

  20. Refractory alloy technology for space nuclear power applications

    SciTech Connect

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  1. Nuclear power and the risks of new technologies

    SciTech Connect

    Wilson, R.

    1993-04-01

    There is often excessive euphoria about new technologies. This can lead to disillusionment and then excessive fear. Excessive fear can arise on its own. There are many indications that those who understand nuclear power are more willing to accept it. The author will present from his own experience several occasions in which lack of understanding has led to opposition and how the lack of understanding can be modified. But once a person is already opposed it is hard to change his actions.

  2. Technology development issues in space nuclear power for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Atkins, K. L.; Mastal, E. F.; Mcconnell, D. G.

    1990-01-01

    Planning for future planetary exploration missions indicates that there are continuing, long range requirements for nuclear power, and in particular radioisotope-based power sources. In meeting these requirements, there is a need for higher efficiency, lower mass systems. Four technology areas currently under development that address these goals are described: modular RTG, modular RTG with advanced thermoelectric materials, dynamic isotope power system (DIPS), and the Alkali Metal Thermoelectric Converter (AMTEC).

  3. Analytic studies in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Pizzochero, Pierre

    Five studies are presented in nuclear astrophysics, which deal with different stages of stellar evolution and which use analytic techniques as opposed to numerical ones. Two problems are described in neutrino astrophysics: the solar-neutrino puzzle is analyzed in the framework of the MSW mechanism for the enhancement of neutrino oscillations in matter; and the cooling of neutron stars is studied by calculating the neutrino emissivity from strangeness condensation. Radiative transfer is then examined as applied to SN1987A: its early spectrum and bolometric corrections are calculated by developing an analytic model which can describe both the extended nature of the envelope and the non-LTE state of the radiation field in the scattering-dominated early atmosphere; and a model-independent relation is derived between mass and kinetic energy for the hydrogen envelope of SN1987A, using only direct observations of its luminosity and photospheric velocity. Finally, an analytic approach is presented to relate the softness of the EOS of dense nuclear matter in the core of a supernova, the hydrostatic structure of such core and the initial strength of the shock wave.

  4. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  5. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  6. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  7. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  8. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    SciTech Connect

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  9. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  10. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  11. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  12. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  13. The limits of technology in nuclear crisis management

    SciTech Connect

    White, P.C.

    1986-01-01

    For some purposes, one may consider the roles of technology in nuclear crisis management to fall into four categories. Certain technologies, such as signals intelligence, may assist in monitoring for the emergence of crisis precursors. Other kinds of surveillance, such as that by certain satellites, are intended to detect phenomena, such as missile launches, which clearly signal the transition from pre-crisis to mid-crisis. During this phase, communications and surveillance technologies may be called upon to aid in managing the crisis. Finally, communications technologies will play a vital role in crisis resolution, preferably during the pre-crisis phase, but in mid-crisis if necessary. It has long been recognized that a large fraction of these technical means are vulnerable, both to selective, direct attack, and to the unintended, collateral effects of conflict itself. Systematic efforts are underway to make these systems more robust and survivable in crisis environments, but one must clearly recognize the limits of technology. In particular, one must weigh very seriously the implications and possible consequences of intentional, direct attack, including decapitation, on just those means which may permit timely crisis resolution. In the end, these technologies may prove so vulnerable, that nations may be forced to rely on pre-crisis planning, including force structuring, clearly defined options planning, and clear statements of intent, in order to permit any sort of mid-crisis resolution and conflict termination.

  14. Values, Technology, and Social Studies.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1992-01-01

    The concentration of power and the potential for abuse inherent in modern technology mandates the development of a personal and socially responsible ethic. The development and examination of this ethic should be reflected and integrated throughout social studies instruction. Historical examples of traditional virtues (sobriety, thrift, industry)…

  15. INNOVATIVE CLEAN TECHNOLOGIES CASE STUDIES

    EPA Science Inventory

    The Innovative Clean Technologies case studies contained herein are the products of the "Pollution Prevention by and for Small Business" Program (P2SB). he P2SB was an outreach program directed to small businesses that had developed innovative concepts for pollution prevention in...

  16. Patenting the bomb: nuclear weapons, intellectual property, and technological control.

    PubMed

    Wellerstein, Alex

    2008-03-01

    During the course of the Manhattan Project, the U.S. government secretly attempted to acquire a monopoly on the patent rights for inventions used in the production of nuclear weapons and nuclear energy. The use of patents as a system of control, while common for more mundane technologies, would seem at first glance to conflict with the regimes of secrecy that have traditionally been associated with nuclear weapons. In explaining the origins and operations of the Manhattan Project patent system, though, this essay argues that the utilization of patents was an ad hoc attempt at legal control of the atomic bomb by Manhattan Project administrators, focused on the monopolistic aspects of the patent system and preexisting patent secrecy legislation. From the present perspective, using patents as a method of control for such weapons seems inadequate, if not unnecessary; but at the time, when the bomb was a new and essentially unregulated technology, patents played an important role in the thinking of project administrators concerned with meaningful postwar control of the bomb. PMID:18505023

  17. Defining the "proven technology" technical criterion in the reactor technology assessment for Malaysia's nuclear power program

    NASA Astrophysics Data System (ADS)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-04-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".

  18. A GRADUATE CERTIFICATE PROGRAM IN NUCLEAR SAFEGUARDS TECHNOLOGY.

    SciTech Connect

    FISHBONE, L.; SISKIND, B.; PEPPER, S.

    2005-07-10

    While there are a number of university graduate-education programs that address non-proliferation and safeguards policy issues; there are none in the United States that train students in the specific technical aspects of nuclear safeguards. Formal education of this kind is necessary to sustain the flow of technically trained individuals to diverse programs in safeguards, nonproliferation, and national security. In response to this need, the University of Missouri-Columbia, with assistance from Brookhaven National Laboratory, is initiating a Graduate Certificate Program in Nuclear Safeguards Technology: Students seeking advanced degrees in a variety of technical areas will complete a required sequence of courses in order to receive the certification. Required course work covers topics such as Nuclear Material Control and Accountability (MC&A), Physical Protection (PP); nuclear measurements, and a variety of other relevant subjects. Laboratory-based instruction will be included which will utilize the University of Missouri Research Reactor(MURR). MURR is the largest university-based research reactor and has extensive laboratory resources including a Canberra Aquila MPC&A Operational Monitoring demonstration system.

  19. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  20. Nuclear technology aspects of ITER vessel-mounted diagnostics

    NASA Astrophysics Data System (ADS)

    Vayakis, George; Bertalot, Luciano; Encheva, Anna; Walker, Chris; Brichard, Benoît; Cheon, M. S.; Chitarin, G.; Hodgson, Eric; Ingesson, Christian; Ishikawa, M.; Kondoh, T.; Meister, Hans; Moreau, Philippe; Peruzzo, Simone; Pak, S.; Pérez-Pichel, Germán; Reichle, Roger; Testa, Duccio; Toussaint, Matthieu; Vermeeren, Ludo; Vershkov, Vladimir

    2011-10-01

    ITER has diagnostics with machine protection, basic and advanced control, and physics roles. Several are distributed on the inner and outer periphery of the vacuum vessel. They have reduced maintainability compared to diagnostics in ports. They also endure some of the highest nuclear and EM loads of any diagnostic for the longest time. They include: Inductive sensors for time-integrated and raw inductive measurements; Steady-state magnetic sensors to correct drifts of the inductive sensors; Bolometer cameras to provide electromagnetic radiation tomography; Microfission chambers and neutron activation stations to provide fusion power and fluence; MM-wave reflectometry to measure the plasma density profile and the plasma-wall distance and; Wiring to service magnetics, bolometry, and in-vessel instrumentation. This paper summarises the key technological issues these diagnostics arising from the nuclear environment, recent progress and outstanding R&D for each system.

  1. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  2. Photofission-Based, Nuclear Material Detection: Technology Demonstration

    SciTech Connect

    Jones, James Litton; Yoon, Woo Yong; Haskell, Kevin James; Norman, Daren Reeve; Moss, C. E.; Goulding, C. A.; Hollas, C. L.; Myers, W. L.; Franco, Ed

    2002-12-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), the Los Alamos National Laboratory (LANL), and the Advanced Research and Applications Corporation (ARACOR) [Sunnyvale, California] performed a photonuclear technology demonstration for shielded nuclear material detection during August 21–22, 2002, at the LANL TA-18 facility. The demonstration used the Pulsed Photonuclear Assessment Technique (PPAT) that focused on the application of a photofission-based, nuclear material detection method as a viable complement to the ARACOR Eagle inspection platform. The Eagle is a mobile and fully operational truck and cargo inspection system that uses a 6-MeV electron accelerator to perform real-time radiography. This imaging is performed using an approved “radiation-safe” or “cabinet safe” operation relative to the operators, inspectors, and any stowaways within the inspected vehicles. While the PPAT has been primarily developed for active interrogation, its neutron detection system also maintains a complete and effective passive detection capability.

  3. Overview of materials technologies for space nuclear power and propulsion

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  4. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  5. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  6. Proceedings of the Nuclear Criticality Technology Safety Workshop

    SciTech Connect

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  7. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

  8. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  9. Nuclear structure studies with intermediate energy probes

    SciTech Connect

    Lee, T.S.H.

    1993-10-01

    Nuclear structure studies with pions are reviewed. Results from a recent study of 1 p-shell nuclei using (e,e{prime}), ({pi}, {pi}{prime}), and ({gamma},{pi}) reactions are reported. Future nuclear structure studies with GeV electrons at CEBAF are also briefly discussed.

  10. Nuclear and neutron matter studies

    SciTech Connect

    Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.

    1995-08-01

    We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.

  11. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  12. Human response to nuclear and advanced technology weapons effects. Final report, January-December 1995

    SciTech Connect

    Coleman, J.L.

    1996-05-01

    The purpose of this study is to help the system survivability analyst estimate hardness requirements for systems exposed to nuclear weapons and advanced technology weapons (ATWs). The system survivability analyst is often asked to make quick, order-of-magnitude estimates on the hardness requirements for existing or proposed systems based upon human responses to the effects of nuclear weapons and ATWs. The intent of this report is to identity the general range of human survivability to nuclear weapons and ATWs and to provide simple example calcuiations and scenarios that can give the reader rough estimates of the effects of these weapons. While high-powered microwave (HPM) and laser weapons are considered in this report, the main emphasis is on nuclear weapons and their ionizing radiation effects.

  13. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  14. Obstacles to Studying Emerging Technologies.

    PubMed

    Waetjen, L Elaine; Parvataneni, Ram; Varon, Shira; Saberi, Naghmeh Salamat; Jacoby, Vanessa L

    2015-08-01

    Laparoscopic radiofrequency ablation of uterine leiomyomas with a new Federal Drug Administration (FDA)-approved device, a device that delivers radiofrequency energy, is a novel procedure that aims to meet patient and physician demand for effective, minimally invasive leiomyoma treatment. However, as a new procedure, the durability of symptom relief, the safety in widespread use, and ultimately the comparative effectiveness of radiofrequency ablation of leiomyomas need further study. In June 2013, the University of California Fibroid Network, a collaboration of the five University of California Departments of Obstetrics and Gynecology, launched the Uterine Leiomyoma Treatment with Radiofrequency Ablation Study, an investigator-initiated early postmarket approval clinical trial of radiofrequency ablation of leiomyomas. In this commentary, we provide a review of the FDA approval process for medical devices using the device that delivers radiofrequency energy as a case study and describe significant limitations of this process that may adversely affect clinical care. We show how the deficiencies in the FDA process have challenged our ability to conduct independent early postmarket research evaluating the safety and long-term effectiveness of this novel technology. Our experience validates the Institute of Medicine's recommendation that advancements in surgical technology introducing new treatments without long-term effectiveness data, comparative study, or both should emerge onto the market under research conditions. Until the FDA requires more rigorous study of novel devices, we suggest ways of working together as a community of gynecologic surgeons to evaluate promising new technologies in early postmarket studies, putting research before widespread adoption of surgical innovation. PMID:26241430

  15. Study of Membrane Reflector Technology

    NASA Technical Reports Server (NTRS)

    Knapp, K.; Hedgepeth, J.

    1979-01-01

    Very large reflective surfaces are required by future spacecraft for such purposes as solar energy collection, antenna surfaces, thermal control, attitude and orbit control with solar pressure, and solar sailing. The performance benefits in large membrane reflector systems, which may be derived from an advancement of this film and related structures technology, are identified and qualified. The results of the study are reported and summarized. Detailed technical discussions of various aspects of the study are included in several separate technical notes which are referenced.

  16. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  17. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  18. Nuclear Weapons Complex reconfiguration study

    SciTech Connect

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  19. Cryogenic Fluid Management Technology and Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2016-01-01

    Cryogenic fluid management (CFM) is critical to the success of future nuclear thermal propulsion powered vehicles. While this is an issue for any propulsion system utilizing cryogenic propellants, this is made more challenging by the radiation flux produced by the reactor in a nuclear thermal rocket (NTR). Managing the cryogenic fuel to prevent propellant loss to boil off and leakage is needed to limit the required quantity of propellant to a reasonable level. Analysis shows deposition of energy into liquid hydrogen fuel tanks in the vicinity of the nuclear thermal engine. This is on top of ambient environment sources of heat. Investments in cryogenic/thermal management systems (some of which are ongoing at various organizations) are needed in parallel to nuclear thermal engine development in order to one day see the successful operation of an entire stage. High durability, low thermal conductivity insulation is one developmental need. Light weight cryocoolers capable of removing heat from large fluid volumes at temperatures as low as approx. 20 K are needed to remove heat leak from the propellant of an NTR. Valve leakage is an additional CFM issue of great importance. Leakage rates of state of the art, launch vehicle size valves (which is approximately the size valves needed for a Mars transfer vehicle) are quite high and would result in large quantities of lost propellant over a long duration mission. Additionally, the liquid acquisition system inside the propellant tank must deliver properly conditioned propellant to the feed line for successful engine operation and avoid intake of warm or gaseous propellant. Analysis of the thermal environment and the CFM technology development are discussed in the accompanying presentation.

  20. Lunar nuclear power feasibility study

    NASA Technical Reports Server (NTRS)

    Erdman, C. A.; Tran, T.

    1984-01-01

    Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base.

  1. Lunar nuclear power feasibility study

    NASA Astrophysics Data System (ADS)

    Erdman, C. A.; Tran, T.

    1984-11-01

    Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base.

  2. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  3. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  4. Upper stage technology evaluation studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies to evaluate advanced technology relative to chemical upper stages and orbit-to-orbit stages are reported. The work described includes: development of LH2/LOX stage data, development of data to indicate stage sensitivity to engine tolerance, modified thermal routines to accommodate storable propellants, added stage geometries to computer program for monopropellant configurations, determination of the relative gain obtainable through improvement of stage mass fraction, future propulsion concepts, effect of ultrahigh chamber-pressure increases, and relative gains obtainable through improved mass fraction.

  5. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  6. Technology status of tantalum alloys for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Hoffman, E. E.

    1985-01-01

    Tantalum alloys have a variety of properties which make them attractive candidates for application in nuclear power systems required to operate in space at elevated temperatures (1200 to 1600 K) for extended time periods. Most of the technology development on this class of alloys which is pertinent to space system application occurred during the 1960 to 1972 time period under NASA sponsorship. The most extensive data bases resulting from this earlier work were obtained on the alloys T-111 (Ta-8W-2Hf) and ASTAR 811C (Ta-8W-1Re-0.7Hf-0.025C). Emphasis in this paper is directed at the following technical factors: producibility, creep strength, weldability and compatibility. These factors are considered to be the most important elements in the selection of alloys for this application. Review of the available information indicates that alloys of this type are appropriate for application in many systems, particularly those utilizing alkali metals as the working fluid.

  7. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment. SUMMARY: The U.S. Nuclear Regulatory Commission...

  8. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  9. Study of bump bonding technology

    SciTech Connect

    Selcuk Cihangir et al.

    2003-10-17

    Pixel detectors proposed for the new generation of hadron collider experiments will use bump-bonding technology based on either indium or Pb/Sn solder to connect the front-end readout chips to the silicon pixel sensors. We have previously reported large-scale tests of the yield using both indium and Pb/Sn solder bump [1]. The conclusion is that both seem to be viable for pixel detectors. We have also carried out studies of various effects (e.g. storage over long period, effect of heating and cooling, and radiation) on both types of bump bonds using daisy-chained parts on a small scale [2], [3]. Overall, these tests showed little changes in the integrity of the bump connections. Nevertheless, questions still remain on the long-term reliability of the bumps due to thermal cycle effects, attachment to a substrate with a different coefficient of thermal expansion (CTE), and radiation.

  10. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    This report describes progress in the experimental nuclear physics program of the University of Tennessee, Knoxville. It presents findings related to properties of high-spin states, low-energy levels of nuclei far from stability, and high-energy heavy-ion physics, as well as a brief description of the Joint Institute of Heavy Ion Research (a collaboration between the University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory) and its activities (particularly those of the last few years), and a list of publications. 89 refs., 18 figs., 5 tabs.

  11. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  12. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  13. Study of nuclear shapes in extreme conditions

    NASA Astrophysics Data System (ADS)

    Muralithar, S.; Gamma spectroscopy Group in IUAC

    2013-04-01

    Studies of nuclear structure have fascinated physicists and was pursued for decades actively. Nuclear structure evolves as a function of proton and neutron ratio, energy and spin pumped into system. To facilitate nuclear structure study at high spin, a host of facilities were developed at Inter University Accelerator Centre, New Delhi and was used by users across this country for last twenty years. The tools developed, from Gamma detector array (GDA) with ancillary devices, to Indian National Gamma array (INGA) are presented with few physics cases.

  14. [Occupational risk and technological innovations. Comparison of conventional and nuclear energy systems (fuel, coal and nuclear) (author's transl)].

    PubMed

    Fagnani, F; Hubert, P; Maccia, C

    1981-01-01

    The objective is to compare the occupational risks associated to the production of electricity through three alternative technologies: fuel, coal and nuclear (Pressurised Water Reactor). A methodology is proposed in order to integrate the operation and construction activities. The data related to a French scenario have been collected and are presented. The results obtained in the case of nuclear technology correspond to the present French program for 1990 and have in this respect a prospective value. PMID:7280341

  15. Nuclear Technology Series. Course 3: Principles of Process Instrumentation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 10: Power Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 35: Systems and Components.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 31: Quality-Assurance Practices.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 33: Control Systems I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 16: Mechanical Component Characteristics and Specifications.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 34: Control Systems II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 2: Radiation Protection I.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 17: Radiation Protection II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…